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Abstract

We introduce and analyze a model for stochastic and dynamic vehicle roucing in
which vehicles traveling at a constant velocity in a Euclidean region must service
demands whose time of arrival, location and on-site service are stochastic. The ob-
jective is to find a policy to service demands over an infinite horizon that minimizes
the expected system time (wait plus service) of the demands.

We begin by examining the case where the regions is served by a single, uncapac-
itated vehicle and demand locations are nniformly distributed. We find necessary
and sufficient conditions for the existence of a stable policy, a policy that is optimal
in light traflic and several policies that have system times within a constant factor
of the optimum in heavy traffic. We then extend our analysis the problem in several
directions. I'irst, we analyze the problem of m identical vehicles with unlimited ca-
pacity and show that in heavy traffic the system time is reduced by a factor of 1/m?
over the single-server case. We then consider the case in which each vehicle can serve
at most ¢ custoners before returning to a depot. In contrast to the uncapacitated
case, we show the stability condition in this case depends strongly on the geometry
of the region. Finally, we examine the problem for generally distributed demand
locations. Policies that have system times within 2 constant factor of the optimum
in heavy traffic are proposed and analyzed for all these various extensions. Several
other extensions to more general cost structures, strategic planning problems and
generalized removal rules are also discussed.

Thesis Supervisor: Dimitris J. Bertsimas

Title: Assistant Professor of Management Science
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Chapter 1

Introduction

1.1 Motivation

Vehicle routing problems (VRPs), in particular the classical traveling salesman prob-
lem (TSP), are some of the most studied problems in the operations research and
applied mathematics literature. The attention they receive is due in large part to
their richness and inherent elegance. The TSP in particular is, in many ways, the
prototypical hard combinatorial problem. However, VRPs are also encountered fre-
quently in practical distribution systems, both directly anc as subproblems, and
these practical applications have been a further stimulus for research.

Classically, VRPs are viewed as static, deterministic problems. A set of known
customer locations defines an instance, and the objective is to visit customers so as to
minimize the total travel cost, perhaps subject to certain constraints (e.g. a limit on
vehicle capacity). This classical paradigm has generated significant research interest
over the years (see for example [34], [18]) resulting in major contributions in the
areas of combinatorial optimization, the analysis of heuristics and complexity theory.
Yet, in many of the practical applications in which VRP’s arise (e.g. emergency
service, inventory resupply, mobile repair and distribution), their is a significant
dynamic component to the problem. Thus, the classically defined VRP’s are often

deterministic, static approximation to practical problems which are, in reality, often
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both probabilistic and time varying (dynamic).

For example, a typical application of a TSP is in routing a delivery vehicle
from a central depot to a set of dispersed demand points so as to minimize the
total travel (delivery) costs. In real distribution systems, however, the demands
may arrive randomly in time and the dispatching of vehicles may be a continuous
process of collecting demands, forming tours and dispatching vehicles. In such a
dynamic setting, the wait for a delivery (service level) if often as important as the
travel cost. And in some cases, in particular emergency service, waiting time is the
most important measure of system performance.

As a canonical example of a logistics application with strong probabilistic and
dynamic components, consider the following utility repair problem: A utility firm
(electric, gas, water and sewer, highway, etc.) is responsible for maintaining a large,
geographically dispersed facilities network. The network is subject to failures which
occur randomly both in time and space (location). The firm operates a fleet of
repair vehicles which are dispatched from a depot to respond to failures. Routing
decisions are made based on a realtime log of current failures and perhaps some
characterization of the future failure process. Vehicle crews spend a random amount
of time servicing each failure before they are free to move on to the next failure. The
firm would like to operate its fleet in a way that minimizes the average downtime
due to failures.

There are other closely related problems to this canonical example that arise
in practice. For instance, consider a firm that delivers a product from a central
depot to customers based on orders that arrive in realtime. Orders are entered into
a log and delivery vehicles are dispatched with the objective of minimizing some
combination of the delivery cost and the average wait for delivery. Such an order
process is likely to be found in firms that serve a large population of customers (or
potential customers) each of whom orders relatively infrequently (e.g. home heating
oil distributors, mail order firms, etc.).

Furtner important examples are found in finished goods distribution and freight
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consolidation. Consider, for example, an automobile manufacturer. Cars are pro-
duced at an assembly plant and put into finished goods inventories (parking lots)
to await distribution by a fleet of car-hauling trucks. Each car is designated for
a particulir dealer. Conceptually, the inventory can be thought of as a “log” of
locations that must be visited by the delivery vehicles. New entries to this log are
made every time a new vehicle is added to the inventory, and entries are deleted
when automobiles are delivered to their designated dealers. For a fixed production
rate, minimizing the waiting time in this case is, by Little’s theorem, equivalent to
minimizing the inventory of finished goods either on the lot or in transit.

Similar distribution problems are found in freight consolidation (e.g. less-than-
truckload (LTL) shipping) and parcel post systems. Here distribution centers receive
partial loads designated for specific locations in a service region. These partial loads
are queued (stored in a distribution terminal) and eventually consolidated into full
truckloads for delivery. Lowering the wait for delivery in these systems is important
both for improving the service level (delivery time) and for reducing inventory costs
(terminal space, insurance costs, etc.).

It is an unfortunate fact that current models and techniques have little to say
about vehicle routing when stochastic and dynamic elements are included [39] .
This is due in large part to the inherent difficulties of combining vehicle routing and
congestion models. In particular, including a time element along with randomness
usually destroys the combinatorial structure required for classical vehicle routing
methods. Similarly, the strong dependencies present in travel times usually violate
the assumptions required to apply traditional queuing models. Indeed, Psaraftis
[39] points out that although congestion (queueing) and vehicle routing theory are
both very rich subjects, little work has been done to combine them.

Our goal in this thesis is to begin to fill this void. That is, to use techniques from
established areas and to develop new techniques in order to form a useful theory of

vehicle routing under congestion. We believe the results obtained represent a step
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toward this goal. They significantly extend the range of logistics problems that can
be analyzed Juantitatively. In addition, they give strong insights into the behavior
of stochastic and dynamic vehicle routing systems, as well as providing a variety of
practical, provably good heuristics. We hope these insights will ultimately lead to

significant improvements in the design and operation of real-world logistics systems.

1.2 Literature Review

Stochastic and dynamic elements of the type mentioned above are sometimes incor-
porated in the classical vehicle routing framework through the use of rolling horizon
procedures. These procedures involve planning routes for a fixed period into the
future, often with the option of adding or deleting demands and modifying routes
as time advances. See Brown and Graves {13], Powell [38] and Psaraftis [40] for ex-
amples of this approach. Though useful for data-intensive tactical problems, they
are inherently ad hoc and do not give insight into the fundamental behavior of these
systems.

To understand such behavior more directly, several researchers have proposed
alterative models that explicitly consider some combination of stochastic, dynamic
demands or congestion/waiting time measures. A static, deterministic problem
which uses the waiting time objective is the traveling repairman problem (TRP). In
the TRP a vehicle services a set of n demands starting from a depot. The distances
between demands i and J, d(i,7) are given so if the sequence followed is (1,2, ... yn, 1)
the total waiting time is 2oie1 wi where w; is the waiting time of demand i given
by w; = Z;;ll d(j,7 + 1). The problem is to minimize the total waiting time. The
problem is known to be NP-hard (see Shani and Gonzalez [42] and Afrati et al, (1]).
The TRP even seems difficult on trees. Minieka [35] proposes an exponential O(nP)
for the TRP on a tree T = (V,E) where |V| = n and p is the number of leaves.

Unfortunately, little else is known about the problem.

Jaillet [23), Bertsimas (9], [10] and Bertsimas, Jaillet and Odonj (11] address
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uncertainty in demand locations in their formulation of the probabilistic traveling
salesman problem (PTSP) and the probabilistic vehicle routing problem (PVRP).
In the PTSP there are n given points, and on any given instance of the problem only
a subset S consisting of |S| = k of the points must be visited. Given the probability
of each instance p(S), we wish to find a priori a tour through all n points, where on
a given instance the k points will be visited in the order of this tour. The problem is
to find such a tour that is of minimum length in the expected value sense. In the case
where the vehicle has capacity ¢, the resulting problem is the PVRP. Though the
problem is stochastic and can model the realtime occurrence of problem instances,
the strategy is inherently static and is solved using only probabilistic information.

Dynamic and stochastic characteristics have been considered in the context of
location problems by Batta et al [5] and Berman et al. [7] who define the stochas-
tic queue median problem (SQMP). In the SQMP, demands arrive to nodes of a
network according to independent Poisson processes. The demands require a gen-
erally distributed amount of service from a vehicle based at a depot that follows a
first-come-first-serve (FCFS) order, returning to the depot after completion. Thus,
the system operates as an M/G/1 queue with a service time distribution that de-
pends on the depot location. The problem is to locate the depot so as to minimize
the expected waiting time. The model is well suited to emergency service applica-
tions (e.g. police, fire and ambulance dispatching), but the service strategy is quite
restrictive and less appropriate for delivery and repair problems.

A somewhat closer representation of our examples is found in the polling system
and machine repairman literature. A polling system in defined identically to the
SQMP except that the service strategy is to repeatedly visit nodes according to a
fixed permutation. The server either serves all customers present at a node at the
time of arrival (gated service) or serves a node until no customers are left (exhaus-
tive service) before moving to the next node in the sequence. (See Takagi [47] for

a comprehensive survey of polling systems.) The policy can be enriched by using
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a general polling table where sequences longer and more complicated than simple,
cyclic permutations are used [3]. Unfortunately, even the performance analysis of
such systems is quite difficult and often invclves solving large systems of linear equa-
tions [16]. Browne and Yechiali [14] obtain dynamic index rules for visiting nodes
based on optimization over a limited horizon of one cycle; however, the approach
requires the distances to be decomposable so that d(i,j) = d; + d; for all i and
J, which is appropriate for some computer system and manufacturing applications
but is unrealistic in a vehicle routing context. In addition, it is not clear how their
myopic criterion relates to the objective of minimizing average waiting time over an
infinite horizon.

The machine repairman problem, a closely related problem, has the same net-
work structure as in the SQMP and polling systems, but the capacity at each node
is one. Thus individual nodes can be thought of as single machines that fail ran-
domly in time and wait to be repaired by a traveling repairman. (See Stecke and
Aronson [43] for a review.) Agnihothri [2] solves only the perfectly symmetric case
(i.e. identical node statistics and identical travel times between all nodes) exactly
using a Semi-Markov model. Due vo the symmetry, however, all work conserving
policies are equally good, so this formulation fundamentally avoids the issue of op-
timization. In addition, the resulting performance measures are quite complex. As
a result, little insight is gained for the realistic asymmetric case.

A formulation that closely matches our canonical applications is the dynamic
traveling salesman problem (DTSP) proposed by Psaraftis [39]. As in the other
network formulations, he considers a complete graph with n nodes each of which re-
ceives arrivals according to independent Poisson process. There is a general service
time distribution for each node. The distance between nodes is known. The arrivals
are serviced by a vehicle traveling on the network, and the goal is to optimize over
some performance measure such as throughput or waiting time. This model moti-

vated our initial investigation; however, it seems inherently complex, an general
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results have yet to be obtained.

1.3 Definition

The problem we investigate, which we call the dynamic traveling repairman problem
(DTRP) is a Euclidean model of a dynamic VRP. Demands for service arrive ac-
cording to a Poisson process with rate A to a connected, bounded Euclidean service
region A of area A. Upon arrival, demands assume an independent and identically
distributed (i.i.d.) location in A according to a continuous density f(z) defined
over A. Demands are serviced by m identical vehicles that travel at constant veloc-
ity v. At each location, vehicles spend some time s in on-site service that is i.i.d.
and generally distributed with finite first and second moments denoted by ¥ and s?
respectively. Figure 1.1 shows a picture of this system.

Initially, we shall assume that there are no capacity constraints on the vehicles.
In Chapter 4 we consider the case where there is an upper bound of ¢ on the number
of demands that can be served before a vehicle must return to a designated depot
location.

A policy for routing the vehicles is called stable if the number of demands 1n
the system is bounded almost surely for all times ¢. Let M denote the set of stable
policies. If a policy is stable, p = 4\"-;’: is the fraction of time vehicles spend in on-site

service. We write T}, to indicate the system time of a particular policy 4 € M. The

DTRP is then defined as the optimization problem

DTRP:

min T,.
HEM

We let T denote the optimal value in this minimization.
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+ Unserved Demands

Figure 1.1: Pictcrial Representation of the DTRP
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1.4 Overview and Outline of Thesis

1.4.1 The Single Uncapacitated Vehicle DTRP

Our analysis of this problem requires several known results from from queuing theory
and geometrical probability. Chapter 2 lists these results and gives appropriate
references.

In Chapter 3 we analyze the DTRP for the case where the entire region is served
by a single uncapacitated vehicle. In the light traffic case (A — 0) we show that a
policy based on locating the server at the median, z*, of .A and serving customers
in FCF'S order, returning to the median after each service is optimal. The optimal
expected system time, T, in this case satisfies

r o BX =2l

as A —0,

where X ~ f(z). (Note that the first term above is simply the expected travel
time from the median). We extend this result to the m-vchicle case in Chapter 4,
in which case the first term above becomes the m-median distance divided by the
velocity.

We then investigate the problem in heavy traffic, adding the restriction that
demands are uniformly distributed (f(z) = 1/A). We show that for this single,
uncapacitated vehicle problem policies exist that have finite system times for all
p < 1. This is surprising in that the condition is independent of the service region
size and shape; it is also the mildest stability restriction one could hope for. We
then show that there exists a constant 4 = W%; & 0.266 such that

AA 5(1 - 2p)
- 2 -
2T A=y 2

We extend this bound to the m-vehicle case in Chapter 4. An analogous asymptotic
bound is derived in Chapter 5 that improves the constant by a factor of v/2 to
Y = WQF ~ 0.376. Note that this bound grows like (1 — p)~2 as p — 1. Thus,
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though the stability condition is similar to that of a traditional queue, the system
time increases much more rapidly as congestion increases.

In Chapter 3 we propose several policies p that have finite system times, T},
for all p < 1. In addition, we show that these policies have the same asymptotic

behavior, namely

2 AA
~NY T
HuE(1 — p)?

where the constant v, demands only on the policy u. Hence, by comparing this to

T,

as p—1,

the lower bound above, we see that the ratio T,/T™ is bounded as p — 1. (Such a
bound is henceforth called a constant factor guarantee.) The provably best policy is
one based on forming optimal traveling salesman tours for which v, = 8/v/2 ~ 0.51,
where f is the Euclidean TSP constant [6]. Relative to the value y = ﬁ; ~ 0.376

from Chapter 5, this gives our best provable guarantee of

2
& = £— ~ 1.8.
T 292

We conjecture that in fact the TSP policy is optimal in heavy traffic and thus the
ratio above is one.

Using simulation, we also analyze a policy based on the space filling curve heuris-
tic [4] and one based on serving the nearest neighbor. The results show a similar
7;‘:;7(1\—1‘757 behavior, even for moderate value of p. We estimate the constants v, for
these policies from the simulation results. Though not competitive with the best
TSP policy, these heuristics are simple to implement and of very low complexity,

which may make them attractive in practice.

1.4.2 The Multiple Capacitated-Vehicle DTRP

As satisfying as these results are, the model of a single uncapacitated vehicle is
somewhat unrealistic for most practical purposes. Therefore, in Chapter 4 we extend
our results to the case where demands are still uniformly distributed, but the region

A is now serviced by a homogeneous fleet of m vehicles operating out of a set D
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of |[D| = m depots, where each vehicle is restricted to visiting at most ¢ customers
before returning to its respective depot. (The depot locations need not be distinct.)
We show that the minimum expected system time, T*, in this case has the

tollowing lower bound:

142 —~
s AL+ 2) ___51-2p)
= 9 m2v?(1—p— KL 2p

where p = A5/m, T denotes the expected distance from a uniform location in A to
the closest point in D and 7 is the same numerical constant from the uncapacitated
bound. Note that for the case ¢ — 0o and m = 1 this redu-es to our earlier bound,
albeit with a weaker constant.

When m > 1 and ¢ = oo, we show that policies with the same constant factor
performance guarantee as in the single server case can be constructed by simply
partitioning A into m equal subregions and serving each one independently using a
single-server policy.

For g finite, we construct policies, yu, for which

AA(1-1)? F
T ~ 2 g "
H 7“77!202(1—[)—-3‘%%)2 as P+mqv—vla

and therefore have a constant factor guarantee. In the case where all m vehicles are
based out of the same depot, we show that a policy based on subdividing tne region
into squares, forming tours of g customers within each square and then serving tours
in FCFS order has a constant factor guarantee. A better guarantee is provided by
a policy based on tour partitioning adapted from the static heuristic analyzed by
Haimovich and Rinnooy Kan [20]. When there are k depots, these results also hold
under certain symmetry conditions.

These results provide some intuitively satisfying insights. For example, when

m =1 and ¢ < oo they imply a necessary and sufficient condition for stability is

207
p+—t;< 1.
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Observe that this condition is no longer independent of the service region geometry
because of the presence of 7; however, for ¢ — oo the dependence vanishes.

The second term in this stability condition has the interpretation of a radial
collection cost in the sense of Haimovich and Rinnooy Kan [20]. That is, 2F/v is
essentially the average time required to reach a set of ¢ customers from the nearest
depot (the radial cost). Dividing by ¢ gives the average radial travel time per
customer, and hence multiplying by A we obtain the fraction of time the server
spends in radial travel. The above condition says that as long as this fraction plus the
fraction of time spent on-site is less than one, the system will be stable. Furthermore,
the waiting time grows like the inverse square of the stability difference, 1 —p — %,
Just as it does in the uncapacitated case. Note that the average radial distance 7
plays a crucial role in the system’s behavior in this case. Indeed, we prove that if

one has the option of locating the depot anywhere within A, then minimizing 7 (i.e.

locating the depot at the median) is always optimal in heavy traffic.

1.4.3 General Distributions

All the heavy traffic results previewed thus far apply to the case of uniformly dis-
tributed demand (i.e. f(z) = 1/A) and Poisson arrivals. In Chapter 5, we take a
different tact and investigate the m-server, uncapacitated problem where demands
are distributed in the service regions A according to a general continuous density
f(z) and arrivals occur according to a general renewal process. Since the proofs for
the lower bounds in Chapters 3 and 4 relied heavily on the Poisson and uniformity
assumptions, we are forced to develoy different proof techniques in this chapter.

In the general-f(z) case, in turns out that we must distinguish between policies
which are spatially fair (i.e. those providing the same mean system time for all
locations within A) and policies which are discriminatory (i.e. those providing

different mean system times to different regions of 4). Within the class of spatially
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fair policies, we show that

M L4 £12(2)dz]”

m2y?

lim (1= p)? 2 7°

where v > ﬁ; As mentioned, this improves on the constant for the uniform case,
for which [fA f1/2(:z:)d:z:]2 = A. Note, however, that this bound is an asymptotic
bound while the previous bound is valid for all p. We then show that natural
extensions of the TSP policies for the uniform case gives the same %3; guarantee as
in the uniform case.

For discriminatory policies, we show that

M Ju £ @) da]”

m2y?

lim T*(1 - p)* > *
p—

where v is the same as in the fair case. We then propose a policy with a %2;
guarantee for the special case where f(z) is piecewise uniform. We conclude Chapter
5 by discussing the relationship between the fair and discriminatory behaviors, giving
some numerical results on the behavior or the space filling curve and nearest neighbor

policies for general f(x) and outlining extensions to the capacitated vehicle problem.

