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Abstract12

As demand for urban mobility continues to grow and given that over 60% of the world’s population
is expected to be urban by 2050, increasingly innovative solutions must be devised to adequately
meet the transportation needs of global metropolitan areas. Our objective is to therefore develop
and implement a framework to analyze the systemic impacts of future mobility trends and policies.
First, we build on prior work in classifying the world’s cities into 12 urban typologies that represent
distinct land-use and behavioral characteristics. Second, we introduce a generalized approach for
a creating a detailed, simulatable prototype city that is representative of a given typology. Using
this, we build and simulate two auto-dependent (largely US-specific) prototype cities via a state-
of-the-art agent-based platform, SimMobility, for integrated demand microsimulation and supply
mesoscopic simulation. We demonstrate the framework by analyzing the impacts of automated
mobility on-demand (AMoD) implementation strategies in the cities based on demand, congestion,
energy consumption and emissions outcomes. Our results show that the introduction of AMoD
cannibalizes mass transit while increasing vehicle kilometers traveled (VKT) and congestion. In
sprawling auto-dependent cities with low transit penetration, the congestion and energy consump-
tion effects under best-case assumptions are similar regardless of whether AMoD competes with or
complements mass transit. In dense auto-dependent cities with moderate transit modeshare, the
integration of AMoD with transit yields better outcomes in terms of VKT and congestion. Such
cities cannot afford to disinvest in mass transit, as this would result in unsustainable outcomes.
Overall, this framework can provide insights into how AMoD can be sustainably harnessed not only
in low-density and high-density auto-dependent cities, but also in other typologies.

Keywords: automated mobility-on-demand, agent-based simulation, future urban mobility, urban13

typologies, prototype cities14
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1 Introduction15

As demand for urban mobility continues to grow, and given that over 60% of the world’s16

population is expected to be urban by 2050 (United Nations, Department of Economic and Social17

Affairs, Population Division, 2018), increasingly innovative solutions must be devised to adequately18

meet the transportation needs of global metropolitan areas. The implementation and provision19

of these services, however, are significantly constrained by energy, environmental and financial20

requirements and regulations. On the one hand, private car ownership remains on an upward21

trajectory, globally (Sperling and Gordon, 2008; Dargay et al., 2007).1 In 2016, passenger cars22

alone contributed about 12% (772 MtCO2e)2 of the United States’ GHG emissions (EPA, 2018),23

while in Europe, passenger cars similarly contributed 11% (494 MtCO2e) total GHG emissions in24

the same year (Transport & Environment, 2018). On the other hand, the demand for ridesourcing3
25

services has been rapidly increasing over the past several years (Jin et al., 2018; Shaheen and Cohen,26

2019). The long-term impacts of this trend are yet to be determined. However, it has been generally27

observed that the growth of on-demand passenger mobility is likely partially responsible for the28

decline in mass transit ridership in many cities, both in the US and elsewhere, along with impacts29

on congestion that are yet to be systematically quantified (Clewlow and Mishra, 2017). To both30

mitigate the deleterious effects of these trends and realize their maximum potential benefit, cities31

require integrated mobility solutions driven by smart analytical frameworks (Shaheen and Chan,32

2016). The insights required to generate these solutions depend on large-scale, representative and33

detailed simulations of the urban environment. However, given the sheer differences in demographics34

(population), land-use, demand, supply and supply-demand interaction characteristics across cities35

worldwide, these innovations must be tailored to each urban area.36

Our objective is to therefore understand and analyze globally relevant impacts of future trends37

and policies on urban mobility outcomes. First, we build on prior work in classifying the world’s38

cities into 12 urban typologies which represent distinct land-use and behavioral characteristics (Oke39

et al., 2019). This classification used the most recent mobility, economic, demographic, land-use40

and behavioral data obtained from 331 cities. Second, we propose a generalized approach for a41

creating detailed, simulatable prototype city that is representative of a given typology. In this42

paper, we focus on two auto-dependent typologies for carrying out our simulation experiments:43

Auto Sprawl and Auto Innovative. These two typologies represent almost all the metropolitan44

areas in the US and Canada, where the automobile is the dominant mode of transportation. Using45

our generalized approach, we build two eponymous prototype cities and use a state-of-the-art46

agent-based platform, SimMobility, for integrated demand microsimulation and supply mesoscopic47

simulation. We analyze the impacts of automated mobility-on-demand (AMoD) implementation48

strategies in both prototype cities based on induced demand, modal and location shifts, level of49

service (congestion), energy consumption and emissions. Our results provide insights into how50

1Recent statistics indicate that global sales of passenger vehicles dropped to 78.9 million units in 2018 from
79.6 million units in 2017. However, these numbers are still over 40% greater than the annual average num-
ber of passenger vehicles sold between 2000 and 2015, which was 54.9 million units. Since 2016, annual passen-
ger vehicles sales have averaged no less than 74 million units (https://www.statista.com/statistics/200002/
international-car-sales-since-1990/).

21 MtCO2e (million metric tonne of CO2 equivalent) is equivalent to 1 Tg CO2e (teragram of CO2 equivalent).
3Subsequently, in this paper, we will use the term “mobility-on-demand” (MoD) to refer to the

mode comprising taxi and ridesourcing services. We acknowledge that MoD is currently being stan-
dardized to encompass integrated and multimodal on-demand mobility beyond passenger ridesourcing
(https://www.transit.dot.gov/regulations-and-guidance/shared-mobility-definitions). However, for the
sake of consistency with the term AMoD, as used in this manuscript, and also with recent papers published in
this research stream, we will restrict the term MoD to refer to taxi and ridesourcing.
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AMoD can be effectively harnessed in two distinct city types relevant to the US and Canada.51

In recent years, several key efforts have been made in understanding the role and impact of52

AMoD on future urban mobility, yet major gaps still remain in our understanding of how these53

impacts would vary with urban form or topology. Efforts utilizing agent-based simulation to analyze54

the introduction of AMoD (Martinez et al., 2015; Fagnant and Kockelman, 2014) have been limited55

to specific cities and case studies, giving rise to results that are not very generalizable. More56

recent work investigating the integration of AMoD with mass transit (Wen et al., 2018; Shen et al.,57

2018; Scheltes and de Almeida Correia, 2017; Liang et al., 2016), while agent-based, have also58

been narrowly defined for singular cities. Conceptual considerations of on-demand mobility across59

variations in urban form have also been explored by (Shaheen et al., 2017). Regarding the generation60

of representative prototype cities for simulating urban typologies, there is no comprehensive extant61

approach for this process from open-source data to agent-based simulation. Furthermore, only62

very few studies have accounted for demand-supply interactions (Wen et al., 2018; Azevedo et al.,63

2016) or incorporated high-resolution activity-based modeling systems (Nahmias-Biran et al., 2019).64

While attempts to assess the impacts of shared AMoD systems under globally optimal conditions65

(Alonso-Mora et al., 2017; Vazifeh et al., 2018) have demonstrated the potential of AMoD to reduce66

congestion in perhaps very specific urban settings, these studies neglect behavioral impacts. There67

are also no examples in the extant literature of AMoD impact assessment for sprawling auto-68

dependent cities that are chiefly to be found in North America. The question of whether (A)MoD69

can better complement or substitute mass transit has been addressed by Basu et al. (2018) and Hall70

et al. (2018), although the latter use a purely data-driven approach absent of simulation. Current71

results show that apart from large, dense, transit-oriented cities, (A)MoD could either complement72

or substitute transit in auto-dependent cities, such as are found in the US, depending on the73

availability of transit. Our paper thus makes significant contributions to the existing literature on74

AMoD impacts on future mobility in the following areas:75

(a) We introduce a generalized, integrated approach to prototype city generation for represen-76

tative agent-based simulation of urban typologies77

(b) We conduct large-scale simulations of AMoD implementation strategies in prototype cities78

integrating demand microsimulation and supply mesoscopic simulation79

(c) We address demand-supply interactions and compare impacts for two distinct auto-dependent80

urban typologies81

The organization of the remainder of this paper is as follows. First, we describe in Section 282

our experimental framework and methodology. This begins with a background (Subsection 2.1) on83

the urban typologies and a detailed explanation of our simulation environment. We then discuss84

the prototype city generation approach (Subsection 2.2), including model calibration and validation85

steps. Lastly, in this section, we motivate and present the scenarios simulated in this study (Subsec-86

tion 2.3). Data sources are also indicated throughout this section where relevant. Calibration and87

simulation results of the AMoD scenarios for both cities are presented and discussed in Section 3.88

We conclude with a summary of key findings and contributions, outlining steps for further work in89

Section 4.90

2 Materials and methods91

In this section, we describe the key elements of our methodology. First, we introduce the reader92

to the urban typologies that serve as the bases for our prototype city simulations (Subsection 2.1).93

