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Abstract 

Traditional oil and gas companies will continue to face market uncertainties in the coming 
decades. With increased pressure to confront climate change and energy technology innovations, 
the future demand and pricing for petroleum products is unclear. Hydrocarbons will continue to 
play a part in the changing energy landscape. However, companies will need to revisit what 
capital is spent on and how they spend it. Instead of tying up capital in a one-time massive 
investment decision, made under long term assumptions, agile investing gives power back to the 
business decision maker.  
 
This thesis has developed a computationally efficient model for valuing systems built for agile 
investing. It combines system architecture principles, real options valuation, and object-oriented 
programming. Investment decisions under uncertainty are simulated by combining optimization 
algorithms and Monte Carlo sampling. The approach allows expansion decisions to be included 
in the early stages of system architecture design. In industry, definition of subsystem 
requirements is an influential step in project development, setting up the costlier and time 
intensive detailed engineering, procurement and construction.   
 
Practicality is demonstrated through application to a realistic, but hypothetical case study. We 
explore the development of an upstream, onshore oil field. The system is decomposed into 
several subsystems accomplishing fluid extraction, processing and sales. The model simulates 
their physical and economic interactions to calculate performance metrics of net present value, 
capital expenditure, system capacity, emissions and others. We investigate performance changes 
based on subsystem sizing and installation timing.  
 
The analysis shows how agility can increase expected value while reducing investment risk. 
Overall expected value increases by 5% and the initial capital commitment is only one-sixth the 
cost of a full production system. The value is created by earlier positive cashflows, hedging 
commitment against falling oil prices and quick expansion opportunism in the case of rising 
prices. Using the same model, subsystems are refined and then expanded to investigate 
combustion emissions. By incorporating cleaner fuel sources, combustion emissions can be 
reduced by 70%. We conclude by recommending specific subsystem requirements for an agile 
investment design.  
 
Keywords:  agility, oil and gas, system architecture, real options, Monte Carlo simulation, 
integer optimization, managing uncertainty, design flexibility, object-oriented programming 
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Title: Professor of Engineering Systems, Institute for Data, Systems, and Society 



  4 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank 

  



  5 

Acknowledgements 

The System Design and Management (SDM) program at MIT was a transformative year for me. 
I had not been full-time in a classroom since 2008. SDM was a year of reflection, growth and 
acknowledging how far I’ve come but how much I still have to learn. I admire and thank the 
SDM faculty for their courage. Facing a room full of seasoned professionals seems daunting. 
Their work towards bridging the gap between academic knowledge and industry application also 
so. I took Professor de Neufville’s class and was intrigued by the concept of valuing design 
flexibility. He has a knack for explaining concepts simplistically and directly. Making them 
applicable to the real world, which I most appreciated as we worked together. Additionally, he 
was encouraging (and very patient) as I fumbled through tying in other concepts I had learned 
during the year and wanted to explore. 
 
I want to thank my former supervisors and mentors who were my teachers and professors 
between my time in undergrad and SDM. Carlos Tovar was my first mentor on a large deepwater 
platform design team. He taught me the basics of upstream process, sizing of equipment and 
managing contractors. Nicola Killen taught me how to facilitate a technical conversation and 
tease out underlying knowledge from a large multidisciplinary group. She also sparked my 
international travel itch and confidence which would serve me years later. Ricardo Morales was 
my supervisor while I managed some of my favorite small capital projects. Always encouraging 
our team and trusting our decision making. He was a windshield from normal corporate politics 
and a door opener to my assignment abroad. Randy Potter was my advocate in one of my most 
challenging positions. He saw more in me than I saw in myself and kept moving the bar higher, 
so I kept being challenged. Andy Koch gave me lessons in leadership by creating environments 
for collaboration and communication. He encouraged and backed me when I was seeking 
management support to apply to SDM. 
 
While coding and writing this work my grandmother passed away. Her and my grandfather paid 
for all of their grandchildren’s undergraduate education. They were both automotive factory 
workers and never attended college. This investment was made when we were born and meant 
that growing up, I never questioned the value or my pursuit of higher education. It was just a 
fact, I was going to college. She taught me a lot of other life lessons, but my education success is 
also because of her.  

 

 

 

 

  



  6 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank 

  



  7 

Table of Contents 

List of Figures ................................................................................................................................. 9 

List of Tables ................................................................................................................................ 11 

List of Acronyms .......................................................................................................................... 12 

Chapter 1: Introduction ................................................................................................................. 13 

Uncertainty in the energy market .......................................................................................... 13 

Leveraging and hedging uncertainty through design ............................................................ 15 

Learning from the digital industry ........................................................................................ 17 

Simulating investment agility of a complex system ............................................................. 17 

Chapter 2: Real Options – Background ........................................................................................ 19 

Real options and analysis methods ....................................................................................... 19 

Real options in a project ....................................................................................................... 22 

Chapter 3: System Architecture – Background ............................................................................ 25 

The systems engineering “V” ............................................................................................... 25 

System architecture modeling ............................................................................................... 26 

Chapter 4: Case Study - Upstream Oil & Gas System Modeling ................................................. 29 

System architecture concept model in OPM ......................................................................... 29 

System architecture concept model with SysML .................................................................. 31 

Expanding the model ............................................................................................................ 33 

System evaluation model in Python ...................................................................................... 37 

Chapter 5: Case Study - Basic Analysis of Agile vs. Deterministic ............................................. 39 

Structure of Case Study ........................................................................................................ 39 

Input of Case Study ............................................................................................................... 40 

Comparing system architecture strategies ............................................................................ 45 

Further information to support recommendation .................................................................. 47 

Chapter 6: Case Study - Extended Analysis ................................................................................. 51 

Refining the subsystem types ................................................................................................ 51 

Exploring emissions and energy generation subsystems ...................................................... 53 

Subsystem recommendations ................................................................................................ 59 

Chapter 7: Adapting the Model and Future work ......................................................................... 61 

Adding and changing subsystems ......................................................................................... 61 

Adding and changing decision strategies .............................................................................. 62 



  8 

Operationalizing the model ................................................................................................... 63 

Chapter 8: Conclusion ................................................................................................................... 64 

Appendix A: Python Program Detailed Explanation .................................................................... 67 

Appendix B: Multi-Integer Optimization Program for Expanded Model .................................... 78 

References ..................................................................................................................................... 80 

 

  

  