1.4.4 Extensions and Conclusions

Finally, in Chapter 6 we give some results and observations on a variety of extensions
to the basic problem. We begin by discussing extensions to higher dimensions. We
then look at the problem of minimizing a joint travel cost and system time cbjective
and show that the basic tradeoff between the two is an inherent feature of most
of our proposed policies. Then, we briefly discuss some stylized planning models
based on our results. Lastly, we discuss using our lower bounds to analyze other

combinatorial problems in the plane. In Chapter 7 we give our conclusions.



Chapter 2

Probabilistic and Queueing
Background

In this chapter, we present some results from geometrical probability and queueing
theory that are used frequently in the remaining chapters.
2.1 Jensen’s Inequality
If f is a convex function and X is a random variable then
E[f(X)] 2 f(E[X)), (2.1)

provided the expectations exist.

2.2 Wald’s Equation

Let {Xi;i > 1} be a sequence of i.i.d. random variables with E[X] < co and N be
a finite-mean random variable with the property that P{N = n} is independent of

{Xi;i > n} for all n. (Such a random variable N is said to be a stopping time for

the sequence {X;;i > 1}.) Then

E [f: X.-] = E[N]E[X]]. (2.2)

i=1

21
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2.3 An Upper Bound for the Waiting Time ina GI/G/1

Queue

In a GI/G/1 queue let i- be the expected interarrival time and 5 be the expected
service time. Let o2 and o? denote the variances of the interarrival and service time
distribution respectively. The traffic intensity is p = AF. There is no simple explicit
expression for the expected waiting time W in this case. (The average system time
T is simply W +5.) However, Kingman [26] (see also Kleinrock [29]) proves that

Moz +97)
2(1-p)
In addition, this upper bound is asymptotically exact as p — 1. For the M/G/1 it

W< (2.3)

is well known (see Kleinrock [29]) that
As?

V==

(2.4)

where s? = % + 3% is the second moment of the service time.

2.4 A Heavy Traffic Limit for the Waiting Time in a
GI/G/m Queue

Kingman [27)] gives the following limit for the waiting time W in a G/G/m queue
(e.f [30)),
Moz +oi/m?)
2= p)

where as above 02 and o2 are the variances for the interarrival times and service

w as p—1, (2.5)

time respectively, 1/) is the mean interarrival time, 5 is the mean service time and
A3

P=m

2.5 Symmetric Cyclic Queues

Consider a queueing system that consists of k queues @;,@2,...,Qk each with

infinite capacity. Customers arrive at each queue according to independent Poisson
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processes with the same arrival intensity A/k. The queues are served by a single
server who visits the queues in a fixed cyclic order Q,Q2,...,Qk, Q1,Q2,.... The
travel time around the cycle is a constant d. The service times at every queue
are independent, identically distributed random variables with mean 5 and second
moment s2. The traffic intensity is p = AS. The server uses the exhaustive service
policy, i.e. servicing each queue i until the queue is empty before proceeding, The
expected waiting time for this system is given by (see Bertsekas and Gallager [8],
p.156) — ,
As - r
VT A 29

We note that in an asyrimetric cyclic queue, in which arrival processes and service

times are not identical, t.ere are no closed form expressions for the waiting time

(see Ferguson and Aminetzah [16]).

2.6 A Heavy Traffic Limit for the “GI/G/m Queue

A queue is denoted }  GI/G/m if its input process is the superposition of k indepen-
dent renewal processes (not necessarily identical). The following theorem is due to

Inglehart and Whitt [22] (c.f. Flores [17]):

Theorem 2.1 (Inglehart and Whitt [22]) Consider an m server queue fed by
the superposttion of k renewal processes. Let 1/); and ag'. denote, respectively, the
mean and variance of the interarrival time of the i-th renewal process, i = 1,2,... k.
Let 1/p; and a’fj denote the mean and variance, respectively, of the service times at
server j = 1,2,...,m. Define A = 2:-;1 Aip=YT p)and p= % Then as p — 1
the mean watting time in queue, W, satisfies

LNl + TR e},

w
2u3(1 - p)

2.7
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2.7 Geometrical Probability

Given two uniformly and independently distributed points X;, X, in a squa.e of
area A, then

E(| X1 - Xzl = etVA,  E[|| X1 - X2|[*] = 24, (2.8)

where ¢; = 0.52,¢; = % (see Larson and Odoni [31], p.135). If we let z* denote the
center of a square of area A, then it is known [31] that the first and second moment

of the distance to a uniformly chosen point X are given by
E[|IX —z*}= aaVA, E[IX - z*[}] = cuA, (2.9)

where ¢3 = (V2 + In(1 + v/2)/6 ~ 0.383,c4 = -é.

2.8 Asymptotic Properties of the TSP in the Euclidean

Plane

Let X, ... X, be independently and uniformly distributed points in a square of area
A and let L, denote the length of the optimal tour through the points. Then the

following theorem holds:

Theoren: 2.2 (Bearwood, Halton and Hammersley [6]) There erists a con-
stant, B, such that

Jim 7 = BVA. (2.10)

with probability one. (See also [44] and (34].)

Suppose now that X ... X, are distributed according to a general distribution

that has compact support and an absolutely continuous part f(z), then

mn———ﬁ/ﬂ”u) (2.11)

n—oo n

(See [44].)
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In his recent experimental work with very large scale TSP’s, Johnson [24] es-
timated Brsp = 0.72. Also, for finite n there exists a constant 3 such that with
probability one

La. < VAR, (2.12)

This can be shown using, for exaraple, the strip heuristic in which case g = 2 [25).
In addition, it is also well known (see [34], p. 189) that limp—o Var(L,) = O(1),
and therefore

li

n—o00 n

im Yor(Ln) _ (2.13)

2.9 Space Filling Curves

The following results are due to Platzman and Bartholdi [37]. Let C = {0|0 < 6 < 1}
denote the unit circle and S = {(z,y)[0 < £ < 1,0 < y < 1} denote the unit square.
Then there exists a continuous mapping 1 from C onto S with the property that for
any 6,0 € C,

I19(6) - v (@)l < 2/0 = ] (2.14)
If Xi... Xy are any n points in S and Ly is the length of a tour of these n points

formed by visiting them in increasing order of their preimages in C (i.e. increasing

8 order), then
Ln <2y, (2.15)

If the points Xy ... X, are independently and uniformly distributed in S, then there

exists a constant, Bspc, such that

L
limsup —\/-% = Bsrc (2.16)

n—+0o

with probability one. The value of Bsrc is approximately 0.956.



Chapter 3

The Single Uncapacitated
Vehicle DTRP

In this chapter we examine the simplest case of the DTRP in which demands are
uniformly distributed in A and the entire region is served by a single vehicle, and
no capacity constraints are imposed. In §3.2 we derive lower bounds on the system
time. Then in §3.3 we propose some specific policies and compare their performance
to these lower bounds in light and heavy traffic. A numerical example is given in

§3.5 to illustrate the relative performance of the proposed policies.

3.1 Notation

Locations in R? are generically denoted z (i.e. z = [z; z2]) and random locations
are denoted X. Subsets of R2 are typically denoted by calligraphic letters (e.g.
S). We shall index demands according to their service order, We let s; denote
the on-site service time of the i-th demand served, W; denote the i-th demand’s
waiting time and T; = W; + s;. With each demand we associate a travel distance,
di, which is the distance the server travels in going from demand (i — 1) to demand
i. This association is in a sense arbitrary. Indeed, in Chapter 5 we shall reverse this
convention and define d; to be the distance traveled from demand i to demand i+ 1.

In the limit as i — oo these two definition are equivalent.

26
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The limiting expected values of these random variables are defined by 7 =
limioo E[s;], W = limjnoo E[W;], T = limj—eo E[T;] and d = lim;_ E[d;]. We
shall assume that if the service policy is stable (That is, the number in the system is
bounded almost surely for all times ¢.), then the system is ergodic and these limits
exist. Thus, for example, we can alternatively interpret d as the limit as t — oo of
the cumulative distance traveled in [0,t] divided by the number of demands served
in [0,1].

For a given policy p, we write T,, to denote lim;_.oo E[T;] under this policy. The
optimal system time within the class M of stable policies is denoted T™. That is,

T* = min T},.
HEM

3.2 Lower Bounds on the Optimal DTRP Policy

We first establish two simple but powerful lower bounds on the optimal expected

system time, T™.

3.2.1 A Light Traffic Lower Bound

The following bound is most useful in the case of light traffic (A — 0):

Theorem 3.1 _
EfX = ="|]) As? =
+ 3, 3.1
v(l-p) ~ 2(1-)p) ®1)

where z* is the median of the region A.

T >

We note for the special case where A is a square,
E[)IX —z"|[] = c3VA =~ 0.383VA.

Proof
The first bound for the DTRP is established by dividing the system time of

demand ¢, T;, into three components: the waiting time due to the server’s travel
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prior to serving i, denoted IV¢; the waiting time due to the on-site service times of

demands served prior to i, denoted W, and demand i's own on-site service time,
s;. Thus,
T, = WE + W} + 5.

Taking expectations and letting ¢ — oo gives
T =W+ W +5, (3.2)

where W? = limi—.oo E[W¥] and W* = limi_co E[W/]. Note that W = W® + W°.
To bound W?, note that it is at least as large as the travel delay between the
server’s location at the time of a demand’s arrival and the demand’s location. In
general, the server is located in the region according to some (generally unknown)
spatial distribution that depends on the server’s policy. Thus, W% is bounded below
by the expected delay between a server location selected from this distribution and
a uniform location. Now, suppose we had the option of locating the server in the
best a priori location, =*; that is, the location that minimizes the expected travel
time to a uniformly chosen location, X. This certainly yields a lower bound on the

expected distance between the server and the arrival, so
wé > L i E[||X - =||). (3.3)
T v zeA

The location z* that achieves the minimization above is the median of the region
A. For the case where A is a square, z* is simply the center of the square, in which

the lower bound is from (2.9),
we > fvix/Z ~ 0.383VA4. (3.4)

To bound W?, let N denote the expected number of demands served during a

waiting time. Since service times are independent, we then have

<2
W’=§N+’\%,
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where the second term is the expected residual service time of the demand being
served at the time of arrival. Since in steady state the expected number of demands
served during a wait is equal to the expected number that arrive, we can apply

Little’s law to get

As? As?
W’=§,\W+—§—=pw+%.

Since W = W% + W* we cbtain

] 4 d As?
W? = —(W?*) 4+ —m—.
l—p( ) Q(I—P)

Combining (3.2), (3.3) and (3.5) and noting that these bounds are true for all policies

(3.5)

we obtain Theorem 3.1.
O (Theorem 3.1)
We note that uniformity is only used to evaluate E[||X — z||] for square regions,

and thus Theorem 3.1 holds for X ~ f(z) as well.

3.2.2 A Heavy Traffic Lower Bound

A lower bound that is most useful for the heavy traffic (p — 1) case is provided by

the following theorem:

Theorem 3.2 There exists a constant v such that

AA 5(1 - 2p)

1-p)* 2 (3.6)

T 27

Proof

We begin with the following important lemma:

Lemma 3.1

VA ,
NiEavik (3.7)

where v > 5—\725 and N is the average number of customers in queue.

d>v
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Before proving this lemma, observe that Theorem 3.2 is easily derived from it

by substituting the bound on d into the stability condition,

el al

, (3.8)

> =

=)

+5<

which yields

sp—1Y4_ 1
vW/N+1/2 7 A

After rearranging, noting that T = W + 5 and N = AW, we obtain the bound of

Theorem 3.2. Thus, Theorem 3.2 is established once Lemma 3.1 is proven.

O (Theorem 3.2)

Proof of Lemma 3.1

Consider a random “tagged” demand and define,
So : The set of locations of demands who are in queue at the time of the tagged

demand’s arrival union with the set of server locations.

81 : The set of locations of the demands who arrive during the tagged demand’s

watting time ordered by their time of arrival.
Xo = The tagged demand’s location.
Ni=|S|, i=0,1
Z§ = minges, ||t — Xol|.

Further, define Z; = || X; — Xo|| where X; is the location of the ith demand to arrive
after the tagged demand (e.g. 81 = {X1,X2,...,Xn,}). Note that {Z;;i > 1} are
i1.d. with

2
P{Zi< 2} < %, (3.9)

and that N, is a stopping time for the sequence {Z;;i > 1}.

The set of locations from which a server can visit the tagged demand is at

most So U S1; therefore, the value of d; for the tagged demand is at least Z*
min{Z§, Z1, ..., Zn, }. Hence,
d> E[27). (3.10)



CHAPTER 3. THE SINGLE UNCAPACITATED VEHICLE DTRP 31

We next bound the right hand side of (3.10). To do so define a indicator variable

for a random variable X by

Il if X<z
X:
o itx>.

where z is a positive constant to be determined below. Then

Ny
P{Z" >z} = PlIz;+) Iz =0}
=1
N

= 1=P{Iz: +) Iz >0}

i=1
M
> 1-E(lz; +)Y Iz (Ix Integer)
i=1
= 1-E[lz] - E[M]E[Iz] (Wald's Eq.).
Since E[N1] = N and E[Iz] = P{Z; < z} is bcunded according to (3.9), we obtain
722
P{Z" >z} > l—P{Z;Sz}—N—A—. (3.11)
An upper bound on P{Z§ < z} is provided by the next lemma.

Lemma 3.2 : P{Z; < z} < %‘;(N +1).

Proof

First, consider any set S of n points in A. Let X be a uniformly distributed
location in A independent of S and define Z* = ming¢s || X — z||. For each point in
S, construct a circle of radius z centered at the point, and let A(S) denote the total

area in A covered by the intersection of these circles. Then,

2
P{Z" <z} = iﬁ?g ="

Since Xp is independent of Sp under any condition on 8y, we can condition on the

value Np and use the the above bound to assert that

2
P{Zg < z|No} < %No.
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Unconditioning and observing that E[Ng] = N + 1 establishes the result.
O (I.emma 3.2)
Using the result of Lemma 3.2 in (3.11) yields

P{Z* >z} >1- %(QN +1)22,

Combining this with the trivial bound P{Z* > z} > 0 we obtain

/\/W

E(Z"] > /oo max{0,1 — %(QN + 1)z%}dz = (1 = cz?)dz,
0 0

where ¢ = ﬂ-&fﬁ—ml The integral gives %c"l/z, whereupon substitvting the value ¢
we establish Lemma 3.1 with y = ﬁz-”- =~ (.266.
0O (Lemma 3.1)

A few comments on the lower bound of Theorem 3.2 are in order. First, it shows
that the waiting time grows at least as fast as (1—p) =2 rather than (1—p)~! as is the
case for a classical queueing system. Also, it is only a function of the first moment
of the on-site service time, which is again a significant departure from traditional
queueing system behavior (e.g. the M/G/1 system).

The explanation for this behavior lies in the geometry of the system. The bound
of Lemma 3.1 gives the minimum average number of demands, N, that must be
maintained in the system to reduce d, the average travel distance per demand, to a
given value. Note that this bound on d is inversely proportional to the square root
of N. At the same time, the stability condition given by Equation (3.8) requires

that

7o v1—p)
< ——
4< =5

Thus, N must grow like H—_’—p;—; to maintain stability, which is a much more rapid
than the increase in N due simply to traditional queueing-type delays.

Because several loose assumptions were used in the above proof (e.g. bounding
probabilities by expectations), it is likely that the value ¥ =~ 0.266 is not tight.

For example, if one assumes locations of demands at service completion epochs
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are approximately uniform, then by a modified argument one can obtain y = 1/2,
Indeed, in Chapter 5 we develop a different proof of Lemma 3.1 for general demand
distributions that improves the constant, raising it to 7 = 0.376. This bound,
however, is asymptotic in the sense that it only applies for N — oo, while the

bound in Lemma 3.1 applies for all N.

3.3 Some Proposed Policies for the DTRP

In this section, we propose and analyze several policies for the single vehicle DTRP.
The first class of policies is based on variants of the FCFS discipline. We show
that one such policy is optimal in light traffic, in the sense that it asymptotically
achieves the light traffic lower bound of the last section for A — 0. These policies,
however, are unstable for high utilizations; therefore, we turn next to a partitioning
policy based on subdividing the large square 4 into smaller squares, each of which
is served locally using a FCFS discipline. Using results on cyclic queues, we show
that the this policy is within a constant factor of the lower bounds for all values of
p < 1. This also establishes p < 1 as a sufficient (as well as, obviously, necessary)
condition for stability in the sense that there exist stable policies for every p < 1.
We next introduce a more sophisticated policy based on forming successive TSP
tours. Its average system time is nearly half that of the partitioning policy. A
further improvement on this policy reduces the system time by another factor of
two, and this gives us our best policy. Next, a policy based on space filling curves
is examined. It too has a constant factor performance guarantee and is shown
via simulation to have a system time about 70% greater than the best TSP policy.
Finally, we examine the policy of serving the nearest neighbor. Because of analytical
difficulties, we simulate it and show the average system time is about 60% greater
than the best TSP policy. Despite their relatively poor performance guarantees,
these policies are computationally efficient and easy to implement. Thus, they may

be attractive in practice.
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3.3.1 FCFS Policies

The simplest policy for the DTRP is to service demands in the order in which they
arrive (FCFS). The first policy we examine of this type we only analyze for A a

square. It is defined as follows:

The FCFS Policy
When demands are present, travel directly from one demand location to the
next following a FCFS order. When no unserved demands are present following
a service completion, wait at the current location until a new demand arrives

before beginning restarting FCFS service.
The system time of this policy, TrcFs, is described by the following proposition:
Proposition 3.1 If A is a square, then

Trors . 9 136 asA— 0.
T ~c3

where ¢, and c3 are defined as in Equations (2.8) and (2.9) respectively.

Proof

Because demand locations are independent of the order of arrivals and also the
number of demands in queue, the system behaves like an M/G/1 queue. Note that
the travel times d; are not strictly independent (e.g. consider the case d; = V24);
however, it is true that they are identically distributed, because each d; is simply the
distance between two independent, uniformly distributed locations in A. Therefore,
the Pollaczek-Khinchin (P-K) formula (2.4) still holds. (See [8] page 142-143 for
a proof of the P-K formula that does not require mutual independence of service
times.)

The first and second moments of the total service requirement are, by (2.8),
's'+c1\/z_4/v and s% + 2c1\/;1-’s'/v+czA/v2 respectively, where ¢; = 0.52,c2 = % The
average system time is therefore, by the P-K formula (2.4),

A(5% + 2aVAS/v + caA/v?)
2(1 = derVA/v = p)

TrcFs = +35+ cl\/Z/v. (3,12)
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The stability condition for this policy is p + /\cn/z/v < 1; therefore, this policy is
unstable for values of p approaching 1. For A — 0, the first term in (3.12) approaches
zero. Likewise, the second term in the bound of Theorem 3.1 also approaches zero

as A — 0. So for the light traffic case we have

TrcFs < T4+ caVA v
T* _'§+c;3\/74/v’

Since 5 could be arbitrarily small, the worst case relative performance for this policy

as A — 0.

in light traffic is as described by the proposition.
O (Proposition 3.1)
The FCFS policy can be modified and generalized to yield asymptotically opti-

mal performance in light traffic as follows:

The Stochastic Queue Median (SQM) Policy
Locate the server at z*, the median of 4. That is, z* is the location z that
minimizes Ef||X —z||]. Service each demand FCFS by traveling directly to the
demand’s location from the median, servicing the demand, and then returning
back to the median after service is completed. If no demands are present in

the system, the server waits at the median until the next demand arrives.

