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Abstract

We present an algorithm for the generalized search problem (searching k marked items among

N items) based on a continuous Hamiltonian and exploiting resonance. This resonant algorithm

has the same time complexity O(
√
N/k) as the Grover algorithm. A natural extension of the

algorithm, incorporating auxiliary “monitor” qubits, can determine k precisely, if it is unknown.

The time complexity of our counting algorithm is O(
√
N), similar to the best quantum approximate

counting algorithm, or better, given appropriate physical resources.

PACS numbers: 03.67.Ac, 03.67.Lx, 89.70.Eg
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I. INTRODUCTION

The possible advantages of quantum computers over classical computers are rooted in

the tensor product structure of quantum mechanics and the superposition principle. It

is, however, not straightforward to utilize those advantage. Shor’s algorithm for factorizing

large integer numbers [1] and Grover’s search algorithm [2] are outstanding but rare examples

of presently known cases where quantum computation gives a theoretical edge in a natural

problem [3]. Shor’s and Grover’s algorithms are quantum circuit algorithms, consisting of

a sequence of discrete operations known as quantum gates [3].

There is a different paradigm of quantum computing wherein algorithms are designed

by constructing Hamiltonians. The system is initially in an easy-to-prepare quantum state,

and the quantum computer evolves the quantum state using designed Hamiltonians. It

eventually arrives at a quantum state which encodes the solution of the problem. The

Hamiltonian approach can take advantage of intuition in quantum mechanics that physicists

have cultivated over decades of research. A Hamiltonian was proposed for quantum search

by Farhi and Gutmann in 1998 [4], and a generic quantum adiabatic algorithm was proposed

in 2000 [5]. In the adiabatic algorithm, the quantum computer follows the ground state of

a time-dependent Hamiltonian. It has been shown that every quantum circuit algorithm

can be converted into a quantum adiabatic algorithm, whose time complexity is exactly

the same [6, 7]. A quantum Hamiltonian algorithm for independent-set problems has some

advantages over other known quantum algorithms and classical algorithms [8].

As previously mentioned, a quantum algorithm is essentially a manipulation that evolves

an initial state to a target quantum state. Since resonance has been widely exploited in

many branches of physics to achieve that sort of state evolution, it is natural to ask whether

resonant evolution might be useful in this context.

Here we use resonance to construct a quantum Hamiltonian algorithm for a generalized

form of the problem addressed by Grover, namely to find, given an oracle, marked entries

within a list of items. If the list hasN entries, and there are k ≥ 1 marked items, our resonant

algorithm can find one of the marked entries in time O(
√
N/k). This time complexity is

the same as the Grover algorithm [2] and the quantum adiabatic search algorithm [9, 10].

Though there no gain in performance, there is no loss either, and the resonant approach

seems particularly simple and transparent.
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Next we introduce the concept of a monitor qubit, which is very natural in our context.

Roughly speaking, a monitor qubit keeps track of whether the resonant transition of interest

has occurred. Through use of monitor bits we can both avoid wasteful measurements on

computational bits, and also gather information on the initial state. Below we demonstrate

two different, characteristic methods to extract information using monitor qubits: predictive

dissonance and robust readout. In the search context, predictive dissonance allows us to

determine the number k of marked entries, when it is not given, with the time complexity

O(
√
N). All known quantum algorithms can only approximately determine k with a similar

time complexity [11, 12]. Robust readout is a more open-ended concept, which depends

in detail on the physical implementation of the quantum computer. Given appropriate

resources, it can speed things up further.

II. QUANTUM RESONANCE SEARCH ALGORITHM

Let us briefly recall the basic resonance phenomenon in a two-state quantum system [13].

We consider the time-dependent Hamiltonian,

Ĥ(t) =

 ∆

2
εe−iωt

εeiωt −∆

2

 . (1)

where ∆ is the energy difference between the two states and ω and ε are the frequency and

strength of the external drive, respectively. Without loss of generality, we assume that ε is

real. This Hamiltonian can describe some realistic physical systems, or arise as a rotating-

wave approximation of systems where the driving is proportional to cos(ωt). By going to

a rotating reference frame in Hilbert space, one readily derives the time evolution operator

corresponding to Eq. (1) to be

Û(t) = cos(κt)Î − i sin(κt)
[ω −∆

2κ
σ̂z +

ε

κ
σ̂x

]
, (2)

where κ =
√
ε2 + (ω −∆)2/4.