  9 

List of Figures 

Figure 1: World primary energy demand by fuel and CO2 emissions for the “Stated Policies” and 

“Sustainable Development” Scenarios (“World Energy Outlook 2019,” 2019) .......................... 14 

Figure 2: Adapted model of real option decision making for real options in a project ................ 23 

Figure 3: Systems Engineering “V” Model. Thesis focus areas in black. .................................... 25 

Figure 4: Systems Engineering “V” Model for Agile Investment. Thesis focus areas in black. .. 26 

Figure 5: System Architecture Object Process Diagram .............................................................. 30 

Figure 6:  System Decomposition Model ..................................................................................... 32 

Figure 7:  System Decomposition Model Expanded .................................................................... 33 

Figure 8 & Figure 9:  Oil price uncertainty over time & 2021 probability distribution function . 42 

Figure 10 & Figure 11:  Natural gas price uncertainty over time & 2021 probability distribution 

function ......................................................................................................................................... 43 

Figure 12 & Figure 13:  Natural gas liquids composite price uncertainty over time & 2021 

probability distribution function ................................................................................................... 43 

Figure 14 & Figure 15:  Diesel price uncertainty over time & 2021 probability distribution 

function ......................................................................................................................................... 44 

Figure 16 & Figure 17:  Drilling & frack fleet days probability distribution functions ............... 44 

Figure 18 & Figure 19:  Gas heating value & water cut probability distribution functions ......... 45 

Figure 20 & Figure 21:  Decline rate & compression days probability distribution functions .... 45 

Figure 22:  Net Present Value for Initial Scenarios ...................................................................... 46 

Figure 23:  Total Capital Spend for Initial Scenarios ................................................................... 46 

Figure 24, 25, 26 & 27:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem 

Types – Planned Capacity ............................................................................................................. 47 

Figure 28, 29, 30 & 31:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem 

Types – Large Scale Agility ......................................................................................................... 48 

Figure 32, 33, 34 & 35:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem 

Types  – Multi Choice Agility ...................................................................................................... 50 

Figure 36:  Oil Production Target Profile – All scenarios ............................................................ 50 

Figure 37:  Net Present Value for Agility Scenarios .................................................................... 52 

Figure 38:  Total Capital Spend for Agility Scenarios ................................................................. 52 

Figure 39, 40, 41& 42:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem 

Types – Refined Choice Agility ................................................................................................... 53 



  10 

Figure 43:  Total Emissions for Uncertainty Scenarios ................................................................ 54 

Figure 44 & Figure 45:  Emissions and Energy Required Over Time – Planned Capacity ......... 54 

Figure 46 & Figure 47:  Emissions and Energy Required Over Time – Large Scale Agility ...... 55 

Figure 48 & Figure 49:  Emissions and Energy Required Over Time – Multi Choice Agility .... 55 

Figure 50 & Figure 51:  Emissions and Energy Required Over Time – Refined Choice Agility 55 

Figure 52:  Total Net Present Value for Energy Supply Scenarios .............................................. 57 

Figure 53:  Total Capital Spend for Energy Supply Scenarios ..................................................... 57 

Figure 54:  Total Combustion Emissions for Energy Supply Scenarios ...................................... 58 

Figure 55:  Total Combustion Emissions vs. Total Capital Spend for Energy Supply Scenarios 58 

Figure 56 & Figure 57:  Diesel Required Over Time – Refined Choice without and with 

Additional Gas Processing ............................................................................................................ 59 

Figure 58 & Figure 59:  Capital Spend Profiles for Recommended Design ................................ 60 

Figure 60: System Architecture Object Process Diagram - Deepwater Asset Type ..................... 61 

Figure 61: System Architecture Object Process Diagram – Shale Multi-Field Asset Type ......... 63 



  11 

List of Tables 

Table 1: Types of Uncertainty (Ipsmiller et al., 2019) ................................................................. 23 

Table 2: Real option conditioning factors (Ipsmiller et al., 2019). Design Flexibility “IN” was 

added as a moderator.  .................................................................................................................. 24 

Table 3: Existing 2020 System – initializer for scenario simulations .......................................... 40 

Table 4: Deterministic oil production targets. .............................................................................. 41 

Table 5: Oil and Gas Processing standard subsystem types to be annually chosen during scenario 

simulations. ................................................................................................................................... 41 

Table 6: Energy Supply Subsystem Types ................................................................................... 56 

Table 7: Recommended Subsystem Requirements for Further Design Development ................. 60 

 

  



  12 

List of Acronyms 

BPD – Barrels Per Day 

CNG –Compressed Natural Gas 

CO2e – Carbon Dioxide equivalent  

DCF – Discount Cash Flow 

GHG – Greenhouse Gas 

GOR – Gas to Oil Ratio 

INCOSE – International Council on Systems Engineering 

IRR – Internal Rate of Return 

LNG – Liquified Natural Gas 

MBPD –Thousand Barrels Per Day 

MCF – Thousand Cubic Feet 

MMSCF– Million Standard Cubic Feet 

MMSCFD – Million Standard Cubic Feet per Day 

MW – Megawatt 

MWh –Megawatt hours 

NPV – Net Present Value 

OOP – Object-Oriented Programming 

OPD – Object-Process Diagram 

OPM – Object-Process Methodology  

NGL – Natural Gas Liquids 

SysML – Systems Modeling Language 

UI – User Interface 



  13 

Chapter 1: Introduction  

Uncertainty in the energy market  

The world’s energy system is complex and socio-technical. Its societal and technological 

elements interact in ways that are challenging to model, predict and change. Energy has been the 

essential and driving factor for the industrial revolution (Wrigley, 2010), an enabling component 

for further industry and technology advances (Stern & Kander, 2012) and unimaginable gains in 

standard of living. It lives on a global stage, integrated into politics, everyday life, the 

environment and economics. While governments, individuals or corporations may have direct 

economic benefits from supplying energy, there is no doubt that meeting the world’s energy 

demand benefits the lives of every human.  

Most renowned energy system models correlate the global population with the demand 

for energy, including that of the International Energy Association, (“World Energy Outlook 

2019,” 2019). As the world’s energy use has increased, the pieces of this growing energy pie 

have not remained static. Decades of evolution and innovation in energy industries have changed 

the proportions and overall magnitude of the fuels used to meet demand: biomass, whale oil, 

coal, nuclear, biofuels, crude oil, natural gas, solar, wind and other energy forms. Oil and gas 

have highly efficient energy conversion ratios and are an abundant natural resource. This has 

created demand from downstream industries and has established the traditional oil and gas sector 

as the dominant fuel type. Oil and gas supplies over half (“World Energy Outlook 2019,” 2019) 

of the world’s energy needs.  

