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Modern operational environments can place significant demands on a service member’s

cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability

tomonitor cognitive burden and associated performancewithin operational environments

is critical to improving mission readiness. As a key step toward a field-ready system, we

developed a simulated marksmanship scenario with an embedded working memory task

in an immersive virtual reality environment. As participants performed the marksmanship

task, they were instructed to remember numbered targets and recall the sequence of

those targets at the end of the trial. Low and high cognitive load conditions were defined

as the recall of three- and six-digit strings, respectively. Physiological and behavioral

signals recorded included speech, heart rate, breathing rate, and body movement. These

features were input into a random forest classifier that significantly discriminated between

the low- and high-cognitive load conditions (AUC= 0.94). Behavioral features of gait were

the most informative, followed by features of speech. We also showed the capability to

predict performance on the digit recall (AUC = 0.71) and marksmanship (AUC = 0.58)

tasks. The experimental framework can be leveraged in future studies to quantify the

interaction of other types of stressors and their impact on operational cognitive and

physical performance.

Keywords: cognitive load, predicting performance, multimodal physiological features, virtual environment,

marksmanship

1. INTRODUCTION

Cognitive load is a construct that represents the amount of processing resources (to include
working memory) required by a given task (Paas et al., 2003). Individuals systematically vary in
both their processing capacity and performance on a complex task. Currently, there is a significant
gap in capability to unobtrusively monitor cognitive load in order to mitigate the deleterious
effects of fatigue, facilitate learning, and optimize task performance. This is particularly true
in modern operational environments, which place significant demands on a service member’s
cognitive resources due to high physical and mental demands, sleep restriction, and extreme
environmental conditions (Friedl, 2012; Choi et al., 2014; Proctor et al., 2017; Smith et al., 2019).

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.00222
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.00222&domain=pdf&date_stamp=2020-07-03
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hrishikesh.rao@LL.mit.edu.edu
https://orcid.org/0000-0003-2754-2419
https://doi.org/10.3389/fnhum.2020.00222
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00222/full
http://loop.frontiersin.org/people/340118/overview
http://loop.frontiersin.org/people/282031/overview
http://loop.frontiersin.org/people/996793/overview
http://loop.frontiersin.org/people/187148/overview
http://loop.frontiersin.org/people/997003/overview
http://loop.frontiersin.org/people/942953/overview
http://loop.frontiersin.org/people/819316/overview
http://loop.frontiersin.org/people/972235/overview


Rao et al. Cognitive Load During Simulated Marksmanship

Monitoring cognitive load and task-relevant performance
has been demonstrated in the laboratory using modalities
such as heart rate (McDuff et al., 2014), skin conductance,
pupil dilation (Granholm et al., 1996), neural activity (e.g.,
electroencephalography Quatieri et al., 2016), gait (Lin and Lin,
2016), speech (Lively et al., 1993; Quatieri et al., 2017), and
facial movements (Quatieri et al., 2017). One aspect of cognitive
capacity that is frequently quantified is workingmemory, a neural
system for temporary storage and management of information
required to carry out cognitive tasks (Oberauer and Kliegl,
2006). McDuff et al. (2014) found that pupil diameter increased
monotonically as the number of digits held in working memory
increased up to 9 digits.

Estimating cognitive load in many operational environments
is challenging due to factors such as movement artifacts
and ambient conditions (e.g., noise). Moreover, cognitive load
measurement often relies on subjective reports since task
difficulty in realistic conditions is often unknown. Virtual
environments can be used as a bridge between laboratory studies
of working memory toward the development of field-ready
systems (Kizony et al., 2010). Several studies have analyzed
cognitive factors of marksmanship and how training and
performance of the human might be enhanced (Zielinski et al.,
2016; Head et al., 2017; Clements et al., 2018; Rao et al., 2018;
Smith et al., 2019). Chung et al. (2005) argued that marksmanship
is a complex task that is sensitive to “perceptual-motor,
cognitive, affective, equipment, and environmental variables”
and should be studied in a way that allows for separation of
these components. Other factors involved in accuracy include
anxiety and prior mental fatigue level (Head et al., 2017). With
regard to physiological measurements, Hatfield et al. (1987)
epoched electrocardiography and electroencephalography data,
finding increased heart rate and occipital energy related to
increased arousal.

In the current study we developed a simulated marksmanship
scenario with an embedded working memory task that includes
movement, gait, and audio-visual stimulation. As participants
performed the marksmanship task, they were instructed to
remember numbered targets and recall the sequence of digits
at the end of the trial. One of the features of this study is
that we were able to carefully control the working memory

FIGURE 1 | Dismounted marksmanship in the immersive virtual environment. (A) Wide-angle view of the MIT Lincoln Laboratory Computer-Assisted Rehabilitation

Environment (CAREN) system. (B) Participant aiming at a red target during a trial.

load through the digit span task, while also tracking a variety
of performance attributes relevant to marksmanship, such as
reaction time, accuracy and error. Our goal in this study is
to utilize physiological and behavioral measurements to make
predictions of the cognitive workload and task performance.