Off resonance, when |ω −∆| � |ε| , we have

Û(t) ≈ cos(
|ω −∆|

2
t)Î − i sin(

|ω −∆|
2

t)σ̂z. (3)

In this case, if the initial condition has only upper component, then the system will remain

concentrated on the upper component forever.
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On resonance, |ω −∆| � ε, the time propagator becomes

Û(t) ≈ cos(εt)Î − i sin(εt)σ̂x . (4)

If we start with only the upper component present, it will have evolved completely into a

state with only the lower component after a time τ = π/(2ε).

We now apply this framework to construct a quantum search algorithm. The basic

search problem is to find items that satisfy certain criteria in an unsorted database that

contains N items. On a quantum computer, these items are stored as n = log2N qubits

with N orthonormal basis states |1〉, |2〉, · · · , |N〉 embodying a binary encoding. To exploit

quantum resonant search, we construct the Hamiltonian

Ĥ(t) = a(t)Ĥγ + b(t)Ĥx + c(t), (5)

where Ĥγ = |γ〉〈γ| and Ĥx = |x〉〈x|. The state |γ〉 =
1√
N

∑
j |j〉 is the equal-weight

superposition of the number basis. Since |x〉 is the state that satisfies our searching criteria,

we call it the answer state. In general, there could be more than one state that satisfy the

searching criteria, and we will discuss those scenarios shortly. Ĥx embodies the oracle [9, 10]

which encodes the answer.

As the initial state and the Hamiltonian have the same permutation symmetry, we de-

compose the quantum state |ψ〉 as

|ψ〉 = φ1

√
N − 1√
N
|x⊥〉+ φ2

1√
N
|x〉 (6)

Here |x⊥〉 =
1√

N − 1

∑′
j |j〉, where the summation is over all items other than the answer

item. This converts the system into a two-state model spanned by |x〉 and |x⊥〉. The

Hamiltonian (5) now takes the reduced form

Ĥ1(t) =


a(t) + c(t)

√
1
N
a(t)

√
1
N
a(t) b(t) + c(t)

 , (7)

where we have taken the large N limit. Now we choose

a(t) = p cos(ωt) , (8)

b(t) = −∆ + p cos(ωt) , (9)

c(t) = ∆/2− p cos(ωt) . (10)
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By comparing it to the Hamiltonian in Eq.(1), we have ε = p/(2
√
N). (Here we have

invoked the rotating wave approximation. It could be avoided, as before, with a slightly

different, notationally more complicated Hamiltonian.) As our initial state is mostly in the

upper component, 〈s|x⊥〉 ≈ 1, we see that it will have rotated to the desired item |x〉 after

τ1 = π
√
N/p. If p is independent of N , the time complexity of our algorithm is O(

√
N), the

same as the Grover algorithm [2] and the quantum adiabatic search algorithm [9, 10].

Note that a(t) = 1− t

T
, b(t) = −c(t) = − t

T
corresponds to the adiabatic quantum search

Hamiltonian of Farhi and Gutmann [4].

A simple variation on the basic search problem is to allow k different valid answers.

Similarly, we can decompose the Hilbert space into two: one spanned by the k answer items

that spanned sub-space M, and the rest space spanned by the other items. As long as

k � N , we have in the large N limit

Ĥ1(t) =


a(t) + c(t)

√
k
N
a(t)

√
k
N
a(t) b(t) + c(t)

 , (11)

The critical rotation time is then τk = π
√
N/k/p.

