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10 ABSTRACT 
11 Porphyry copper deposits (PCDs) hosted in subvolcanic intrusions at convergent 

12 margins are the primary world’s copper resources. However, the set of magmatic processes 

13 that lead to the generation of ore-bearing magmatic provinces remains unclear. In this paper 

14 we review the systematic of Cu evolution during arc magmatic differentiation using new and 

15 existing global compilations of whole rock geochemistry data. We trace the Cu evolution 

16 from primitive arc magmas through lower crustal plutonic to volcanic rocks. We focus on the

17 well-known tholeiitic and calc-alkaline fractionation sequences, where arc tholeiitic series 

18 represents damp primitive melts (<2 wt% H2O) evolving with iron enrichment, and calc-

19 alkaline series are wet primitive melts (>2 wt% H2O) that differentiate with iron depletion.

20 Our study shows that the Cu concentration in primitive arc melts (~80 ppm) is 

21 indistinguishable from that of primitive melts formed at mid-ocean ridges (MORBs) implying 

22 that Cu is mainly sourced from the mantle wedge in arcs with a limited contribution from the 

23 subducted oceanic lithosphere. A global compilation of plutonic rocks whole rock 

24 geochemistry (lower crustal cumulates and derivative melts) indicate no systematic 

25 difference in Cu concentrations between cumulates associated with tholeiitic or calc-alkaline 

26 series. Yet a complementary global compilation of arc volcanic whole rock geochemistry 

27 highlights the contrasting behavior of Cu in tholeiitic and calc-alkaline series during 

28 magmatic differentiation in arc. In tholeiitic series, Cu shows an incompatible and/or 

29 compatible behavior during magma differentiation influenced by the crustal thickness. In 

30 calk-alkaline series, Cu is compatible during magma differentiation independently to the 

31 crustal thickness. This relates to the timing of sulfide saturation, which is controlled by the 
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32 liquid lines of descent (LLD) and/or crustal thickness at redox conditions relevant for arc 

33 magmas.

34 We demonstrate that the initial melt H2O content in primitive arc melts controls the 

35 LLD and the volume of remaining melt mass at fluid saturation. We show that the remaining 

36 H2O-saturated melt mass positively correlates with the total mass of Cu transferred into 

37 degassing fluids. The mass of extractable Cu ranges from ~3 to ~10 Mt (i.e., large PCD) for 

38 calc-alkaline series, and ranges from ~0.3 to ~2.5 Mt for tholeiitic series. The ore-forming 

39 potential of calc-alkaline arc magmas is at least ~4 to ~10 times higher relative to tholeiitic 

40 arc magmas. Despite the compatible behavior of Cu during magmatic differentiation, we 

41 propose that a single stage model for the formation of large economic PCDs (as opposed to 

42 multi-stage model for Cu-sulfides storage and remobilization) is most applicable for the calc-

43 alkaline melts. The importance of the initial melt H2O content ultimately reflects the key role 

44 of flux melting associated with wet calc-alkaline series and high ore-forming potential, in 

45 opposition to decompression melting associated with damp tholeiitic series.

46

47 1. Introduction

48 Porphyry copper deposits (PCDs) formed in arc setting represent ~75% of the global 

49 copper resources (Sillitoe, 2010). Large economic PCDs are dominantly associated with 

50 volatile-rich and oxidized calc-alkaline sub-volcanic intrusions in continental arcs, although 

51 some important ones are also formed in oceanic island arcs (Fig. 1; Kesler et al., 1975; Titley, 

52 1975; Solomon, 1990; Richards, 2003, 2011a; Cooke et al., 2005; Sillitoe, 1997, 2010). 

53 Magmatic-hydrothermal processes directly associated with the formation of PCDs are 

54 reasonably well understood (e.g., Seedorff et al., 2005; Sillitoe, 2010; Kouzmanov and 

55 Pokrovski, 2012). In contrast, the role of precursor magmatism (and related source and 

56 crustal processes) to generate magmas able to form ore deposits remains less clear (e.g., 

57 Audétat and Simon, 2012; Wilkinson, 2013; Richards, 2015). Specifically, the importance of 

58 magmatic sulfide crystallization and saturation of a fluid phase acting as the main Cu 

59 scavengers during magmatic differentiation is unclear.

60 Copper is incompatible during magmatic differentiation in thin island arc (<20 km) 

61 dominated by tholeiitic series, whereas Cu is compatible during magmatic differentiation in 

62 thick continental arc (>30 km) dominated by calc-alkaline series (e.g., Lee et al., 2012; 
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63 Chiaradia, 2014). Crustal thickness is proposed to have a first-order control on arc magma 

64 differentiation (Miyashiro, 1974; Chiaradia, 2014) and hence the Cu evolution in arc magmas 

65 (Chiaradia, 2014; Lee and Tang, 2020). Furthermore, the different tholeiitic and calc-alkaline 

66 liquid lines of descent (LLD) control the evolution of the melt redox conditions (expressed 

67 in terms of oxygen fugacity, fO2) in the crust, which in turn impact the solubility of sulfur and 

68 Cu through sulfide immiscibility (e.g., Lee et al., 2012), potentially linked to the onset of 

69 magnetite crystallization (Jenner et al., 2010; Chiaradia, 2014). Alternative views suggest 

70 that the initial H2O in primitive magma primarily control the LLD (Sisson and Grove, 1993; 

71 Tatsumi and Susuki, 2009; Zimmer et al., 2010; Jagoutz et al., 2011; Müntener and Ulmer, 

72 2018), and high initial melt H2O contents (>4wt% H2O) combined with high fO2 in the 

73 source region are thought to play a major role for the formation of PCDs (Richards, 2003, 

74 2009, 2011a, 2015; Sun et al., 2015, 2017). As a result, endmember models for PCDs 

75 formation in arcs can be grouped in two: (1) multi-stage models envision that early 

76 magmatic Cu-sulfide saturation in the deep arc crust represent a key pre-enrichment step to 

77 the formation of PCDs in continental arc dominated by calc-alkaline series. Subsequent 

78 events within the same or later magmatic cycle remobilize the Cu from these cumulates to 

79 form PCDs in the upper crust (e.g., Lee et al., 2012; Wilkinson, 2013; Chiaradia, 2014); 

80 alternatively (2) single-stage models consider PCDs formed from metal precipitated from 

81 hydrothermal fluids that are exsolved from differentiated mantle-derived, volatile-rich and 

82 oxidized calc-alkaline magmas (e.g., Richards, 2009, 2011a, 2015; Sun et al., 2015, 2017). 

83 For both endmember models, a wide range of crucial parameters for the formation of 

84 PCDs have been proposed that include the initial metal endowment (McInnes et al., 1999; 

85 Mungall, 2002; Sun et al., 2017; Zheng et al., 2018), the melt water concentration (Richards, 

86 2011a,b; Chiaradia et al., 2012; Loucks, 2014; Chiaradia and Caricchi, 2017), the melt redox 

87 conditions (Lee et al., 2012; Richards et al., 2015; Sun et al., 2015; Lee and Tang, 2020), the 

88 melt metal concentration and/or the melt volume at the time of magmatic fluid saturation 

89 (Cline and Bodnar, 1991; Richards, 2009; Park et al., 2019; Chelle-Michou et al., 2017), the 

90 duration of the precursor magmatism (Rezeau et al., 2016; Chelle-Michou et al., 2017; 

91 Chiaradia and Caricchi, 2017; Richards, 2018) and the overriding plate thickness (i.e., 
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92 pressure of melt differentiation; Chiaradia, 2014; Matjuschkin et al., 2016; Cox et al., 2019; 

93 Lee and Tang, 2020).

94 The evolution of Cu during arc magma differentiation results from a complex 

95 interplay of processes occurring in the mantle source region and/or in the crust. Thus, it 

96 remains unclear which parameter(s) primarily control the ore-forming potential of arc 

97 magmas. This contribution aims to critically evaluate the role of source- and crustal-related 

98 magmatic processes related to the ore-forming potential, and examine their respective 

99 importance. Here, we use a global compilation of arc volcanic and plutonic (cumulates and 

100 derivative melts) whole rock geochemical analyses to systematically characterize the 

101 evolution of Cu in arc magmas during magmatic differentiation starting from primitive 

102 mantle derived arc magmas. Our global compilation aims to evaluate the role of primitive 

103 magma Cu concentration, initial water content, fO2, pressure of melt differentiation and 

104 different LLD for the formation of economic PCDs in the light of the above mentioned two 

105 endmember models. Our results emphasize the primary role of the initial melt H2O content 

106 regarding the ore-forming potential of arc magmas, whereas the initial melt Cu content is of 

107 secondary importance. We show that a single stage model can explain the formation of large 

108 economic PCDs associated with wet calc-alkaline arc series, whereas the multi-stage model 

109 is applicable form PCD formed from damp tholeiitic arc series. Ultimately, we propose that 

110 the initial melt H2O content reflect the importance of the melting regime in the mantle wedge, 

111 i.e., flux melting in contrast to decompression melting.

112

113 2. Copper concentration in primitive arc magmas: implications for the source of Cu

114 2.1 Dataset and results 
115 Previous studies reported Cu concentration in primitive arc basalts and mid-oceanic 

116 ridge basalts (MORBs) ranging from ~50 to ~100 ppm (Jenner et al., 2010; Jenner and 

117 O’Neill, 2012; Lee et al., 2012; Chiaradia, 2014; Richards, 2015). Here, we reevaluate the Cu 

118 concentration between the different types of primitive arc melts and geodynamic settings. 

119 We used the primitive arc melts compilation of Schmidt and Jagoutz (2017) with available 

120 whole rock Cu analyses (n=422) from 20 arcs including intra-oceanic, continental and back-

121 arc settings (Supplemental Material Table A1). For this study, we present Cu concentration 

122 in primitive arc melts using the same classification scheme as Schmidt and Jagoutz (2017), 
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123 with the exception of primitive depleted tholeiitic andesites which are considered 

124 fractionated melts. Here, they are classified into five types: (1) primitive calc-alkaline basalts 

125 (n=82), (2) primitive tholeiitic basalts (n=50), (3) primitive low-Si basalts (n=64), (4) 

126 primitive shoshonites (n=78), and (5) primitive high-Mg andesites (n=148) (Fig. 2; Table 

127 A1). For the sake of comparison, we also compiled whole rock Cu analyses (n=58) in 

128 primitive MORBs using the data set of Gale et al. (2013). Primitive MORBs were selected 

129 based on the same criteria used by Schmidt and Jagoutz (2017) for arc primitive melts, i.e., 

130 Mg# of 0.65-0.75, Ni concentrations of 150-500 ppm, and Cr concentrations of < 1200 ppm 

131 (Table A1).

132 Our global compilation indicates that the Cu concentration of primitive arc melts 

133 range from 35 to 120 ppm with a global average of 78 ± 31 ppm (1) for primitive arc basalts 

134 and of 42 ± 17 ppm for primitive high-Mg andesites (Fig. 2). By comparison, the Cu 

135 concentration in primitive MORBs display a similar range from 50 to 130 ppm, with a global 

136 average of 81 ± 20 ppm (Fig. 2) indistinguishable from primitive arc basalts. Among 

137 primitive arc basalts, there is no systematics correlation between the Cu concentrations, the 

138 types of primitive melt and/or the geodynamic settings. Only the high-Mg andesites are 

139 characterized by systematically lower Cu concentrations.

140

141 2.2 The source of Cu in arc magmas 
142 A magmatic origin for Cu in PCDs is widely accepted based on isotopic composition of 

143 hydrothermal and magmatic sulfides, ore-forming fluids, and the genetically related igneous 

144 intrusions (e.g., Hedenquist and Lowenstern, 1994; Rezeau et al., 2016; Zheng et al., 2018). 

145 However, there is no consensus whether Cu in arc magmas is directly derived from the 

146 mantle wedge/refertilized sub-continental lithospheric mantle (e.g., McInnes et al., 1999; 

147 Richards, 2009; Hou et al., 2017; Wang et al., 2018; Zheng et al., 2018) or dominantly 

148 inherited from the subducting oceanic lithosphere by slab-related fluid/melt (e.g., Mungall, 

149 2002; Sun et al., 2017). 

150

151 2.2.1 Mantle-derived vs. slab-related

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280



6

152 The Cu concentrations in primitive arc basalts range from 50 to 120 ppm, with no 

153 systematics regarding the types of primitive melt and/or the geodynamic settings (Fig. 2). 

154 The range of Cu concentration in primitive arc basalts can be generated after 5 to 30% of 

155 melting of a mantle source having an initial Cu concentration of 30 ppm at fO2 ranging from 

156 FMQ = 0 to 2 (Lee et al., 2012), which could be reconciled with primitive arc basalts formed 

157 by variable degree of partial melting at different pressure in the mantle wedge (Schmidt and 

158 Jagoutz, 2017). Alternatively, the range of Cu in primitive melts may represent variable input 

159 of Cu from slab-related fluid and/or melt. In this case, we would expect a positive correlation 

160 between incompatible elements and Cu content. Our global compilation lacks of such 

161 systematics as demonstrated by similar average Cu contents (and a comparable range of Cu) 

162 for the different types of primitive basalts characterized by variable involvement of slab-

163 related fluid and/or melts (Table A1; Schmidt and Jagoutz, 2017). This is consistent with the 

164 limited remobilization of chalcophile elements from subducted sulfide ore deposits during 

165 dehydration of the subducting oceanic lithosphere (Tomkins, 2010; Giacometti et al., 2015). 

166 More importantly, primitive arc basalts and MORBs are characterized by the same global 

167 average Cu concentration of ~80 ppm irrespective of the degree of subduction-related inputs 

168 (Fig. 2). Therefore, our observations are consistent with previous studies (McInnes et al., 

169 1999; Jenner et al., 2010; Lee et al., 2012; Chiaradia, 2014; Richards, 2015) and strongly 

170 suggest the predominant contribution of Cu from the mantle without necessarily requiring 

171 additional input from slab-related fluids and/or melts. 

172

173 2.2.2 Refertilization and Cu enrichment via melt-rock reaction
174 In arc setting, Cu and Os isotope studies suggest that Cu enrichment is linked to the 

175 refertilization of the sub-arc mantle through the redistribution of primary sulfides into 

176 sulfide-bearing metasomatic veins by slab-related oxidizing fluids (e.g., McInnes et al., 1999; 

177 Zheng et al., 2018). Our compilation reveals that primitive high-Mg andesites are 

178 characterized by the lowest Cu concentrations (Fig. 2), which are positively correlated with 

179 MgO (Supplemental Figure A1). Primitive high-Mg andesites has been proposed to represent 

180 lower temperature derivatives of primitive calc-alkaline basalts through melt-rock reaction 

181 (also known as refertilization) in the shallow mantle and/or arc lithosphere (Kelemen et 
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182 al.,1995; Kelemen et al., 2014; Schmidt and Jagoutz, 2017). Consequently, we suggest that 

183 the low Cu concentrations in primitive high-Mg andesites reflect Cu-sulfide fractionation, 

184 which occur during melt-rock reaction. Such mechanism has been documented in a suite of 

185 MORBs erupted at the Kane Megamullion, where Cu enrichment in the shallow mantle 

186 results from melt-peridotite reaction (Ciazela et al., 2017). Similarly, melt-rock reaction in 

187 the arc mantle region could represent an additional mechanism for local Cu enrichment in 

188 the sub arc mantle and/or arc lithosphere. We envision that subsequent remelting of these 

189 zones may account for unusually high Cu content in primitive arc basalts. 

190

191 3. Copper concentration in volcanic arc rocks

192 3.1 Dataset
193 It has long been recognized that differentiation of arc magmas dominantly follow 

194 either a tholeiitic or calc-alkaline series with minor importance of an alkaline series (e.g., 

195 Miyashiro, 1974). Global whole rock compilation suggests that the crustal thickness of the 

196 overriding plates represents a first-order control on tholeiitic and calc-alkaline 

197 differentiation series (Miyashiro, 1974; Chiaradia, 2014, 2015). Yet, tholeiitic and calc-

198 alkaline arc magmas are documented to coexist along the same arc segment from fore-arc to 

199 back-arc (e.g., Cascades, Baker et al., 1994; Mandler et al., 2014; Kamchatka, Portnyagin et 

200 al., 2007; Izu-Bonin-Mariana, Tatsumi and Susuki, 2009; Brounce et al., 2014; Aleutians, 

201 Zimmer et al., 2010). It has been proposed that the geochemical differences between 

202 tholeiitic and calc-alkaline series relate to different LLDs controlled by the initial H2O content 

203 of the primitive arc melt (Sisson and Grove 1993; Zimmer et al., 2010; Jagoutz et al., 2011; 

204 Melekhova et al., 2013; Müntener and Ulmer, 2018). It has been proposed that primitive arc 

205 magmas with high initial H2O content, that evolve along a calk-alkaline fractionation 

206 sequence are related to flux melting in the sub arc mantle (Grove et al., 2002, 2012; Cervantes 

207 and Wallace, 2003; Jagoutz et al., 2011). Flux melting occurs because the melting point of 

208 peridotite is significantly lowered due to the addition of water in the mantle wedge (e.g., 

209 Grove et al., 2012). The influx of slab-derived hydrous melts/fluids hence produces melts 

210 with high initial H2O. Alternatively, the sub arc mantle can melt due to adiabatic 

211 decompression, which produces melts with lower initial H2O content that evolve along a 

212 tholeiitic LLD (Grove et al., 2002, 2012).  
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213 Here, we produce a global compilation of whole rock analyses with available Cu of arc 

214 volcanic rocks from the georoc database (http://georoc.mpch-mainz.gwdg.de/georoc/) to 

215 evaluate the Cu evolution between tholeiitic and calc-alkaline magmatic series along 

216 individual arc segment. The discrimination between volcanic rock following a calc-alkaline 

217 (n=9,275) or tholeiitic (n=6,114) differentiation trend is based on the classical FeO/MgO 

218 versus SiO2 relationship (Supplemental Figure B1; Miyashiro, 1974). Our global compilation 

219 includes volcanic rocks from 28 different magmatic arcs for a total of 15,389 entries (Figs. 1, 

220 3, C1 and D1; Supplementary Table B1). The analyses included in the database fulfilled the 

221 following criteria: a loss of ignition (LOI) < 2 wt% (if provided), totals of 97-102 wt%, SiO2 

222 of 50-70 wt%, MgO of 0.5-10 wt% and FeO/MgO ratio < 15 to avoid any exotic melt 

223 compositions. Note that we screened and removed analyses from known mineralized 

224 porphyry district to avoid high Cu concentration influenced by ore-forming hydrothermal 

225 fluids overprint that are unrelated to the original melt Cu endowment. In the following, all 

226 the whole rock data have been recalculated on an anhydrous basis. 