2. METHODS

Eight healthy individuals participated in a virtual reality
marksmanship study that included a working memory protocol.
Participants were instructed to shoot at moving targets while
holding in memory single-digit numbers displayed over each
target. After the trial, participants recalled the numbered targets,
in order of appearance, using a standardized response format.
Low and high cognitive load conditions were defined as trials
in which three- or six-digits were presented. Physiological and
behavioral measures, collected during each trial, were used to
predict both the level of cognitive load experienced by the
participant, as well as performance on the digit recall task.

2.1. Study Participants
Eight healthy participants (7 male) were involved in the study.
The mean age was 28.1±7.2 (SD), ranging from 19 to 37 years.
Five out of the eight participants had prior experience with
rifles. Participants were recruited without regard for sex, as
the hypotheses were not dependent on male/female differences.
All participants provided written, informed consent prior to
participation. Study procedures were approved by the Committee
on the Use of Humans as Experimental Subjects, which acts as
the Institutional Review Board for the Massachusetts Institute
of Technology, as well as the Air Force Human Research
Protection Office.

2.2. Immersive Virtual Environment
We developed an immersive virtual environment for dismounted
marksmanship. The visual scene was projected as a seamless
spherical image inside the 24-foot diameter Computer-Assisted
Rehabilitation Environment (CAREN) system dome (Motekforce
Link BV, The Netherlands). Participants were placed in a desert
scene (Figure 1) in which they engaged targets using a simulated
M4 rifle with realistic shape, material, and weight. The scene
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FIGURE 2 | A single trial consisted of three phases: simulated marksmanship, walking, and digit recall. Participants were instructed to acquire just the red targets

while holding in memory the digits displayed on the targets. During the digit recall phase, participants recalled the digit sequence held in memory. Timings for the

marksmanship and digit recall phases varied by trial and participant, therefore, approximate windows are listed. The walking phase was always the same duration.

and targets were developed and rendered using the Unity video
game engine. Targets appeared with uniform distribution in a
semicircular shell in front of the participant ranging in azimuth
(−90◦ to 90◦) and elevation (−20◦ to 45◦) and moved in linear
trajectories. The velocity and elevation of each target were fixed,
but sampled from a uniform distribution.

2.3. Experimental Protocol
The study protocol consisted of six blocks, each of which included
24 trials. Each trial consisted of three phases, including, in order,
simulated marksmanship, walking, and digit recall (Figure 2).
Each block took approximately 30 min to complete, for a total
experiment duration of 3 hours. Setup (beginning) and debriefing
(ending) added another hour to the total experimental time.

2.3.1. Simulated Marksmanship Phase
Participants engaged with multicolored targets and were
instructed to acquire only red colored targets as quickly as
possible while maintaining a high level of accuracy. The
marksmanship task was separated into two phases. In the first
phase (Cognitive Loading Phase), every target was numbered
with a single digit. Participants were instructed to keep in
memory the digits presented on the red targets only (either 6
or 3 digits for high and low load conditions, respectively). After
the last digit was presented on a red target, the second phase
of the marksmanship task was initiated. In this second phase
(Cognitively Loaded Phase), participants again were instructed
to shoot red targets only, which in this phase were not numbered
(see Figure 2), while holding in memory the digits from the
red targets they had acquired during the first phase of the task.
Presentation of red targets in both phases of the marksmanship
task was continuous, with each target appearing on screen
immediately after the preceding target disappeared from view.

2.3.2. Walking Phase
The walking phase began as soon as the last red target was
acquired. In every trial, Participants were forced to walk at fixed
pace on treadmill-like belts for eight seconds and then returned

to a halt. In this phase, the load level is also considered constant
because all digits are still being maintained in memory.

2.3.3. Digit Recall Phase
In this phase, participants reported the number of targets
acquired and recalled the digits presented on these targets. On
each trial, participants stated the phrase “Alpha one, this is bravo
one. I just engaged N targets,” where “N” is the number of
red targets they believed they acquired. Then, they recall the
digits of the red targets, e.g., “Their numbers are 3, 7, 5.” The
acoustic speech signal during this phase was recorded using a
high-fidelity, close-talk directional microphone.

2.3.4. Varying Cognitive Load
The key perturbation in this study was the inclusion of two levels
of cognitive load. During the first part of the marksmanship task,
either three (low load) or six (high load) numbered targets are
presented. In the second part of the marksmanship task, three
blank red targets were presented.

Three other experimental parameters were also varied in
addition to the level of cognitive load. First, auditory load was
varied on a single trial basis by introducing loud, background
noise on half the trials. The noise consisted of explosive and
impulsive sounds as well as uninformative speech. In the other
half the trials, there was no background noise. Second, visual load
was varied by altering the number of non-red targets on the visual
field. On half the trials, on a single trial basis, there were 20 targets
visible (High Load) and in others, there were only 9 targets visible
(Low Load). Third, the metabolic load was varied on a block level
by running the treadmill at 1.6 m/s (High Load) or 0.8 m/s (Low
Load) during the walking phase of the trial. The speed of the
treadmill was randomized across blocks (fixed for 24 trials at a
time), while other experimental parameters were varied on a trial-
by-trial basis (within a block). The order of experimental blocks
was randomized across participants.