III. MONITOR QUBITS

We define a monitor qubit by expanding the Hilbert space to include an auxiliary qubit

(i.e., the monitor qubit) and generalizing a(t), b(t), and c(t) in the form

â(t) = 1̂⊗ σ̂xp cos(ωt) , (12)

b̂(t) = 1̂⊗ σ̂xp cos(ωt)−∆1̂⊗ 1̂ , (13)

ĉ(t) =
∆

2
1̂⊗ 1̂− 1̂⊗ σ̂xp cos(ωt) . (14)

where of course the second factor acts on the monitor qubit. We again use the rotating wave

approximation and Eq.(6) to reduce the Hamiltonian. In the rotating frame, we have

Ĥrot =
(ω −∆

2

)
σ̂z ⊗ 1̂ + εσ̂x ⊗ σ̂x . (15)

On resonance |ω −∆| � ε the time evolution operator is

Û(t) ≈ cos(εt)1̂⊗ 1̂− i sin(εt)σ̂x ⊗ σ̂x , (16)
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demonstrating that the monitor qubit rotates simultaneously with the computational qubits.

If the initial state is prepared to be

|ψ(0)〉 =

(
1√
N
|x〉+

√
N − 1√
N
|x⊥〉

)
⊗ |0〉 (17)

then following the dynamics given by Eqn. (16), we find

|ψ(t)〉 = cos(εt)

(
1√
N
|x〉+

√
N − 1√
N
|x⊥〉

)
⊗ |0〉

− i sin(εt)

(
1√
N
|x⊥〉+

√
N − 1√
N
|x〉
)
⊗ |1〉. (18)

This allows us to make measurement on the monitor qubit without collapsing the compu-

tational qubits to their number states. Suppose we make a measurement at time t on the

monitor qubit. If the result is |1〉, the system collapses to
(

1√
N
|x⊥〉+

√
N−1√
N
|x〉
)
⊗ |1〉. In

the case, we measure the computational qubits and will find the answer with probability

(N − 1)/N . If the result is |0〉, the system will collapse to state
(

1√
N
|x〉+

√
N−1√
N
|x⊥〉

)
⊗ |0〉,

which is exactly the initial state |ψ(0)〉 we prepared. Therefore we can continue to run the

algorithm without the need to re-initialize the system. This could be useful, in the case k is

known, if we have small errors which take us off exact resonance and introduce rare failures.

More interesting is the possibility to address the general problem of determining k, when

it is not given. This has been known as quantum counting problem [11, 12]. We will discuss

two approaches to that problem. The first involves the concept of predictive dissonance. The

second involve the concept of robust readout. Both of those concepts are of independent

interest. They are characteristic potentialities opened up by monitor qubits, and could be

of wider utility.

IV. PREDICTIVE DISSONANCE

In Eq. (16) we must take

ε =
p
√
k

2
√
N

(19)

As a consequence, there will be times

tzero(k) = lπ
2
√
N

p
√
k
, (20)
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where l is an integer, when the monitor qubit (initially |0〉) is surely 0 and times

tone(k) = (l +
1

2
)π

2
√
N

p
√
k

(21)

when the monitor qubit is surely 1. The case k = 0 is special: then the monitor qubit is

always 0.

Now given values k1, k2, we would like to find times for which k1 predicts the monitor

qubit to be 0 and k2 predicts it to be 1, or vice versa, i.e.

t = 2l1π

√
N

p
√
k1

= (2l2 + 1)π

√
N

p
√
k2

(22)

or

t = (2l1 + 1)π

√
N

p
√
k1

= 2l2π

√
N

p
√
k2

(23)

for integers l1, l2. We will refer to this phenomenon where alternative hypotheses give con-

tradictory predictions, exactly or with high probability, as “predictive dissonance”. In our

context, it is related to the physical phenomenon of beats. Predictive dissonance is a way

to insure progress. By measuring the monitor qubit at such a time, we will rule out either

k1 or k2. For example, in the case of Eq.(22), if the monitor bit is measured to be 0, k2

can be ruled out; if the monitor bit is 1, k1 can be ruled out. And thus, if we are given

an upper bound kmax on the possible values of k, we can home in a unique k after at most

kmax invocations of predictive dissonance. Our numerical results show that the number of

invocations is proportional to kαmax with α . 0.7 (see next section).

