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Abstract: By developing a ‘two-crystal’ method for color erasure, we can broaden the scope of
chromatic interferometry to include optical photons whose frequency difference falls outside
of the 400 nm to 4500 nm wavelength range, which is the passband of a PPLN crystal. We
demonstrate this possibility experimentally, by observing interference patterns between sources
at 1064.4 nm and 1063.6 nm, corresponding to a frequency difference of about 200 GHz.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Chromatic interferometry refers broadly to experiments which leverage quantum superposition in
frequency-space to recover hidden phase information encoded in correlations among photons with
different wavelengths [1]. Recently, chromatic interferometry has attracted increasing attention,
both for its intrinsic interest and for its possible utility in high-resolution imaging and photonic
computation [1–7].
Color erasure is the essential technology enabling chromatic interferometry. Only when the

frequency difference between the photons is surpassed by the response of detector can interference
be measured [8–10]. Information which identifies wavelength (e.g., specifically, energy deposit)
is registered in the detection apparatus, even if it is not readily accessible to an experimentalist.
Wavelength information is generally harder to erase than polarization or path information, and so
color erasure poses an interesting challenge.

The purpose of “color erasure detectors” [1,2] is to erase all wavelength identifying information,
thus enabling chromatic interference. The use of such detectors goes beyond previous experiments
in chromatic interferometry which implement wavelength conversion either at the light source, or

#402560 https://doi.org/10.1364/OE.402560
Journal © 2020 Received 21 Jul 2020; revised 29 Sep 2020; accepted 29 Sep 2020; published 12 Oct 2020

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.402560&amp;domain=pdf&amp;date_stamp=2020-10-12


Research Article Vol. 28, No. 22 / 26 October 2020 / Optics Express 32295

at beamsplitters [3,4,6,11–13]. By contrast, color erasure detectors can recover phase information
between different wavelengths of light after interference or phase accumulation has occurred.
Ironically, a significant limitation of existing color erasure detectors is that they can only

render photons indistinguishable when their frequency difference is sufficiently large. In order to
render reception of two optical photons with frequencies f1<f2 indistinguishable, they employ
three-wave mixing with a coherent source at frequency f3 = f2 − f1. Appropriate crystals or
waveguides that implement the mixing are available if f3 corresponds to a wavelength in the 400
nm to 4500 nm wavelength range, but not otherwise. This consideration significantly restricts the
frequencies f1 and f2 and thus the scope of applications.

Here we develop a more general method of color erasure, which allows f2 − f1 to be very small.
We demonstrate its soundness and practicality by performing chromatic intensity (Hanbury
Brown–Twiss) interferometry [14,15] between sources with 1064.4 nm and 1063.6 nm photons.
Hanbury Brown–Twiss interferometry plays an important role in quantum optics [16] and has
wide applications in astronomy and fluorescence microscopy [14,17–19], and so our experiments
lay the groundwork for new chromatic generalizations and technologies.

2. Theory

Our goal is to develop a detector that cannot distinguish between photons with optical frequencies
f1 and f2. We introduce a third frequency f3 with f1<f2<f3 and such that ∆f31 = f3 − f1 and
∆f32 = f3 − f2 are both optical frequencies. Denote photons of frequency f1, f2, f3 by γ1, γ2, γ3,
and photons with frequency f ′1 = f1 + ∆f32 and f ′2 = f2 + ∆f31 by γ′1 and γ

′
2 respectively.

Let us first describe our protocol heuristically, to provide intuition for the mathematics to
follow. Consider a superposition of photons with wavelengths f1, f2. Using a beamsplitter, we can
transform this state into a (further) superposition of two distinct spatiotemporal modes. Let us
put the photons in the first mode through a PPLN waveguide [20] pumped with a coherent state
of many ∆f31 photons. In this way, we induce upconversions f1 → f3 and f2 → f ′2 . Similarly, let
us put photons in the second mode through a second PPLN waveguide pumped with a coherent
state of many ∆f21 photons, inducing upconversions f1 → f ′1 and f2 → f3. Then we can filter both
beams to allow only photons with frequency f3, and finally recombine the two beams using a
second beamsplitter. This processing and filtering renders it impossible to determine whether the
triggering photons had frequency f1 or f2.