2.3.5. Phase Duration
The marksmanship phase lasted, on average across participants,
23.2 ± 4.5 seconds for trials with three numbered red targets
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FIGURE 3 | Selected physiological and behavioral measurements from a single trial of the experiment, including heart rate, knee flexion angle, and rifle angle. The

solid blue and narrow dashed red lines indicate the appearance and disappearance of each target, respectively. The wide dashed green lines indicate a missed shot.

Speech data (verbal digit recall) for the trial is not shown, but would occur immediately after the end of the walking phase.

and 34.8 ± 5.4 s for trials with six numbered red targets.
Note that every trial also had three unnumbered red targets
(c.f., Figure 2), which is factored into the previously stated
time averages. The walking phase was 8 seconds for every trial,
regardless of the treadmill pace. The average duration of speech,
across participants, was 4.2 ± 1.4 s for recalling three digits and
5.6 ± 1.9 s for recalling six digits. While the duration of trials in
this study seem to be longer than typically thought of as working
memory, participants reported utilizing a “rehearsal,” process,
which is known to extend the duration of working memory
through repetition (Atkinson and Shiffrin, 1971; Baddeley, 1992).

2.4. Data Acquisition
Behavioral and physiological data recorded included—

• Speech: Recorded using a Sennheiser ME 3 II Dynamic
Microphone, which is a light-weight headband microphone
(Sennheiser Electronic GmbH & Co., Wennebostel,
Wedemark, Germany)

• Heart & Breathing Rate: Measured using the Zephyr
BioHarness (Zephyr Performance Systems, Annapolis,
MD, USA)

• Body Movement & Gait: Computed from 3D motion
using reflective markers placed on anatomical landmarks on
participants’ legs (Vicon Motion Systems Ltd., U.K.)

• Rifle Movement: Computed from reflective motion capture
markers placed on the rifle (ViconMotion Systems, Ltd., U.K.)

Selected physiological and behavioral signals from a single trial
are illustrated in Figure 3. In this trial, the cognitive load level
was low, as denoted by there being three numbered targets (solid
blue lines), as opposed to six, during the cognitive loading phase.
The rifle movement is split into horizontal (azimuthal) and
vertical (elevation) movement. Note that at the appearance of the
targets, the participant raises the rifle from a lowered position to
an elevated ready position. The rifle is lowered again following
acquisition of the targets.

2.5. Signal Processing and Feature
Calculation
2.5.1. Digit Recall Score
The digits reported by the participant were transcribed
by an experimenter post-hoc by listening to the audio
recordings from the experiment. The degree of accuracy of
digit recall was quantified by computing the Levenshtein
distance between the correct digit string and the digits the
participants reported during the digit recall phase (Navarro,
2001). The digit score was then normalized by the number
of numbered red targets presented (i.e., three or six). The
smaller the recall score, the smaller the Levenshtein distance
and the better the performance. This method robustly
factors in insertions, substitutions, or deletions of the digit
sequence recalled.
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2.5.2. Speech Features
Speech features were computed from the acoustic signal recorded
during the digit recall phase and were based on principles of
timing and coordination within and across acoustic features
(Williamson et al., 2014). For each recording, frame-based
articulatory features were first extracted, followed by summary
statistics over the recall segment of each trial. A Kalman filter
was used to smoothly track the vocal tract resonant frequencies
(formants). The dynamics of the first three formants were
also included as features (Mehta et al., 2012). Measures of
the correlation structure among the vocal tract trajectories
were applied to characterize properties of articulatory timing
and coordination. Channel-delay correlation and covariance
matrices were computed using the three formant trajectories
(channels) and contained correlation coefficients between
pairwise trajectories of 15 time-delayed versions at three different
time delay spacings: 10, 30, and 70 ms. Changes over time in the
coupling strengths among the channel signals cause changes in
the eigenvalue spectra of the channel-delay matrices. The sum
of the eigenvalue log-magnitudes obtained from these matrices
quantified the complexity of the signals (Quatieri et al., 2017).

2.5.3. Heart and Breathing Rates
The Zephyr BioHarness sampled an electrocardiogram signal
at 250 Hz. Software provided by the manufacturer was used
to produce the timing of every detected heart beat (i.e., R-R
intervals). That signal was used to compute time-varying heart
rate, heart rate variability, root-mean-square of the successive
differences, and the proportion of the number of successive R-
R interval pairs that differed by more than 50 ms. Additionally,
the breathing rate was also computed using the manufacturer’s
software. These features were computed separately for the two
parts of the marksmanship phase and for the walking phase.

2.5.4. Gait, Body, and Rifle
Reflective motion capture markers were placed on the
participant’s body as well as on the simulated rifle. The
forward and backward swing phases of the legs, derived from
the movement of the markers, were used to compute gait and
gait-related features compensated for treadmill-walking (Zeni
et al., 2008). The cadence, measured in steps per minute, was
computed as the number of steps taken during the 8 s walking
phase. A stride was measured as the window between the toe-off
and heal-strike of the same leg (Kharb et al., 2011), and the
stride length was the distance the foot traveled between toe-off to
heal-strike. Each stride was broken into a swing phase (duration
that a leg was off the ground) and a stance phase (duration that
the leg was in contact with the ground). For both phases of
gait, measures of duration, leg velocity, and joint angles were
computed. Force plates, built into the treadmill, were used
to determine location and movement of the center of mass.
Gait features were only computed during the walking phase of
the trial.