We also summarize the relevant aspects of the simulation environment used in performing our94

experiments. Following this background, we discuss our approach to generating the prototype cities95

(Subsection 2.2). Finally, in Subsection 2.3, we explain the motivation, design and implementation96

3
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of the AMoD scenarios within the simulation environment. An overview of the analytical framework97

is given in Figure 1.498

Urban
Typology

Prototype City

population, land-use
demand model

supply model

SimMobility

simulation

AMoD scenarios

Systemic
Effects

Figure 1 Overview of analytical framework

2.1 Background99

2.1.1 Urban typologies100

Given the infeasibility of modeling and simulating every city of interest in the world for future101

urban mobility analyses, we use the approach of simulating prototype cities, each representing a102

group of similar cities we refer to as an urban typology. Thus, our objective in collecting urban103

data and subsequently classifying cities is to enumerate typologies with distinct land-use, travel104

behavior, topology, socio-economic, energy and emissions characteristics. From these typologies, we105

can generate prototype cities that are representative of their urban typology outcomes. Ultimately,106

by simulating prototype cities, we can obtain insights that are broadly applicable to member cities107

of a given typology.108

Data was gathered from 331 metropolitan areas worldwide using 69 mobility, demographic,109

land use, and economic indicators.5 We used exploratory factor analysis (EFA) as a dimensionality110

reduction approach in order to obtain an interpretable transformation of the original dataset. This111

is based on the hypothesis that there exists a latent or underlying structure governing the variables112

in the data. The EFA yielded an optimal representation of 9 factors: Metro Propensity, Bus Rapid113

Transit (BRT) Propensity, Bikeshare Propensity, Development, Population, Congestion, Sprawl,114

Network Density and Sustainability. We named the factors based on the corresponding variables115

with the most important loadings (contributions).116

Hierarchical agglomerative clustering has been demonstrated as an effective unsupervised learn-117

ing approach for classification. We performed the clustering on the dataset reduced from 69 dimen-118

sions (variables) to a rotated subspace of 9 dimensions (factors). In this case, the Ward algorithm119

gave the best performance. This resulted in 12 urban typologies (Table 1). For a complete descrip-120

tion of the typologies and methods, the reader is referred to Oke et al. (2019).121

2.1.2 Archetype city selection122

The generation of a prototype city requires the input of (i) a population sample, (ii) land-123

use patterns and (iii) a supply network. While some relevant research has been done in the area124

of synthetic network generation (Zhou et al., 2015; Dai et al., 2016), the level of detail (including125

population and land-use factors) required for the high-resolution simulation we perform rendered126

extant approaches infeasible within the scope of our efforts. Thus, to ensure consistent demand-127

supply interactions unique to an input network, we obtain inputs (i) – (iii) from an archetype city of128

the respective typology. For our purposes, we define an archetype city as one that closely represents129

4The prototype city data and models described in this section are available at https://github.com/jimioke/

mitei-prototype-cities.
5An interactive dashboard for further exploration of the data and typology results is available at its.mit.edu/

typologies.
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the average observations of its typology. To obtain candidates for the archetype city, we first rank130

each city by its Euclidean distance to the typology centroid, which is the mean vector of the 9131

factor values of that typology (Table 1). We then select the archetype city based on two criteria:132

(a) nearness to typology centroid, and (b) availability and quality of inputs (i) – (iii). In this paper,133

the subjects of our AMoD simulation experiments are Auto Sprawl and Auto Innovative, and their134

archetype cities are Baltimore and Boston, respectively. We compare them by their mobility factor135

scores (on a scale of 0 to 1) in Figure 2. As will be described in Subsection 2.2, while we require136

detailed archetype city inputs (i) – (iii), we calibrate the prototype city to typology averages for137

the sake of representativeness.138

Table 1 Top five cities ranked in order of closeness to the centroid of their corresponding typologies

Typology Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Auto Sprawl Baltimore Tampa Raleigh Cincinnati Indianapolis
Auto Innovative Washington DC Atlanta Boston Seattle Toronto
BusTransit Dense Rio de Janeiro Bogota Leon Recife Sao Paulo
BusTransit Sprawl Mecca Shiraz Mashdad Santa Cruz Medina
Congested Boomer Bangalore Lahore Kinshasa Karachi Chennai
Congested Emerging Kumasi Phnom-Penh Conakry Bandung N’Djamena
Hybrid Giant Sendai Warsaw Sofia Hiroshima Sapporo
Hybrid Moderate Cordoba Havana Izmir Valparaiso Panama City
MassTransit Heavyweight Berlin Madrid Munich Seoul-Incheon Singapore
MassTransit Moderate Jerusalem Newcastle Tel-Aviv Liverpool Turin
MetroBike Emerging Shenyang Harbin Changshaw Zhengzhou Qingdao
MetroBike Giant Shenzhen Guangzhou Shanghai Chongqing Beijing

Figure 2 Comparison of the Auto Sprawl and Auto Innovative typologies based on normalized factor scores

The distinguishing characteristics between Auto Sprawl and Auto Innovative are the Metro139

Propensity, Population and Network density factors. Auto Innovative also suffers more from con-140

gestion and inefficiency than does Auto Sprawl, which is less dense (both in terms of network and141

population). We further compare these two typologies on a selected number of input variables142

(Table 2). From Table 2, we see that Auto Sprawl has a higher car mode share, while Auto In-143

novative has a mass transit mode share that is three times greater than that of its counterpart.144

5
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Table 2 Selected characteristics of Auto Sprawl and Auto Innovative

Selected Variable Typology Average Value
Auto Sprawl Auto Innovative

Car mode share (%) 86.4 78.4
Mass Transit mode share (%) 3.6 10.7

Bike mode share (%) 0.5 0.9
Walk mode share (%) 2.8 3.6

Population (million) 1.7 5.3
Population density (thousand/sq. km) 1.48 1.62

Per Capita GDP ($1000) 50.0 60.1
Annual CO2 emissions per capita (tCO2e) 16.5 13.7

Auto Innovative also is also three times as populated on average, but only slightly denser, which145

indicates that Auto Sprawl cities have larger areas than those in Auto Innovative. Lastly, Auto146

Sprawl generates 20% more per-capita CO2 emissions than Auto Innovative. Given these key dif-147

ferences between the two typologies, our approach of conducting a detailed agent-based simulation148

of mobility in respectively generated prototype cities can provide typology-specific insights on the149

impacts of AMoD deployment, particularly with regard to mass transit and energy consumption.150

2.1.3 Modeling and simulation environment151

Assessing the systemic evolution of a city for behavioral implications and performance impacts152

of new mobility services requires a highly detailed large-scale simulation environment. We use the153

platform, SimMobility, which employs an integrated activity- and agent-based framework for ana-154

lyzing future mobility scenarios by capturing the decisions and movements of a given population155

(Adnan et al., 2016; Azevedo et al., 2016). SimMobility is modular with three components that op-156

erate at different temporal scales. The Short-Term simulator is microscopic, with up to millisecond157

granularity for small scale network performance analyses. The Mid-Term module simulates daily158

demand, supply and demand-supply interactions, while the Long-Term component models land de-159

velopment and economic interactions at the annual scale. For the purposes of the AMoD scenario160

experiments in this paper we use the Mid-Term module (hereafter referred to as SimMobility-MT ),161

which requires as an input, a synthetic population and land-use specification, along with a trans-162

port supply network specification. SimMobility-MT consists of three submodules, namely: PreDay,163

WithinDay and Supply. The PreDay sumbodule simulates daily travel plans, WithinDay simulates164

modifications to plans and events, while Supply concurrently simulates agent events and actions.165

An important feature of SimMobility-MT is “day-to-day learning,” whereby aggregate zonal travel166

times from Supply are updated in PreDay to iteratively modify passenger activity decisions based167

on network performance.168

The PreDay module consists of an activity-based model (ABM) and an implementation frame-169

work (developed in C++ and Lua) which produce a daily activity schedule (DAS) for each indi-170

vidual in the synthetic population. In the PreDay ABM, interconnected hierarchical choice models171

are used to generate the DAS across three levels: Day Pattern, Tour and Intermediate Stop. As172

indicated by solid lines in Figure 4, higher-level choice models are conditioned on the lower-level173

models. Disaggregate accessibility measures, capturing the expected utility of all alternatives, from174

the mode and destination choice models are integrated into the higher-level models, as indicated by175

the dashed arrows, as well as summarized in Table 4. At the Day Pattern level, decisions are made176

pertaining to the binary choice of leaving or staying at home, the multinomial choice of primary177

activities to perform (and their sequence), the multinomial choice of stop purpose combinations178

before or after the primary activity of each tour, and the number of tours. The Tour level con-179

tains models for usual work choice (binary), mode choice for fixed-location tours, mode-destination180

6
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PreDay
activity-based demand model microsimulation

Synthetic Population Land-use

Daily Activity
Schedules

WithinDay
plan-action simulation of agent events

Tours
Trip chains

Trajectories

Supply
fleet operations and network performance

Day-to-day
learning
(spatially

aggregated travel
time update)

Figure 3 SimMobility MidTerm framework

choice for tours without fixed locations, start time and duration of each tour. Work-based subtour181

decisions are also handled at this level. The lowest level is the Intermediate Stop, where the num-182

ber, mode and destination and departure times of stops made before or after primary activities are183

decided. Upon simulation of the ABM, the resulting DAS is a detailed plan of each individual’s184

sequence of activity categories, times and locations at a half-hour resolution. A summary of the185

PreDay ABM is given in Table 3. For a more detailed description of the PreDay module, the reader186

is referred to de Lima et al. (2018). For the prototype cities, we limit the activity choice set to187

the following: Work, Education, Shop and Other. Personal errands and recreation are among the188

purposes captured by the Other designation. Utility equations for selected models in each of the189

levels indicated in Figure 4 are provided in Appendix B.190

Table 3 PreDay activity-based submodels and their activity dimensions across the three levels: Day Pattern,
Tour and Intermediate Stops.