Within the traditional oil and gas industry, new project investment, expansion and 

divestment are business decisions that are made regularly. Large scale and long-term investments 

have been typical in the past few decades (Ernst & Young, 2014). The cycle from discovery, full 

capital investment and finally to operations with positive cashflow can take a few years to over 

decades. The project’s time frame varies depending on the technical complexity, the location’s 

politics, local and global demand, and a firm’s portfolio management strategy.  

Conventional investment analysis evaluates spending capital infrastructure up front, with 

revenues and operation expenses coming in over the life of the asset. Historically, models show 

increasing projections in energy demand growth and fossil fuels remaining as the majority 

supplier. This has reinforced the behavior of energy companies investing in high capital, large 

scale, long lead projects. To take advantage of economies of scale they spend more upfront for 

larger projected gains later. Projects with this strategy can easily be communicated and value 
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computed with a discounted cash flow analysis. The assurance of demand creates a sense of 

certainty for revenues and coupled with an analysis that can easily be interpreted, large capital 

investment project strategies are endorsed and reinforced. 

Oil and gas will likely continue to be the dominant fuel source in the next 20 years 

(“World Energy Outlook 2019,” 2019). However, the magnitude of the overall energy demand 

and the role renewables will play has become increasingly uncertain. The IEA’s 2019 World 

Energy Outlook examines the large gaps in the stated policy scenario and a sustainable 

development scenario, which meets the Paris Agreement. In the sustainable development 

scenario overall energy demand must decline and renewables account for a third of the supply, 

Figure 1. Regulation and policy, social drivers, consumer behavior and new technologies’ cost 

and scalability will all play parts in how quickly and which solutions will be employed.  

 
Figure 1: World primary energy demand by fuel and CO2 emissions for the “Stated Policies” and 

“Sustainable Development” Scenarios (“World Energy Outlook 2019,” 2019) 

The IEA states meeting the sustainable development scenario “would require 

significantly more ambitious policy action in favor of efficiency and clean energy technologies, 

including decarbonized fuels and a major rebalancing of investment flows.” Through the report, 

government and policy makers have been shown that neither the existing nor the stated policies 

will achieve the Paris Agreement. The policies to be implemented in the future are uncertain, 

they may include additional carbon taxes, bans on fracking, further emissions reporting, etc. 

The digital revolution has changed how society communicates and makes decisions. 

Global information is available quickly and from many sources. Layered on top of a highly 

informed society, empowered to make decisions with more information, is the topic of climate 
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change. Science and technology have proven and now convinced mainstream society that climate 

change is happening, and that human energy consumption has contributed to it.  

Emphasis has been put on the energy system to slow climate change. The burning of 

fossil fuels has served society. However, end consumers have become increasingly aware of 

fossil fuel impacts and vocal about the need for solutions that do not have long term negative 

environmental impacts. Ideally solutions to the energy system would enable societal growth 

without negatively reinforcing other systems that society depends on (geography, weather, 

environment).  

A significant uncertainty factor is technology development and innovation. More 

efficient technology in all energy sectors is continuously being created and tested. The 

technology breakthrough of fracking changed the United States’ natural gas supply and demand 

system and significantly changed the country’s role in the global energy system. Future 

technologies have the potential to be just as or even more trend breaking.  

Leveraging and hedging uncertainty through design  

 Acknowledging uncertainty around policy action, social behavior and technology 

breakthroughs is the first step an energy company can take. The second step is leveraging it. 

Managing uncertainty is typically thought of as risk mitigation by minimizing downside risk, but 

it can also be used as an opportunity. A well-positioned firm ready to take advantage of the 

upside of demand, policy or technology uncertainty may have a competitive advantage over its 

peers.  

“Readiness” can be a daunting challenge, there are many factors that play into a company 

being ready to benefit from trend-breaking and disruptive uncertainties. Factors such as 

workplace culture, available capital and organizational capabilities have had a long history of 

being studied in business schools and practiced at firms. There are also different strategies to 

address uncertainty: refined forecasting, diversification, robustness, agility and flexibility. 

Survival of a firm needs forecasting, diversification and robustness. Thriving in the face of 

uncertainty a firm needs the tools of agility and flexibility.    

One way to introduce agility and flexibility into an energy producer’s portfolio is through 

design. We can think of flexibility in design as the ability to accommodate changes to a physical 

system, while agility is the ability to react to these changes quickly. Investing and developing 

agile and flexible designs into oil and gas facility systems is done to some degree already. 

Flexible examples are adding a spare valve to allow for future pipeline tie-ins or designing the 
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inlet separation of a facility so that additional compressors can be added to expand capacity. 

These are small changes in flexibility, typically driven by operation requests for small 

expansions in production. Adding agility to the example we would use a standard size 

compressor, easily available and already designed so it can be installed quickly.  

 What if this idea was extrapolated further, if expansion agility was a significant driver in 

the overall system design and the projects that are invested in? Would the industry move away 

from investing in large, long lead, capital intensive projects in favor of agile, short cycle to 

production designs? Would different technologies, including those that perform better under 

policy action or changes in consumer behavior be deployed if evaluated based on future agility? 

Moving away from large, long return capital investment projects could be a strategy to 

dampen risk from market uncertainties. Agile oil and gas asset development using smaller, faster 

return expansion projects could replace large major capital projects. Shortening the time from 

capital investment to positive cash flow is only one benefit of this strategy, the real benefit lies 

within the continual real option decisions. A real options designed project gives the business 

decision maker more levers at their disposal. They can continue or stop investment, reacting to 

more certain, near term conditions by making shorter cycle, smaller capital expansion decisions. 

The value of providing a design that enables future decisions, sometimes called real 

options, can be challenging to quantify. It is much easier to predict a decision metric, such as net 

present value (NPV) if assumptions are made as deterministic inputs into a valuation model. 

Additionally, it is much easier to ignore potential future decisions based on future uncertainties. 

Therefore, simplifying models to evaluate designs where forecasts are assumed correct or only 

incorporating a few uncertainty possibilities using probabilities is typical practice. Then further 

“optimizing” the design under these assumptions occurs.  

