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Summary This paper introduces a new data-driven methodology for estimating sparse covariance
matrices of the random coefficients in logit mixture models. Researchers typically specify covariance
matrices in logit mixture models under one of two extreme assumptions: either an unrestricted full co-
variance matrix (allowing correlations between all random coefficients), or a restricted diagonal matrix
(allowing no correlations at all). Our objective is to find optimal subsets of correlated coefficients for
which we estimate covariances. We propose a new estimator, called MISC, that uses a mixed-integer
optimization (MIO) program to find an optimal block diagonal structure specification for the covari-
ance matrix, corresponding to subsets of correlated coefficients, for any desired sparsity level using
Markov Chain Monte Carlo (MCMC) posterior draws from the unrestricted full covariance matrix.
The optimal sparsity level of the covariance matrix is determined using out-of-sample validation. We
demonstrate the ability of MISC to correctly recover the true covariance structure from synthetic
data. In an empirical illustration using a stated preference survey on modes of transportation, we use
MISC to obtain a sparse covariance matrix indicating how preferences for attributes are related to
one another.

Keywords: Discrete Choice, Logit Mixture Models, Sparse Covariance Estimation, Algorithmic
Model Selection, Machine Learning

1. INTRODUCTION

The logit mixture model, also called the mixed logit model, is widely considered to be the most
promising state of the art discrete choice model; see Hensher and Greene (2003). In a seminal paper,
McFadden and Train (2000) show that under some mild regularity conditions any discrete choice model
that is consistent with random utility maximization has choice probabilities that can be approximated,
up to any desired precision, by a logit mixture model through a right choice of explanatory variables and
distributions for the random coefficients. The logit mixture model enables the modelling of preference
heterogeneity by allowing the model’s coefficients to be randomly distributed across the population
under study; see Chapter 6 of Train (2009).

In specifying a logit mixture model, the researcher makes assumptions on the distribution of the
model’s coefficients (called the mixing distribution) and on the structure of the covariance matrix.
For example, for normally distributed coefficients β ∼ N (µ,Ω), the researcher decides which, if any,
covariance matrix elements to estimate and which ones to constrain to zero. Typically, the researcher
compares goodness-of-fit statistics on a few competing hypotheses on the structure of the covariance
matrix (usually full against diagonal covariance matrix). As the number of all possible covariance
matrix specifications grows super-exponentially with the number of distributed coefficients, it is not
practically feasible for the researcher to comprehensively compare all possible specifications of the
covariance matrix in order to determine an optimal specification to use.1

In this paper, we introduce an algorithmic estimation procedure that discovers the best block diagonal
covariance matrix specification, corresponding to subsets of correlated coefficients, directly from the
data.

Parsimonious specifications of the covariance matrix are desirable since the number of covariance
elements grows quadratically with the number of distributed coefficients. Consequently, sparser models

1If there are R random coefficients in a mixed logit model, the number of different covariance matrix specifications
corresponding to mutually exclusive and collectively exhaustive subsets of correlated coefficients can be determined by
counting the number of ways a set of R elements can be partitioned into non-empty subsets. This is given by the Bell
numbers (Aigner, 1999). The first few Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . ..
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2 Aboutaleb et al.

provide efficiency gains in the estimation process compared to estimating a full covariance matrix.
James (2018) demonstrates, on an empirical application, that sparser representations of the covariance
matrix provide a better fit on the data than a fully unrestricted model as measured by BIC or AIC.
James (2018) proposed a factor structured covariance approach to cast the covariances into a lower
dimensional representation of latent factors. Keane and Wasi (2013) compared different logit mixture
specifications with full, diagonal, and restricted covariance matrices and concluded that a full covariance
matrix is not justified by the data in many cases, and that different specifications of the covariance
matrix fit best on different datasets.

On the other hand, Hess et al. (2017) shows that ignoring statistically significant correlations between
the distributed coefficients can distort the estimated distribution of ratios of coefficients, representing
the values of willingness-to-pay (WTP) and marginal rates of substitution. Several studies including
Hess and Train (2017), Kipperberg et al. (2008), Scarpa et al. (2008), Revelt and Train (1998), and
Train (1998) have found statistically significant correlations between coefficients in logit mixture models
on a number of empirical applications.

The conclusion is that, in general, researchers cannot know, without testing, which restrictions to
impose.

In this paper, we propose a new methodology for learning the structure of the covariance matrix in
logit mixture models with a normal mixing distribution (or transformations of the normal distribution
such as the log-normal or Johnson SB distributions) from the data. In particular, we are interested in
algorithmically identifying optimal subsets of correlated coefficients for which we estimate covariances.
This corresponds to a block diagonal specification of the covariance matrix. We build on ideas from
the mixed-integer optimization (MIO) framework for variable selection in linear regression models
developed by Bertsimas et al. (2016), the Hierarchical Bayes (HB) estimator for logit mixture models,
(see Allenby, 1997, Allenby and Rossi, 1998, and Train, 2009), and its extension to block diagonal
covariance matrices by Becker (2016). We discuss practical extensions of our proposed methodology
to cases where some of the coefficients are distributed while others are fixed, latent-class logit mixture
models, and logit mixtures with inter- and intra-consumer heterogeneity.

The remainder of this paper is organised as follows. Section 2 presents a brief background on covari-
ance estimation in logit mixture models, sparse covariance matrix estimation in statistics, and the use
of mixed-integer programming in model selection. Section 3 presents the proposed methodology for
learning the covariance structure in logit mixture models and forms the core methodological contribu-
tion of this paper. Section 4 presents Monte Carlo simulations to validate our proposed methodology,
in addition to an empirical application. Section 5 discusses the extensions of our proposed methodology
mentioned above. Section 6 concludes the paper.

2. BACKGROUND

This section provides an overview of covariance matrix estimation in logit mixture models, the problem
of estimating sparse covariance matrices in statistics, and the motivation for using a mixed-integer
programming approach to select an optimal covariance matrix specification.

2.1. Covariance Matrix Estimation in Choice Models

We consider the logit mixture model with the utility specification shown in equation (2.1). The indices
used are n ∈ {1, 2, · · · , N} for individuals, m ∈ {1, 2, · · · ,Mn} for choice situations (or “menus”), and
j ∈ {1, 2, · · · , Jmn} for alternatives.

Ujmn = Vjmn(Xjmn, ζn) + εjmn (2.1)

Ujmn is individual n’s unobserved utility of alternative j in choice situation m, Vjmn is the systematic
utility function, Xjmn is a vector of explanatory variables (e.g. attributes of the alternatives and
characteristics of the individual), ζn is a vector of individual-specific coefficients, and εjmn is an error
term following the extreme value distribution with zero mean and unit scale. The researcher specifies a
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distribution for the coefficients and estimates the parameters of that distribution. Typically, a normal
or log-normal distribution is specified; see Ben-Akiva et al. (1997) and Revelt and Train (1998). We
assume that ζn is normally distributed in the population with mean µ and covariance matrix Ω. The
ζn’s represent the preferences or tastes of individual decision-makers.