Reflective markers on the rifle were used to compute features
of rifle movement. These included linear and angular velocities
and accelerations as well as integrated path distance during

movement. Rifle features were computed separately for the two
parts of the marksmanship phase.

2.6. Statistical Analyses
Our statistical methods sought to predict both the cognitive
load level and the performance on the task in the virtual
environment, utilizing the aforementioned physiological and
behavioral measurements. Performance-related variables were
captured through the software, and included: number of digits
recalled, number of misses, reaction time (time between the
target appearing and being hit), and the target error (minimal
distance between true target location and the vector pointing in
the direction of the rifle).

Binary classifiers were used to predict load level
(numberofdigits = 3) or (numberofdigits = 6) as well as to
predict other discrete performance variables. Classification was
performed in a leave-one-subject-out fashion using version 0.21.2
of Scikit-learn’s ensemble.RandomForestClassifier
(Pedregosa et al., 2011). The random forest was run with 1,000
estimators and max depth of 4 for each tree. Scikit-learns’
RobustScaler was estimated on each fold of the training data and
applied to the test participant. Estimates were generated with all
features and using a subset of features based on the modality
(gait, speech, etc.).

3. RESULTS

Physiological and behavioral features, measured non-
disruptively, were used to predict the cognitive state of
the individual (cognitive load) and an objective metric of
performance (digit recall score). These results show that both
outcomes can be predicted with a high level of accuracy on a
single trial level.

3.1. Impact of Load Level on Digit Recall
The greater the level of experimentally induced cognitive
load, the less accurate participants were in recalling the digits
(Figure 4). All participants had a significantly higher digit score
distances (i.e., more inaccuracies) in trials where they had to
recall six digits as opposed to three digits [repeated-measures
analysis of variance, F(1,6) = 7.69, p= 0.032].

3.2. Predicting Load Level
A random forest classifier was used to predict the cognitive
load level of each trial using all the features combined. Each
participant was iteratively held out as the test set during classifier
training. Results shown in Figure 5A are only for held out data
across the iterations. It is important to consider that these results
were gathered on a single trial basis, where at most tens of
seconds of data was used in creating a prediction.

3.3. Relative Contribution of Features
To delineate the contribution of the categories of features,
the classification of single trial cognitive load was performed
again, but independently with each of the four feature categories
(Figure 5B). The categories were gait, speech, heart, and
breathing rate, and movement features. Of these four categories,
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FIGURE 4 | The normalized digit score, based on a Levenshtein distance

between the correct digits and the ones reported by the participant,

represents the accuracy of the digit sequence recalled. Every participant

showed significantly lower performance (higher distance score) in digit recall

for the condition with high load level (black bars) compared to the low load

level (white bars). Data show average and standard errors of all scores within

each of the two conditions.

the gait features predicted the level of load the best (AUC =

0.947) followed by the speech features (AUC = 0.775). The
heart/breathing rate features (AUC = 0.564) and body/rifle
movement (AUC= 0.507) did not perform above chance.

Within each category of features, the top five most important
features are listed in Figure 6. The cells are colored based on
the direction of change in the feature between the high and low
load conditions. For example, the standard deviation of cadence
(colored red), was lower during high load conditions implying
slower walking when participants were cognitively loaded. The
numbers denote the relative feature importances, across all the
features, ranked by the random forest classification approach.
The higher the value, the more important the feature was at
predicting the load level. For example, the importance of cadence
(0.11), was orders of magnitude higher than the next four gait
features (0.002–0.001). In the speech feature category, the top five
features shared similar levels of importance and by extension,
many of the speech features were relatively informative. Recall
that the gait features were only computed during the walking
phase of the trial (8 seconds of data), and the speech features
were computed during the digit recall phase (5–6 s of data).
Features within the Heart and Breathing Rate and Rifle and Body
Movement categories were excluded from the figure since their
respective AUCs (Figure 5B), were much smaller than the Gait
and Speech categories.

3.4. Predicting Performance
Predicting performance at the single-trial level is an important
initial step toward predicting performance in operational
conditions. In addition to estimating the cognitive load of the
participant, the digit recall and marksmanship performance

FIGURE 5 | ROC curves show the performance of predicting the cognitive

level using physiological and behavioral features. (A) All features were used in

performing the prediction. Dashed lines show classification performance for

each participant, iteratively held-out during training and test. The average area

under the ROC curve (AUC) (solid black line) is 0.943. (B) Subsets of features

were used to predict cognitive load of the trial. Gait features performed best

(AUC = 0.950), followed by speech features (AUC = 0.856), then heart and

breathing rate related features (AUC = 0.636), and lastly, rifle and body

movement features (AUC = 0.534).

was predicted using all the features (Figure 7). Digit recall
performance was converted into a binary class problem: either
participants were 100% accurate (i.e., digit score = 0) or there was
an error (i.e., digit score > 0). Using a random forest classifier,
the prediction performance yielded an AUC = 0.711 on average.
In similar fashion, marksmanship performance as split into two
classes: 100% accuracy in hitting the red targets or less than
perfect accuracy. Note that only data within the “Cognitively
Loaded” phase of the marksmanship task were used for this
analysis. Prediction of marksmanship performance yielded an
AUC = 0.576.