227

228 3.2 Results
229 Our global compilation of volcanic rocks shows a wide range of Cu concentrations. 

230 For MgO ranging from 0.5 to 10 wt%, most of the Cu data ranges from <10 to ~400 ppm in 

231 tholeiitic series and from <10 to ~150 ppm in calc-alkaline series (Fig. 3a,d). During magma 

232 differentiation (i.e., decreasing MgO concentration), the evolution of Cu concentrations in 

233 tholeiitic and calc-alkaline series differs significantly. In tholeiitic series, the Cu 

234 concentration increases from the typical primitive arc basalts value of ~80 ppm at 10 wt% 

235 MgO, to the highest values between 3.5 and 5 wt% MgO with a maximum median Cu 

236 concentration of ~110 ppm at ~4.2 wt% MgO. This is followed by a decrease of Cu 

237 concentration down to a median concentration of ~10 ppm at 0.5 wt% MgO (Fig. 3a). FeOtot 

238 and V concentrations also exhibit the highest values between 3.5 and 5 wt% MgO (Fig. 3b,c). 

239 In calk-alkaline series, the median Cu concentration steadily decreases from the typical 

240 primitive arc magma value of ~80 ppm at 10 wt% MgO to ~10 ppm at 0.5 wt% MgO (Fig. 

241 3d). Both FeOtot and V concentration also mimics the evolution trend of Cu (Fig. 3e, f). This 

242 suggests an apparent broad correlation between Cu, FeOtot and V for both tholeiitic and calc-

243 alkaline series. Based on this correlation, the switch from incompatible to compatible 
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244 behavior of Cu at MgO ~3-5 wt% is ascribed to the late onset of Fe-oxides crystallization in 

245 tholeiitic series, whereas the compatible behavior of Cu relates to the early Fe-oxides 

246 crystallization in calc-alkaline magmas (Jenner et al., 2010; Chiaradia, 2014). In details, 

247 however, the correlation between the three elements is weak for 17 individual 

248 representative arc segments characterized by more than 300 whole rock analyses with 

249 available Cu (Fig. 4a, b; Fig. C1 and D1; Table B1). For calc-alkaline and tholeiitic series, FeOtot 

250 and V are systematically positively correlated (Fig. 4b). Experiments for tholeiitic and calc-

251 alkaline LLDs have demonstrated that the decrease of FeOtot is closely related to the onset of 

252 crystallization of Fe-Ti-oxides (spinel hercynite, ilmenite, magnetite; Villiger et al., 2004; 

253 Nandedkar et al., 2014; Ulmer et al., 2018) for which V have a high partition coefficient 

254 (Kd>>1 up to 130; Luhr and Carmichael, 1980; Latourrette et al. 1991; Canil, 1999). In 

255 contrast, the evolution of Cu is generally poorly correlated with FeOtot and V (Fig.4a), 

256 although few arcs display positive correlation (e.g., Izu-Bonin, Aleutians; Fig. C1 and D1). 

257 Thus, Fe-oxides crystallization may not necessarily have a large effect on Cu depletion. 

258 We use the Cu concentration at MgO~4 wt% (Cu4) relative to the initial average Cu 

259 concentration in primitive arc basalts of ~80 ppm to evaluate the Cu enrichment or depletion 

260 during magmatic differentiation (Fig. 4c, d). With the exception of one arc segment (Central 

261 America), calc-alkaline series show a systematic depletion of Cu during magma 

262 differentiation (Fig. 4c, d), while tholeiitic series are characterized by Cu enrichment and 

263 depletion during magmatic differentiation (Fig. 4c, d). For tholeiitic series, we observe a 

264 systematic Cu enrichment in thin arcs (<25 km), which ultimately correlates with the highest 

265 FeOtot enrichment at MgO~4 wt% (i.e., Fe4). For tholeiitic series formed in thicker arcs (>25 

266 km), the Cu depletion dominates. These observations indicate that the evolution of Cu during 

267 magma differentiation is influenced by the LLD and the pressure of magma differentiation 

268 that are further discussed below among other parameters. 

269

270 3. Copper concentration in plutonic rocks and derivative melts

271 Finally, based on the compilation of Jagoutz and Kelemen (2015) and Jagoutz and 

272 Klein (2018), we produced a compilation of whole rock Cu analyses for lower crustal 

273 cumulates and their derivative melts from the Kohistan arc in Pakistan, Talkeetna arc in 

274 Alaska, Sierra Valle Fértil–Sierra Famatina complex in Argentina, Fiordland in New Zealand 
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275 (Table C1).  A complementary whole rock compilation of Cu-bearing cumulates from Chin et 

276 al., 2018 is also included in Table C1, which consist of deep crustal cumulates from Arizona 

277 and Sierra Nevada (Western USA), Bonanza arc (British Columbia), Colombia (North 

278 Volcanic Andean Zone), Kermadec islands (South Pacific Ocean), and Pontides (NE Turkey). 

279 The entire dataset consists in 1606 whole rock major elements analyses, of which 985 

280 include Cu analyses (Table C1). 

281 Our compilation of lower crust plutons that are cumulates and frozen melt 

282 compositions (Jagoutz, 2010, Jagoutz et al., 2011) is characterized by a range of SiO2 from 40 

283 to ~76 wt%, Mg# from 0.9 to 0.2, and Cu concentrations from <10 ppm to 250 ppm (Fig. 5, 

284 Table C1). The compiled cumulates are associated with differentiated melt of calc-alkaline 

285 signature (Famatina arc, e.g., Otamendi et al., 2009; Fiordland arc, e.g., Allibone et al., 2009; 

286 Jijal complex in Kohistan arc, e.g., Jagoutz et al., 2011), tholeiitic signature (Chilas complex in 

287 Kohistan arc, e.g., Jagoutz et al., 2011), or overlapping the tholeiitic and calc-alkaline fields 

288 (Talkeetna arc, e.g., Greene et al., 2006). Most of the compiled lower crustal plutons are 

289 characterized by a “Z” shape trend in the Mg# and SiO2 space, except for the Chilas complex 

290 in Kohistan (Fig. 5a). The different patterns are related to different LLD such as the “Z” shape 

291 represents wet fractionation associated with calc-alkaline series, whereas the others 

292 represent dry fractionation linked to tholeiitic series (Jagoutz, 2010; Jagoutz et al., 2011; 

293 Müntener and Ulmer, 2018). Our global compilation of lower crustal cumulates do not show 

294 any systematics difference in whole rock Cu concentrations between cumulates associated 

295 with calc-alkaline or tholeiitic series (Fig. 5b). 

296

297 4. Discussion

298 When melt reaches sulfide or water saturation during magmatic differentiation Cu is 

299 strongly partitioned into magmatic sulfides and/or the fluid phase. Therefore, we first 

300 discuss the systematic of magmatic sulfide saturation and its role for the different evolutions 

301 of Cu concentration observed between tholeiitic and calc-alkaline magmas (Figs. 3 and 4). 

302 Subsequently, we focus on the initial melt H2O content and its role for the ore-forming 

303 potential in arc magmas.

304

305 4.1 Sulfide saturation in arc magmas
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306 Magmatic sulfide minerals are known to be highly efficient Cu scavengers, and 

307 therefore, it is generally assumed that sulfide saturation plays a crucial role in the ore-

308 forming potential of arc magmas. Indeed, magmatic sulfides are ubiquitous in mafic to felsic 

309 volcanic and plutonic rocks (e.g., Stavast et al., 2006; Lee et al., 2012; Zelenski et al., 2017; 

310 Georgatou and Chiaradia, 2019). The observed volume of magmatic sulfides in igneous rocks 

311 range from <0.1 to 0.6 vol% and directly influences the Cu budget during melt differentiation 

312 (Kiseeva and Wood, 2015; Georgatou et al., 2018; Cox et al., 2019). As copper is a highly 

313 chalcophile element (  =~250-1000; Li and Audétat, 2012), its solubility in 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢

314 silicate melt strongly depends on sulfide saturation. Experiments have demonstrated a sharp 

315 transition from sulfide (S2-) to sulfate (S6+), where sulfide (S2-) is the dominant sulfur species 

316 in hydrous silicate melts under more reducing conditions (fO2), whereas sulfate (S6+) 

317 dominates at higher redox conditions (Fig. 6a; Mavrogenes and O’Neill, 1999; O’Neill and 

318 Mavrogenes, 2002; Jugo, 2009; Jugo et al., 2010; Botcharnikov et al., 2011; Fortin et al., 2015; 

319 Matjuschkin et al., 2016). Furthermore, higher pressure of differentiation shifts the sulfide-

320 sulfate transition towards higher fO2 (Fig. 6a; Matjuschkin et al., 2016). The sulfur solubility 

321 in silicate melts strongly correlates with the sulfide-sulfate transition, such as the S solubility 

322 increases as a function of the fraction of oxidized species in the melt (Fig. 6a; Carroll and 

323 Rutherford, 1985; Jugo, 2009; Jugo et al., 2010; Botcharnikov et al., 2011; Matjuschkin et al., 

324 2016). At convergent margins, the redox conditions in primitive arc basalts and sub-arc 

325 mantle are on average higher than MORBs, but varies over several log units above the 

326 fayalite-magnetite-quartz (FMQ) buffer assemblage from FMQ ~0 to +4 (Fig. 6a; e.g., 

327 Carmichael, 1991; Lee et al., 2010, 2012; Evans et al., 2012; Kelley and Cottrell, 2012; 

328 Brounce et al., 2014; Bénard et al., 2018; Bucholz and Kelemen, 2019). Furthermore, the 

329 pressure of differentiation and the volatiles content (H2O, S) of primitive melt composition 

330 vary within and among arcs (e.g., Grove et al., 2002; Rowe et al., 2009; Zimmer et al., 2010; 

331 Wallace and Edmonds, 2011; Brounce et al., 2014; Melekhova et al., 2019). In the following, 

332 we discuss the importance of sulfide saturation in terms of possible melt evolution paths at 

333 different pressures of differentiation, LLD, redox conditions, and initial sulfur concentrations 

334 (Fig. 6a-d) that could explain the Cu evolution in tholeiitic and calc-alkaline differentiation 

335 series (Fig. 3a, d). 
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336

337 The effect of variable pressure of differentiation on sulfide saturation
338 The contrasting Cu evolution trends between tholeiitic and calc-alkaline series could be 

339 related to different pressures of differentiation, as at low pressure sulfate stability increases 

340 towards lower fO2, whereas higher pressure expands the sulfide stability field (Fig. 6a; e.g., 

341 Matjuschkin et al., 2016). Here we discuss arc melts with identical initial fO2 of FMQ ~ 1.5 

342 and sulfur concentration that differentiate at 0.2 GPa and 1 GPa (Figs. 6a, b). As sulfur is 

343 highly incompatible during fractional crystallization (e.g., Ripley and Li, 2013), the sulfur 

344 concentration increases with 1/F (F is the remaining melt mass). At 0.2 GPa, hydrous basaltic 

345 melt will reach sulfide saturation at S ~0.5 wt% (Figs. 6a; Botcharnikov et al., 2011). At 

346 higher pressure, the sulfide-sulfate transition shift towards higher fO2, and so does the S 

347 solubility curve (Matjuschkin et al., 2016). Considering the lack of available experimental 

348 data for hydrous basalt at 1 GPa, we shift the experimental sulfur solubility curve obtained 

349 at 0.2 GPa and correlate the highest S solubility with the transition of sulfate-only species 

350 curve (S6+/Stot =1) at 1 GPa (Figs. 6a). Thus, we can approximate that a hydrous basaltic melt 

351 will reach sulfide saturation at S ~0.15 wt%. Assuming the primitive melt has initially 0.12 

352 wt% S (Fig. 6a; Wallace and Edmonds, 2011; Brounce et al., 2014), the high pressure melt 

353 will reach sulfur saturation after ~20% fractionation (F=0.8) whereas the low-pressure melt 

354 will reach sulfur saturation after 75% differentiation (F=0.25) (Fig. 6b, Table D1). If pressure 

355 of differentiation is the controlling parameter, then our data would indicate that tholeiitic 

356 melts on average fractionate shallower than calc-alkaline melts. This conclusion is supported 

357 by the empirical observation that the overriding plate thickness controls the Cu and FeO 

358 enrichment in thin island arc (<20 km) relative to Cu and FeO depletion in thick continental 

359 arcs (>30 km) (Chiaradia, 2014). This first-order observation would be consistent with the 

360 increase of sulfide stability with pressure (Matjuschkin et al., 2016; Cox et al., 2019). 

361 Furthermore, our results highlight that thicker crust and hence possible higher pressure of 

362 differentiation prevents Cu enrichment during magma differentiation even for tholeiitic 

363 series (Fig. 4d). This observation supports the idea that higher pressure lower crustal melt 

364 differentiation plays an important role to trigger early sulfide saturation. Yet, calc-alkaline 

365 series are characterized by early Cu depletion independently to the crustal thickness 
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366 suggesting that additional parameters control the timing of sulfide saturation during magma 

367 differentiation in these series.

368

369 The importance of different liquid line of descent on sulfide saturation 
370 For a primitive melt that differentiates at a similar initial pressure, fO2 and S 

371 concentrations, the contrasting Cu evolution trends could be explained by a progressive 

372 change of FeO content and redox conditions controlled by the different LLDs (e.g., Lee et al., 

373 2012) due to different initial melt H2O content (e.g., Sisson and Grove, 1993; Villiger et al., 

374 2004; Nandedkar et al., 2014). Since the variations of redox conditions are sensitive to the 

375 melt Fe3+/∑Fe ratio, the timing of crystallization of Fe-oxides (i.e., Fe3+-bearing minerals) is 

376 expected to control the redox trajectories in a closed magmatic system, lowering the melt 

377 Fe3+/∑Fe ratio and hence the oxygen fugacity (e.g., Ghiorso and Carmichael, 1987; Ulmer et 

378 al., 2018). The calc-alkaline series is characterized by an early crystallization of Fe-oxides on 

379 the LLD compared to the tholeiitic that crystallize Fe-oxide late on the LLD (Sisson and Grove, 

380 1993). We test the evolution of fO2 using Rhyolite-MELTS (Gualda et al., 2012) to simulate 

381 melt crystallization in a thick crust starting from P = 0.8 GPa to 0.15 GPa and in a thin crust 

382 starting from P = 0.4 GPa to 0.15 GPa for temperatures ranging from ~1220-1350°C (liquidus 

383 varies as a function of initial melt H2O content) to ~750-800°C (Table D1). Each computation 

384 assumes melt differentiation through progressive decompression and cooling followed by 

385 cooling once the melt reaches 0.15 GPa (Table D1). We use a starting primitive melt 

386 composition of continental arc calc-alkaline basalt (Schmidt and Jagoutz, 2017) having 

387 different initial H2O content of 4 wt%, 1wt% and 0.2 wt% H2O to account for calc-alkaline 

388 and tholeiitic LLDs (e.g., Sisson and Grove 1993; Tatsumi and Susuki, 2009; Zimmer et al., 

389 2010; Melekhova et al., 2013; Table D1). 

390 The modelled melt evolution confirms that the onset of crystallization of ferric 

391 bearing minerals (magnetite) triggers the melt to evolve to lower fO2. The onset of magnetite 

392 fractionation is dependent on the melt H2O content and occurs at F~0.7 for the calc-alkaline 

393 series (4 wt% H2Oinitial) versus F~0.65-0.4 for the tholeiitic series (1 wt% and 0.2 wt% 

394 H2Oinitial). If both calc-alkaline and tholeiitic melt are S undersaturated at the time of 

395 magnetite crystallization, the melt evolves toward lower fO2 as soon as the magnetite 

396 appears on the LLD to promotes sulfide saturation, which occur at higher melt fraction for 

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728



14

397 calc-alkaline magmas compared to tholeiitic ones (Fig. 6c). For tholeiitic series with 1 wt% 

398 H2Oinitial, magnetite crystallization occurs earlier on the LLD (F~0.65) indicative of the 

399 concomitant effect of pressure. Our calculations are consistent with Jenner et al. (2010) and 

400 Chiaradia (2014) suggestion that difference in Cu depletion trends between the calc-alkaline 

401 and tholeiitic differentiation series could be linked to the timing of magnetite crystallization 

402 within the respective LLDs, which is ultimately controlled by the initial H2O content and the 

403 pressure of differentiation. This interpretation can explain the Cu enrichment and depletion 

404 observed for tholeiitic series in thin arcs (<25 km) and thick arcs (>25 km), while calc-

405 alkaline series consistently displays Cu depletion irrespective of the crustal thickness (Fig. 

406 4c, d).

407

408 The importance of variable initial redox conditions on sulfide saturation
409 The importance of the initial fO2 of the melt is illustrated by the compatible character 

410 of Cu in MORB during differentiation (Jenner and O’Neill, 2012), where the initial fO2 is FMQ 

411 < 0 and sulfide saturation occurs at low S content (Jugo, 2009; Jugo et al, 2010; Botcharnikov 

412 et al., 2011; Matjuschkin et al., 2016). In comparison to MORBs, arc-related tholeiitic series 

413 are characterized by the early incompatible and compatible character of Cu in thin and thick 

414 arcs, respectively (Figs. 3a and 4c,d). According to the experimental sulfide-sulfate transition 

415 curves at different pressures (0.2-1 GPa, Fig. 6a), the incompatible character of Cu (i.e. 

416 delayed sulfide saturation) in thin arcs could be explained for initial fO2 conditions of FMQ 

417 > ~1 for the primitive arc melt. In contrast, the compatible character of Cu (i.e. early sulfide 

418 saturation) in thick arcs could be explained for initial fO2 conditions of FMQ < ~2 for the 

419 primitive arc melt (Figs. 6a,c). Such range of FMQ~1-2 is consistent with estimates for 

420 tholeiitic and calc-alkaline arc basalts along the Aleutian arc (FMQ~+0.4-2.1; Zimmer et al., 

421 2010) and Mariana arc (FMQ~+1-1.6; Brounce et al., 2014), for primitive lower crustal 

422 ultramafic cumulates in the Talkeetna arc (FMQ~+0.4-2.3; Bucholz and Kelemen, 2019), 

423 and for sub-arc mantle xenoliths in Kamchatka arc (FMQ~ +1-1.5; Bénard et al., 2018). If 

424 the initial melt fO2 controls the different behavior of Cu in arc tholeiitic and calc-alkaline 

425 series in thin arcs, it would imply that the arc tholeiitic series differentiate at higher initial 

426 fO2 than calc-alkaline series at the same initial S concentrations (Fig. 6c). Although H2O itself 
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427 is a poor oxidant, the oxidation state of arc magmas is mainly affected by the proportion of 

428 subduction-related aqueous components added to the mantle wedge (e.g., Kelley and 

429 Cottrell, 2009), and more specifically to the chemical components associated with the slab-

430 derived fluids or melts, i.e., Fe3+, S6+, C4+ (Mungall, 2002; Tomkins and Evans, 2015; Bénard 

431 et al., 2018; Brounce et al., 2019). A positive correlation between H2O and fO2 have been 

432 shown from mid-ocean ridges to back-arc tectonic settings (Kelley and Cottrell, 2009; 

433 Zimmer et al., 2010; Brounce et al., 2014), while melt inclusions from primitive arc basalts 

434 from fore-arc to back-arc in the Oregon Cascades do not show any significant differences in 

435 fO2 between tholeiitic and calc-alkaline melts (Rowe et al., 2009). While the role of slab-

436 derived fluids or melts for the oxidation of arc magmas remains unclear, there is no evidence 

437 to assume that arc tholeiitic melts have on average higher fO2 than calc-alkaline melts. 