Level Models Activity dimensions

Day Pattern

Travel N/A
Tour All
Intermediate Stops All
Number of Tours All

Tour

Usual Work Work
Mode Work, Education
Mode-Destination Work, Education, Shop, Other
Time-of-Day Work, Education, Shop, Other
Work-based Subtour Work
Subtour Mode-Destination Work
Subtour Time-of-Day Work

Intermediate Stops
Generation All
Mode-Destination All
Time-of-Day All

In the WithinDay submodule, the route choice, rescheduling and mode change decisions of191

the agents are simulated based on the plan-action framework (Ben-Akiva, 2010) in response to192

7
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Figure 4 SimMobility MidTerm PreDay activity-based model structure. Solid lines indicate conditional
dependency in the direction of the arrows. Dashed lines indicate accessibility integration in the direction of the
arrows. The hatched outlines demarcate the three levels of the model.

Table 4 Summary of inclusive values used in PreDay model. φ = {Work,Education, Shop,Other}

Symbol Model source Model inclusion

λdpt Day Pattern Tour Day Pattern Binary
λdps Day Pattern Stop Day Pattern Binary
λtdφ Destination Choice Number of Tours, Day Pattern Intermediate Stops/Tours/Binary
λtmφ Mode Choice Destination Choice, Number of Tours, Day Pattern Intermediate

Stops/Tours/Binary

information and control. The resulting trip-chains are then performed in the Supply submodule.193

Following the dynamic traffic assignment framework, trip trajectories obtained in Supply are used194

to update link travel times, which in turn modify the routing decisions of the passengers. The195

WithinDay submodule also handles daily events, using a publish-subscribe mechanism. Events are196

defined across five dimensions: time, information, location, perception and requests.197

Public (bus, train, on-demand) and private (car, motorcycle, private bus, walk) modes are198

simulated in the Supply submodule. The network-level simulation is mesoscopic and time-based.199

Thus, the capacities are determined by lane-groups, and speed-density relationships govern the200

8
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movements of vehicles in each segment. At each advance interval (up to a five-second resolution),201

speeds, positions and energy consumption are reported for each vehicle. Vehicle fleet operations202

for the public modes are also implemented in Supply. For public buses and trains, schedules and203

headways are implemented for route management. A bus controller and train controller track204

movements and occupancy, and can also handle disruptions. The mobility-on-demand (MoD)205

services, namely: taxi and ridesourcing service, are also managed by a controller to handle ride206

matching, vehicle routing and dispatching and rebalancing operations. Powertrain-specific energy207

consumption is calculated based on models incorporated into SimMobility from Rakha et al. (2011);208

Fiori et al. (2016); Wang and Rakha (2017a,b).209

2.2 Prototype city generation210

To assess the impacts of future mobility strategies in different urban typologies, we create211

representative prototype cities for simulation in SimMobility. The creation of a prototype city212

involves data-driven approaches for generating population, demand and supply parameters. From213

the member cities of a typology, a archetype city is chosen near the centroid of the typology214

characteristics (as discussed in Subsubsection 2.1.2). The archetype city serves as the source of the215

population data and attributes, supply network, land use, and demand-supply interaction patterns.216

We create a synthetic population and land-use specification of the archetype city in order to preserve217

the demand-supply patterns for its network. However, mode shares (including MoD) and activity218

shares are calibrated to the typology average, in order to capture behavioral impacts at the typology219

level. Following this, the we calibrate the prototype city to fit archetype city values for average220

travel times (by activity), link speeds and waiting times in order to ensure consistency with the221

archetype city network. In each of these steps, we generalized from existing approaches (Strauch222

et al., 2005; Le et al., 2016; Fournier et al., 2020) and leverage on open data sources.223

2.2.1 Population and land-use224

We define four levels of spatial resolution for population and land-use specification in a prototype225

city Figure 5. The urban typology prototype city (UTP), representing the highest level, is given by226

the metro area of the selected archetype city. The Second Administrative Levels are the highest-227

level regions into which the UTP is subdivided. Traffic Analysis Zones (TAZs) are obtained for228

the UTP given the archetype road network. Where unavailable, these are generated as Thiessen229

polygons. CELLs are obtained by gridding over the entire UTP. The corresponding land use weight230

at the CELL level is used to determine the number and location of the households therein, as well231

as the numbers of work (WORK) and education (EDU) locations in each TAZ.232

We use the Hierarchical Iterative Proportional Fitting (HIPF) method (Müller and Axhausen,233

2012) to generate a synthetic population for each prototype city. Aggregate-level data area obtained234

from the American Community Survey, while household and individual sample data are obtained235

from the Public Use Microdata Samples. At the household level, we control for the (i) income236

and (ii) vehicle ownership variables, while at the individual level, we control for the (iii) age, (iv)237

gender and (v) employment status variables. (See Figure 8 and Figure 9 for a concise validation238

summary of these variables.) These individual and household variables, including others such as239

household composition and education level, are the population-based predictors in the demand240

modeling framework. Land-use variables are also required for the destination-choice models. These241

include TAZ area, number of firms/businesses, number of shops, distance to city center, among242

others. Travel time and cost of modes are also inputs to the mode-choice models. The required243

variables differ across the various choice models. However, some representative model specifications244

are described in detail in Appendix B. A summary of the syntheses and allocation interactions is245

depicted in Figure 6.246
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CELL
via Rasterization

TAZ
Traffic Analysis Zone

SAL
Second Administrative Level

UTP
Urban Typology Prototype

Figure 5 The four levels of spatial resolution in the prototype city development framework.

Aggregates (SAL)
HH|IND|WORK|EDU

Samples (SAL)
HH|IND

Synthetic
Population

HH|IND

Totals
WORK|EDU

LAND
USE

TAZ Locations
WORK|EDU

CELL Locations
HH

Assignment
IND→WORK|EDU

Hierarchical Iterative
Proportional Fitting

Gravity Model

rasterization
& weighting

Figure 6 Population and land-use synthesis framework for generation and allocation

Land-use category data enable us to spatially allocate households, places of employment and247

education. We further apply IPF to obtain TAZ-level employment and education cross-tabulation248

weights, and then use gravity models to perform the final assignments at the individual level.249

Further details are provided in Appendix A.250

10
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2.2.2 Demand251

The PreDay ABM was estimated for one of the North American typology archetype cities—252

Boston. Data were obtained from the Massachusetts Travel Survey (MTS) and the Central Trans-253

portation Planning Staff (CTPS) of Boston for the period 2010 to 2011. The estimation was254

performed using the PythonBiogeme platform. Further details and results on the model and esti-255

mation procedure can be found in de Lima et al. (2018). The Boston model served as a starting256

point for the Auto Sprawl and Auto Innovative models. In calibrating the ABM for the prototype257

cities, we adjust the following quantities to match the mode and activity shares for their respec-258

tive typologies: alternative-specific constants, specific variable coefficients and scale parameters259

(which control the correlations in the nested logit structure). The calibration approach is formally260

described in Chen et al. (2019). The activity validation data are obtained from available travel261

surveys for cities in the respective typologies (see Table 5). These data were not used in the ty-262

pology discovery, given their sparsity at that scale. Thus, individual reports were searched for the263

few cities available in these typologies in order to obtain aggregate activity shares. Sources are264

also detailed in Table 5. Temporal patterns, mode-activity proportions, trip and tour distributions265

are also checked. Furthermore, we validate our model for consistency with expected commuter266

distances and travel times. Similar checks are also performed for education trips. We justify the267

approach of using the Boston model as a starting point based on the fact that it is the archetype268

city for Auto Innovative and that travel patterns are relatively similar across cities in the United269

