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ABSTRACT

Relationships between Hamilton's Law of Varying Action (HLVA), Hamilton's
Principle and Hamilton's Principle of Stationary Action are discussed. A conceptual
interpretation of HLVA is presented with an illustrative example. The application of HLVA
to obtain an approximate solution to dynamics problems of lumped-parameter systems via
trial solutions with undetermined parameters, namely the HL.LVA method, is evaluated and
extended to nonholonomic systems. The approximation accuracy of the HLVA method is
investigated. Comparison of the HLVA method with Galerkin's method is made. This
comparison shows that the former provides the identical approximation accuracy as the
latter when identical trial solutions are used, but requires more computational lalor than the
latter. The role of the HLVA method in engineering analysis is also discussed.
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1 INTRODUCTION

1.1 Background of Hamilton's Law of Varying Action

Hamilton's Law of Varying Action was presented by Hamilton in his two classical

Essays [1-2] on a general energy method in dynamics in 1834 and 1835.

In his first Essay, Hamilton set forth two basic forms of his Law of Varying Action
for lumped-parameter holonomic conservative sysiems. The first form expresses the
variation of a function, which he called the characteristic function, in terms of the variations
of initial and final configurations, and of the variation of the Hamiltonian of the system.
The characteristic function, defined as the time integral of twice the kinetic coenergy along a
motion, is now called the Maupertuis Action [6). Transformed from the first form, the
second form of Hamilton's Law of Varying Action expresses the variation of a function,
which he called the principal function, in terms of the variations of initial and final
configurations and of ihe variation of the final instant. The principle function, defined as

the time integral of the lagrangian along a motion, is now called the lagrangian action [6).

The second form of Hamilton's Law of Varying Action has been widely referred to as
Hamilton’s Law of Varying Action due to the applications made by Hamilton in his second
Essay. In the second Essay, Hamilton systematically developed the use of the principle
function and established the canonical equations of motion. In addition, Hamilton pointed
out that the variation of the principle function enjoys the double property of giving the
integrals of the canonical equations when the configurations of the system at end instant are

varying, and of giving the Lagrange’s Equations of motion when the configurations of the
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system at terminal instants are fixed. When the configurations of the system at the terminal
instants are fixed, Hamilton's Law of Varying Action is what is now called Hamilton's

Principle of Stationary Action [3].

Since Hamilton, conceptual interpretation of Hamilton's Principle of Stationary
Action has been given in [3, p32-34]. Conceptual interpretation of Hamilton's Law of
Varying Action, however, has not been seen in literature. (One of the goals of this thesis is

to give a conceptual interpretation of Harlton's Law of Varying Action)

The primary application of an extended form of Hamilton's Priiciple of Stationary
Action, called Hamilton's Principlet , has been that of deriving the differential equations of
motion. A recent application is that of using Hamilton's Law of Varying Action as a

variational formulation for an approximate solution to dynamics problem [10-12].

Bailey [10-11] demonstrated the application of Hamilton's Law of Varying Action to
obtain direct solutions to initial value problems for particular holonomic systems. By direct
solutions, he meant that the solution is achieved without the use of differential equation

theory or reference to the equations of motion of the system.

Oz and Adiguzel [12] applied the procedure demonstrated by Bailey to a generic
holonomic dynamics problem and called the procedure the "formulation of algebraic

equations of motion" 11,

T Hamilton's Principle of Stationary Action is for holonomic systems under conservative forces, whereas
Hamilton’s Principle applies to holonomic systems under nonconservative forces as well as
conservative forces. In addition, Hamilton's Principle can be extended for nonholonomic systems as
well, These two principles are discussed in chapter 2 of this thesis.

Tt The confusing phrase 'algebraic equations of motion' will not be used hereafter in this thesis.
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1.2 Objective of the Study

Although the application of Hamilton's Law of Varying Action (HLVA) to obtain a
direct solution to dynamics problems [10] has triggered recent debate and investigation on
HLVA [9, 11, 12], important questions remain unanswered. For example, the
relationship among Hamilton’s Law of Varying Action, Hamilton's Principle [5], and
Hamilton's Principle of Stationary Action [3], and their scopes of application have not been
discussed satisfactorily in terms of the types of systems (e.g. holonomic or nonholonomic,
conservative or nonconservative) to whick these principles apply. In addition, some
important issues regarding the method of directly solving dynamics problems via HLVA
have not been clearly addressed. For example, whether a direct solution via HLVA can be
obtained for a nonholonomic system, and whether this application of HLVA is an efficient
way to obtain approximate solutions to dynamics problems as compared with other

technique remain unanswered.

In view of the above issues, the objectives of this study are two fold.

The first objective is to discuss the relations of HLVA with Hamilton's Principle and
Hamilton's Principle of Stationary Action through illustrations, instead of through
advanced mathematical treatments. The approach involves interpreting concepiually HLVA
through discussions of the role of the time boundary terms, and demonstrating the
difference between HLLVA for holonomic systems and HLVA for nonholonomic systems

with an illustrative example.



The second objective of this thesis is to evaluate a recent application of HLVA, that is,
the application of HLVA to obtain direct {approximate) solutions to dynamics problems.
The approach involves discussing how HLVA is used in this application and how to extend
this applicztion of HLVA to nonholonomic systems, comparing this method with weighted
residual methods for dynamics problems, and investigating the role of this application of

HLVA in dynamics.

This study is confined to lumped-parameter systems. In addition, the system is
assumed to be such that the constraints can be analytically expressed by Pfaffian equationst
(5, p13-16].

1.3 Organization of the Thesis

Chapter 1 gives an introduction of the thesis. In chapter 2, HLVA is introduced and
relations of HLVA with Hamilton's Principle and Hamilton's Principle of Stationary Action
are discussed. Then chapter 3 presents a conceptual interpretation of HLVA for holonomic
systems and demonstrates the difference between HLVA for holonomic systems and
HLVA for nonholonomic systems. Chapter 4 starts with a review of the method of
applying HLVA to obtain direct (approximate) solution of dynamics problem. Following
the review, some numerical issues pertinent to this method are discussed, and then the

possibility of applying this method to nonholonomic systems is demonstrated. The

T An expression is said to be a Pfaffian equation if it takes the following form:
z Adx;+ Apdt =0

iml
where A; and Ao are known functions of X1, X2,---, Xa and ¢, and have continuous first derivatives in a

domain of x1, x2,---, Xs and ¢.
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difference between HLVA and Hamilton's Principle in obtaining direct solutions to
dynamics problems is addressed toward the end of chapter 4. In chapter 5, this method is
positioned in the context of engineering analysis and compared with Galerkin's method for

dynamics problems. Finally, conclusions of this study are given in chapter 6.

Notation in this thesis follows that of [3], with the major terminology sources being

both [3] and [5]. However, the former is our scurce of first priority.
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2 THEORY OF HAMILTON'S LAW OF VARYING ACTION

2.1 Introduction

This chapter presents the underlying theory of HLVA and two special cases, namely,
Hamilton's Principle and Hamilton's Principle of Stationary Action. The chapter begins
with a derivation of HLVA from the so-called fundamental equation of motion for a
dynamic system. Then the two special cases of HLVA are discussed. Also the three

variational principles of Hamilton are compared briefly.

2.2 Hamiiton's Law of Varying Action

Consider a general dynamical system of N particles m, (i = 1, ..., N), as indicated in

Fig. 2.2.1.

.3

X

Fig. 2.2.1 System of N particles where OXYZ
represents an inertial frame.
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The dynamic behavior of this system is governed by the fundamental equation 5, p28]

(2.2.1)

-

d .
)

where f; is the resultant given force, which is the totality of all forces, excluding the forces
of constraintst , acting on the particle m;, 8 is the contemporaneous variational operator,

and p;, R; and 8R; are the momentum of the ith particle, the position vector, and the

admissible variation of the position vector, respectively.

This equation, discovered by Lagrange in the 1760's, is a combination and
generalization of the principle of virtual work and d’Alembert’s principle. We shall call it .
the fundamental equation following [5, p28], although many different names have been
given to ittt . The fundamental equation states that the total work increment of the given
forces plus the inertia forces of the system vanishes for arbitrary admissible variations of
the configuration of the system. It should be noted that the admissible variation R (1) is
the displacement of the ith particle measured between a point on a specified trajectory of the
particle at instant ¢ and the contemporaneous point on a neighboring trajectory, as illustrated

in Fig. 2.2.2.

T The forces of constraint are eliminated because they do no work during an arbitrary admissible
variation [5, p22-27].

t For example, it is called d'’Alembert’s principle [Goldstein p18), generalized principle of d'Alembert
[Meirovitch p65), and Lagrange’s form of d’Alembert’s principle [Rosenberg p126].
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Now, let §,,..., & be a complete and independent set of generalized coordinates and
let 8¢,,..., 8, be their associated variational variablesT. In addition, let V(&,...., &) be
the potential energy of the conservative forces, and let = be the generalized for e associated
with the generalized coordinate «’,‘J due to the nonconservative forces. Then, the total work
increment of all given forces acting on the system can be divided into a contribution from

conservative forces and a contribution from nonconservative forces as follows [3, p130}:

(2.2.2)

Fig. 2.2.2 The variation OR;(f) between two

trajectories. OXYZ represents an inertial frame. Curve
AB is a specified trajectory of particle m;. Curve CD
is a neighboring trajectory.

T Note that the variational variables &1, - - -, 8, are independent if the system is holcnomic, but are not

independent if the system is nonholonomic.
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The total work increment of the inertia forces acting on the masses of the system can be

expressed as follows {3, p130]:

N n »
dp; s oT
Y -l =or -Z{f;( : 65,-), (2.2.3)

N .
where T is the kinetic coenergy of the system, T* = 3, %—m,-d%‘- o d——g—‘ ,and §; is the

generalized velocity associated with the generalized coordinate &i. The relation (2.2.3) is

called by Hamel [8, p233-p234] as the Central Principle.

Through the Central Principle (2.2.3) and the expression (2.2.2), the fundamental

equation (2.2.1) is transformed into the following form:

ort-ov+y, 565 = Y 419 s 2.2.4)
j=1 i=1 % 3¢

The time derivative term on the right hand side of (2.2.4) is not convenient to evaluate. In
an attempt to eliminate the derivative quantity, integrating the above equaiion with respect

to time over an arbitrary interval from ¢ = t; to t = £y(f; < 7) gives

(&.+ }n_‘, sjaé,-)d: =[i or” 8&,12 , (2.2.5)
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where L = T* - V is the lagrangian of the system. We shall refer to the above equation as
the general form of Hamilton's Law of Varying Action. (For reference, Table 2.2.1 shows
the terminologies associated with this equation and its slightly different forms in the
literature.) In view that equation (2.2.5) is a direct transformation from the fundamental
equation (2.2.1), equation (2.2.5) can be stated as follows: The fotal work increment of
the system over any finite time interval vanishes for arbitrary admissible variations of the

configurations of the system.

In order to help interpret the general form of HLVA, let us introduce some
terminologies. The phrase geometrically admissible motion (or admissible motion for
short) [3, p24] will be used to denote a motion which is always geometrically compatible -
but which does not necessarily satisfy the dynamic-force requirements at all times. The
terminology natural motion [3, p30] will be used to mean a geometrically admissible
motion which also satisfies the dynamic-force requirements. Another class of motion, the
class of varied motions, is not defined based on the geometric admissibility requirements or
the dynamic-force requirements of the system as the admissible motions and natural
motions are; instead, it is obtained by pure mathematical construction. Assume a natural
motion of a system is represented by &1, - .+, &, then at each instant during the natural
motion there is an arbitrary admissible variation 81, - - -, 6&n associated with this instant.

The sequence of configurations &1 + &y, - -+, &n + 68, as time changes is called the varied
motion [3, p417] [5, p341T .

+  Varied motion is called varied path in [Pars p34]
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Note that if &1, -, &x are not subject to any constraint, the admissible variation
661, - -+, 66n is arbitrary; otherwise, the admissible variation is defined by the constraint
equationst of the system. It should also be noted that a varied motion in general is not an
admissible motion if the system is nonholonomic, but is always an admissible motion if the

system is holonomic. This point will be illustrated in Section 3.3.

With the introduction of the above terminologies, the general form of HLVA (2.2.5)
can be stated as follows: A varied motion of the system over an arbitrary finite time interval

11 < t <ty is a natural motion if, and only if, the variational indicator

n
n - n aTt 2
VI = (& + z Ej 5&,‘) dt - 2 — 0&; , (2.2.6)
j=1 i=1 9g; ) .
4

vanishes for arbitrary geometrically admissible variations of the motion within this time
interval.
Remarks.

1. The fundamental equation (2.2.1) and the general form of HLVA (2.2.5) are equivalent

since the latter is a mathematical transformation of the former. Both are variational

T For example, if a generic constraint equation is in the form a,d§; + axdbs + aadbs + ap =0, where ay, a2,
a3, and ag are functions of &y, &2, £3, and time #, then the relation that defines an admissible variation
(881, 883, 8&3) is obtained by changing dfy, d&, and dfs in the constraint equation to &1, &2, and &3,
and setting ag to zero. Therefore, the equation that defines an admissible variation for this case is

a&1+a:8&2+a:853=0.
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formulations of the general dynamics problem for holonomic as well as nonholonomic

systems. Both state the dynamics-force requirements of a system from an energy

viewpoint.

The fundamental equation (2.2.1) and the general form of HLVA (2.2.5) can be
interpreted differently. The former states the dynamic-force requirements on an instant-
to-instant basis, whereas the latrer states the dynamic-force requirements over a time
interval. In other words, the fundamental equation compares the configurations from
one instant to another, whereas the HLVA compares complete time histories over a time

interval.

2. It is important to notice that the general form of HLVA (2.2.5) holds for arbitrary -
terminal instants £; and 23 (f; < tp) after the system's initial time, and it holds for both

holonomic and nonholonomic systems.

3. Equation (2.2.5) and equation (2.2.6) are different forms of the same statement of the

general form of HLVA.

When all given forces acting on a system: are conservative, that is, they can be

derived from a potential function, the general HLVA (2.2.5) becomes

” Y S
I 5Ld:=[z , 5&,-1, (2.2.7)
t

1 j=1 0§; 1
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I, in addition, the system is holonomic, then the varied motion is an admissible motion,

and the operations of integration and variation in (2.2.7) are commutativet. Thus,

t2 2
j oL dt=5f Ldt. (2.2.8)
t t

1 1

Hence, combining (2.2.7) and (2.2.8) gives HLVA for a holonomic system under

conservative forces as follows:

-

8A =[ y o 5.5,-}2 (2.2.9)
J t

where A denotes the lagrangian action of an admissible motion in the interval i) St< g,

[+
thatis, A = f L dt. The above equation is Hamilton's Law of Varying Action presented
t

1
in [1, p307]tt. It expresses the variation of the action A of the natural motion of the
System over a time interval 7y S¢< 1 as a linear function of the variations of the
configurations of the systemat t; and r,. This interpretation of HL.VA (2.2.9) is illustrated

in Section 3.2.

T Thisisa consequence of the calculus of variations. See Section 4.2 and Appendix B for more
discussion on the commutability of the operations of integration and variation.