438 Consequently, the early sulfide saturation observed for calc-alkaline series in thin arcs 

439 should reflect other processes than a systematic difference in fO2 in primitive melts.

440

441 The importance of variable initial sulfur concentrations on sulfide saturation
442 It has been proposed that slab-derived fluids/melts appear to be efficient transfer 

443 agent for the transport of sulfur from slab to mantle wedge (Jégo and Dasgupta, 2014), which 

444 is supported by higher range of S concentrations measured in arc basalts (up to ~0.9 wt%) 

445 compared to MORB (up to ~0.2 wt%; e.g., Jugo et al., 2010; Wallace and Edmonds, 2011). In 

446 this case, fluid flux melting should be characterized by higher contribution of an external 

447 input of S to the mantle wedge via the devolatilization of the subducting oceanic crust 

448 relative to decompression melting. Accordingly, we would expect higher initial S 

449 concentration in calc-alkaline series promoting early sulfide saturation compared to the 

450 tholeiitic series at similar pressure of differentiation and initial fO2 (Fig. 6d). Positive 

451 correlations between melt H2O content and S exist in arc magmas (e.g., Johnson et al., 2009; 

452 Zimmer et al., 2010; Kelley and Cottrell, 2012), although it is not systematic (e.g., Wallace, 

453 2005). Furthermore, any apparent positive correlation from melt inclusions studies could be 

454 due to melt degassing (e.g., Wallace and Edmonds, 2011) rather than initial melt conditions. 

455 The relationship between the initial H2O and S content of primitive arc magmas remains 

456 uncertain. 
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457

458 In conclusions, this section highlights the complex interplay of different parameters 

459 that control sulfide saturation and hence the evolution of melt Cu concentration during 

460 magmatic differentiation. Based on our compilation (Fig. 3), we propose that the liquid lines 

461 of descent have a large effect on the timing of sulfide saturation in thin arcs (<25 km), 

462 whereas the pressure of differentiation becomes the main controlling factor in thicker arcs 

463 (>25 km). Finally, more chemical data specifically on the sulfur content of arc magmas and 

464 plutons in combination with experimental studies are needed to better understanding 

465 sulfide saturation in natural magmatic systems. 

466

467 4.2 The importance of initial melt H2O content in arc magmas for the ore-forming potential 
468 of magmas
469 Most of the economic PCDs are preferentially associated with calc-alkaline 

470 subvolcanic intrusions (Sillitoe, 2010). Yet, our global compilation shows that the average 

471 melt Cu concentration in calc-alkaline series is systematically lower compared to tholeiitic 

472 series at a given MgO (Fig. 3a,d). This observation questions the primary importance of melt 

473 Cu content in the ore-forming potential. In the following, we evaluate the role of the initial 

474 melt water content and the Cu endowment in magmatic fluids for tholeiitic and calc-alkaline 

475 series.

476

477 4.2.1 Modeling the liquid lines of descent (LLDs)
478 Compelling lines of evidence suggest that the geochemical differences between 

479 tholeiitic and calc-alkaline series relate to different LLDs controlled by the initial H2O content 

480 of the primitive arc melt showing that tholeiitic and calc-alkaline series are best reproduced 

481 by LLD of an H2O-poor and H2O-rich parental melt, respectively (Sisson and Grove 1993; 

482 Chaussidon and Sobolev, 1996; Villiger et al., 2004; Tatsumi and Susuki, 2009; Zimmer et al., 

483 2010; Jagoutz et al., 2011; Melekhova et al., 2013; Brounce et al., 2014; Mandler et al., 2014; 

484 Nandedkar et al., 2014; Müntener and Ulmer, 2018). We use Rhyolite-MELTS (Gualda et al., 

485 2012; Ghiorso and Gualda, 2015) to model LLDs with variable initial melt H2O content from 

486 0.2 wt% to 4 wt% representative of the spectrum of tholeiitic to calc-alkaline series 

487 emplaced at convergent margins (e.g., Sisson and Grove 1993; Tatsumi and Susuki, 2009; 
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488 Zimmer et al., 2010; Brounce et al., 2014; Melekhova et al., 2013; Mandler et al., 2014). We 

489 used an average primitive melt composition of intra-oceanic tholeiitic basalt and continental 

490 arc calc-alkaline basalt (Table D1; Schmidt and Jagoutz, 2017). Our models simulate melt 

491 differentiation in a thick crust starting from P = 0.8 GPa to 0.15 GPa and in a thin crust 

492 starting from P = 0.4 GPa to 0.15 GPa for temperatures ranging from ~1220-1350°C (liquidus 

493 varies as a function of initial melt H2O content) to ~750-800°C at FMQ +1 (Table D1). Each 

494 computation assumes melt differentiation through progressive decompression and cooling 

495 followed by cooling once the melt reaches 0.15 GPa (Table D1). The modelled LLDs 

496 reasonably reproduce the tholeiitic and calc-alkaline trends and show that the amplitude of 

497 Fe enrichment decreases as the initial H2O melt increases (Fig. 7a). Tholeiitic trends are best 

498 reproduced by LLDs resulting from the differentiation of intra-oceanic tholeiitic primitive 

499 basalt with initial 0.2 to 1.5 wt% H2O, whereas calc-alkaline trends are best reproduced by 

500 LLDs resulting from the differentiation of continental arc calc-alkaline primitive basalt with 

501 initial 2 to 4 wt% H2O (Fig. 7a). For a given initial melt H2O content, the absolute Fe 

502 enrichment depends on the initial melt composition, where LLDs resulting from the 

503 differentiation of intra-oceanic tholeiitic primitive basalt show more Fe enrichment 

504 compared to continental arc calc-alkaline primitive basalt. Our results also show that an 

505 increase of the initial pressure of differentiation slightly reduces the amplitude of Fe 

506 enrichment for damp LLDs (Fig. 7a), which is consistent with the broad tendency of having 

507 lower Fe4 at higher crustal thickness (Fig. 4c). Higher redox conditions (FMQ +2-3) 

508 significantly limit Fe enrichment and therefore obfuscate the effect of H2O on the LLDs. 

509 Important is that our modeling allows us to quantify the melt composition in respect to the 

510 remaining melt fraction (F), the melt water content and the appearance of the aqueous liquid 

511 phases (i.e., fluid saturation) for the different LLDs. The latter is based on the fluid saturation 

512 model of Ghiorso and Gualda (2015) implemented to Rhyolite-MELT, where thermodynamic 

513 properties of the fluid phase are calculated from the model of Duan and Zhang (2006). 

514 We also model the evolution of Cu concentration in the melt using the Rayleigh 

515 fractionation equation:

516  Cl = C0*(FD-1)     [1]
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517 where Cl is the concentration of Cu in the fractionated melt, C0 is the Cu concentration 

518 in the parental melt. F is the remaining melt fraction computed from Rhyolite-MELTS. While 

519 Cu is incompatible in silicate minerals (  =<0.2; Liu et al., 2014; Hsu et al., 2017), 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑚𝑒𝑙𝑡
𝐶𝑢

520 it is highly compatible in sulfides (  =~250-1000; Li and Audétat, 2012; Jenner, 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢

521 2017). The bulk-partition coefficient (D) of Cu represents an average of partition coefficients 

522 related to the volume percent of saturated magmatic sulfide and rock-forming minerals. 

523 Here, we use  =800 and  =0.1, and an average of 0.25 vol% of 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑚𝑒𝑙𝑡

𝐶𝑢

524 magmatic sulfides (Kiseeva and Wood, 2015; Georgatou et al., 2018) corresponding to a 

525 bulk-partition coefficient D of 2.1 at sulfide saturation and a D of 0.1 assuming no sulfide 

526 saturation. For tholeiitic series in thin arc (<25 km), the evolution of the Cu is characterized 

527 by an initial incompatible behavior followed by a compatible behavior related to late 

528 magmatic sulfide saturation (Figs. 3a and 4c,d). In this case, we model the incompatible 

529 behavior of Cu assuming no sulfide saturation with an initial Cu concentration of ~80 ppm 

530 in the parental melt. The switch from incompatible to compatible behavior of Cu occurs at 

531 MgO ~4 wt% (Fig. 3a). At this point, we use the melt Cu concentration at MgO ~4 wt% as the 

532 initial Cu concentration in the parental melt (i.e., C0 ranging from ~130 to 250 ppm) and we 

533 assume magmatic sulfide saturation to model the decrease of Cu concentration in tholeiitic 

534 series (Fig. 7b; Table D1). For tholeiitic series in thick arc (>25 km) and calc-alkaline series, 

535 we assume an early magmatic sulfides saturation to reproduce the steady decrease of Cu 

536 concentration (Fig. 7b; Table D1). 

537 For melt differentiation starting at P=4kbars, the computed results indicate that the 

538 magmatic fluid phase saturates at H2O=5.7-6.3 wt%, F=0.35-0.63, P=1.7-2.3 kbars and Cu 

539 ~25-50 ppm for the wet series with an initial H2O content of 2, 2.5, 3, 3.5 and 4 wt%. Damp 

540 series with an initial H2O content of 0.5, 1 and 1.5 wt% saturates magmatic fluid at H2O=5.4-

541 5.5 wt%, F=0.09-0.26, P=1.5-1.7 kbars and Cu ~15-30/~5-20 ppm (thin/thick arc model) 

542 (Figs. 7c,d; Table D1). For melt differentiation starting at P=8kbars, the computed results 

543 indicate that the magmatic fluid phase saturates at H2O=5.5-6.8 wt%, F=0.36-0.59, P=1.8-2.5 

544 kbars and Cu ~25-45 ppm for the wet series, and at H2O=5.3-5.4 wt%, F=0.11-0.18, P=1.5 

545 kbars and Cu ~15-20/~10 ppm (thin/thick arc model) for the damp series (Figs. 7c,d; Table 

546 D1). Independently to the initial pressure of melt differentiation, the wet calc-alkaline LLDs 
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547 reach fluid saturation at higher melt fraction, melt H2O content and melt Cu content 

548 compared to damp tholeiitic LLDs (Table D1). Damp melt with initial H2O content of 0.2 wt% 

549 does not reach H2O saturation, and hence it is not further considered in the next section.

550

551 4.2.2 Assessing the ore-forming potential of tholeiitic vs calk alkaline magmas
552 The Cu endowment of fluids expelled during degassing of H2O-saturated melt 

553 primarily depends on the melt H2O and Cu content together with the volume of melt 

554 presentat fluid saturation (Cline and Bodnar, 1991; Chelle-Michou et al., 2017). As the mass 

555 of extractable Cu (Mt) correlates with the volume of water-saturated melt (Chelle-Michou et 

556 al., 2017) the remaining melt mass (F) of H2O-saturated melt is a crucial parameter that 

557 determine how much total Cu could be extracted from a magmatic system and hence for the 

558 formation of economic PCDs. Because of the different initial H2O content in the primitive 

559 magma, the melt mass remaining at H2O saturation is different for calk-alkaline vs tholeiitic 

560 LLD. Our models presented above have shown that the melt mass remaining at fluid 

561 saturation for calk-alkaline LLD is ~1.5 to 7 times that of the tholeiitic LLD.

562 To illustrate this point, we use a simplified approach of Chelle-Michou et al. (2017) to 

563 quantify the mass of extractable Cu in fluids expelled during degassing of H2O-saturated melt 

564 and to estimate the relative Cu endowment in expelled fluids between wet calc-alkaline and 

565 damp tholeiitic LLD. We estimate the volume of H2O-saturated melt according to the 

566 Rhyolite-MELTS models presented above as it corresponds to the melt fraction at which an 

567 initial volume of primitive magma reached H2O saturation. Here, we use an initial volume of 

568 primitive magma of 189 km3 km-1 Myr-1 based on an average arc magma production rate for 

569 intra-oceanic arcs (Jicha and Jagoutz, 2015). Once the magma is H2O-saturated, we calculate 

570 the remaining melt fraction of H2O-saturated melt and the volume of fluids at degassing. 

571 Ultimately, the mass of Cu in fluid expelled at degassing corresponds to the volume and 

572 density of fluids and the Cu concentration in fluids at degassing. The latter varies according 

573 to the melt Cu concentration and the partition coefficient of Cu between the fluid and the 

574 melt. The melt Cu concentration is derived from our modelling presented above, while 

575 partition coefficients  in the literature range from ~15 to ~300 and strongly 𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

576 depends on the melt salinity, the presence of CO2, redox conditions, and H2S content (Zajacz 
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577 et al., 2008; Tattitch et al., 2015; Tattitch and Blundy, 2017). We use an intermediate value 

578 of  = 140 (Tattitch and Blundy, 2017). Our calculations yield a range of Cu 𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

579 concentration in fluids range from ~0.03 to ~0.1 wt% (Table D1), which correspond to a 

580 lower end estimate when compared to fluid inclusions data ranging from 0.002 to 2 wt% Cu 

581 with an average of ~0.26 wt% in PCDs (Kouzmanov and Pokrovski, 2012). Magma degassing 

582 occurs periodically during crystallization of H2O-saturated melt, however the first degassing 

583 event accounts for ~50 to 75 wt% of the total fluid expelled with fluids enriched in Cu  

584 compared to the latest stages of degassing characterized by negligible amount of fluids (<25 

585 wt%) depleted in Cu (Chelle-Michou et al., 2017). For this reason, we consider only a single 

586 degassing event, hence providing minimum estimates for the mass of extractable Cu in fluid 

587 expelled at degassing. In this simplified approach, we assume fixed parameters (percolation 

588 threshold, fluid and melt density, partition coefficient) to assess the role of the initial melt 

589 H2O content and melt Cu concentration at degassing. The reader is referred to the 

590 Supplementary Material A1 and Table D1 for a detailed description of the calculations.

591 The results indicate a positive correlation between the relative mass of extractable 

592 Cu in fluids expelled from H2O-saturated magmas and the initial melt H2O content (Fig. 8). 

593 The mass of extractable Cu ranges from 2.6 to 9.6 Mt for wet calc-alkaline series modelled 

594 with initial melt H2O between 2 and 4 wt%, whereas calculations for damp tholeiitic series 

595 modelled with initial melt H2O between 0.5 and 1.5 wt% yield ranges from 0.3 to 2.3 Mt for 

596 and from 0.2 to 1 Mt for thin and thick arc models, respectively. The corresponding volumes 

597 of H2O-saturated melt required to form PCDs >2 to ~10 Mt Cu (i.e., large to giant deposit) 

598 range from 50 to 120 km3, which correspond to reasonable estimates compared to those 

599 reported for ore-bearing intrusions (e.g., Cline and Bodnar, 1991; Chelle-Michou et al., 2017; 

600 Du and Audétat, 2020). Overall, the ore-forming potential in typical calc-alkaline magmas 

601 (initial melt H2O content of 4 wt%) is ~4-10 times higher relative to damp tholeiitic magmas 

602 (initial melt H2O content of 1.5 wt%), and up to ~20-50 times relative to the dampest 

603 tholeiitic magmas (initial melt H2O content of 0.5 wt%) (Fig. 8). If we assume the same melt 

604 Cu content of H2O-saturated melt, the ore-forming potential in typical calc-alkaline magmas 

605 is ~3 to 8 times higher relative to damp tholeiitic magmas (Table D1). Such correlation 

606 reflects the crucial importance of the remaining H2O-saturated melt mass, whereas the melt 
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607 Cu concentration is of secondary importance. Of course, higher melt Cu content at the time 

608 of fluid saturation increases the ore-forming potential of a given LLD, which can be envision 

609 with high fO2 (e.g., Richards, 2015) and/or a source enriched in Cu (e.g., Zheng et al., 2018). 

610 Ultimately, our results are consistent with Chiaradia (2020a) suggesting that the highest ore-

611 forming potential coincides with an initial H2O content of 4 wt% in the parental basaltic melt, 

612 whereas lower ore-forming potential are modelled for initial melt H2O content <2 wt% and 

613 >6 wt%. Although our modelling primarily aims to evaluate the effect of initial melt H2O 

614 content on the ore-forming potential of arc magmas, we acknowledge that additional 

615 parameters including favorable tectonics, long-lived thermal sustainability, magma 

616 mingling, and metal precipitation efficiency play a complementary and important role to 

617 modulate the size of PCDs (Tosdal and Richards, 2001; Richards, 2003, 2011a; Caricchi et al., 

618 2012; Wilkinson, 2013; Chiaradia and Caricchi, 2017; Chiaradia, 2020b).

619

620 5. Petrogenetic implications for the formation of giant PCDs

621 5.1 Models of formation for PCDs
622 In calc-alkaline series, the compatible behavior of Cu during magmatic differentiation 

623 (Fig. 3a,d) does not preclude the transfer of significant mass of Cu into the fluids expelled 

624 from H20-saturated melts to form large economic PCDs in a single stage model (Fig. 9a), 

625 where fluid saturation occurs at ~1.5-2.5 kbars with an important volume of fluid-saturated 

626 melt at fairly low Cu concentrations of ~25-50 ppm. In contrast, a single stage model for the 

627 formation of large economic PCDs associated with damp tholeiitic series is unlikely because 

628 fluid saturation occurs late with a small volume of melt remaining and low Cu concentrations 

629 (Fig. 9b). Our results are consistent with the fact that large economic PCDs are 

630 predominantly associated with subvolcanic fluid-saturated calc-alkaline intrusions 

631 emplaced at ~2 kb (Richards, 2003; Sillitoe, 2010), whereas tholeiitic series are barren in 

632 the main arc (e.g., Kesler et al., 1977) and/or associated with shallow and smaller epithermal 

633 Cu-Au deposits associated with bi-modal suites in rift-related setting (e.g., Sillitoe and 

634 Hedenquist, 2003). In the case of the successive emplacement of damp tholeiitic series 

635 followed by wet calc-alkaline series, Cu-sulfide segregated in tholeiitic crustal cumulates 

636 could represent an additional source of Cu if remelting of lower crustal cumulates occurs 

637 during a subsequent hydrous magmatic event (Fig. 9c). Of course, Cu-sulfide segregated in 
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638 lower crustal cumulates formed from hydrous melts could equally be remobilized during a 

639 subsequent hydrous magmatic event (Fig. 9c; Richards, 2009, 2011a, 2015; Lee et al., 2012; 

640 Chiaradia, 2014; Hou et al., 2015). This scenario would increase the ore-forming potential 

641 and lead to the formation of large PCDs consistent with a multi-stage model that could occur 

642 in both subduction-related and post-subduction settings. In conclusions, we suggest that 

643 both scenarios are likely to occur in accretionary orogens, however, Cu-sulfide segregation 

644 and remobilization does not appear to be a prerequisite to form economic large PCDs in 

645 subduction-related setting. 