States. Details of four representative choice models including the specific variables used in each of270

them are given in Appendix B.271

Table 5 Activity share validation data for the prototype cities

Measure Auto Sprawl Auto Innovative

Activity shares (%)

Work 28 26
Education 12 13
Shop 16 15
Other 44 47

Trips per person 3.5 3.5

Survey data sources Detroit, Edmonton, In-
dianapolis, Melbourne,
Minneapolis-St. Paul, Port-
land, OR

Atlanta, Boston, Philadel-
phia, San Francisco, Seattle,
Toronto, Vancouver

Furthermore, we fit the model to fuel price elasticities of trip demand based on the litera-272

ture relevant to US cities (Small and van Dender, 2007; Goodwin et al., 2004). These values are273

summarized in Table 6.274

Table 6 Short-term trip elasticities used in validating demand model

Mode Elasticity Scope Source

Car
−0.10 North America & Europe Goodwin et al. (2004)
−0.03 USA Small and van Dender (2007)
−0.11 Europe TRACE (1999)

Mass Transit 0.13
Europe TRACE (1999)

Active Mobility 0.18

Time and cost are critical variables in the mode and mode-destination choice models in the275

demand framework. Given that the spatial resolution of the ABM is at the TAZ level, distances,276

travel times (private and public modes) and fares are estimated for each TAZ OD pair. TAZ-TAZ277
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distances are initially estimated based on the Manhattan separation of the centroids. They are later278

updated via day-to-day feedback until equilibrium. Travel times for Walk are then calculated using279

an average speed of 5 km/h, while those for Bike are computed using a speed of 20 km/h. Mass280

transit costs are given by fares at the zonal level. These are obtained from the transit agency of281

the archetype city where available. Otherwise, an average cost factored by the TAZ pair distance is282

used as an estimate. Mass Transit travel time accounts for both the waiting and travel times, along283

with access and egress time. For Car, the initial travel time is also obtained from the archetype city284

agency where available, or estimated based on a network-wide average speed if not. The cost for285

Car explicitly accounts for that of fuel (gasoline or electricity), a general distance-based operational286

cost and parking at the destination TAZ. Taxi fares are given by the following function6:287

Ctaxi = F btaxi + F dtaxid+ Fwtaxi ·max{0, t− d
40} (1)

where F btaxi, F
d
taxi and Fwtaxi are the base fare, distance charge (per kilometer) and waiting time288

charge (per hour), respectively. The trip distance is d, while t is the travel time (same for Car289

mode). The expression max{0, t − d
40} represents the additional time spent in transporting the290

passenger given an expected speed of 40 km/h. In the case of ridesourcing, we assume the current291

cost structure for Uber XL (standard service)7, where292

CRS = max
{
FminRS ,

(
F sRS + F bRS + F dRSd+ F tRSt

)}
(2)

FminRS is the minimum fare, while F sRS , F bRS , F dRS and F tRS are the service fee, base fare, distance293

charge (per kilometer) and travel time charge (per hour), respectively. The fare values for both294

services are obtained from the corresponding archetype city, as shown in Table 7.295

Table 7 Mobility-on-demand fare parameter values for Auto Sprawl and Auto Innovative

Mode Parameter Auto Sprawl Auto Innovative Description
(USD) (USD)

Taxi
F btaxi 1.80 2.60 Base fare
F dtaxi 1.38 1.75 Per-km charge
Fwtaxi 0.40 0.47 Per-min charge

Ridesourcing

FminRS 6.85 6.85 Minimum fare
F sRS 2.35 1.85 Service charge
F bRS 1.10 2.10 Base fare
F dRS 1.38 1.35 Per-km charge
FwRS 0.12 0.21 Per-min charge

2.2.3 Supply296

The transport supply network model development procedure entails the following steps:297

(a) obtaining and processing the road network of the archetype city from Open Street Maps and298

generating inputs suitable for mesoscopic simulation299

(b) generating a public transit graph from General Transit Feed Specification (GTFS) sources300

(c) calibrating supply parameters to achieve realistic baseline network performance301

We developed tools to perform these steps to facilitate simulation in SimMobility-MT.302

6This represents the existing taxi tariff structure in the two archetype cities of Baltimore and Boston. Fare
coefficients were obtained from https://www.taxi-calculator.com/.

7Fare coefficients available at http://uberestimate.com/prices/.
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The first step in creating the transport supply network model is obtaining the road network303

contained within the boundary of the archetype city. This boundary specifies the metropolitan304

region associated with the city. Within this boundary, the drivable road network, consisting of305

nodes, links, lanes, segments (and their capacities), lanes, turning connections, and their respective306

geometries, are extracted from the Open Street Maps database. First, the extracted network is307

cleaned and simplified in order to remove extraneous nodes at intersections. Following this, we308

construct segments by subdividing links to account for changes in geometry and number of lanes.309

We then use connectors to specify lane associations between consecutive segments. Using a greedy310

assignment, we finally create turning paths to indicate lane connectivity at intersections. In cases311

where the number of lanes and capacities were unavailable for a certain, we used the link category to312

infer these values. The road networks for Auto Sprawl and Auto Innovative are shown in Figure 7.313

These are the actual networks of the respective archetype cities of Baltimore and Boston.314

The second step is the generation of the mass transit portion of the supply network model.315

This constitutes the rail network system (where available) and the bus network system. Open data316

based on the GTFS open data on the schedules, shapes and locations of transit trips and routes.317

For the rail system, we specify the access segments from the road network. In the case of the bus318

system, we map the stops to segments in the road network, with access and egress nodes specified.319

From these, we construct a transit route-choice graph which represents the connectivity within the320

mass transit system (bus and rail), and between the transit and road network systems. In the321

transit graph, there are three edge types: (i) bus, (ii) rail and (iii) walk. The simulation of the322

bus and rail systems also requires inventory and control data. Thus, we obtain from the archetype323

city, where available, fleet and capacity information for the bus and rail routes. We also assume324

movement parameters including speed and acceleration limits.325

Table 8 Selected transport network supply model parameter specifications for Auto Sprawl and Auto Innovative

Network components Auto Sprawl Auto Innovative

Road
Nodes 11 410 18 016
Links 24 133 46 763
Segments 252 006 164 980

Bus
Routes 139 844
Stops 797 4 170

Rail
Routes 10 25
Stations 76 121

Once the transport supply network model has been specified, the final step is to generate326

pathsets for both the road network and the mass transit network. Pathsets for the transit network327

are computed based on the transit graph. Separate tables are used to store the road network paths328

and those for the transit network. For each possible OD pair of nodes, we generate pathsets under329

various scenarios. Each pathset is characterized by its length, travel time, among others. In the330

WithinDay module, travelers choose their trip paths based on the outcome of the route choice331

model. We generate the pathsets prior to simulation in order to save computation time. Given332

that paths cannot feasibly be computed for every possible OD pair, we limit the set of OD’s to the333

initial daily activity schedule that has been generated. Further OD’s are generated as needed upon334

subsequent day-to-day simulations. Beyond this, we generate new pathsets for the ODs that cannot335

be mapped for the demand case at hand. In time, sufficient pathsets are generated to handle new336

demand cases.337

From the trajectory output of Supply, we feedback link-based travel times for WithinDay it-338

erations. This allows for route-choice modifications in order to reach an equilibrium in traffic339
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(a) Auto Sprawl

(b) Auto Innovative

Figure 7 The road networks of Auto Sprawl and Auto Innovative prototype cities

assignment. Once this equilibrium is reached, link-based travel times are aggregated at the zonal340

level in order to update the costs for day-to-day learning.341
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2.3 Scenario design342

The scenarios in this paper have been designed to investigate the future impacts of automated343

mobility-on-demand (AMoD) across auto-dependent cities (largely to be found in North America).344

AMoD services are expected to influence behavior and energy consumption on the demand side,345

while the supply side might register impacts on congestion, emissions and parking. Underlying346

these shifts will be changes in on-demand service costs, which have been estimated to reduce by347

up to 50% (from $1.72 to $0.92 per km) as a result of automation in Singapore (Pavone, 2015;348

Spieser et al., 2014). Similar gains are also projected in the US of up to 50%, from $0.65 per mile349

to under $0.30 per mile (Stephens et al., 2016). In Switzerland (Europe), even greater cost savings350

have been estimated (Bösch et al., 2018). As a moderate estimate, therefore, we implement AMoD351

service provision based on a 50% reduction in user fare from the existing traditional taxi mode,352

using the cost structure as given by Equation 1. The ridesourcing services represented by the likes353

of Uber are already cheaper than traditional taxi.354

Table 9 Mode availabilities across scenarios

Mode Base Case AMoD Intro AMoD No Transit AMoD Transit
Integration

Car
Drive Alone 3 3 3 3

Pool (2) 3 3 3 3

Pool (3) 3 3 3 3

Mass Transit
Bus 3 3 7 3

Train 3 3 7 3

On-demand
MoD 3 7 7 7

AMoD Single 7 3 3 3*

AMoD Shared 7 3 3 3*

Active Mobility
Bicycle 3 3 3 3

Walk 3 3 3 3

Other
Private Bus 3 3 3 3

Motorcycle 3 3 3 3

*Restricted to short trips and first/last mile trips to rail stops.