Now let us treat this mathematically. Let |Ω〉 be the vacuum state, and let a†γ create a γ photon
in some fixed spatiotemporal mode. Then, for instance, a†γa†γ′ would create two photons γ and γ′
in the same fixed spatiotemporal mode. For simplicity, consider the initial state

|Ψ0〉 =
(
α a†γ1 + β a†γ2

)
|Ω〉 (1)

where |α |2 + |β|2 = 1. This state corresponds to a superposition of a γ1 photon and a γ2 photon
in a single spatiotemporal mode.
Consider a second spatiotemporal mode, with corresponding creation operators given by b†γ .

A 50-50 beamsplitter between the first and second spatiotemporal modes corresponds to

a†γ −→
1
√
2

(
a†γ + b†γ

)
, b†γ −→

1
√
2

(
a†γ − b†γ

)
(2)

for all γ. Applying such a 50-50 beamsplitter to |Ψ0〉, we obtain

1
√
2

[(
α a†γ1 + β a†γ2

)
+

(
α b†γ1 + β b†γ2

)]
|Ω〉 . (3)

Evolution of the first (second) mode, propagating through a PPLN waveguide pumped with a
coherent state of a large N number of ∆f31 (∆f32) photons, is described by the Hamiltonian H31
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(H32) where
H31 = i ξ31

(
eiφ31 aγ1a

†
γ3 − e−iφ31a†γ1aγ3

)
+ i ξ2′2

(
eiφ2′2 aγ2a

†

γ′2
− e−iφ2′2a†γ2aγ′2

) (4)

H32 = i ξ32
(
eiφ32 bγ2b

†
γ3 − e−iφ32b†γ2bγ3

)
+ i ξ1′1

(
eiφ1′1 bγ1b

†

γ′1
− e−iφ1′1b†γ1bγ′1

)
.

(5)

The ξ parameters control the rate of up- and down-conversion, and the φ parameters dictate the
phases accumulated by the converted photons during the process. These effective Hamiltonians,
which cause the f1 and f2 photons to become entangled with the large N coherent state of the
pump, were derived in [1] using a systematic 1/N expansion. As emphasized in [1], large N
coherent states are physically essential, since we want to ‘lose track’ of the loss or gain of single
photons. In our setup, we consider the combined Hamiltonian

H = H31 + H32 (6)

and evolve (3) by e−iHT .
We apply a second 50-50 beamsplitter to both spatiotemporal modes, and finally filter to γ3

photons in the first outputted spatiotemporal mode. This corresponds to projecting onto a†γ3 |Ω〉.
The resulting state is

1
2

(
α eiφ31 sin(θ31) + β eiφ32 cos(θ32)

)
a†γ3 |Ω〉 (7)

where θij ≡ Tξij. These angular θij parameters control the amount of up- and down-conversion
that have occurred between the photons with frequencies fi and fj. By tuning φ31 = φ32 = 0, and
say θ31 = π/2 and θ32 = 2π, we get

1
2
(α + β) a†γ3 |Ω〉 . (8)

Putting everything together, we have(
α a†γ1 + β a†γ2

)
|Ω〉 −→

1
2
(α + β) a†γ3 |Ω〉 (9)

as was desired. What we have effectively done is mapped a†γ1 →
1√
2

a†γ3 + · · · and a†γ2 →
1√
2

a†γ3 + · · · , and then post-selected onto the outcome of receiving a γ3 photon (the · · · ’s
correspond to creation operators with other wavelengths).
Our arrangement in its entirety embodies a single color erasure detector. Equation (9)

summarizes the manner in which the detector decoheres a state [21,22]. Color erasure is achieved
through an entangling measurement, as described above.

We conclude this section by seeing how color erasure detectors allow us to perform Hanbury
Brown-Twiss interferometry with sources having distinct wavelength. Here we will be schematic,
but full details can be found in [1,2]. Suppose we consider the standard Hanbury Brown-Twiss
experiment with two sources of the same wavelength. Let a†γ and b†γ denote creation operators for
γ photons at the locations of two detectors A and B, respectively. Suppose each source emits a
single photon at some moment in time. Then once the photons have reached the detectors, we
will have a state

(α + β)a†γb†γ |Ω〉 + [orthogonal states] (10)

where the bracketed term corresponds to states where there is not one photon at each detector.
This allows us to extract |α + β|2 = |α |2 + αβ∗ + α∗β + |β|2 corresponding to the probability that
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each detector received exactly one of the two photons (i.e., a coincidence count). This probability
crucially contains an interference term αβ∗ + α∗β, which encodes desired phase information in
the Hanbury Brown-Twiss setup.
By contrast, if the first source emits photons of wavelength γ1 and the second source emits

photons of wavelength γ2, then the analog of Eq. (10) is

(α a†γ1b
†
γ2 + β a†γ2b

†
γ1 )|Ω〉 + [orthogonal states] . (11)