Tt Actually, Hamilton's original Law of Varying Action includes the variation of the end time ¢ in
addition to the the variations of the end configurations of the system. Here we assume that the end
instants t7 and 1 are fixed. Therefore, equation (2.2.9) is a reduced form of original Hamilton's Law
of Varying Action.
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2.3 Two Special Cases of Hamilton's Law of Varying Action

2.3.1 Hamilton's Principle

In the general form of HLVA (2.2.5), the time history of the natural motion is
compared with those of the neighboring varied motions over the interval f; £t S 2. If we
restrict the comparison to the family of varied motions that share the same end
configurations as the natural motion at t =ty and ¢ =1, (thatis, 65{r;)= 0, 6§{12)=0,j =
1, ..., n), then the right hand side of (2.2.5) (which we shall refer to as the time boundary

terms) vanishes. Hence, the general form of HLVA (2.2.5) becomes

4]

[5L+ 25 5§j]d:=o , (2 3.1)

j=1
n

which is called Hamiiton's Principle [3, p35].

In general, for both holonomic and nonholonomic systems, Hamilton's principle
provides a criterion to determine the natural motion among the varied motions having the
same end configurations as the natural motion. Therefore, Hamilton's principle for both

holonomic and nonholonomic systems can be stated as follows: A varied motiont of a

T Since varied motions in general are not admissible motions for nonholonomic systems (see Section
3.3.1) and are always admissible motions for holonomic systems, the term varied motion instead of
admissible motion is used in the statement of Hamilton's Principle in order to cover nonholonomic as

well as holonomic systems.
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dynamic system between specified configurations at t, and t, is a natural motion if, and

only if, the variational indicator

2

V.L

j=1

[51, + Y E 55,] dt (2.3.2)

14}

vanishes for arbitrary admissible variations 66,,..., 8,

Like the general form of HL.LVA, Hamilton's Principle applies to general holonomic
and nenholonomic systems. Unlike the general form of HLVA, Hamilton's Principle
compares the natural motion of the system with the family of varied motions that share the
same terminal configurations as the natural motion at the two terminal instants

t=f andt=1t.

Again, the two terminal instants #; and #; (1< 1) are arbitrary instants after the

system's initial time.
2.3.2 Hamilton's Principle of Stationary Action

If all given forces of the system can be accounted for in the potential energy function

V (and hence in the lagrangian L) , Hamilton's Principle becomes

t2
I éLdt =0, (2.3.3)
t

1

-22.



If, in addition, the system is holonomic, then the variation and integration operators

commute. Hence the above statement of Hamilton's Principle becomes

84=0| (2.3.4)

2
where A = f Lds isthe lagrangian action. Equation (2.3.4) is Hamilton's Principle of
t

1

Stationary Action [3, p31-34]. This principle may be stated as follows: For a dynamic
system in which the work of all forces is accounted for in the lagrangian, an admissible
motion between specified configurations at t, and t, is a natural motion if, and only if, the

action A is stationary for arbitrary admissible variations.

Hamilton's Law of Varying Action (2.2.9) and Hamilton's Principle of Stationary
Action (2.3.4) both apply to holonomic systems under conservative forces. The difference
between them lies in the different groups »f admissible motions with which the natural
motion is compared. The former compares the action A of a natural motion with all
neighboring admissible motions, whereas the later compares the action A of a natural
motion with the family of admissible motions that share the same configurations as the
natural motion at the two end instants. The comparison of Hamilton's Law of Varying

Action and Hamilton's Principle of Stationary Action is also illustrated in Section 3.2.
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24 Summary

Of the variational principles of Hamilton discussed in this chapter, Hamilion's
Principle (2.3.1) has been widely used as an energy method to formulate differential
equations of motion for systems in various engineering fields [3]. However, the general
form of HLLVA can be used also to derive the differential equations of motion (See

Appendix A).

The variational principles of Hamilton are summarized in Table 2.4.1.
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3 INTERPRETATION OF
HAMILTON'S LAW OF VARYING ACTION

3.1 Introduction

In this chapter a conceptual interpretation of HLVA for a holonomic system under
conservative forces is presented using a simple harmonic oscillator. The interpretation is
accomplished by the illustrations of how the (lagrangian) action of the natural motion varies
when the natural motion is compared with neighboring admissible motions. Also, HLVA
for nonholonomic systems is discussed. An example is used to demonstrate that varied
motions in general are not admissible motions for nonholonomic systems. Comments on
the difference between HLVA for nonholonomic systems and HLVA for holonomic

systems are also given.

3.2 Interpretation of HLVA For Holonomic Systems

As stated in Section 2.2, HLVA (2.2.9) expresses the variation of action A of the
natural motion of a system over a time interval #; <S¢ <, as a linear fuaction of the
configurations of the system at the terminal instants ¢ =1, and t=£,. In this section, an
example is employed to interpret HLVA and to illustrate this statement of HLVA. The
example, which is the same as that used to illustrate Hamilton's Principle of Stationary

Action in [3, p33-34], is the simple harmonic oscillator shown in Fig. 3.2.1.

-26 -



4
Z 2

Fig 3.2.1. Simple undamped
harmonic oscillator. Initial conditions:
x =0 and dxldt = vyatt=0.

For this (holonomic and conservative) system, geometrically admissible trajectories
are represented by the single-valued function x(z) provided the spring elongation is equal to
x and the mass velocity is equal to dx/dt . Consider trajectories which emanate from x = 0
at t = #; =0 and which end at various configurations at ¢ =, as indicated in Fig. 3.2.2.
These trajectories can be categorized into families of trajectories with each family consisting
of those trajectories emanating from x =0 at =0 and converging to a common
configuration at ¢ = ;. In particular, if x(¢) is the natural motion of the system, a family of
admissible trajectories consists of those trajectories emanating from x =0 atr=0 and
converging o x = x(t) + Exl,, at t=tp, where 6:{,2 is an admissible variation from the
configuration x(t2) at £ =1,. Therefore, it may be said that with each value of the end

variation &x{,, there is associated a family of admissible trajectories.
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Fig. 3.2.2. Admissible trajectories.

The action A associated with each admissible trajectory of this system is

2
A= [ [—%miz -%kxz]dt, where £; =0, f can be any time after f;, and X = dx/dr,

hh
According to HLVA (2.2.9), an admissible trajectory x(t) is a natural trajectory of the

system if, and only if, it satisfies the equation

* 12
M:[aT ax] =(m# &]? (3.2.1)
|,

for an arbitrary admissible variation 8x(¢) over the time interval ¢; <t < #,, where T" is the

kinetic coenergy of the system, T* = %m %2. Since f; has been taken to be the initial time of
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the system and the configuration of the system at ¢ =0 is known, the variation 5x|,,

vanishes. Therefore, equation (3.2.1) becomes
84 =[ml,,- 64y (3.2.2)

HLVA (3.2.2) says that for a family of admissible trajectories associated with a fixed
value of &L (for example, le,, = g, where € is a first-order differential quantity), the
variation of the action A is a constant when the natural trajectory is compared with this
restricted family of admissible trajectories. The constant is nothing else but the product of
the momentum of the system at ¢ = #; and the admissible variation of the end configuration
8)4:,. Fig. 3.2.3 shows several admissible trajectories from the family of admissible

trajectories associated with a value of &xL, =E.

Fig. 3.2.3. Constant variation of action A, 84 =[mi).¢, as the natural
trajectory is compared with a family of admissible trajectories in the
neighborhood of the natural trajectory.
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A special family of admissible trajectories is the family associated with the special
value &L, =0. This family consists of the admissible trajectories that share the same
configurations with the natural trajectory at ¢ =1t; and ¢ =2 . For this special family, the
variation of the action A is zero, or in other words, the action A is stationary for the natural
motion. Therefore, when HLVA compares the natural trajectory with this special family of
admissible trajectories, HLVA becomes Hamilton's Principle of Stationary Action [3, p33-
34].

When the natural trajectory is compared with different families of admissible
trajectories, HLVA (3.2.2) says that the variation of action A varies in proportion to the
admissible variation of the end configuration &L,. The proportional coefficient is nothing
else but the momentum of the system at t =1,. Fig. 3.2.3 shows the linear relationship

between the variation of the action A, 84, and the variation of the end configuration, 5)&,,.

sa

[mils,

0 &dtz

Fig. 3.2.4. Linear relationship between 6A and &x{,z.

-30-




Il A

3.3 Interpretation of HLVA for Nonholonomic Systems

3.3.1 Varied Motion vs Admissible Motion

In Section 2.2, terminologies such as admissible motion, natural motion and varied
moticn have been introduced. In this section a nonholonemic example, the constrained
motion of a boat [3, p119-120], is used to demonstrate that varied motions in general are
not admissible motions for nonholonomic systems. The procedure of the demonstration is
as follows: first, find a natural motion of the boat; second, construct a varied motion that is

indeed admissible; and third, construct another varied motion that is not admissible.

1. A natural motion of the boat

In Fig. 3.3.1, the water surface is the plane of the sketch. The boat is modeled so
that motions which are transverse to the keel are completely prohibited. In other words, the
translation of the boat must always be parallel to the instantaneous heading of the keel. The

analytical expression of this constraint is

dy - dx tan6 = 0. (3.3.1)

Geometrically admissible motions of the system are those sets of functions (X(t), ¥(2), &)
that satisfy the constraint equation (3.3.1) provided the angle of the keel with respect to the
x axis is taken equal to € and the displacement components in the x-direction and the y-
direction are taken equal to x and y, respectively. Fig. 3.3.2 shows several geometrically

admissible motions.
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AL

Fig 3.3.1. Constrained motion of boat [3, p119].

0 : =
X

Fig. 3.3.2. Admissible motions. The pointed triangles
represent the heading of the keel. Curves represent projections
of the trajectories in configuration space onto the oxy plane.
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Assume the boat is not subject to any force or torque, then the natural motion of the
boat under the particular set of initial conditions: x(0)=y(0)=0, 6(0)=45°,
#(0) = y(0) = 1, and &0) = 0, is (see Appendix C) -

Y=t
. , t20 (3.3.2)

Q@ 2 =
1§

= 45°

as shown in Fig. 3.3.3. Equation (3.3.2) is a natural motion because it is obtained by
solving the equations of motion of the system together with the equation of constraint
(3.3.1), which indicates that the motion represented by (3.3.2) satisfies not only the
geometric constraint but also the dynamic-force requirements. Note that to aveoid
confusion, the particular natural motion of the boat has been represented by the generalized
coordinates x, y, and @ with the superscript '*' in (3.3.2). For the same purpose, these
coordinates with a tilde '~' on top will be used to represent a particular varied motion in this

example.
2. A varied motion that is admissible

Since a varied motion is constructed by adding to the natural motion an admissible
variation, then the first step of constructing a varied motion would be to construct an
admissible motion. Let (dx*, &y*, 69‘) denote an admissible variation from the natural
motion (3.3.2). Based on the equation of constraint (3.3.1), the admissible variation

(6x*, &y*, 80‘) should satisfy (see Section 2.2)

8y* - 6x* tan@ " = 0. (3.3.3)
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To construct the varied motion that is admissible, choose a particular admissible variation to

be as follows:

<
"
g
F

t20 (3.3.4)

80" =0 |

where € is a positive first-order differential quantity with unit of displacement. With this

admissible variation, the associated varied motion is

T=x"+ 0x* =1+ esin{n/S)
F=y*+ 8  =t+ssin(n/sy t20 (3.3.5)
0=0"+60 =45°

as shown in Fig. 3.3.4.

Comparing the varied trajectory in Fig. 3.3.4 and the natural trajectory in Fig. 3.3.2
reveals that although this varied trajectory is geometrically the same as the natural
trajectory, the boat traverses these trajectories with different velocities. If proper forces are
applied to the boat, the boat is indeed capable of actually moving along this varied trajectory
without vinlating the geometric constraint. Therefore, the varied motion represented by

(3.3.5) is an admissible motion.

It should be noted that the varied motion (3.3.5) can also be mathematically verified

to be admissible. This verification is accomplished by testing whether X, y, and 8 in
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(3.3.5) satisfy the geometric constraint (3.2.1). Since the equation dy - dX tan €= 0 indeed

holds for ¢ 2 0, then the varied motion (3.3.5) is an admissible motion.

3. A varied motion that is not admissible

To construct the varied motion that is not admissible, choose a particular admissible

variation to be as follows:

ox*=0
&*=0 ) 120 (3.3.6)
50" = esinlslr

where € is a positive first-order differential quantity with degrees as its unit. With this

chosen admissible variation, the associated varied motion is

Y=x*+&x*=1t

y=y*'+ 8=t \ t20 (3.3.7)

50" =0"+80" =45+ esinks

as shown in Fig. 3.3.5.
Inspecting the varied trajectory in Fig. 3.3.5 reveals that this varied trajectory dictates

that the boat move along a straight line at 45 degrees to the x-axis while twisting its keel

direction back and forth in the neighborhood of 45 degrees. No matter what forces or
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torques acting upon the boat, it can never move in such a fashion because the boat is
constrained to translate only in the instantaneous direction of the keel. Therefore, the

varied motion represented by (3.3.7) is not admissible.

It should be noted that the varied motion (3.3.7) can also be mathematically verified

to be not admissible. Since the varied motion X ¥» and 0 in (3.3.7) does not satisfy the
geometric constraint (3.2.1), that is, 4y - dxtan @=dr[1 - tan(45° + esingr)] #0, the

varied motion (3.3.7) is not admissible.
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Fig. 3.3.3. Natural motion represented by (3.3.2). Each dot and
attached number represent location of boat in configuration space at
successive times. Pointed triangles and lines connecting them in oxy
plane represent the natural motion of the boat on water surface.
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Fig. 3.3.4. Varied motion represented by (3.3.5). It is admissible
because the translation of the boat is always in the instantaneous
direction of the keel. Numbers attached to the dots (representing
boat's locations in configuration space) are time units.
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Fig. 3.3.5. Varied motion represented by (3.3.7). It is not admissible
because the translation of the boat is not always in the instantaneous
direction of the keel. Numbers attached to the dots (representing the boat's
locations in configuration space) are time units.
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3.3.2 Comments

There are two aspects of difference between HLVA for holonomic systems and that
for nonholonomic systems. First, for nonholonomic systems, the variational variables are
dependent on each other. The dependency is defined by the nonholonomic constraints of
the system. For the "boat" example in section 3.3.1, the constraint equation (3.3.1)
defines the relation that the three variational variables 0%, 6y, 68 should satisfy so that
(6x, 8y, 80) is an admissible variation. Second, for nonholonomic systems the integration
and variation operators are no longer commutative due to the fact that varied motions in

general are not admissible motions (see Appendix B).



4 APPLICATION TO OBTAIN
APPROXIMATE SOLUTION OF DYNAMICS PROBLEM

4.1 Introduction

Previous studies, [10-11), have shown that HLVA can be applied to cbtain an
approximate solution to dynamics problems of holonomic systems with satisfactory
accuracy. In order to evaluate this application of HLVA (which we shall refer to as the
HLVA method. ), this chapter starts with a general description of this methed for a generic
one degree-of-freedom system in section 4.2. Then this method is illustrated with a
particular example in section 4.3. Following the description of the HL.VA method, some
numerical aspects of the method are discussed in section 4.4. In section 4.5, the possibility
of applying this method to nonholonomic systems is explored. In section 4.7, Hamilton's
Principle is discussed in terms of its potential to be applied to obtain a direct approximate

solution to dynamics problems is explained.

4.2 The HLVA Method

The HLVA method is an approximate procedure for "solving" a dynamics problem
via HLVA. Like many other approximate procedures for "solving" problems and
dynamics problems, a basic step in this method is the choice of a trial solution which,

because of undetermined parameters, actually represents a family of possible
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approximations. Once the family is fixed, the HLVA methed provides a criterion for
picking out the "best" approximation within tie family.