Unfortunately it is not always possible to achieve exact predictive dissonance. For one

thing, the occurrence of square roots of k1 and k2 in generally precludes the existence of

such times. On the other hand, by careful consideration of
√
k1/k2 we can find times which

satisfy our requirements to a good approximation. At such times, we can interpret the

measurement of the monitor qubit as ruling out k1 or k2 with high probability. Of course,

for efficiency we also want to keep the times reasonably small.

We can assume that k1 < k2, First suppose that
√

k2
k1

is rational, and write it in the
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reduced form 2s a
b

with a, b odd. Then if s < 0 we can satisfy Eq. (22) with

l1 = 2−s−1b

2l2 + 1 = a

t =
2−sπ

√
N

p
√
k1

≤ π
√
N

p
(24)

while if s > 0 we can satisfy Eqn. (23) with

2l1 + 1 = b

l2 = 2s−1a

t =
2s−1π

√
N

p
√
k2

≤ π
√
N

p
(25)

In the exceptional case s = 0 we do not get exact predictive dissonance, but we can get

close, as follows. At times t = 2l2π
√
N

p
√
k2

we will surely measure 0 if k = k2 on the monitor

qubit, while if k = k1 we will measure 1 with probability

P1 ≡ sin2(l2π

√
k1
k2

) = sin2(πl2
b

a
) (26)

Now elementary number theory instructs us that there will be values of l2 < a for which

l2b ≡
a± 1

2
(mod a) (27)

For these values of l2 we will have

P1 = cos2
π

2a
≥ .75 (28)

since a ≥ 3. Thus if we measure 1 we can eliminate k2 as a candidate, while if we measure 0

repeatedly we can eliminate k1 with high confidence. For each measurement, the same time

bound we saw in Eqs. (24, 25) applies.

We now switch to a different procedure, cruder but more general, which applies when√
k2
k1

is irrational. (Number-theoretic refinements are certainly possible, but they are beyond

the scope of this paper.). To set the stage, let us re-state the essence of our problem in the

form we will address it. We want to set up predictive dissonance by finding a time, not too

large, such that on resonance measurement of the monitor qubit will surely yield 0 if k = k2

but will have large probability to yield 1 if k = k1. The first condition reads

phase2 =
2p
√
k2√
N

t = l2π

t =
l2π
√
N

2p
√
k2

(29)
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and gives us

phase1 = l2π

√
k1
k2

(30)

We want to insure that phase1 is close to π
2

modulo π, and also, in order for our time bound

to hold, that l2 ≤
√
k2. Let us consider the phase modulo π as defining a circle. If π

√
k1
k2

lies within the interval of length π
3

centered at π
2
, then simply by choosing l2 = 1 we achieve

P1 ≥ cos2
π

6
= .75 (31)

as in Eq. (28). If θ ≡ π
√

k1
k2

lies in the interval 0 < θ ≤ 1
3
π, modulo π, then steps in

units of θ will move us monotonically into the sector just described. If θ lies in the interval

2
3
π ≤ θ < π, then steps in units of θ will move us monotonically backward into that sector.

One can check that the number of steps required is always consistent with our standard time

bound. Finally, the case θ = 0, corresponding to k1 = 0, is trivial.

V. NUMERICAL SIMULATION WITH PREDICTIVE DISSONANCE

We now apply predictive dissonance to a class of problems, where we have an estimation

of the maximum number of possible solutions kmax with kmax being independent of N . For

many hard instances of NP complete problems, this is indeed the case [14]. We want to

pinpoint the number of solutions, ktrue ∈ [0, kmax]. We can choose pairs of k1 and k2 in the

range [0, kmax], and use predictive dissonance to eliminate one of them after the readout. In

general, the choice of k1 and k2 will result in
√

k2
k1

as an irrational number. Then we could

use the protocol described in the previous section to choose the proper time trun such that

the measurement of monitor qubit will surely yield 0 if k = k2 and will have high probability

p to yield 1 if k = k1. In fact, the protocol described in the previous section ensures p ≥ 0.75.