ζn ∼ N (µ,Ω) (2.2)

Exponentiation of coefficients in the utility equations is used when a particular coefficient is known to
have the same sign across the population of decision-makers (e.g. a negative sign for a price coefficient)
– this is equivalent to specifying a log-normal distribution for said coefficient.

The researcher estimates µ and Ω. The matrix Ω represents the covariance structure of the individual-
specific coefficients. The variances on the diagonal elements reflect the magnitude of heterogeneity in
these coefficients in the population, and the off-diagonal elements represent covariances between these
coefficients– indicating that preferences for one attribute are related to their preferences for another
attribute; see Hess and Train (2017).

Conditional on ζn, the probability of selecting alternative j can be expressed as:

Pjmn(ζn) =
exp(Vjmn(Xjmn, ζn))∑Jmn

i=1 exp(Vimn(Ximn, ζn))
(2.3)

The individual-specific coefficients ζn are random, and the unconditional probability of choice is
obtained by integrating over the mixing distribution of these coefficients (which we assume to be
normal).

Pjmn =

∫
Pjmn(ζn)N (ζn|µ,Ω)dζn (2.4)

The model’s parameters, µ and Ω, can be estimated using Maximum Simulated Likelihood (MSL).
This requires integration over a multidimensional distribution. Most applications using MSL for model
estimation assume a diagonal covariance matrix specification, due to the computational constraints that
manifest through the so-called “curse of dimensionality”: the number of draws required for simulation
increases exponentially with the number of variables, making estimation highly intractable; see Guevara
et al. (2009) and Cherchi and Guevara (2012).

Train and Sonnier (2005) show that Bayesian methods for estimating the logit mixture model, such
as Markov Chain Monte Carlo (MCMC), are less susceptible to the “curse of dimensionality”. The
most commonly used estimation method of logit mixtures is an Hierarchical Bayes (HB) estimator; see
Allenby (1997), Allenby and Rossi (1998), and Train (2009). This estimator is based on a three-step
Gibbs sampler with an embedded Metropolis-Hastings algorithm which we describe below:

Algorithm 1: Three-step Gibbs-Sampler

Step 1. Draw µ given Ω and ζn using a normal Bayesian update with unknown mean and
known variance. A diffuse prior is used on µ (usually a normal distribution with zero mean and
large variances).
Step 2. Draw Ω given µ and ζn using a normal Bayesian update with known mean and
unknown variance. Usually an Inverted Wishart (IW) prior is used on Ω for its conjugacy
property.2

Step 3. Draw ζn given µ and Ω using the Metropolis-Hastings algorithm (the conditional
posterior is proportional to logit multiplied by a normal density).

Becker (2016) extended the three-step Gibbs-sampler (Algorithm 1) to allow for a block diagonal
covariance structure specification. The covariance matrix is divided into mutually exclusive blocks, and



4 Aboutaleb et al.

each block is updated separately in step 2 of Algorithm 1. All of the off-diagonal elements that do not
belong to any of the blocks are not estimated and constrained to zero.

Inferring a parsimonious covariance structure from the data has not yet been addressed in the
literature on logit mixture models. On the other hand, several methods appear in the statistics literature
dedicated to estimating sparse covariance matrices.

2.2. Sparse Covariance Matrix Estimation

In statistics, the covariance selection problem, introduced by Dempster (1972), involves setting some
of the elements of the covariance matrix (or its inverse, the concentration matrix) to zero. Several
approaches have been developed to achieve parsimonious specifications of the covariance matrix. These
mainly fall into one of two categories. The first approach involves traditional multiple hypotheses
testing. The relevant papers belonging to this approach include Knuiman (1978), Porteous (1985),
Drton and Perlman (2004), Drton et al. (2007), and Drton and Perlman (2008). The second approach
uses a LASSO penalty (L1 norm) to achieve model selection and estimation simultaneously. The
implementation of the penalty methods, however, is nontrivial because of the positive definite constraint
on the covariance (or concentration) matrix; see Yuan and Lin (2007).

Yuan and Lin (2007) proposed a penalized likelihood method for model selection and parameter
estimation simultaneously using an L1 penalty on the off-diagonal elements. The “maxdet” interior
point algorithm from Vandenberghe et al. (1998) is used, and a BIC-type criterion is adopted for the
selection of the tuning parameter. A similar approach was taken by Banerjee et al. (2008), and Dahl
et al. (2008). Meinshausen et al. (2006) suggested fitting a LASSO model to each variable, using others
as predictors. This was later enhanced by Friedman et al. (2008) who proposed a fast algorithm that
cycles through the variables, and fits a modified lasso regression to each variable.

In the Bayesian context, Khondker et al. (2013) introduced the Bayesian Covariance Lasso (BCLASSO),
which uses exponential priors on the diagonal elements and double exponential (Laplace) priors on
the off-diagonal elements of the concentration matrix. The authors used Gibbs sampling to draw from
the diagonal elements (since their full conditionals are available in closed form), and the standard
Metropolis-Hastings algorithm for sampling from the off-diagonal elements.

Wang et al. (2012) proposed a similar Bayesian estimator with similar priors (exponential priors for
the diagonal elements and double exponential priors for the off-diagonal elements). Data augmentation
was used to develop a more efficient block Gibbs sampler, which updates one column and row of the
concentration matrix at a time.

In both of the Bayesian covariance LASSO methods by Wang et al. (2012) and Khondker et al.
(2013) described above, the estimator does not set any of the covariance matrix entries exactly to zero,
instead it generates draws that are concentrated around zero. To distinguish between zero and non-
zero elements, Wang et al. (2012) suggests using the thresholding approach recommended by Carvalho
et al. (2010), which compares the relative magnitudes of the penalized and non-penalized estimates.
Alternatively, Khondker et al. (2013) recommends using “credible regions” based on confidence intervals
of the estimates. However, the choice of the significance level is somewhat arbitrary, and coupled with
the choice of the penalty itself.

There are fundamental limitations associated with the direct application of the LASSO methods
just described to the logit mixture context. First, LASSO penalties penalize larger coefficients more
than smaller ones. This is not desirable when estimating behavioural models, as this might result in
underestimating the magnitude of heterogeneity in the population. In addition, LASSO methods not
only set some covariance elements to zero, but also shrink the non-zero covariances towards zero. The
estimated non-zero variances and covariances will clearly be biased, and it is not clear how a post-
LASSO type methodology, (e.g. Belloni et al., 2013), can be applied to the logit mixture context. In
contrast, our proposed mixed-integer programming methodology finds the optimal locations of zeros
in the covariance matrix without penalizing the non-zero covariances during the estimation process.
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2.3. The Mixed-Integer Programming Approach

The problem of deciding which subsets of the distributed variables are potentially correlated (or equiv-
alently specifying the structure of the covariance matrix to be estimated) naturally admits an integer
programming formulation. A covariance element is either estimated or restricted to zero. Each of these
decisions is represented by a binary decision variable in the formulation we introduce in Section 3.
Making a decision on which covariances to estimate has an effect on information loss in the covari-
ance matrix and on the likelihood, and deciding which covariances to estimate requires balancing
information loss and sparsity. We solidify these ideas in the next section.