Using Monte Carlo simulation and stochastic modeling can give insights to decision 

makers on the value of investment agility within a project. Developing a model that includes 

forecast uncertainties, potential future actions and communicates the value created from 

expansion agility is not an easy task. It takes a mind shift from traditional assumptions in 

decision making, that long term forecasts are right and that decisions will not be taken in the 

future. A focus on the distribution of the potential outcomes and future decisions may be as 

important as the most likely value. (de Neufville & Scholtes, 2011).  

Understanding the range of potential outcomes, allows companies to plan for the less 

likely scenarios. They can mitigate the worst scenarios or take advantage of best-case conditions. 
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For example, knowing an investment may lead to significant losses can lead to creative solutions 

(like agile, staged development) to minimize capital losses. They can design the system where 

the real option to stop and divert investment still takes advantage of what has been invested and 

minimizes capital loss. On the other hand, knowing that there is potential for great upside if 

conditions turn favorable, the system can be designed for easier and quick expansion. 

Learning from the digital industry 

The digital revolution has supported more uncertainty in social behavior towards energy, 

but at the same time it can be leveraged to support a change in decision making. Digital 

technologies have not only created an acceleration in information sharing but also decision 

making. More specifically, the exponential growth in computing power, programming 

capabilities and mainstream adoption of digital technologies has enabled support tools used for 

decision analysis. Using modern digital technologies, computation and information manipulation 

can now be done faster and at a scale far beyond what was capable just a decade ago. It’s not just 

the data that has created this step change in decision making power. The power to compute and 

skills to consolidate and visualize available information is also enabling better decisions. 

One could argue that the agile project management process used in software development 

is a manifestation of rapid real option deployment. By incrementally releasing useable product 

updates the methodology accelerates the end user feedback loop. The work is developed in a 

short “sprint cycle” of typically two weeks with a small, dedicated team. The product is released 

incrementally after each sprint to the customer. The product reception is uncertain but quickly 

evaluated by the user and then integrated into the next round of product development. The 

approach enables or defers future decisions in the product, allowing agile project managers to 

create successful products in an uncertain world. (Racheva & Daneva, 2010).  

In addition to proving out value in agility, the software industry has also increased the 

computing power and software tools that can be used in model development. A Monte Carlo 

simulation can be done quickly with many variables of uncertainty. Digital technology enables 

these models to run faster and grow bigger.  

Simulating investment agility of a complex system 

An agile investment strategy for project development can be described qualitatively, 

making logical sense and leveraging examples from other industries. The challenge with creating 

a fully convincing argument is a quantitative comparison to a traditional investment project. For 
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a one-time investment or one with a few future decisions, a cash flow or decision tree analysis, 

can be done. These analyses can bias towards large investments that leverage economies of scale.  

In contrast, a project with investment agility gives the decision maker opportunity to 

make or not make many investment decisions continually, as conditions of the market and the 

system itself changes. Given certain conditions, the aggregation of these smaller investments 

could amount to a larger expenditure than the large-scale project investment. Yet under uncertain 

conditions the choice to not spend (and invest the money elsewhere) or spend more (and gain 

greater profits) may outweigh the cost of smaller scale.  

Investing in a system designed to be agile is becoming even more relevant for energy 

companies who want to thrive in the uncertainty of the next decades. Quantifying the value of a 

complex system is already not trivial. Recommending an agile investment project strategy to 

deliver that complex system adds a layer of analysis difficulty. To address the challenge, we 

need a well-defined system architecture and quantitative decision analysis.  

This thesis demonstrates how to evaluate an agile investment project strategy, 

communicate its advantages and disadvantages and explore design variations. As a valuation 

example it compares an upstream oil and gas project designed with and without agile investment 

capability. The analysis utilizes known system architecture modeling languages to frame the 

object-oriented program. When executed the program simulates many successive annual decision 

scenarios. The numerical outputs and investment decisions can be easily explored. The program 

developed is flexible, it can be expanded and refined for other use cases.  

The next two chapters introduce existing research and tools used for real options analysis 

and system architecture modeling. In chapter 4, we combine the introduced concepts, applying 

them to an upstream oil and gas system. We communicate the system architecture using 

modeling languages. We then create an object-oriented program, using Python, to simulate 

implementation and operations. Chapter 5 and 6 explore a hypothetical, but representative case. 

We use the program to compare architectures to develop an onshore, small oil field, including 

those enabling an agile investment strategy. The last chapters discuss limitations, program 

adaptation opportunities and conclusions.   
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Chapter 2: Real Options – Background 

Real options and analysis methods 

Real options was first introduced by Stewart Myers in 1977 in the context of company 

valuations as “opportunities to purchase real assets on possibly favorable terms” (Myers, 1977). 

They differ from the more common concept of financial options. A financial option’s underlying 

asset is financial, objects that are regularly bought and sold: bonds, commodities, gold, etc. A 

real option’s underlying asset is physical but concern non-financial decisions, for instance 

expanding a parking lot, shutting down a factory, or developing a new technology.  

Traditional capital budgeting models are based upon a discount cash flow (DCF) 

analysis. Typically, metrics like positive net present value (NPV), internal rate of return (IRR), 

profitability index (PI) or payback period are used or combined to support decision making.  

At a high-level, discount cash flow analysis considers capital invested, operational 

expenses, revenue and a discount rate. In the context of a project the objective is to evaluate the 

total life cycle cost of the asset, discounted under the time value of money assumption. Monetary 

value reduces as time progresses. The discount rate used for internal project comparisons 

typically differs from rates used to value entire firms. For projects within a company there is 

benefit in using a higher rate, since the cash that is invested in the project could have been 

invested in a more profitable project. Typical discount rates for project comparison range from 

10-20%. Companies may have different strategies or standards for defining the rate used. 

There are two main weaknesses of the traditional discount cash flow method. A core 

assumption is that all model inputs are certain. Forecasts for demand, project or operating costs, 

and even discount rate are assumed deterministic. There may be sound reasoning and complex 

modeling to extrapolate historical data or forecast future patterns, but the input for a discrete time 

increment is assumed to be a fixed number. Time series data for a complex physical system is 

challenging to predict with these modeling tools. Adding on the uncertainties of societal 

complexity to a system, accurately predicting time series forecasts of sociotechnical systems is 

extremely challenging. 

To overcome the uncertainty in forecasts, discount cash flow analysis may rely on the 

average of each of the inputs to provide the average of the outcome value. Assuming this is 

always true is flawed thinking and has been coined as the “Flaw of averages” (Savage, 2009). 