4. DISCUSSION

We developed a marksmanship scenario with an embedded
working memory task in an immersive virtual environment.
Using physiological and behavioral features to predict cognitive
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FIGURE 6 | The most discriminative features within each category are listed. Colors indicate whether the feature value increased (green) or decreased (red) during the

high cognitive load condition as compared to the low cognitive load condition. The feature importance values, generated from the random forest algorithm, represent

a normalized value across all the features. The Cohen’s d value shows the effect size for that feature in discriminating the load levels.

load yielded a high level of classification accuracy (AUC= 0.943).
Of the feature categoriesmeasured, gait-related features, followed
by speech features, were the most important for accurately
predicting performance. The features were also successful at
predicting the digit recall performance (AUC= 0.711).

Walking is kinematically structured, showing relatively
invariant spatiotemporal correlation (Daffertshofer et al., 2004).
However, the cognitive-motor dual task has been shown to
impact gait (Lindenberger et al., 2000; Huang and Mercer, 2001).
In the present study, participants were required to maintain a
string of digits (3 or 6) in memory while walking. Participants
showed more stereotypical walking speeds, more time with feet
on the ground (decreased swing phase duration and increased
stance phase duration), and shorter stride lengths when holding
in memory 6-digit strings compared to when they were required
to remember 3-digit strings. In aggregate, the behavior points
to a slower and more stable gait pattern. In the comparative
analysis of feature categories, gait proved to be the most
informative. These results build on our previous work, in which
we demonstrated that acoustic recordings and video of the
face during speech could achieve above chance performance in
detecting load level on a laboratory digit span task (Quatieri et al.,
2017; Sloboda et al., 2018).

The top-five acoustic speech features reflected changes in
the dynamical complexity of the articulatory behavior between
the low and high cognitive load conditions. Relative to the
low cognitive load condition, the two cross-correlation features
indicated that the dynamical complexity of speech increased
during the digit recall phase for high-load trials. This result is
in line with prior work showing a similar increase in dynamical
complexity in a laboratory protocol studying auditory working
memory (Quatieri et al., 2015, 2017). Two additional features
related to the variation in the second formant indicated that

speech during the high cognitive load condition exhibited a
more limited formant frequency range. A reduction in the
variability of the second formant is analogous to observations
in speakers with clinically diagnosed articulatory deficits (e.g.,
dysarthria) who exhibit reduced second formant variation due
to restricted articulatory kinematics (Kim et al., 2009). Taken
together, changes in the speech features show the reduction in
neuromotor function and flexibility during high cognitive load,
just as was seen in the gait behavior.

The accuracy with which speech and gait features can be
used to estimate cognitive load suggests that such an approach
could provide valuable insight into a service member’s cognitive
state in operational settings. However, before such a goal can be
achieved, it is necessary to move from a laboratory environment
into the real world. In the present study, laboratory gold-
standards are used to record speech (a high-fidelity acoustic
microphone) and gait (3D marker-based motion capture). The
acoustic microphone is already suitable for field use, but the
marker-based motion capture system is not. In the future, we will
explore replacing themotion capture systemwith accelerometers,
which can be placed on footwear or on the legs and have
already shown promise in providing gait-related features in field
environments (Williamson et al., 2015).

In an operational condition, it would be crucial to predict
if an individual were likely to make an error due to cognitive
overburden (Friedl, 2018). These results point to the feasibility
of using physiological data to predict level of performance on an
operationally relevant task. Further, the performance is predicted
on a cognitively focused task (digit recall) as well as on a
visual-motor-focused task (marksmanship). Signals measured in
this study are collected in a non-disruptive way, maintaining the
focus on the task, and implying capability to directly apply this
approach to other marksmanship and operational paradigms.
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FIGURE 7 | Physiological and behavioral features were used to detect

decrements in either digit recall or marksmanship performance. Performance

for each participant is shown in dashed line, while the average performance

across participants is shown in solid black. (A) Performance on the digit recall

was classified into whether the recall was perfect or not. Across participants,

the AUC was 0.711. (B) Focusing specifically on the “Cognitively Loaded” part

of the marksmanship phase, classes were defined as either perfect

marksmanship acquisition of the red targets or the presence of inaccurate

shots to non-red targets. Across participants, the average detection

performance was AUC = 0.576.

Not reported in detail in this paper is the lack of
significant effects of noise, treadmill speed, and the number of
visual distractors on cognitive performance and marksmanship
accuracy. The lack of significant finding might be attributed to
separate resources for these modalities (Wickens, 2002), but is
likely to be very task dependent (Wang andDuff, 2016). Although
we chose a very distracting background noise, the levels were
moderate (<85 dB SPL) and were likely not sufficient to force
changes in attention due to rapid adaptation to the stimuli. There
are mixed results in the literature on the effect noise can have on
cognitive performance. The interference, if present, is less likely
to impact non-auditory cognitive tasks such as visual reaction
time (Molesworth et al., 2015). Since there is no auditory task
consistent with the theory of separate resource pools (Wickens,
2002). A future study might incorporate an auditory-based task,

such as monitoring a radio or providing auditory cues for the
target, which would likely impact performance to a much greater
extent as found in a study of driving (Murphy and Greene,
2017). With regard to the number of visual distractors, the most
significant findings were a greater amount of time required to
hit the target and a higher number of misses, both of which
were expected. Not explicitly tests in the current experimental
paradigm is the effect that salient colors (e.g., red targets) might
have on attention and memory, or if any gender differences exist.
All targets were presented in red and the main manipulation was
the number of red targets shown. In future studies, the interaction
of color and recall can be tested by varying the color of the target
within or across trials.