As described in Section 2.1, Algorithm 1 can be easily modified to draw from block diagonal matrices;
see Becker (2016). Estimating general covariance matrix structures is technically possible through
the Metropolis-Hastings algorithm, but with much added computational cost. We therefore restrict
the decisions on which covariances to estimate and which to constrain to zero so that the resulting
covariance matrix structure is block diagonal. The covariance elements restricted to zero are not
estimated, all other elements of the covariance matrix are estimated without penalty. This is in contrast
to the LASSO-type methodologies which also penalize all the covariance matrix elements leading to
possible bias in the estimated values.

Mixed-integer optimization (MIO) problems are NP-hard, which means that, in general, finding a
“certificate of optimality” in a reasonable amount of time cannot be guaranteed; see Bertsimas and
Tsitsiklis (1997). However, massive developments in the state of the art solvers’ ability to solve large
scale MIO problems has enabled recent successes in applying MIO methods to statistical problems
such as best subset selection Bertsimas et al. (2016). Bertsimas et al. (2016) show that mixed-integer
programming can be used to solve the best variable subset selection problem in linear regression for
much larger problem sizes than what was thought possible. Bertsimas and Dunn (2017) find optimal
classification trees using an MIO formulation. Aboutaleb (2019) used mixed-integer and non-convex
programming techniques to find an optimal specification for nested logit models. We find that the MIO
solution times in our proposed methodology take up only a small fraction of the total estimation time,
with the Bayesian MCMC procedure taking up the bulk of the estimation time.

3. METHODOLOGY

This section develops our proposed methodology for estimating an optimal covariance structure in
logit mixture models. Our goal is to algorithmically find optimal subsets of the distributed coefficients
for which we estimate covariances.

3.1. Optimization Problem

Let {Ωd d ∈ D} be a set of MCMC posterior draws from an unrestricted (full) covariance matrix
Ω (i.e. all the covariances are estimated), and let Ψ be a sparse block-diagonal representation of the
matrix Ω. In representing Ω by a sparse matrix Ψ, there is invariably some loss of information. This
is represented by the following equation:

Ω = Ψ + E (3.1)

where the matrix E is the loss matrix. The problem of interest is to find the optimal balance between
information, as represented by Ψ, and loss as represented E. In this section, we formulate this problem
as a mixed-integer optimization problem with a quadratic objective and linear constraints. We first
begin with some necessary definitions.

Definition 3.1. A square matrix M is block diagonal if its diagonal elements are square matrices
of any size (possibly even 1× 1), and the off-diagonal terms are zero. Formally, M is block diagonal if
there exists square matrices A1, ...,Am such that M =

⊕m
i=1 Ai. Where the direct sum of any pair of



6 Aboutaleb et al.

matrices Am×n ⊕Bp×q is given as a matrix of size (m+ p)× (n+ q) defined as:

A⊕B =

[
A 0
0 B

]
,

and the boldface zeros are blocks of zeros i.e., zero matrices.

Any square matrix can be trivially considered to be block diagonal with one block. Each of the square
matrices Ai on the diagonal elements of the matrix M represents the covariance matrix of a subset
of correlated coefficients. There can be as many blocks as there are rows or columns in the original
matrix M (if all the blocks are 1× 1 matrices).

Block diagonal matrices are restrictive in the sense that the property is dependent on the particular
ordering or indices of the distributed coefficients– which is somewhat arbitrary. We would like to relax
this restriction by introducing the notion of a permutation independent block diagonal matrix.

Definition 3.2. A square matrix M is pseudo block diagonal (PBD) if there exists a permutation
of its indices such that the index-permuted matrix M′ is block diagonal.

Note that this definition is not standard in the literature, but is necessary for our exposition. By this
definition, any block diagonal matrix is trivially PBD.

We restrict our attention to PBD matrices, for two reasons. First, the three-step Gibbs-sampler
(Algorithm 1) can be easily modified to draw from block diagonal matrices (Becker, 2016) and by
trivial extension to PBD matrices through a simple permutation of indices. The second reason is that
blocks in PBD matrices naturally correspond to a partition of the correlated coefficients which are
arguably more interpretable than general covariance matrices.

At a high level, the problem of finding an optimal sparse representation of the matrix Ω can be
written as follows:

min
Ed,Ψ

∑
d∈D

‖Ed‖22 (3.2)

s.t. ‖Ψ‖0 ≤ k (3.3)

Ωd = Ψ + Ed ∀d ∈ D (3.4)

Ψ is pseudo block diagonal (PBD) (3.5)

where ‖Ψ‖0 (the so-called L0 norm) is the number of non-zero elements in the matrix Ψ.3 k is a
parameter that is determined through cross-validation.

Constraint (3.3) stipulates that at most k elements of Ψ are nonzero and is, therefore, a sparsity
constraint. (3.4) is a conservation of information constraint: what is not in the sparse representation
of Ω, Ψ, must be in the loss matrix E. Constraint (3.5) restricts the class of Ψ to PBD matrices, and
can be viewed as an interpretability constraint. This optimization problem can be described as follows:
we want to find a PBD representation of the covariance matrix with at most k non-zero elements with
minimal square loss of information.

To mathematically formulate constraint (3.5), we first establish an association between trees and
PBD matrices. Establishing such a one-to-one correspondence enables us to use the machinery of
graph theory to enforce these PBD constraints. As we will find, such a representation will enable us
to write constraint (3.5) as a set of linear constraints. We discuss how to construct such a graphical
representation of PBD matrices and the linear constraint representation next.

Proposition 3.1. Any pseudo block diagonal matrix can be represented by a tree.

Proof. Suppose M is a PBD matrix, then by Definition 3.2 there exists some index permuted matrix

3Technically speaking, the L0 norm is not a proper norm because it is not homogeneous. Nevertheless, this non-zero
counting “norm” appears in the statistics literature.



Sparse Covariance Logit Mixture 7

M′ of M, such that M′ is block diagonal. By Definition 3.1, we can write M′ as the direct sum of
square matrices, i.e., there exists matrices A1, ...,Am such that M′ =

⊕m
i=1 Ai. To construct a tree

representation of M′:

Step 1. Represent each of the distributed coefficients in the model by a leaf node (•).
Step 2. Represent each of the square matrices Ai by an internal node (�).
Step 3. Create a root node (◦) and connect it to each of the internal nodes.

Step 4. Connect each leaf node to the internal node representing the square matrix Ai corre-
sponding to its index.

�
This procedure is illustrated by an example in Figure 1.

Let R denote the index set of distributed coefficients in the model and let K denote a set of |R|
intermediate nodes representing abstract blocks. These abstract blocks correspond to the constituent
block matrices Ai of the sparse PBD representation Ψ of the covariance matrix of the distributed
coefficients Ω.