Proposition 3.2

%:l as A — 0.

Proof

We first prove it for the case where A is square. Again, since locations are
independent of the order of arrival and the number in queue, the system behaves
as a M/G/1 queue; however, we have to be somewhat careful about counting travel
time in tuis case. From a system viewpoint, each “service time” now includes the
on-site service plus the round trip travel time between the median and the service

location. The system time of an individual demand, however, includes the wait in
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queue plus the one way travel time to the service location plus the on-site service.

The.efore, the average system time under this policy is given by (c.f. Equation 2.9)

A(s? + 4c3 VAT /v + 4es Afv?)
2(1 = 2xcaVA/v — p)

where c3 = 0.383,¢c4 = %. The stability condition for this policy is 2/\C3\/Z/v+p <1

Tsqm = +§+Ca\/g/v, (3.13)

Letting A approach zero, the first term above goes to zero, and since c3 is the

constant of the lower bound in Theorem 3.1 we get
as A — 0. (3.14)

This argument can be generalized to arbitrary regions A by substituting E{||X —xz"||]
for c3v/A and E[}|X — z*||?] for c4A in (3.13).
O (Proposition 3.2)

This is an intuitively satisfying if not altogether surprising result. It is conjec-
tured by Psaraftis in [39]. It is also analogous to the results achieved by Berman
et. al. [7] and Batta et. al. [5] for the optimal location of a server on a network
operated under a FCFS policy. Our result is somewhat stronger because our lower
bound is on all policies, not just FCFS policies. Therefore it establishes not only
the optimality of the median location for the SQM, but also the optimality of the
SQM discipline itself.

The FCFS and SQM policies become unstable for p — 1. The reason for this
is that the average distance traveled per service, d, remains fixed, yet the stability
condition (3.8) implies d < ﬂﬂfﬂl, so d must decrease as p (and )) are increased.
As shown below, a policy that is stable for all values of p must increasingly restrict
the distance the server is willing to travel between services as the traflic intensity

increases.

3.3.2 The Partitioning Policy

In this section we examine a policy that achieves the restriction on d mentioned

above through a partition of the service region A. The analysis relies on results
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Figure 3.1: Sequence for Serving Subregions PART Policy (m = 4)

for symmetric, cyclic queues, so readers urfamiliar with this area are encouraged to
reexamine the definitions and results in Chapter 2.

Suppose A is a square. Consider the following policy:

The Partition (PART) Policy
The square region A is divided into m? subregions, where m > 1 is « given
integer that parameterizes the policy. Within each subregion, serve demands
using a FCFS discipline. The server services a subregion until there are no
more demands left in that subregion. It then moves on to the next subregion
and services it until no more demands are left, etc. The sequence of regions
the server follows is shown in Figure 3.1 for the case m = 4. (Note that the
server always moves to an adjacent subregion.) The pattern i continuously

repeated.

Proposition 3.3
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Figure 3.2: PART Projection Policy for Moving to Adjacent Subregion

Proof

We must clarify how the server moves from one subregion to the next. We
assume the server uses the projection rule shown in Figure 3.2. (ts last location in
a given subregion is simply “projected” onto the next subregion to determine the
server’s new starting location. The server then travels in a straight line between
these two locations. As a result of this rule, note that the distance traveled between
subregions is a constant 3m£, and that each starting location is uniformly distributed
and independent of the locations of demands in the new subregion. These properties
of the starting location simplify the analysis. In practice, one might use a more
intelligent rule such as moving directly to the first demand in the new subregion.
The total travel distance of this tour is m?(vA/m) = mV/A.

Notice that to construct the pattern shown in Figure 3.1, m must be even. If m
is odd, the server ends up in the upper right subregion and must travel to the lower
right subregion to restart the cycle. This adds an additional VA — VA/m to the
total travel distance. To simplify the analysis, we use only the expression for even
m. As shown below, m must be large in heavy traffic, so for p — 1 the relative error
in total travel distance is negligible.

Each subregion behaves as an M/G/1 queue with an arrival rate of ;"i\-,r, and
first and second moments of 3 + cﬁ% and s2? + 2c1§§§ + 02;7“-‘;7 respectively (¢ =
0.52,c = %) The policy as a whole behaves as a cyclic queue with k = m? queues

and exhaustive service, where the total travel time around the cycle is m\/Z/v and
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the queue parameters are those given above. Again, as with the FCFS policy, the
travel times are not mutually independent. However, they are identically distributed
and independent of the number in queue. Therefore, the analysis in [8] still holds.
Recalling that the expression in (2.6) is for the waiting time in queue only, the

average system time for this policy is given by

M+ 205 4 cpofhy) 1= (54 D) WA, VA
1

TpART = +3. (3.15)
AL-AE+add)  A1-AG+add) v em
The stability condition is
A AWVA
A(§+c1-\-/——)<l & 5 oA
vm v(l = p)
Defining the critical value m, by
AWA
_ alWA (3.16)

"= W= p)
the stability conditions becomes m > m.. Note that for any p < 1 we can find an
m > m, such that this policy is stable. Theorem 3.2 shows that p < 1 is a necessary
condition for stability. Thus, since the optimal policy has a waiting time no greater

than the PART policy, we have the following theorem:

Theorem 3.3 There exists a stable optimal policy for the single, uncapacitated ve-

hicle DTRP if and only if p < 1.

Since p is determined only by the on-site service mean and the arrival rate,
we see that the service region characteristics (size, shape, etc.) do not affect the
amount of traffic the system can support (provided the service region is bounded, of
course). This condition is perhaps surprising at first, since one might assume that
the geometry should play a role here. Intuitively, it says that as long as the vehicle
has some slack time left after tending to on-site service, then one can find a stable
policy that reduces the travel time so as to fit within this slack time. Though the
geometry does not determine stability, it certainly affects the resulting system time

as we shall see next.
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For given system parameters A, 5, s2 and A, one could perform a one dimensional
optimization over m > 1 using (3.15) to get the optimum number of partitions;
Liowever, since equation (3.15) is quite complicated, we concentrate on finding the
optimal value, m*, for the heavy traffic case.

For (p — 1), (3.16) implies that any feasible m is large (m > m.). Therefore
ignoring the O(1/m) and smaller terms in the numerators of (3.15) we obtain

As? + m@ _ mhu@ + mAs?
2(1—-p— /\cﬁu%) - 2(m(1 - p) - /\01@)'

TpART = (3.17)

Differentiating the above with respect to m and setting the result equal to zero, we

get the following critical points

At X2 /X224 4 (1 - p)A2e, YLA52
l-p '

Only the positive root is feasible. For p — 1 the second term under the radical

approaches zero; therefore

m" QACI\//T _
v(1 - p)

If we substitute this value into (3.17), then in heavy traffic

2m,.

MA As?
TPART~2clvz(l_p)2 + l_p' (3'18)

For p — 1, the first terin above dominates. Comparing to the bound in Theorem
3.2) establishes the proposition.

O (Proposition 3.3)

Proposition 3.3 says that Tpgpr is within a constant factor of the optimum

in heavy traffic, though the provable factor is indeed quite large (about 7 using

¥ =~ 0.376). Note also that the geometrical constant ¢; and the area A certainly

affect the system time of this policy.
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3.3.3 The Traveling Salesman Policy

The traveling salesman policy (TSP for short) is based on collecting demands into

sets that can then be served using an optimal TSP tour. It is defined as follows:

The Traveling Salesman (TSP) Policy
Let ANV denote the kth set of n demands to arrive, where n is a given constant
that parameterizes the policy, e.g. A is the set of demands 1,...,n, A} is
the set of demands n+ 1,...,2n, etc. Assume the server operates out of a
depot at a random location in 4. When all demands in A} have arrived, we
form an optimal (shortest length) tour on these demands starting and ending
at the depot. Service demands by following the tour. If all demands in A,
have arrived when the tour of A is completed, these are serviced using a TSP
tour; otherwise, the server waits until all A2 demands arrive before serving it.

In this manner, service sets in a FCFS order. Optimize over n.

Proposition 3.4
2
Trsp . B°
T = 72
where B = 0.72 is the Euclidean TSP constant.

as p— 1,

Proof

Suppose one considers the set A to be the kth “customer”. Since the interarrival
time (time for n new demands to arrive) and service time (n on-site services plus
the travel time around the tour) of sets are i.i.d., the service of sets forms a GI/G/1
queue, where the interarrival distribution is Erlang of order n. The mean and
variance of the interarrival times for sets are n/) and n/A? respectively. The service
time of sets is the sum of the travel time around the tour and the n on-site service
times. If we let L, denote the length of such a tour and E[Ly] and Var[L,] denote,
respectively, the mean and variance of L., then the expected value of the service
time of a set is 515‘—'11 + n% and the variance is V—“"yﬂl + no?, where 02 = 5% — 72 is

the variance of the on-site service time.
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We are now in a position to apply the GI/G/1 upper bound (see Equation (2.3))

for the average waiting time of sets, W,,,. This giv s

A + ool 4 o)

Wit < 3.19
BT T ) e

A 1 Az Var[Ln 2
- MUN TRt + o) (3.20)

T 21— p-aE)
As we show below, in order for the policy to be stable in heavy traffic n has to

be large. Thus, because the locations of points are uniform and i.i.d. in the region,

we have from the asymptotic results for the TSP (2.10) and (2.13) that as n — oo

ElLn] ~ﬂj_’—‘,
n n

(3.21)

and

-‘#ﬂ ~ 0. (3.22)
In order to simplify the final expressions, we have neglected ihe difference between
n+ 1 and n in the above expressions. (The tour includes n points plus the depot.)

Since n is large, the difference is negligible. Theretore, for large n

A(1/X? + 0?)

Wget S . (3.23)
1-p- Aﬂﬁ%)
For stability, we require p + A2 ’:l < 1, which implies
A2p2A
n> -vz(l_—p)T (3.24)

For p — 1, the above implies that n must be large, and thus our use of asymptotic
TSP results is indeed justified.

The waiting time given in (3.23) is not itself an upper bound on the wait for
service of an individual demand; it is the wait in queue for a set. The time of arrival
of a set is actually the time of arrival of the last demand in that set. Therefore, we
must add to (3.23) the time a demand waits for its set to form, denoted W™, and

also the time it takes to complete service of the demand once its set enters service,



CHAPTER 3. THE SINGLE UNCAPACITATED VEHICLE DTRP 43

denoted W*. By conditioning on the position that a given demand takes within its

set, it is easy to show that
n-—1 n
22 T2

By doing the same conditioning and noting that the travel time around the tour is

W~ =

no more that the length of the tour itself, we obtain

N Iy
wt < 12k3+[§ nA
ni v
S Eg'rﬂ- nAu
2 v

where beta is a bound on the TSP constant for finite n as in (2.12). Therefore, if

the total system time is denoted T'rsp,

2
Trsp < A(1/X2 + o?) +n(1+P)+B—\/nA' (3.25)
1-p-rpk) 2 v

We would like to minimize (3.25) with respect to n to get the least upper bound.

(One can verify that (3.25) is convex for n > 0, so there is a unique minimum.)

First, however, consider a change of variahle

_ VA
TV

Physically, y represents is ratio of the average distance, d = %\/n-;{- to its critical value

Eil‘rpl_ With this change,

Trgp < DA H0D)  ABA(L+p) ABBA
T2l-p)(1-y)  (1-p)Py?  WE(l-ply

For p — 1, one can verify that the optimum y approaches 1. Therefore, by linearizing

(3.26)

the last two terms above about y = 1, an approximate optimum value, y*, is

o oy VAN + 651 - p)
y=l-v Qﬂ\/;f .

Substituting this approximation into (3.26) and noting that for p — 1 the apj.roxi-

mate y* approaches one we have

AA +ﬁA\/A"("l'7'A"7_+'_Ta,2+ BBAA p

2
T T | P 7 B g
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Again, the leading term is proportional to 5’??‘1%7' Therefore, comparing to
Theorem 3.2 the proposition is established.
O (Proposition 3.4)
The best estimate to date of 8 is approximately 0.72 [24], so the TSP policy has a
system time in heavy traffic about half that of the partitioning policy. (In practice,
heuristic rather than optimal tours would be used to reduce the computational
burden, which would produce slightly higher system times.) These results suggest
that the policy of forming successive TSP tours, which is a reasonable policy in
practice, is also quite good theoretically. In addition to providing a theoretical
guarantee, our analysis gives some guidance into optimally sizing routes for such

policies by either minimizing the right hand side of (3.25) or using the approximate

value for y™ given above.

3.3.4 The Modified TSP Policy

The following simple modification of the TSP policy can reduce the asymptotic

system time by a factor of two:

The Modified TSP (MOD TSP) Policy
Let k be a fixed positive integer. From a central point in the interior of A,
subdivide the service region into k wedges of area 1/k. Within each subregion,
form sets of size n/k. (n is a parameter to be determined.) As sets are formed,
deposit them in a queue and service them FCFS with by forming a TSP on
the set as in the TSP policy. Optimize over n.

The performance of this policy is given by the following proposition.

Proposition 3.5
TrmobD Tsp < p?
T = 292

as p— 1.
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Proof

The analysis of this policy closely follows that of the TSP policy sc we shall
only outline the proof. To determine the waiting time in queue for a set, Wy,
we note that each subregion generates sets that arrive according to independent
renewal processes with rate ); = 7:'(7757 = 2 and interarrival time variance o7 =

(m)2( ) = $%. Thus, the resulting queue is 3_GI/G/1 and we can make use of
Theorem 2.1. Note that

ZA’ ——A

=1

where A = T8 ) 5,%- is the overall arrival rate of sets. Thus, letting the random

variable T denote the time to service a set, Theorem 2.1 implies

152 + E-3[r]o?
~2[r)(1 - AE[r])

Using the fact that A = Ef;] and A = £2 this limit can be written

A(—‘r + zl,%) B
,\f-}%) (nfk)

As before rnl;,;)- ~ o? and z%% ~ §+ﬂu ‘://l; = §+ﬂﬁ. Thus, we obtain the same

expression as in Equation (3.23) for W,;. (Though in this case it is a limit rather

Waet ~ as AE[r] — 1.

than an upper bound.) This shows the waiting time in queue as a function of n is
unchanged asymptotically by the modification.

We next determine the effect of the modification on the other components of
the waiting time. Note that though we have reduced the size of sets by 1/k, the
interarrival time in each region is a factor of k greater (i.e. the interarrival time
mean is now k/)). Thus, W™, the wait for a set to form, is still bounded above
by a%. The wait for service once a set enters service, W+, however, is now at most
78 + O(y/n) since set sizes have been reduced by 1/k. Combining these terms and

repeating the analysis we find that

g AL+ 1) MVAQN +o])

20%(1 — p)? v(1 = p)*?

1
Tmop Tsp < + O((l—_p)) p— 1
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The leading term can be made arbitrarily close to %2-;;-(41\{‘?7 by choosing k large
and so by comparing to Theorem 3.2 the proposition is established.

0 (Proposition 3.5)

3.3.5 The Space Filling Curve Policy

We next analyze a policy based on space filling curves (the SFC policy). it was first
proposed by Bartholdi and Platzman in [4]. The reader is encouraged to reexamine
Chapter 2 for notation and basic results related to space filling curves. Let C and
¢ be defined as in Chapter 2, and let the DTRP service region, A, be a square of
area A. Suppose we maintain the preimages of all demands in the system (i.e. their
positions in C). Then the SFC policy is to service demands as they are encountered
in repeated clockwise sweeps of the circle C. (Note that one could treat a depot as
a permanent “demand” and visit it once per sweep.)

We now analyze this policy. Consider a randomly tagged arrival and let Wy
denote the waiting time of the tagged arrival, Ny denote the set of locations of the
No = |No| demands served prior to the tagged demand, and L denote the length of
the path from the server’s location through the points in Ap to the tagged demand’s
location which is induced by the SPC rule. Finally, let s; be the on-site service time
of demand i € A, and R be the residual service time of the demand under service.
Then Ne i

Wo = § sit—=+R

Taking expectation on both sides gives

-
W = E[No]7 + E—ff‘]- + %“’ (3.27)

Since in steady state the expected number of demands served during a wait equals
the expected number who arrive, E[Ng] = N = AW. Also, since L is the length of
a path through Np + 2 points in A, L < 2,/(No + 2)A. Therefore,

E[L] < 2EL/(No+2)A) (3.28)
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< 2y/(N+2)A (Jensen'sIneq.)
< 2VAWA 4+ 2V2A,

Substituting these results into (2.27) we obtain the following quadratic inequality:

2V A VI — As? + 4v2A /v

W_v(l-p) 2(1-p)

<o0.

Solving the above for W and recalling that T' = W + 5 we obtain

AA -
Tsrc < 7§‘ch +o((1 = p)7?)

where yspc < 2 and o((1 — p)~?) denotes terms that increase more slowly than
(1-p)~% as p — 1. Thus, by comparing to Theorem 3.2 we have the following

proposition:

Proposition 3.6

Tsrc _ Virc _ 4
T‘ S S _2

7 7

asp — 1.

This shows the SPC policy has a constant factor guarantee. The constant
vsFc = 2 obtained by the above argument, however, is based on worst-case tours
and is probably too large. If one assumes that the clockwise interval between the
preimages of the server and the tagged demand is a uniform [0, 1] random variable
and that the Ao points are approximately uniformly distributed on this interval,
then a constant of yspc ~ %ﬁspc ~ 0.64 is obtained.

To estimate yspc more precisely, we performed simulation experiments. The
method of batch means (see [32]) was used to estimate the steady state value of Tspc.
In this method, demands are grouped into batches of a fixed size. If the batch size
is large enough, the sample means from each batch are approximately uncorrelated
and normally distributed [33]. (We used 200 times the minimum average number in
the system given by Theorem 3.2 as our batch size.) The sample mean and variance
of the individual batch means were then used in a t-test to estimate Tspc. The

simulation was terminated when the 99% confidence interval about the estimate
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Figure 3.3: Simulation Results: Tspc and Tyy vs. AA/(1 - ,o)2

reached a width less than 10% of the value of the estimate. This method was
selected because the busy periods of the SFC policy were quite long (indeed, almost
nonterminating) at high utilization values, which precluded the use of techniques
based on regeneration points.

The simulation was run for A = 1, v = 1 and a range of parameter values p, 3
and s2. Figure 3.3 shows one example of the simulation estimate of Tspc plotted
against AA/(1 — p)? for the case ¥ = 0.1 and sZ = 0.U1 (zero variance). Each point
is a different value of p in the range 0.5 — 0.8 The results showed that ysp¢ is
approximately 0.66, which is very close to the approximate value of %,Bspc. This
translates into a system time about 70% greater than that of the TSP policy. The
SFC policy, however, is much more efficient computationally.

Note that characterizing the performance of a given policy in this case reduces
to estimating a single constant. Thus, by doing careful simulations over a restricted

range of parameters to estimate 7, we obtain a closed form approximation for the
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behavior of a policy that can in turn be applied over a much wider range of operating
conditions. This is to be contrasted with the usual case in simulations were a policy’s
behavior is usually characterized only with respect to a specific set of examples and

little generalization beyond this set of examples is possible.

3.3.6 The Nearest Neighbor Policy

The last policy we consider is to serve the closest available demand after every
service completion (nearest neighbor (NN) policy). The motivations for considering
such a policy are: (1) the nearest neighbor was used in the heavy traffic lower
bound of Theorem 3.2, and (2) the shortest processing time (SPT) rule is known to
be optimal for the classical M/G/1 queue [15]. As mentioned before, however, the
travel component of service times in the DTRP depends on the service sequence, so
the classical M/G/1 results are only suggestive.