Summarizing the idea, uncertain inputs can be thought of as a distribution of potential values. 
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When used in the model, the outcome may behave differently if the input value is not the 

distribution’s average and is a low extreme or high extreme.  

For example, a model’s input is demand and the outcome is production. A manager may 

model that demand will equal production on average. However, if the assembly line can only 

produce 100 parts, but demand is 150 (not often but with some probability), the line will never 

deliver the extra 50 parts. Thus, average production will never be the average of the demand 

input, since there is no ability to take advantage of the upside of demand. 

The second weakness in the traditional discount cash flow valuation is an all or nothing 

assumption which takes decision making power away from the future manager. Typical models 

will include an upfront capital cost, that could be spread over the first few years of a project’s 

life cycle. Or if evaluating a phased investment plan, the years with capital expenditure are 

explicitly decided. What this assumption does is implicitly state that the entire project must be 

invested in during those early or determined years. It does not consider other future factors such 

as change in demand, cost or circumstance and then the management’s ability to consider these 

factors. Future investments to either expand or abandon an asset can be included but the scenario 

is only evaluated under one version of future conditions.  

Real options logic and evaluation techniques work to address these weaknesses seen in 

traditional capital budgeting discount cash flow methods. There are four main methodologies for 

option valuation that have been developed and used in practice (Ghahremani et al., 2012). 

• Black-Scholes option pricing model 

• Binomial Lattice models 

• Decision tree 

• Monte Carlo simulation 

For financial options, the Black-Scholes pricing model can be used to evaluate European 

options where the exercise date is predetermined. There are assumptions used in this model that 

are weaknesses for applying it to real options modeling. The Black-Scholes formula is used for 

European options, or options that can only be exercised at a certain date, not prior. In a real 

option the expiration date may be known, but more likely it could be exercised earlier or later 

than this date. The exercise date is uncertain. Additionally, the strike or exercise price and the 

price of the underlying asset are also better defined in financial options using the market. The 

risk-free interest rate is also needed, which is typically approximated by short-term government 

bonds. The last large assumption it uses is a calculation for volatility, it uses an implied volatility 
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which can be derived using the market’s forecast. In real options with a publicly traded market, 

there is not as clear of a proxy for implied volatility. 

 Another common financial options analysis is the binomial lattice pricing model. This 

assigns probabilities, based on historical observation, to the underlying asset price of increasing 

or decreasing to a discrete price at a discrete time. Then using these probabilities and the risk-

free interest rate an option price is calculated. An advantage of binomial lattice is that input 

changes over time, such as volatility, can be incorporated into the model. There are still 

disadvantages when applying to real options, since inputs similar to Black-Scholes are needed 

for each discrete time interval as.  

The key assumption for the Black-Scholes and binomial lattice models is that 

management decisions do not impact the “state of world”, making them inapplicable for real 

option valuation. Other than exercising the financial option, there is no other actions that can be 

taken to combat market uncertainty. Whereas a real option does precisely that, a decision maker 

can choose to change the system’s performance. The business manager can react to changing 

conditions by changing the system.  

 Decision trees can be thought of as an expansion of a binomial lattice and permits the 

inclusion of system changes. Using decision nodes, this method allows management decisions to 

be explicitly incorporated into the model. Uncertainty nodes can be modeled as low, medium, or 

high probability branches (sometimes referred to as P10, P50, P90) or with any other discrete 

probability combination. Decision trees have the advantage of interpretability and are essential in 

practicing decision analysis. The main disadvantage is that in order to incorporate several 

uncertainty inputs and decisions nodes, the tree grows exponentially since the model must be 

expanded to include every outcome. A very large tree reduces interpretability and challenges the 

ability to compute all branches. The computation of the full tree can be cumbersome even if 

using a digital technology.  

Monte Carlo simulation is a fourth method that can be used to evaluate real options. The 

uncertainty inputs can be modeled as either discrete probabilities or probability distribution 

functions. Decisions are encoded as rules into the model. The model simulates many trials, 

discretizing the uncertainty distributions by taking randomized values from the distributions and 

applying the rule-based decision logic, to evaluate many outcomes. From this large set of 

outcomes their probabilities can be calculated as a representative distribution. The advantages 

are that many uncertainties and decisions can be simulated.   
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One of the disadvantages of Monte Carlo simulation has been the computing effort of 

running trials, however with the exponential increasing in computing power, software 

capabilities and programming packages this is of decreasing concern. Another disadvantage of 

Monte Carlo simulation is the interpretability for the decisions that are made, since they are 

formulated as rules, vs. explicit decision nodes as in decisions trees, understanding of the 

decisions made in each simulation run can be challenging to communicate. 

Real options in a project 

A summary model for real options decision making, Figure 2, and categorization of 

uncertainties, Table 1, and conditioning factors, Table 2, were developed in “25 Years of Real 

Option Empirical Research in Management” (Ipsmiller et al., 2019). Conditioning factors are 

used to improve option decision-making within the model.  

All options (financial or real) can be thought of as having the right, but not the obligation, 

to make a future decision. Although the real options concept was first introduced by Myers as an 

asset to purchase, the concept of real options can be expanded to the design of a physical asset. 

The original definition can be thought of an option “on” a physical asset, the right to invest 

capital into a project or the right to abandon the project. Based on the Ipsmillar et. al. research 

this type of real option is the most well-known and researched. 

 Expanding the concept into design flexibility, the concept can be thought of as a real 

option “in” a project. This type of flexibility is built into the physical design of the project or 

system (de Neufville & Scholtes, 2011). The framework and examples in Table 1 and  Table 2 

are based on the real options “on” a project. This thesis will describe and use an adaption of this 

model for design flexibility as a real option “in” a project.  Figure 2 is an adaption of a real 

option decision making research model (Ipsmiller et al., 2019) for options within a project 

developing a physical system. It includes flexibility within the design as a moderator and the 

options structure is analogous to the system’s architecture (Chapter 3). 

Examples of design flexibility could include expansion capability, turn-down capability 

or enabling future technologies or systems to be integrated into the system over time. These 

examples have been added to Table 2.  These aspects of design typically come at an increase in 

the initial capital cost of the project. Since this cost is incorporated early over the project life 

cycle, traditional DCF methods will devalue the worth of the overall project since capital cost 

has increased but has no mechanism for added value based on future decisions. This thesis will 

explore evaluating a complex system development with a strategy of agile investment. The 
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capital can be invested on annual basis to expand the system. The investment decision “rules” 

being coded as an optimization algorithm and the uncertainty in inputs simulated using Monte 

Carlo methods.  