Since a†γ1b
†
γ2 |Ω〉 and a†γ2b

†
γ1 |Ω〉 are orthogonal, we can only extract |α |

2 and |β |2 via measurement,
and so we do not have access to the interference term αβ∗+α∗β. To gain access to this interference
term, we can let detectors A and B be color erasure detectors, taking a†γ1b

†
γ2 |Ω〉 →

1
4 a†γ3b

†
γ3 |Ω〉

and a†γ2b
†
γ1 |Ω〉 →

1
4 a†γ3b

†
γ3 |Ω〉 as per (9). Accordingly, (11) becomes

1
4
(α + β)a†γ3b

†
γ3 |Ω〉 + [orthogonal states] (12)

from which we can extract |α+ β |2 and the desirable interference term αβ∗ +α∗β by determining
the frequency of coincidence counts of γ3 photons at the color erasure detectors A and B.

In summary, color erasure detectors allow us to perform Hanbury Brown-Twiss interferometry
using the standard procedure, even when the sources have distinct wavelength. We will
experimentally implement this color erasure version of Hanbury Brown-Twiss interferometry in
the next section.

3. Experiment

We have implemented the theoretical proposal given above and used the resulting detectors to
perform chromatic intensity interferometry. As shown in Fig. 1, 1064.4 nm photons and 1063.6
nm photons, prepared in weak coherent states, meet at a 50-50 beamsplitter labeled BS1. The
linewidth of the photons is about 1 kHz. The 1064.4 nm photons and 1063.6 nm photons will not
mutually interfere because their frequency difference is about 200 GHz. To recover chromatic
interference, we build up two color erasure detectors, each having a traditional Si single photon
detector, two beamsplitters, a special-made PPLN waveguide [20], a pump laser, and a filter.

Fig. 1. Diagram of the intensity interferometer. Abbreviations are: periodically-poled
lithium niobate waveguide (PPLN WG), beamsplitter (BS), single photon detector (SPD),
time-to–digital converter (TDC).

Figure 1 shows a diagram of the setup. After the initial BS1, the superposed mixture of 1064.4
nm photons and 1063.6 nm photons is further split and superposed by BS2 and BS3. A delay
controller is inserted before BS2 to control the phase of the photons. The two paths emanating
from BS2 go into two separate PPLN waveguides (denoted by PPLN WG 1 and 2), and similarly
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the two paths emanating from BS3 go into separate waveguides (labeled PPLN WG 3 and 4). We
use a 1548.7 nm laser with about 100 kHz linewidth to pump PPLN WG 1 and 3, and a 1550.3
nm laser with about 1 kHz linewidth to pump PPLN WG 2 and 4. The outputs of PPLN WG 1
and 2 are coupled to single photon detector A (SPD A) by BS4 and the outputs of PPLN WG
3 and 4 are coupled to single photon detector B (SPD B) by BS5. In PPLN WG 1 and 3, we
convert 1064.4 nm photons to 630.8 nm photons via sum-frequency generation (SFG). In PPLN
WG 2 and 4, we convert 1063.6 nm photons to 630.8 nm photons via SFG. A 630.8 nm filter
allows us to filter in only the 630.8 nm photons.
When SPD A or SPD B receives a 630.8 nm photon, it in principle cannot tell if the photon

was originally 1064.4 nm or 1063.6 nm. Every photon arrival time at SPD A and SPD B is
recorded by a time-to-digital converter (TDC). To observe chromatic Hanbury Brown–Twiss
interferometry, we measure the g(2) correlation. Our calculation of g(2)(τ) amounts to

g(2)(τ) =
ncoincidence · nbin

nA · nB
(13)

where ncoincidence is the number of coincidence counts between SPD A and SPD B, nbin is the
number of time bins in our trial, nA is the number of counts at SPD A, and nB is the number of
counts at SPD B. Also, τ is the delay applied on the signal of detector B.