Because of the dependencies among the travel distances d;, we were unable to
obtain rigorous analytical results for the NN policy. However, if one assumes there

exists a constant yyy such that

E[di|NT] £ 7NN—\/%, (3.29)

where N7 is the number of demands in the system at a completion epoch, then by

using a modification of the argument in [29] Section 5.5, it is possible to show that

AA
Tyn < ‘ﬁfm-(T—_—p—)g p—1,

where Tyn denotes the system time of the NN policy. The assumption (3.29) is
analogous to Lemma 3.1 but unlike Lemma 3.1 has not been established formally.

We therefore performed simulation experiments identical to those for the SFC
policy to verify the asymptotic behavior of Tiyy and estimate yyn. The results
showed that yyy is approximately 0.64. (See Figure 3.3.) This means that Ty
is about 10% lower than Tspc but about 60% higher than the system time of the
Modified TSP policy.
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Policy () Yo | TH
Light Traffic
FCFS * 1.36
SQM * 1.00
Heavy Traffic
PART V2c | 7.35
TSP g | 3.66
SFC 0.66 | 3.08
NN 0.64 | 2.89

MOD TSP ﬁ 1.83

Table 3.1: Summary of Constant Values and guarantees for the Single Uncapacitated
Vehicle DTRP

The results again confirmed that the system time Tyy follows the UTZi\_:1W
growth predicted by the lower bound in Theorem 3.2. Figure 3.3 clearly shows

this highly linear relationship.

3.4 Summary of Single Uncapacitated Vehicle Perfor-

mance Bounds

We breifly pause now to reveiw our various performance guarantees for the single
uncapacitated vehicle DTRP. These guarantees are summarized in Table 3.1. The
numerical guarantees are based on the value ¥ =~ 0.376 from Chapter 5. Constant
values for the SFC and NN policy are based on the simulation results of the previous

section.

3.5 A Numerical Example

To illustrate the relative performance of the various DTRP policies, the system time
of each policy was calculated (simulated in the case of SFC and NN policies) for

the case A =1, v=1,5= 0.1 and 52 = 0.01 (zero variance) for a range of values
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of p. For the parameterized policies (PART and TSP), numerical optimization was
performed to find the best parameter for each value of p. The results showed that
the FCFS, SQM, SFC and NN policies performed well in light traffic but the FCFS
and SQM policies were unstable for p > 0.2. The PART, TSP, SFC and NN policies
performed best in heavy traffic. Results for each group are graphed separately.

Figure 3.4 shows system times as a function of p for the light traffic case. The
lower bound is also included. Note that althocugh the SQM policy is asymptotically
optimal as p — 0, it is quickly surpassed by the FCFS policy as p increases. This
is due to the extra travel distance of the SQM policy, which hinders the policy
as queueing sets in. Also note that both policies reach their saturation points for
relatively low values of p. The SFC and NN policies were comparable to the FCFS
policy in very light traffic, which is to be expected since they essentially behave like
the FCI'S policy in this case. For p > 0.05 the SFC and NN policies quickly surpass
the FCFC and SQM policies. Notice that the NN policy consistently pecformed
better than the SFC policy even in the light traffic cases.

The heavy traffic results are shown in Figure 3.5. Note that the curves have
nearly identical shapes as one would expect from the ;q—?—f—p)y asymptotic behavior
of each policy. (Only the constant of proportionality differs.) The graphs show the
sharp increase in system time as the traffic intensity increases. The Modified TSP
policy is the best in this case with the SFC and NN policies second, having about
60-70% greater system times. The ordinary TSP policy and especially the PART
policy are less effective.

This example suggests that the modified TSP policy is quite effective for heavy
traffic. The SFC and NN policies are fairly effective over a wide rauge of traffic
intensities. Indeed, if one locates a depot at the median of the region A and treats
it as a permanent “demand”, then both the SFC and NN policies can be made
to behave like the SQM policy as p — 1. These policies have another distinct

advantage. Namely, they are nonparametric; that is, system parameters are not
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needed to implement them as is the case for the TSP policies. This self regulating
feature is especially desirable for system that operate under highly variable and/or
unpredictable traffic conditions. Both policies are also both very computationally
efficient. The combination of self regulating behavior and computational efficiency
may make the SFC and NN policies attractive in practice despite the fact that their

performance guarantees are not the best possible.



Chapter 4

The Multiple Capacitated
Vehicle DTRP

In this chapter, we extend the basic results of Chapter 3 ultimately to the case
where there are m > 1 identical vehicles with capacity constraizuts in the form of an
upper bound of ¢ on the total number of demands that can be serviced in any given
trip from the depot. We begin in Section 4.1 by analyzing the m-vehicle case with
q = oo through some relatively straightforward extensions of our earlier results. We

then investigate the finite capacity case in Section 4.2.

4.1 The m-Vehicle, co-Capacity DTRP

4.1.1 Lower Bounds
A Light Traffic Lower Bound

The first bound is most useful in the case of light traffic (A — 0):

Theorem 4.1

1
* > —E[ mi - 5.
T 2 SE[min [|X = zoll) +7

o4
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Proof

We proceed as in the single-vehicle case and divide the system time of demand
i, T;, into three components: the waiting time of demand i due to the servers travel
prior to serving i, denoted W¢; the waiting time of demand ¢ due to on-site service
times of demands served prior to i, denoted W?; and demands i's own on-site service
time, s;. Thus,

Ti = WE + W7 + s;.

Taking expectations and letting i — oo gives
T =W+ W’ +3, (4.1)

where W? = lim;_.co E[W#] and W* = lim;_.oo E[W?).

As before, we bound W by noting that W is at least the travel delay between
the location of the closest server at the time of arrival and demand i’s location. In
general, the servers are located in the region according to some generally unknown
spatial distribution that depends on the policy. However, if we had the option of
locating the m servers in the best a priori set of location, D* this would certainly
yield a lower bound on the expected distance between the nearest server and the

demand’s location. Hence,

1
W4 > = min E[min || X — zol|). 4.2
Ve 2 5 min [min || X — o] (4.2)

The set of locations that achieves the minimization above is called the set of m-
median locations of the region A. Using the trivial bound W, > 0 and combining
with (4.1) and (4.2) establishes the theorem.

O (Theorem 4.1)

Note that this is weaker than Theorem 3.1 for the case m = 1.

A Heavy Traffic Lower Bound

A lower bound useful for p — 1 is provided by the following theorem, which gener-

alizes the heavy traffic bound in Theorem 3.2:
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Theorem 4.2 There exists a constant v such that

AA 5(1 - 2p)
- > 42 - .
T2 A= T T %

where ¥ > Wzﬁ ~ 0.266.

Proof

Theorem 4.2 is easily derived by modifying the proof of Lemma 3.1 slightly.
Recall that Ny = |Sp| is the number of demands in queue plus the number of servers
in the system at the arrival epoch of our tagged demand. Thus, in the m-vehicle

case, E[Ng] = N 4+ m, and the bound on E[Z*] becomes
VA

E[Z"] > y——— . 4.
1212 v (4.9
Recall d > E[Z*]. By substituting these bounds into the stability condition,
d_m
T4-< — .
s+ic T, (4.4)

we obtain

54 2VA
vv/N +m/2

After rearranging, noting that T = W + % and N = AV, we obtain the bound of
Theorem 4.2.

m
< =
- A

O (Theorem 4.2)

4.1.2 An Optimal Light Traffic Policy

A direct extension of the SQM policy to the m-server case gives an optimal policy

in light traffic as we now demonstrate. Consider the following policy:

The m Stochastic Queue Median (mSQM) Policy
Locate one server at each of the m median locations for the region 4. When
demands arrive, assign them to the nearest median location and its corre-
sponding server. Have each server service its respective demands in FCFS

order returning to its median after each service is completed.
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Proposition 4.1
TmsQM
Tt

— 1 as A — 0.
Proof
Let j = 1,-.-,m index the m Voronoi cells, A; denote the j-th cell, A; = |A4;|

and z} denote the j-th median location. Also, let A; = %{-A denote the arrival rate
to cell j and p; = A;3 server j's utilization. Finally, for a uniformly distributed
location X € A let

dj = E[|X - zj|| | X € 4]
and

&= E[|X - 5|7 | X € 4]
Note that each cell j is an independent, single-server SQM systein operating as an
M/G/1 queue with first moment 5+ 2d; /v and second moment 52 + 4?3-;/v+4-d_f/v2,
Since, the probability of a given arrival lands in cell j is simply A;/A, we have that

A; Aj(s? + 434, /v+4d2/v2)

msQM =
m ?;A 21 - 2X,d;/v - p;)

Z ’(d /v+3),

i=1

where the terms in the second sum are the weighted one-way travel time plus on-site
service time means in each cell. As A — 0, A\; — 0 for all j and thus the contribution
of the first term tends to zero, while the second term is simply L E[mingep- || X —
o] + 7 by construction since {z}} = D* and A; = {z|j = argmin,||z — z}||}.

Therefore,
E[mingyep- || X — xol|]
v

as A —0.

Tnsqm —

Comparing this to Theorem 3.1 establishes the proposition.
O (Proposition 4.1)
One can verify from the individual stability conditions for each cell that if A > 0
there is a critical value p. < 1 such that the system time is unbounded for p > p.;
therefore, in light of Theorem 4.2, it is clear that the mSQM policy has an unbounded

cost relative to optimum for p — p. and certainly for p — 1.
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4.1.3 Heavy Traffic Policies

We next turn our attention to heavy traffic (p — 1) policies. We prave that. pali-
cies based on randomized assignment of arrivals to servers have a constant factor
guarantee for p — 1, but this factor increases with m. We show for a version of the
Modified TSP policy introduced in Chapter 3 that this dependence on m can be
eliminated. Finally, we show that the same guarantees as in the single-vehicle case
can be achieved if the service region A is divided into equal sized subregions and a

single server heavy traffic policy is applied in each region.

Randomized Assignment (RA)

One possible strategy for a multiple-vehicle system is to allocate demands to vehicles
using randomization. This policy, which we call randomized assignment (RAp), is

defined as follows:

The RAp Policy
Divide the Poisson input process into m Poisson sub-processes, one for each
vehicle, using randomization. Assign one vehicle to service each sub-process

using a heavy traffic, single-server policy pu.

Proposition 4.2

T 2
%Sm%—;— as p— 1.

Proof
In this policy, each vehicle sees a demand arrival process with rate A\/m and
operates independently in the entire region A to service it. The system time for

randomized assignment is therefore simply

AA
TRA"~73m02 as p—1,

e (e
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where as before p = A5/m. Comparing this to the bound in Theorem 4.2 establishes
the proposition.

O (Proposition 4.2)

Observe that the performance guarantee for RAu has the undesirable charac-

teristic of increasing with the number of servers. Nevertheless, this shows that a

sufficient condition for the existence of a stable policy is simply p < 1. This com-

bined with the necessary condition p < 1 from Theorem 4.2 gives us the following

theorem:

Theorem 4.3 In the multiple, uncapacitated vehicle DTRP, a stable optimal policy
exists if and only if p < 1.

A G/G/m Version of the TSP Policy

One might expect that a more intelligent allocation of customers to servers might
yield a better bound. Such is indeed the case as shown by the following G/G/m
version of the TSP policy. The policy is based on collecting customers into sets that

can then be served using optimal TSP tours:

The G/G/m Policy
Let N denote the kth set of n demands to arrive, where n is a given constant
that parameterizes the policy ( e.g. A is the set of demands 1,...,n, A; is
the set of demands n + 1,...,2n, etc.) Assume the server operates out of a
depot at a random location in A. As sets form, deposit them in a queue. Serve
sets from the queue in FCFS order with the first available vehicle by following
an optimal tour on their locations starting and ending at the depot. (The
vehicle randomly selects one of the two possible orientations of these tours.)

Optimize over n.

Proposition 4.3
TeGom < m+ l_ﬂ_z_
T = 2 2

as p— 1.
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Proof

Note that if one considers sets as customers, this policy defines a G/G/m queue.
The interarrival distribution is Erlang order n, and thus the mean and variance
of the interarrival times for sets are n/A and n/A? respectively. The service time
of sets, a random variable which we denote generically by 7, is the sum of the
travel time around the tour, denoted L,, and the n on-site service times. Thus,
E[r] = E[L,)/v + n% and Ver[r] = Var{L,]/v? + no?, where 02 = 52 — 52 is the
variance of the on-site service time.

We next make use of a heavy traffic limit given in Equation (2.5). Letting W,e,

denote the waiting time of a set, this limit in our case gives

2(& + 22(Var[La)/v? + no?))

Wier ~ 91 — 2 (E[Ln)/v + n3)) (4:5)
_ 2+ el 4 o) 16)

- A EfLn]
21-p- =34
As we show below, in order for the policy to be stable in heavy traffic n has to
be large. Thus, because the locations of points are uniform and i.i.d. in the region,

we can apply asymptotic TSP results (c.f. Equations (2.10) and (2.10)) to assert

that
and
Var[L,)
— 0, (4.8)

as n — oo. (Again, # = 0.72 is the Euclidean TSP constant.) Substituting these

expressions above we obtain,

AM1/X% 4+ 02 /m?)

Waet ~ . (49)
21 -p- 28LE)
For the queue to be stable, p + ;’\;ﬂ% < 1, which implies
,\2 2
FA (4.10)

m?v?(1 - p)?’
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Therefore for p — 1, n must indeed be large, and thus using asymptotic TSP results
is justified. Also,as p— 1, p+ ;-':‘-ﬂ]'spu "1 — 1 for all n satisfying (4.10), and thus
we confirm the queue operates in heavy traffic.

As before, to get the system time of a demand we must add to (4.9) the time
a customer waits for its set to form, IV ™, and also the time it takes to complete
service of the customer once the customer’s set enters service, W*. By conditioning

on the position that a given customer takes within its set, one can show that

Similarly,

Wt < -

E[Ln] z \/ A
k-l
where we have used the fact that the optimal tour on n points in a region of area A

is bounded above by 3v/nA for £ ime constant 8 (c.f. Equation (2.12)). Therefore,

d:noting the total system time by Tggm, for p — 1,

/\(1//\2+a'2/m2) n(l+mp) -VnA
T66m
TP v S PR

We would like to minimize (4.11) with respect to n to get the least upper bound.

(4.11)

First, however, consider a change of variable to

___ABVA
YT = v

Physically, y represents the ratio of the average travel time, d = % to its critical

value ﬂ(!f_e). (see equation (4.4)). With this change,

A(1/A2 4+ 62/m?)  ABEA(L + mp) ABRA
21-p)(1-y) =~ 2m??(1-p)*y®  mvi(l-p)y’

Teom < (4.12)

For p — 1, one can verify that the optimum y approaches 1. Therefore, by linearizing
the terms above about y = 1, an approximate optimum value, y*, is

_my \/(l/v + a2/m?)(1 - p)
2A(m+1) '
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Substituting this approximation into (4.12) and noting that for p — 1 the approxi-

mate y* approaches 1 we have that as p — 1

AA(m+1) BA2A(m + D(1/A7 + 0% /m?) BBAA
2m?v2(1 - p)? 2my(1 — p)3/2 mv(l - p)’

Teem < B

The leading term is proportional to ;m‘%'ii_—pv. Comparing this term to Theorem
4.2 establishes the proposition.

O (Proposition 4.3)

We point out that, the contribution due to the queueing term (W,.) is only

O((1 = p)~%/%) and that the leading order term is due to W~ and the on-site service

time component of W*. Also, note that the leading term is still dependent on m

but it increases like (m + 1)/2 rather than m as in the randomized assignment case,

which is clearly better but still somewhat unsatisfactory.

The Modified G/G/m Policy

A modification to the G/G/m policy can eliminate this dependence. The analysis
requires Theorem 2.1 of Inglehart and Whitt [22] (see Chapter 2 ) on the behavior
of the queue Y} GI/G/m: The modified G/G/m policy itself is defined as follows:

The Modified G/G/m Policy
For some fixed integer £ > 1, divide A into k subregions of equal area using
radial cuts centered at the depot (i.e. form k wedges of area A/k) . Within
each region, form sets of size n/k as in the G/G/m policy and, as sets are
formed, deposit them in a queue. Service the queue FCFS with the first

available vehicle by following optimal tours as before. Optimize over n.

Proposition 4.4

Tmop com _ B2
—-—T:'—— S F as p— 1.
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Proof

Again, we will only sketch the proof of this proposition since the detailed analysis
closely parallels that of the G/G/m policy. Observe the modified policy works very
much like the G/G/m policy except that smaller tours are formed independently on
subregions of A.

This modification has the following effect on the three components of the system
time, W=, W+ and W, defined above: For W, which is the wait for a set to form,
there is no change. This is because, although the number of demands in a set is
reduced by 1/k, the time between arrival of demands in a subregion is increased
by a factor of k; hence, W~ remains the same. W, which is approximately one
half of the service time of a set, is reduced by 1/k because the number of on-site
services per tour is reduced by 1/k and, since both the area and number of points
are reduced by 1/k, the tour length L, ~ 8v/nA is also reduced by 1/k.

This leaves the waiting time in queue for a set, W,. The resulting queue
is 3 GI/G/m since the input process in now the superposition of k independent
renewal processes, one from each of the k subregions. Using Theorem 2.1, one can
show that W, again satisfies (4.9). Thus, combining the three terms W=, Wt and

Wi,et and repeating the analysis, we obtain

T B2 AA(l 4+ m/k)
¢ MOD G/G[/m ™~ Tm

The proposition then follows by taking k to be arbitrarily large.

A D/G/m Version of the TSP Policy

We next briefly mention a D/G/m version of the TSP policy that has the same
constant as the modified G/G/m policy. The D/G/m policy is again based on
collecting demands into sets that can then be served using optimal TSP tours;
however, sets are formed by clustering demands periodically in time and space as

follows:
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The D/G/m Policy
For some fixed integer k > 1, divide A into k subregions of equal area using
radial cuts centered at the depot (i.e. wedges of area A/k). Number the
regions 1,...,k consecutively starting at an arbitrary region. At each time
t = (%)j, j = 1,2,..., form a set in subregion (j mod k) + 1 of all the
demands that arrived in that subregion during (t — 0,t] (i.e. since the time

the last set was formed in this subregion).

As sets are formed by this process, deposit them into a queue. Serve sets
from the queue FCFS with the first available vehicle by following an optimal
tour on the demands in the set starting and ending at the depot. (The vehicle
randomly selects one of the two possible orientations of these tours.) Optimize

over 0.

The behavior of this policy is suinmarized in the following proposition (The proof

is omitted due to its similarity to the previous cases.):

Proposition 4.5
To//m p?
T — 292

as p— 1.

To visualize the process, consider the case where A is a circle. The arm of a clock
sweeps the circle A every 6 time units, and, upon passing a subregion, deposits all
the demands in that subregion into a set. The resulting sets are then served FCFS
from a queue as in the G/G/m policy. In this way, sets are formed regularly every
6/k units of time and the number of demands in a set, Ny, is a Poisson random
variable with mean (A/k)6.

This policy defines a D/G/m queue. The constant time between arrivals is 0 /k,
and the service time of sets are i.i.d. random variables. To analyze this queue,
we again use the heavy traffic limit (2.5) and proceed as in the G/G/m case. The
analysis of the policy, however, does not require Theorem 2.1 since the arrival process

is deterministic.
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Independent Partitioning Policies

The last policy we examine for the uncapacitated case is based on partitioning the

service region:

The P, Policy
Divide the region A into m subregions of equal size. Assign one vehicle to each
region, and have vehicles follow a single server policy u to service demands

that fall within their subregion.