 
Figure 2: Adapted model of real option decision making for real options in a project 

 

Types of Uncertainty 
Demand 

uncertainty 
Technology 
uncertainty 

Macroeconomic 
uncertainty 

Partner 
uncertainty 

Examples 
Industry uncertainty Industry R&D 

intensity 
Price volatility Political risk 

Stock exchange 
volatility 

Perceived technology 
uncertainty 

Country risk Perceived threat of 
opportunism 

Industry production 
volatility 

Technical experience Exchange risk Prior experience with 
partner 

Industry demand 
volatility 

Technical knowledge Institutional/Cultur
al 

Public/Private firm 
Sample 

Perceived demand 
uncertainty 

Technical distance   

Target industry 
experience 

Self–employment 
experience 

  

 Entrepreneurial 
experience 

  

Table 1: Types of Uncertainty (Ipsmiller et al., 2019) 
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Panel of Conditioning Factors 
Irreversibility Competition Growth 

Opportunities 
(Macroeconomic) 

Strategic 
Flexibility 

Design Flexibility 
“IN” project 

Examples Types 
Size of 

investment 
Size of 

Competitors 
Growth potential Foreign 

experience 
Expansion 
capability  

Perceived 
irreversibility 

Competitor 
Commitment  

Competitive 
advantage 

Product 
experience 

Turn down 
capability 

 First mover  Exchange rate Location mobility 
   Portfolio Facilitation of other 

technology 
   Ownership  

Table 2: Real option conditioning factors (Ipsmiller et al., 2019). Design Flexibility “IN” was added as a 
moderator.  
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Chapter 3: System Architecture – Background 

The systems engineering “V” 

The International Council of Systems Engineering (INCOSE) defines systems 

engineering as a “transdisciplinary and integrative approach to enable the successful realization, 

use, and retirement of engineered systems, using systems principles and concepts, and scientific, 

technological, and management methods.” (International Council of Systems Engineering 

(INCOSE), n.d.). Systems engineering follows the system “V” model, one adaptation is shown in 

Figure 3. Diagramming the sequence of major stages in a system’s design, development and 

implementation. In this adaption system lifecycle processes are also included.  

 
Figure 3: Systems Engineering “V” Model. Thesis focus areas in black.  

The system “V” model aligns well with a traditional discount cash flow analysis, 

discussed in Chapter 2. The upfront capital investment is used to complete one iteration of the 

“V”. When the system moves into operation and maintenance revenue and operating expenses 

incur. 

A system designed for the strategy of investment agility, could be thought of expanding 

the “Changes & Upgrades” stage. This stage could be decomposed into additional “V’s”, 

executed in sequence if the real option is executed (Figure 4). The key difference is incorporating 

these additional “V”’s into the system’s concept evaluation and other earlier stages of project 

design development. This incorporation could have a significant effect on the recommended 

system architecture and overall capital investment strategy.  
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Figure 4: Systems Engineering “V” Model for Agile Investment. Thesis focus areas in black. 

System architecture modeling 

In systems engineering the value and benefits derived from a complex system are defined 

early on during the development of the system architecture. This definition of value drives the 

system’s subsystem and component forms to create their functions and interaction. Numerous 

studies prove that the early definition and design stages of a project are the most influential in 

driving overall success of the system (Tan et al., 2017). 

System Architecture can be thought of as the system’s framework. The architecture 

encompasses the early stages of the left-hand side of the “V” model: understanding the context 

and regional architectures; concept exploration and operations; and definition of system and 

subsystem level requirements (highlighted in black in Figure 3 and Figure 4). Since system 

architecture strives to build the basis for later design development and implementation steps, 

there has been a focus on standardizing tools for communicating system architecture knowledge. 

These tools include modeling languages and diagrams for visually explaining architecture 

concepts to stakeholders and future teams. This is important since future teams, especially for 

larger systems, may not have been involved in the creation of the system architecture. These 

teams work on downstream stages of detailed design, implementation and operation.    

A key concept in communicating system architecture is the separation of function and 

form (Crawley et al., 2016). Object Process Methodology (OPM) is a modeling language used to 

create models that communicate context, knowledge, and design of complex systems. In this 

graph language, nodes are either the concept of an objects (form) or the concept of their behavior 

(process or function). Edges are used to connect the nodes signifying different types of 

relationships between concepts.  

Developing an Object Process Diagram (OPD) using OPM that clearly communicates the 

value, form, function and interactions can be challenging for complex systems. The OPD creator 

must employ a level of abstraction. Too much detail and noting every single object and its 
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behavior can distract from clearly describing the system’s framework.  It is typical to develop an 

iterative approach in finding the “right” level of abstraction for communication.  

Decomposition is one of the methods employed for this. The system is first decomposed 

into subsystems, the subsystems are further decomposed into components. This is known as “in-

zooming” in systems engineering. Using additional modeling tools and analysis like 

decomposition diagrams, component interface diagrams and design structure matrices (DSM), 

insights may be discovered for subsystem grouping of components. For example, highly coupled 

component interactions currently in separate subsystems or component functionality that is 

similar in another component.  

Mentally moving out of the decomposition from the component level to the subsystem 

level (“out-zooming”) with these new insights may lead to rearrangement of the initial 

groupings. Analysis of subsystem decomposition can lead to clearer definition of subsystem 

requirements, creative component selection to meet those requirements, easier more organic 

detailed design development and reduction in interface management (Crawley et al., 2016). 

Systems Modeling Language (SysML) is another language used for modeling any type of 

system, although it was adapted from a software engineering specific modeling language, 

Unified Modeling Language (UML). Unlike OPM, SysML has nine distinct types of diagrams. 

These diagrams cover structure, function and requirements. SysML’s detail and allowance of 

additional diagrams makes it a good tool for further system architecture definition and discovery.  

Model based system engineers have adopted both OPM and SysML. The advantages or 

disadvantages of the languages have been debated by practitioners and research groups. 

Arguments have been made that OPM can clearly communicate a holistic understanding of the 

system and its context quickly. They argue SysML diagrams are too complicated for quick 

insights. SysML advantages include the ability to represent the system in greater detail, different 

perspectives creates traceability and representation of more information (Grobshtein et al., 2007).  