5. CONCLUSIONS

To rigorously explore the influence of cognitive load on
operational tasks, we developed a simulated marksmanship
scenario with an embedded working memory component. We
demonstrated the capability to discriminate levels of cognitive
load and predict performance on an operationally relevant
marksmanship task using passively recorded physiological and
behavioral signals. In future studies, this experimental framework
can be extended to study the interactions of other types of
cognitive, perceptual, or physical loads, and their impact on
operational performance.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by MIT Committee on the Use of Humans as
Experimental Subjects. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

HR, CS, AL, and TQ designed the experiment and laid out
experimental procedures. AR developed the virtual scenario in
Unity. AR, HW, and HE performed data collections. HR, CS,
DM, HW, and AL performed the data analysis. HR, CS, DM, LB,
KH, and TQ drafted the manuscript. All authors contributed to
manuscript revision, read and approved the submitted version.

ACKNOWLEDGMENTS

The authors thank Drs. Gregory Ciccarelli and JamesWilliamson
for their feedback on this manuscript. The authors also thank Dr.
Kenneth Pitts for early discussions on experimental design.

Frontiers in Human Neuroscience | www.frontiersin.org 8 July 2020 | Volume 14 | Article 222

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rao et al. Cognitive Load During Simulated Marksmanship

REFERENCES

Atkinson, R. C., and Shiffrin, R. M. (1971). The control of short-termmemory. Sci.

Am. 225, 82–91. doi: 10.1038/scientificamerican0871-82

Baddeley, A. (1992). Working memory. Science 255, 556–559.

doi: 10.1126/science.1736359

Choi, H.-H., Van Merriënboer, J. J., and Paas, F. (2014). Effects of the physical

environment on cognitive load and learning: toward a new model of

cognitive load. Educ. Psychol. Rev. 26, 225–244. doi: 10.1007/s10648-014-

9262-6

Chung, G. K., O’Neil, H. F., Delacruz, G. C., and Bewley, W. L. (2005). The role of

anxiety on novices’ rifle marksmanship performance. Educ. Assess. 10, 257–275.

doi: 10.1207/s15326977ea1003_6

Clements, J. M., Kopper, R., Zielinski, D. J., Rao, H. M., Sommer, M. A., Kirsch,

E., et al. (2018). “Neurophysiology of visual-motor learning during a simulated

marksmanship task in immersive virtual reality,” in 2018 IEEE Conference on

Virtual Reality and 3D User Interfaces (VR) (Reutlingen), 451–458. Available

online at: http://ieeevr.org/2018/

Daffertshofer, A., Lamoth, C. J., Meijer, O. G., and Beek, P. J. (2004). PCA in

studying coordination and variability: a tutorial. Clin. Biomech. 19, 415–428.

doi: 10.1016/j.clinbiomech.2004.01.005

Friedl, K. E. (2012). Predicting human limits-the special relationship between

physiology research and the army mission. Milit. Quantitative Physiology:

Problems and Concepts in Military Operational Medicine: Problems and

Concepts in Military Operational Medicine, pages 1–38.

Friedl, K. E. (2018). Military applications of soldier physiological

monitoring. J. Sci. Med. Sport 21, 1147–1153. doi: 10.1016/j.jsams.2018.

06.004

Granholm, E., Asarnow, R. F., Sarkin, A. J., and Dykes, K. L. (1996). Pupillary

responses index cognitive resource limitations. Psychophysiology 33, 457–461.

doi: 10.1111/j.1469-8986.1996.tb01071.x

Hatfield, B. D., Landers, D. M., and Ray, W. J. (1987). Cardiovascuiar-

CNS interactions during a self-paced, intentional attentive state:

elite marksmanship performance. Psychophysiology 24, 542–549.

doi: 10.1111/j.1469-8986.1987.tb00335.x

Head, J., Tenan, M. S., Tweedell, A. J., LaFiandra, M. E., Morelli, F., Wilson, K. M.,

et al. (2017). Prior mental fatigue impairs marksmanship decision performance.

Front. Physiol. 8:680. doi: 10.3389/fphys.2017.00680

Huang, H.-J., and Mercer, V. S. (2001). Dual-task methodology: applications

in studies of cognitive and motor performance in adults and children.

Pediatr. Phys. Ther. 13, 133–140. doi: 10.1097/00001577-200110000-

00005

Kharb, A., Saini, V., Jain, Y., and Dhiman, S. (2011). A review of gait cycle and its

parameters. IJCEM Int. J. Comput. Eng. Manage. 13, 78–83.