To find an optimal PBD matrix Ψ, we need to determine:

1 The number of blocks in Ψ.

2 How to form the blocks corresponding to subsets of distributed coefficients.

From the preceding discussion on representing PBD matrices as trees, we can instead consider the
induced graph G = (V, E), where the set of nodes V consists of a root node {r}, a set of leaf nodes
R representing the distributed variables, and a set of abstract intermediate nodes K representing the
constituent blocks. Formally, V = {r} ∪ K ∪R. Under this framework, the two optimization decisions
posed above can be re-framed as follows:

1 Which internal nodes b ∈ K to include in the graph G?

2 How to form edges such that the resulting G is a tree?

To this end, we define a binary variable yb for b ∈ K to denote whether or not the node representing
abstract block b is included in the tree representation of Ψ. Furthermore, let xij be a binary variable
equal to one if there is a directed edge between nodes i, j ∈ V, and zero otherwise.

We now look at representing constraints (3.3) and (3.5) as linear constraints. The sparsity constraint
(3.3) allows up to k non-zero elements in the matrix Ψ. To enforce this constraint, we first define a
binary variable zij = 1{Ψij 6= 0} for i, j ∈ R, and consider the following set of constraints:

M ijzij ≤ Ψij ≤ M̄ijzij (3.6)

Where M ij and M̄ij are lower and upper bounds on the size of the entries of the matrix Ψ and
are determined from the MCMC posterior draws Ωd of the full covariance matrix Ω. The sparsity
constraint (3.3) can now be represented as: ∑

i,j∈R
zij ≤ k (3.7)

Since covariance matrices are symmetric, we require that:

zij = zji (3.8)

To enforce constraint (3.5), we first define the following binary auxiliary variables wijb to denote if
variables i, j ∈ R share a common block b ∈ K, that is:

wijb = 1 ⇐⇒ xbi = 1, xbj = 1 (3.9)
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Ω =

v1 v2 v3( )∗ ∗ ∗ v1
∗ ∗ ∗ v2
∗ ∗ ∗ v3

(a) {{v1, v2, v3}}

Ω =

v1 v2 v3( )∗ ∗ 0 v1
∗ ∗ 0 v2
0 0 ∗ v3

(b) {{v1, v2}, {v3}}

Ω =

v1 v2 v3( )∗ 0 ∗ v1
0 ∗ 0 v2
∗ 0 ∗ v3

(c) {{v1, v3}, {v2}}

Ω =

v1 v2 v3( )∗ 0 0 v1
0 ∗ 0 v2
0 0 ∗ v3

(d) {{v1}, {v2}, {v3}}

Figure 1: An illustration of representing PBD matrices as trees (cf. Proposition 3.1).
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This can be represented by the following linear constraints:

wijb ≤ xbi (3.10)

wijb ≤ xbj (3.11)

wijb ≥ xbi + xbj − 1 (3.12)

(3.10) and (3.11) represent the forward implication of (3.9), and (3.12) represents the backward impli-
cation of (3.9).

The covariance between i, j ∈ R is estimated if and only if i and j share a common block. Formally,

zij = 1 ⇐⇒ ∃ b ∈ K : wijb = 1 (3.13)

To represent this constraint, first note that the negation of the forward implication of (3.13) is the
statement: ∀ b ∈ K, wijb = 0 =⇒ zij = 0 (i.e., if i and j do not share a common block, then the
corresponding covariance element zij is not estimated and constrained to zero). This can be written
as the following linear constraint:

zij ≤
∑
b∈K

wijb (3.14)

Likewise, the negation of the backward implication in (3.13) is zij = 0 =⇒ ∀ b ∈ K, wijb = 0 which
can be written as a set of either-or constraints:

wijb + (1− zij) ≤ 1 ∀b ∈ K (3.15)

Finally, we need to impose a number of structural constraints as follows: First, each of the nodes
representing the distributed variables must belong to one block only:∑

i∈K
xij = 1 ∀j ∈ R (3.16)

Second, the edges xe must be selected such that the resulting graph is a tree. Recall that a tree with
n nodes must exactly have n − 1 edges (otherwise the addition of an edge results in a cycle and
the removal of an edge results in a disconnected graph). This condition can be enforced through the
following equality constraint: ∑

e∈E
xe︸ ︷︷ ︸

Number of edges

=
(∑
b∈K

yb + |R|+ 1
)

︸ ︷︷ ︸
Number of nodes

−1 (3.17)

Third, block nodes can not have connections unless included in the graph:

yb ≤
∑
j∈V

xbj ≤ |V|yb ∀b ∈ K (3.18)

Fourth, if a block node is included, it must have an incoming connection from the root node:

yb = xrb (3.19)

Finally, we always allow the diagonal elements (representing the variances) to be nonzero, i.e., zii = 1
for all i ∈ R, we permit no incoming edges to the root node: xir = 0 ∀i ∈ V, no outgoing edges from
the leaf nodes xij = 0 ∀i ∈ R, j ∈ V, and disallow self-arcs: xii = 0 ∀i ∈ V.

Putting it all together, we arrive at the following optimization problem:

Pseudo Block Diagonal Optimization Problem (P)
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min
Ed,Ψ,z,x,w,y

∑
d∈D

‖Ed‖22

subject to: Ωd = Ψ + Ed ∀d ∈ D∑
i,j∈R

zij ≤ k

M ijzij ≤ Ψij ≤M ijzij ∀i, j ∈ R
zij = zji ∀i, j ∈ R
wijb ≤ xbi ∀i, j ∈ R, b ∈ K
wijb ≤ xbj ∀i, j ∈ R, b ∈ K
xbi + xbj − 1 ≤ wijb ∀i, j ∈ R, b ∈ K

zij ≤
∑
b∈K

wijb

wijb + (1− zij) ≤ 1 ∀b ∈ K∑
i∈K

xij = 1 ∀j ∈ V

yb ≤
∑
j∈V

xbj ≤ |V|yb ∀b ∈ K∑
i,j∈V

xij =
(∑
b∈K

yb + |V|+ 1
)
− 1

yb = xrb ∀b ∈ K
zii = 1 ∀i ∈ R
xir = 0 ∀i ∈ V
xij = 0 ∀i ∈ R, j ∈ V
xii = 0 ∀i ∈ V
x ∈ {0, 1}|V|×|V|, y ∈ {0, 1}|R|, w ∈ {0, 1}|R|×|R|×|R|,
z ∈ {0, 1}|R|×|R|,Ed ∈ R|R|×|R|,Ψ ∈ R|R|×|R|

Given a set of draws from the full covariance matrix {Ωd, d ∈ D} and a sparsity level parameter k,
optimization problem (P) returns Ψ– a sparse PBD representation of Ω with at most k non-zeros. The
sparse representation is optimal in the sense that it constructed with minimal square loss of information
across draws d ∈ D.