The second order correlation g(2)(τ = 0) of two lasers is (see the supplemental materials of [1],
as well as [2], for a detailed derivation)

g(2)(τ = 0) = 1 +
ε

2
cos(∆φ1AB − ∆φ2AB) (14)

where ε is the visibility of the interferometry. Above, ∆φ1AB is the phase difference between the
paths from the first source to A and the first source to B, whereas ∆φ2AB is the phase difference
between the paths from the second source to A and the second source to B. In our experimental
color erasure setting, the phases from the sources to detector B are fixed. By adjusting the
reflector in the delay controller, we can increase the optical path by ∆L, and thus tdelay =

∆L
c and

∆φ = 2π∆f21 tdelay. Then we can write g(2)(τ = 0) more explicitly as [1,2]

g(2)(τ = 0) = 1 +
ε

2
cos(φ0 + 2π∆f21 tdelay) . (15)

We can also write a more explicit expression for ε. Let n1A be the number of photons from
source 1 which arrive at detector A, and similarly define n2A, n1B, n2B. We also let ndA and ndB
denote the unwanted photon counts, including dark counts, environment light, and counts from
unfiltered signal and pump light. Then we have

ε =
4√n1An2An1Bn2B

(n1A + n2A + ndA)(n1B + n2B + ndB)
. (16)

As shown in Fig. 2, g(2)(τ = 0) oscillates as we change the phase of the interferometer. If the
photons were still distinguishable upon measurement, we would have g(2)(τ = 0) = 1. Instead,
since the color erasure detectors render the photons indistinguishable, g(2)(τ = 0) need not be
near one.
As we see in Fig. 2, by changing the length of the optical path from the output of BS1 to

detector A, the photons can both bunch and anti-bunch when they arrive at the detectors [23].
Performing a least squares fitting to (15), we find

ε = 0.59 ± 0.01
φ0 = −0.16 ± 0.04
∆f21 = 210.1 ± 0.5GHz

. (17)
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This is consistent with our experimental parameters since the frequency difference between 1064.4
nm and 1063.6 nm corresponds to ≈ 212 GHz (with some systematic uncertainty corresponding
to drifting of the sources by up to several GHz around 212 GHz).

Fig. 2. Intensity interferometry of two lasers. The blue dots represent g(2)(τ = 0) with
different phases controlled by the delay controller. The yellow line is the fitting result, which
encodes the frequency difference between the 1064.4 nm and 1063.6 nm photons.

The frequencies of the pump lasers are carefully tuned so that the received photons are
indistinguishable to the Si APD. Although ideally we are engineering the processes f1 → f3
and f2 → f3, in reality we have f1 → f (1)3 and f2 → f (2)3 where f (1)3 ≈ f (2)3 . This is okay, so long
as f (1)3 and f (1)3 are close enough to be rendered indistinguishable due to the time resolution of
the receiving detectors. The difference f (2)3 − f (1)3 appears in the theoretical formula for g(2)(τ),
namely

g(2)(τ) = 1 +
ε

2
e−γ

2τ2 cos(φ1 + 2π |f (2)3 − f (1)3 |τ), (18)

where γ is the spectral linewidth.
Indeed, as shown in Fig. 3, g(2)(τ) oscillates as we apply different τ by post-processing. The

speed of the oscillations encodes the original frequency difference of the color-erased photons,
and this is not faster than the time resolution of the detectors since otherwise the observed
interference would vanish. Also, the interference decays as τ surpasses the coherence time of the

Fig. 3. g(2)(τ) at different τ. The blue dots are calculated from data with a fixed time
delay from the delay controller, and τ added to the timestamp of the SPD B detector in
post-processing. The yellow line is the fitting result, which encodes the original frequency
difference of the color-erased photons, as well as their coherence.
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detected photons. A least squares fitting to (18) gives

ε = 0.576 ± 0.008
γ = 0.118 ± 0.002MHz
φ1 = −0.434 ± 0.011

|f (2)3 − f (1)3 | = 1.32 ± 0.02MHz

. (19)

The fitted value of ε for g(2)(τ) is necessarily similar to the fitted value for ε for g(2)(τ = 0) in (17),
and the fitted value of the spectral linewidth γ is consistent with known experimental parameters.

4. Discussion

We have presented a new methodology for color erasure detectors which enables chromatic
interferometry of photons with small frequency differences. This more general method can also
be used for large frequency differences, as an alternative to the procedure in [1].

Multi-photon interference enables higher phase sensitivity to light sources, and better resolution
of their geometries. However, if the source or sources in question emit photons with distinct
wavelengths, then interference between their emitted photons will not occur and the desired
phases cannot be extracted. But color erasure detectors allow one to gain access to the desired
phase information by retroactively recovering interference (akin to a quantum eraser [24,25])
between the photons emitted from the sources.

In several circumstances, including stars or exoplanets [17] having very different temperatures
or differentially fluorescent structures [18,19,26,27], chromatic interferometry promises to be a
natural tool for achieving high resolution imaging. We are actively pursuing these directions.
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