Both OPM and SysML languages can be leveraged to visualize, communicate and gain 

insights into a complex system’s architecture. However, to enable computational analysis of the 

architecture another tool may be better suited. Object oriented programming (OOP) is a 

classification for programming languages based on creating object concepts. The objects have 

methods and attributes containing data. The objects can be specific to the domain that the 

program is written for. The behaviors or functions of the objects are referred to as methods, these 

methods can access an object’s attributes’ data and perform behaviors to transform the data. The 
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methods can also be functions that bring sets of attribute data together and perform an analysis to 

create or modify another attribute.  

 Class-based OOP uses the concept of classes to group objects. Class creation defines the 

attributes and methods for an object type which provide the structure for “instances” of the class. 

Instances are specific creations of the object, i.e. class: Person, instance of class Person: John 

Doe. Instances are created by defining the class attributes needed and they inherit the behaviors 

(methods) created in the class definition. i.e. class has the attribute first name and method walk, 

John Doe has the attribute first name John and has the ability to walk. 

 There are parallels in OOP, OPM and SysML with their three concepts of objects, 

processes and interactions of the objects. However, they were developed for different uses in 

representation and analysis. There are benefits for using all three in system architecture design 

and decision making. In this thesis, we utilize all three, leveraging their similarities to 

recommend a system architecture that can be communicated as well as evaluated. 
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Chapter 4: Case Study - Upstream Oil & Gas System Modeling 

An upstream oil and gas system is complex and there are different strategies that can be 

used to develop it. In full context, this system is only a part of the larger energy system that 

delivers fossil fuels to consumers. The upstream system’s primary benefit is the energy supplied 

to downstream systems in the form of petroleum fluids. Its primary value to the company 

operating the system is the profits derived from the sales. The fluids of crude oil, natural gas 

liquids and produced gas are transferred and or processed by systems in the midstream sector. A 

midstream system’s primary function is to transport the separated fluids to systems in the 

downstream sector. In addition, midstream facilities further separate the produced gas into 

natural gas and natural gas liquids for transfer.  Downstream systems perform additional fluid 

processing to create market products, such as jet fuel and gasoline.  

System architecture concept model in OPM 

The system architecture for an upstream asset can be described at a high level using the 

OPM language introduced in Chapter 3. Figure 5 reads from left to right, objects are in rectangle 

nodes and processes in oval nodes. The objects and processes are separated into swim lanes, with 

the lanes to the right moving away from the value products directly involved in producing the 

overall intended system emergence of crude oil and produced gas sales. 

The edges indicate links or relationships between objects and process. Arrow links are 

considered transformational and indicate an object is being transformed or acting on by a 

process. An arrow extending from an object to a process can be read as the process “consumes” 

the object, i.e. Investing consumes Capital.  In contrast an arrow from a process to an object 

indicates the process “yields” the object, i.e. “Extracting yields Reservoir Fluids.”. A double-

headed arrow can be read as the process “effects” the object, i.e. “Investing effects the 

Reservoir”. The object connected to a process with a transformational link is called the object 

operand. 

Objects can also be instruments, or the form that enables the process. This object-process 

link is called an instrument link and is indicated by an edge ending with a circle at the process. It 

can be read as “handles” or “requires”. For example, Extracting requires Well & Production 

Equipment.  

Structural relations are indicated with triangles and are a one-to-many relationship. A 

solid black triangle can be read as “consists of”, i.e. Revenue consists of Produced Gas Sales and 
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Crude Oil Sales, but not wholly since Operating also effects Revenue. A white outlined triangle 

relationship indicates an attribute is “exhibited”, i.e. Gas Processing Equipment exhibit the 

attributes of Compressing and Pressure Releasing.   

 
Figure 5: System Architecture Object Process Diagram 

We can use OPM to highlight priority areas of the system and reduce its overall 

complexity. Investing in capital creates annual cashflow from oil and gas sales, by first 

extracting the reservoir fluids, separating the gas and liquids, transporting and selling the value 

products of produced gas and crude oil. The physical work on the fluid is enabled by the 

equipment used. This equipment is included in a conventional description of an upstream oil and 

gas system: oil, water, gas processing and the partners the value fluids are sold to. Operating the 

physical equipment also effect the overall revenue of the system. 

In Figure 5 we describe a very typical upstream system architecture. These concepts are 

to be included in a decision analysis model calculating economic value for an investment 

decision. Many project valuations will use a one-time capital equipment cost in the first years of 

the project timeline. Subsequent revenue and operating expenses are calculated post investment. 

Differentiating the system architecture for this case are two subsystems, objects and 

processes  highlighted in bold. These become apparent as the system architecture is expanded to 

include supporting processes and instruments. These supporting subsystems depend on or are 
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additional sources of uncertainty. Incorporation of their potential uncertainty and interactions 

with the system may drive different outcomes in performance. The differences have the potential 

to affect the system architecture and the business decisions that are made. 

The first of the additional concepts to be included is the changing market conditions. 

They effect the planning and reacting processes of the business decision maker. This is the 

primary subsystem that the real option decision will rely on. Unlike a one-time project valuation, 

a decision maker’s ability to invest or not to invest is continuous and dynamic. This idea also 

emphasizes a disadvantage for communicating the system architecture through Figure 5 and the 

challenge in evaluating design flexibility. The capital, the operands and the instruments 

themselves will change dynamically over time during the valuation timeframe.  

The second concept incorporated into this case are the undesired greenhouse gas 

emissions created from operating the physical system. As a supporting instrument, energy 

generation equipment may not be treated as an architectural decision in typical system design or 

at minimum, its emissions may have a secondary role in the overall capital investment decisions. 

As government policies and business strategies concerning environmental impact become 

increasingly uncertain, this supporting instrument may warrant increased attention in 

architectural analysis. Although sometimes incorporated as a carbon price into an overall 

economic valuation, a separate emissions metric could influence the system’s architecture.  

 

System architecture concept model with SysML 

 The concept model in Figure 5 is a good start for communicating the architecture of the 

system and paints a clear architectural story. However, the level of abstraction does not give 

enough detail to set up an object-oriented programming model to perform an analysis. We found 

further detailing of the system architecture is needed to communicate specifics and create the 

insights needed to develop the program’s framework. 