646

647 5.2 Source vs. crustal processes
648 The importance of the melt H2O content has long been recognized since large 

649 economic PCDs are predominantly associated with subvolcanic calc-alkaline intrusions 

650 characterized by high Sr/Y and La/Yb ratios ascribed to the early crystallization of 

651 amphibole in the deep crust (± garnet at high pressure) (Richards, 2011b; Chiaradia et al., 

652 2012; Loucks, 2014). Furthermore, these ratios positively correlate with arc crustal 

653 thickness (Chiaradia, 2015; Profeta et al., 2015; Lieu and Stern, 2019), which ultimately 

654 correlates with tholeiitic and calc-alkaline differentiation series at the global scale 

655 (Miyashiro, 1974; Chiaradia, 2014). It has been proposed that the crustal thickness 

656 primarily controls the association of large PCDs, calc-alkaline magmas and thicker arc with 

657 a limited role for the composition of the mantle source (e.g., Chiaradia, 2014). Yet, at the arc 

658 scale, tholeiitic and calc-alkaline arc magmas are temporally and spatially related from fore-

659 arc to back-arc and the different LLDs are controlled by the initial H2O content of the 

660 primitive arc melt independently to the pressure of differentiation (Fig. 7a; Sisson and Grove 

661 1993; Baker et al., 1994; Villiger et al., 2004; Tatsumi and Susuki, 2009; Zimmer et al., 2010; 

662 Melekhova et al., 2013; Brounce et al., 2014; Mandler et al., 2014; Nandedkar et al., 2014; 

663 Ulmer et al., 2018). Here, we suggest that the importance of the initial melt H2O content in 

664 the ore forming potential of arc magmas reflects the primary role of flux melting in the 

665 mantle source associated with wet calc-alkaline series, in opposition to decompression 

666 melting associated with damp tholeiitic series (Fig. 9; Grove et al., 2002; Cervantes and 

667 Wallace, 2003; Jagoutz et al., 2011). The first order relationship between calc-alkaline 
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668 magmas and crustal thicknesses (Miyashiro, 1974; Chiaradia, 2014) illustrates that the 

669 crustal thickness controls the height of the mantle column and influences the relative 

670 importance of decompression melting versus flux melting (Grove et al., 2002; Jagoutz et al., 

671 2011; Karlstrom et al. 2014; Turner and Langmuir, 2015). This makes intuitively sense as a 

672 thicker crust reduces the mantle wedge thickness and hence is associated with a shorter 

673 melting column, reducing the capability of the mantle to decompress. At the arc scale, the 

674 preferential association of PCDs with the episode of crustal thickening (e.g., Cooke et al., 

675 2005) would be consistent with a shorter melting column and the dominance of flux melting 

676 regimes during internal tectonic and magmatic cycles. In conclusions, the role of flux melting 

677 at a given arc location remains of primary importance for the ore-forming potential in arc 

678 magmas and the formation of economic PCDs.

679

680 6. Conclusions

681 In this study, we reviewed the Cu concentrations in primitive arc melts, plutonic rocks 

682 and derivative melts, and volcanic rocks to discuss the role of mantle source and crustal 

683 magmatic processes to generate fertile magmatism associated with large economic PCDs. 

684 The compilation of primitive arc melt does not indicate any particular Cu endowment for a 

685 specific type of primitive arc melt and/or geodynamic setting. Our results are consistent with 

686 previous studies (Lee et al., 2012) showing an average Cu concentration in different types of 

687 primitive arc basalts similar to MORBs (~80 ppm) indicative of the predominant 

688 contribution of Cu from the mantle wedge and limited slab-related fluid/melts input. This 

689 suggests that the initial Cu endowment in the primitive arc melt is unlikely to represent a 

690 crucial prerequisite to form large economic PCDs. Our global compilation of plutonic rocks 

691 illustrates that Cu-rich arc (> 100 ppm) cumulates are associated with both calc-alkaline and 

692 tholeiitic series. In contrast, our global compilation of volcanic rocks documents 

693 systematically different Cu evolution during magma differentiation in calc-alkaline and 

694 tholeiitic series for each arc. The contrasting evolution of Cu in tholeiitic and calc-alkaline 

695 systematically correlates with FeOtot and V, which is consistent with previous studies 

696 suggesting that the different timing of magmatic sulfide saturation relates to the onset of Fe-

697 oxides crystallization on the respective LLDs (Jenner et al., 2010; Chiaradia, 2014). 

698 Additional parameters (pressure of magma differentiation, LLDs, fO2, and/or sulfur 
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699 concentration) may locally play a role and account for the large range of Cu concentration 

700 observed in the compiled data. Although the average Cu concentrations during melt 

701 differentiation is systematically higher for tholeiitic series compared to calc-alkaline series, 

702 we propose that the melt Cu concentrations have minor implications for the ore-forming 

703 potential of arc magmas. Instead, we demonstrate that the initial melt H2O content in 

704 primitive arc melts controls the LLD and the volume of remaining melt mass at fluid 

705 saturation. We showed that the melt mass remaining is a key parameter for calculating the 

706 total mass of Cu transferred into exsolving hydrothermal fluids. We propose that the single 

707 stage model for the formation of large economic PCDs is most applicable for melts from the 

708 calc-alkaline series. The importance of the initial melt H2O content ultimately reflects the key 

709 role of flux melting associated with wet calc-alkaline series and high ore-forming potential, 

710 in opposition to decompression melting associated with damp tholeiitic series.

711
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723 FIGURE CAPTION

724 Fig. 1: World map showing the distribution of arc magmatism and porphyry copper deposits. 

725 The location of calc-alkaline and tholeiitic magmatism compiled in this study is from the 

726 Georoc database (http://georoc.mpch-mainz.gwdg.de/georoc/). The location of porphyry 

727 copper deposits and the deposit size are from Singer et al. (2005). Phanerozoic felsic 

728 magmatism is after Jagoutz and Klein (2018). The location of active margins is from Hayes 

729 et al. (2018). 
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730

731 Fig. 2: Compilation of Cu concentrations in primitive arc melts and mid-oceanic ridge basalts 

732 (MORBs). (a) Whisker plot showing the Cu concentrations in primitive arc melt based on 

733 variable tectonic settings using the classification scheme of Schmidt and Jagoutz (2017). The 

734 ranges of Cu values for primitive MORBs are compiled from Gale et al. (2013). (b) Average 

735 Cu concentration and associated uncertainties (1 SD) for primitive arc basalts (blue), 

736 primitive arc high-Mg andesites (orange), and primitive MORBs (grey). (c) Histogram 

737 showing the distribution of Cu concentrations for primitive arc basalts, primitive arc high-

738 Mg andesites (HMA), and primitive MORBs. Abbreviations in (a): C for continental arc, IO for 

739 Intra-oceanic arc, and BAB for back-arc basin.

740

741 Fig. 3: Plots of Cu, FeOtot and V versus MgO for volcanic rocks of 28 arcs. (a–c) Tholeiitic 

742 rocks (n=6,114) (d-f) Calc-alkaline rocks (n=9,275). Median values for each compiled arc are 

743 also plotted at every MgO = 0.5 wt% for tholeiitic series (dark red circle) and calc-alkaline 

744 series (light blue circle) (see details in Fig. C1). Median values of Cu, FeOtot and V for every 

745 MgO = 0.5 wt% are shown for the global compilation of tholeiitic and calc-alkaline series 

746 (yellow diamond). The average Cu concentration and associated uncertainties (1 SD) for 

747 primitive arc basalts (black bar) is shown in (a) and (d). 

748

749

750 Fig. 4: Geochemical relationships between Cu, FeOtot, V and crustal thicknesses for 17 

751 volcanic arcs with representative whole rock geochemical data set (n>300). (a) Cu versus  

752 FeOtot. (b) V versus  FeOtot. (c) Cu4 versus Fe4, where Cu4 and Fe4 correspond to the average 

753 of median values and associated uncertainties (1 SD) of Cu and Fe between MgO = 3 and MgO 

754 = 5 wt% (see Table B1). Circles and squares represent thin (<25 km) and thick arc (>25 km). 

755 (d) Cu4 versus crustal thickness. References for crustal thicknesses and associated 

756 uncertainties (1 SD) are available in Table B1. The average Cu concentration and associated 

757 uncertainties (1 SD) for primitive arc basalts (black bar) is shown in (c) and (d). 

758

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400



26

759 Fig. 5: (a) Plots of Mg# (molar Mg/(Mg+Fe)) versus SiO2 for compiled whole-rock 

760 compositions of plutonic rocks for four crustal sections (Famatina, Fjordland, Kohistan and 

761 Talkeetna; Jagoutz and Kelemen, 2015; Jagoutz and Klein, 2018 and references therein) 

762 together with other cumulates xenoliths from the Bonanza arc, Sierra Nevada, Arizona, 

763 Eastern Pontides and Kermadec (Chin et al., 2018 and references therein). Red dots are used 

764 for the Chilas complex in Kohistan arc as it represents a damp tholeiitic fractionation, 

765 whereas dots with different shades of blue represent plutonic rocks and cumulates xenoliths 

766 associated with wet calc-alkaline fractionation (Jagoutz et al., 2011; Jagoutz and Klein, 2018). 

767 (b) Histogram showing the density of Cu concentrations for the four crustal sections and 

768 other cumulates xenoliths. See discussion for details and the full data set and references in 

769 Table C1.

770

771 Fig. 6: 
772 Sulfur speciation in melt and sulfur solubility as a function of oxygen fugacity, expressed log 

773 units relative to the fayalite-magnatite-quartz buffer (FMQ). (a) The different black curves 

774 illustrates the changes in S6+/Stot in hydrous silicate melts with pressure from Jugo et al., 

775 (2010), Botcharnikov et al., (2011) and Matjuschkin et al. (2016). The brown line represents 

776 the sulfur solubility curve at sulfide and sulfate saturation at 0.2 GPa after Botcharnikov et 

777 al. (2011), whereas the brown dotted line represents an hypothetical similar sulfur solubility 

778 curve at higher pressure of 1 GPa. The upper inset indicates the redox ranges for mid-ocean 

779 ridge basalt (MORB), sub-arc mantle and arc basalts from Ballhaus (1993), Carmichael 

780 (1991), Parkinson and Arculus (1999), Arai and Ishimaru (2008), Wallace and Edmons 

781 (2011), Evans et al., (2012) and Bénard et al., (2018). We report a range of sulfur 

782 concentrations (orange whisker plot with a median values of 0.12 wt%) measured in olivine-

783 hosted melt inclusions for arc-related basalts and basalt-andesites compiled from the Georoc 

784 database (n=456). (b-e) Sulfur solubility curves simplified from Figure 6a to illustrate the 

785 effect of different parameters on sulfide saturation, including (b) variable pressure of 

786 differentiation, (c) different liquid line of descent, (d) variable initial redox conditions, and 

787 (e) variable initial sulfur content [S]i. In (b) and (c), the values of F and the timing of 
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788 magnetite is quantified in Table D1. The different scenarios are also discussed in details in 

789 the section 4.1 of the manuscript.

790

791 Fig. 7: Computed melt composition, melt Cu concentration, melt H2O content, melt fraction 

792 (F), during magmatic differentiation for wet (2 to 4 wt% H2O - blue) and damp (0.2 to 1.5 

793 wt% H2O - red) at FMQ =1 for variable starting pressure of differentiation (i.e., 8-1.5 kbars 

794 (dotted lines) and 4-1.5 kbars (plain lines)) using Rhyolite-MELTS (Gualda et al., 2012). (a) 

795 Computed melt evolution of FeOtot versus MgO. For damp LLDs, the highest and lowest Fe 

796 enrichment at MgO ~4-5 wt% corresponds to initial H2O of 0.2 and 1.5 wt%, respectively. 

797 The black line corresponds to modelled LLD with initial H2O of 1 wt% at FMQ =1 from 

798 Zimmer et al. (2010), showing the effect of the initial primitive melt composition for the Fe 

799 enrichment. Shaded dots are single data and median data per arc from our global compilation 

800 of tholeiitic and calc-alkaline volcanic rocks in Figure 3b,e. (b) Evolution of the Cu 

801 concentration versus MgO in wet, damp and dry melt modelled using Rayleigh fractionation 

802 assuming 0.25 vol.% sulfide (  =800) and 99.75 vol.% silicate (  =0.1). 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒/𝑚𝑒𝑙𝑡

𝐶𝑢

803 Shaded dots are single data and median data per arc from our global compilation of tholeiitic 

804 and calc-alkaline volcanic rocks in Figure 3a,d. The steady depletion assumes early sulfide 

805 saturation to simulate the trends observed in all calc-alkaline series and some tholeiitic 

806 series in thick arcs (>25 km). In contrast, the early enrichment in Cu followed by a sharp 

807 depletion simulates late sulfide saturation at MgO ~4 wt% to reproduce the evolution of Cu 

808 concentration displayed by tholeiitic series in thin arcs (<25 km). (c, d) Rhyolite-MELTS 

809 computed melt H2O content versus the remaining melt mass (F) and pressure (P). See text 

810 for detailed discussion and Table D1 for full data sets.

811

812 Fig. 8: Relationship between the initial melt H2O content and the ore-forming potential for 

813 the different liquid lines of descents modelled in Figure 7. The ore-forming potential is 

814 expressed as the relative Cu endowment in fluid expelled at degassing of a H2O-saturated 

815 magma normalized to damp tholeiitic melts modelled with an initial H2O content of 0.5 wt% 

816 (circles) and 1.5 wt% (squares) according to the variable pressure of differentiation from 4 

817 to 1.5 kbars (4 kb – filled symbol) from 8 to 1.5 kbars (8 kb – empty symbol). The different 
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818 colors reflect melt Cu content at H2O saturation in tholeiitic series assuming late sulfide 

819 saturation in thin arc (grey) and early sulfide saturation in thick arc (yellow). Details of the 

820 calculation is provided in Table D1 and Supplementary Material A1. See text for discussion.

821

822 Fig. 9: Conceptual cartoon of the single-stage and multi-stage models for the formation of 

823 porphyry Cu deposits (PCDs). (a) The single stage model assumes the formation of large 

824 economic PCDs associated with the generation of wet calc-alkaline melts, where flux melting 

825 is predominant in the main arc. (b) The single stage model assumes the formation of barren 

826 upper crustal intrusions associated with the generation of damp tholeiitic melts, where 

827 decompression melting is predominant in the main arc. (c) The multi-stage model assumes 

828 the remobilization of Cu-sulfide sequestered in crustal cumulates during a later hydrous and 

829 oxidized magmatic event in the main arc, which may result in the formation of large PCDs.

830

831 Fig. A1: Plots of Cu versus MgO for primitive arc basalts and primitive high-Mg Andesites 

832 using the classification scheme of Schmidt and Jagoutz (2017).

833

834 Fig. B1: Classification of tholeiitic and calc-alkaline volcanic rocks (n=15,389) based on the 

835 FeO/MgO versus SiO2 after Miyashiro (1974).

836

837 Fig. C1: Plots of Cu, FeOtot and V versus MgO for calc-alkaline and tholeiitic volcanic rocks for 

838 each compiled arc. Median Cu, FeOtot and V values for each arc are plotted at every MgO = 0.5 

839 wt%.

840

841 Fig. D1: Plots of Cu and V versus FeOtot for calc-alkaline and tholeiitic volcanic rocks for each 

842 compiled arc.
843 
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HIGHLIGHTS

 Copper (Cu) concentration in primitive arc basalts mainly derived from mantle wedge

 Different evolution of melt Cu concentration in calc-alkaline and tholeiitic magmas

 Large porphyry copper deposits mostly controlled by initial H2O melt content in arc 

magmas

 Flux melting in the mantle wedge plays a key role for the ore-forming potential in arc 

settings.
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9

10 ABSTRACT 
11 Porphyry copper deposits (PCDs) hosted in subvolcanic intrusions at convergent 

12 margins are the primary world’s copper resources. However, the set of magmatic processes 

13 that lead to the generation of ore-bearing magmatic provinces remains unclear. In this paper 

14 we review the systematic of Cu evolution during arc magmatic differentiation using new and 

15 existing global compilations of whole rock geochemistry data. We trace the Cu evolution 

16 from primitive arc magmas through lower crustal plutonic to volcanic rocks. We focus on the

17 well-known tholeiitic and calc-alkaline fractionation sequences, where arc tholeiitic series 

18 represents damp primitive melts (<2 wt% H2O) evolving with iron enrichment, and calc-

19 alkaline series are wet primitive melts (>2 wt% H2O) that differentiate with iron depletion.

20 Our study shows that the Cu concentration in primitive arc melts (~80 ppm) is 

21 indistinguishable from that of primitive melts formed at mid-ocean ridges (MORBs) implying 

22 that Cu is mainly sourced from the mantle wedge in arcs with a limited contribution from the 

23 subducted oceanic lithosphere. A global compilation of plutonic rocks whole rock 

24 geochemistry (lower crustal cumulates and derivative melts) indicate no systematic 

25 difference in Cu concentrations between cumulates associated with tholeiitic or calc-alkaline 

26 series. Yet a complementary global compilation of arc volcanic whole rock geochemistry 

27 highlights the contrasting behavior of Cu in tholeiitic and calc-alkaline series during 

28 magmatic differentiation in arc. In tholeiitic series, Cu shows an incompatible and/or 

29 compatible behavior during magma differentiation influenced by the crustal thickness. In 

30 calk-alkaline series, Cu is compatible during magma differentiation independently to the 

31 crustal thickness. This relates to the timing of sulfide saturation, which is controlled by the 
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32 liquid lines of descent (LLD) and/or crustal thickness at redox conditions relevant for arc 

33 magmas.