Table 10 Powertrain assumptions and specifications

Vehicle Powertrain

Private car Gasoline-powered (conventional and hybrid), battery-electric
Ridesourcing Gasoline-powered hybrid
AMoD Battery-electric
Public Bus Diesel
Train Electric

2.3.1 Base Case355

The Base Case represents the current state of activity and mobility patterns in the prototype356

cities for the year 2016. The car modes include “Drive Alone” and “Car Pool”. The latter is357

modeled explicitly for 2 or 3 vehicle occupants. Mass transit (bus and rail) is available based358

on the public transport supply model, as described in Subsubsection 2.2.3. Mobility-on-demand359
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(MoD) refers to both taxi and ridesourcing services, which represent smartphone-based ridesourcing360

services. The cost of ridesourcing is modeled according to the current fare structure of Uber8.361

The Private Bus mode captures the services provided by employers and private companies for362

transport to workplaces and schools, respectively. Its availability is assumed to be the same as that363

of mass transit, considering that these private transit services predominantly share the same bus364

stop infrastructure with their public counterpart.365

2.3.2 AMoD Intro366

In this scenario, automation is introduced for on-demand services. Thus, MoD is replaced by367

AMoD, while other modes in the Base Case remain unchanged. The choice of single (“AMoD368

Single”) or shared (“AMoD Shared”) rides is explicitly modeled. Shared vehicles have a capacity of369

4 passengers, while depots are distributed across each TAZ. For every demand case, optimal fleet370

sizes are computed and vehicles are routed and rebalanced to minimize costs. We refer the reader to371

Marczuk et al. (2015); Basu et al. (2018) for further background on AMoD supply implementation372

in SimMobility.373

2.3.3 AMoD No Transit374

Here, AMoD replaces MoD (as in AMoD Intro) but mass transit is also removed. This scenario375

is an attempt to answer the question of whether AMoD can fully substitute mass transit and under376

what conditions it can successfully do so in the prototype cities of interest. It simulates a future in377

which transit is abandoned while AMoD proliferates.378

2.3.4 AMoD Transit Integration379

We consider the impacts of a government intervention in the operation of AMoD services in380

the scenario AMoD Transit Integration. Rather than have AMoD compete directly with mass381

transit, it is integrated as an access or egress mode to rail stops. These AMoD rides are necessarily382

shared and further subsidized by 20% of their original rates.9 The integration radius is set at 7.5383

miles from all rail stops based on the typical commute distances in these cities. Non-integrated384

AMoD remains available but restricted to local trips within the same 7.5-mile distance threshold.385

This integration also necessitates the enhancement of the transit route-choice graph, such that the386

AMoD access and egress links are now included in the transit pathsets. Integrated transit thus has387

greater availability in each of the prototype cities. At the PreDay level, the traditional mass transit388

mode (with walk-only access/egress) is nested with the AMOD-access/egress transit option.389

Since we are simulating a prototype city, we do not delve into operational details here, as390

these can vary widely from one real city to another. Instead, we focus on simulating what might be391

regarded as the upper bound (best-case scenario) of transit integration performance. No restrictions392

are made to the number of passengers that can be picked up or dropped off at a given station.10
393

However, travel times are fed back into the demand model, which is iterated in order to satisfactorily394

incorporate the effects of congestion on demand.395

2.4 Calibration and validation396

We validate each prototype city for population, demand and supply. The synthetic population397

is validated using the control variables at the individual (Figure 8) and household (Figure 9) levels.398

8http://uberestimate.com/prices/
9Reports on mobility-on-demand operators (Li et al., 2019) and taxicab operators (Controller, 2005) indicate that

20% is the expected gross earning rate from total revenue. Subsidies at this level thus hypothetically ensure that
service provision remains reasonably profitable for the AMoD operator(s).

10Furthermore, we assume no curbside restrictions on pickups and dropoffs
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Further, we validate these totals at the Second Administrative Level (Figure 10). The spatial399

distributions across the SALs are also matched.400

Figure 8 Individual-level validation for Auto Sprawl and Auto Innovative

Figure 9 Household-level validation for Auto Sprawl and Auto Innovative

The demand model is calibrated and validated for activity and mode shares. The results are401

shown in Figure 11 and Figure 12 for both prototype cities. Aggregate activity and mode shares402

are similar for both cities, except when comparing the shares for Car and Mass Transit. In Auto403

Innovative the Mass Transit share is higher at the expense of that of Car, when compared to Auto404

Sprawl.405

Further, we show the fuel cost elasticities of trip demand for both prototype cities in Table 11.406
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Figure 10 Second Administrative Level (SAL) validation for Auto Sprawl and Auto Innovative

(a) Auto Sprawl (b) Auto Innovative

Figure 11 Activity share validation of the prototype city simulations

(a) Auto Sprawl (b) Auto Innovative

Figure 12 Mode share validation of the prototype city simulations

These values are matched as closely as possible to reference values in Small and van Dender (2007)407

and TRACE (1999).408

18



Pr
ep
rin
t

Table 11 Base case fuel cost elasticities of trip demand for Auto Sprawl and Auto Innovative

Mode Auto Sprawl Auto Innovative

Personal Car −0.03 −0.04
Mass Transit +0.06 +0.01
Walk +0.01 +0.04
Bike +0.08 +0.07

All −0.005 −0.006

2.4.1 AMoD fare elasticity409

We then investigate the AMoD cost elasticities in both cities (Figure 13). In Auto Innovative,410

demand for AMoD is more elastic than in Auto Sprawl. This result indicates that AMoD meets a411

greater need in Auto Sprawl, and the demand for AMoD is less sensitive to fare increases than in412

Auto Innovative.413

Figure 13 AMoD fare elasticities of trip demand

3 Results and discussion414

We present the results of our simulations of the AMoD scenarios earlier described. These results415

belong to the convergent states after the day-to-day learning procedure. We focus on the demand,416

network level of service (vehicle kilometers traveled and congestion), energy and emissions impacts.417

The policy implications in each case are discussed in the respective subsections.418

3.1 Demand impacts419

The introduction of AMoD results in an increased number of trips in both prototype cities.420

Under the AMoD Intro regime, the percentage of induced trips with respect to Base Case is 4% in421

Auto Sprawl. This indicates that AMoD potentially satisfies an existing latent demand for mobility422

that the existing base levels do not meet. However, in Auto Innovative, induced demand is only423

2% of base demand. In terms of absolute numbers, however, more trips are still generated in Auto424

Innovative, compared to Auto Sprawl, given its larger population and density.425

When mass transit is removed under AMoD No Transit, the number of induced trips remains426

around the same level in Auto Sprawl. In Auto Innovative, the induced share becomes negative,427

indicating that fewer trips are made. This is a reflection of the importance of the mass transit428
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system in this typology and the congestion effects of servicing previously transit-based trips by429

AMoD.430

The mode shares are shown for Auto Sprawl and Auto Innovative in Figure 14. Trip modal431

shifts in both cities are shown for Base Case → AMoD Intro → AMoD No Transit in Figure 15,432

and for Base Case → AMoD Intro → AMoD Transit Integration in Figure 16. A summary of the433

demand impacts of the AMoD scenarios is given in Table 12.434

Figure 14 Mode shares across the four scenarios in Auto Sprawl and Auto Innovative

Under AMoD Intro in Auto Sprawl, on-demand trips increase by 170%, private car trips decrease435

by 7%, while transit ridership decreases by 21%. In Auto Innovative, however, on-demand trips436

increase by 240%, while private car trips and transit ridership decrease by 7% and 13%, respectively.437

Were transit to be abandoned (AMoD No Transit scenario), on-demand trips would only increase438

by 200% while private car trips would decrease by 5% in Auto Sprawl. On-demand trips would439

increase by 310% in Auto Innovative however, while private car trips would reduce by 1.3%. The440

lower impact on private car usage in Auto Innovative compared to Auto Sprawl under AMoD No441

Transit is due to the greater shift to Carpool from Mass Transit in Auto Innovative.442

With the integration of AMoD and transit, on-demand trip request increases are moderated443

while transit cannibalization is reversed. In Auto Sprawl, on-demand trips increase by 140% and444

private car trips decrease by 13% but transit ridership increases by 88%. In Auto Innovative, on-445

demand trips increase by 220%, private car trips decrease by 11%, while transit ridership increases446

by 28% under AMoD Transit Integration.447

Thus, we observe that a low-cost AMoD service results in a significant initiation of trips that448

would otherwise not exist due to the increased accessibility of the automated service. This effect449

is more pronounced in Auto Sprawl (less dense, minimal mass transit availability) than in Auto450