This mixed-integer optimization problem has a quadratic objective and linear constraints and can
be solved efficiently to optimality for relatively large problem sizes using standard conic quadratic
programming techniques (Bertsekas, 1997 and Boyd and Vandenberghe, 2004) implemented in state
of the art solvers such as GUROBI (Gurobi Optimization, 2015) and CPLEX (CPLEX, 2009).
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3.2. Overall Algorithm

There are two critical components to our algorithm. The first component is the optimization problem
(P) described in the previous section. Given draws from the full covariance matrix, and a regularization
parameter k, (P) outputs an optimal block structure as represented by the matrix Ψ. The second crucial
component is a procedure that can estimate variance and covariance elements of pseduo block diagonal
matrices from the data. This can be accomplished by applying step 2 of the three-step Gibbs sampling
procedure (Algorithm 1) to each block separately as suggested by Becker (2016). Tying these two
components together, we arrive at the following algorithm:

Algorithm 2: Mixed Integer Sparse Covariance Matrix Estimation Algorithm (MISC)

Step 1. Estimate the logit mixture model with Ω specified as a full covariance matrix using
Algorithm 1. The output of this step includes the posterior draws of the matrix Ω: Ωd, d ∈ D.
Step 2. For a choice of regularization parameter k, solve the optimization problem (P) to obtain
an optimal block structure as represented by the matrix Ψ.
Step 3. Estimate the logit mixture model with Ω specified as a block diagonal matrix according
to the blocks obtained in step 2 using a block-wise three-step Gibbs sampling procedure
(Algorithm 1).
Step 4. Evaluate the log-likelihood on training and validation data-sets.
Step 5. Repeat steps 2 to 4 for various values of k.
Step 6. Choose the specification with the best validation log-likelihood.
Step 7. Estimate the logit mixture model with optimal specification for Ω as determined from
step 6 on the full dataset.

The number of non-zero covariances in Ω can vary between |R| to |R|2. Consequently, step 5 has to
be repeated for

|R| ≤ k ≤ |R|2

by varying k in increments of 2 (since the covariance matrix is symmetric) for a total of |R|(|R|−1)/2
runs. Note that these runs are embarrassingly parallel– meaning they can be run simultaneously.

We end this section by suggesting a more practical alternative to controlling sparsity than restricting
the number of zero elements ‖Ψ‖0. Consider instead a modified optimization problem where Constraint
(3.7) that restricts the number of non-zeros in the matrix Ψ,

∑
i,j∈R zij ≤ k, in (P) is replaced by∑

b∈K yk ≥ p. This modified constraint now stipulates that the total number of blocks in Ψ is at least
p. Increasing the number of blocks increases the sparsity level of the matrix since each added block
constraints the covariances between the coefficients that are in the added block and those that are not
to zero. If Ψ consists of one only block, then it is a full matrix and all covariances are estimated. With
as many blocks as there are rows or columns of Ω, Ψ becomes a diagonal matrix will all the covariance
elements restricted to zero. The benefit of using the number of blocks to control sparsity is that under
this regime, step 5 is now to be repeated for 1 ≤ p ≤ |R| by varying p in increments of one for a total
of |R| runs only. The downside being the loss in granularity in how the sparsity is specified.

3.3. Implementation

The MISC algorithm consisting of the mixed-integer optimization problem (P) and the block-wise
three-step Gibbs sampler (Algorithm 1) has been implemented in the Julia programming language
(Bezanson et al., 2017) through the JuMP mathematical optimization interface (Dunning et al., 2017)
and the GUROBI mixed-integer solver (Gurobi Optimization, 2015). The authors make the source
code accessible under an MIT licence through https://github.com/ymedhat95/MISC.
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Table 1: Attributes and attribute levels for the synthetic Grapes dataset.

Attribute Symbol Levels

Price P $1 to $4
Sweetness S Sweet (1) or Tart (0)
Crispness C Crisp (1) or Soft (0)

Size L Large (1) or Small (0)
Organic O Organic (1) or Non-organic (0)

4. COMPUTATIONAL EXPERIMENTS

In this section we validate the MISC algorithm introduced in Section 3. In Section 4.1, we demon-
strate, through a Monte Carlo experiment that MISC can correctly recover the true covariance matrix
structure. In Section 4.2, we apply our algorithm to the Apollo mode choice dataset from Hess and
Palma (2019).

4.1. Monte Carlo Experiments

4.1.1. Dataset Description The MISC algorithm introduced in Section 3 is applied to the synthetic
choice-based-conjoint (CBC) Grapes dataset from Ben-Akiva et al. (2019). The setup is as follows: in-
dividuals are presented with eight menus, each including three different alternatives which are bunches
of grapes with varying prices and attributes in addition to an opt-out alternative. The dependent
variable is the choice between the three different bunches or not buying grapes at all (opting-out). The
attributes and attribute levels are the same as in Ben-Akiva et al. (2019), and are presented in Table 1.
The attributes of the different alternatives are drawn uniformly from their corresponding distributions.

The utility equations (normalized to the opt-out alternative) are presented in equations (4.1)-(4.2).
All coefficients are distributed with inter-consumer heterogeneity, as denoted by the subscripts n.

Ujmn = e−αn(−Pjmn + SjmnβSn
+ CjmnβCn

+ LjmnβLn
+OjmnβOn

+ SCjmnβSCn

+ SGjmnβSGn
+ βqn) + εjmn, j ∈ {1, 2, 3} (4.1)

Uopt−out,mn = 0 + εopt−out,mn (4.2)

Ujmn represents the utility of alternative j in menu m presented to individual n. αn is a scale parameter.
Exponentiation is used to ensure that it is always positive. Pjmn is the price of grapes bunch j in menu
m faced by individual n. Its coefficient normalized to -1. Sjmn, Cjmn, Ljmn, and Ojmn represent
sweetness, crispness, size, and organic dummies of bunch j as indicated in Table 1, with coefficients
βSn

, βCn
, βLn

, and βOn
respectively. SCjmn and SGjmn represent interaction terms between sweetness

and crispness, and sweetness and a gender dummy with coefficients βSCn
, βSGn

respectively. βqn
is a constant for choosing one of the three bunches of grapes compared to opting-out. εjmn is an
independently and identically distributed error term following the extreme value distribution with
mean zero and unit scale.

The model is specified in the willingness-to-pay (WTP) space (i.e., the price coefficient is fixed to -1
and the scale parameter αn is estimated). Therefore, all the coefficients represent the willingness-to-pay
for their corresponding attributes.

The population means and covariances of the coefficients of the synthetic population are shown Table
2. The covariance matrix is block diagonal and admits the tree representation shown in Figure 2 (cf.
Proposition 3.1). Let the coefficients βS , βC , βL, βO, βSC , βSG, βq, α in Table 2 correspond to indices
1, 2, 3, 4, 5, 6, 7, 8 respectively. The structure of the population covariance can be compactly represented
as {1, 2, 3}{4, 5}{6}{7}{8}. We will henceforth use this representation.