34 We demonstrate that the initial melt H2O content in primitive arc melts controls the 

35 LLD and the volume of remaining melt mass at fluid saturation. We show that the remaining 

36 H2O-saturated melt mass positively correlates with the total mass of Cu transferred into 

37 degassing fluids. The mass of extractable Cu ranges from ~3 to ~10 Mt (i.e., large PCD) for 

38 calc-alkaline series, and ranges from ~0.3 to ~2.5 Mt for tholeiitic series. The ore-forming 

39 potential of calc-alkaline arc magmas is at least ~4 to ~10 times higher relative to tholeiitic 

40 arc magmas. Despite the compatible behavior of Cu during magmatic differentiation, we 

41 propose that a single stage model for the formation of large economic PCDs (as opposed to 

42 multi-stage model for Cu-sulfides storage and remobilization) is most applicable for the calc-

43 alkaline melts. The importance of the initial melt H2O content ultimately reflects the key role 

44 of flux melting associated with wet calc-alkaline series and high ore-forming potential, in 

45 opposition to decompression melting associated with damp tholeiitic series.

46

47 1. Introduction

48 Porphyry copper deposits (PCDs) formed in arc setting represent ~75% of the global 

49 copper resources (Sillitoe, 2010). Large economic PCDs are dominantly associated with 

50 volatile-rich and oxidized calc-alkaline sub-volcanic intrusions in continental arcs, although 

51 some important ones are also formed in oceanic island arcs (Fig. 1; Kesler et al., 1975; Titley, 

52 1975; Solomon, 1990; Richards, 2003, 2011a; Cooke et al., 2005; Sillitoe, 1997, 2010). 

53 Magmatic-hydrothermal processes directly associated with the formation of PCDs are 

54 reasonably well understood (e.g., Seedorff et al., 2005; Sillitoe, 2010; Kouzmanov and 

55 Pokrovski, 2012). In contrast, the role of precursor magmatism (and related source and 

56 crustal processes) to generate magmas able to form ore deposits remains less clear (e.g., 

57 Audétat and Simon, 2012; Wilkinson, 2013; Richards, 2015). Specifically, the importance of 

58 magmatic sulfide crystallization and saturation of a fluid phase acting as the main Cu 

59 scavengers during magmatic differentiation is unclear.

60 Copper is incompatible during magmatic differentiation in thin island arc (<20 km) 

61 dominated by tholeiitic series, whereas Cu is compatible during magmatic differentiation in 

62 thick continental arc (>30 km) dominated by calc-alkaline series (e.g., Lee et al., 2012; 
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63 Chiaradia, 2014). Crustal thickness is proposed to have a first-order control on arc magma 

64 differentiation (Miyashiro, 1974; Chiaradia, 2014) and hence the Cu evolution in arc magmas 

65 (Chiaradia, 2014; Lee and Tang, 2020). Furthermore, the different tholeiitic and calc-alkaline 

66 liquid lines of descent (LLD) control the evolution of the melt redox conditions (expressed 

67 in terms of oxygen fugacity, fO2) in the crust, which in turn impact the solubility of sulfur and 

68 Cu through sulfide immiscibility (e.g., Lee et al., 2012), potentially linked to the onset of 

69 magnetite crystallization (Jenner et al., 2010; Chiaradia, 2014). Alternative views suggest 

70 that the initial H2O in primitive magma primarily control the LLD (Sisson and Grove, 1993; 

71 Tatsumi and Susuki, 2009; Zimmer et al., 2010; Jagoutz et al., 2011; Müntener and Ulmer, 

72 2018), and high initial melt H2O contents (>4wt% H2O) combined with high fO2 in the 

73 source region are thought to play a major role for the formation of PCDs (Richards, 2003, 

74 2009, 2011a, 2015; Sun et al., 2015, 2017). As a result, endmember models for PCDs 

75 formation in arcs can be grouped in two: (1) multi-stage models envision that early 

76 magmatic Cu-sulfide saturation in the deep arc crust represent a key pre-enrichment step to 

77 the formation of PCDs in continental arc dominated by calc-alkaline series. Subsequent 

78 events within the same or later magmatic cycle remobilize the Cu from these cumulates to 

79 form PCDs in the upper crust (e.g., Lee et al., 2012; Wilkinson, 2013; Chiaradia, 2014); 

80 alternatively (2) single-stage models consider PCDs formed from metal precipitated from 

81 hydrothermal fluids that are exsolved from differentiated mantle-derived, volatile-rich and 

82 oxidized calc-alkaline magmas (e.g., Richards, 2009, 2011a, 2015; Sun et al., 2015, 2017). 

83 For both endmember models, a wide range of crucial parameters for the formation of 

84 PCDs have been proposed that include the initial metal endowment (McInnes et al., 1999; 

85 Mungall, 2002; Sun et al., 2017; Zheng et al., 2018), the melt water concentration (Richards, 

86 2011a,b; Chiaradia et al., 2012; Loucks, 2014; Chiaradia and Caricchi, 2017), the melt redox 

87 conditions (Lee et al., 2012; Richards et al., 2015; Sun et al., 2015; Lee and Tang, 2020), the 

88 melt metal concentration and/or the melt volume at the time of magmatic fluid saturation 

89 (Cline and Bodnar, 1991; Richards, 2009; Park et al., 2019; Chelle-Michou et al., 2017), the 

90 duration of the precursor magmatism (Rezeau et al., 2016; Chelle-Michou et al., 2017; 

91 Chiaradia and Caricchi, 2017; Richards, 2018) and the overriding plate thickness (i.e., 
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92 pressure of melt differentiation; Chiaradia, 2014; Matjuschkin et al., 2016; Cox et al., 2019; 

93 Lee and Tang, 2020).

94 The evolution of Cu during arc magma differentiation results from a complex 

95 interplay of processes occurring in the mantle source region and/or in the crust. Thus, it 

96 remains unclear which parameter(s) primarily control the ore-forming potential of arc 

97 magmas. This contribution aims to critically evaluate the role of source- and crustal-related 

98 magmatic processes related to the ore-forming potential, and examine their respective 

99 importance. Here, we use a global compilation of arc volcanic and plutonic (cumulates and 

100 derivative melts) whole rock geochemical analyses to systematically characterize the 

101 evolution of Cu in arc magmas during magmatic differentiation starting from primitive 

102 mantle derived arc magmas. Our global compilation aims to evaluate the role of primitive 

103 magma Cu concentration, initial water content, fO2, pressure of melt differentiation and 

104 different LLD for the formation of economic PCDs in the light of the above mentioned two 

105 endmember models. Our results emphasize the primary role of the initial melt H2O content 

106 regarding the ore-forming potential of arc magmas, whereas the initial melt Cu content is of 

107 secondary importance. We show that a single stage model can explain the formation of large 

108 economic PCDs associated with wet calc-alkaline arc series, whereas the multi-stage model 

109 is applicable form PCD formed from damp tholeiitic arc series. Ultimately, we propose that 

110 the initial melt H2O content reflect the importance of the melting regime in the mantle wedge, 

111 i.e., flux melting in contrast to decompression melting.

112

113 2. Copper concentration in primitive arc magmas: implications for the source of Cu

114 2.1 Dataset and results 
115 Previous studies reported Cu concentration in primitive arc basalts and mid-oceanic 

116 ridge basalts (MORBs) ranging from ~50 to ~100 ppm (Jenner et al., 2010; Jenner and 

117 O’Neill, 2012; Lee et al., 2012; Chiaradia, 2014; Richards, 2015). Here, we reevaluate the Cu 

118 concentration between the different types of primitive arc melts and geodynamic settings. 

119 We used the primitive arc melts compilation of Schmidt and Jagoutz (2017) with available 

120 whole rock Cu analyses (n=422) from 20 arcs including intra-oceanic, continental and back-

121 arc settings (Supplemental Material Table A1). For this study, we present Cu concentration 

122 in primitive arc melts using the same classification scheme as Schmidt and Jagoutz (2017), 
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123 with the exception of primitive depleted tholeiitic andesites which are considered 

124 fractionated melts. Here, they are classified into five types: (1) primitive calc-alkaline basalts 

125 (n=82), (2) primitive tholeiitic basalts (n=50), (3) primitive low-Si basalts (n=64), (4) 

126 primitive shoshonites (n=78), and (5) primitive high-Mg andesites (n=148) (Fig. 2; Table 

127 A1). For the sake of comparison, we also compiled whole rock Cu analyses (n=58) in 

128 primitive MORBs using the data set of Gale et al. (2013). Primitive MORBs were selected 

129 based on the same criteria used by Schmidt and Jagoutz (2017) for arc primitive melts, i.e., 

130 Mg# of 0.65-0.75, Ni concentrations of 150-500 ppm, and Cr concentrations of < 1200 ppm 

131 (Table A1).

132 Our global compilation indicates that the Cu concentration of primitive arc melts 

133 range from 35 to 120 ppm with a global average of 78 ± 31 ppm (1) for primitive arc basalts 

134 and of 42 ± 17 ppm for primitive high-Mg andesites (Fig. 2). By comparison, the Cu 

135 concentration in primitive MORBs display a similar range from 50 to 130 ppm, with a global 

136 average of 81 ± 20 ppm (Fig. 2) indistinguishable from primitive arc basalts. Among 

137 primitive arc basalts, there is no systematics correlation between the Cu concentrations, the 

138 types of primitive melt and/or the geodynamic settings. Only the high-Mg andesites are 

139 characterized by systematically lower Cu concentrations.

140

141 2.2 The source of Cu in arc magmas 
142 A magmatic origin for Cu in PCDs is widely accepted based on isotopic composition of 

143 hydrothermal and magmatic sulfides, ore-forming fluids, and the genetically related igneous 

144 intrusions (e.g., Hedenquist and Lowenstern, 1994; Rezeau et al., 2016; Zheng et al., 2018). 

145 However, there is no consensus whether Cu in arc magmas is directly derived from the 

146 mantle wedge/refertilized sub-continental lithospheric mantle (e.g., McInnes et al., 1999; 

147 Richards, 2009; Hou et al., 2017; Wang et al., 2018; Zheng et al., 2018) or dominantly 

148 inherited from the subducting oceanic lithosphere by slab-related fluid/melt (e.g., Mungall, 

149 2002; Sun et al., 2017). 

150

151 2.2.1 Mantle-derived vs. slab-related
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152 The Cu concentrations in primitive arc basalts range from 50 to 120 ppm, with no 

153 systematics regarding the types of primitive melt and/or the geodynamic settings (Fig. 2). 

154 The range of Cu concentration in primitive arc basalts can be generated after 5 to 30% of 

155 melting of a mantle source having an initial Cu concentration of 30 ppm at fO2 ranging from 

156 FMQ = 0 to 2 (Lee et al., 2012), which could be reconciled with primitive arc basalts formed 

157 by variable degree of partial melting at different pressure in the mantle wedge (Schmidt and 

158 Jagoutz, 2017). Alternatively, the range of Cu in primitive melts may represent variable input 

159 of Cu from slab-related fluid and/or melt. In this case, we would expect a positive correlation 

160 between incompatible elements and Cu content. Our global compilation lacks of such 

161 systematics as demonstrated by similar average Cu contents (and a comparable range of Cu) 

162 for the different types of primitive basalts characterized by variable involvement of slab-

163 related fluid and/or melts (Table A1; Schmidt and Jagoutz, 2017). This is consistent with the 

164 limited remobilization of chalcophile elements from subducted sulfide ore deposits during 

165 dehydration of the subducting oceanic lithosphere (Tomkins, 2010; Giacometti et al., 2015). 

166 More importantly, primitive arc basalts and MORBs are characterized by the same global 

167 average Cu concentration of ~80 ppm irrespective of the degree of subduction-related inputs 

168 (Fig. 2). Therefore, our observations are consistent with previous studies (McInnes et al., 

169 1999; Jenner et al., 2010; Lee et al., 2012; Chiaradia, 2014; Richards, 2015) and strongly 

170 suggest the predominant contribution of Cu from the mantle without necessarily requiring 

171 additional input from slab-related fluids and/or melts. 

172

173 2.2.2 Refertilization and Cu enrichment via melt-rock reaction
174 In arc setting, Cu and Os isotope studies suggest that Cu enrichment is linked to the 

175 refertilization of the sub-arc mantle through the redistribution of primary sulfides into 

176 sulfide-bearing metasomatic veins by slab-related oxidizing fluids (e.g., McInnes et al., 1999; 

177 Zheng et al., 2018). Our compilation reveals that primitive high-Mg andesites are 

178 characterized by the lowest Cu concentrations (Fig. 2), which are positively correlated with 

179 MgO (Supplemental Figure A1). Primitive high-Mg andesites has been proposed to represent 

180 lower temperature derivatives of primitive calc-alkaline basalts through melt-rock reaction 

181 (also known as refertilization) in the shallow mantle and/or arc lithosphere (Kelemen et 
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182 al.,1995; Kelemen et al., 2014; Schmidt and Jagoutz, 2017). Consequently, we suggest that 

183 the low Cu concentrations in primitive high-Mg andesites reflect Cu-sulfide fractionation, 

184 which occur during melt-rock reaction. Such mechanism has been documented in a suite of 

185 MORBs erupted at the Kane Megamullion, where Cu enrichment in the shallow mantle 

186 results from melt-peridotite reaction (Ciazela et al., 2017). Similarly, melt-rock reaction in 

187 the arc mantle region could represent an additional mechanism for local Cu enrichment in 

188 the sub arc mantle and/or arc lithosphere. We envision that subsequent remelting of these 

189 zones may account for unusually high Cu content in primitive arc basalts. 

190

191 3. Copper concentration in volcanic arc rocks

192 3.1 Dataset
193 It has long been recognized that differentiation of arc magmas dominantly follow 

194 either a tholeiitic or calc-alkaline series with minor importance of an alkaline series (e.g., 

195 Miyashiro, 1974). Global whole rock compilation suggests that the crustal thickness of the 

196 overriding plates represents a first-order control on tholeiitic and calc-alkaline 

197 differentiation series (Miyashiro, 1974; Chiaradia, 2014, 2015). Yet, tholeiitic and calc-

198 alkaline arc magmas are documented to coexist along the same arc segment from fore-arc to 

199 back-arc (e.g., Cascades, Baker et al., 1994; Mandler et al., 2014; Kamchatka, Portnyagin et 

200 al., 2007; Izu-Bonin-Mariana, Tatsumi and Susuki, 2009; Brounce et al., 2014; Aleutians, 

201 Zimmer et al., 2010). It has been proposed that the geochemical differences between 

202 tholeiitic and calc-alkaline series relate to different LLDs controlled by the initial H2O content 

203 of the primitive arc melt (Sisson and Grove 1993; Zimmer et al., 2010; Jagoutz et al., 2011; 

204 Melekhova et al., 2013; Müntener and Ulmer, 2018). It has been proposed that primitive arc 

205 magmas with high initial H2O content, that evolve along a calk-alkaline fractionation 

206 sequence are related to flux melting in the sub arc mantle (Grove et al., 2002, 2012; Cervantes 

207 and Wallace, 2003; Jagoutz et al., 2011). Flux melting occurs because the melting point of 

208 peridotite is significantly lowered due to the addition of water in the mantle wedge (e.g., 

209 Grove et al., 2012). The influx of slab-derived hydrous melts/fluids hence produces melts 

210 with high initial H2O. Alternatively, the sub arc mantle can melt due to adiabatic 

211 decompression, which produces melts with lower initial H2O content that evolve along a 

212 tholeiitic LLD (Grove et al., 2002, 2012).  
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213 Here, we produce a global compilation of whole rock analyses with available Cu of arc 

214 volcanic rocks from the georoc database (http://georoc.mpch-mainz.gwdg.de/georoc/) to 

215 evaluate the Cu evolution between tholeiitic and calc-alkaline magmatic series along 

216 individual arc segment. The discrimination between volcanic rock following a calc-alkaline 

217 (n=9,275) or tholeiitic (n=6,114) differentiation trend is based on the classical FeO/MgO 

218 versus SiO2 relationship (Supplemental Figure B1; Miyashiro, 1974). Our global compilation 

219 includes volcanic rocks from 28 different magmatic arcs for a total of 15,389 entries (Figs. 1, 

220 3, C1 and D1; Supplementary Table B1). The analyses included in the database fulfilled the 

221 following criteria: a loss of ignition (LOI) < 2 wt% (if provided), totals of 97-102 wt%, SiO2 

222 of 50-70 wt%, MgO of 0.5-10 wt% and FeO/MgO ratio < 15 to avoid any exotic melt 

223 compositions. Note that we screened and removed analyses from known mineralized 

224 porphyry district to avoid high Cu concentration influenced by ore-forming hydrothermal 

225 fluids overprint that are unrelated to the original melt Cu endowment. In the following, all 

226 the whole rock data have been recalculated on an anhydrous basis. 

227

228 3.2 Results
229 Our global compilation of volcanic rocks shows a wide range of Cu concentrations. 

230 For MgO ranging from 0.5 to 10 wt%, most of the Cu data ranges from <10 to ~400 ppm in 

231 tholeiitic series and from <10 to ~150 ppm in calc-alkaline series (Fig. 3a,d). During magma 

232 differentiation (i.e., decreasing MgO concentration), the evolution of Cu concentrations in 

233 tholeiitic and calc-alkaline series differs significantly. In tholeiitic series, the Cu 

234 concentration increases from the typical primitive arc basalts value of ~80 ppm at 10 wt% 

235 MgO, to the highest values between 3.5 and 5 wt% MgO with a maximum median Cu 

236 concentration of ~110 ppm at ~4.2 wt% MgO. This is followed by a decrease of Cu 

237 concentration down to a median concentration of ~10 ppm at 0.5 wt% MgO (Fig. 3a). FeOtot 

238 and V concentrations also exhibit the highest values between 3.5 and 5 wt% MgO (Fig. 3b,c). 

239 In calk-alkaline series, the median Cu concentration steadily decreases from the typical 

240 primitive arc magma value of ~80 ppm at 10 wt% MgO to ~10 ppm at 0.5 wt% MgO (Fig. 

241 3d). Both FeOtot and V concentration also mimics the evolution trend of Cu (Fig. 3e, f). This 

242 suggests an apparent broad correlation between Cu, FeOtot and V for both tholeiitic and calc-

243 alkaline series. Based on this correlation, the switch from incompatible to compatible 
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244 behavior of Cu at MgO ~3-5 wt% is ascribed to the late onset of Fe-oxides crystallization in 

245 tholeiitic series, whereas the compatible behavior of Cu relates to the early Fe-oxides 

246 crystallization in calc-alkaline magmas (Jenner et al., 2010; Chiaradia, 2014). In details, 

247 however, the correlation between the three elements is weak for 17 individual 

248 representative arc segments characterized by more than 300 whole rock analyses with 

249 available Cu (Fig. 4a, b; Fig. C1 and D1; Table B1). For calc-alkaline and tholeiitic series, FeOtot 

250 and V are systematically positively correlated (Fig. 4b). Experiments for tholeiitic and calc-

251 alkaline LLDs have demonstrated that the decrease of FeOtot is closely related to the onset of 

252 crystallization of Fe-Ti-oxides (spinel hercynite, ilmenite, magnetite; Villiger et al., 2004; 

253 Nandedkar et al., 2014; Ulmer et al., 2018) for which V have a high partition coefficient 

254 (Kd>>1 up to 130; Luhr and Carmichael, 1980; Latourrette et al. 1991; Canil, 1999). In 

255 contrast, the evolution of Cu is generally poorly correlated with FeOtot and V (Fig.4a), 

256 although few arcs display positive correlation (e.g., Izu-Bonin, Aleutians; Fig. C1 and D1). 