Innovative (dense, congested, moderate mass transit). Given that Auto Sprawl cities already have451

a low mass transit modeshare, they could potentially dis-invest in mass transit with a manageable452

demand for AMoD. In Auto Innovative, however, the removal of transit does not appear sustainable,453

as we find that AMoD cannot efficiently service all the erstwhile transit trips. Adopting a strategy454

whereby AMoD complements mass transit moderates the demand for AMoD while boosting transit455

20



Pr
ep
rin
t

(a) Auto Sprawl

(b) Auto Innovative

Figure 15 Modal shifts from Base Case → AMoD Intro → AMoD No Transit in (a) Auto Sprawl and (b) Auto
Innovative

ridership. Thus, transit integration promises to be a more viable path than pure competition456

between transit and AMoD, especially for Auto Innovative cities such as Boston, Chicago and457

Toronto. Overall, AMoD results in a reduction of private car usage. Another benefit we find458

from the presence of AMOD is that it increases active mobility usage in Auto Sprawl. People who459

formerly drove alone, for instance, on switching to AMoD, would now walk for subtours (such as460

going to lunch at work) as their cars would no longer be available.461

3.2 Network level of service462

From the high-fidelity supply simulations, we compute the following systemic metrics to assess463

the impact of AMoD under various scenarios on vehicle kilometers traveled (VKT) and congestion,464

21



Pr
ep
rin
t

(a) Auto Sprawl

(b) Auto Innovative

Figure 16 Modal shifts from Base Case → AMoD Intro → AMoD Transit Integration in (a) Auto Sprawl and
(b) Auto Innovative

as measured by the travel time index (TTI).465

3.2.1 Vehicle kilometers traveled466

The VKT is calculated as the distance traveled by all passenger vehicles (private cars and on-467

demand fleet) over the course of an entire day (Figure 17). In general, the impacts of AMoD are468

greater in Auto Innovative than in Auto Sprawl, due to the differences in density and, consequently,469

demand. Private car usage decreases more significantly in Auto Sprawl, however.470

Under AMoD Intro, VKT increases by 9% in Auto Sprawl and by 26% in Auto Innovative. With471

the removal of transit under AMoD No Transit, VKT increases by 14% in Auto Sprawl. Under the472
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Table 12 Trip impacts of the AMoD Intro, AMoD No Transit and AMoD Transit Integration scenarios with
respect to Base Case in Auto Sprawl and Auto Innovative.

Scenario Trip type Auto Sprawl Auto Innovative
% Change No. trips (×103) % Change No. trips (×103)

AMoD Intro
Person 2.9 375 1.7 262
Passenger-vehicle 4 246 4 433
Mass transit −21 −77 −13 −211

AMoD No Transit
Person 3.6 345 −0.1 −21
Passenger-vehicle 5 353 12 1270
Mass transit −100 −366 −100 −1581

AMoD Transit Integration
Person 2.5 248 2.3 366
Passenger-vehicle 0.2 13 2.8 290
Mass transit 88 322 28 450

same scenario in Auto Innovative, the VKT increases by 39%, as on-demand VKT triples. This473

result further highlights the deleterious impacts under this scenario in a dense auto-dependent city474

with a mild reliance on mass transit. In the AMoD Transit Integration case, VKT increases by475

13% in Auto Sprawl, which is not significantly different than under AMoD No Transit. Similarly, in476

Auto Innovative, VKT increases by 29% under AMoD Transit Integration (compared to an increase477

of 26% under AMoD Intro). Thus, integration does not reduce VKT impacts in auto-dependent478

cities.479

Figure 17 Vehicle kilometers traveled

3.2.2 Travel Time Index480

In these simulations, the TTI is computed as the distance-weighted average of the ratio of481

in-simulation trip time to free-flow trip time for all passenger-vehicle trips:482

TTI =

∑
i∈T di

ttsimi
ttffi∑

i∈T di
, (3)

where di, tt
sim
i and ttffi are the distance, in-simulation time and free-flow time, respectively, for each483

passenger vehicle trip i within time period T . Thus, in the hypothetical case where the TTI is 1,484
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average daily traffic is similar to free-flow and there is consequently no congestion. A TTI of 1.55485

over the entire day would imply that on average, trips would require 55% more time than under486

free-flow conditions. The TTI realized by time-of-day for both cities is shown in Figure 18. In487

Figure 19, we depict the TTI trends (averaged over the entire day).488

Figure 18 Travel time index (distance-weighted average by the hour).

Figure 19 Travel time index (distance-weighted average over the entire day).

Under AMoD Intro, congestion (as measured by TTI) increases in both cities—by 9% in Auto489

Sprawl and by 43% in Auto Innovative. The impact is thus nearly five times greater in Auto In-490

novative due to its density. With the abandonment of transit in the AMoD No Transit scenario,491

congestion increases by 12% in Auto Sprawl, which is a mild change compared to the 9% increase492

under AMoD No Transit. In Auto Innovative, however, the abandonment of transit leads to un-493

sustainable gridlock, as congestion increases by 66% and travel times on average are nearly double494

those under free-flow conditions.495

Given the limited availability of transit in Auto Sprawl, integration does not modify the effects496

of AMoD on congestion. However, transit integration mitigates the congestion impacts of AMoD497

in the denser Auto Innovative, as the TTI increases by 36% under AMoD Transit Integration498

(compared to 43% under AMoD Intro).499

In summary, we find that AMoD under any strategy will increase VKT and congestion in either500
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city type. However, Auto Sprawl experiences lower impacts. In all three AMoD scenarios in this501

prototype city, VKT does not increase beyond 14% and congestion does not increase beyond 12%.502

In Auto Innovative, the removal of transit is not viable, as it potentially results in gridlock. Across503

the AMoD scenarios studied, Auto Innovative fares best under AMoD Transit Integration. This504

further suggests that dense metropolitan areas with significant mass transit infrastructure are better505

off implementing policies that encourage AMoD to complement mass transit in order to mitigate506

the deterioration of network performance. However, sprawling cities with low transit penetration507

can afford to not integrate these services while still maintaining a reasonable network performance.508

3.3 Energy and emissions509

As earlier discussed, the energy is computed for each vehicle during simulation, using the speeds510

and accelerations in each successive timeframe. For the AMoD scenarios, we have assumed the on-511

demand fleet is fully electrified. This represents an optimistic environmentally-friendly future where512

such a regulation is imposed.513

Following each simulation, we calculate the well-to-wheels (primary) energy by factoring the514

production, transmission and distribution losses. In both cities, we use the U.S. average energy-515

to-fuel ratio of 1.17 and 1.05 for gasoline and diesel, respectively. For electricity, the primary-to-516

generated energy ratio is 2.99. These ratios were obtained from the analyses conducted by Gençer517

and O’Sullivan (2019). The simulation output (secondary) energy consumption results are then518

multiplied by the respective ratios for each fuel to obtain the primary energy consumption:519

Epri
j =

∑
j∈F

∑
i∈T

αjE
sec
ij (4)

where F is the set of energy sources {gasoline, diesel, electric}, αj the respective primary energy520

factors, Epri
j the primary energy in GWh and Esec

ij the secondary energy in GWh for each energy521

source j, each passenger vehicle, bus or train trip i, and over time period T .522

For reporting purposes, we consider the primary energy for both gasoline- and diesel-powered523

vehicles as “Fuel” and that for electric vehicles as “Electricity”. The primary energy across all four524

scenarios in both cities is shown in Figure 20.525

Figure 20 Primary (well-to-wheels) energy consumption across the scenarios. In both cities, we assume the
AMoD fleet are fully electrified.
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Similarly, to obtain the greenhouse gas (GHG) emissions, we multiply primary energy values526

by U.S. nationwide average energy source-specific GHG emissions intensities (accounting for both527

generation and usage). The values are 331 gCO2e/kWh (gasoline intensity) and 438 gCO22e/kWh528

(electricity intensity) (Gençer and O’Sullivan, 2019). We make the assumption that the gasoline529

intensity is valid for diesel. Thus, we obtain:530

GHGj =
∑
j∈F

βjE
pri
j (5)

where βj are the emissions intensities {331, 331, 438} gCO2e/kWh for gasoline, diesel and electricity,531

respectively, while GHGj are the emissions in MTCO2e for each energy source j. Again, we report532

gasoline and diesel emissions in the “Fuel” category and electric vehicle-based emissions in the533

“Electricity” category (Figure 21).534

Figure 21 Total (well-to-wheels) emissions impacts across the scenarios. In both cities, we assume the AMoD
fleet are fully electrified.