4.1.2. Block Structure Recovery and the Effect of Sample Size The goal is here to use the MISC
algorithm to recover the true covariance structure shown in Table 2 from the data. Out-of-sample vali-
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Table 2: Means and covariances of the distributed coefficients used to generate the synthetic data.

Coefficient Mean Covariance

βS βC βL βO βSC βSG βq α
βS 1 .9 .4 .2 0 0 0 0 0
βC .3 .4 .2 .05 0 0 0 0 0
βL .2 .2 .05 .15 0 0 0 0 0
βO .1 0 0 0 .4 .2 0 0 0
βSC 0 0 0 0 .2 .3 0 0 0
βSG .1 0 0 0 0 0 .4 0 0
βq 2 0 0 0 0 0 0 1 0
α -1.5 0 0 0 0 0 0 0 .25

Figure 2: Tree representation of the block diagonal structure in Table 2.

dation is performed, to determine the optimal sparsity level, using a similar dataset, but with different
individuals whose preferences follow the same multivariate normal distribution with the coefficients
shown in Table 2.

The results of the experiment are presented in Table 3 and Table 4. Table 3 shows values of the
training and validation log-likelihoods for various values of the regularizer k, the maximum number
of non-zero elements in the sparse representation of the matrix, and the corresponding optimal block
structure output of the optimization problem (P). The experiment is repeated for various sample
sizes. Notice that the training log-likelihood increases with decreasing sparsity level. This is expected
as estimating additional covariance matrix elements cannot worsen the log-likelihood on the training
sample. On the hold-out validation sample, however, denser covariance matrices do not necessarily
perform better. This is akin to the machine learning concept of over-fitting: a more complicated model
does not necessarily generalize better. Table 4 shows the estimated means and covariances for the
specifications corresponding to the optimal sparsity levels for each of the three experiments determined
from Table 3.

For sample sizes of 10, 000 and 1000 individuals, the block diagonal structure with the best validation
log-likelihood is the true structure {1, 2, 3}{4, 5}{6}{7}{8}. For the sample size of 500 individuals, a
block diagonal structure where an extra covariance term is estimated is recovered: {1, 2, 3}{4, 5}{6}{7, 8}.



14 Aboutaleb et al.

4.1.3. Edge Cases: Full and Diagonal Matrices In this section, we demonstrate the ability of MISC
to recover the correct covariance structure when the true covariance structure is a full matrix and
when it is a diagonal matrix. For variety, we regularize using the number of blocks, p, instead of
the number of non-zero elements (as discussed at the end of Section 3.2). For the full matrix exper-
iment, a random normally distributed matrix with mean zero and standard deviation 0.1 was added
to the covariance matrix in Table 2. For the diagonal experiment, only the variances in Table 2 were
preserved. In both experiments the means of the coefficients were unchanged. Data for 15000 indi-
viduals (10000 training, and 5000 validation) were generated according to these two schemes (full
covariance and diagonal covariance matrices). The results are shown in Table 5. The MISC algorithm
correctly recovers the structure {1, 2, 3, 4, 5, 6, 7, 8} for the full matrix experiment, and the structure
{1}{3}{3}{4}{5}{6}{7}{8} for the diagonal matrix experiment.

4.2. Empirical Application

In this section we apply the MISC algorithm to the Apollo mode choice dataset from Hess and Palma
(2019). 500 individuals were presented with choices between four modes of transportation: car, bus,
air and rail. The options were described on the basis of travel times (hours), travel costs (), and access
times (for the bus, air and rail options). Additionally for the air and bus modes, a categorical quality
of service attribute was added. The quality of service attribute takes one of three levels: no frills, wifi
available, or food available. Each individual was presented with 14 stated preference tasks and each
task had at least two of these four modes available.

A mixed logit model for the choice setup just described is specified according to utility equations
(4.3)-(4.6). There is one equation for each alternative (four in total). n and m index individuals and
stated preference tasks respectively. The dependent variable is the individual’s choice of transportation
mode.

Ucar,mn = Ccar − eβtt,carTravel-Timecar,mn − eβtcTravel-Costcar,mn + εcar,mn (4.3)

Ubus,mn = Cbus − eβtt,busTravel-Timebus,mn − eβtcTravel-Costbus,mn

− eβatAccess-Timebus,mn + εbus,mn (4.4)

Uair,mn = Cair − eβtt,airTravel-Timeair,mn − eβtcTravel-Costair,mn + βnofrills1{nofrills}
+ βwifi1{wifi}+ βfood1{food} − eβatAccess-Timeair,mn + εair,mn (4.5)

Urail,mn = Crail − eβtt,railTravel-Timerail,mn − eβtcTravel-Costrail,mn + βnofrills1{nofrills}
+ βwifi1{wifi}+ βfood1{food} − eβatAccess-Timerail,mn + εrail,mn (4.6)

The specification shown includes alternative-specific travel time coefficients and constants. The cost,
access time, and level of service coefficients are shared across the alternatives. The coefficients of
the model are assumed to be randomly distributed according to a normal distribution for which we
estimate its mean and covariance matrix. The epsilon errors are i.i.d extreme-valued with mean zero
and unit scale. Ccar is normalized to zero for identification. The other alternative specific constants
represent base preferences over the car alternative. Similarly, βnofrills is normalized to zero and βwifi
and βfood measure the effects of additional quality of service over the no frills option. Negation and
exponentiation are used to ensure that the effects of time and cost on the utility are negative (e.g. the
coefficient βaccess enters the utility equations as −eβaccess . This is equivalent to specifying a log-normal
distribution for βaccess).

Table 6 shows the estimated parameters (mean and covariance matrix) corresponding to the optimal
structure as determined by the MISC algorithm. Table 7 shows the output of the MISC algorithm for
various levels of regularization. The specification corresponding to the best validation log-likelihood
was chosen, and the corresponding estimated parameters are shown in Table 6. The optimal structure
has four blocks, and allows covariances between the four alternative-specific travel time coefficients,
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the access time coefficient, the travel cost coefficient and the bus and rail modes alternative-specific
constants. All other covariances are constrained to zero.

The estimated means of the alternative-specific constants show that, ceteris paribus, air and bus are
the most and least preferred modes of transportation respectively. Travellers are also more sensitive
to travel time by bus than by any other mode. The access time sensitivities outweighs, on average,
the travel time sensitivities. Furthermore, the negative correlation between the alternative-specific
constants of the bus and rail modes indicate that travellers who prefer to travel by rail tend to dislike
travel by bus. The effects of increasing quality of service are positive, as expected, since we control for
travel costs.

The estimated covariances indicate that the travel time sensitives for the different travel modes are
positively correlated both among one another and with access time sensitivities, travel costs, and the
preference for the bus travel mode. It appears that travellers who prefer the bus mode of travel are
more sensitive to travel time and travel costs. We observe an opposite trend for travellers who prefer
rail. These travellers tend to be less sensitive to travel times and travel costs. This is also reflected
by the average travel time sensitivity for the rail travel mode being the lowest among the four travel
modes.