Kim, Y., Weismer, G., Kent, R. D., and Duffy, J. R. (2009). Statistical models of F2

slope in relation to severity of dysarthria. Folia Phoniatr. Logopaed. 61, 329–335.

doi: 10.1159/000252849

Kizony, R., Levin, M. F., Hughey, L., Perez, C., and Fung, J. (2010). Cognitive

load and dual-task performance during locomotion poststroke: a feasibility

study using a functional virtual environment. Phys. Ther. 90, 252–260.

doi: 10.2522/ptj.20090061

Lin, M.-I. B., and Lin, K.-H. (2016). Walking while performing working

memory tasks changes the prefrontal cortex hemodynamic activations and

gait kinematics. Front. Behav. Neurosci. 10:92. doi: 10.3389/fnbeh.2016.

00092

Lindenberger, U., Marsiske, M., and Baltes, P. B. (2000). Memorizing while

walking: increase in dual-task costs from young adulthood to old age. Psychol.

Aging 15:417. doi: 10.1037/0882-7974.15.3.417

Lively, S. E., Pisoni, D. B., Van Summers, W., and Bernacki, R. H. (1993).

Effects of cognitive workload on speech production: acoustic analyses and

perceptual consequences. J. Acoust. Soc. Am. 93, 2962–2973. doi: 10.1121/1.

405815

McDuff, D., Gontarek, S., and Picard, R. (2014). “Remote measurement of

cognitive stress via heart rate variability,” in 2014 36th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (Chicago,

IL), 2957–2960. Available online at: https://globalbiodefense.com/event/embc-

2014-engineering-medicine-biology/

Mehta, D. D., Rudoy, D., and Wolfe, P. J. (2012). Kalman-based autoregressive

moving average modeling and inference for formant and antiformant tracking.

J. Acoust. Soc. Am. 132, 1732–1746. doi: 10.1121/1.4739462

Molesworth, B. R., Burgess, M., and Zhou, A. (2015). The effects of noise on key

workplace skills. J. Acoust. Soc. Am. 138, 2054–2061. doi: 10.1121/1.4929741

Murphy, G., and Greene, C. M. (2017). The elephant in the road: auditory

perceptual load affects driver perception and awareness. Appl. Cogn. Psychol.

31, 258–263. doi: 10.1002/acp.3311

Navarro, G. (2001). A guided tour to approximate string matching. ACM Comput.

Surveys 33, 31–88. doi: 10.1145/375360.375365

Oberauer, K., and Kliegl, R. (2006). A formal model of capacity limits in working

memory. J. Mem. Lang. 55, 601–626. doi: 10.1016/j.jml.2006.08.009

Paas, F., Tuovinen, J. E., Tabbers, H., and Van Gerven, P. W. (2003). Cognitive

load measurement as a means to advance cognitive load theory. Educ. Psychol.

38, 63–71. doi: 10.1207/S15326985EP3801_8

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

Proctor, S. P., Heaton, K. J., Lieberman, H. R., Smith, C. D., Edens, E. N., Kelley,

A., et al. (2017). Military Cognitive Performance and Readiness Assessment

Initiative. Technical report, Army Research Inst of Environmental Medicine,

Natick, MA.

Quatieri, T. F., Williamson, J. R., Smalt, C. J., Patel, T., Perricone, J., Mehta,

D. D., et al. (2015). “Vocal biomarkers to discriminate cognitive load in a

working memory task,” in Sixteenth Annual Conference of the International

Speech Communication Association (Dresden). Available online at: http://toc.

proceedings.com/29080webtoc.pdf

Quatieri, T. F., Williamson, J. R., Smalt, C. J., Perricone, J., Helfer, B. J., Nolan,

M. A., et al. (2016). Using EEG to Discriminate Cognitive Workload and

Performance Based on Neural Activation and Connectivity. Technical report,

MIT Lincoln Laboratory, Lexington, KY, United States.

Quatieri, T. F., Williamson, J. R., Smalt, C. J., Perricone, J., Patel, T., Brattain, L.,

et al. (2017). “Multimodal biomarkers to discriminate cognitive state,” in The

Role of Technology in Clinical Neuropsychology, eds R. L. Kane and T. D. Parsons

(New York, NY: Oxford University Press), 2017:409–443.

Rao, H. M., Khanna, R., Zielinski, D. J., Lu, Y., Clements, J. M., Potter, N. D.,

et al. (2018). Sensorimotor learning during a marksmanship task in immersive

virtual reality. Front. Psychol. 9:58. doi: 10.3389/fpsyg.2018.00058

Sloboda, J., Lammert, A., Williamson, J., Smalt, C., Mehta, D. D., Curry, C. I.,

et al. (2018). “Vocal biomarkers for cognitive performance estimation in

a working memory task,” in Proceedings of Interspeech 2018 (Hyderabad),

1756–1760. Available online at: https://www.isca-speech.org/iscaweb/index.

php/conferences

Smith, C. D., Cooper, A. D., Merullo, D. J., Cohen, B. S., Heaton, K. J., Claro,

P. J., et al. (2019). Sleep restriction and cognitive load affect performance on

a simulated marksmanship task. J. Sleep Res. 28:e12637. doi: 10.1111/jsr.12637

Wang, Z., and Duff, B. R. (2016). All loads are not equal: distinct influences of

perceptual load and cognitive load on peripheral ad processing.Media Psychol.