Under AMoD Intro, primary energy consumption reduces by 3% in Auto Sprawl. Conversely,535

in Auto Innovative, energy consumption increases by 10%. In Auto Sprawl, energy consumption is536

similarly impacted under all the AMoD Scenarios—a 3% reduction compared to Base Case. How-537

ever, under AMoD No Transit, energy consumption increases by 13% in Auto Innovative. Transit538

integration only slightly increases the energy expenditure in Auto Innovative (12%), compared to539

under AMoD Intro (10%).540

The trends in GHG emissions are similar to those for energy. In Auto Sprawl, emissions are541

reduced by 10%, 11% and 13% under AMoD Intro, AMoD No Transit and AMoD Transit Integra-542

tion, respectively. In Auto Innovative, the emissions impacts are less significant at −1%, 2% and543

0%.544

Thus, we see that in the optimistic case of total AMoD electrification, overall energy consump-545

tion increases significantly in dense auto-dependent cities. Meanwhile, electrification does lead546

to energy savings and even greater reductions in emissions in low-density auto-dependent cities.547

Further reductions in the emissions intensities of electricity generation would improve outcomes in548

Auto Innovative cities.549
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4 Conclusion550

We have developed an approach for generating prototype cities that are representative of urban551

typologies discovered from recent data mining effort. The prototype city generation methodology552

consists of the synthesis, modeling and calibration of: (i) population and land-use, (ii) demand, and553

(iii) road and transit network supply. Using this method, we generated two prototype cities, Auto554

Sprawl and Auto Innovative, which represent most cities in the United States: auto-dependent and555

wealthy. While Auto Sprawl is less dense (in terms of population and network) with a higher car556

mode share, Auto Innovative is denser, more populated and has greater mass transit availability557

and mode share.558

Our novel integrated framework allows for high-fidelity large-scale agent-based simulation which559

incorporates demand-supply integration via “day-to-day learning”. Using SimMobility MidTerm,560

we simulated three automated mobility-on-demand (AMoD) strategies in both of these cities. The561

AMoD Intro scenario addressed a future where AMoD replaces existing MoD services. In AMoD562

No Transit, abandonment of transit was explored in contrast to the AMoD Transit Integration563

scenario, where AMoD was restricted to local circulation and access/egress to mass transit.564

The simulation results we obtained indicate that merely introducing AMoD in place of existing565

ridehailing and ridesourcing will be detrimental to mass transit, as it cannibalizes transit ridership566

by up to 21%. It also increases VKT by 9% in Auto Sprawl but by 26% in Auto Innovative. While567

AMoD reduces the energy consumption and emissions in Auto Sprawl under the assumption of568

full electrification, it increases the energy consumption in Auto Innovative. We also found that569

while AMoD can substitute mass transit in Auto Sprawl, it cannot sustainably do so in denser570

cities, as it would result in gridlock. Ultimately, the impact of AMoD can be mitigated through571

policy interventions, such as transit integration. Under such a scenario, transit cannibalization is572

reversed in Auto Innovative, while transit ridership is even further boosted in Auto Sprawl. Further573

mitigating effects on congestion are clearly observed in Auto Innovative.574

Even with significant AMoD-transit integration, AMoD still increases VKT and congestion.575

From these initial results, it appears that transit removal could be a viable strategy for Auto576

Sprawl cities, as it would have the greatest environmental impact. For Auto Innovative cities,577

integrating transit with AMoD provides the best outcome. With further cost-benefit analyses,578

however, informed policy recommendations that would be useful to cities in the respective typologies579

could be obtained.580

As earlier noted, several studies have attempted to quantify the demand, congestion, energy581

and emissions impacts of AMoD under various strategies with mixed results. Our results here582

indicate that urban form, population and behavior are critical to AMoD outcomes. The simulation583

of possible scenarios in a representative prototype city can potentially save costs for a metropolitan584

planning agency considering viable approaches in coming to terms with an imminent AMoD future.585

While outcomes in a specific city are not guaranteed to be exactly the same as those obtained from586

a corresponding prototype city, they can be expected to follow a similar pattern.587

The strength of our prototype city simulation approach lies in the fact that we can analyze588

the impacts of various urban mobility scenarios by typology, rather than providing results from a589

single city that might be irrelevant to other cities. Thus, even further simulations of interest can590

be examined in a given prototype in order to gain further insight into the impacts of AMoD on591

cities in the corresponding typology. In future work, we plan to simulate other typologies and also592

explore other AMoD-related interventions. In order to further validate the archetype city approach593

of selecting a network from a real city near the typology centroid, we will explore a quantification594

of the uncertainty of impact of the network structure. We are currently investigating the effects of595

possible changes in future private vehicle ownership as AMoD becomes more prevalent. Reductions596
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in car ownership can potentially mitigate the VKT impacts of AMoD. However, further concurrent597

policies might be required to manage network performance for best outcomes. Thus, congestion598

pricing interventions are also of interest for future research, as these hold promise for effectively599

tackling congestion and consequent GHG emissions not only in tomorrow’s cities but also in those600

of the present day.601

Acknowledgments602

This work was supported through the MIT Energy Initiative’s Mobility of the Future study.603

The authors would also like to thank collaborators at the Singapore MIT Alliance for Research and604

Technology for their technical support in adapting the SimMobility platform for our needs. We are605

grateful to the anonymous reviewers whose comments and suggestions increased the quality of this606

manuscript.607

References608

Adnan, M., Pereira, F.C., Lima Azevedo, C.M., Basak, K., Lovric, M., Raveau, S., Zhu, Y.,609

Ferreira, J., Zegras, C., Ben-Akiva, M.E., 2016. Simmobility: A multi-scale integrated agent-610

based simulation platform, in: Transportation Research Board 95th Annual Meeting.611

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D., 2017. On-demand high-612

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy613

of Sciences 114, 462–467. URL: http://www.pnas.org/content/114/3/462, doi:10.1073/pnas.614

1611675114, arXiv:http://www.pnas.org/content/114/3/462.full.pdf.615

Azevedo, C.L., Marczuk, K., Raveau, S., Soh, H., Adnan, M., Basak, K., Loganathan, H., Desh-616

munkh, N., Lee, D.H., Frazzoli, E., et al., 2016. Microsimulation of demand and supply of617

autonomous mobility on demand. Transportation Research Record: Journal of the Transporta-618

tion Research Board , 21–30.619

Basu, R., Araldo, A., Akkinepally, A.P., Nahmias-Biran, B.H., Basak, K., Seshadri, R., Desh-620

mukh, N., Kumar, N., Azevedo, C.L., Ben-Akiva, M., 2018. Automated mobility-on-demand vs.621

mass transit: A multi-modal activity-driven agent-based simulation approach. Transportation622

Research Record 0, 0361198118758630. URL: https://doi.org/10.1177/0361198118758630,623

doi:10.1177/0361198118758630, arXiv:https://doi.org/10.1177/0361198118758630.624

Ben-Akiva, M., 2010. Planning and action in a model of choice, in: Hess, S., Daly, A. (Eds.), Choice625

Modelling: The State-of-the-Art and the State-of-Practice: Proceedings from the Inaugural In-626

ternational Choice Modelling Conference, Emerald Group Publishing Limited. pp. 19–34.627
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Appendix A Population and Land-use synthesis776

The tools we have created for generating a prototype city are available upon request at https:777

//github.com/jimioke/virtual-city-generator. The outputs are formatted to SimMobility778

specifications.779

Appendix A.1 Assignment of household and work/education locations780

We aggregate land use categories into these: low residential (L), high residential (H), commer-781

cial (C), industrial (I), education (E), open land (O). More categories can be used if available,782

but the above is the highest level specification in our generalized approach.783

Households w are then assigned as follows:784

1. Allocate weights:11
785

HH(wL, wH , wC , wI , wE , wO) = (8, 10, 4, 1, 0, 0) (A.1)

2. Grid the map and assign weights to each cell wHHc given its prevailing land use category786

3. Normalize cell weights pHHc(SAL) in each second administrative level (SAL)787

pHHc(SAL) =
wHHc∑

c∈SALw
HH
c

(A.2)

11We note that if totals for work, education and households by TAZ or other level are available, the weights do
not have to be arbitrarily assigned. For the numbers shown (Auto Sprawl), we used a linear program to obtain the
household and employment weights, given that the unit totals were available.
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4. Number of households in each cell given by:788

N
c(SAL)
HH = pSALc ·NSAL

HH (A.3)

where NSAL
HH is the number of households in each SAL789

5. Randomly sample to locate households in cell centroids for all SAL, while controlling for SAL790

totals.791

Work and education allocation to grid cells in network:792

1. We obtain the numbers of firms and schools in each SAL then assign weights as follows:

WORK(wL, wH , wC , wI , wE , wO) = (1, 2, 10, 5, 3, 1) (A.4)

EDU(wL, wH , wC , wI , wE , wO) = (0, 0, 0, 0, 1, 0) (A.5)