Proposition 4.6

T 2
-,I—i'-‘-s-';—‘; as p—1.

je]e)
The effect of this independent partition is to reduce both the area and the arrival
rate by a factor of 1/m. Thus, it is immediate that

A/m)(A/m AJA
TPI‘ ~ 7;.:( v/2(l)f_ p/)2 ) = 42lm202(/1 — p)2

as p—1.

Comparing to the lower bound in Theorem 4.2 proves the proposition.
O (Proposition 4.6)

Thus, we see rather easily that any constant factor heavy traffic policy for the
single server DTRP can readily be extended to a m server policy with the same
constant factor using independent partitions.

It is interesting to compare the policy Ppop g/g1 to the modified G/G/m
policy. Assuming the same number of wedges, k, is used for both, the constant
for Pprop cion is ﬂ\/@ while the constant for modified G/G/m is ﬂ\/-li-z"-'&,
While it is true that one can theoretically let & be an arbitrarily large constant,
in practice the partitioning policy is to be preferred since for finite k it is always

smaller.
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It is tempting to infer that an optimal m-server policy can be constructed from
an optimal single server policy using partitions. Unfortunately, since we do not
know if there exists a single constant 7 such that the lower bound in Theorem 4.2
is tight for all m, such a conclusion is premature; however, the idea seems highly

plausible and is worth a conjecture:

Conjecture 4.1 Lel u* denote an optimal single-server DTRP policy in heavy traf-

c. Then P,. is an optimal m-server policy in heavy traffic.
H policy

4.2 The m-Vehicle, ¢-Capacity DTRP

We next examine a capacitated version of the m server DTRP. To every server we
associate a depot with a fixed location in A with the rule that servers are allowed to
use only their designated depots. Let D denote the set of these m depot locations,
We shall allow the case where several vehicles have identical depot locations so that
one can model m vehicles based out of a single location or m vehicles allocated
to k < m locations within this framework. The capacity constraint we consider is
simply an upper bound of ¢ on the number of customers each server can visit before
being required to return to its designated depot.

Before beginning, some additional notation is needed. As before, we let i index
demands according to their service order. The length of the tour containing demand
i is denoted c; and the average tour length,  is defined by € = lim;_,o, E[c;}. Also, if
the location of demand i is z;, then the radial distance from i to the closest depot,

ri, is defined as r; = ming,ep ||z — zo|| and ¥ = lim;—. E[r;]. Note also that
¥ = E[min ||X —:
7= E[min [|.X — o],

where X is a uniformly distributed location in A.
We shall also make the assumption that each tour visits ezactly ¢ demands. This
simplifies the analysis and seems quite reasonable for the heavy traffic case. It allows

us to assert, for example, that ¢ = gd without worrying about questions of random
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incidence. We shall further assume ¢ > 1, since otherwise the system behaves as an

ordinary M/G/m queue.

4.2.1 A Heavy Traffic Lower Bound
We begin with the following lower bound:

Theorem 4.4 For ¢ > 1,

1\2 -
T_>7_2 A1+ 1) ___i1-2p)
-9 m%’(l—p-—%)? 2p

2~
where v > Vi 0.2686.

Proof

Consider demand ¢ and the tour of length ¢; that contains it. Randomly and
independently select two distinct points in this tour and denote them j; and js.
(Note that j; = j; is not allowed.) Define j. = min{j, j2} and j* = max{j, j2}.
Note that the length of the path from the depot to jj is at least r;,, since this is the
distance to the closest depot. Similarly, the length of the path from the depot to j;
is at least r;,. Adding to these two quantities the distance travel from j, to j* we

obtain the following bound on the tour length,

ci 21 +rp+ i: Z3,
J=je+1
where Z7 is the distance to the nearest neighbor of j (i.e. Z* as defined in the proof
of Lemma 3.1). Since the points j; and j; are equally likely to be any of the ¢ points
in the tour containing i, it follows that the limiting distribution of rj, and r;, is the
same as r;. Similarly, the limiting distribution of each term Z} above is the same
as Z;. Therefore, taking expectations on both sides, letting i — co and noting that

Jj1 — 00 and j2 — oo as i — oo we obtain
j‘
¢ 2 wHE[ ) 7]
J=Jetl
= 2%+ E[AJE(Z"), (4.13)
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where Aj = ji; — j2. The last equality above follows from the linearity of expectation
and the fact that the |Aj| is independent of the distances Z7. We next need the

following lemma:
Lemma 4.1 E[|Aj|] = 3(1+ %)

Proof

First, consider selecting points j; and j, that are not distinct (i.e j; = j is al-
lowed). The random variable Aj in this case is distributed as the difference between
two independent, equiprobable selections from the set {1,2,...,q}. By considering

the joint sample space, one can show that
, 2
EfllAj) = z (Hle-1)+2g-2)+-+4q(0)]

D) 9 9

9 §=1 i=1
Using the fact that 3!_,i = q(g + 1)/2 and 30,2 = ¢(¢ + 1)(2¢ + 1)/6 and
substituting above implies that E[|Aj|] = }(q — %) Now, if we discard outcomes
with j; = j2, which occur with probability %, the probabilities of the remaining

outcomes are scaled up by a factor of 1/(1 — %) Since j; = j2 outcomes contribute

nothing to E[|Aj|] above, it therefore follows that when selecting distinct points

. 1 1 1 q 1
E(lAj]] = ——~(g— =) = L(1 4 =),
1830 = {23 = =50+ )
O (Lemma 4.1)
Using Lemma 4.1 and noting that lower bound on E[Z*] from Equation (4.3)
applies in the capacitated case as well, (4.13) becomes

e g, 4 1. VA
> 9 =(1 ~—
¢= r+3(+q) N+ m/2

Using the fact that d = ¢/q implies

27

R

3VN+m/2
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Substituting this into the stability equation (4.4), rearranging and noting that N =
AW and T = W + 5 we obtain the bound in Theorem 4 4.
O (Theorem 4.4)

A few comments on this bound are in order. Note that if we take ¢ — oo, the
constant value is one third of the value in the uncapacitated case. This is somewhat
troubling since we know that {>r ¢ = co the two problems are in fact equivalent. It
is therefore worth exploring, briefly, the relevance of this bound.

First, note that there will always be a sufficiently large value of ¢ (specifically, ¢ >
ff—fp) for which the uncapacitated bound in Theorem 4.2 dominates the capacitated
bound in Theorem 4.4. Thus, when one views q as the independent parameter,
Theorem 4.4 can often be irrelevant.

It is quite relevant, however, if we consider the region geometry, on-site service
statistics and vehicle capacity ¢ as given and view the arrival rate, A, as the indepen-
dent parameter. In this case one is typically interested in how the system behaves
as the traffic rate increases toward its maximum value. Theorem 4.4 shows that a
necessary condition for stability is

27

mugq

<l

p+

20 ) As

Thus, A increasing toward its maximum value is equivalent to p + v

the traffic intensity approaches this limit, the capacitated bound always dominates
the uncapacitated bound; it is this asymptotic behavior that is well captured by
Theorem 4.4,

The 1/3 factor appears to be mainly a by-product of the randomization used
in the proof; our selection of two random points in effect “cuts out” one third of
the local tour on the ¢ points, which, when added to the two radial terms, forms
the bound. The difficulty in eliminating the 1/3 factor is that one must bound the
sum of the radial terms and the local tour terms. This is to be contrasted with the

analysis of of the static VRP where typically only one of these terms dominates the
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cost. Indeed, this difficuicy is related to the static VRP when ¢ = O(n), for which
not much is known (c.f. [20]).

We conjecture that the 1/3 value can be eliminated. Indeed, we know by The-
orem 4.2 that for ¢ = oo the performance guarantee is the same as in the unca-
pacitated case, and we show below in Proposition 4.9 that for ¢ = 2 it is also the
same.

As a further motivation, one can heuristically argue that

d> 2F

oy |

1
+ E[Z7])(1 - E)

1

¢ of the arriving demands are first on the tour, for which

as follows: a fraction
d; is the sum of two radial distances, one irom the depot to the last demsnd in
the previous tour and one fromn the depot to these first demands. The mean of
this sum tends to 27 in heavy traffic. (Exactly how it tends to 7 is the critical
technical difficulty). The remaining points have d; at least equal to the distance

to the nearest point, Z;, which gives us the above expression. Using this heuristic

boirnd on d implies

_1)2 "
5 e ;\A(l ,,)W __ s(l—?p)' (4.14)
mév3(l - p — 2F) 2p

which, as we shall show below, would imply the same constant factor bound as in
the uncapacitated case for all ¢. Finally, note that (4.14) is exact if we restrict
ourselves to optimizing over the class of policies in which the radial connections to

the depot have mean f.

4.2.2 An Optimal Light Traffic Policy

Recall that vehicles following the mSQM policy service only one customer between
visits to their respective depots. This policy is therefore feasible for any capacity
q > 0. Using the fact that the lower bound in Theorem 3.1 is for a relaxed problem
(i.e. infinite capacity), it is therefore immediate that mSQM is also optimal for the

capacitated problem in light traffic.
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4.2.3 Single-Depot Heavy Traffic Policies

We next construci two policies for the m-vehicle, g-capacitated problem for the case

2\F
muvq

where all vehicles operate out of a single depot and p + — 1 (heavy traffic).

The Region Partitioning (¢RP) Policy

The first heavy traffic pclicy is based on r~gion partitioning and is defined as follows:

The qRP Policy
Divide the region A into k equal sized subregions (except perhaps on the
boundary) using a square grid system centered at the depot as shown in Figure
4.1. When ; consecutive demands arrive in a single subregion consider it the
acrival of a set. Jervice sets in FCFS order by the first available vehicle as

follows:

1. Form a TSP tour on the ¢ demands in the set.
2. Select one of the ¢ demands in the set at random.

3. Service the set by traveling to the selected customer, then around the
tour (servicing demands as they are encountered), and finally returning

from the selected customer back to the depot.

Optimize over the number of subregions k.

Proposition 4.7
Tyrp 9p°
4 < —— as p — 1.
T = B+ Ly '
where B is the TSP constant for q uniformly distributed points in a square (i.e.
% _ E[L
p=2k)

Proo!
We proceed as before and determine the waiting time for a set, W,.,. Let L, be

length of the local, TSP tour containing the i-th custorner and E[L] = limj—oo E[L;].
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[1. +

+ Demand Locations

Figure 4.1: Subregions of the gRP Policy

Let ¥ be defined as above. From the uniformity of the partitions and the construction

of the tours we have that the expected time to service a tour, E{r], is given by
¥ E[L
E[r]=2-+ ElL) + ¢3.
v v
Denoting Var(L] by o, we have
o2 o2
=4—L +-L 2
Varlr) = 4% + 2k + g0

We point out that o? is assumed finite, o? is finite due to the boundedness of A and
o? is also finite (c.f. [31)).

Again, the queue formed by this policy is 3_GI/G/m. Thus by invoking Theorem
2.1 we obtain
M + (5 + T + o))
201~ g (F+ 58 +43)

set ™~

Define 3 to be the constant such that the length of the optimal tour on ¢ uniform
points in a square of a ea A satisfies %? = BVA. (If q is large, one could reasonably
use the asymptotic value 8 = 0.72.) For the reader concerned about the non-square
regions on the boundary, observe that these can be considered as complete squares

with a nonuniform distribution of point locations in which case 3v/A is ap upper
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bound on %? (see [6]). Since each subregion has an area A/k, substituting this

expression for %ﬁ-’l above gives

A+ 2% + 2 4 02)

v ) A
2(1-p— 2L - —7-,,:,‘?‘/‘,1)

set ™~ )

where p = A5/m. Adding the expected wait for a set to form, which is at most
%§, and the expected wait for service once the set enters service, which is at most

-5- + Bﬁ + 9;, and making the change of variable

_ MVA
~um(l - p— ZL)/gF

we obtain
- 2 2
G2 A AGr + mr (33 + 7 +02))
Tyrp < 2.2 VIO I 20T O(y).
2m?v?(1 - p - 535)% 1-p—-7@)(1-y)

In this case, y has the interpretation as the ratio of the average local travel tirae per

demand to its critical value.

2AT

mqu_'l

We can again obtain an approximate minimizing value y* for the case p+

by linearizing about the value y = 1. This yields

2 2
y~~1_1'11J(X"+#(%‘5*+5u + I~ P~
3 24 ‘

For p + ;’)’i — 1, the above approximate y* approaches 1, thus

T A3 A
oRP 2m2v?(l - p - 3.';")2'

Comparing this leading term to the bound in Theorem 4.4 establishes the proposi-
tion.

O (Proposition 4.7)

The qgRP policy thus has a constant factor guarantee in the heavy traffic cuse.

Note that this analysis has also established the sufficiency of the stability condition
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p+ -3%% < 1 for the single-depot case since Trp is finite whenever this condition is

2)F
mqu

satisfied. Thus, since Theorem 4.4 shows p + < 1 is a necessary condition for

stability, we have the following theorem:

Theorem 4.5 In the multiple, capacitated vehicle DTRP with a single depot loca-
tion, a stable optimal policy exists if and only if p + 22T o),

mqu

The existence of such a policy also allows us to establish another rather intuitive

theorem:

Theorem 4.6 In the single-depot DTRP with vehicle capaciites ¢ > 1, suppose that
one has the option of locating the depot anywhere within A. Then in heavy traffic,

the median is the optimal location.

Proof
The proof is by contradiction. Suppose there exists a policy u* that is optimal
in heavy traffic (i.e. yields the value T asymptotically), but it does not use the
median for its depot location. Let ¥ denote the expected radial distance from
the median location and F,. denote the expected radial distance from the policy
pu* depot location. Because we have assumed policy u* does not use the median
location, ¥+ = 7* + AT where AF > 0. Now consider the gRP policy with the depot
located at the median. For notational convenience, define § = 1—-p — W and
€= 2XAT‘/qu. By our gRP results and Theorem 4.4, if /" is indeed optimal, then
for all 6 > 0, T,- must satisfy
YA+ 50-2%) BIrA
9m?2v26? 2 m?v2(6 + ¢€)?

+o(6 + e)'s/z.

Note, however, that for 6 — 0, the lower bound above approaches infinity but the
upper bound remains finite since € > 0. Therefore, T« cannot satisfy this condition
for all 6 > 0 and hence u* cannot be optimal.

0O (Theorem 4.6)
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The Tour Partitioning (¢TP) Policy

We next analyze a policy based on the tour partitioning (TP) scheme introduced by
Haimovich and Rinnooy Kan [20] for the static vehicle routing problem. The policy

is defined as follows:

The TP Policy
As in the G/G/m policy, collect demands into sets Ay, A, ... of size n as
they arrive and construct optimal tours on these sets. Starting at a randomly
selected point in A, split the tour into | = [n/q] segments of ¢ demands
each (except, perhaps, for the last segment). Connect the end points of the
segments to the depot to form [ tours of at most ¢ demands each. Assign the
first avaiiable vehicle to service all the demands in the set using these tours.

Repeat for N2, N3, ... serving sets in FCFS order. Optimize over n.

Proposition 4.8

Tyrp _ 98°(1+m)(1- 1) i, 2)F
T = 292(1 + -;-)2 P mqu

Proof

To analyze this policy, we need the mean and variance of the time to service a set.,
Since these set service times are i.i.d., it suffices to determine these quantities for
the set AV. Let the random variable R,, denote the total radial connection distance
for the set of tours on A}, L, denote the length of an optimal tour on the set of
points in A} and L, denote the length of the portion of this tour that is actually
used in the tour partition solution. The length of the total tour, denoted V,, is
therefore V,, = Ry + Ln.

To determine E[V,] we first condition on knowing the locations A} = { X, ..., X, }.

As shown in [20], the sum of the lengths of the solutions produced by all of the n
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possibie starting points is

n
2 ri+(n=1)Ly.
=1

Therefore it follows that the expected length of the tour obtained by randomly

selecting one of these a starting points (still conditioned on A) is simply
1 & {
21;§r.' + (1= =)Ln.
Removing the conditioning on A; we obtain
[
EVi]=2F+ (1 - ;)E[L,.],

and therefore adding the on-site service times the expected time to service a set is

E[L,
21 +(l——) [ ] (4.15)
The variance of the time to service a set is
Vargvn] +n03, (416)

We shall evaluate Var[V;] shortly.

Using (4.15) and (4.16) in the G/G/m limit (2.5) and recalling that the mean and
variance of the interarrival time of sets are n/) and n/A?, we obtain the following
limit for the waiting time for sets in queue, W,q,

M + e (SR + o)
2(1-p- A+ (1 - HE)

For p + 3‘):; — 1 we show below that n must be large, therefore E[L,]/n ~
BVA//7 and I/n ~ 1. For Var(Vy]/n, note that Var(Vy] = Var(Ln] + Var[Ra] +
2Cov[L,, R,] < Var[L,] + Var[R,] + 2\/Var[l:n]Var[Rn]. It can be shown that
Var[L,)/n ~ 0 and Var[R,]/n ~ o%/q; therefore, dividing through by n we have

Wact ~~ (4.17)

that Var[V,]/n ~ 02/q. Substituting these above and adding the wait for a de-
mand’s set to form and the wait for a demand to be served once its set enters
service we obtain
A 1 02 02
(v Tt ;,—;—5:;)

T. ~
BT CEPEE TR

+2,\ (1+m(p+—2—’\—-)+/3\/_
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Note that the stability condition is

oF 1 w\/—
-7 mu/n

which implies
(1 - %)2/\2ﬂ2‘4

n> N \2
m?v?(l - p— muq)2

2)\F

or — 1 is consistent.

Therefore assuming n — oo as p + ==-
Making a change of variable to
(1- 18V

T omy(l—-p— EL)Y/n'

and using the approximation

2 2 A\
yal-20 G + 2% + whm)(L - P — g

B 2(1-2)A

2)F — 1
mug

we finally obtain that for p + ==

ABRA(L ~ 1)*(1 + m)

2m2v?(1 - p— ZL)2

Terp ~

Comparing this expression to the lower bound establishes the proposition.

7

(4.18)

O (Proposition 4.8)

The presence of the factor 1 4+ m can be eliminated using the following modified

version of the ¢TP policy.

The Modified Tour Partitioning (MOD ¢TP) Policy

For some fixed integer k > 1, divide A into k subregions of equal area using

radial cuts centered at the depot. Within each region, form sets of size n/k

and form collections of feasible tours on these sets as in the ¢TP policy. As

sets are formed, deposit them in a queue. Service the queue FCFS with the

first available vehicle by following the collection of tours. Optimize over n.
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The performance of this policy is described by the following proposition, which
we shall not prove since the argument is only a slight modification of the previous

proof:

Proposition 4.9
2 1,2
Trmop e _ 98°(1—3)
- - 2 1y2°
T 21 +3)

or equivalently,
T ABRA(L - ql)z
MO ATP ™ SmiA(I - p— By

This tour partitioning policy has sever.l advantages over the ¢gRP policy. First, note

that it has a (1 — %)2 factor multiplying its leading term. For low values of q, this

improves the performance guarantee. Indeed, for ¢ = 2 we have

Tmop g1P B8

T = 24%’
which is the same as the best guarantee for the uncapacitated vehicle case. Com-
paring the leading behavior of Tasop 7P above to Equation (4.14), we see that the
%27 guarantee is also valid for all ¢ if we restrict ourselves to optimizing over the

class of policies which have a mean radial connection cost of F.