19, 589–613. doi: 10.1080/15213269.2015.1108204

Wickens, C. D. (2002). Multiple resources and performance prediction. Theor.

Issues Ergon. Sci. 3, 159–177. doi: 10.1080/14639220210123806

Williamson, J. R., Dumas, A., Ciccarelli, G., Hess, A. R., Telfer, B. A., and Buller,

M. J. (2015). “Estimating load carriage from a body-worn accelerometer,” in

2015 IEEE 12th International Conference on Wearable and Implantable Body

Sensor Networks (BSN) (Cambridge, MA), 1–6. Available online at: http://toc.

proceedings.com/28098webtoc.pdf

Williamson, J. R., Quatieri, T. F., Helfer, B. S., Ciccarelli, G., and Mehta,

D. D. (2014). “Vocal and facial biomarkers of depression based on

motor incoordination and timing,” in Proceedings of the 4th International

Workshop on Audio/Visual Emotion Challenge (Orlando, FL: ACM), 65–72.

Available online at: http://www.tangsoo.de/documents/Publications/Valstar14-

A2Ta-TUM&UK.pdf

Zeni J. Jr, Richards, J., and Higginson, J. (2008). Two simple methods for

determining gait events during treadmill and overground walking using

kinematic data. Gait Posture 27, 710–714. doi: 10.1016/j.gaitpost.2007.07.007

Zielinski, D. J., Rao, H. M., Potter, N. D., Sommer, M. A., Appelbaum,

L. G., and Kopper, R. (2016). “Evaluating the effects of image

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 222

https://doi.org/10.1038/scientificamerican0871-82
https://doi.org/10.1126/science.1736359
https://doi.org/10.1007/s10648-014-9262-6
https://doi.org/10.1207/s15326977ea1003_6
http://ieeevr.org/2018/
https://doi.org/10.1016/j.clinbiomech.2004.01.005
https://doi.org/10.1016/j.jsams.2018.06.004
https://doi.org/10.1111/j.1469-8986.1996.tb01071.x
https://doi.org/10.1111/j.1469-8986.1987.tb00335.x
https://doi.org/10.3389/fphys.2017.00680
https://doi.org/10.1097/00001577-200110000-00005
https://doi.org/10.1159/000252849
https://doi.org/10.2522/ptj.20090061
https://doi.org/10.3389/fnbeh.2016.00092
https://doi.org/10.1037/0882-7974.15.3.417
https://doi.org/10.1121/1.405815
https://globalbiodefense.com/event/embc-2014-engineering-medicine-biology/
https://globalbiodefense.com/event/embc-2014-engineering-medicine-biology/
https://doi.org/10.1121/1.4739462
https://doi.org/10.1121/1.4929741
https://doi.org/10.1002/acp.3311
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/j.jml.2006.08.009
https://doi.org/10.1207/S15326985EP3801_8
http://toc.proceedings.com/29080webtoc.pdf
http://toc.proceedings.com/29080webtoc.pdf
https://doi.org/10.3389/fpsyg.2018.00058
https://www.isca-speech.org/iscaweb/index.php/conferences
https://www.isca-speech.org/iscaweb/index.php/conferences
https://doi.org/10.1111/jsr.12637
https://doi.org/10.1080/15213269.2015.1108204
https://doi.org/10.1080/14639220210123806
http://toc.proceedings.com/28098webtoc.pdf
http://toc.proceedings.com/28098webtoc.pdf
http://www.tangsoo.de/documents/Publications/Valstar14-A2Ta-TUM&UK.pdf
http://www.tangsoo.de/documents/Publications/Valstar14-A2Ta-TUM&UK.pdf
https://doi.org/10.1016/j.gaitpost.2007.07.0073
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rao et al. Cognitive Load During Simulated Marksmanship

persistence on dynamic target acquisition in low frame rate virtual

environments,” in 2016 IEEE Symposium On 3D User Interfaces

(3DUI) (Greenville, SC), 133–140. Available online at: http://3dui.org/

2016/

Disclaimer: DISTRIBUTION STATEMENT A. Approved for public release.

Distribution is unlimited. This material is based upon work supported by the

Department of the Army under Air Force Contract No. FA8702-15-D-0001. Any

opinions, findings, conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the Department of

the Army.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Massachusetts Institute of Technology. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 222

http://3dui.org/2016/
http://3dui.org/2016/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Predicting Cognitive Load and Operational Performance in a Simulated Marksmanship Task
	1. Introduction
	2. Methods
	2.1. Study Participants
	2.2. Immersive Virtual Environment
	2.3. Experimental Protocol
	2.3.1. Simulated Marksmanship Phase
	2.3.2. Walking Phase
	2.3.3. Digit Recall Phase
	2.3.4. Varying Cognitive Load
	2.3.5. Phase Duration

	2.4. Data Acquisition
	2.5. Signal Processing and Feature Calculation
	2.5.1. Digit Recall Score
	2.5.2. Speech Features
	2.5.3. Heart and Breathing Rates
	2.5.4. Gait, Body, and Rifle

	2.6. Statistical Analyses

	3. Results
	3.1. Impact of Load Level on Digit Recall
	3.2. Predicting Load Level
	3.3. Relative Contribution of Features
	3.4. Predicting Performance

	4. Discussion
	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