Table 8 shows the calculated values of time. Travellers are more willing to spend to reduce their
bus travel times than the travel times of the other available modes of transportation. Travellers are,
however, most willing to spend to reduce the access times.

5. EXTENSIONS

In this section, we propose adaptations to the MISC algorithm to handle common extensions of the logit
mixture model: random and fixed coefficients (Section 5.1), inter- and intra-individual heterogeneity
(Section 5.2) and flexible mixing distributions (Section 5.3).

5.1. Random and Fixed Parameters

A simple extension to our procedure can be made to allow optimization problem (P) to choose which
variances to estimate i.e., which coefficients are random and which are fixed. This can be done by
eliminating the following set of constraints from (P):

zii = 1 ∀i ∈ R, (5.1)

and by adjusting the equality constraint in constraint (3.16) to a less than or equal to constraint:∑
i∈K

xij ≤ 1 ∀j ∈ R, (5.2)

Any distributed coefficients that the modified optimization problem decides not to estimate variances
for, are not included in step 1 or step 2 of the 3-step Gibbs sample (Algorithm 1), but are instead
estimated through a separate Metropolis-Hastings algorithm step as in Khondker et al. (2013). This
extension is particularly useful when working with small datasets where a much more parsimonious
specification is required for maximal efficiency.

5.2. Inter- and Intra-Individual Heterogeneity

When multiple observations are available for each individual, it is possible to identify inter- as well as
intra-individual heterogeneity, representing random taste variations among different individuals and
among different choice situations of the same individual respectively. Becker et al. (2018) proposed
an extension to the three-step Gibbs-sampler (Algorithm 1) of logit mixture models to account for
both sources of heterogeneity. The underlying model assumes that the utility equation is given by the
following:

Ujmn = Vjmn(Xjmn,ηmn) + εjmn (5.3)
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ηmn represents a vector of choice-specific coefficients that follow the distribution:

ηmn ∼ N (ζn,Ω
w), (5.4)

and the individual-specific means ζn are distributed as:

ζn ∼ N (µ,Ωb) (5.5)

Ωb and Ωw are the inter- and intra-individual covariance matrices respectively. In such applications,
the proposed methodology can be extended in two different ways to account for the two types of
heterogeneity:

1 Estimating sparse covariances the inter- and intra-individual covariance matrices. The MISC
algorithm can be applied separately to the two covariance matrices.

2 The modeler might be interested in estimating three different types of coefficients: (1) fixed
coefficients, (2) coefficients with inter-individual heterogeneity only, and (3) coefficients with
inter- and intra-individual heterogeneity as in Becker et al. (2018). The extension presented in
Section 5.1 can be used to distinguish between the three types of coefficients.

5.3. Flexible Mixing Distributions

The logit mixture model with normally distributed random coefficients can be extended to account
for semi-parametric flexible mixing distributions. These distributions are specified as a finite mixture
of normals; see Rossi et al. (2012), Bujosa et al. (2010), Greene and Hensher (2013), Keane and Wasi
(2013), and Krueger et al. (2018). Semi-parametric distributions can overcome the major limitation
of normal or lognormal mixing distributions, which is the assumption of uni-modality, as they can
asymptotically mimic any shape; see Vij and Krueger (2017).

The main limitation of this method is that the number of estimated coefficients is proportional to
the number of “classes” in the normal mixture. For example, a mixture of three normals entails the
estimation of three covariance matrices. Our methodology can be applied to these models to enforce
sparsity and reduce the number of estimated coefficients. Let Ωsd denote draw d ∈ D for class s ∈ S, πsd
the fraction of the population in class s in draw d, and Ψs the sparse representation of the covariance
matrix for class s. We suggest an extension of the representation (3.2)-(3.5) to the multi-class case as
follows:

min
Esd,Ψs

∑
s∈S

∑
d∈D

πsd‖Esd‖22 (5.6)

s.t.
∑
s∈S
‖Ψs‖0 ≤ k (5.7)

Ωsd = Ψs + Esd ∀s ∈ S, d ∈ D (5.8)

Ψs is pseudo block diagonal (PBD) ∀s ∈ S (5.9)

k controls the sparsity level across all Ψs. Greater sparsity control can be achieved through an s-
dimensional parameter ks s ∈ S by replacing (5.7) with ‖Ψs‖0 ≤ ks s ∈ S. The clear downside being
the much greater number of required runs of the MISC algorithm.

6. CONCLUDING REMARKS

This paper presents a new method of finding an optimal pseudo block diagonal (PBD) specification of
the covariance matrix of the distributed coefficients in logit mixture models. The proposed algorithm,
which we call MISC, marks a significant methodological improvement over the current modus operandi
of estimating either a full covariance matrix or a diagonal matrix. By working on PBD matrices,
our method is permutation invariant in that it does not depend on the particular ordering of the
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distributed coefficients in the problem. The algorithm presented is an interplay between a mixed-
integer optimization program and the standard MCMC three-step Gibbs-sampling procedure typically
used to estimate logit mixture models. A mixed-integer program is used to find an optimal PBD
covariance matrix structure for any desired sparsity level using MCMC posterior draws from the full
covariance matrix. The optimal sparsity level of the covariance matrix is determined using out-of-
sample validation.

The proposed methodology is practical in that the main computational step can be completely
parallelized. Furthermore, by controlling sparsity using the number of blocks in the matrix, the algo-
rithm requires as many of the traditional MCMC runs used in logit mixture estimation as there are
distributed coefficients.

Unlike the Bayesian LASSO-based sparsity methods in the statistics literature, our method does
not penalize the non-zero elements of the covariance matrix. This is desirable, in the logit mixture
context, since penalizing the non-zero covariances may lead to underestimating the heterogeneity in
the population under study.

We have demonstrated the efficacy of our algorithm by applying it to a synthetic dataset where the
correct block structure specification was successfully recovered. The algorithm was shown to be robust
with respect to sample size. We demonstrated an empirical application to the Apollo mode choice
dataset and presented a few practical extensions to our framework that are relevant for logit mixture
models.
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Table 3: Output of the MISC algorithm for different levels of regularization and sample sizes.

(a) Ntraining = 10000 and Nvalidation = 5000

(b) Ntraining = 1000 and Nvalidation = 500

(c) Ntraining = 500 and Nvalidation = 250

Note: k is the maximum number of non-zero elements in the covariance matrix. The Optimal Blocks column shows the
optimal covariance structure at regularization level k– the output of optimization problem (P). The colouring shown is
proportional to the log-likelihood. The best validation log-likelihood for each experiment is underlined.
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Table 4: Estimated parameters for the MISC optimal specifications obtained for different sample sizes.