To better explain the HLVA method, consider a general one degree-of-freedom
system (without loss of generality). The HLVA method starts with setting up the

variational indicator associated with HLVA as follows:

2 ® 2
V.I= f (&+56§)alr-[a:é 85[ 4.2.1)

1

Then the method's second step is the choice of a trial solution having the following

linear form:

&0 = () + 2, ci gi(®), (4.2.2)

i=1

where the basis functions @i(?)'s are linearly independent known continuous functions with
continuous first derivatives in the time interval from t; to 3, the ¢;'s are undetermined
parameters, and r is the number of undetermined parameters. Trial solutions must satisfy
the initial conditions of the system. This is accomplished by choosing the functions ¢o and

@i(t)'s in (4.2.2) so as to satisfy the following initial conditions of the system:

dau(s
Po(t1) = xo, 4;(;() =V,
(1
o) =0, o -0, i=1,.0r
h

where xo = &(1;) and vo = ‘,’;(tl).
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The next step of the HLVA method is to insert the trial solution (4.2.2) directly into
the V.I. (4.2.1). After appropriate manipulations (see Appendix D for demonstration), the

V.1 can be arranged in the following format:

r r
V= z E zéijj + bi +pi(clo' ° 'acr) &i
i=1 j=1 4.2.3)

where the A;j's and the b;'s are constants, and the p;'s are generally quadratures containing
the undetermined parameters. Note that the arrangement of the terms inside the curly
braces in (4.2.3) can be made differently. The form (4.2.3) takes advantage of the
possibility of separating linear terms from nonlinear ones in adjustable parameters in the
V.1., and makes it easy to apply standard techniques for solving the set of algebraic

equations that the HLVA method gives in the step that follows.

The inethod’s next step is to extract a set of algebraic equations in adjustable
parameters from the V.1 (4.2.3) based on HLVA. Because the undetermined parameters
ci's are arbitrary, according to HLVA, the V.I. (4.2.3) vanishes if, and only if, the

coefficient of every d¢; in (4.2.3) vanishes, i.e.
r
2 A‘JCJ + b; + pi(Cy1y+sCp) = O, i=1,..,r, 4.2.4)

i=1

This result consists of a set of r algebraic equations in the r undetermined parameters ¢;'s.

The final step of this method is, naturally, to solve for the undetermined parameters

from the above equations via standard techniques (see Appendix E). Once the adjustable
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parameters are known, the analytical expression of &(¢) in (4.2.2) constitutes an
approximate solution to the dynamics problem of the system over the time interval

n<tse.

For an outline of the HL.VA method for a general dynamic system, see Appendix F.

4.3 An Example: Simple Harmonic QOscillator

The HLVA method outlined in the previous section is illustrated with the simple

harmonic oscillator shown in Fig. 4.3.1.

x-
% k
é m -—-Lu—
%
A

Z

Fig. 4.3.1 Simple hammonic oscillator subjected
to prescribed force f. Initial conditions of the

system are: x=xo,‘%=voatt=0.

The first step is to set up the variational indicator associated with HLVA for the above

system. With L=T"-V =%m.x‘:2 - %—.kx2 as the lagrangian, (where x = dx/dr), and
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Edx =[-bx + f]éx as the work increment due to nonconservative given forces, the V.L

(4.2.1), after the variation is carried out, can be written as

2
Y= f [ - (eokx + 28e0nt - Laiclar - [xacls, 4.3.1)

1

where the natural frequency @, and damping ratio { are defined as @, =Vk/m, and
§ = b2mawp, 1, and ¢, are the initial and final instants of the interval for which the dynamics

solution is desired.
Next 3 trial function for x(r) must be selected according to (4.2.2). Although many

choices exist for the set of basis functions ?'s, the simplest basis functions that lead io a

simple power series expansion of x(¢) in time is selected as follows:

r
X0 =x0+vot- 1)+ ¥, ct-n)*l,  p<rsn. (4.3.2)

i=1
where the first two terms are to ensure satisfaction of initial conditions.

Now, inserting the above trial solution direcily into the V.I. (4.3.1) and following the
detailed steps in Appendix D give

X’-nl-= 2,1 (lzl Ajicj + b; +p;)&‘i (4.3.3)

where
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jG+1) 2lw.(+1) w? vie3
An=- d _ Ti+j+
’ [TZ(i+j+1)+T(i+J+2)+(1+1+3) ’

_ 12800 | axo w,z.vo'.r] i+2
P= [(i+2) TR AR

T
P =j ﬂ:f;;tl),ti-l-ldf’
0

T=t-1, xo=x(t), vo=x(n).

Since the undetermined parameters c;'s are arbitrary, the V.I. (4.3.3) vanishes if, and

only if, the following set of nonhomogeneous algebraic equations holds:
r
Z A‘.’C.’ + bi +pi = 0’ i = l’ vy Ty (4.3.4)
j=1

When the system parameters (m, k, b), the forcing function f(¢), the instants #; and £, the
system conditions at ¢ = #;, and the number of adjustable parameters r in the trial solution
are specified, the time history x(¢) can be obtained through the solution of the set of

algebraic equations (4.3.4).

For a demonstration of the approximation accuracy, free vibration and harmonically

forced vibrations are obtained (see Appendix D) for the interval 0 < ¢ < 3 sect with the

oA present, the time interval is kept small so that good accuracy can be obtained with only a few
adjustable parameters. For an arbitrarily large time interval, the HLVA method can also give
approximations of high accuracy if a numerical treatment is applied to the method, which is discussed
in Section 4.4.
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following quantities: m = 20 kg, k = 80 N/m, b = 16 N-s/m, xg = 1 m, vp = 1 m/s.

results are summarized in the following table.

Table 4.3.1 Dynamics solutions for simple harmonic oscillator
(wp,=2radfs, {=0.2,x=1m,vo=1m/s,0<r<3 sec)

The

Case | Forcing f() = Fosinax N

r¢

Maximum error e¢% **

(Order of magnitude)
1 f(=0 12 104
2 f(¢) = 40sindt 12 102
3 f(®) = 40sin0.5¢ 10 10-2

* r is the number of undetermined parameters included in the trial solution.

*%x €= (k.ppﬂ)xim.w - xmld /kmld)lm%

For Case 1 in the above table, the accuracy of 104% of the true solution is

satisfactory for most engineering problems. The accuracy for Case 2 and Case 3 can be

improved by increasing the number of adjustable parameters, or by dividing this 3-seccnd

time interval into 3 or 4 time segments and apply the HLVA method to each segment with

the final conditions of one segment being the initial conditions of the next time segment.

The advantages and disadvantages as well as the accuracy of the solution due to such a

treatment of the time interval are discussed in Section 4.4 and Appendix G.
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4.4 Numerical Aspects of The HLVA Method

This section discusses numerical issues pertinent to the HLVA method; namely: (1)
Initial and final instants of the time interval #; <t < t;; (2) trial functions and approximation

accuracy; (3) nondimensional time in trial solution.

(1) Initial and final instants of the time interval t) <t < 8,

As we have seen in the previous two sections, the time interval t; <t < t; for which
an approximate dynamics solution is desired should be chosen based on the following two
considerations: (i) the initial time #; of the time interval f; <t < ¢, shouid be such that the
conditions of the system (i.e., the generalized coordinates and generalized velocities) at #;
are somehow known (e.g., initial conditions of the system); (ii) the length of the interval,
thatis, T =1¢, - 11, should be kept relatively small, although theoretically it can be arbitrary.
This is because for increasing T , the higher the number of adjustable parameters is

required in the trial solution to maintain a specified approximation accuracy.

In practice, a large time interval is divided into small time segments. For any given
time segment, the initial conditions are the final conditions from the previous segment, and
the finial conditions will be used as initial conditions for the next segment. When the
HLVA method is applied singly from the first segment to the last segment, the approximate
solution for the entire time interval is obtained. Note that this propagative processt is
possible only when the displacement and velocity of every particle of the system is

continuous (see Appendix G for demonstration).

T This method of treating large time intervals is not confined to the HLVA method.
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Experiences have shown that the duration of a time segment, T, depends on the
system's characteristic times. Usually T should not be larger than the smallest
characteristic time of the system if a polynomial trial solution with fewer than 10~12
undetermined parameters is used. For example, for a lumped-parameter system with a

largest natural frequency ®» and subjected to a harmonic forcing of frequency @, then

. . . 1 __ 2z
according the author's experience, T should not be larger than 5 [max(w, a),,)] If the

solution is not satisfactory, a decrease in T shall improve the approximation accuracy (at

least theoretically).

Although the propagative application of the HLVA method to segments of a large time
interval allows a solution to an arbitrarily large time interval when the computing facility is
limited, the error of solution in one time segment is also propagated to the solution of the
next time segment. Experiences with both linear and nonlinear systeix:s (see Appendices G
and H) have shown that the error propagation is slow when proper number of
undetermined parameters are included in trial solution and a proper segment duration is
chosen. For cxample, Table 4.4.1 shows the solutions to the simple harmonic oscillator
discussed in Section 4.3. for the time interval 0 < ¢ <30 sec_ For all the three cases shown
in Table 4.4.1 the maximum errors occur during the transient times of the system's
corresponding responses (refer to figures in Appendix G). After the system enters steady
state the errors appear to be steady also.
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Table 4.3.1 Dynamics solutions for simple harmonic oscillator

(wy=2rad/s, {=0.2,x0=1m, vo=1m/s, 0 <1< 30 sec)

. o + | Maximun error e% **
Case | Forcing f(1) = Fosinax N| T (sec)/r (Order of magnitude)
1 f0=0 1/10 10°
2 f(0) = 40sindz 0.2/8 10
3 £() = 40sin0.5¢ 0.2/8 10+

* Tis the duration of each time segment, r is the number of undetermined parameters included in the
trial solution for each time segment.
*% € = qx.pptoximaie - xou / 'quJ)lm%

(2) Trial functions and approximation accuracy

It is understood that the trial functions should satisfy the in:tial conditions of the
system . However, no restriction on the state of the system at ¢ = £; can be made since it
would depend on both the initial conditions at z = #; and the forcing acting on the system

during the time interval. Thus the trial functions should allow for some "freedom" at = #,.

As seen previously, the choice of basis functions is truly arbitrary. However, the
approximation accuracy depends heavily on which basis functions are used in constructing
the trial solutions. Good basis functions can give a good approximation with a small
number of adjustable parameters. Usually the polynomial trial solution is chosen based on

the following reasons: (i) The convergence of the polynomial trial solution to the true
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solution is assured by Weierstrass's theorem [Rektorys]f. (ii) The polynomial trial
solution has been shown to give satisfactory approximate dynamics solutions to a wide

range of systems (see [10-11], Appendix H and Appendix I).

For other basis functions, it is conjectured that, if the number of independent
adjustable parameters in a trial solution is increased without limit, then the corresponding
approximate solution obtained by the HLV A method would converge (at least under certain
conditionstt ) to the true solution [4, p153]. Once the trial solution is known to be
convergent, then more adjustable parameters in the trial solution means higher accuracy of

approximation by the HLVA method.

(3) Nondimensional time in trial solutions

For the polynomial trial solutions, a nondimensional time is usually introduced into
the trial solution in order to reduce the risk of having an ill-conditioned matrix when
solving the set of algebraic equations. The procedure of the HLLVA method with trial
solutions in nondimensional time is demonstrated in Appendix H with a nonlinear harmonic

oscillator.

T Woeierstrass's Theorem: It is possible to approximate uniformly in [a, b] with an arbitrary
accuracy every function continuous in [@, b] by means of a sequence of polynomials, that is, to every

£> () there exists a polynomial P,(x) such that [f(x) - P,(x)} < €foralla Sx < b,
T For example, the existence and uniqueness of the solution to the dynamics problem.
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4.5 The HLVA Methed for a Nonholonomic System

The constrained motion of a boat, shown in Fig. 4.5.1, is used as an example to
demonstrate the HLVA method for nonholonomic systems. The basic steps of setting up

the set of algebraic equations associated with the HLVA method is summarized below. For
details of each step, see Appendix I.

|

Fig. 4.5.1. Constrained motion of boat under
prescribed forcingst : /» @ % The equation of
constraint is 4y - drtan8=0,

t Note that no matter what the prescribed forcings /+fy» 814 %z are, the motion of the boat conforms to
the equation of constraint

dy-drtan=0, )

The mechanism by which this is achieved is the forces of constraint. During the motion of the boat, the

forces of constraint is called into play and they so adjust themselves that the motion under the action of

the given extemal forces and the constraint forces together satisfies the equation of constraint (1). Note

that the variational work increment of these forces of constraint under an admissible variation of the

system vanishes.
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1. Set up variational indicator associased with HLVA

If the lagrangian and work expression of the system are inserted into the variational
indicator of HLVA (2.2.6) and integrations by parts for terms containing &%, dy, or 56 are

conducted, the variational indicator (2.2.6) for this system is as follows:

VI =- I :2 [{m% i fx}& + (m% - f,.)ay + (lodd—jzﬂ- c,)ae] dt, 4.5.1)

where m is the mass of the boat, I is the moment of inertia of the boat about the axis

perpendicular to water surface and passing through the boat's centroid.

2. Eliminate dependent variational variable from V 1.

In the V.1 (4.5.1), the variation of the generalized coordinates, dx, dy and &0 are
constrained by the relation Oy - fxanf=0, ang any two of them can be chosen as
independent variational variables. Arbitrarily, we choose éx and 88 as the two independent
variational variables. The elimination of dy is accomplished by embedding the equation of

constraint into the variational indicator, then the V.I. (4.5.1) is transformed to the

following form (see Appendix I):
” 2 2
=- 2 df o2 -f - da-o
V.IL L [(mdd—tg-(l+tan 0)+m% 48 sec26 tan6 - £, - fytan6 |6 + 12 6e]dx
(5.4.2)
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Note that usually the generalized coordinate y can not be eliminated also from the V.1,
although for this particular example y has been eliminated from the V.1. via a different form

of the constraint equation (see Appendix I).

3. Choose trial solutions

The trial solutions should be chosen for those generalized coordinates associated with

the independent variational variables. For this particular problem these generalized

coordinates are x and 8. The simple polynomial trial solutions for x and 6 are selected as

follows:

x(t) = %0+ vot - )+ X, cilt-n) +! (4.5.32)

i=1

6() = 8+ (- 1)+ 3, kit - 1)+ (4.5.3b)

i=1

1 1

4, Obtain set of algebraic equations in adjustable parameters

Inserting the trial solutions into the V.L (4.5.2) and collecting terms (see Appendix I)

lead to the following set of algebraic equations:

,
Y, Aijoj+pri=0 i=1,..,r (4.5.42)
j=1

-

Biifj+ pg; =0 i=1,..,r (4.5.4b)

1

]
Pt



where the coefficients Ajj, pxi, Bjj, and Pei are specified in Appendix L. This is a set of

nonlinear algebraic equations in the undetermined parameters ¢;'s and §;'s.

The approximate solutions of x(z) and 6(r) are obtained when the adjustable
parameters are obtained from the above set of algebraic equations. The solution of the
generalized coordinate y(¢) can then be determined from the equation of constraint

4y _dx angt
dt-dttane.

Remarks. The amount of labor involved in deriving the set of algebraic equations for this
two degree-of-freedom nonholonomic system is much larger than that for a holonomic
system of the same number of degrees of freedom. In addition, the process of numerically
solving the set of highly nonlinear algebraic equations (4.5.4) (see Appendix I) is
extremely inefficient when using the method of iteration by total steps (see Appendix E).
For a most general nonholonomic system, the HLVA method does not render a set of
algebraic equations, instead it gives a set of equations that consist of both differential and

algebraic equations in undetermined parameters (see Appendix F).