Second, observe that the constant is the asymptotic value 3 for all values of
q where as the gRP policy only achieves the asymptotic value 3 for large values
of ¢. (Recall we used an upper bound B on B in the gRP policy.) This stems
from the fact that, as the traffic intensity increases, the gRP policy reduces travel
distance by forming optimal tours of g points on increasingly smaller subregions; the
tour partitioning policies, by contrast, split an increasingly large tour on the entire
region. Thus, the gRP policy constant is always based on finite tours of size ¢, while
the tour partitioning policies achieves the asymptotic value 3 for any q. For these
two reasons, we consider the tour partitioning policy to be superior to the region

partitioning policy.
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4.2.4 Heavy Traffic Policies for Some Symmetric Multi-Depot Cases

We now briefly describe some multi-depot cases for which provably good policies
can be constructed. Suppose there are k depots and a positive integer p such that
m = kp. That is, there are exactly p vehicles per depot. Further, suppose these k
depots induce Voronoi cells that are identical in shape and size. Then if one applies
a p vehicle policy (i.e. gRP with p vehicles) in each cell, the resulting system time
will be within a constant factor of the lower bound in heavy traffic. This due to the
fact that each cell has an arrival rate of A/k and serves an area of size A/k, each of
which has the same mean radial distance 7. Therefore, since each region operates

with p vehicles we have

PO/BA/R 27
P - p- TR P
A

m3(1 - p— ZZ)2"

— 1

and hence the policy has a constant factor performance guarantee.

If k is large and the depots are located at the k median locations, then Haimovich
and Magnanti [19] show that the Voronoi cells approach a uniform, hexagonal par-
tition of A (i.e a honeycomb pattern). Since this simultaneously produces uniform
Voronoi cells and minimizes 7, if follows that assigning p vehicles to each of the k
medians is again provably good. Also, if one has the option of choosing & and p in
this case, then £ = m and p = 1 are optimal since this choice minimizes 7, which in
turn minimizes T

In the asymmetric case, it is less clear what approach to take. Certainly if m = kp
and one has the option of positioning depots, then some approximately uniform
partition seems best. If the depot locations are fixed at asymmetric locations and /or
the m vehicles cannot be evenly partitioned among the depot locations, then it is
less certain which policy is best. Indeed, there seems to be an inherent contradiction

in the asymmetric case: each set must be serviced by its closest depot to achieve a
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Policy (1) Ya T
Light Traffic
mSQM * 1.00
Heavy Traffic
(¢ = o0)
G/G/m =g 1.83(m+1)
RAMmoODTSP % 1.83(m)
MOD G/G/m = 1.83
D/G/m % 1.83
PyobpTspP 55 1.83
Heavy Traffic
(g < )
qRP % 8.03
qTP A1 - 5))/1}-7 1.83(m+1)
MOD qTP B 1.83

Table 4.1: Summary of Constant Values and Guarantees for the Multiple Capaci-
tated Vehicle DTRP

radial travel cost of ¥ yet the arrivals musi be evenly allocated to vehicles to achieve

a uniform rate of A\/m. More sophisticated bounds and/or policies are probably

needed in these cases.

4.3 Summary of Single Uncapacitated Vehicle Perfor-

mance Bounds

The guarantees for the various policies from this chapter are summarized in Table
4.1. The numerical guarantees are again based on the value ¥ &~ 0.376 from Chapter

5. For the capacitated vehicle policies, the numerical values given are for the best

case of ¢ = 2.



Chapter 5

The DTRP with General
Distributions

In this chapter we extend our analysis to problems in which dzinand locations are
distributed according to a continuous density f(z) defined over A and arrivals are
generated according to a renewal process with mean A~!, finite variance ¢? and
Laplace transform A®(s). The notation f(z) is short for f(z1,z2) (z = [z1 z2]).
Likewise, we write [ f(z)dz for [ [ f(x1,z2)dz dx2. The function f(z) satisfies

P{X €8} = /S f(z)dz VS C A

and

/,4 f(z)dz = 1.
In our analysis, we will need to assume that this density satisfies 0 < f< f(z) £
7 < 00,V z € A. This assumption is needed for purely technical reasons, as we shall
see shortly.

In this chapter we reverse conventions and define d; to be the distance traveled
from demand i to demand ¢ + 1; that is, the distance traveled after departing from
i rather than the distance traveled to i. Ve shall also assume that decisions are
taken only at service completion epochs and consist of choosing one of the demands
in the system to visit next or perhaps choosing to visit a fixed depot location zg.

This assumption implies that only at zo can the vehicle choose the option of staying

81
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put. This property will turn out to be important in our analysis. We point out that
in the uniform demand rase, we allowed for a slightly more general class of policies
in which vehicles can wait at any iocation = and change destinations at any point
in time.

In turns out that in this general demand case we also need to distinguish between
policies that provide the same level of service (i.e. same mean waiting time) for all
locations, which we call spatially fair policies, and those which may produce waiting
times that vary with location, which we call spatially discriminating policies. More

formally:

Definition 5.1 A policy p is called spatially fair if
EW|XeS]|=W VSCA

and

Definition 5.2 A policy u is called spatially discriminatory if there exisis sets S;,5; C
A such that

E[W|X € 8] > E[W|X € 83),

If we let W(z) = E[W|X = z], then observe that for spatially fair policies W =
W (z) for all = while for spatially discriminatory policy W is given only by the more

general relation
W=/AW(::)f(z)d1:.

As before, T = W + 5 for both fair and discriminatory policies.

5.1 Heavy Traffic Lower Bounds

In this section, we derive our main lower bounds. The bounds are established using
a difterent proof technique than that used in Chapters 3 and 4 that not only allows
us to consider general spatial distributions and arrival processes, but also improves

on the constant value for the Poisson, uniform case (f(z) = 1/A).
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5.1.1 Preliminary Definitions and Lemmas

Before beginning, some definitions are needed. For a given S C ®?, let N(S) denote
the time average number of customers in queue located in S. Note that since all
demands are located in A, N(S) = N(SN.A) for all sets S. In particular, the time
average number in queue N = /V(A) and if S is not a subset of A then N(S) =0
Let C(z,2) be the set of points within a distance of z from the location z (i.e.
C(z,z) = {y| ||y — z|| < z}). For all z € A, we define the following limit, which is

essentially a normalized, time average density of demands at locations z:

mn:%ymﬁgﬂﬂl (5.1)

We shall assume that if the systein is stable, then this limit exists. Further, we will
need that if f < f(z) < T for all z € A, then ¢ < ¢(z) < ¢ for all z € A where
these bounds on ¢(z) may depend on f(z) but not on N. Intuitively, this condition
says that the density of demands in queue at any location z in the system grows
essentially uniformly as N — oo since N¢ < N¢(z) < N@. We show below that this
condition holds a fortiori. In particular, this assumption excludes policies that leave
a customer permanently in the system at location z, since otherwise N(C(z,6)) > 1
for all 6 > 0 and thus ¢(z) is unbounded.

From the definition of ¢(z) and the linearity of expectation, we have for any

subset S of R2 that

m&:NLﬂqa. (5.2)

Also, since N(A) = N and N(-) is always positive, ¢(z) satisfies
L d(z)dr = 1 (5.3)
#(z) > 0 V z€A. (5.4)

We associate a queue with every subset S, henceforth referred to as simply as the
the queue S, by considering S to be a “black box” that has arrivals (demands arriving

to §) and departvces (service completions within S). Let the random variable Y (S)
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denote an interarrival time of the queue S, p(S) = j5 f(z)dz denote the probability
that an arrival falls in the set S and A(Y(S)) = pA denote the arrival rate to S. Note
that Y (S) is a geometric sum of interarrival times, and thus its transform F',(s)(s)

is given b
given by o AS)
V) 8) = T4 (o)1 = ()

Finally, let n*(S), a random variable, denote the number of customers left behind

(5.5)

by a random departure from S, W(S) denote the waiting time in this queue and
recall N(8) denotes the time average number of demands in S. These definitions

allow us to state the following leitnma, which will be used in our suhsequent analysis:
Lemma 5.1 Let ||S|| denote the area of S, hen
E[n*(8)) = N(S) + o{[IS]))-

In particular, if S = 7(z,z), then

i E0* (€. 2))]

z—0 w22

= N¢(z).

Proof

Note that if the region has Poisson arrivals, then for all §, E[n*(S)] = N(S).
This follows from PASTA [48] and the fact that customers are served sequentially
(one at a time). Thus, to prove the lemma it is sufficient to show that the normalized

interarrival time
RACIE
A=1(S)

has an exponential distribution for ||S|| — 0, since this shows the arrival process

Y(S)=

is asymptotically Poisson and the above PASTA result applies. L..ting F}?,(s)(s)
denote the transform of ?(S) and suppressing the argument S in p(S) for brevity

we therefore have

o0
Fi5)8) = /0 e™*dFy (1)
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- /°° e~ dFy 5)(A" (S)t)
0

00
= / e'-"pMdFy(s)(t)
V]

= I",',(s)(spk).

Note that ||S|| — 0 implies p(S) — 0. Therefore using (5.5), taking the limit as

p — 0 and applying L’Hospital’s rule we obtain

R o A*(spA)p
L R OISO e Py T
A*(sp)) + pA'(spr)s)
= PO A% (sph) — (1 - p)A'(spA)sA
1
l1+s'

which is the transform of a exponential random variable with unit intensity.
O (Lemma 5.1)
The key insight shown by this lemma is that sampling a renewal process with
low probability generates a Poisson process. Thus, for small regiors S, the arrival
process to the queue § is approximately Poisson. We now apply this result to derive
an important Lemma. Let Z7 denote the distance from the server to either the depot
or the closest unserved demand (which ever is smaller) at tiue completion epoch of

demand i. That is, Z7 is the decision that minimizes d;; thus, E[Z]] < E[d;] and
E[2*) = lim E[Z}) < lim E[d;)=d.
11— 00 11— 00
We are now ready to state and prove the following key lemma:

Lemma 5.2

Jim VNE[Z] 2 3'2'\/7/,4 $1/2(2)f (2)dx

Proof
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Consider a randomly tagged demand arriving at location X' and condition on
the event {X = z}. Recall that n*(C(r, z)) denotes the number of customers in the

set C(x, z) at the completion epoch of this customer. Then,
P(Z° < z|X = z) = P(n*(C(z,2)) > 0) < E[n*(C(x,2))] (5.6)

where the last inequality is due to the fact that n*(C(z, z}) is a nonnegative, integer-
valued random variable. Note that we have implicitly assumed that the depot
(location ro) is not within a radius z of z, else the probability above would be one.
We consider this alternate case below.

Considering the service completion of our tagged demand as a departure froin

the nueue C(z, z), we therefore have by Lemma 5.1 above that as z — 0,
r
E(* (Cle. N = N(Clz,2) = N [ g(a)ds.
C(x,z)

Expressing the integral above in terms of its asymptotic (z — 0) value and substi-

tuting into the bound (5.6) implies
P(Z* > z|X =z) > 1 = Nr2¥¢(z) — No(z?).
Defining ¢ = Nnd(z), we therefore have

E[(2"|X = 1)

oo
/ P(Z" > z|X = r)dz
0

> /Jo max{0,1 -- Nrz?3(z) = No(2?)}d:
0

> -/
0
2

3vVnrN

c-1/2 -1/2

(1 =cz¥)dz - N /c o(z?)dz
0

¢~ (z) - o(NT1/?)

As mentioned, this bound is valid as lony as the depot at rq is not within a radius
c™'/? = [N7g(2))~!/? of the location z. Let D(N) = {z] [|x - zo|| < [Nmo(x)]~*/?}
denote the set of points for which the bound is not valid. We next establish that

for large N, tie contribution to the lower bound from the set D(N) is negligible
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- and it here that we need our technical assumptions on f(r) and ¢(r). First
note that ¢(z) > ¢ VN implies [pyydzr < O(1/N). Using the trivial bound
P(Z° > z|X = z) > 0 for the points in D(N) and removing the conditioning
{X = z} implies,

- jfm /. ooy @)z = o(N7)

_..2__. -1/2 — -2 F —o(N~V?
= [ [ # @ - 670 [ " dz] (N=1/2)
= 3 \/2;1v [ #7 @) )z - (N,

E(z7] >

v

L A

which shows the contribution due to D(N) is indeed insignificant. Multiplying both
sides above by v/N and taking the limit as N — oo then proves the lemma.
O (Lemma 5.2)

Lemma 5.2 can be used to prove the following intermediate result:

Lemma 5.3 There erists a constant v such that

A (49713 (2) f(2)dz]”
lim T°(1 - p)* > 7* [ - - ]

where v > #

Proof

Consider the following necessary condition for stability

< e,

i+-<

>3

Using the fact that E[Z*] < d, multiplying the second term on the left hand side

above by % and rearranging implies

VN(1=p)> ﬁ.@ﬂﬂ
= mv
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Note that since N is at least as large as the mean number in queue in the corre-
sponding G/G/m queue (i.e. the queue with v = 00), as p — 1, we must have
N — oo. Therefore taking the limit as p — 1 (and consequently N — o) on both

sides above and applying L.emma 5.2 we obtain

Ma87' 2 (x)f(2)dx

mv

lim VN(1=p)> 7

p—

where v > ﬁ; Squaring both sides and using T > W = -’\Y we obtain Lemma 5.3.
0O (Lemma 5.3)

5.1.2 A Spatially Fair Lower Bound

As mentioned, Lemma 5.3 is only an intermediate result since the functions o(r)

remains unspecified. Determining ¢(z) will give us cur main heavy traffic theorems.

Theorem 5.1 Within the class of spatially fair policies

A [fa 13 (2)dz]’

m2y?

lim T°(1 - p)* > *
p—o
where v > ﬁ;

Before proving this theorem, note that it differs from Theorem 4.1 in that it
is an asymptotic bound while Theorem 4.1 is valid for all values of p; however, it
improves on the previous bounds since the constant value is larger by a factor of
V2.

Proof
Consider the queue C(z,z) and recall that W(C(x,z)) and N(C(z,z)) are the

mean wait and mean number within subset C(z, z) respectively. By Little’s Theorem,
N )= (0 [ F€)de) WC(z, ).
C(z,z)
However, if the policy being used is spatially fair this implies that W(C(x,2))=W.
Substituting this above and recalling that N(C(z,z)) = Nfc(:'x) #(€)d€ we obtain

N =W ,
RGL: /c o O

C(x,z
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which, since N = AW, implies

) o PEE = ) o O

Letting z — 0 above and noting that the above equality is true for all sets C(z, z)

implies that ¢(z) = f(xr) V z € A. Making the substitution ¢(z) = f(z) in the
bound in Lemma 5.3 we obtain the theorem.

O (Theorem 5.1)

Note that ¢(z) = f(z) also implies ¢ = f and ¢ = f, which confirms our initial

assumption on ¢(z).

5.1.3 A Spatially Discriminatory Lower Bound

Theorem 5.1 gives an asymptotic bound for the case where fairness is a constraint,
perhaps imposed as a matter of policy. What is the system time behavior when this

constraint is relaxed? The answer, in part, is provided by our second main theorem:

Theorem 5.2 Within the class of spatially discriminatory policies
3
, A [fA f2/3(1:)(.'1:]

m2y?

lim T"(1 - p)* > v
p—
where v > 5%;

Proof
Since no assumption of fairness is made, consider the following minimization

problem for the integral term in Lemma 5.3.

2 = min L 67 V2(2) f(z)dz (5.7)
subject. to -/A ¢(z)dz =1
¢(z) 2 0.

Using the value z* as a lower bound on the integral term in Lemma 5.3 will give us
Theorem 5.1. Note that the objective function is convex in ¢(zr) and the constraints

are linear; thus, (5.7) is a convex program.
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Relaxing the equality constraint above with a multiplier, we obtain the following

Lagrangian dual

. _ - -1/2 _
S = min [ 6@ s+ | [ H@r 1]
=/, Jmin, (67112 (2) f(2) + p()] dz — s (5.6)

By differentiating the integrand above and setting it equal to zero, we see that a

pair (¢"(x), ") for which

"%[f#‘(r)]"“”!(r)w‘ =0 VzedA (5.9)
/¢'(I)dr = l - - :(5.10"

A
$°(2) 2 0 (3-11)

will satisfy the Kuhn-Tucker necessary conditions for optimality. One can verify by

substitution that
/. f”“(r)dz]'l £13(z) (5.12)

o= g |f Pl 7 (5.19)

¢"(z)

is such a pair. The fact that (5.7) is a convex program implies that these conditions
are also sufficient to assure global optimality. Substituting the value ¢*(r) above
into Lemma 5.3 gives us the theorem.
a (Theorem 5.2)
Again, note that ¢ < ¢°(z) < é if [<f(x) < 7

5.2 Heavy Traffic Policies

We next examine two policies that have provably good performance with respect to
the lower bounds of Theorems 5.1 and 5.2. The policies are modifications of policies

introduced in Chapters 3 and 4.
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5.2.1 A Provably Good Spatialiy Fair Policy

The spatially fair policy we consider is defined as follows:

The Fair G/G/m (F) Policy Let k be a fixed positive integer. From a cen-
tral point in the interior of A, subdivide the service region into k wedges
A1, Az, ..., Ak such that [, f(z)dz = 7‘; i =1,2,...,k. (One could do this
by “sweeping” the region from the depot using an arbitrary starting ray until
Ja, f(z)dz = 1, continuing the sweep until [, f(z)dz = I etc.) Within each
subregion, form sets of size n/k. (n is a parameter to be determined.) As sets
are formed, deposit them in a queue and service them 'FCFS with the first

available vehicle by forming a TSP on the set and following it in an arbitrary

directions. Optimize over n.
The performance of this policy is given by the following proposition.

Proposition 5.1 Let Ty be the optimal system time over the class of spatially fair
policies. Then

Tr 2
< — 1.
s S 292 as p—1

Before proving this proposition, w~ note that since g =~ 0.72 and v > ﬁ; ~

0.376,

Thus, this fair policy is guaranteed to within about 80% of the optimal policy in
heavy traffic.
Proof

We first obtain some preliminary results for the random variable r, the time to
service a set. Let L; denote the length of the optimal TSP on a set in region i. Note

that
n. 181
E[T]=Z8+;E IE[L.],

=1
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Observe that kf(x) is the conditional density in any given subregion. From the
asymptotic TSP results of Equation (2.11), we can therefore assert that almost

surely

and that E[L;]/\/n converges to this value as well. Thus,

E[r] 1 E[L]
(n/k) —

- 12( 4
+vﬁ§ﬂ/&f‘ (x)d

_ ... B /2
= i+ \/H/Af‘ (z)dz (5.14)

v

2 consider the random variable L which is an equiprobable se-

To determine o
lection from the set of random variables {L,,...,Lg}. That is, L is the random
variable such that ¢ = o2 + S Var[L]. Note by the above asymptotic behavior
of Li/+/n that for large n the random variable L/\/n approaches an equiprobable
selection from the set of constants {3 [, f'/*(z)dx,..., B[4, f*/**)dz}, and thus

it follows that for fixed k

Va;[L] _ Va'.[_;_r__;] = 0(1).
Hence
o?
w7y = o 7 O o

We will use (5.14) and (5.15) shortly.
kA

Let A; = A/n denote the arrival rate of sets to region i and A = }:ﬁ__l Ai = =

denote the overall arrival rate of sets. For a randomly chosen demand, let W~
denote the waiting time for its set to form, W, denote its waiting time in queue
and W denote its wait to be serviced once its set enters service.