(a) Ntrain = 10000, Nvalidation = 5000

Coefficient Mean Covariance

βS βC βL βO βSC βSG βq α
βS 1.000 .905 .394 .195 0 0 0 0 0

(.0147) (.0241) (.0116) (.0086) - - - - -
βC .297 .394 .204 .046 0 0 0 0 0

(.0097) (.0116) (.0074) (.0050) - - - - -
βL .198 .195 .046 .154 0 0 0 0 0

(.0070) (.0086) (.0050) (.0063) - - - - -
βO .106 0 0 0 .407 .190 0 0 0

(.0091) - - - (.0113) (.0010) - - -
βSC 0.014 0 0 0 .190 .291 0 0 0

(.0132) - - - (.0010) (.0020) - - -
βSG .0910 0 0 0 0 0 .375 0 0

(.0102) - - - - - (.0131) - -
βq 2.031 0 0 0 0 0 0 1.051 0

(.0159) - - - - - - (.0347) -
α -1.507 0 0 0 0 0 0 0 .258

(.0167) - - - - - - - (.0178)

(b) Ntrain = 1000, Nvalidation = 500

Coefficient Mean Covariance

βS βC βL βO βSC βSG βq α
βS .931 .875 .350 .187 0 0 0 0 0

(.0408) (.0757) (.0390) (.0284) - - - - -
βC .241 .350 .178 .058 0 0 0 0 0

(.0263) (.0390) (.0266) (.0145) - - - - -
βL .168 .187 .058 .152 0 0 0 0 0

(.0215) (.0284) (.0145) (.0226) - - - - -
βO .011 0 0 0 .3607 .151 0 0 0

(.0273) - - - (.0327) (.0268) - - -
βSC .013 0 0 0 .151 .314 0 0 0

(.0350) - - - (.0268) (.0494) - - -
βSG .063 0 0 0 0 0 .379 0 0

(.0312) - - - - - (.0429) - -
βq 2.067 0 0 0 0 0 0 1.259 0

(.0506) - - - - - - (.1220) -
α -1.590 0 0 0 0 0 0 0 .381

(.0661) - - - - - - - (.0855)
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Table 4 (continued): Estimated parameters for the MISC optimal specifications obtained for different sample sizes.

(c) Ntrain = 500, Nvalidation = 250

Coefficient Mean Covariance

βS βC βL βO βSC βSG βq α
βS .940 .898 .468 .170 0 0 0 0 0

(.0618) (.1086) (.0607) (.0382) - - - - -
βC .293 .468 .283 .075 0 0 0 0 0

(.0475) (.0607) (.0518) (.0212) - - - - -
βL .205 .170 .075 .125 0 0 0 0 0

(.0296) (.0382) (.0212) (.0266) - - - - -
βO .153 0 0 0 .361 .153 0 0 0

(.0385) - - - (.0475) (.0372) - - -
βSC -.068 0 0 0 .153 .224 0 0

(.0572) - - - (.0372) (.0685) - - -
βSG .174 0 0 0 0 0 .375 0 0

(.0451) - - - - - (.0600) - -
βq 2.005 0 0 0 0 0 0 1.131 .121

(.0744) - - - - - - (.1647) (.0788)
α -1.375 0 0 0 0 0 0 .121 .254

(.0783) - - - - - - (.0788) (.0878)

Note: Parameter means and covariances were calculated from draws from convergent MCMC posterior draws from the
mean vector and covariance matrix respectively. Standard errors are shown in brackets below the corresponding estimate.
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Table 5: Output of the MISC algorithm for various level of regularization.

(a) Full matrix experiment

(b) Diagonal matrix experiment

Note: p is the number of blocks in the covariance matrix. Sparsity increases with increasing number of blocks. The
Optimal Blocks column shows the optimal covariance structure at regularization level p. The best validation log-likelihood
for each experiment is underlined.
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Table 6: Estimated parameters for the optimal covariance specification for the Apollo mode choice
dataset.

Coefficient Mean Covariance

Cbus Cair Crail βtt,car βtt,bus βtt,air βtt,rail βat βwifi βfood βtc
Cbus -1.23 5.54 0 -1.89 4.97 5.30 6.82 6.35 2.79 0 0 3.74

(.419) (1.35) - (.333) (.730) (.799) (1.11) (.947) (.598) - - (.514)
Cair .386 0 .550 0 0 0 0 0 0 0 0 0

(.153) - (.092) - - - - - - - - -
Crail -.428 -1.89 0 1.04 -2.02 -2.11 -2.71 -2.54 -1.11 0 0 -1.45

(.110) (.333) - (.156) (.243) (.250) (.330) (.332) (.202) - - (.197)
βtt,car -1.01 4.97 0 -2.02 5.44 5.46 7.19 6.70 2.93 0 0 4.05

(.143) (.730) - (.243) (.470) (.497) (.694) (.568) (.439) - - (.354)
βtt,bus -.365 5.30 0 -2.11 5.46 5.98 7.50 6.98 2.95 0 0 4.05

(.185) (.799) - (.250) (.497) (.674) (.741) (.601) (.449) - - (.414)
βtt,air -1.97 6.82 0 -2.71 7.19 7.50 10.7 9.27 3.83 0 0 5.36

(.242) (1.11) - (.330) (.694) (.741) (1.38) (.915) (.656) - - (.468)
βtt,rail -1.97 6.35 0 -2.54 6.70 6.98 9.27 8.87 3.71 0 0 4.94

(.224) (.947) - (.332) (.568) (.601) (.915) (.823) (.520) - - (.443)
βat -.032 2.79 0 -1.11 2.93 2.95 3.83 3.71 2.16 0 0 2.13

(.149) (.598) - (.202) (.439) (.449) (.656) (.520) (.487) - - (.303)
βwifi .908 0 0 0 0 0 0 0 0 .491 0 0

(.077) - - - - - - - - (.086) - -
βfood .436 0 0 0 0 0 0 0 0 0 .431 0

(.072) - - - - - - - - - (.086) -
βtc -2.63 3.74 0 -1.45 4.05 4.05 5.36 4.94 2.13 0 0 3.44

(.096) (.514) - (.197) (.354) (.414) (.468) (.443) (.303) - - (.339)

Note: The mixed logit model was reestimated on the full dataset after MISC model selection procedure. Parameter
means and covariances were calculated from draws from convergent MCMC posterior draws from the mean vector and
covariance matrix respectively. Standard errors are shown in brackets below the corresponding estimate.

Table 7: Output of the MISC algorithm for the Apollo mode choice dataset.

Note: The indices shown correspond the coefficients column in Table 6. The dataset was randomly spliy into 300
individuals for training and 100 for validation. p is a sparsity parameter corresponding to the minimum number of
blocks in the covariance matrix. The best validation log-likelihood is underlined. The optimal block diagonal structure
is obtained with p = 4 blocks.
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Table 8: Calculated values of time for the Apollo mode choice dataset.

Value of time (/hour)
Median Mean

Car Travel Time 5.05 7.49
Bus Travel Time 9.63 18.63
Air Travel Time 1.93 10.70
Rail Travel Time 1.93 6.52

Access Time 13.44 26.26

Note: The value of time is the extra amount of money, in , that a traveller would be willing to pay to reduce their
journey times by one hour. For an in depth demonstration of how values of time are calculated in logit mixture models
see Xie et al. (2019).