T The constraint equation dy - dxtan@= 0 is written for a displacement (dx, dy, d6) in an infinitesimal time
interval dt. If we divide both sides this constraint equation by df and let dt approach zcro, this equation

of constraint, after rearranging terms, is transformed to % = ‘g- tan@.
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4.6 HLVA vs Hamilton's Principlet

in section 2.4 we pointed out that HLVA can be used to derive differential equations
of motion and also can be used to obtain a direct approximate solution to dynamics
problems. A question we now may ask is the following: Can Hamilton's Principle also be
used to obtain a direct approximate sofution to dynamics problems? The answer is no, and
we explain it hereafier.

Since Hamilton's Principle is HLVA under the assumption that the varied motions are
coterminal with the natural motion at the terminal times ¢ = #) and ¢ = £, if any trial solution
is to satisfy Hamilton's Principle it has to be one that does not allow any variation at the

terminal times. In fact, Hamilton's Principle ca be wriiten as follows:

n
v.1.=j (& + = 68 ar

1

(4.6.1)

5d¢1=0» ‘Sdfz=0

Equation (4.6.1) says that if #, is the system's initial time and ¢, is a fixed time after t,, then
the solution to the dynamics problem via trial solutions with undetermined parameters can
be obtained for the time interval ¢; <t <1, only when the configurations of the system at 1,

and ¢, are known in advance. In view of the the fact that for most dynamics problems the

T For convenience and without loss of generality, a one degree-of-freedom system is used in the
discussions throughout this section.
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configurations of the system after the initial time can not be predicted in advance,
Hamilton's Principle cannot be used to obtain approximate solutions 1o dynamics problems
via trial solutions with undetermined parameters as HLVA can, except in those rare cases in

which the configurations of the system at both terminal times ¢ = ) and ¢ = 12 are known.

In contrast, HLVA allows the varied motions to be arbitrary in any interval 71 S¢S
after the system's initial time, then it permits a trial selution to vary not only at the times
within the interval but also at the terminal times ¢ = 71 and ¢ = 2 if the configurations of the
system at these instants are not known in advance. Particularly, the following trial solution
used in section 4.2

&) = go®) + 9, ci @i(®) \

i=1

. don(e) _d_&l
Po(t1) = 50), —dT—ltl_ dtly - > (4.6.2)

@i(t) =0, fi%'—)lt =0 |
1

can vary anywhere in the interval 1 S¢S except at the initial time ¢t =1 since the

configuration of the system at this instant is fixed by the system's initial conditions.
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5 DISCUSSIONS ON THE APPLICATION OF
HAMILTON'S LAW OF VARYING ACTION

5.1 Introduction

As seen in Chapter 4, the HLV A method reduces the dynamics problem to solving a
set of simultaneous algebraic equations via trial solutions with undetermined parameters.
In this chapter, the position of the HLVA method in the context of engineering analysisT is
discussed. Comparison between the HLV A method with Galerkin's metheod for dynamics

problems is made, and the scope of application of the former is also briefly discussed.

5.2 The HLVA Method in Engineering Analysis

If we recall the HLVA method discussed in Chapter 4 and recall some procedures of
solving engineering problems covered in most engineering analysis textbooks (e.g., [4]),
we observe that: in terms of the mathematical model for an engineering problem, the
HLVA method is based on an energy formulation of a dynamics problem; in terms of the
procedure that reduces a mathematical problem to a numerical procedure, the HLVA
method belongs to the category of procedures that solve the mathematical problem via trial

solutions with undetermined parameters.

T The term engineering analysis as used here is defined in [4, preface], means the performance of the
following steps within the framework of an engineering problem:
1. Construction of a mathematical mode! for a physical situation.
2. Reduction of the mathematical modei to a numerical procedure.
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In order to indicate the relation of the HLV A method with other similar techniques,
Table 5.2.1 summarizes the methods of trial solutions with undetermined parameters for
both lumped-parameter systems and continuous systems. These methods are categorized
into two groups in terms of the mathematical formulations of the problems: methods base
on a differential formulation and methods based an on energy formulation. From Table
5.2.1, it is seen that the HLVA method fills the void of an energy-based method for
dynamics problems for both lumped-parameter and continuous systems. [n this sense, it
may be said that the HLVA method bears the same relationship to the weighted-residual
methods (see Appendix J) for dynamics problems as the Ritz method bears to the weighted-

residual methods for equilibrium problems of continucus systems.

Table 5.2.1. Methods of trial solutions with undetermined parameters
in engineering analysis

Lumped-parameter sysiems Continuous systems
Problem Equilibrium Dynarmics Equilibrium Dyaamics
Category problems problems problems problems
Methods based * Collocation Collocation Collocation
. ; NA
?n n(lillg:lt‘ie:l:lal Subdomain Subdomain Subdomain
0
Galerkin's Galerkin's Galerkin's
Least squares Least squares Least squares
Methods based N/A* HLVA Ritz method HLVA
on energy method method
formulation

formulated as a set of algebraic equations.
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5.3 Comparison With Galerkin's Method

In terms of accuracy, we compare the HLVA methed with Galerkin's method because
the later is widely used in engineering problems as compared with other weighted-residual
methods. We find that both Galerkin's and the HLVA methods produce the sanie set of
algebraic equations in adjustable parameters if identical trial solutions are used (see
Appendix K). Therefore, the approximation accuracy of the HLVA method is always as
good as that of Galerkin’s method given the same set of trial solutions. ;

In terms of the computational labor required, since for both methods the same set of
algebraic equations has to be solved, the only difference is in the way the coefficients of the
algebraic equations are derived. In fact we found that the HLVA method demands more

labor in constructing the set of algebraic equations than Galerkin's method does (see

Appendix K).

5.4 The Application Scope

In general, the HI.VA method applies for a dynamic system whose generalized
coordinates and generalized velocities are continuous. These continuity requirements are
necessary to ensure (1) the convergence of trial solutions, and (2) the proper initial

conditions of the time segments of a large time interval.




6 CONCLUSIONS

Relationships between the general form of HLVA (2.2.5), Hamilten's Principle
(2.3.1) and Hamilton's Principle of Stationary Action (2.3.4) have been discussed. The
general form of HLVA (for both holonomic and nonholonomic systems) is the general
variational principle associated with Hamilton when the two terminal times ¢ = ¢; and ¢ =)
are fixed. Hamilton's Principle (for both holonomic and nonholonomic systems) and
Hamilton's Principle of Stationary Action (for hclonomic conservative systems only) are
two special cases of the general form of HLVA when the natural motion of the system is
compared with neighboring varied motions that share the same configurations as the natural
motion at =t and t=¢p. While both HLVA and Hamilton's Principic can be used to
derive differential equations of motion of a system, only HLVA can be used to obtain an
approximate solution to dynamics problems directly via trial solutions with undetermined

parameters.

A conceptual interpretation of HLVA for conservative systems has been presented
with an illustrative example. The illustration shows that the variation of the action of a
system in a time interval £ S¢S £ is a lincar function of the admissible variations of the
system at the terminal instants ¢ = #1 and ¢ = £3. This interpretation is consistent with that of
Hamilton's Principle of Stationary Action [3, p31-34]. It has also been illustrated that
varied motions in general are not admissible motions for nonholenomic systerns, when
demonstrating the differences between HIL.VA for nonholonomic systems and HLVA for

holonomic systems.
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The application of HLVA to obtain an approximate solution to a dynamics problem
via trial solutions with undetermined parameters, namely the HLVA method, has been
evaluated. It has been shown that the HLVA method can be extended to nonholonomic
systems. For a general nonholonomic system a set of both algebraic and differential
equations, instead of algebraic cnly as for holonomic systems, must be solved. A
particular ncnholonomic system of three independent generalized coordinates and two
degrees of freedom has been used to demonstrate the application of the HLVA method for

nonholonomic systemis.

The approximation accuracy of the HLVA method has been investigated. For a
lumped-parameter system, to obtain a solution of accuracy of at least 102% when using a
polynomial trial solution with about 10 undetermined parameters, the required duration of
the time segment for the HLVA method has been estimated to be less than or equal to one
half of the smallest characteristic time of the system. If the desired accuracy is not
achieved, the number of undetermined parameters included in the trial solution must be

increased or the duration of the time segment must be decreased.

The approximation accuracy of the HLVA method has also been compared with that
of Galerkin's method. It has been found that the former provides the identical
approximation accuracy as the latter when identical trial solutions are used, but requires
more computational labor than the latter. Therefore, the HLV A method dees not display

any significant advantage over Galerkin's method for lumped-parameter systems.

The HLVA method has been compared with other methods of trial solutions with
undetermined parameters for different categories of engineering problems. The comparison

shows that the HLVA bears the same relationship to the weighted-residual methods for
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dynamics problems as the Ritz method bears to the weighted-residual metheds for
equilibrium problems of continucus systems. This is due to the following two reasons:
(1) both the HLVA and the Ritz methods are based on energy formulations of physical
systems and use trial solutions with undetermined parameters; and (2) each of them gives
an identical approximation with that of the corresponding Galerkin's method under the

same trial solution.
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APPENDIX A

Derivation of Lagrange's Equations
From Hamilton's Law of Varying Action

This Appendix shows how the time boundary terms will be cancecled out exactly in
deriving Lagrange's Equations cf motion from Hamilton's Law of Varying Action.

Let &,...., £ be a complete and independent set of generalized coordinates for a
dynamic system, and let 6,,..., 6, be their associated variational variables. In addition,

let T" be the kinetic coenergy of the system, V be the potential erergy of the conservative
forces, and Z, be the generalized force associated with the generalized coordinate £ due to

nonconservative forces.

The general form of Hamilton's Law of Varying Action for both holonomic and
nonholonomic systems states that A varied motion of the system during an arbiirary finite

time interval t; S t S 8y is a natural motion if, and only if, the variational indicator

°

V.L

n - n aTt

(&4- 2 Ej ﬁj)dt- Z — 65|, (A1)
j=1 j=1 aé, 1

a

(where L = T* - V is the lagrangian of the system.) vanishes for arbitrary admissible

variations of the motion within this time interval.
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Because the lagrangian of a system is a function of the generalized coordinates, the
generalized velocities and time, that is, L = L{81s -+ &n3 &1, ., &n1 0), the variation of the
lagrangian can be written as

a=3% Loy Ly (A2)
Due to the commutativity relation
5(5@') =0 (ﬁ &) (A3)

and the notation {, = % &;, the second term on the right hand side of (A.2) is equivalent to

n
the expression 2 ai 1(551'), which, by the product differentiation rule of calcuius, can

=104
be written as
2 3L d ()= Z 4(—%) > g,—( . Ad)
3%, of ) 7+ ®\ag
Then inserting (A.4) into (A.2) gives
=X ﬁ( 2 i(— 5+ 3 Lo (A.5)
i=1 %3¢, o) i=19§



Inserting the lagrangian expression (A.S) into the variational indicator (A.1), the V.L
(A.1) becomes

2

VI =[il :_’gagjl’- 3 {%(QL_) -gé:.- 5,} 8ds - [}n,‘, or” 85;12. (A6)
=13¢;

J i j=1 o&; J j=1 gk; 1
4

Since the potential energy V is a function of the generalized coordinates &, ..., £, and time
t only, then the relation aL/aéj = aT‘/ aéj holds, which means that the first term and the

last term in (A.6) are identical. Therefore, the variational indicator associated with
Hamilton's Law of Varying Action (A.1), which is valid for both holonomic and

nonholonomic systems, becomes

vi=-| 3 {i(a—L) 2L g\ sgar (A7)

If the system is holonomic, then the admissible variations 6&1, ..., 6&n are
independent. Therefore, the variational indicator (A.7) vanishes if, and only if the

following equations hold

L\ oL _ . .
%(L) Lo j=1,n (A-8)
3gi) %

which are Lagrange's Equations for holonomic systems.

For nonholonomic systems, the 6&;'s are not independent. Lagrange multipliers can

be used to obtain Lagrange's Equations from (A.7), which can be found in [5, p77].
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APPENDIX B

2 2

&L di and 61 Las

Comments on I‘
1

1

Without loss of generality, this appendix discusses the difference between the

2
L dt and the expression f dLds via Hamilton's Principle for sysiems

n

)
expression 6 [

]

under conservative forces.

To begin with, we shall state Hamilton's Principle for a dynamic system (holonoric
or nonholonomic) under conservative forces. Let &,,..., & be a complete and independent
set of generalized coordinates for a dynamic system, and let 8&,,..., 5, be their associated
variational variables. In addition, let T be the kinetic coenergy of the system, V be the
potential energy of the conservative forces. Hamilton's Principle asserts that A varied
motion of the system during an arbitrary finite time interval t] < t < 12 is a natural motion if,

and only if, the following relations holds

2
I aLdt=0
n

8, =0,6¢), =0, j=1,...,n

. (B.1)
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(where L = T* - V is the lagrangian of the system.) for arbitrary admissible variasions
of the motion within this time interval. In (B.1), the operator & refers to a displacement
from the point (51, ..., §») on the natural trajectory in configuration space to a
contemporaneous point (&1 + 8&1, ..., &x + 6E,) on the varied trajectory. The essential
point to keep in mind is that (6¢1, ..., 6&,) are always admissible variations, whexeas

the varied trajectory, (&1 + 861, ..., &n + 8€4) may not be admissible.

If the system is holonomic, the varied motions are always admissible. Then
Hamilton's Principle for holonomic systems compares the natural motion with neighboring

admissible motions. According to the calculus of variation, the natural motion that makes

r
j 6 L dr vanish when compared with neighboring admissible motions also makes the
f

13
L dt stationary, i.e., 5] Ldt =0. Therefore, if the system is holonomic the
t

1

02
it j

h
variation and integration operators in (B.1) are commutative, that is, Hamilton's Principie

for holonomic systems can be written as

12
8] Ldt=0
4

1

(B.2)
8, =0,68, =0, j=1,..n
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If the system is nonholonomic, however, the forms (B.1) and (B.2) of Hamilton's
Principle are no longer equivalent, and we must adhere to the original form (B.1). In fact,

for nonholonomic systems, it is with the varied motions that Hamilton's Principle,

)
f éLdt =0, compares the natural motion, and these varied motions are in general not
131

/)
admissible. Since the expression 8] L dt alway: implies comparison of the integral

5

)
I L dr for the natural motion with neighboring admissible motions, the motion that
n

7] 2
satisfies j A&Ldr =0 does not necessarily makej L dt stationary in the class of
t

1 4

geometrically admissible motions.
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APPENDIX C

Constrained Motion of A Boat

In this appendix, the equations of motion for the norholonomic system shown in Fig
C.1[3, p119] is derived via I agrange's Equations. The solution of the equations of motion

when the system is under a particular forcing condition is obtained.

Fig. C.1 shows a boat on a body of water whose surface is in the plane of sketch.
The boat's motion is modeled such that the translation of the boat must always be parallel to
the instantaneous heading of the keel. This requirement implies the following constraint

relation:

8y - 8xtan6=0 (C.1)

Yy

Fig. C.1 Constrained motion of a boat. Actien of keel is

considered as a nonholonomic constraint.
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Equati £ moti
Let us first set up the lagrangian of the system and the work expression as follows:

L=T‘-v=%m(x’+y2)+-21-10é2, é—’-jaéﬁfx&xﬁy&yﬂzw.
where, m is the mass of the boat, I, is the moment of inertia of the boat aboui the axis
perpendicular to the water surface and passing through the boat's centroid; fy and fyare
the components of the total external forces acting on the boat in the x-direction and
y - direction, respectively; 7; is the torque on the boat about the axis perpendicular to the
water surface and passing through the boat's centroid; X = dx/dt, y=dy/4;, and
6= d6ldt, all inertial.