2. Assign weights to cells for work and education: wWORK
c , wEDUc793

3. Find pWORK
c(SAL) and pEDUc(SAL) as before794

4. Find N
c(SAL)
WORK and N

c(SAL)
EDU as before while controlling for total student and worker totals.795

The partitioning of Auto Sprawl is shown in Figure A.22 and Figure C.25. The education796

locations are shown in Figure A.24.797

Figure A.22 Second Administrative Levels in Auto Sprawl

Appendix A.1.1 Cost estimates798

There are three key inputs at the zonal level required for running SimMobility PreDay : zonal799

attributes (size, location, points of interest, etc.) and zone-zone travel time and cost data (skim800

matrices). Estimates of these were obtained for each archetype city. The operating cost and travel801

time variables in the skim matrices are described below in Table B.17. In cases were these data are802

not publicly available, we can readily estimate values from the network attributes.803
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Figure A.23 Gridding Auto Sprawl for household, employment and education allocation

Figure A.24 Education allocation for Auto Sprawl

Parameters Description Notes

distance Zone-zone distance (km)
car cost erp Road pricing cost (monetary units)
car ivt Car in-vehicle time (hours)
pub ivt Public transit in-vehicle time (hours)
pub walkt Public transit access-egress walking time (hours)
pub wtt Public transit waiting time (hours)
pub cost Public transit cost between zones (monetary units)
avg transfer Average number of public transit transfers between zones
pub out Public transit out-of-vehicle travel time (hours) Sum pub walkt and pub wtt

Table A.13 Operating cost parameters (Skim matrix elements) in SimMobility
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Appendix B PreDay Models804

Appendix B.0.1 Example: Day Pattern Binary Choice Model (dpb)805

The Day Pattern Binary model determines if the individual makes any tours in a given day.806

The model takes the form of a binary logit, where the choices are either to travel and to stay at807

home. It takes personal characteristics of the individual and the inclusive value of the Day Pattern808

Tours model as inputs. A decision to travel will lead to Day Pattern Tours model. The utility809

specification of the dpb model is specified as Equation B.1.810

Vnot travel = 0

Vtravel = βASC + βg,mSg +
6∑
i=1

βemp,i,mSemp,i +
5∑
i=1

βedu,i,mSedu,i +
6∑
i=1

βage,i,mSage,i + βIIdpt

(B.1)

Variable Name representation Domain

Travel time of mode m Tm continuous
Cost of mode m Cm continuous
Gender Sg binary
Employment

full-time worker Semp,1 binary
part-time worker Semp,2 binary
retired Semp,3 binary
disabled Semp,4 binary
homemaker Semp,5 binary
unemployed Semp,6 binary

Type of student
preschool Sedu,1 binary
Kindergarten - 8th grade Sedu,2 binary
9th grade - 12th grade Sedu,3 binary
undergraduate Sedu,4 binary
graduate Sedu,5 binary

Age category
under 20 Sage,1 binary
20 - 25 Sage,2 binary
25 - 35 Sage,3 binary
36 - 50 Sage,4 binary
51 - 65 Sage,5 binary
65 + Sage,6 binary

Logsum from the day pattern tour model Idpt continuous

Table B.14 Day Pattern Binary Choice Model Parameters

811

Appendix B.0.2 Example: Work Tour Mode Choice Model (tmw)812

The utility specification of the tmw model is specified as Equation B.2. The subscript m stands813

for the available modes in the choice set. The general availability are set according to scenarios814

as introduced in Table 9. Private bus is only available to students and workers to their usual815

workplaces (if any) in Central Business District. Individual specific availability of driving alone816
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and motorcycle are set according to vehicle ownership and license.817

Vm =βASC,m + βT,mTm + βC,mCm + βg,mSg + βinc,mSinc + βtran,mStran+

6∑
i=1

βemp,i,mSemp,i +
5∑
i=1

βedu,i,mSedu,i +
4∑
i=1

βveh,i,mSveh,i
(B.2)

Variable Name Symbol Domain

Travel time of mode m Tm continuous
Cost of mode m Cm continuous
Gender Sg binary
Household income Sinc continuous
Transit card Stran binary
Employment

full-time worker Semp,1 binary
part-time worker Semp,2 binary
retired Semp,3 binary
disabled Semp,4 binary
homemaker Semp,5 binary
unemployed Semp,6 binary

Type of student
preschool Sedu,1 binary
Kindergarten - 8th grade Sedu,2 binary
9th grade - 12th grade Sedu,3 binary
undergraduate Sedu,4 binary
graduate Sedu,5 binary

Number of household vehicles
No vehicle Sveh,1 binary
1 vehicle Sveh,2 binary
2 vehicle Sveh,3 binary
3 and 3+ vehicle Sveh,4 binary

Table B.15 Work Tour Mode Choice Model Parameters

818

Appendix B.0.3 Example: Shopping Tour Mode Destination Choice Model (tmds)819

The utility specification of the tmds model is specified as Equation B.3. The subscript m stands820

for the available modes in the choice set and d stands for the available destination in the choice set.821

At most there would be (number of modes × number of TAZ) alternatives in the choice set. The822

general availability of modes are set according to scenarios as introduced in Table 9. Private bus is823

not available. Individual specific availability of driving alone and motorcycle are set according to824

vehicle ownership and license. Mass transit is set according to the network.825

Vm,z = βASC,m + βT,mTm + βC,mCm + log(Zarea,d + βempZemp,d + βpopZpop,d) (B.3)

826

Appendix B.0.4 Example: Intermediate Stop Generation (isg)827

The utility specification of the isg model is specified as Equation B.4. The Intermediate Stop828

Generation model is a nested logit quit/no-quit model, whereby a no-quit choice results in a new829
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Variable Name Symbol Domain

Travel time of mode m Tm continuous
Cost of mode m Cm continuous
Area of zone d Zarea,d continuous
Employment of zone d Zemp,d integer
Population of zone d Zpop,d integer

Table B.16 Shop Tour Mode Destination Choice Model Parameters

intermediate stop. While one of the nests includes only the quit option, the other includes the830

other available activity purposes. Individual characteristics, tour purpose, and remaining time831

window—determined based on the start or end time of the primary activity, and preceding or832

successive stops—are included as variables in the model. Availability of stop purposes is determined833

based on the outputs of the Day Pattern Stops model. Stops are scheduled sequentially. Vwork is834

an example of the structural utility of performing a work activity. On the other hand, Vquit is the835

structural utility of stopping intermediate stops and is set to zero for reference.836

Vquit = 0

Vwork = βASC,work + βg,workSg + βin,workZinZwindow + βout,workZoutZwindow+

3∑
i=1

βin,stop,iZinZstop,i +
3∑
i=1

βout,stop,iZoutZstop,i +
4∑
i=1

βprim,i,workZprim,i

(B.4)

Variable Name Symbol Domain

Gender Sg binary
Whether the half tour is inbound Zin binary
Whether the half tour is outbound Zout binary
Available time window Zwindow continuous
The stop to be decided would be

the first stop Zstop,1 binary
the second stop Zstop,2 binary
the third stop Zstop,3 binary

Primary activity of the tour
work Zprim,1 binary
education Zprim,2 binary
shop Zprim,3 binary
other Zprim,4 binary

Table B.17 Work Tour Mode Choice Model Parameters

837

Appendix C Day-to-day learning838

In this section, we explain how we calibrate link travel time information in detail. Our simulator,839

SimMobility, uses two travel time tables during simulation: default link travel time and historical840

link travel time. The default link travel time provides link travel time calculated by free flow speed841

and historical link travel time, including travel time at a 5-min interval, is from previous simulation842

result. SimMobility will try to look for travel time information at a certain interval from historical843
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link travel time first. If it cannot find historical link travel time, it will use free flow travel time844

from default link travel time. The problem with historical link travel time is that its information845

is not necessarily accurate for current demand. For some high congestion links, their travel time846

in historical link travel time table may be very low, which will cause more people choosing routes847

containing those links and thus resulting in gridlock.848

The purpose of the day-to-day learning process is to update historical link travel times. The849

historical link travel times are an input to the supply simulation and are used in the private traffic850

and public transit route-choice models. Having accurate and representative historical link travel851

times is important for the simulation results to match the actual observations.852

Figure C.25 The workflow of day-to-day learning. We first do a simulation with current historical link travel
time table and get realized link travel time table as result. The new estimate of historical link travel times are
obtained via a weighted combination of the initial historical link travel times and realized link travel times.
Specifically, we compare two tables, weight the realized link travel time as 0.25 and initial historical link travel time
as 0.75 to calculate a new estimate of the historical link travel time. Finally, we upload this new estimate of the
historical link travel time table to the database to replace the older historical link travel time table and then start
the next iteration. This process is repeated until the link travel times from the simulation are consistent with the
historical link travel times.

853
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