Note that, as in the uniform demand case
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and
+_ 1 n__
W* < 5(2)5+0(VA)
where the O(y/n) term is due to the TSP travel cost to service the sets of size n/k.
We have by Theorem 2.1 that

=1 Mol + A (gfy)°e? AE[7)
as —— —

Wsct ~
2A)2(1 - —‘im) m

Since the interarrival time in each subregion is a geometric sum of interarrival times

in the entire region, one can easily show that the variance of the interarrival time
. . 2 . .

of sets from subregion i, o7 , is given by

k-1

= n(a + 32

)l

where o2 is the variance of the interarrival times of demands to the entire region A.

This implies that
1

3,2 12 ‘75
'gx 2 =3 k )

We shall use the fact that for large values of k, the right hand side above is approx-
imately %V. In heavy traffic, A ~ E»”T';I Using this fact and applying (5.14) and
(5.15), we can therefore rewrite the above limit for W,,, as
M + 22 0fey)
2(1 - £2 p[r))

A [# + F=(o? + 0(1))]
21 - p = oo [4 f12(z)dz)

Wact

Note that the stability condition for this queue implies that p+ —2 Y3 (z)dr <
muy/n JA

1, which implies
NP2 ([4 £/ (2)dx)?

mii(I—p)F

s0n — 00 as p — | and vaus the above asymptotic analysis is valid in heavy traffic.

n>

Adding the bound on W™, Wt and W,.; we obtain the following bound on Tg

n(1+22)  Alf+Z(a2+01)]

ST 21 p = 2B [ [V/3(2)dz)

O(vn)



CHAPTER 5. THE DTRP WITH GENERAL DISTRIBUTIONS 94

Making a change of variable to

_ M SV (z)dx

my(l = p)y/n
the bound can be written
o < MU @)1+ 32) A [+ e(ed + O() (ol
F= 2m?v?(1 - p)?y? 2(1 - p)(1 -v) y(1-p)

An approximate optimal value for y is

o m | [FH et o -p)
TN AT PR+ )
Substituting this value into the above bound we find that as p — 1,

Tp o ML 2 (2)d2)? (1 + )
B~ 2m2y3(1 - p)? '

where the second order term is O((1 — p)~3/2. The proporition then follows com-
paring the above leading behavior to the bound in Theotem 5.1 and choosing k
arbitrarily large.

0O (Proposition 5.1)

5.2.2 A Provably Good Spatially Discriminatory Policy for Piece-

Wise Uniform Demand

We next propose a policy that achieves a performance guarante : of -2% with respect
to the spatially discriminatory bound when f is a piccewise uniform density, i.e.
there exists a partition of A into J subsets A, A2,..., Ay such that f(z) = u; Vz €
Aj, 7=1,2,...,J. In particular, for such a density note that

J

jA fPa)dz =57 134
i=1

Though the density is not perfectly gereral, one could approximate a continuous
density by a piecewise continuous density and let the approximation become finer
and finer to handle more general cases. Moreover, in practice a piecewise uniform

density is probably adequate. The policy is defined as follows:
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The Discriminatory (D) G/G/m Policy Let A4;,A;,..., A, be a partition of
A such that f(zx) = pu; Ve A;, j=12,...,J. Let Aj denote the arca
of A,. For a given positive integer k, partition each subset A; further into

2/3

kj = ;t?laAjk regions of area A;/k; = (u;

y k)='. (k is a scale factor that will

be chosen arbitrarily large; hence, we assume an integer k; can be found such
that k;/k is sufficiently close to [l?’sAj.) Within each of these subregions,
form demands into sets of size n/k as they arrive. As sets are formed, deposit
them in a queue and service them FCFS with the first available vehicle as
follows: (1) form a TSP on the set; (2) connect the tour to the depot through
an arbitrary point in the tour; and (3) follow the resulting tour in an arbitrary

direction servicing demands as they are encountered. Optimize over n.

Let the the system time of this policy be denoted Tp. We shall prove the

following proposition:

Proposition 5.2 If f is a piecewise uniform density and Ty is the optimal system

time over the class of discriminatory policies, then

Tp = B?
Tp S27 %Pl

Before beginning the proof, we note that this is again the same guarantee 1.8 as
in the fair case.
Proof

We first obtain some preliminary results for the random variable r, the time to
service a randomly chosen set of demands. A set formed in A; will be called a type
J set. Let p; = u;A; denote the probability that a randomly selected set is a type
J set. (Note that since the set size is n/k in all subregions, the probability that a

randomly selected demand is contained in a type j set is the same as the probability
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that a randomly selected set is of type j.) Let the random variable L; denote the
length of a tour on a type j set. Then

E[r] = (n/k)s + - Z p;E[L;)

)—l

We show below that as p — 1, n — oo; therefore

LE[L,] _‘\/—ﬂ\/— puse,

Note the connection cost to the depot is O(1) and thus its contribution to E[L,]//n

is negligible as n — oo. Substituting this above implies that as n — oo
E[T] - B / -1/3
/ey —° t3 vn Zp’”f
2/3
= 1€
To determine o2 we let L be a random variable such that L = L; with probability

pi,vi=1,...,J. Then
o? = %df + Var[L).

ror large n, the random variable % tends to a selection of constants from the set

{ﬂp;l/s} with probability p;, and thus it follows that as n — oo

LL Var[L]
and hence -‘-(,%%1 9{31 Thus, for large n
o? o)
k=0t T (17)

Defining W=, Wt and W, as before, we have

- L1 a/k
weos Z”"E((p,-x)/k,-)

|
>—|=

a~|..,

I
22§

(5.18)
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and
n

+
wT < ety ZPJE[LJ]

= .2.,:8 +0(¢5). (5.19)

The queue defined by this policy is again a 3_GI/G/m queue. Let i‘-j = !‘-‘—{U’-
and afu denote, respectively, the arrival rate and variance of the interarrival time
of sets from the i-th subregion of Aj, i = 1,...,k;. Let A= Z}"=l Zf;, ;\.-J- = "TA

denote the overall arrival rate of sets. Then, by the same reasoning as in the fair

case we find that a,fu = i‘-(-k-l 2 '('l—7kp, x ), and therefore

L2 — Lo kA pj 1 ki o %:
£ - £E(0) ) (i )

. ; 1 pj
= "2"2 (Pj(%)aff +5zpi(l - —j))
TR N

21 A
A? (x+z-(03— )Z/t“/" ) .

Jj=1

Again, we use the fact that for large values of k, the right hand side above is
approximately l\,\z Substituting this approximate expression into Theorem 2.1 and
using Equations (5.16) and (5.17) we obtain,
Mok + o)
2(1 - 2 E[r])
M + ar(od + F))
21 - p— 2=l w2 4)
Adding the bound (5.18) and (5.19) to the above expression we obtain that as

"Vu t

p—1

J 1
n Ayr + mz(os + _P'
Tp < Ex ( p‘?/sAj + ."%’.’.) + (XI' ( 2/)3 + O(\/i_l)

In terms of 2/3
Aﬂ zj-l pJ

mu(l - P)\/_
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we have

A8 (o 13 430 + (T ) 45)(52)] At gia(eh + %) (]
2m?v?(1 - p)2y? 2(1-p)(1-y) y(1 - P))

An approximate optimal value for y is

Tp £

mo (t+ar(@+20-p)
B\ 2 (Tl i 50 + (T w4522

yr = 1 —

Substituting this into the bound on Tp for p — 1 we obtain

M ((Tho 152 45)° + (D)o 12 4,)7 )
b~ 2m2v?(1 - p)? '

where the second order term is O((1 — p)~%/2). For large k, this is arbitrarily close

to
ML, 13 45)°
2m?v%(1 - p)2

Comparing this to the lower bound in Theorem 5.2 establishes the proposition.

0O (Proposition 5.2)

Tp ~

Again, we remark that a continuous density can be approximated arbitrarily
closely by a piecewise uniform density by taking a large number of partitions J

above.

5.3 A Numerical Investigation of the Performance of
the SFC and NN Policies for Generally Demand

Distributions

In this section, we briefly exainine some simulation results for the space filling curve
(SFC) and nearest neighbor (NN) policies as defined in Chapter 3 for the general
demand distribution case. We show that the SFC policy acts approximately like a

fair policy. The NN policy, on the other hand, appears to act neither like a pure fair
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(Area= 1-€)

(Area=g)

Figure 5.1: An Extreme Case General Demand Example

policy nor like an optimal discriminatory policies; rather, its performance seems to
lie somewhere between these two extremes.

The general demand distribution used in the simulations is the one shown in
Figure 5.1 The regions A; and A; have areas ¢ and 1 — ¢ respectively. Within each
region demands are uniformly distributed. Pointe fall in region A; with probability
1 — 6 and in region Ay with probability §. Thus, the density is piecewise uniform

with

-
I
O

T €A
x € A

f(z) = (5.20)

|

—¢

We used identical simulation techniques (i.e. same simulation code with different
f(z)) as in Chapter 3. (See Chapter 3 for details.) To estimate the dependence of
the system time for each policy, we set ¢ = 10™* and fixed A =1,5=0.1, 02 =0
and p = 0.8. Then, a different simulation run was performed for eleven values of
6 in the range 0.05 to 0.9999. (This last value corresponds to uniform demand.)
The observed average number in the system (which is proportional to the average
system time) was recorded for each 6 for both the SFC and NN policies.

Before examining the results of these runs, it is useful to consider the following
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representation of the dependence of the system time on the density f(z):

T:G( AZ(a) )

m?v3(1 — p)?
where .
T—a
(o) = *(x)d ] .
@) = | [, @)z
In the uniform case @ = 0, in the fair case & = 1/2 and in the optimal discriminatory

case a == 2/3. For the particular density f(z) given by (5.20) and for € small,
I_l__
(o) & [67(1 =)',

and therefore for a particular policy p

(8 4

log(T,) =~

log(8) + ¢y

-«
where c, depends on the policy and the system parameters (A, 3, etc.) and « gives
the distributional dependence of the policy. Thus, by plotting log(7,) (or log(N,))
against log(6) and performing a linear regression, one can estimate o and hence the
distributional dependence of the policy u. We would expect a value of o = 1/2
for fair policies and a value of @ = 2/3 for policies that behave like the optimal
discriminatory policy. Note that since log(z) is increasing in z, lower values of o
result in higher system times and high values of « result in lower system times.
Figure 5.2 shows a log-log plot of the sample average number in the system as a
function of 6 for our simulation runs. The estimate of the slope of each line is shown
in Figure 5.2 as well. For the SFC policy, the estimated slope of 0.80 corresponds to
o = 0.44 while for the SFC policy, the slope of 1.37 implies @ = 0.58. These values
suggest that the SFC policy performs like a fair policy since its value of « is close
to 1/2. (Though the performance appears to be somewhat worse than a purely fair
policy.) The NN policy, on the other hand, seems to be somewhere between a fair
and an optimal discriminatory policy; that is, it achieves a higher value of « than a
fair policy could, but does not achieve as high a value of « as optimal discriminatory

policies.
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Log(N)

Slope = 0.80

8 Log(NNN)

® | 0g(SFCN)
Slope = 1.37

!
N

Log(delta)

Figure 5.2: Simulation Results for SFC and NN Policies for General Demand Dis-
tribution
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These results give the approximate behavior of the SFC and NN policies for
general demand distributions. They also suggest a means of characterizing the
behavior of other policies that cannot be analyzed mathematically; namely estimate

vs and a, as we did above and use the approximation

AZ(ay)

Tr e
Tu m2v2(1 — p)?

For example, this estimation might be performed using operating data from a “live”
system, in which case the results could be used as a means of evaluating the effec-

tiveness of a firms current operating practice.

5.4 Relationship Between Fair and Discriminatory Be-

havior

To review, we have determined that

T"@(;,Tzf_—pﬁ)

where for the uniform demand case, = = A, for the spatially fair general demand
case = = ([, fllz(:l:)da:)2 and for the spatially discriminatory general demand case
E=(fu f?3(x)dz)3. We next briefly examine the relationship among these various
distributional behaviors.

Since fairness is a constraint, the system time of the optimal discriminatory
policy should be lower than the optimal fair policy for all densities f. This is indeed
the case as shown by the following proposition, which also gives the relationship of

the general distribution case to the uniform case.
Proposition 5.3 For any continuous density function f(x) defined over the region

A of area A
ax|f f"z(r)dxr 2/ f”"(r)dx]a

with equality holding throughout if and only if f(z) = 1/A, Vz € A.
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Proof

The proof requires the following inequality of Hardly, Littlewood and Poélya [21]:

Lemma 5.4 (Hardly, Littlewood and Polya) Ifa > 1 or e <0, g(z) > 0 and
h(z) > 0 then

[o@'oh(z)de > ([ 9(@)dn)' ([ ba)da)”
with equality if and only if %g{- is constant for all x.

For the first inequality in our proposition, take g(z) = f(z), h(z) = fY/*(z)
and @ = 2 above, and note that g(z)!"*h(z)* = f~!(z)f(z) = 1 which im-
plies that [, g(z)!=*h(z)*dz = [,dz = A. Also, ([, g(z)dz)!~*(f, h(z)dz)* =
(f4 fM?(z)dz)?. Thus,

Az ([ fHE)y
with equality iff T% = fY2(z) is constant for all z, which implies f(z) =
1/A, Vz €A

For the second inequality, take g(z) = f*3(z), h(z) = fY/%(z) and & = -2
above and note that g(z)!~*h(z)* = f¥(z)f~!(z) = f(z) and [ f(z)dz = 1 we
obtain

( /A FH3(z)dz)( /A M (z)dz)"? < 1.

Equality holds above iff *}-:7/;% = f‘/e(a:) is constant for all z, again implying
flz)=1/A, Vz € A.
O (Proposition 5.3)
Proposition 5.3 says that a uniform density is the worst possible and that any
deviation from uniformity in the demand distribution will strictly lower the optimal
mean system time in either the fair or discriminatory case. In addition, not requiring
fairness in the service policy will result in a strict reduction of the optimal mean
system time for any nonuniform distribution f. Also, note that when the density is

uniform there is nothing to be gained by not providing fair service.
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One may question how different the system times for a discriminatory and fair
policy policy may be in general. That is, how much can one gain by discriminating
according to location? Or, alternatively, how much does one lose by imposing a
fairness constraint? The answer is that in the worst case the two can be arbitrarily
far apart as illustrated by the simulation example in Figure of 5.1. For this density,

it is straightforward to show that for a fixed 6 > 0 and ¢ — 0,

[ /A f1/2(z)dz]2 = 6(1 — €) + O(e"/?)
and
[L les(a_,)dzr = §%(1 — ) + O(e/2).
Thus, there exists a constant ¢ such that in heavy traffic
[f fllz(r)d”] ¢
T' > UarP@da® 8

where T} and T}, are, respectively, the optimal fair and discriminatory mean system

as € — 0,

times. Since § > 0 can be arbitrarily small, this says that in heavy traffic the cost
of the optimal fair policy can be unbounded relative to the cost of the optimal
discriminatory policy.

Intuitively, one can explain the behavior of this example as follows: In a fair
policy, the few points that fall in the large regions A; must be visited as regularly
as the large number of points that fall in the much smaller region A;. However,
visiting the points in Aj; is time consuming since they are typically far away from
neighboring points. These infrequent but time consuming trips to demands in A
impose large delays on the demands in A;, which in turn drags down the overall
mean system time. In a discriminatory policy, we can allow the relatively small
number of demands in Az to wait much longer than the demands in A;. The
demands in A3 will then build up and thus can be serviced more efficiently with
larger tours. This frees up more vehicle time to service the much higher fraction of
customers that land in A,, improving their system time. The net result is to reduce

the overall system time.
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We can examine this phenomenon more formally. Recall that N¢(z) is the tine
average density of customers in queue and that ¢(z) is proportional to f%/3(x) for
optimal discriminatory policies. Let W(x) be the waiting time at location z. By
Little’s Theorem, W(z) = (Af(z))"!(N¢(z)), which implies that in an optimal

discriminatory policy
W(z) _ [f(z2)]'
W(z2)  Lf(z1)

for any two locations z; and z2. In the example above with z; € A; and z, € Ay,

this gives
W(z1) _ [ be ]‘/3
W(z2) (1=86)(1—¢) '

which shows that for small values of € and § the discriminatory policy imposes a

much greater waiting time on demands in Ay relative to those in 4;. However,

since only a fraction é of the demands come from A; the overall mean waiting time,

W = 6W(x1)+ (1 — 6)W(x2), is in fact reduced.

5.5 On the Tightness of the Lower Bounds for the

General Case

In the proof of Lemma 5.2, one can see that very little of the vehicle routing “struc-
ture” inherent in the DTRP was used. Indeed, we only assumed that the service was
sequential (i.e. one demand served at a time), which allowed us the establish that
the mean number left behind by a departure from any given region was the same
as the time average number in queue in that region. The bound therefore applies
to any system in which points arrive randomly to a Euclidean region and are then
removed sequentially according to some given rule. For example, we might remove
a point after it spends a fixed amount of time 7 in the system, in which case the
expected nearest neighbor distance £[Z*] and the mean number in queue N would
also satisfy Lemma 5.2. A DTRP policy, in this sense, simply defines one such rule

for removing points; namely, remove a point after a vehicle following a given policy
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has completed its on-site service. In this section, we show that the lower bound in
Lemma 5.2 is in fact tight within this broader class of “removal rules”, and therefore
more vehicle routing features of the DTRP need to be exploited to improve on our
lower bounds.

As in the DTRP, consider a region A that receives arrivals according to a rerewal
process with intensity A. The locations of arriving points are i.i.d. and distributed
according to a general spatial density f(z). Points are removed from the system

according to the following rule:

Optimal Removal Rule
Each arrival of a new point triggers a round of removals. A tound of removals
proceeds as follows: The oldest point in the system that is within a radius z
of any neighboring point is removed. (z > 0 is an arbitrarily small constant.)
The second oldest point with z of any of the remaining points is then removed,
etc.. The round continues until no more points are left within z of any other
point. Though these removals are sequenced, we assume the round of removals

takes place instantaneously. This process is repeated for every arriving point.

We first analyze this policy for the uniform demand case. Note that at the end
of a round, all points in the system are more than a distance z from their nearest
neighbor. Also, arriving points are never eliminated in the round of removals that
they initiate. This is because all points within a radius z of the arriving point are
necessarily older and thus will be eliminated before the curreut arrival is considered.
Similarly, all points in the system at the time of an arrival that are within a distance
z of the arrivals location will be eliminated during its rcund because the arriving
point is always the newest.

Given these observations, we see that a point waits in the system until a subse-
quent arrival falls within a distance z of it, at which point it is eliminated by the
round of removals generated by this arrival. Since the probability that an arrival

falls within z of any given location is -"—jz (ignoring edge effects because z is small)
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and the mean interarrival time of points is '}Y' the waiting time, W, under this policy
is
A
Amz?’

We next determine the expected nearest neighbor distance at the time of removal,

E[Z*). Consider the removal epoch of a point i whose location we denote x;. Note
that at the removal epoch there is only one point within a radius z of z;, namely the
point that initiated the round of removals. Thus, the arriving point that triggers the
removal of i is always the nearest neighbor to z;. Since the arriving points location

is uniformly distributed within the circle of radius z about z;, we have

E[27] /0 "P{Z* > s}dz

z 1'.12
= 1--——)d
-
2
-2z

3%

Using the expression for W above we have

_. ] A _|A
‘= AMWr ~ \aN’

which substituted into the expression for E[Z"] implies

mo_2 A
E[Z]_3ﬁ\/;.