Lagrange's Equations for this system is [S, p75]:

i’a_)-a_%s,.*w,, j=1,2,3 €2

3| 9

where Bj (j = 1, 2, 3) are the coefficients of dx, dy, 66 in the constraining relation (C.1),
respectively, and A is the Lagrange multiplier associated with the constraint equation (C.1).
Therefore, inserting the lagrangian and the generalized forces into (C.2) gives the

Lagrange's Equations of motion for this system as follows:

ﬂmﬁ) =f; - Atan@
%(m)") =fy+A4 _ (C.3a)
ﬁ(loe) =17
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With the equatioas (C.3a) we must associate the equation of constraint (C.1), i.e.,
y-xtanf@=0 (C.3b)t

in order to determire the four unknowns, x, y, 6 and A, for a given set of initial conditions
and forcing of the system. Therefore, equations (C.3a) and (C.3b) constitute the equations

of motion of the system.
Transf . 1t . f moti

The set of equations of motion (C.3) can be transformed by eliminating the Lagrange

multiplier . Then the equations of motion for the system becomes

mi = f; - tan0[my - £}

lo= 1, : (C.4)

y = xtanf
where ¥ = d2x/ds2, § = d2y/ 42, and 0 = d26/ds2, all inertial.
Equaticns (C.4) can be further transformed by eliminating the ¥ term in the first

equation of (C.4). This is accomplished by first differentiating the constraint equation

(C.3.b), and then inserting the results of differentiation into the first equation of (C.4).

t  Since the infinitesimal motion of the boat in an infinitesimal time dt is represented by dy, dx, and d@
which satisfy the relation 4y - dx1an8= 0, then dividing both sides of this equation by dt and letting dt
approach zero will give the equivalent form of the constraint equation as in (C.3b).
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Hence the set of equations in (C.4) becomes

o _fx- mi 01an6sec?0 + tang, |
m(l + tan28)

5
6 I

y = xtan@ J

’ (C.5)

which is another form of the differential equations of motion of the system.

Soluti l icul f condificns

If the system is unforced, then the equations of motion (C.5) become

X =
m(1 + tan26)

(C.6)

In addition, if the initial conditior:s of the system are x(0) =y(0) =0, &0) =45°,

%(0)=y(0) =1, and é(O) = (), the solution of the above equations can be found to be

x=1

y=t

6=45° £20 (C.7)
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In fact, from the second equation in (C.6) and the initial conditions &{0) = 45°nd

é(()) = 0, the solution of @ is found to be 8 = 45°. Inserting this solution of @ into the first
equation of (C.6) gives ¥ =0. From the initial conditions x(0) =0 and £(0) = 1, the
solution of x is found to be x = r. Now that x and 6 are all known, from the third equation
of (C.6) with the initial condition y(0) =0, the solution of y can be found to be Y =¢,
Note that the initial condition ¥(0) =1 is not used in solving the equations of motion

because this initial condition is not independent. It is determined by the initial conditions
%(0) = 1 and 6(0) = 45°,
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APPENDIX D

Detailed Procedure of the HLVA Method
for Simple Harmonic Qscillator

The HLV A method is a procedure for obtaining cn approximate solution to dynamics
problenss via trial solution with undetermined parameters. This appendix gives the detailed

steps of the HLVA method with a simple harmonic oscillator shown in Fig. D.1.

To begin with, let us state Hamilton's Law of Varying Action (HLVA) for a one degree-of-
freedom holonomic system as follows: an admissible motion of the system during an
arbitrary finite time interval, t) St S 83, is a natural motion if, and only if, the variational

indicator

12 *
VI = I (& + = 8¢ dt - [aaTé &fr (D.1)

vanishes for arbitrary admissible variations of the motion within this time interval. In
(D.1), € is the generalized coordinate of the system, 6& is the associated variational
variable, T* = T*(¢, é, 1) is the kinetic coenergy of the system, V = V(&, 1) is the potential
energy of the conservative forces, and Zis the generalized force associated with the

generalized coordinate £due to nonconservative forces acting in the system.
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" A

Fig. D.1 Simple harmonic oscillaior

subjected to prescribed extemal force f.

Assume the solution for the above simple harmonic oscillator is desired for the interval

11 St S ;. The HLVA method for this problem consists of the following steps:

The lagrangian of the system is L=T"-V = %mi’ - %—kxz. (where i = dxldt,

inertial), and the variational work due to the nonconservative forces is Zx = (- bx + f)dx.
Inserting these expressions into the V.I (D.1) and carrying cut the variation and

differentiation give the V.I. as follows:

/]
VLo [ %8 - (e2x + 28wk - ;g)&x]df e, (D.2)

where @2 = Yklm, and 2{w, = bim,
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Inserting the commutativity relation 8% = d-d-t(dx) into the V.1 (D.2) and integrating the term

x6x = igt-(&) by parts transform the V.I. (D.2) into the following form:

iz
AN J (£ + 200t + alx - L)uat, (@.3)
[§

H

where ¥ = d-ﬁ, inertial.
d%

2. ial soluti
Choose the trial solution to be a family of trial functions of the following linear form

X0 = @) + Y, ¢ 90, n<t<n (D.4)
j=1

where the basis functions®(®) are chosen to be linearly independent continuous functions
and have continuous first derivatives in the time interval from ¢ to #3, the ¢;'s are
undetermined parameters, and r is the number of undetermined parameters. In addition, the

basis functions ?(!) should be chosen such that P(®) ensures the satisfaction of the initial

doo(t
conditions of the system, i.e. Po(f1) =x(f), o) _ 40 , @®)=0 and
dt ly~ dtly

dos| _
‘TH, =0.

1
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Replacing x(f) and its derivatives in (D.3) by the trial function (D.4), and &x(s) in
(B.3) by the variation of the trial function, i.e.

&=, s, (D.5)
Jj=1

then the V.1. (D.3) becomes

r‘z B r r r r

K;nl- =- ((po-i- z c_,-i}i,-)+2§au,(q‘)o+ z de)j) +w}(4po+ Z cj@)- %12 lp.'&‘,‘dt
J. L j=1 j=1 j=1 i=1

"

=-| |(¢o+2Lwngo + wBgo)+ 21 () + 2L0n@y + R @jk; - ;%1}:.i @idic; dr

Jtl B g

(D.6)

Note that in (D.6) the dummy index of the trial solution of x(¢) is different from that

of &x(r) to ensure that the multiplication x(t)dx(¢) is conducted properly after the insertion of

the trial solutions into the V.I.

r

, . Y filer, - e Be;
4, Organize the V.L into the form: =1

The organization step includes interchanges of the orders of the integration operator
and the summation operators. These interchanges are possible because the integration

interval is finite and the number of terms of summation is also finite. Then interchanging
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r
the order of z and]::and bringing the &c¢;'s out of the integration in (D.6) (this is
i=1

possible because the dc;'s do not depend on time) transform the V.I. (D.6) into the

following form:
02
e ([ o2t atloa «
31
r 2 2

) j (6 + 2095+ Rp))piar "j'j Lot (6c; . (D.7)

j=1 [} n
Now, dencte

t
bi EI (@ +2Lango + w2 go)pd: (D.8a)
n

/]
pis=- j £ gyd (D.8b)
&

02
Ajj= I ((p_, +2{0,9; + w,%@-)(p,-dt , (D.8c)
t

1

then the variational indicator (D.7) becomes

X-"%a. =- z (/Z Ajicj + b + p,-)&,'. (D.9)

i=1\j=1
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Since there are no restrictions on the undetermined parameters c¢; (i = 1, ..., r), the

variational indicator (D.9) vanishes if, and only if, the coefficient of each éc; is identical to

zero, i.e.
r
2, Aicj+bi+pi=0, i=1,.,r (D.10)
j=1

which constitutes a set of r algebraic equations with r unknowns, i.e. the ¢j's. These

adjustable parameters can be found by standard numerical techniques.

Since the number of unknowns is the same as the number of equations in (D.9), the
adjustable parameters ¢;'s can be determined through the solution of this set of algebraic
equations. Once the ¢;'s are determined, the approximate solution of the dynamics problem
for the simple harmonic oscillator for £; <t <r; is given in the form of analytical

expressions (D.4).
Expressions of Ajj, b; and pj for a particular trial function
The analytical solution of the dynamics problem for a general set of basis functions of

the irial family is derived above. Now, a particular set of basis functions is chosen as

follows:

Pol®) = xp + volt - 11) e =(t-ny*1, (D.11)
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Then the trial solution is a polynomial in time as follows:

r
) =xp+v(t-a)+ 2, ct-0)*l,  nsisn (D.12)

i=1

where X = x(13), and vo E‘%L . Inserting the basis functions (D.11) inte (D.8) and
1

carrying out the integrations will give explicit expressions for Ajj, b; and p;. This process

is demonstrated as follows.
The nonhomogeneous term b;

Substitution of the basis functions (D.11) into (D.8a) gives

bi= f [250»-\’0 + wixo + wivolt - tl)](‘ -nf+ldr.

1

Denote T =1, - 1; and change the dummy integration variable ¢ by introducing T=12-# in

the above expression. Then,

T
b; =[ [2(&),,\'0 + w,%xo + w,%vot ]1’”’ gz
0

2bnvo | wRxg szg] i+2
[(l+2) (1+2) i+3) . (D.13a)
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The nonhomogeneous term n;

In much the same way as in obtaining b; above, the p; is found to be

m
1

12
Pz=-j f-@-(t-tl)‘“dl
¢

T
=-j f_(_fgl_ﬂlgudf, (D.13b)
0

Once the forcing function j{¢) is specified, the p;, presently in quadrature, may be integrated
directly.

Similarly, after introducing T = %2 - #1 and changing the dummy integration variable to

T=1-1, the coefficients A;; become

T
A.','=I [i(i+ DT+ 20w, + D)Titi+ 1 4+ a,%ti+j+2]d,t
0

[igsn 2o+ @t |iijes
_[Tz(iq-j-i-l)+T(i+j+2)+(i+j+3)T T (D.13¢)
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Sample Solutions

Solutions for the system (m=20kg,k=80N/m,b=16N-s/m,xo=1m,
vo = 1 m/s) under the three forcing conditions in the relatively short interval 0 <# <3 sec

are conducted:

1.  Free vibration: f{r) =0 N. (Fig. D.2)

2. Harmonically forced vibration with the forcing frequency larger than the natural
frequency: fr) =40sindt N. (Fig. D.3)

3. Harmonically forced vibration with the forcing frequency smaller than the natural
frequency: f{t) = 40sin0.5¢ N. (Fig. D.4)

For the free vibration, the maximum error of 10%% indicates that approximation with
twelve adjustable parameters ( that is, twelve ¢;'s) in the trial solution (D.12) for a time
interval of 3 seconds is satisfactory (at least for most engineering applications). For the
two forced vibrations, the approximation can be improved when more adjusiaole
parameters are included in the trial solution, or by dividing the 3-second time interval into 3
or 4 time segments and applying the HLVA method to each segment with the final

conditions of one segment being the initial conditions of the next time segment.

The approximation error is evaluated by the relative error defined by
€ = ([Xapproximate - Xirud / urud)100%. The true solution of the system under a generic
harmonic forcing f(f) = Fosinax is given by the following closed form expression:

Xirue = €59 C coswyt + Casinayt] +X (@)sin(ax-@)
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where

C1 =x9 + X(w)sing

_V +Cwnxo + X(co)[{w,‘sixw - wcosq)]

C, Py
aa=aV1-¢
X() = Folg
-+ s
-

This solution is found by standard techniques of solving harmenically forced vibrations.

Note that the peaks in the relative errors in these figures are caused by a small Werud
value. In fact, when Pirud is smaller than 5% of its maximum value over this time interval,

the denominator of the error expression is taken to be 5% of rudnax.
Table D.1 summarizes the results of the three cases.

Table D.1 Dynamics solutions for simpie harmonic oscillator
(w,=2radfs, {=0.2,xp=1m,v=1m/s, 0 <153 sec)

. o Maximum error %
Case | Forcing f(f) = Fosinat N | * (Order of magnitude)
1 f(H=0 12 10
2 £() = 40sindr 12 102
3 f(® = 40sin).5¢ 10 102

* ris the number of undetermined parameters ¢;'s included in the trial solution (D.12).
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__Simple Harmonic Osciilatgr (Displacement vs Tirne)

)
x 0.5F .
_§ ol -
& N
E 0.5 .
-1 ' ' . : !
0 0.5 1 1.5 2 2.5 3
Time ¢ (sec)
6 x10+ : Simple ’Harm«mic 0$c1llator (Error vs Time)
& 4
e
e
E ool q
0 b= e - :
0 0.5 1 1.5 2 2.5 3
Time ¢ (sec)

Fig. D.2. Free vibration calculated using r = 12 showing (a) displacement x versus time ¢ and

(b) error, € =([Xapproximate - Xtrud / |Xurud) 100%, versus time ¢. Note that since there is no
appropriate characteristic displacement available for free vibration, the displacement x is not

nondimensionalized.
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W el 1Rl s

Simple Harmonic Oscillator (Displacement vs Time)

Displacement x*

~

0.5 1

Time ¢ (sec)

T

T

Simple Harmonic Oscillator (Exror vs Time)

1.5 2 25

Time ¢ (sec)

Fig. D.3. Forced vibration ((t) = 40sind¢ N) calculated using r = 12 showing

() nondimensional displacement, x* = —4—, versus time ¢ and

Folk

(b nondimensional error, e* = ﬂ‘:ppgoxim“e - X;.,J / |x;uJ)100%. versus time f.
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—Simple Harmonic Oscillator (Displacement vs Time) .

1.5 2 2.5 3
Time ¢ (sec)
Simple Hannomc Oscxl.ator (Error vs Time)

o ©
OO0

T

Error e* (%)
°© o o

o
=
¥

o]

Aa

R

(=]

Time ¢ (sec)

Fig. D.4. Forced vibration (f{r) = 40sin0.5¢ N) calculated using r = 10 showing

(@) nondimensional displacement, x* = 1—},—- versus time ¢ and

(b) nondimensicnal error, e* = (}t:ppmimm - x;uJ /’ [x;thOO%. versus time .
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APPENDIX E

Solving A Set of Algebraic Equations via Iteration

This appendix outlines the procedure of iteration by tosal steps [4, p41] for solving a
set of algebraic equations of the following form

F
Y Ajicj + bi+ picrs-e) =0, i=1,..,r, (E.1)
i=1

where the ¢;'s are the unknown parameters to be found, the A;j's and b;'s are known

constants, and the p;'s are known functions in terms of the unknown parameters.
P P

To better describe this successive approximati.~n procedure, the above set of

equations is written in the following the matrix form:
[A]{c} + (b} + {p({c)h) =0 (E.2)

where [A] is an rxr matrix whose elements are the A;jj's, {c) is a column vector whose
clements are the undetermined parameter the ¢;'s, and {b) and {p} are column vectors
whose elements are the b;'s and p;'s in (E.1), respectively. Then the solution of the vector

of undetermined parameters {c} can be obtained through the following iterative formula:

(c)® = - [A}Y(b) + [pdc)=D)), k=1, .. (E.3)
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where £ is the iteration cycle number and fc)® represents the approximate solution of (c)

after k cycles. The iteration process can start with an arbitrary initial guess of the
undetermined parameter vector (c)®. For simplicity ()@ = {0} i usually taken as the
initial juess. The iteration process stops when two adjacent approximations of {c) are
"close" enough. The "closeness" of {c)® and (c}* D can be mencnred by the rorm of their
difference, which is denoted by llell and defined as follows:

Nl s,\/ zr‘, [c® . c®DP (E.4)

i=1

If the expression in (E.4) is less than a given tolerance, then the iteration process ends with

the approximate solution of {c} being {c}®.
It should be noted that matrix [A] and vector {b} need only to be evaluated once since
they do not depend on the undetermined parameters. It is the vector {p} that needs to be

evaluated during each cycle of the iteration.