257 Thus, Fe-oxides crystallization may not necessarily have a large effect on Cu depletion. 

258 We use the Cu concentration at MgO~4 wt% (Cu4) relative to the initial average Cu 

259 concentration in primitive arc basalts of ~80 ppm to evaluate the Cu enrichment or depletion 

260 during magmatic differentiation (Fig. 4c, d). With the exception of one arc segment (Central 

261 America), calc-alkaline series show a systematic depletion of Cu during magma 

262 differentiation (Fig. 4c, d), while tholeiitic series are characterized by Cu enrichment and 

263 depletion during magmatic differentiation (Fig. 4c, d). For tholeiitic series, we observe a 

264 systematic Cu enrichment in thin arcs (<25 km), which ultimately correlates with the highest 

265 FeOtot enrichment at MgO~4 wt% (i.e., Fe4). For tholeiitic series formed in thicker arcs (>25 

266 km), the Cu depletion dominates. These observations indicate that the evolution of Cu during 

267 magma differentiation is influenced by the LLD and the pressure of magma differentiation 

268 that are further discussed below among other parameters. 

269

270 3. Copper concentration in plutonic rocks and derivative melts

271 Finally, based on the compilation of Jagoutz and Kelemen (2015) and Jagoutz and 

272 Klein (2018), we produced a compilation of whole rock Cu analyses for lower crustal 

273 cumulates and their derivative melts from the Kohistan arc in Pakistan, Talkeetna arc in 

274 Alaska, Sierra Valle Fértil–Sierra Famatina complex in Argentina, Fiordland in New Zealand 
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275 (Table C1).  A complementary whole rock compilation of Cu-bearing cumulates from Chin et 

276 al., 2018 is also included in Table C1, which consist of deep crustal cumulates from Arizona 

277 and Sierra Nevada (Western USA), Bonanza arc (British Columbia), Colombia (North 

278 Volcanic Andean Zone), Kermadec islands (South Pacific Ocean), and Pontides (NE Turkey). 

279 The entire dataset consists in 1606 whole rock major elements analyses, of which 985 

280 include Cu analyses (Table C1). 

281 Our compilation of lower crust plutons that are cumulates and frozen melt 

282 compositions (Jagoutz, 2010, Jagoutz et al., 2011) is characterized by a range of SiO2 from 40 

283 to ~76 wt%, Mg# from 0.9 to 0.2, and Cu concentrations from <10 ppm to 250 ppm (Fig. 5, 

284 Table C1). The compiled cumulates are associated with differentiated melt of calc-alkaline 

285 signature (Famatina arc, e.g., Otamendi et al., 2009; Fiordland arc, e.g., Allibone et al., 2009; 

286 Jijal complex in Kohistan arc, e.g., Jagoutz et al., 2011), tholeiitic signature (Chilas complex in 

287 Kohistan arc, e.g., Jagoutz et al., 2011), or overlapping the tholeiitic and calc-alkaline fields 

288 (Talkeetna arc, e.g., Greene et al., 2006). Most of the compiled lower crustal plutons are 

289 characterized by a “Z” shape trend in the Mg# and SiO2 space, except for the Chilas complex 

290 in Kohistan (Fig. 5a). The different patterns are related to different LLD such as the “Z” shape 

291 represents wet fractionation associated with calc-alkaline series, whereas the others 

292 represent dry fractionation linked to tholeiitic series (Jagoutz, 2010; Jagoutz et al., 2011; 

293 Müntener and Ulmer, 2018). Our global compilation of lower crustal cumulates do not show 

294 any systematics difference in whole rock Cu concentrations between cumulates associated 

295 with calc-alkaline or tholeiitic series (Fig. 5b). 

296

297 4. Discussion

298 When melt reaches sulfide or water saturation during magmatic differentiation Cu is 

299 strongly partitioned into magmatic sulfides and/or the fluid phase. Therefore, we first 

300 discuss the systematic of magmatic sulfide saturation and its role for the different evolutions 

301 of Cu concentration observed between tholeiitic and calc-alkaline magmas (Figs. 3 and 4). 

302 Subsequently, we focus on the initial melt H2O content and its role for the ore-forming 

303 potential in arc magmas.

304

305 4.1 Sulfide saturation in arc magmas
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306 Magmatic sulfide minerals are known to be highly efficient Cu scavengers, and 

307 therefore, it is generally assumed that sulfide saturation plays a crucial role in the ore-

308 forming potential of arc magmas. Indeed, magmatic sulfides are ubiquitous in mafic to felsic 

309 volcanic and plutonic rocks (e.g., Stavast et al., 2006; Lee et al., 2012; Zelenski et al., 2017; 

310 Georgatou and Chiaradia, 2019). The observed volume of magmatic sulfides in igneous rocks 

311 range from <0.1 to 0.6 vol% and directly influences the Cu budget during melt differentiation 

312 (Kiseeva and Wood, 2015; Georgatou et al., 2018; Cox et al., 2019). As copper is a highly 

313 chalcophile element (  =~250-1000; Li and Audétat, 2012), its solubility in 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢

314 silicate melt strongly depends on sulfide saturation. Experiments have demonstrated a sharp 

315 transition from sulfide (S2-) to sulfate (S6+), where sulfide (S2-) is the dominant sulfur species 

316 in hydrous silicate melts under more reducing conditions (fO2), whereas sulfate (S6+) 

317 dominates at higher redox conditions (Fig. 6a; Mavrogenes and O’Neill, 1999; O’Neill and 

318 Mavrogenes, 2002; Jugo, 2009; Jugo et al., 2010; Botcharnikov et al., 2011; Fortin et al., 2015; 

319 Matjuschkin et al., 2016). Furthermore, higher pressure of differentiation shifts the sulfide-

320 sulfate transition towards higher fO2 (Fig. 6a; Matjuschkin et al., 2016). The sulfur solubility 

321 in silicate melts strongly correlates with the sulfide-sulfate transition, such as the S solubility 

322 increases as a function of the fraction of oxidized species in the melt (Fig. 6a; Carroll and 

323 Rutherford, 1985; Jugo, 2009; Jugo et al., 2010; Botcharnikov et al., 2011; Matjuschkin et al., 

324 2016). At convergent margins, the redox conditions in primitive arc basalts and sub-arc 

325 mantle are on average higher than MORBs, but varies over several log units above the 

326 fayalite-magnetite-quartz (FMQ) buffer assemblage from FMQ ~0 to +4 (Fig. 6a; e.g., 

327 Carmichael, 1991; Lee et al., 2010, 2012; Evans et al., 2012; Kelley and Cottrell, 2012; 

328 Brounce et al., 2014; Bénard et al., 2018; Bucholz and Kelemen, 2019). Furthermore, the 

329 pressure of differentiation and the volatiles content (H2O, S) of primitive melt composition 

330 vary within and among arcs (e.g., Grove et al., 2002; Rowe et al., 2009; Zimmer et al., 2010; 

331 Wallace and Edmonds, 2011; Brounce et al., 2014; Melekhova et al., 2019). In the following, 

332 we discuss the importance of sulfide saturation in terms of possible melt evolution paths at 

333 different pressures of differentiation, LLD, redox conditions, and initial sulfur concentrations 

334 (Fig. 6a-d) that could explain the Cu evolution in tholeiitic and calc-alkaline differentiation 

335 series (Fig. 3a, d). 
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336

337 The effect of variable pressure of differentiation on sulfide saturation
338 The contrasting Cu evolution trends between tholeiitic and calc-alkaline series could be 

339 related to different pressures of differentiation, as at low pressure sulfate stability increases 

340 towards lower fO2, whereas higher pressure expands the sulfide stability field (Fig. 6a; e.g., 

341 Matjuschkin et al., 2016). Here we discuss arc melts with identical initial fO2 of FMQ ~ 1.5 

342 and sulfur concentration that differentiate at 0.2 GPa and 1 GPa (Figs. 6a, b). As sulfur is 

343 highly incompatible during fractional crystallization (e.g., Ripley and Li, 2013), the sulfur 

344 concentration increases with 1/F (F is the remaining melt mass). At 0.2 GPa, hydrous basaltic 

345 melt will reach sulfide saturation at S ~0.5 wt% (Figs. 6a; Botcharnikov et al., 2011). At 

346 higher pressure, the sulfide-sulfate transition shift towards higher fO2, and so does the S 

347 solubility curve (Matjuschkin et al., 2016). Considering the lack of available experimental 

348 data for hydrous basalt at 1 GPa, we shift the experimental sulfur solubility curve obtained 

349 at 0.2 GPa and correlate the highest S solubility with the transition of sulfate-only species 

350 curve (S6+/Stot =1) at 1 GPa (Figs. 6a). Thus, we can approximate that a hydrous basaltic melt 

351 will reach sulfide saturation at S ~0.15 wt%. Assuming the primitive melt has initially 0.12 

352 wt% S (Fig. 6a; Wallace and Edmonds, 2011; Brounce et al., 2014), the high pressure melt 

353 will reach sulfur saturation after ~20% fractionation (F=0.8) whereas the low-pressure melt 

354 will reach sulfur saturation after 75% differentiation (F=0.25) (Fig. 6b, Table D1). If pressure 

355 of differentiation is the controlling parameter, then our data would indicate that tholeiitic 

356 melts on average fractionate shallower than calc-alkaline melts. This conclusion is supported 

357 by the empirical observation that the overriding plate thickness controls the Cu and FeO 

358 enrichment in thin island arc (<20 km) relative to Cu and FeO depletion in thick continental 

359 arcs (>30 km) (Chiaradia, 2014). This first-order observation would be consistent with the 

360 increase of sulfide stability with pressure (Matjuschkin et al., 2016; Cox et al., 2019). 

361 Furthermore, our results highlight that thicker crust and hence possible higher pressure of 

362 differentiation prevents Cu enrichment during magma differentiation even for tholeiitic 

363 series (Fig. 4d). This observation supports the idea that higher pressure lower crustal melt 

364 differentiation plays an important role to trigger early sulfide saturation. Yet, calc-alkaline 

365 series are characterized by early Cu depletion independently to the crustal thickness 
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366 suggesting that additional parameters control the timing of sulfide saturation during magma 

367 differentiation in these series.

368

369 The importance of different liquid line of descent on sulfide saturation 
370 For a primitive melt that differentiates at a similar initial pressure, fO2 and S 

371 concentrations, the contrasting Cu evolution trends could be explained by a progressive 

372 change of FeO content and redox conditions controlled by the different LLDs (e.g., Lee et al., 

373 2012) due to different initial melt H2O content (e.g., Sisson and Grove, 1993; Villiger et al., 

374 2004; Nandedkar et al., 2014). Since the variations of redox conditions are sensitive to the 

375 melt Fe3+/∑Fe ratio, the timing of crystallization of Fe-oxides (i.e., Fe3+-bearing minerals) is 

376 expected to control the redox trajectories in a closed magmatic system, lowering the melt 

377 Fe3+/∑Fe ratio and hence the oxygen fugacity (e.g., Ghiorso and Carmichael, 1987; Ulmer et 

378 al., 2018). The calc-alkaline series is characterized by an early crystallization of Fe-oxides on 

379 the LLD compared to the tholeiitic that crystallize Fe-oxide late on the LLD (Sisson and Grove, 

380 1993). We test the evolution of fO2 using Rhyolite-MELTS (Gualda et al., 2012) to simulate 

381 melt crystallization in a thick crust starting from P = 0.8 GPa to 0.15 GPa and in a thin crust 

382 starting from P = 0.4 GPa to 0.15 GPa for temperatures ranging from ~1220-1350°C (liquidus 

383 varies as a function of initial melt H2O content) to ~750-800°C (Table D1). Each computation 

384 assumes melt differentiation through progressive decompression and cooling followed by 

385 cooling once the melt reaches 0.15 GPa (Table D1). We use a starting primitive melt 

386 composition of continental arc calc-alkaline basalt (Schmidt and Jagoutz, 2017) having 

387 different initial H2O content of 4 wt%, 1wt% and 0.2 wt% H2O to account for calc-alkaline 

388 and tholeiitic LLDs (e.g., Sisson and Grove 1993; Tatsumi and Susuki, 2009; Zimmer et al., 

389 2010; Melekhova et al., 2013; Table D1). 

390 The modelled melt evolution confirms that the onset of crystallization of ferric 

391 bearing minerals (magnetite) triggers the melt to evolve to lower fO2. The onset of magnetite 

392 fractionation is dependent on the melt H2O content and occurs at F~0.7 for the calc-alkaline 

393 series (4 wt% H2Oinitial) versus F~0.65-0.4 for the tholeiitic series (1 wt% and 0.2 wt% 

394 H2Oinitial). If both calc-alkaline and tholeiitic melt are S undersaturated at the time of 

395 magnetite crystallization, the melt evolves toward lower fO2 as soon as the magnetite 

396 appears on the LLD to promotes sulfide saturation, which occur at higher melt fraction for 
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397 calc-alkaline magmas compared to tholeiitic ones (Fig. 6c). For tholeiitic series with 1 wt% 

398 H2Oinitial, magnetite crystallization occurs earlier on the LLD (F~0.65) indicative of the 

399 concomitant effect of pressure. Our calculations are consistent with Jenner et al. (2010) and 

400 Chiaradia (2014) suggestion that difference in Cu depletion trends between the calc-alkaline 

401 and tholeiitic differentiation series could be linked to the timing of magnetite crystallization 

402 within the respective LLDs, which is ultimately controlled by the initial H2O content and the 

403 pressure of differentiation. This interpretation can explain the Cu enrichment and depletion 

404 observed for tholeiitic series in thin arcs (<25 km) and thick arcs (>25 km), while calc-

405 alkaline series consistently displays Cu depletion irrespective of the crustal thickness (Fig. 

406 4c, d).

407

408 The importance of variable initial redox conditions on sulfide saturation
409 The importance of the initial fO2 of the melt is illustrated by the compatible character 

410 of Cu in MORB during differentiation (Jenner and O’Neill, 2012), where the initial fO2 is FMQ 

411 < 0 and sulfide saturation occurs at low S content (Jugo, 2009; Jugo et al, 2010; Botcharnikov 

412 et al., 2011; Matjuschkin et al., 2016). In comparison to MORBs, arc-related tholeiitic series 

413 are characterized by the early incompatible and compatible character of Cu in thin and thick 

414 arcs, respectively (Figs. 3a and 4c,d). According to the experimental sulfide-sulfate transition 

415 curves at different pressures (0.2-1 GPa, Fig. 6a), the incompatible character of Cu (i.e. 

416 delayed sulfide saturation) in thin arcs could be explained for initial fO2 conditions of FMQ 

417 > ~1 for the primitive arc melt. In contrast, the compatible character of Cu (i.e. early sulfide 

418 saturation) in thick arcs could be explained for initial fO2 conditions of FMQ < ~2 for the 

419 primitive arc melt (Figs. 6a,c). Such range of FMQ~1-2 is consistent with estimates for 

420 tholeiitic and calc-alkaline arc basalts along the Aleutian arc (FMQ~+0.4-2.1; Zimmer et al., 

421 2010) and Mariana arc (FMQ~+1-1.6; Brounce et al., 2014), for primitive lower crustal 

422 ultramafic cumulates in the Talkeetna arc (FMQ~+0.4-2.3; Bucholz and Kelemen, 2019), 

423 and for sub-arc mantle xenoliths in Kamchatka arc (FMQ~ +1-1.5; Bénard et al., 2018). If 

424 the initial melt fO2 controls the different behavior of Cu in arc tholeiitic and calc-alkaline 

425 series in thin arcs, it would imply that the arc tholeiitic series differentiate at higher initial 

426 fO2 than calc-alkaline series at the same initial S concentrations (Fig. 6c). Although H2O itself 
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427 is a poor oxidant, the oxidation state of arc magmas is mainly affected by the proportion of 

428 subduction-related aqueous components added to the mantle wedge (e.g., Kelley and 

429 Cottrell, 2009), and more specifically to the chemical components associated with the slab-

430 derived fluids or melts, i.e., Fe3+, S6+, C4+ (Mungall, 2002; Tomkins and Evans, 2015; Bénard 

431 et al., 2018; Brounce et al., 2019). A positive correlation between H2O and fO2 have been 

432 shown from mid-ocean ridges to back-arc tectonic settings (Kelley and Cottrell, 2009; 

433 Zimmer et al., 2010; Brounce et al., 2014), while melt inclusions from primitive arc basalts 

434 from fore-arc to back-arc in the Oregon Cascades do not show any significant differences in 

435 fO2 between tholeiitic and calc-alkaline melts (Rowe et al., 2009). While the role of slab-

436 derived fluids or melts for the oxidation of arc magmas remains unclear, there is no evidence 

437 to assume that arc tholeiitic melts have on average higher fO2 than calc-alkaline melts. 

438 Consequently, the early sulfide saturation observed for calc-alkaline series in thin arcs 

439 should reflect other processes than a systematic difference in fO2 in primitive melts.

440

441 The importance of variable initial sulfur concentrations on sulfide saturation
442 It has been proposed that slab-derived fluids/melts appear to be efficient transfer 

443 agent for the transport of sulfur from slab to mantle wedge (Jégo and Dasgupta, 2014), which 

444 is supported by higher range of S concentrations measured in arc basalts (up to ~0.9 wt%) 

445 compared to MORB (up to ~0.2 wt%; e.g., Jugo et al., 2010; Wallace and Edmonds, 2011). In 

446 this case, fluid flux melting should be characterized by higher contribution of an external 

447 input of S to the mantle wedge via the devolatilization of the subducting oceanic crust 

448 relative to decompression melting. Accordingly, we would expect higher initial S 

449 concentration in calc-alkaline series promoting early sulfide saturation compared to the 

450 tholeiitic series at similar pressure of differentiation and initial fO2 (Fig. 6d). Positive 

451 correlations between melt H2O content and S exist in arc magmas (e.g., Johnson et al., 2009; 

452 Zimmer et al., 2010; Kelley and Cottrell, 2012), although it is not systematic (e.g., Wallace, 

453 2005). Furthermore, any apparent positive correlation from melt inclusions studies could be 

454 due to melt degassing (e.g., Wallace and Edmonds, 2011) rather than initial melt conditions. 