To further enhance the probability p, we take a sequential J measurements of monitor qubit,

and the readout will be a binary string of length J , i.e. R = [0, 0, 1, 0, · · · ], where 0 means no

flip of the monitor qubit and 1 denotes the flip of the monitor qubit. If there is at least one 1

in the readout R, we can eliminate k2. If the readout R has only 0, then we can eliminate k1

confidently, because the probability of such a case appearing is (1− P )J � 1. The general

time complexity of our predictive dissonance protocol can be expressed as O(kαmaxN
β). We

expect β = 0.5 because the single run time trun ∝
√
N . As will be shown below, α depends
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on the detail of choosing k1, k2 pairs. In the following, we discuss two pairing schemes: (1)

half-size pairing and (2) head-tail pairing.

At a given time, we always have a list of potential {ki} and we list them in an increasing

order: k0 < k1 < · · · < kn. For the half-size pairing scheme, we choose k1 = ki and

k2 = ki+n/2; for the head-tail pairing scheme, we choose k1 = ki and k2 = kn−i. In numerical

simulation, for each fix kmax and N , we random sample ktrue ∈ [0, kmax], and follow predictive

dissonance protocol to find ktrue. And we use ensemble averaged T to denote the average

running time to pinpoint ktrue for given N and kmax. For those two pairing schemes, we first

fix kmax = 50, and then vary the number of items N in the database. The result is shown

in Fig.1(a). We find for both pairing schemes, T ∝
√
N . This is reasonable, because each

run time is proportional to
√
N whichever pairing scheme is chosen. Therefore, ensemble

averaged run time should also be proportional to
√
N .

Next we study the relation between averaged run time T and kmax. We fix N = 20000

and vary kmax. As shown in Fig.1(b), we find that T ∝ kαmax with the power α depending

on the pairing scheme. For the half-size pairing, T ∝ k0.59max, while for head-tail pairing,

T ∝ k0.68max. We conjecture that the lower bound for α is 0.5, because we can roughly estimate

that T ∝ kmax

√
N/kmax ∝

√
kmaxN . What pairing scheme can achieve the optimal lower

bound is subject to further discussion. There are problems where the number of solutions

ktrue scale with N [8]. If ktrue ∝ Nγ, our numerical results indicate that T ∝ Nαγ+0.5.

VI. ROBUST READOUT

We now briefly describe a very different way to exploit monitor qubits to address the same

problem. It is conceptually simpler and potentially much faster, but it requires additional

resources and it depends upon assumed physical properties of qubits. Indeed, let us assume

that we have an ensemble containing several monitor qubits, each of the kind described

before, and that they are localized particles - “spins” - carrying a magnetic moment, all

within a common small region. Then the systematic oscillation of the ensemble of monitor

monitor bits will set up an oscillating magnetic field, which can be read out with great

sensitivity, for instance using a SQUID. The frequency of that oscillating field encodes the

unknown value of k, according to our preceding formulae. Use of several monitor qubits,

of course, also brings in protection against errors in any one of them, and against small

10



(a)

(b)

FIG. 1: (color online)Scaling behavior of ensemble averaged running time T as a function of N

and kmax. For a given N and kmax, we uniformly sample ktrue ∈ [0, kmax] 300 times. For each k

sample, we follow the predictive dissonance protocol to pinpoint k and record the running time T ,

and we choose repetition J = 6. The ensemble averaged time T is plotted for each N and kmax.

In subplot (a), it shows T ∝ Nβ, where β is approximately 0.5; in subplot (b), it shows T ∝ kαmax,

and α depends on the details of pairing schemes.

uncorrelated errors that affect all of them.

VII. SUMMARY

We have used resonance to construct quantum search algorithms. We have shown how to

add monitor qubits that check for resonance without disturbing the computational qubits.

One can use monitor qubits to implement predictive dissonance and robust readout, which

allow us to find the number of answers efficiently when that is unknown.
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Our algorithms illustrate the importance of physical considerations in assessing com-

putational potential. The parameter p, which governs overall speed, represents interaction

energy at a particular frequency, and could become quite large in a resonant context. Robust

readout can in principle obviate k dependence altogether. We indicated in broad terms how

robutst readout can be implemented using spin qubits. Both this and possible alternative

implementations merit further study.
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