For a thorough treatment of solving a set of algebraic equations, refer to [4, p39-47].
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APPENDIX F

Outline of The HLVA Method for General Dynamic Systems

The HLVA method is a procedure for obtaining an approximate solution to dynamics
problems via trial solutions containing undetermined parameters. This appendix outlines

this method for both holonomic and nonholonomic systems.

To begin with, let us state Hamilton's Law of Varying Action (HLVA) for a general
dynamic system. Let &,,..., £ be a complete and independent set of generalized
coordinates for a dynamic system, and let 8&,,..., 8, be their associated variational
variables. In addition, define T” as the kinetic coenergy of the system, V as the potential
energy of the conservative forces, and Z, as the generalized force associated with the

generalized cocrdinate §; due to nonconservative forces acting on the system.

The general form of Hamilton's Law of Varying Action states that A varied motion of
the system during an arbitrary finite time interval ty <t < t; is a natural motion if, and only

if, the general variational indicator

7]

n n * 2
(&+ )y sjac,-)d:-[z or ag,-l (F.1)
j=1 i=1 98

V.1

’
n

vanishes for arbitrary admissible variations of the motion within this time interval,

where L = T* - V is the lagrangian of the system.
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Assume the solution for a system is desired for the interval f; S ¢ S £, and the state of

the system (that is, the generalized coordinates and generalized velocities) at ¢1=1¢; is

known.

The HLVA Method for Holonomic Systems

The HLVA method for a holonomic system consists of the steps listed and discussed

in this section.

L C sational indi

The lagrangian and the generalized forces of the system should be identified first.
Then inserting them into the variational indicator (F.1) and carrying out the variaiions give

the variational indicator in the following form:

2

VL= { > F’j—aé,-+(9-’“—+.-7j)5gj \dt - [i or” 66,-12. (F.2)
= o&; 95; f j=1 0k; 1

Inserting the commutativity relation 8§; = -{%(86,-) into the V.I. (F.2) and integrating the

term &;8&; = é;f,@ﬁf) by parts transform the V.L. (F.2) into the following form:

n
n

oL

9¢;

oL

VI =- p7 Béjldt. (F.3)t
oE;

j

-
&

j=1
4]

T The transformation of the V.I. (F.2) into (F.3) is optional.
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2 ial solut

Consider the following trial family for each generalized coordinate of the system

r
EO=gp®+ X i@, j=1,..n  nstsn, (F.4)
i=1

where, for each trial family, the basis functions ®j1» @j2s ---» @jr are linearly independent
known centinuous functions and have continuous first derivatives in the time interval
St<n, the Cji, Cj2, -.» Cjr are adjustable parameters associated with the generalized
coordinate &), and r is the number of adjustable parameters associated with the generalized

coordinate §j.

In addition, the basis functions @j1, @j2, -.» @jr are chosen such that @0 ensures the

satisfaction of the initial conditions associated with the generalized coordinate g, ie.,

@jo(h) = éj(l‘l) Qin)=0 i=1.,n j=1.,nr
¢_’0(tl) = éj(tl) é]l'(tl) =0 i= 17 ey Ny j= 1’ ey Fy
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This step is to replace every &; by its associated trial solution in (F.4), every 8&; by

the variation of the associated trial solution, that is,

S =Y, Pid)bcji, j=1,..n (F.5)

h
i=1

in the variational indicator (F.3). After the insertion, the variational indicator can be written

as follows:
7!
VI=- { z Ri{c11,--+ Cnrs t)z ji &j,'}dt (F.6)
j=1 i=1
n !
where
oL\ oL _.
Rj(CII’”.’c”,t)El:dI——’_ -_a—_-:'j} r
%) %5 lem=pun+ Y cji gie)

i=1

are known functions of the undetermined parameters and time .
4. Organizethe V.L

The organization step includes interchanges of the orders of the iategration operator
r

n

12 . Y. )y . .

Ll and the summation operators - and Pl These interchanges are possible because
i= =
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the integration interval is finite and the numbers of terms of the two summations are also

finite. After appropriate manipulations, the V.1 of (F.6) can always be written as a linear

function of the variations of the undetermined parameters &ii, that is,

2

[4

VL=-Y 3

n
'=lj=l ‘l

Rj(c11, - -+ Cary t)@jidt |Bcji . (F.7)

Since there are no restrictions on the undetermined parameters the Cji's, the variational

indicator (F.7) vanishes if, and only if, the coefficient of each &:j.- is identical to zero, i.e.

)
I Ric11s-- s Cnrs ) @idt =0, j=1,..,r, i=1,..,n. (F.8)
t

1

6. Solve for undetermined parameters

Since the number of unknowns is the same as the number of equations in (F.8), the
adjustable parameters the c¢ji's can be determined through the solution of this set of
algebraic equations. Once the cji's are determined, the approximate solution of the
dynamics problem for a holonomic system from ¢ =t to ¢ = #5 is given in the form of

analytical expressions (F.4).
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The HLVA Method for Nonholonomic Systems

For convenience (and without loss of generality), the HLVA method for
nonholonomic systems is described for a system of three generalized coordinates &§j, &2,

&3, and two degrees of freedom 8¢), and 6€>. Assume the equation of nonholonomic

constraint of the system has the following general form [5, P15]:

@b+ b v by +as=0 (F.9)

where aj, a2, a3, ap are known continuous functions and have continuous first derivatives.
From the definition of admissible variations [5, p14-18 and 3, pS] , an admissible variation
(6&1, 82, 6E3) for such a general form satisfies

a166, + @266, + 43683 = 0. (F.10)

The HLVA method for a nonholonomic system consists of the steps which follows.

3 . 3 . 2
vi=| X iﬁagj+§—’;6§,-+sja§j)dx-[z or &:,}l. (F.11)
' j
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After inserting the relation 6 (dgf*’-) = g{&éj) into the V.I. (F.11) and integrating the first term

in the integrand of (F.11) by parts, the V.1. can be transformed into the following form:

02

. .
VI =- 4 ﬂf_ oL - Ej|8Eds . (F.12)
i=1|M\ag;| 95
n

The elimination of the dependent variable 0&3 from the V.I. (F.12) is accomplished
by embedding the constraint equation into the V.I. The embedding consists of two steps.

First, express the dependent variational variable 63 in terms of the two independent
variational variables, 8&; and 86, by rearranging the equation of constraint (F.10) into the

following form:

8s = - 34081 - 2208, (F.13)

Second, insert (F.13) for 6&;3 into the V.I. (F.12). Collecting terms according to 6&;(r)
and 8&,(s) gives the V.1 in the following form:

12
VI = '] Rl(gl’ 52, 639 t)8€l + R2(§l: €2» €3, t)5§2dt ’ (F.14) .
!

1

where
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[ dar) ar _ ] [4foL) oL
Ri(§1,62 &3, )= Sl ——1- — - By +| &1 — |- — - &3 (_Z_;
|No& ) 961 | |%loags) 96
oL\ oL _ | [4foL) oL _]
R:(61,62, 53, 0 = d%— s E A — |- —- 5 (-%
Mog,) 9% 9L 983
1 ial solutions for generaliz rdinates associated with independent

variational variables

Because of the constraint, the trial solutions for &(¢) and &,(¢) only must bc chosen.

The trial solutions selected here are of the form

@) =@+ 3, i oio), (F.15a)
i=1

EO) = wo@ + Y, ki wil®), (F.15b)
i=1

where the basis functions @;(f) and y;(?) are iwo sets of linearly independent continuous
functions and have continuous first derivatives in the time interval from ¢, to f;, the
ci's and k/'s are undetermined parameters, and r is the number of undetermined parameters.
In addition, the basis functions ¢;(¥) and yj(#) should be chosen such that @o(f) and yi(?)
ensure the satisfaciion of the initial conditions of the system, that is,

d
Po(r1) = &1(11), ?t(t)!t - dg;;t( t)!t
1 i

(1) = do®)| _
(Pj(tl) = O, TL =0
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Mo T alt

dy(1)| =d§2(t)|
de g ar ly !

avw:
v =0, -"g?{l =0

Then, through the constraint equation (F.9), £3 can be expressed (at least functionally) as a

wo(t1) = Ea(1),

function of the adjustable parameters as

53 = 53(01, seey Cr; kl’ seey kr; t). (F.ISC)
Step 4 Insert trial solutions into V.I. and arrange V.1, into special form

Inserting the expressions (F.15) into the V.I. (F.14) gives

t2

’
VI=- [Rl(cl, vees Cry K1y ouns Kps t)z @ibc; +
i=1
h

r
R2(C], eees Cpy klo seey kr; t)z %8kl:| dt (F.16)
i=1

where R1(C1,++, Cr; k1,+ -+ kr3 1) and Ra(cy, -+, Cp; K1, - -+, ki 1) are obtained by inserting

the trial solutions (F.15) into R1(&1, &2, &3, 1) and R2(&1, &2, &3, 1). Since the number of

r

. g . . f2 . by
adjustable parameters is finite, the integration operator In and the summation operator Aal
=

are commutative. In addition, since the variation of adjustable parameters 6cj's and 6k;'s

are independent of time ¢, the cj's and the kj's can be taken out of the integration. Then
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after exchanging the order of the two operators and bringing the &cj's and the &kj's out of

the integration in (F.16), the variational indicator becomes

t2
f Ri(cry -+ Crs ks ks O)idt (6c; -
[

e %]

J 1

- t2
z I RZ(cla c+5 Cpy kls R} kr; t)q/ldt 8ki (F.17)
i=1\J;

1

Since the adjustable parameters are arbitrary, the variational indicator (F.17) vanishes

if, and only if, each coefficient associated with &c; and 8k; vanishes identically, that is,

t2
f Rl(C], tee Cry kls B ] kr; t)‘Pidt = O i = 1, vy T (F.18a)
t

1

t2
j Ra(cr, -+ ks -y ks DYidt =0 i=1,.,r (F.18Db)
t

1

This is a set of 2r algebraic equations in 2r undetermined parameters.

Step 6 Solve { ¢ alocbrai .

The above set of algebraic equations can be solved via standard techniques. Once the
adjustable parameters Ci's and ki's are known, the expressions in (F.15) constitute the

solution to the dynamics problem cf the system.
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Note: In case the equation of constraint is such that an expression like (F.15¢) can not be
obtained, then &3(t) would be an additional unknown in the V.I. (F.16). In this case, the
solution of the adjustable parameters would be obtained through the following set of

equations:

4]
f Rl(cla se Cpy kl: tt % kr; 53’ 63’ 637 t)'pldt =0 i= 1, wey I (F.l9a)
t

1

2
fR2(Clg"',Cr;k1s"',kr; &3, &3, & Dydr =0 i=1,..,r (F.19b)
t

1

f(cls ©0 Cps kla ] kr; 539 §3v t) =0 (F.19C)

where (F.19¢) would be obtained by inserting the trial solution of &;(r) and &»(r) directly
into the equation of constraint (F.9). Equation (F.19c) is a first order differential equation
with undetermined parameters. Equations (F.19a) and (F.19b) are 2r algebraic equations
in undetermined parameters. The sclution of this set of equations generally requires
techniques for numerical solutions of differential equations, which can be found in

textbooks concerning numerical methods for solving differential equations.
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APPENDIX G

Numerical Issues of The HLVA Method

The HLVA method is a procedure for obtaining an approximate solution to dynamics
problems via trial solutions with undetermined parameters. In this appendix, we discuss
three numerical issues pertinent to this method. They are: (1) nondimensional time in

polynomial trial solution and (2) treatment of arbitrarily large time intervals.

Nondimensional Time in Polynomial Trial Solution

When polynomial trial solutions are used in the HLVA method, the set of algebraic
equations in adjustable parameters is often ill-conditioned when large numbers of
undetermined parameters are involved. To avoid this situation, a nondimensional time is
introduced into the polynomial trial solution. The handling of the nondimensional time is
demonstrated with the HLVA method for the simple harmonic oscillator shown in Fig.

G.1.

Fig. G.1 Simple harmonic oscillator
subjected to prescribed extemal force f.
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Assume an approximate solution is desired in the interval 11 S¢ < f, and at ¢ = £,, the

state of the system is known, that is, x(f1) = xp and il = Vo Then a polynomial trial
3]
solution for x(f) may be selected

r

X(t) = xo + volt - 1)+ 3, cft- ny+! fn<r<n. (G.1)

i=1
Introduce the nondimensional time o

a=‘;T‘L, 0<o <1, (G.2)

(where T =15 - 1y) in place of the physical time ¢, f; <t < £, into the trial solution (G.1).

Then the trial solution (G.1) becomes

r
x(0) = xo + (voT)o+ ¥, aoi*!, 0<o<l. (G.3)

i=1

If o; = ¢;Ti* 1, in stead of ¢; (i = 1, ..., ) are taken to be undetermined parameters in the
nondimensional-time trial solution (G.3), the corresponding basis functions in (G.3) can

be identified to be

Po(0) =x0 + (voT)o, @0)=0'*1, 0<o<l. (G.9)
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Once the trial solution in nondimensional time is set up, the remaining steps of the HLVA
method are the same as those when nondimensicnal time is not introduced. Therefore,

following the steps of the HLVA method, the set of algebraic equations in the @;'s can be

obtained

r
Y Ajoj+bi+pi=0 i=1,..r (G.5)
j=1

where

b: = 2{w.vo " w2xg + wZvoT
y (i+2) @G+2) (@(+3)

1
pi = _I [T + 1) ©+ide
o m

__GrD  2AeGrD) | o
Y r2i4je1) TG+j+2) (i+j+3)

o;=cTi+]

T=t-4
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Thus the parameters @i's can be solved from the set of algebraic equations (G.5).
Once the Qs are obtained, the adjustable parameters Ci's are given by c¢; = as/Ti +1, With
the now known adjustable parameters Ci's, tae approximate solution of the displacement of

the mass m is given by (G.1).

Treatment of Arbitrarily Large Time Intervals

Usually, if the dynamics solution is desired for an arbitrarily large time interval, a
large number of adjustable parameters must be included in the trial solution in order for the
approximate solution to maintain a specified accuracy. However, in practical applications
the number of adjustable parameters is usually quite limited due to limited computational
facilities. A practical treatment to an arbitrarily large time interval is to divide the large time
interval into smaller time segments and apply the HLVA methodt to each time segment.
Without loss of generality, we use the simple harmonic oscillator shown in Fig. G.1 to

demonstrate this treatment for a large time interval.

Assume that the approximate solation of the dynamics problem for this system is
desired in the interval t; £t <# (0 <¢; <1p. In addition, assume that the time history of
the generalized coordinate of the system, i.e., x(), is continuous and has continuous first
derivatives throughout the interval. Then this time interval can be divided into S time
segments: & =fSty1,k=1,.. S, where r =¢; and #547 =1 Note that these
segments should be sufficiently small such that good accuracy of approximation can be

obtained for each segment with only a convenient number of adjustable parameters.

T Note that this treatment for an arbitrarily large time interval is not confined to the HLVA method.
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For given initial conditions of the system, the HLVA method can be readily applied to
the first time segment 1 < < 2 and the approximate solution of x(¢) for this time segment
can thus be obtained. Taking the then known x(f2) and %(f2) as the initial conditions for
the next time segment f2 S ¢ < #3, the HLVA method is able to provide a solution to x(r) for
this time segment. By following this iterative procedure, the dynamics solution for the

arbitrarily large time interval #; < ¢ < # can be obtained with a specified accuracy.