455 The relationship between the initial H2O and S content of primitive arc magmas remains 

456 uncertain. 
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457

458 In conclusions, this section highlights the complex interplay of different parameters 

459 that control sulfide saturation and hence the evolution of melt Cu concentration during 

460 magmatic differentiation. Based on our compilation (Fig. 3), we propose that the liquid lines 

461 of descent have a large effect on the timing of sulfide saturation in thin arcs (<25 km), 

462 whereas the pressure of differentiation becomes the main controlling factor in thicker arcs 

463 (>25 km). Finally, more chemical data specifically on the sulfur content of arc magmas and 

464 plutons in combination with experimental studies are needed to better understanding 

465 sulfide saturation in natural magmatic systems. 

466

467 4.2 The importance of initial melt H2O content in arc magmas for the ore-forming potential 
468 of magmas
469 Most of the economic PCDs are preferentially associated with calc-alkaline 

470 subvolcanic intrusions (Sillitoe, 2010). Yet, our global compilation shows that the average 

471 melt Cu concentration in calc-alkaline series is systematically lower compared to tholeiitic 

472 series at a given MgO (Fig. 3a,d). This observation questions the primary importance of melt 

473 Cu content in the ore-forming potential. In the following, we evaluate the role of the initial 

474 melt water content and the Cu endowment in magmatic fluids for tholeiitic and calc-alkaline 

475 series.

476

477 4.2.1 Modeling the liquid lines of descent (LLDs)
478 Compelling lines of evidence suggest that the geochemical differences between 

479 tholeiitic and calc-alkaline series relate to different LLDs controlled by the initial H2O content 

480 of the primitive arc melt showing that tholeiitic and calc-alkaline series are best reproduced 

481 by LLD of an H2O-poor and H2O-rich parental melt, respectively (Sisson and Grove 1993; 

482 Chaussidon and Sobolev, 1996; Villiger et al., 2004; Tatsumi and Susuki, 2009; Zimmer et al., 

483 2010; Jagoutz et al., 2011; Melekhova et al., 2013; Brounce et al., 2014; Mandler et al., 2014; 

484 Nandedkar et al., 2014; Müntener and Ulmer, 2018). We use Rhyolite-MELTS (Gualda et al., 

485 2012; Ghiorso and Gualda, 2015) to model LLDs with variable initial melt H2O content from 

486 0.2 wt% to 4 wt% representative of the spectrum of tholeiitic to calc-alkaline series 

487 emplaced at convergent margins (e.g., Sisson and Grove 1993; Tatsumi and Susuki, 2009; 
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488 Zimmer et al., 2010; Brounce et al., 2014; Melekhova et al., 2013; Mandler et al., 2014). We 

489 used an average primitive melt composition of intra-oceanic tholeiitic basalt and continental 

490 arc calc-alkaline basalt (Table D1; Schmidt and Jagoutz, 2017). Our models simulate melt 

491 differentiation in a thick crust starting from P = 0.8 GPa to 0.15 GPa and in a thin crust 

492 starting from P = 0.4 GPa to 0.15 GPa for temperatures ranging from ~1220-1350°C (liquidus 

493 varies as a function of initial melt H2O content) to ~750-800°C at FMQ +1 (Table D1). Each 

494 computation assumes melt differentiation through progressive decompression and cooling 

495 followed by cooling once the melt reaches 0.15 GPa (Table D1). The modelled LLDs 

496 reasonably reproduce the tholeiitic and calc-alkaline trends and show that the amplitude of 

497 Fe enrichment decreases as the initial H2O melt increases (Fig. 7a). Tholeiitic trends are best 

498 reproduced by LLDs resulting from the differentiation of intra-oceanic tholeiitic primitive 

499 basalt with initial 0.2 to 1.5 wt% H2O, whereas calc-alkaline trends are best reproduced by 

500 LLDs resulting from the differentiation of continental arc calc-alkaline primitive basalt with 

501 initial 2 to 4 wt% H2O (Fig. 7a). For a given initial melt H2O content, the absolute Fe 

502 enrichment depends on the initial melt composition, where LLDs resulting from the 

503 differentiation of intra-oceanic tholeiitic primitive basalt show more Fe enrichment 

504 compared to continental arc calc-alkaline primitive basalt. Our results also show that an 

505 increase of the initial pressure of differentiation slightly reduces the amplitude of Fe 

506 enrichment for damp LLDs (Fig. 7a), which is consistent with the broad tendency of having 

507 lower Fe4 at higher crustal thickness (Fig. 4c). Higher redox conditions (FMQ +2-3) 

508 significantly limit Fe enrichment and therefore obfuscate the effect of H2O on the LLDs. 

509 Important is that our modeling allows us to quantify the melt composition in respect to the 

510 remaining melt fraction (F), the melt water content and the appearance of the aqueous liquid 

511 phases (i.e., fluid saturation) for the different LLDs. The latter is based on the fluid saturation 

512 model of Ghiorso and Gualda (2015) implemented to Rhyolite-MELT, where thermodynamic 

513 properties of the fluid phase are calculated from the model of Duan and Zhang (2006). 

514 We also model the evolution of Cu concentration in the melt using the Rayleigh 

515 fractionation equation:

516  Cl = C0*(FD-1)     [1]

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952



18

517 where Cl is the concentration of Cu in the fractionated melt, C0 is the Cu concentration 

518 in the parental melt. F is the remaining melt fraction computed from Rhyolite-MELTS. While 

519 Cu is incompatible in silicate minerals (  =<0.2; Liu et al., 2014; Hsu et al., 2017), 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑚𝑒𝑙𝑡
𝐶𝑢

520 it is highly compatible in sulfides (  =~250-1000; Li and Audétat, 2012; Jenner, 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢

521 2017). The bulk-partition coefficient (D) of Cu represents an average of partition coefficients 

522 related to the volume percent of saturated magmatic sulfide and rock-forming minerals. 

523 Here, we use  =800 and  =0.1, and an average of 0.25 vol% of 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑚𝑒𝑙𝑡

𝐶𝑢

524 magmatic sulfides (Kiseeva and Wood, 2015; Georgatou et al., 2018) corresponding to a 

525 bulk-partition coefficient D of 2.1 at sulfide saturation and a D of 0.1 assuming no sulfide 

526 saturation. For tholeiitic series in thin arc (<25 km), the evolution of the Cu is characterized 

527 by an initial incompatible behavior followed by a compatible behavior related to late 

528 magmatic sulfide saturation (Figs. 3a and 4c,d). In this case, we model the incompatible 

529 behavior of Cu assuming no sulfide saturation with an initial Cu concentration of ~80 ppm 

530 in the parental melt. The switch from incompatible to compatible behavior of Cu occurs at 

531 MgO ~4 wt% (Fig. 3a). At this point, we use the melt Cu concentration at MgO ~4 wt% as the 

532 initial Cu concentration in the parental melt (i.e., C0 ranging from ~130 to 250 ppm) and we 

533 assume magmatic sulfide saturation to model the decrease of Cu concentration in tholeiitic 

534 series (Fig. 7b; Table D1). For tholeiitic series in thick arc (>25 km) and calc-alkaline series, 

535 we assume an early magmatic sulfides saturation to reproduce the steady decrease of Cu 

536 concentration (Fig. 7b; Table D1). 

537 For melt differentiation starting at P=4kbars, the computed results indicate that the 

538 magmatic fluid phase saturates at H2O=5.7-6.3 wt%, F=0.35-0.63, P=1.7-2.3 kbars and Cu 

539 ~25-50 ppm for the wet series with an initial H2O content of 2, 2.5, 3, 3.5 and 4 wt%. Damp 

540 series with an initial H2O content of 0.5, 1 and 1.5 wt% saturates magmatic fluid at H2O=5.4-

541 5.5 wt%, F=0.09-0.26, P=1.5-1.7 kbars and Cu ~15-30/~5-20 ppm (thin/thick arc model) 

542 (Figs. 7c,d; Table D1). For melt differentiation starting at P=8kbars, the computed results 

543 indicate that the magmatic fluid phase saturates at H2O=5.5-6.8 wt%, F=0.36-0.59, P=1.8-2.5 

544 kbars and Cu ~25-45 ppm for the wet series, and at H2O=5.3-5.4 wt%, F=0.11-0.18, P=1.5 

545 kbars and Cu ~15-20/~10 ppm (thin/thick arc model) for the damp series (Figs. 7c,d; Table 

546 D1). Independently to the initial pressure of melt differentiation, the wet calc-alkaline LLDs 
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547 reach fluid saturation at higher melt fraction, melt H2O content and melt Cu content 

548 compared to damp tholeiitic LLDs (Table D1). Damp melt with initial H2O content of 0.2 wt% 

549 does not reach H2O saturation, and hence it is not further considered in the next section.

550

551 4.2.2 Assessing the ore-forming potential of tholeiitic vs calk alkaline magmas
552 The Cu endowment of fluids expelled during degassing of H2O-saturated melt 

553 primarily depends on the melt H2O and Cu content together with the volume of melt 

554 presentat fluid saturation (Cline and Bodnar, 1991; Chelle-Michou et al., 2017). As the mass 

555 of extractable Cu (Mt) correlates with the volume of water-saturated melt (Chelle-Michou et 

556 al., 2017) the remaining melt mass (F) of H2O-saturated melt is a crucial parameter that 

557 determine how much total Cu could be extracted from a magmatic system and hence for the 

558 formation of economic PCDs. Because of the different initial H2O content in the primitive 

559 magma, the melt mass remaining at H2O saturation is different for calk-alkaline vs tholeiitic 

560 LLD. Our models presented above have shown that the melt mass remaining at fluid 

561 saturation for calk-alkaline LLD is ~1.5 to 7 times that of the tholeiitic LLD.

562 To illustrate this point, we use a simplified approach of Chelle-Michou et al. (2017) to 

563 quantify the mass of extractable Cu in fluids expelled during degassing of H2O-saturated melt 

564 and to estimate the relative Cu endowment in expelled fluids between wet calc-alkaline and 

565 damp tholeiitic LLD. We estimate the volume of H2O-saturated melt according to the 

566 Rhyolite-MELTS models presented above as it corresponds to the melt fraction at which an 

567 initial volume of primitive magma reached H2O saturation. Here, we use an initial volume of 

568 primitive magma of 189 km3 km-1 Myr-1 based on an average arc magma production rate for 

569 intra-oceanic arcs (Jicha and Jagoutz, 2015). Once the magma is H2O-saturated, we calculate 

570 the remaining melt fraction of H2O-saturated melt and the volume of fluids at degassing. 

571 Ultimately, the mass of Cu in fluid expelled at degassing corresponds to the volume and 

572 density of fluids and the Cu concentration in fluids at degassing. The latter varies according 

573 to the melt Cu concentration and the partition coefficient of Cu between the fluid and the 

574 melt. The melt Cu concentration is derived from our modelling presented above, while 

575 partition coefficients  in the literature range from ~15 to ~300 and strongly 𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

576 depends on the melt salinity, the presence of CO2, redox conditions, and H2S content (Zajacz 
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577 et al., 2008; Tattitch et al., 2015; Tattitch and Blundy, 2017). We use an intermediate value 

578 of  = 140 (Tattitch and Blundy, 2017). Our calculations yield a range of Cu 𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

579 concentration in fluids range from ~0.03 to ~0.1 wt% (Table D1), which correspond to a 

580 lower end estimate when compared to fluid inclusions data ranging from 0.002 to 2 wt% Cu 

581 with an average of ~0.26 wt% in PCDs (Kouzmanov and Pokrovski, 2012). Magma degassing 

582 occurs periodically during crystallization of H2O-saturated melt, however the first degassing 

583 event accounts for ~50 to 75 wt% of the total fluid expelled with fluids enriched in Cu  

584 compared to the latest stages of degassing characterized by negligible amount of fluids (<25 

585 wt%) depleted in Cu (Chelle-Michou et al., 2017). For this reason, we consider only a single 

586 degassing event, hence providing minimum estimates for the mass of extractable Cu in fluid 

587 expelled at degassing. In this simplified approach, we assume fixed parameters (percolation 

588 threshold, fluid and melt density, partition coefficient) to assess the role of the initial melt 

589 H2O content and melt Cu concentration at degassing. The reader is referred to the 

590 Supplementary Material A1 and Table D1 for a detailed description of the calculations.

591 The results indicate a positive correlation between the relative mass of extractable 

592 Cu in fluids expelled from H2O-saturated magmas and the initial melt H2O content (Fig. 8). 

593 The mass of extractable Cu ranges from 2.6 to 9.6 Mt for wet calc-alkaline series modelled 

594 with initial melt H2O between 2 and 4 wt%, whereas calculations for damp tholeiitic series 

595 modelled with initial melt H2O between 0.5 and 1.5 wt% yield ranges from 0.3 to 2.3 Mt for 

596 and from 0.2 to 1 Mt for thin and thick arc models, respectively. The corresponding volumes 

597 of H2O-saturated melt required to form PCDs >2 to ~10 Mt Cu (i.e., large to giant deposit) 

598 range from 50 to 120 km3, which correspond to reasonable estimates compared to those 

599 reported for ore-bearing intrusions (e.g., Cline and Bodnar, 1991; Chelle-Michou et al., 2017; 

600 Du and Audétat, 2020). Overall, the ore-forming potential in typical calc-alkaline magmas 

601 (initial melt H2O content of 4 wt%) is ~4-10 times higher relative to damp tholeiitic magmas 

602 (initial melt H2O content of 1.5 wt%), and up to ~20-50 times relative to the dampest 

603 tholeiitic magmas (initial melt H2O content of 0.5 wt%) (Fig. 8). If we assume the same melt 

604 Cu content of H2O-saturated melt, the ore-forming potential in typical calc-alkaline magmas 

605 is ~3 to 8 times higher relative to damp tholeiitic magmas (Table D1). Such correlation 

606 reflects the crucial importance of the remaining H2O-saturated melt mass, whereas the melt 
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607 Cu concentration is of secondary importance. Of course, higher melt Cu content at the time 

608 of fluid saturation increases the ore-forming potential of a given LLD, which can be envision 

609 with high fO2 (e.g., Richards, 2015) and/or a source enriched in Cu (e.g., Zheng et al., 2018). 

610 Ultimately, our results are consistent with Chiaradia (2020a) suggesting that the highest ore-

611 forming potential coincides with an initial H2O content of 4 wt% in the parental basaltic melt, 

612 whereas lower ore-forming potential are modelled for initial melt H2O content <2 wt% and 

613 >6 wt%. Although our modelling primarily aims to evaluate the effect of initial melt H2O 

614 content on the ore-forming potential of arc magmas, we acknowledge that additional 

615 parameters including favorable tectonics, long-lived thermal sustainability, magma 

616 mingling, and metal precipitation efficiency play a complementary and important role to 

617 modulate the size of PCDs (Tosdal and Richards, 2001; Richards, 2003, 2011a; Caricchi et al., 

618 2012; Wilkinson, 2013; Chiaradia and Caricchi, 2017; Chiaradia, 2020b).

619

620 5. Petrogenetic implications for the formation of giant PCDs

621 5.1 Models of formation for PCDs
622 In calc-alkaline series, the compatible behavior of Cu during magmatic differentiation 

623 (Fig. 3a,d) does not preclude the transfer of significant mass of Cu into the fluids expelled 

624 from H20-saturated melts to form large economic PCDs in a single stage model (Fig. 9a), 

625 where fluid saturation occurs at ~1.5-2.5 kbars with an important volume of fluid-saturated 

626 melt at fairly low Cu concentrations of ~25-50 ppm. In contrast, a single stage model for the 

627 formation of large economic PCDs associated with damp tholeiitic series is unlikely because 

628 fluid saturation occurs late with a small volume of melt remaining and low Cu concentrations 

629 (Fig. 9b). Our results are consistent with the fact that large economic PCDs are 

630 predominantly associated with subvolcanic fluid-saturated calc-alkaline intrusions 

631 emplaced at ~2 kb (Richards, 2003; Sillitoe, 2010), whereas tholeiitic series are barren in 

632 the main arc (e.g., Kesler et al., 1977) and/or associated with shallow and smaller epithermal 

633 Cu-Au deposits associated with bi-modal suites in rift-related setting (e.g., Sillitoe and 

634 Hedenquist, 2003). In the case of the successive emplacement of damp tholeiitic series 

635 followed by wet calc-alkaline series, Cu-sulfide segregated in tholeiitic crustal cumulates 

636 could represent an additional source of Cu if remelting of lower crustal cumulates occurs 

637 during a subsequent hydrous magmatic event (Fig. 9c). Of course, Cu-sulfide segregated in 
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638 lower crustal cumulates formed from hydrous melts could equally be remobilized during a 

639 subsequent hydrous magmatic event (Fig. 9c; Richards, 2009, 2011a, 2015; Lee et al., 2012; 

640 Chiaradia, 2014; Hou et al., 2015). This scenario would increase the ore-forming potential 

641 and lead to the formation of large PCDs consistent with a multi-stage model that could occur 

642 in both subduction-related and post-subduction settings. In conclusions, we suggest that 

643 both scenarios are likely to occur in accretionary orogens, however, Cu-sulfide segregation 

644 and remobilization does not appear to be a prerequisite to form economic large PCDs in 

645 subduction-related setting. 