Comparing this to the bound in Lemma 5.2 shows that the lower bound is indeed

tight within the class of sequential removal rules if points are uniformly distributed.
This removal rule can be extended to the nonuniform case by taking the radius

z above to be a function of a points location z; that is, z(z). Define

Z(:t) = ‘/T(—;)—;,

where € > 0 is an arbitrarily small constant. Note that the conditional wait given
that a point arrives at location z satisfies (for sufficiently small z(z))

1

1
X =) = Sy %
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and is therefore the same as the unconditional waiting time W. Using this observa-

tion, we can write z(x) as follows:

/ 1
z(m) = W

For the same reasons as in the uniform case,

2

-1/ -1/2
3\/1_rf 12(2)N 1 )

E[(Z"|X =z]) = %z(:c) =

Unconditioning implies

= s
T 3TN Ja

which establishes the tightness of the lower bound for the general fair case as well.

E(z" fH?(z)de,

(We do not have an analogous example for the general discriminatory case.)

These results show that no improvement in the lower bound Lemma 5.2 is pos-
sible if we exploit only the fact that DTRP policies define removal rules. (That the
bound is tight even within this broader class is still somewhat surprising given that
the derivation of Lemma 5.2 used some seemingly crude arguments, such as bound-
ing probabilities by expectations.) Thus, further improvements in lower bounding
the value of d for the DTRP must necessarily use more of the vehicle routing char-
acteristics of the problem. This bound is in essence a dynamic counterpart to the
following static nearest neighbor bound for n uniformly distributed points in a region

of area A:

1vVA
2/’

which is used in the probabilistic analysis of such Euclidean problems such as the

E[Z"] 2

TSP, Matching and Minimum Spanning Tree [36]. In the same sense that this nearest
neighbor bound is weak for the static TSF, one can see that the bound of Lemma
5.2 is likely to be weak for the DTRP. This suggests that the provable performance
bound of 1.83 for the fair and discriminatory policies is too pessimistic. Indeed, we

conjecture that these policies are asymptotically optimal.
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5.6 General Demand Distributions and Capacitated
Vehicles

Most of the results for the general demand distributions extend to the capacitated
vehicle case as well. We shall only summarize results ip this section since the analysis
closely parallels the arguments we have seen in previous sections of this chapter and
in Chapter 4.

By simply using the more general bound on the nearest neighbor distance E[Z"]

of Lemma 5.2 in the arguments of Theorem 4.4, one can show the following theorems:

Theorem 5.3 Within the class of spatially fair policies

2
lim T*(1-p- ﬁ)z > 7_2’\(1 + ;‘)2 [fA fl/z(:t)d:c]

= 242
p+ AL —1 mugq 9 mév

where v > #

Theorem 5.4 Within the class of spatially discriminatory policies

3
o Di o, P ML+ 2?2 [, 1 (z)de
lim T*(1-p- ) > = ——
,,+.'%.%_.1 muq 9 mév

where v > 55;

A provably good fair policy for the finite capacity case can be obtained by mod-
ifying the fair policy from Proposition 5.1 as follows: as sets of size n/k are formed,
partition these sets into feasible tours of at most ¢ points using the tour partition-
ing heuristic of Haimovich and Rinnooy Kan [20] as was done for the Modified ¢TP
policy of Proposition 4.9. Serve these sets FCFS and optimize over n. For large k,
the resulting system time, T;r, then satisfies

ABA(L = 1)2([, f1/3(x)dx)?

(1 p~ 5P

qF

which implies the same performance guarantee as in the uniform case.
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An identical tour partitioning modification applied to the sets formed in the
spatially discriminatory policy of Proposition 5.2 gives a policy with a system time,

Typ, satisfying

AB(L = (U Py

(1~ By

qD ~

These policies and bounds describe the behavior of the most general version of
the DTRP we have seen thus far and give a fairly comprehensive picture of how a

rich set of parameters influences congestion in dynamic vehicle routing systems.



Chapter 6

Further Extensions

6.1 Higher Dimensions

Most of the DTRP bounds 2nd policies car be extended to Euclidean subsets A of

R for arbitrary dimension d. We examine this extension briefly in this scction.
Consider first the uniform case. Let V denote the volume of A € R¢. Then

repeating the proof of Theorem 4.2 for general d one can show the following theorem

for the uncapacitated, m-server DTRP.

Theorem 6.1

Ad-1y 5(1-p)
mid(I—p) 2

1 = 75 (2(dl+ 1))w (EII)W

and ¢g = ﬁ% is the volume of a ball of unit radius in R.

T > v(d)

where

Similar modifications to the proofs of Theorems 5.1 and 5.2 give the following

bounds:

Theorem 6.2 Within the class of spatially fair policies

d—-1 d
, y(d)?A?1 | [, f7T (z)dz
71 ) 2 LT

where 7(d)=3%(3-_}_—l-)1/d(é)1/d.

1
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Theorem 6.3 Within the class of spatially discriminatory policies

PN ([ f5T (2)de]

mdyd

. - _ d
mT*(1-p)" 2

where y(d) = 3% (3’}3) e (é)lld.

Note that y(d) is larger in these bounds by a factor of 21/d,

Again, similar results holds for the capacitated problem, in which case (1 — p)

becomes (1 — p — 331‘;) in the above bound and also 7(d) is replaced by y(d)/3.

In a similar manner, one can analyze the various service policies in d dimensions.
The results parallel those in the two-dimensional case; namely, there are constants
¥.(d) that depend only on the policy and the dimension d such that the system

time, T}, satisfies

M-12(d)

d

- d
where Z(d) = V for the uniform case, Z(d) = [f.A f%l(z)dz] for the spatially fair
d+1

case and =(d) = [f.A fa':"f(x)dx] for the discriminatory case.

For example, the modified TSP policy in d dimensions has a constant of yn,75p(d) =
%(%}, where 3(d) is the d dimensional TSP constant.

An interesting result is found by examining this policy for d — oco. In [12], it
was conjectured and subsequently proved in [41} that for d — oo

B(d) Vd
V2re

- d 1\ /4 d
By using the fact that for d — oo, Ff7 ~ 1, (m) ~ land I'(§+ 1) ~
\/21r(%)g'+i'e"5", it is straightforward to show that

7(d) ~ \/%

as d — oo as well. Therefore we have the following theorem:
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Theorem 6.4 For the uncapacitated, m-server DTRP, the modified TSP policy is

an optimal heavy traffic policy asymptotically as d — oo.

This theorem gives further insight on the asymptotic optimality of the modified

TSP policy, which we conjecture is also optimal for finite d as well.

6.2 Routing to Minimize Travel and Waiting Cost

We next turn our attention in a different direction and reconsider the objective func-
tion for our probiem. Though we have concentrated throughout our discussion on
minimizing system time, in many practical problems there is in fact a mixed objec-
tive involving waiting and travel costs. The value d, the travel distance per demand
served, is perhaps the most natural measure of the travel cost in our formulation
since over zn infinite time horizon the total travel distance is always infinite. Thus,
rather than simply minimizing T we may in fact be interested in a more general

objective function of the form
9(T,d),

where g penalizes both the system time T and travel cost d.

It turns out that this objective can be easily incorporated in the policies we have
proposed. In our analysis, we consistently made a change of variable from the set
size n to a variable y that represented the ratio of travel time per demand to some
critical value. In the uncapacitated case, y is simply the ratio of d/v to its critical
value ﬂ}%ﬂl; in the capacitated case, it is the ratio of the local travel cost to its
critical value. Rather than seeking the y that minimizes the system time, it is useful
to examine the system time as a function of y; that is, T'(y). Note that for y = 0 no
traveling occurs while y = 1 implies the maximum amount of travel per arrival, For
simplicity, we shall restrict ourselves to the case of a single, uncapacitated vehicle
(i.e. the TSP policy as defined in the Chapter 3) to illustrate the tradeoff. Similar

results apply for the other cases.
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T (x1000)
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y = 0.906

Figure 6.1: System Time vs. Travel Cost per Demand

In the uncapacitated, m = 1 case, we obtained a system time of the form (see

Equation (3.26))

C1 c2 c3
®) (1-v? 4 gy’
where ¢1,...,c3 depended on the system parameters. This function is shown graph-

ically in Figure 6.1 for the case > =0, A =1and 3=0.1 and p = 0.9. Note that
the function has poles at both 1 (travel equal to its critical value) and 0 (no travel
at all) as expected.

To minimize T'(y), we want to optimally balance between these two extremes.
For p — 1, the coefficient c; increases much more rapidly that ¢; and c3. Thus, the
optimal value of y approaches 1 corresponding to the travel time per customer ap-
proaching its maximum (critical) value. Note that increasing y beyond y* increases
both the travel cost and the waiting time; therefore, there is no reason to choose
a value in this range. However, one might want to choose a lower value of y, cor-
responding to less travel per demand, at the cost of increasing the average system

time. For instance, in our example y* = 0.906 and the system time is 578. If we de-
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cide to reduce the average travel cost per demand 10% to y = 0.81, the system time
increases by 21% to 702. In general, one would select a value of y that minimizes a
particular cost function g. This confirms the rather intuitive notion that there is a
tradeoff between travel cost and system time in dynamic vehicle routing systems.

Similar relationships are found for the capacitated case with the exception that
the variable y represents the ratio of the local travel cost to its critical value. The
interesting difference here is that the radial costs per service, 2A7/gqm, cannot be

traded-off against system time; only the local costs can.

6.3 Optimization Problems

In most vehicle routing systems, there are three major resource allocation and/or

operational decisions that must be made:

e Fleet Composition - This decision involves choosing both the number and

type of vehicles to deploy within the service region.

e Districting - Once the composition of the fleet has been decided, the individ-
ual vehicles must be allocated to various subregions or subsets of customers

(districts).

¢ Routing - Given an assignment of vehicles to districts, routes must be found
for the individual vehicles that minimize travel cost, waiting time or some

combination of these costs.

These decisions form a natural and integrated hierarchy. The highest level is fleet
composition which is a long-term strategic decision that requires estimates of how
effectively vehicles can be apportioned and routed. Districting is an intermediate-
term decision that is made based on knowledge of the fleet composition as well as
estimates of the cost of routing within a given district. Finally, the short-term,
tactical routing decisions require knowledge of both the type of vehicle and the

district or customers to be served, which are provided by the two higher levels.
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In this section, we give some brief examples of how DTRP models can be used
within this hierarchy of allocation/operations decisions. This collection of problems
is not meant to be exhaustive. Rather, it is intended to suggest how our results
could be used as building blocks for some insightful normative models. The reader

will no doubt think of many additional problems in this vein.

6.3.1 Optimal Fleet Composition/Sizing

Consider the following strategic, fleet composition problem: a utility firm would like
to acquire a fleet of m repair vehicles each of capacity ¢ to service its network. The
vehicles are to be based out of a single depot. The objective is to minimize total
operating cost, which is a linear combination of the downtime (system time) cost,
c1T(m), and the vehicle operating costs (depreciation, wages, fuel, etc.), com; that
is,
min c1T(m) + cam.

Suppose failures are quite frequent so it is decided that the gG/G/m policy is to be

used. In this case, an approximate expression for the average downtime is

A\3%2A
T(m) =~ —
(=) 2m2v2(1 — p — 2L)2

Substituting this into the minimization above and ignoring integrality, it is easy

to find that the optimal m is

(One would of course round up or round down this solution to achieve the best
integer m.)

Observe that the first term is simply the amount by which m exceeds its critical
value A3 + %. Also note that with the lower level decisions are implicit in the
formulation; namely, route vehicles using the §G/G/m policy and assign customers

evenly to each of the m vehicles.
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6.3.2 Optimal Districting

An example in this category is the following somewhat stylized districting problem:
consider a company that has a fleet of m heterogeneous vehicles with velocities
v1,...,Um each of unlimited capacity. For instance, the fleet might consist of k
older slow vehicles and m — k newer fast vehicles. We would like to assign each
vehicle a portion of the service region so as to minimize the average system time.
We shall assume the system operates in heavy traffic and that each vehicle follows
a heavy traffic policy p in its assigned region.

If the fraction of service area assigned to vehicle i is denoted p;, then the opti-

mization problem is

m

M2Ap}
L P

:l'

ZP.'=1

i=1

pi20 i=1,...,m.

If we introduce a Lagrange multiplier, p, on the equality constraint and define the

functions
Ma AP

S

then the optimal p} and u* satisfy

fih) = u°
m
2R =1
=1
pp 20 i=1...,m

This is complicated to solve analytically in the general case, but it is not difficult
numerically.

A simplification occurs for the case 3 = 0 (and hence p = 0), 02 = 0 and A — oo.
That the above expressions f; remain valid in this case has not been demonstrated;

however, by reexamining the arguments for the G/G/m policy for this case, one can
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verify that the system time is indeed given by the expressions f; above. For this

A2 Ap® . . . .
case, fi(p) = —£y— and the optimal solution is

.« _ Ui

pt - «:7;1 v;

. _ 37§z\A
TR

which can be verified by substitution into th:: optimality conditions above, Thus, it
is optimal to allocate the area proportional to vehicle velocities in the special case
where on-site service times are negligible.

Note that in this example, we assume the fleet composition decision has already

been made and that the routing within each district will use the TSP policy.

6.3.3 Routing

Routing to minimize system time, or more generally some mixed cost, has been the
main focus of this thesis. We only point out here that our results suggest a range of
provably good and also quite practical policies for use at this level. Also, the fact
that our analysis yields simple, closed form expressions for the asymptotic cost of
these policies makes it possible to formulate and solve high-level decisions like those

suggested above.

6.4 Dynamic Matching and Other Combinatorial Prob-

lems

We lastly consider applications of our heavy traffic lower bounds tc problems other
than dynamic vehicle routing. In particular, we shall focus on a dynamic matching
problem; however, a range of combinatorial problems in the plane can be analyzed
using similar ideas.

Recall that Lemmas 3.1 and 5.2 provide a lower bound on the distance to the
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nearest neighbor, Z*, at the time a point is removed. Namely,

v
VN

where N is the time average number of points in queue, = = A for the uniform case,

E[Z7] > v (6.1)

= = [f.A fl/zd:t:]2 for general fair policies and v is a numerical constant which is
equal to 2= in the case of Lemma 3.1 and %71; in the case of Lemma 5.2. (In the
case of Lemma 5.2, the inequality above is valid asymptotically as N — 00.)

In Chapter 5, we pointed out that the bound in Lemma 5.2 applies to any
policy in which points are removed sequentially. (We called these policies sequential
removal rules.) Similarly, Lemma 3.1 applies to any system in which points are
removed using a nonanticipating but not necessarily sequential policy. (We call
such policies nonsequential removal rules.) These bounds are essentially dynamic
versions of the nearest neighbor bound for uniformly distributed points in the plane
[36]. As such, they can be used to analyze other dynamic combinatorial problems
in the Euclidean plane. We give one such example next, namely a dynamic version
of Euclidean matching.

Consider the following matching problem: We are given a square of area A that
receives arrivals of points according to a renewal process with intensity A\. There
is cost Cy per unit time that each point waits in the system and a cost Cyz for
matching a point with a neighbor that is a distance z away. We want to match

arriving points and remove them so as to minimize the time average cost
C=CiN + AC2E[Z]) = AM(CLW + CLE[Z)).

We assume points are removed in matched pairs so that policies for this problem
correspond to nonsequential removal rules. The optimal cost above is denoted C*,
Note that for any ¥, the lower bound (6.1) implies

2 VA

CiW + CRE[Z] > COiW + C——=.
1 +2[]_l +23\/§7|'-\/A_W
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Minimizing the right hand side with respect to W we obtain the following lower
bound on C*:
c* > (%)I/S(ACQ)le(ClA)Ila-

Now consider the following rule for matching points: divide the square into m
subsquares of equal area A/m. As soon as any subregion gets two arrivals, match
them and remove them. Repeat this process continually for all m subregions.

Since exactly one half of all points have no wait and the other half have a waiting
time of v‘; =T,

m

W=

The expected value of each matching is just the expected distance between two

uniformly distributed points in a square of area A/m, which by Equation (2.8) is

E[Z] = aE

/_m)
where a = 0.52. Combining these two expressions implies that the cost of this policy

as a function of m is

VA
v

Minimizing with respect to m (ignoring integrality) we obtain

C(m) = — + ar—=

3
C(m*) = §..12/3()\02)2/3(01,4)‘/3.

Comparing this to the bound on the optimal value C* above implies
C("’ ) < 1.4
so the partition policy for dynamic matching is within 25% of the optimum.

In this manner, other policies for the matching problem can be analyzed. Also,
other problems such as forming dynamic MSTs, dynamic Steiner Trees, etc. can
be similarly formulated. In the vehicle routing arena, dynamic versions of problems
such as the Euclidean dial-a-ride problem [46] might again be analyzed using these

bounds. In this problem, customers have both an origin location and a destination
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location and the vehicle must deliver customers from their origin to their destination,
In this case, the mean nearest neighbor distance at both locations could be bounded
using (6.1). These examples suggest that the lower bound (6.1) may be a useful tool

for analyzing a range of dynamic combinatorial problems in the plane.



Chapter 7

Conclusions

We have examined congestion effects when operating vehicles in a dynamic and
stochastic environment. In the uncapacitated case we found that the stability con-
dition is independent of any characteristics of the service region while in the case
where each vehicle has capacity ¢ < oo, the depot location and system geometry
strongly influences the stability condition. We also showed that the distributed
character of the system gives rise to behavior very different than that of traditional
queues. In particular, for the uniformly distributed demand case the optimal, ex-
pected system time in heavy traffic is @(my’%i"_—pp-y) for uncapacitated vehicles and

( T
27
mzuz( 1 ..p_-._)z)

) for capacitated vehicles. Moreover, we found optimal policies in
light traffic and several policies that have system times within a constant factor of
the optimal policy in heavy traffic. The best of these policies is within a factor of
1.8 relative to the lower bound.

In the case of general demand distributions, we showed that there are different
distributional dependencies depending on whether or not the system provides spa-
tially fair service. We showed that the cost of providing fair service in the worst case
can be arbitrarily high relative to the discriminatory case. Provable good policies
where also proposed and analyzed for the general demand case. Qur analysis also
lead to an improvement in the constant value 7 in the heavy traffic lower bound and

extended the DTRP to general arrival processes.

122
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A reoccuring finding in our analysis is that static vehicle routing methods when
properly adapte. can yeild optimal or near optimal policies for dynamic routing
problems. This is an encouraging result on several levels. On a theoretical level,
it suggests that there is indeed a connection between static and dynamic problems;
that is, the DTRP has geometrical characteristics that are ntimately related to
the corresponding characteristics for statjc VRPs. On a practical level, the results
imply that most of the exact algorithms, heuristics and insights which have been
developed over the years of investigation of static VRPs are not irrelevant and can
in fact form the basis for effective policies in dynamic, stochastic environments,

These results give new insights into the problems of stability, depot location and
response time under congestion for dynamic, stochastic vehicle routing systems,
However, some open questions still remain in this area, A challenging problem is to
try and close the gap between the lower bound constant 7 and the various policy
constants vy, with the ultimate goal of finding asymptotically optimal policies in
heavy traffic. Qur conjecture here is that 7 = B/V?2, and thus the modified TSP,
G/G/m and ¢qTP policies are in fact asymptotically optimal; however, we have not
been able to prove this, In Chapter 5 we saw that other combinatorial problems
in the plane can be investigated using our lower bounds, and this area too seemns
a fruitful one for further research. A challenging problem in a different direction is
to investigate dynamic routing in a network environment rather than under some
Euclidean metric. We hope that some of the insights and techniques presented in

this paper can be used for this problem.
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