Solutions for the system (m=20kg, k=380N/m,b=16N-s/m,xo=1rm,

vo =1 m/s) ynder the following three forcing conditions in the time interval 0 < £ <30 sec

(about the duration of 10 cycles of free vibration), are obtained:

(1) Free vibration. f(rf) = 0 N. (Fig. G.2)

(2) Harmonically forced vibration with the forcing frequency larger than the natural
frequency: f(f) =40sinds N. (Fig. G.3)

(3) Harmonically forced vibration with the forcing frequency smaller than the natural
frequency: f(t) =40sin0.5¢ N. (Fig. G.4)

Fig. G.2 shows that maximum approximation error for the free vibration is about
10-6% of the true solution and it occurs at the transient stage of the response. The error

decreases rapidly as the system approaches the steady state.
Fig. G.3 shows that when the harmonic force has higher frequency than the system's
natural frequency. the approximation error is of the order of 10-2% at the transient stage of

the vibration, and is of the order of 103% when the system is in steady-state forced
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vibration. The approximaticn accuracy can be improved by increasing the number of

adjustable parameters in the tvial function or decreasing the duration of the time segments.

Fig. G.4 shows that when the harmonic force has lower frequency than the system's
natural frequency, the approximation error is of the order of 104% throughout the vibration

in this 30-second time interval.

The approximation error is evaluated by the relative error defined by
e = (Xapproximate - Xtrud / Jtirud)100%. The true solution of the system under a generic

harmonic forcing f{t) = Fosinat is given by the following closed form expression:
Xirue = €59 C1coswyt + Casinayt] +X{w)sin(wr-¢)
where

C1 = xp + X(w)sing,

_ Yo +ionxo + X(co)[{w,,sinq) - ax:os¢p]

C,

@

og=oN1-

X(a) = Folg ,
[+t + et

This solution is found by standard techniques of solving harmonically forced vibrations.
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Note that in all the above three cases, the errors during the transient time are larger
than those during the steady-state time by about one order of magnitude. Note also that the
peaks in the errors in these figures are caused by a small Kirud value. In fact, when |xiud is
smaller than 5% of its maximum value over this time interval, the denominator of the error

expression is taken to be 5% of [iudnax.

The following table shows the summary of the results.

Table G.1 Dynamics solutions for simple harmonic oscillator

(w,=2rad/s, {=0.2,x0=1m,vyg=1m/s, 0 <z<30sec)

. . Maxi %

Case Forcing {(f) = Fosinax N| T (sec)/r* ( Oﬁxd‘g“o'}’ :1; ;0’;. tu‘;i "
1 =0 1/10 106
2 £(t) = 40sin4r 0.2/8 102
3 f() = 40sin0.5¢ 02/8 104

* Tis the duration of each time segment, r is the number of undetermined parameters included in the
trial solution for each time segment.
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1 . Simpie Hanponic Oscillatgr (Displacement vs Time)

E
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Fig. G.2 Free vibration calculated using r = 10 showing (a) displacement x versus time ¢ (b)
error, € = ([Xapprosimate - Xtrud / [tirud) 100%, versus time r. Note that since there is no

appropriate characteristic displacement available for free vibration, the displacement x is not
nondimensionalized.
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) . Simple Harr'nonic Oscillatgr (Displacemgnt vs Time) '
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Fig. G.3 Forced vibration (f{¢) = 40sin4t N) calculated using r = 8 showing

(@) nondimensional displacement, x* = i;,-x/—k- versus time ¢ and
0

(b) nondimensional error, e* = (]X:pmximm - x;uJ / lt;uJ)IOO%’ versus time .
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Displacement x*

Error e* (%)

2 ' Simple Hanponic Oscillatgr (Displacement vs Time)
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Fig. G.4 Forced vibration (r) = 40sin0.5¢ N) calculated using r = 10 showing

(@) nondimensional displacement, x* = , versus time ¢

. S
Folk

(b) nondimensional error, e* = (IX;ppmimate - x;uel / Lv;uJ)IOO%, versus time f.
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APPENDIX H

The HLVA Method For A Nenlinear System

The HLVA method is a procedure for obtaining an approximate solution to dynamics

problems via trial solutions with undetermined parameters. This appendix demonstrates the

HLVA method for nonlinear systems via the nonlinear oscillator shown in Fig. H.1.

Fig. H.1 Nonlinear oscillator subjected to
prescribed external force f. The spring has
nonlinear constitutive relation fs = k(1 + ax2),
where the parameters a and k are positive.

Assume the dynamics solution is desired for the interval f; St<1#, and the

displacement and velocity of the mass are known to be xp and vg at t=1;. The HLVA

method consists of the steps which follows.
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Step 1S iational indi iated with HLV A

For the system shown in Fig. H.1 the Lagrangian is

L=T"-V= %miz - %kxz(l + %axz) and the work expression is S&x =[- bx + f] &,

where x = dx/dt, inertial. Then the variational indicator associated with HLVA for this

system is

n
VL. f [8 - (@2x (1 + ax?) + 28wyt - L)x]ar - [0 [, (H.1)
t

m
1

where the natural frequency @, and the damping ratio { are defined as w, = Vkim,

2{w, = bim.
Inserting the relation 8(%) = d(dtﬁ into the V.I. (H.1) and integrating by parts of the

first term of the integrand in (H.1) transform (H.1) into the following form:

%’L=-I:2[(%+ @ (1 +ax2)+2§wn%-£)51]d‘~ (H.2)
a1 solut

Instead of going one further step beyonrd (H.2) to obtain the differential equation of
moticn of the system, we insert a trial solution into the V.I. (H.2). The assumed

polynomial trial solution is as follows:

r
X)) =xp+volt-t)+ Y, cit-0)*' p<r<p. (H.3)

i=1
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Although it is not a basic step of the HLVA method, introducing nondimensional time
into the trial solution helps to reduce the risk that the set of algebraic equations in
undetermined parameters is ill-conditions. Introduction of the following nondimensional
time

T, 0so <1 (H.4)

(where T = 1; - 1) into the trial solution (H.3) yields the trial solution in nondimensional

time o as follows:

r
x(0) =xo + (voT)o+ ¥, o'+l  0so<1 (H.5)
i=1

where oy = ¢Tit (i =1, ..., 1.

Step 4 I he trial solution (FLS) into the V.. (HL.2)

First, the independent integration variable ¢ in (H.2) must be transformed inte the

nondimensional time o using the following relations:

crde. dE_l g Px_ 1 d
dt = Tdo 7 g«L and £ = 3
Then the V.I. (H.2) becomes
2 f(TO'+ ) ]
I [(Tzdoz+a)?,x(1+ax)+2(;’w,t1, . (H.6)
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Denote the coefficient of & in the integrand of (H.6) by R(x, 0), i.e.,

_[1 2 ﬂT0'+ tl)
R(x, 0) = T_szﬁ* w?x (1 + ax?) + 2((0,1,1, - - (H.7)

then substituting the trial solution (H.5) directly into the V.I. (H.6) gives

1

Vi._. [R(al, vee, OF; O) i ot lﬁai:lda (H.8)

m !
i=1
0

,
where R(ay, - - -, &; O) is the R(x, ©) evaluated at x = xg + (voT) o+ z oot e,

i=1
R(ay, -+, &; O) = 2{wavo + 0px + W2vTO +

{i[ G+ D)o 1+2§w,,(’+1)01+w2d“] \
j=1 T ’

r
givt[ fTo+h)
am,’,‘l:xo+voTa+ Z a;jo’ :IS —

j=1

Since the number of adjustable parameters is finite (i.e., r is finite), the integration

,

1 . . - .

operator ]0 and the summation operator 21 are commutative. In addition, since the
i=

variations of adjustable parameters 60i's are independent of time ¢, the 8a;'s can be taken
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out of the integration. Then after interchanging the order of the two operators and bringing

the da;'s out of the integration in (H.8), the V.1. (H.8) becomes

’ 1
LInlk:m 2 {f [R(als"" Oy, G)O"+l]d0' 8(![. (H9)
i=1 \Jo

Since the adjustable parameters are arbitrary, the variational indicator (H.9) vanishes

if, and only if, each coefficient associated with d¢; vanishes identically, that is,

1
j [Rc1, -+ ¢y 0)Gi+ 1o =0 i=1,.,r. (H.10)
0

This is a set of r algebraic equations in 7 undetermined parameters.

After carrying out the integration with respect to time, the set of algebraic equations
(H.10) becomes

r
Y Ajjoj+bi+pi=0 i=1,..r (H.11)
j=1
where
G+ 2D
YU r2ieje1) TG+j+2)  (+j+3)
b; = ZCanO + G),Z.X() +(0,%VOT

T@+2) (+2) (+3)
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pi = aaﬁ[xo+voTa+ Y ajof”]aa"“do _j f(T(THl)DHldo,
j=1 0

lve fi j I

The set of algebraic equations (H.11) can be solved for the &;'s via standard
techniques. Once the ¢j's are obtained, the adjustable parameters ¢j's can be readily
determined from the relation ¢j = aJIITj +1 (¢ =1,..,r). Therefore, the expression (H.3)
with the now known parameters C;j's constitutes the approximate solution to the dynamics

problem for the desired time interval ) <t < 1.
Sample Solutions

Solutions for the system (m =20 kg, ¥k =80 N/m, a = 1.5, b = 16 N-s/m, xp = 1 m,
vo = 1 m/s) under three forcing conditions in the time interval 0 < ¢ < 20 sec (which is for a
duration of about 6.5 cycles of the natural vibration of the corresponding linear system) are

conducted.

(1) Free vibration. f(r) = O N. (Fig. H.2)

(2) Harmonically forced vibration with the forcing frequency larger than the
corresponding linear system natural frequency: {r) = 40sin4¢ N. (Fig. H.3)

(3) Harmonically forced vibration with the forcing frequency smaller than the

corresponding linear system natural frequency: f(r) = 40sin0.5¢ N. (Fig. H.4)
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Since this nonlinear system has no available closed-form solution, the degree of error
of the approximate solutions is indicated by the residuals of the differential equation
(obtained by substituting the solution into the differential equations that represent the

summation of forces at any instant). For this system, the differential equation of motion is

d%x , pdx 7). f=0.
mdt2+bdt+kx(l+ax) f=0

Then the residual R is

2
R= m%+b%+kx(l+ax2)-f (H.12)

Xapproximate

For fair evaluation, a normalized residual is defined as follows: (i) for free vibration, f=0,

the normalized residual R* is defined as R* = -R-100%; (i) for the two forced vibrations,

(1) = FosinaX | the normalized residual R* is defined as R* = 5—100%.
0

Fig. H.2 shows that maximum residual for the free vibration of this nonlinear system
is of about 10-3% of the weight of the mass and it occurs during the transient portion of the
response. The residual error decreases rapidly and becomes about 10-8% to 10-19% of the

weight of the mass when the system response approaches the steady siate.

Fig. H.3 shows that when the harmonic force has higher frequency than the
corresponding linear system's natural frequency, the residual error ranges from 105% to

10-3% of the magnitude of the forcing function.
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Fig. H.4 shows that when the harmonic force has lower frequency than the
corresponding linear system's natural frequency, the residual ervor is of the order of 103%

throughout the vibration in this 20-second time interval.

Note that aithough the approximate solutions of the displacement shown in these
figures are continuous, the residuals are not. The discontinuity of the residuals, signified
by the spikes in these figures, is due to the noncontinuous acceleration of the approximate
solution during the solution time interval. The discontinuity occurs at the instants that are
the final or initial instants of the time segments consisting of the time interval 0 < ¢ < 20.
Since for each segment there is a different trial solution, and any two trial solutions for
adjacent time segments are connected by enforcing only continuous displacement and
velocity at the adjoining instants, then the acceleration at these adjoining instants generally

can not be continuous.

Table H.1 summarizes the results of the three cases.

Table H.1 Dynamics solutions for nonlinear harmonic oscillator
(w,=2rad/s, {=0.2,a=1.5m2,x=1m,vg=1m/s, 0 <t <20 sec)

. ) Maxi %**
Case | Forcing (o= Fosinax N | T(sec)r* | Hmam eror o0

1 =0 0.5/10 103
2 f(0) = 40sindt 0.4/10 103
3 () = 40sin0.5¢ 0.5/10 103

* Tis the duration of each time segments, r is the number of undetermined parameters included in
the trial solution for each time segment.

** Percent of residual error with respect to the weight of the mass for Case 1 (free vibration), and
with respect to the magnitude of the forcing function for Cases 2 and 3 (forced vibrations).
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Fig. H.2 Free vibration calculated using r = 10 showing (a) displacement x versus time ¢ and (b)

residual, R* = %100% versus time 2. Note that since there is no appropriate characteristic

displacement available for free vibration, the displacement x is not nondimensionalized.
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Fig. H.3 Forced vibration (Ar) =40sindt N) calculated using » = 10 showing (a

, versus time ¢ and (b) nondimensional residual,

nondimensional displacement, x* = —%—
Folk

R*= FAZ—IOO%, versus time t.
0
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Fig. H4 Forced vibration (f(t) = 40sin0.5¢ N) caiculaied using r = 10 showing (a)

nondimensional displacement, x* = ?gﬁ' versus time ¢ and (b) nondimensional residual,

R*= g—lm%,velsus time ¢.
0
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APPENDIX I

The HLVA Method For A Nenholonomic System

The HLVA method is a procedure for obtaining an approximate solution to dynamics
problems via trial solutions containing undetermined parameters. This appendix
demonstrates the HLVA method for a nonholonomic system via the particular

nonholonomic system show in Fig. 1.1 [3, p121].

A

Fig. 1.1. Constrained motion of a boat.

Fig. 1.1 shows the motion of a boat on water surface. The boat is acted on by
prescribed external forces fy, fy, and by a prescribed external torque 7, along the axis
perpendicular to the water surface and passing through the centroid of the boat. The

motion of the boat is such that any translation must be in the instantaneous direction of the

keel. The analytical expression of this constraint is

dy - dxtan6=0 1)
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Assume the dynamics solution is desired for the interval -. The HLVA method for an

approximate solution to the dynamics problem of this system consists of the steps listed

below.

i ol ]l o
The Lagrangian of the systemis L=T Em(dr)z+ o +EI T , Where m is

the mass of the boat, /. is the moment of inertia of the boat about the axis perpendicular to

the water surface and passing through the boats centroid C . The variational work

3
expression is . E;8E; = f;0x + £, 8y + 7,66 . Then the variational indicator associated
j=1

with HLVA is

7]

V.1

& [T or*
p) ( 55, + 5 55,) dr - [ jF 12)
i=1\2¢; 361 j=1 3

n

Inserting the relation 8{%)%%(8@) into the V.I. (1.2) and integrating by parts with

respect to time for the first term in the integral in (1.2) transform (I.2) into

2
3

VI=- ;‘,

n

_or*
a&;

oT*
a;,

- 5,]65,- dr. (1.3)
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Substituting the kinetic coenergy and work expressions into (I.3) gives

i 2
v.1.=-}{l [m%-ﬁc’au(m%-f,5y+(10%jg-¢,)59]d:. (.4)

limi ndent variati i m

The three variations 8x, 8y, and 860 in (1.4) are not independent; they are subject to

the following constraint:
8 = & tan@ @5t
Without loss of generality, chcose dx and 66 to be the two independent variational

variables. Hence, 0y can be eliminated from (1.4) by inserting the relation (1.5) into the
V.1. (1.4). Then the variational indicator (1.4) becomes

12 2
Vi =- ‘[ midZx _ g, +(md—y-- f, )mne]&x+ 1,428 . r,)&()’ d. (L6)
L ( dr? ) iz ( dr?