646

647 5.2 Source vs. crustal processes
648 The importance of the melt H2O content has long been recognized since large 

649 economic PCDs are predominantly associated with subvolcanic calc-alkaline intrusions 

650 characterized by high Sr/Y and La/Yb ratios ascribed to the early crystallization of 

651 amphibole in the deep crust (± garnet at high pressure) (Richards, 2011b; Chiaradia et al., 

652 2012; Loucks, 2014). Furthermore, these ratios positively correlate with arc crustal 

653 thickness (Chiaradia, 2015; Profeta et al., 2015; Lieu and Stern, 2019), which ultimately 

654 correlates with tholeiitic and calc-alkaline differentiation series at the global scale 

655 (Miyashiro, 1974; Chiaradia, 2014). It has been proposed that the crustal thickness 

656 primarily controls the association of large PCDs, calc-alkaline magmas and thicker arc with 

657 a limited role for the composition of the mantle source (e.g., Chiaradia, 2014). Yet, at the arc 

658 scale, tholeiitic and calc-alkaline arc magmas are temporally and spatially related from fore-

659 arc to back-arc and the different LLDs are controlled by the initial H2O content of the 

660 primitive arc melt independently to the pressure of differentiation (Fig. 7a; Sisson and Grove 

661 1993; Baker et al., 1994; Villiger et al., 2004; Tatsumi and Susuki, 2009; Zimmer et al., 2010; 

662 Melekhova et al., 2013; Brounce et al., 2014; Mandler et al., 2014; Nandedkar et al., 2014; 

663 Ulmer et al., 2018). Here, we suggest that the importance of the initial melt H2O content in 

664 the ore forming potential of arc magmas reflects the primary role of flux melting in the 

665 mantle source associated with wet calc-alkaline series, in opposition to decompression 

666 melting associated with damp tholeiitic series (Fig. 9; Grove et al., 2002; Cervantes and 

667 Wallace, 2003; Jagoutz et al., 2011). The first order relationship between calc-alkaline 
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668 magmas and crustal thicknesses (Miyashiro, 1974; Chiaradia, 2014) illustrates that the 

669 crustal thickness controls the height of the mantle column and influences the relative 

670 importance of decompression melting versus flux melting (Grove et al., 2002; Jagoutz et al., 

671 2011; Karlstrom et al. 2014; Turner and Langmuir, 2015). This makes intuitively sense as a 

672 thicker crust reduces the mantle wedge thickness and hence is associated with a shorter 

673 melting column, reducing the capability of the mantle to decompress. At the arc scale, the 

674 preferential association of PCDs with the episode of crustal thickening (e.g., Cooke et al., 

675 2005) would be consistent with a shorter melting column and the dominance of flux melting 

676 regimes during internal tectonic and magmatic cycles. In conclusions, the role of flux melting 

677 at a given arc location remains of primary importance for the ore-forming potential in arc 

678 magmas and the formation of economic PCDs.

679

680 6. Conclusions

681 In this study, we reviewed the Cu concentrations in primitive arc melts, plutonic rocks 

682 and derivative melts, and volcanic rocks to discuss the role of mantle source and crustal 

683 magmatic processes to generate fertile magmatism associated with large economic PCDs. 

684 The compilation of primitive arc melt does not indicate any particular Cu endowment for a 

685 specific type of primitive arc melt and/or geodynamic setting. Our results are consistent with 

686 previous studies (Lee et al., 2012) showing an average Cu concentration in different types of 

687 primitive arc basalts similar to MORBs (~80 ppm) indicative of the predominant 

688 contribution of Cu from the mantle wedge and limited slab-related fluid/melts input. This 

689 suggests that the initial Cu endowment in the primitive arc melt is unlikely to represent a 

690 crucial prerequisite to form large economic PCDs. Our global compilation of plutonic rocks 

691 illustrates that Cu-rich arc (> 100 ppm) cumulates are associated with both calc-alkaline and 

692 tholeiitic series. In contrast, our global compilation of volcanic rocks documents 

693 systematically different Cu evolution during magma differentiation in calc-alkaline and 

694 tholeiitic series for each arc. The contrasting evolution of Cu in tholeiitic and calc-alkaline 

695 systematically correlates with FeOtot and V, which is consistent with previous studies 

696 suggesting that the different timing of magmatic sulfide saturation relates to the onset of Fe-

697 oxides crystallization on the respective LLDs (Jenner et al., 2010; Chiaradia, 2014). 

698 Additional parameters (pressure of magma differentiation, LLDs, fO2, and/or sulfur 
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699 concentration) may locally play a role and account for the large range of Cu concentration 

700 observed in the compiled data. Although the average Cu concentrations during melt 

701 differentiation is systematically higher for tholeiitic series compared to calc-alkaline series, 

702 we propose that the melt Cu concentrations have minor implications for the ore-forming 

703 potential of arc magmas. Instead, we demonstrate that the initial melt H2O content in 

704 primitive arc melts controls the LLD and the volume of remaining melt mass at fluid 

705 saturation. We showed that the melt mass remaining is a key parameter for calculating the 

706 total mass of Cu transferred into exsolving hydrothermal fluids. We propose that the single 

707 stage model for the formation of large economic PCDs is most applicable for melts from the 

708 calc-alkaline series. The importance of the initial melt H2O content ultimately reflects the key 

709 role of flux melting associated with wet calc-alkaline series and high ore-forming potential, 

710 in opposition to decompression melting associated with damp tholeiitic series.

711
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723 FIGURE CAPTION

724 Fig. 1: World map showing the distribution of arc magmatism and porphyry copper deposits. 

725 The location of calc-alkaline and tholeiitic magmatism compiled in this study is from the 

726 Georoc database (http://georoc.mpch-mainz.gwdg.de/georoc/). The location of porphyry 

727 copper deposits and the deposit size are from Singer et al. (2005). Phanerozoic felsic 

728 magmatism is after Jagoutz and Klein (2018). The location of active margins is from Hayes 

729 et al. (2018). 
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730

731 Fig. 2: Compilation of Cu concentrations in primitive arc melts and mid-oceanic ridge basalts 

732 (MORBs). (a) Whisker plot showing the Cu concentrations in primitive arc melt based on 

733 variable tectonic settings using the classification scheme of Schmidt and Jagoutz (2017). The 

734 ranges of Cu values for primitive MORBs are compiled from Gale et al. (2013). (b) Average 

735 Cu concentration and associated uncertainties (1 SD) for primitive arc basalts (blue), 

736 primitive arc high-Mg andesites (orange), and primitive MORBs (grey). (c) Histogram 

737 showing the distribution of Cu concentrations for primitive arc basalts, primitive arc high-

738 Mg andesites (HMA), and primitive MORBs. Abbreviations in (a): C for continental arc, IO for 

739 Intra-oceanic arc, and BAB for back-arc basin.

740

741 Fig. 3: Plots of Cu, FeOtot and V versus MgO for volcanic rocks of 28 arcs. (a–c) Tholeiitic 

742 rocks (n=6,114) (d-f) Calc-alkaline rocks (n=9,275). Median values for each compiled arc are 

743 also plotted at every MgO = 0.5 wt% for tholeiitic series (dark red circle) and calc-alkaline 

744 series (light blue circle) (see details in Fig. C1). Median values of Cu, FeOtot and V for every 

745 MgO = 0.5 wt% are shown for the global compilation of tholeiitic and calc-alkaline series 

746 (yellow diamond). The average Cu concentration and associated uncertainties (1 SD) for 

747 primitive arc basalts (black bar) is shown in (a) and (d). 

748

749

750 Fig. 4: Geochemical relationships between Cu, FeOtot, V and crustal thicknesses for 17 

751 volcanic arcs with representative whole rock geochemical data set (n>300). (a) Cu versus  

752 FeOtot. (b) V versus  FeOtot. (c) Cu4 versus Fe4, where Cu4 and Fe4 correspond to the average 

753 of median values and associated uncertainties (1 SD) of Cu and Fe between MgO = 3 and MgO 

754 = 5 wt% (see Table B1). Circles and squares represent thin (<25 km) and thick arc (>25 km). 

755 (d) Cu4 versus crustal thickness. References for crustal thicknesses and associated 

756 uncertainties (1 SD) are available in Table B1. The average Cu concentration and associated 

757 uncertainties (1 SD) for primitive arc basalts (black bar) is shown in (c) and (d). 

758
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759 Fig. 5: (a) Plots of Mg# (molar Mg/(Mg+Fe)) versus SiO2 for compiled whole-rock 

760 compositions of plutonic rocks for four crustal sections (Famatina, Fjordland, Kohistan and 

761 Talkeetna; Jagoutz and Kelemen, 2015; Jagoutz and Klein, 2018 and references therein) 

762 together with other cumulates xenoliths from the Bonanza arc, Sierra Nevada, Arizona, 

763 Eastern Pontides and Kermadec (Chin et al., 2018 and references therein). Red dots are used 

764 for the Chilas complex in Kohistan arc as it represents a damp tholeiitic fractionation, 

765 whereas dots with different shades of blue represent plutonic rocks and cumulates xenoliths 

766 associated with wet calc-alkaline fractionation (Jagoutz et al., 2011; Jagoutz and Klein, 2018). 

767 (b) Histogram showing the density of Cu concentrations for the four crustal sections and 

768 other cumulates xenoliths. See discussion for details and the full data set and references in 

769 Table C1.

770

771 Fig. 6: 
772 Sulfur speciation in melt and sulfur solubility as a function of oxygen fugacity, expressed log 

773 units relative to the fayalite-magnatite-quartz buffer (FMQ). (a) The different black curves 

774 illustrates the changes in S6+/Stot in hydrous silicate melts with pressure from Jugo et al., 

775 (2010), Botcharnikov et al., (2011) and Matjuschkin et al. (2016). The brown line represents 

776 the sulfur solubility curve at sulfide and sulfate saturation at 0.2 GPa after Botcharnikov et 

777 al. (2011), whereas the brown dotted line represents an hypothetical similar sulfur solubility 

778 curve at higher pressure of 1 GPa. The upper inset indicates the redox ranges for mid-ocean 

779 ridge basalt (MORB), sub-arc mantle and arc basalts from Ballhaus (1993), Carmichael 

780 (1991), Parkinson and Arculus (1999), Arai and Ishimaru (2008), Wallace and Edmons 

781 (2011), Evans et al., (2012) and Bénard et al., (2018). We report a range of sulfur 

782 concentrations (orange whisker plot with a median values of 0.12 wt%) measured in olivine-

783 hosted melt inclusions for arc-related basalts and basalt-andesites compiled from the Georoc 

784 database (n=456). (b-e) Sulfur solubility curves simplified from Figure 6a to illustrate the 

785 effect of different parameters on sulfide saturation, including (b) variable pressure of 

786 differentiation, (c) different liquid line of descent, (d) variable initial redox conditions, and 

787 (e) variable initial sulfur content [S]i. In (b) and (c), the values of F and the timing of 
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788 magnetite is quantified in Table D1. The different scenarios are also discussed in details in 

789 the section 4.1 of the manuscript.

790

791 Fig. 7: Computed melt composition, melt Cu concentration, melt H2O content, melt fraction 

792 (F), during magmatic differentiation for wet (2 to 4 wt% H2O - blue) and damp (0.2 to 1.5 

793 wt% H2O - red) at FMQ =1 for variable starting pressure of differentiation (i.e., 8-1.5 kbars 

794 (dotted lines) and 4-1.5 kbars (plain lines)) using Rhyolite-MELTS (Gualda et al., 2012). (a) 

795 Computed melt evolution of FeOtot versus MgO. For damp LLDs, the highest and lowest Fe 

796 enrichment at MgO ~4-5 wt% corresponds to initial H2O of 0.2 and 1.5 wt%, respectively. 

797 The black line corresponds to modelled LLD with initial H2O of 1 wt% at FMQ =1 from 

798 Zimmer et al. (2010), showing the effect of the initial primitive melt composition for the Fe 

799 enrichment. Shaded dots are single data and median data per arc from our global compilation 

800 of tholeiitic and calc-alkaline volcanic rocks in Figure 3b,e. (b) Evolution of the Cu 

801 concentration versus MgO in wet, damp and dry melt modelled using Rayleigh fractionation 

802 assuming 0.25 vol.% sulfide (  =800) and 99.75 vol.% silicate (  =0.1). 𝐷𝑠𝑢𝑙𝑓𝑖𝑑𝑒/𝑚𝑒𝑙𝑡
𝐶𝑢 𝐷𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒/𝑚𝑒𝑙𝑡

𝐶𝑢

803 Shaded dots are single data and median data per arc from our global compilation of tholeiitic 

804 and calc-alkaline volcanic rocks in Figure 3a,d. The steady depletion assumes early sulfide 

805 saturation to simulate the trends observed in all calc-alkaline series and some tholeiitic 

806 series in thick arcs (>25 km). In contrast, the early enrichment in Cu followed by a sharp 

807 depletion simulates late sulfide saturation at MgO ~4 wt% to reproduce the evolution of Cu 

808 concentration displayed by tholeiitic series in thin arcs (<25 km). (c, d) Rhyolite-MELTS 

809 computed melt H2O content versus the remaining melt mass (F) and pressure (P). See text 

810 for detailed discussion and Table D1 for full data sets.

811

812 Fig. 8: Relationship between the initial melt H2O content and the ore-forming potential for 

813 the different liquid lines of descents modelled in Figure 7. The ore-forming potential is 

814 expressed as the relative Cu endowment in fluid expelled at degassing of a H2O-saturated 

815 magma normalized to damp tholeiitic melts modelled with an initial H2O content of 0.5 wt% 

816 (circles) and 1.5 wt% (squares) according to the variable pressure of differentiation from 4 

817 to 1.5 kbars (4 kb – filled symbol) from 8 to 1.5 kbars (8 kb – empty symbol). The different 
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818 colors reflect melt Cu content at H2O saturation in tholeiitic series assuming late sulfide 

819 saturation in thin arc (grey) and early sulfide saturation in thick arc (yellow). Details of the 

820 calculation is provided in Table D1 and Supplementary Material A1. See text for discussion.

821

822 Fig. 9: Conceptual cartoon of the single-stage and multi-stage models for the formation of 

823 porphyry Cu deposits (PCDs). (a) The single stage model assumes the formation of large 

824 economic PCDs associated with the generation of wet calc-alkaline melts, where flux melting 

825 is predominant in the main arc. (b) The single stage model assumes the formation of barren 

826 upper crustal intrusions associated with the generation of damp tholeiitic melts, where 

827 decompression melting is predominant in the main arc. (c) The multi-stage model assumes 

828 the remobilization of Cu-sulfide sequestered in crustal cumulates during a later hydrous and 

829 oxidized magmatic event in the main arc, which may result in the formation of large PCDs.

830

831 Fig. A1: Plots of Cu versus MgO for primitive arc basalts and primitive high-Mg Andesites 

832 using the classification scheme of Schmidt and Jagoutz (2017).

833

834 Fig. B1: Classification of tholeiitic and calc-alkaline volcanic rocks (n=15,389) based on the 

835 FeO/MgO versus SiO2 after Miyashiro (1974).

836

837 Fig. C1: Plots of Cu, FeOtot and V versus MgO for calc-alkaline and tholeiitic volcanic rocks for 

838 each compiled arc. Median Cu, FeOtot and V values for each arc are plotted at every MgO = 0.5 

839 wt%.

840

841 Fig. D1: Plots of Cu and V versus FeOtot for calc-alkaline and tholeiitic volcanic rocks for each 

842 compiled arc.
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Calculation of Cu endowment in fluid

The volume of the H2O-saturated melt (Vini) corresponds to the melt fraction at 

which an initial volume of magma (V0) reached H2O saturation (Fini) 

𝑉𝑚𝑒𝑙𝑡
𝑖𝑛𝑖  =  𝑉𝑚𝑒𝑙𝑡

0 ∗  𝐹𝑖𝑛𝑖

Where V0 is the initial volume of magma based on an average arc magma production rate 

of 189 km3 km-1 Myr-1 in intra-oceanic arcs (Jicha and Jagoutz, 2015) and Fini is 

determined from the Rhyolite-MELT modeling (Table. D1). The remaining melt fraction 

of H2O-saturated melt at degassing depends on the H2O dissolved in the melt (W), the 

percolation threshold (c), and the density of melt (dmelt) and fluid (dfluid):

𝐹𝑑𝑒𝑔𝑎𝑠 =  
𝑊

𝑑𝑓𝑙𝑢𝑖𝑑
/ ( 𝑐

𝑑𝑚𝑒𝑙𝑡 (1 ‒ 𝑐)
+  

𝑊
𝑑𝑓𝑙𝑢𝑖𝑑)

Where, the percolation threshold (Φc) correspond to the critical porosity at which the 

transition from an impermeable to permeable magma allowing degassing occurs and 

fixed at 0.3 based on percolation theory for overlapping spheres that predict Φc~0.28-

0.35 (Walsh and Saar, 2008; Vasseur and Wadsworth, 2017), W and density (Mt/km3) of 

melt and fluid are obtained from the Rhyolite-MELT modeling (Table. D1).

The volume (km3) of H2O-saturated melt and fluid at degassing corresponds to 

𝑉 𝑚𝑒𝑙𝑡
𝑑𝑒𝑔𝑎𝑠 =  𝑉𝑚𝑒𝑙𝑡

𝑖𝑛𝑖 ∗  𝐹𝑑𝑒𝑔𝑎𝑠

𝑉 𝑓𝑙𝑢𝑖𝑑
𝑑𝑒𝑔𝑎𝑠 =  𝑉𝑚𝑒𝑙𝑡

𝑖𝑛𝑖 ∗ 𝑊 ∗ (𝐹𝑛 ‒ 1 ‒  𝐹𝑑𝑒𝑔𝑎𝑠)
𝑑𝑚𝑒𝑙𝑡

𝑑𝑓𝑙𝑢𝑖𝑑

where Fn-1=1.

The concentration of Cu (wt%) in the melt and fluid at degassing corresponds to 

𝐶 𝑚𝑒𝑙𝑡
𝐶𝑢𝑑𝑒𝑔𝑎𝑠 =  

𝐶 𝑚𝑒𝑙𝑡
𝐶𝑢𝑖𝑛𝑖

𝐷𝐶𝑢 +  𝐹𝑑𝑒𝑔𝑎𝑠 (1 ‒  𝐷𝐶𝑢)



𝐷𝐶𝑢 =  𝐷𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠/𝑚𝑒𝑙𝑡
𝐶𝑢 (1 ‒ 𝑊) + 𝐷 𝐶𝑢

𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡 𝑊

𝐶𝑓𝑙𝑢𝑖𝑑
𝐶𝑢  =  𝐶 𝑚𝑒𝑙𝑡

𝐶𝑢𝑑𝑒𝑔𝑎𝑠 ∗  𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

Where  is the melt copper content at fluid saturation obtained from the Rhyolite-𝐶 𝑚𝑒𝑙𝑡
𝐶𝑢𝑖𝑛𝑖

MELT modeling (Table D1),  and  are the partition coefficient of 𝐷𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠/𝑚𝑒𝑙𝑡
𝐶𝑢 𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡

𝐶𝑢

Cu between fractionated phases (silicates, oxides, phosphates, sulfide) or fluid with 

respect to the melt.  = 2.1 corresponds to the one used in the Rayleigh 𝐷𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠/𝑚𝑒𝑙𝑡
𝐶𝑢

fractionation model (Table D1), whereas  = 140 (Tattitch and Blundy, 2017).𝐷𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡
𝐶𝑢

The mass (Mt) of Cu transferred in expelled fluids corresponds to 

𝑚𝑓𝑙𝑢𝑖𝑑
𝐶𝑢 =  𝑉 𝑓𝑙𝑢𝑖𝑑

𝑑𝑒𝑔𝑎𝑠 ∗ 𝑑𝑓𝑙𝑢𝑖𝑑 ∗ 𝐶𝑓𝑙𝑢𝑖𝑑
𝐶𝑢
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