1 If a generic constraint equation is in the form @1d¢) + axd&s + asds + ag = 0, where ay, a3, a3,
and ag are functions of &;, &3, &3, and time ¢, then the relation that defines an admissible variation (61,
6&, 8&3) is obtained by changing d&, d&, and d&; in the constraint equation to &1, &2,and &3, and
setting ag to zero. Therefore, the equation that defines an admissible variation for this case is
a & +a852+a3653 =0, where dé, = &, d§; = 8y, d63= 66, ay = anf,az=-1,and a3 = 0.
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Although usually not possible, the generalized coordinate y can be eliminated from the V.I.
(1.6) for tnis particular problem. This elimination is accomplished by first writing the

constraint equation (I.1) into the following form:

@ _dx
= gt tan@, A D+
then differentiating (1.7) to give
=42 ang + 4& dﬂ sec28 . (1.8)
d:2 dr?

When (1.8) is inserted into the V.I. (I1.6) and terms associated with &x and 88 are collected
together, respectively, the V.1 (1.6) is converted to

12
V.I = -! [(md—l-(l +tan20)+m414Q sec20 tan@ - fx - fytan6 )&x + (Io )80}

n
(1.9)
Step 3_Choose trial solutions for x and 0
Select the polynomial trial solutions as
x(t) =x0 + vo(t - )+ D, cft-fy)+1 (1.10a)
i=1
7

1) = 6o + an(t - 1)+ 3, kife - 1)+ (1.10b)

i=1

11 The constraint equation (I.1) is written for a displacement (dx, .y, 46) in an infinitesimal time interval
dt. Now if we divide both sides of (I.1) by dt and let dt approach zero, the equation of constraint (I.1) is
transformed into the form (1.7).
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where Xo and vo are the x-components of the displacement and velocity of the boat at £ =¢;,
respectively, and 6y and @y are the heading angle and rate of change of the heading angle at

t = 11, respectively.

To reduce the risk that the set of algebraic equations produced by the HLV A method
be ill-conditioned, introduce nondimensional time o=(t-#1)7, 0 < ¢ < 1, (where
T =1t - 1) into the above two trial solutions. Then, the trial solutions in nondimensional

time are as follows:

r
x(0) =xo +(voT)o+ 3, @ioi*!  g<g<i (L11a)

i=1

e(o')=90+(on)m-.21ﬂ,-c"“ 0<o< (L11b)

where ;=T and Bi= kT *1 (i =1, ..., P).

First transform the independent integration variable 7 in (1.9) into the nondimeasional

time ¢ using the following relations:

=Tds, dx-1dx d*x__1 d%
dit=Tdo % T do 12 17 dod

Then the variational indicator in nondimensional time is

1
V.I=- f [Rx(x, 6, 0)6x + Ry(x, 6, 6)56dc, (1.12)
0
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where

Rx(x. 6, ©) 2 1+tan20) + ?{gg%mze tan@ - f(To+1) - f,(To+t)tand

%3
0 d°0 .
Ry(x, 6, 0) = T2 g2 w(To+n).

Now inserting the trial solutions in nondimensional time into the V.I. (I.12) gives

1

V.= - [R,(al, cery O Bry e B 0‘)2 o t160; +
i=1

0

Re(als ceey Opy pla “t % ﬁf; a)i O".+18ﬁi] do (1-13)

i=1

where Rx(0t1, -+, 0; B1,-+- Brs 0) and Rg(@y,---, 0y; Py, -+, Brs O) are obtained by
inserting the trial solutions (I.10) directly into R,(x, 6, 6) and R (x, 6, 0).

Since the number of adjustable parameters is finite (that is, 7 is finitc), the integration

r
1 . . ... .
operator lo and the summation operator zl are commutative. In addition, since the
t=

variation of adjustable parameters Sa;'s and 6fi's are independent of time 1, the Sa;;'s and
the 8Bi's can be taken out of the integration. Then, after interchanging the order of the two
operators and bringing the a;;'s and the dfi's out of the integral in (I.13), the V.I can be
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written in the following form:

r

1
VL= - Z {f Rx(al, cony Oy pl. b} ﬂr; O?O"*' ldO' }8“,‘ -
0

i=1

r
i=

1
U Re(ay, -+, @ Br,--+ B o)o"“da}csﬂz (1.14)
0

1

Since the adjustable parameters are arbitrary, the variational indicator (I.14) vanishes

if, and only if, each coefficient associated with do; and &Pi vanishes identically; that is,
1
j R0y, -+ € Bry-++ B )G tldo =0 i=1,.,r (1.153)
0

1
I Rg(0ty, -+ 3 Bry -+, By )G *1do=0 i=1,..,r. (1.15b)
0

This is a set of 2r algebraic equations in 27 undetermined parameters.
Step 7 _Solv f alochrai .

After the integrations in (I.15) are cenducted, the set of equations (1.15) becomes

,
Y, Aijoj+pi=0 i=1,.,r (1.16a)
“~
! [ 4
> Bijfj+pg;=0 i=1,.,r (L.16b)
j=1

where
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__JG+D)

U Tivj+ 1)

f ( gﬂ sec20tan@ )6‘ *lo+

+f [_fx(T?n"' f1) _-’:V(T‘;:' n :ane]al+ Ido

JjG+1)
T2 +j+1)

1
o= I [_ Tz(Tz + tl)]oi-o-lda
0

Bjj=

i=1.,rn j=1,.,r.

Once the @j's and Bj's are cbtained by solving equations (I.16), the adjustable
parameters ¢j's and j's can be readily obtained from the relation ¢;= anTjn and
kj= ﬁj/TJ'H ( =1, .., r). Therefore, the expressions (I.10) with the now known
parameters ¢;'s and k;'s form the approxirmate solutions to x(f) and 6(f) for the desired time
interval 1 S¢<1,. And y(t) can be obtained by integrating the constraint equation (1.7)
once x(f) and &(¢) are obtained.
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A Sample Solution

Fig. 1.2 shows a solution of the sysiem (% = 100 kg, fo = 1600 kgm?) ynder the

foliowing simple but nontrivial conditions:

Initial conditions:  x(0)=0,  y(0) =0, 6C) =0
- ay o~ _ o
%(0) =0, 2(0=0, %:Q(O) =0;
Forcing: fr=02mg, fy=05mg, = =0.1mg¥ldm.

Time interval: 0<1<1.6sec.

Unfortunately, solving the set of highly nonlinear algebraic equations (I.16) under the
above forcing conditions is an extremely slow process, which explains why only a very
short time intervai is shown in Fig. 1.2, ( In fact, it took about 40 minutes to produce the
results shown in Fig. 1.2. The main cause of the sluggish speed of solution is the slov rate
of convergence of the solution to the set of nonlinear algebraic equations (I.16) using the
technique of iteration by total steps.) For the interval 0 < ¢ < 1.6 sec, Fig. 1.2 shows the

residualt of the differential equation in the x direction (an equation of force balance in the x

T For this system the differential equations in x and @ can be found from the V.I. (I1.9) to be

.. fu- mk 01an656c?0 + fytand

mx - =0 and 1,5- 7, =0, respectively. Then the residuals of these two
(1 + m’e)

equations are

. [m fe-mi Otanasecz:za-e-f,mel
(1 +t@an 0) Xapproximetos onppmximlu)

R'=[l¢5" f']oappoxinmu’
and the corresponding normalized residuals are Ry = —Rx__and g ;= Re
| fe bmax | % bnax
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direction) to be about 5x102% of the magnitude of the applied forced in the x direction,
and the residual of the differential equation in the z direction (an equation of torque balance
in the z direction) to be about 108% of the magnitude of the applied torque in the z
direction.
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Fig. 1.2. Motion of boat under constant forcings calculated with duration of time segments
T = 0.2 sec and mumber of adjustable parameters in trial solutions r = 6:

(a) the x-compornient of displacement versus time ¢,

(b) angle @ versus time ¢,

(c) nondimensional residual RJ, R: =Rz _, versus time 1, and
ax

rkn

(d) nondimensional residual R , R} =I£n_e_' versus time .
ax
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APPENDIX J

Weighted-residual Methods for Dynamics Preblems
of Lumped-parameter Systems

The weighted-residual methods [4, p147-153) are procedures that produce
approximate solutions to dynamics problems in the form of analytical expressions. These

methods are based on the differential formulation of dynamics problems. They generally

consist of the steps listed below.

The general form of the formulation for a system with i degrees of freedom is

%i=f,-(xx. X2y +00y Xy ) t>0
j=1, .. n. J3.1)
xj = x;(0) t=0

2. Cl ial solu

A set of n trial functions, each containing adjustable parameters, must be constructed.
The trial functions should be sufficiently simple so that the operations required can be
easily performed. The parameters should be inserted into the trial solutions in such a way

as to give a wide variation of possible solutions all of which satisfy the initial conditions.
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It is common to take trial solutions of the form
xj = @jo(f) + cp@ja(0) + - - - + Cip@y0) j=1,..,n (3.2)

where  is the number of adjustable parameters, and the %) (k = 1, ..., r) are known
functions (for example, polynomial, trigonometric or exponential functions) which satisfy

the following initial conditions:

?p(0) = x,(0) _
%’.‘:(o)=o’ k=1,--0,r j=1 .., n (J.3)

When the trial solutions (J.2) are substituted into the goveming equations (J.1), n

dx;
s 3 -—L - eo e
Ri®) dt Ffx1, K25+ Xy t), (¢ =1, ..., n), are formed. For

equation residuals, R{(1),
the true solution x;(¢) (j = 1, ..., n) the equation residuals vanishes identically. For the
restricted family of trial solutions (J.2), the weighted-residual criteria are procedures to pick
out the best approximate solutions from the trial family by adjusting the undetermined

parameters associated with each unknown function x;j(z).
If r adjustable parameters were used in constructing x;, then r conditions of the

weighted-residual type must be satisfied by R; in the desired interval 0 <¢ <T. The
conditions (criteria) for fixing the cjt (k = 1, ..., 7) are listed below.
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1. Collocation. We select as many locations within 0 < ¢ <T as there are
undetermined parameters and then adjust the parameters until the residual Rj vanishes at
these locations. The presumption here is that the residual R;j does not get very far from
zero in between the locations where it vanishes. Let s (k= 1, ..., r) denote r locations in

the interval 0 <t < T, then the set of equations given by the collocation criterion is
R{t) =0, k=1,..,r. (7.4)

2. Subdomain Method. @ We divide the desired interval 0 <¢<T into as many
subdomains as there are adjustable parameters and then adjust the parameters until the
average value of the residual in each subdomain is zero. Let & StS iy (k = 1, ..., 1)
denote r subdomains in the interval 0 < ¢ < T , the the set of equations given by the

subdomain method is

Li+1
R,(t)a'r=0, k=1,..r. d.5)
t

3. Galerkin's Method. We require that weighted averages of the residuai over
the desired interval 0 <t <T should vanish. The weighting functions are taken to be the
same functions of ¢ as were used in constructing the trial family; that is, the @it (k = 1, ...,

r). The set of r equations given by Galerkin's method is

T
j R{N@jdt =0, k=1, ..,r. J.6)
0
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4. Method of Least Squares. The parameters are here adjusted in such a way as

to minimize the integral of the square of the residual over the desired interval 0 <z <7T.

T
The set of adiustable parameters that minimize the integral f [R }(t)]2dt can be determined
]
from the following set of r equations:
3 T
1L 21 [R{9Pdr =0, k=1,..,r. (3.7
2 aCjk 0

4, Solve for adjustable parameters
When each of the n residuals is treated in the way describe above, enough equations

are obtained to solve simultaneously for all the parameters. Once the adjustable parameters

are obtained, the approximate solution of the dynamics problem is given by (J.2).
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APPENDIX K

Relationship Between the HLVA Method
and Galerkin's Method

This appendix proves that the approximate solution to a dynamics problem via the
HLVA method is identical with that via Galerkin's method when identical trial solutions are
used. Without loss of generality, the proof is given for a one degree-of-freedom system.

Let £ be the generalized coordinate of a one degree-of-freedom system and let 6 be
the associated variational variable. In addition, let T* = T°(¢, é, 1) be the kinetic coenergy
of the system, V(&.7) be the potential energy of conservative forces, and = be the
generalized force due to nonconservative forces acting on the system. Assume that the

dynamics solution is desired for the time interval ¢ St <1,.

First, consider the HLV A method for this system. The variational indicator associated

with HVLA for this system is

{y) aTt 2
v.1.=)f (8L+56§)dt-[aé 86[ (X.1)

1

where L=T" - V is the lagrangian of the system. Carrying out the variation of the

Lagrangian in the V.I. (K.1) gives

(7]
VL= (a—'fdé+a—"6§+58€)dt-[a? 86]: (K.2)
o 88 % % L
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By using the commutativity relation 5§=$5€) and integrating the first term in the

integrand of (K.2) by parts, the V 1. (K.2) can be transformed into the following form:

2

ViL=- {%(3%) -%!;- -s}sédr. (K.3)

Now, assume the trial solution to be as follows:

D =@+ 3, ¢ gD (K.4)

Jj=1

where the basis functions @;(f)'s are chosen to be linearly independent continuous functions

and have continuous first derivatives in the time interval from #; to f, the ¢;'s are
undetermined parameters, and 7 is the number of undetermined parataeters. In addition, the

basis functions @;() should be chosen such that P0(!) ensures the satisfaction of the initial

d®l _dE0 o000, and

conditions of the system, i.e. f) = &(8y)» = R
y %( 1) g( l) dt ]tl dt itl

o] _
—er =0

1

Inserting the above trial solution and its variation

8(r) =j§ P15 (K.5)
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into the V.I. (K.3) gives the variational indicator as follows:

[ .
VL= J Rt i)Y, gdcidr, (X.6)
n

j=1

where

r

% ]ﬁ(t) )+ Y ¢ o0

j=1

R(C],'--,C’; t)E %('B_LT) "'a_L" -E
95

Since the trial solution consists of a finite number of adjustable parameters (i.c., ris

finite), the integration and summation operators in (K.6) are commutative. In addition,

since the variation of adjustable parameters &c;’s does not depend on time, the dcj's can be

taken out of the integration. Hence after exchanging the order of the integration and

summation operators and bringing the &c;'s out of the integration in (K.6), we obtain

r 2
V.L=), { I R(cy, -+ ¢ :)@(r)d:}&,-. (K.7)
j=1 )]

Because the adjustable parameters are arbitrary, the variational indicator (K.7) vanishes if,

and only if, the following r equations hold

2
I R(Cl, ce Cpy t)%‘(t)dt =0 ] =1, .., (K.S)
1§

1
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This set of equations states that the weighted averages of the function R(C1, -+ €1 1)
over the desired time interval #; <t < 15 should vanish. The weighting functions are rothing
else but the basis functions used to construct the trial family (K.4). Therefore, ecjuation
(K.8) is nothing but the Galerkin criterion [4, p149] that provides the conditions that the
adjustable parameters should satisfy for the dynamics problem formulated by the

differential equation of motion

4ot} oL o
dt( ) E=0, - (X.9)

And the function R(€1, -+ €3 1) is nothing but the residual formed by directly inserting the
trial solution (K.4) into the differential equation (K.9).

Therefore, it is proved that the HLVA method produces the same set of aigebraic
equations in adjustable parameters as Galerkin's method does for identical trial solutions.
Hence, we may conclude that the approximate solution to dynamics problems of lumped-
parameter systems via the HLVA method is identical with those via Galerkin's method

when identical trial solutions are used.
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