Starting with a SysML block diagram the system decomposition can be represented. We 

decompose the overall system architecture into eight functional subsystems: Well Production, 

Oil Processing, Oil Takeaway, Gas Processing, Gas Takeaway, Water Processing, Energy 

Generation and Investment Decisions (Figure 6). Each of these subsystems are further 

decomposed into Level 2 components. This diagram has more detail than Figure 5 displaying 

granularity in the components used as instruments for enabling the supporting systems. However, 

it does not describe system value and provides less information on concept relationships. 
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Figure 6:  System Decomposition Model 

The well production system is typically designed by geologists, petroleum engineering 

and drilling-completion engineering teams. The components and engineering details are based on 

the geological mechanics and location of the petroleum reservoir. For this case the wells’ 

changing production will be used as input demand for the rest of the system design. The well 

production subsystem is decomposed into four components. The wellbore is drilled by the drill 

rig and the rock is fractured, assisting fluid flow, by a frack fleet. The wellhead and artificial lift 

are installed at the surface of the wellbore. The wellhead controls the pressurized production 

fluids from the wellbore. Artificial lift equipment is used to enhance production recovery. 

The oil processing’s main function is to store and separate the crude oil from the water 

and produced gas. It has been decomposed into 4 components, 3-phase separation is typically 

used for initial separation of oil, water, gas. 2-phase separation is used to further separate oil and 

water which are stored in tanks, prior to being pumped to the oil takeaway subsystem. Oil 

takeaway in this case is the crude oil interface to the midstream system.  

The water processing’s function is to dispose of the water. This involves three 

components, further contaminant removal, storage and then water disposal. Water takeaway is 

typically a system to reinject the produced water into water disposal wells.  

Gas processing typically involves compression and flaring of the produced gas. It can be 

decomposed into 3 parts. Dehydration removes water from the gas so it will meet specifications 

for comingling of the gas from other sources in the takeaway system. Compression enables the 

produced gas to enter the gas takeaway’s pipeline system. Flaring is necessary for safe 
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operations. In case of planned or unplanned system upsets, the flaring system is used to safely 

depressurize the system by burning and releasing the produced gas to atmosphere. Gas takeaway 

is the produced gas interface to the midstream partner’s gas plant. The gas plant will further 

process the produced gas in order to separate it into natural gas and natural gas liquids.  

Expanding the model 

 
Figure 7:  System Decomposition Model Expanded 

Adding additional component options to reduce combustion emissions 

The well production, oil, water and gas processing subsystems make sense to focus on 

during the shaping and design phases of a project since they directly impact the value operands, 

(Figure 5). As energy generation components enable supporting processes and are further from 

the value products, these would not be in the forefront of architectural decision making. 

However, we are using greenhouse gas emissions as a key performance metric for the system so 

are including the subsystem in the expanded decomposition (Figure 7). 

Diesel and gas engines and generators emit a large portion of the total greenhouse gas 

emissions created in an upstream development. In 2009 the United States Environmental 

Protection Agency implemented the mandatory reporting of GHG emissions for large sources, 

over 25,000 metric tons of carbon dioxide equivalent (CO2e) per year (United States 

Environmental Protection Agency, 2009).  The Greenhouse Gas Reporting Program (GHGRP), 
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under subpart W, requires emissions from portable and stationary combustion equipment used in 

onshore production.   

The case will model three of the largest and most consistent energy consumption 

components in an onshore, unconventional asset that use combustion: drilling rig, frack fleet and 

compression. A drilling rig demands large amounts of energy, typically supplied by diesel 

generators. A frack fleet consists of many pieces of portable equipment, used to hydraulically 

fracture the shale rock to increase fluid flow. The high-pressure pumps, used to inject liquid to 

open rock fissures, demand large amounts of energy. Frack fleets have also historically used 

diesel engines to generate the energy needed. Recently both drilling rigs and frack fleets have 

seen an increase in using electricity generated by natural gas to supply energy, mostly due to 

changing market conditions with low natural gas prices. 

Compression is needed to transport produced gas to the gas takeaway partners’ system. 

Upstream field compression subsystems use gas engines directly or gas generators for electricity 

to power the reciprocating or centrifugal compressor. Buy-back natural gas agreements with the 

gas takeaway partners or the field’s produced gas are commonly used. 

 Diesel, natural gas and other fuel sources have differing emission factors used to 

calculate CO2e. (United States Environmental Protection Agency, 2018). Pipeline quality natural 

gas, or natural gas downstream of a gas plant is considered a cleaner burning fuel than diesel. 

Produced gas still has heavier hydrocarbons entrained in the gas and thus emits more emissions 

when burned. 

The gas processing technologies of natural gas liquid extraction are used in the takeaway 

subsystem, usually as components of large scale processing facilities operated by the sales 

partner. At a midstream gas processing plant, the gas is further dehydrated (water removed) and 

separated into gas products. Natural or residue gas is what most consumers are familiar with and 

is mostly made up of the lightest of the hydrocarbon chains, methane. The heavier hydrocarbon 

chains (i.e. butane, propane, ethane, etc.) are extracted from the produced gas as a mixture of 

natural gas liquids (NGLs). This is typically done by cryogenic turbo expander technology or 

absorption technology using an absorption oil (Hubbard, 2009). Using fractionation, the mixture 

of NGL’s is split into viable products for market.  

Other midstream facilities downstream of a gas plant may employ compressed and 

liquified natural gas processing. These technologies reduce the natural gas volume creating cost 

effective alternatives for shipping and transport to new markets. Compressed natural gas (CNG) 
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is stored at ambient temperature at a high pressure, greater than 3000 psi. Liquified natural gas 

(LNG) equipment cryogenically cools the natural gas into a liquid at -260 °F. Both fuels have a 

current target market, CNG is being used in land transportation vehicles while LNG is used to 

ship large quantities of natural gas to geographically far markets.   

The potential to employ these technologies in an upstream environment may provide a 

cleaner fuel source. For fields that do not have close access to buy-back natural gas from a gas 

plant, this reduces additional pipeline infrastructure. Processing produced gas closer to the 

combustion source also frees up capacity in systems that may be constrained by uncontrollable 

partner takeaway capacity. However, the processing would be done to meet internal energy 

demand so the additional gas processing equipment must be scaled down. A typical midstream 

gas plant has a capacity on the order of hundreds of millions of cubic feet per day, taking in 

produced gas from many upstream partners. Recently small scale or micro-scale gas processing 

technologies have reached commercial markets and implemented in limited use (Global Gas 

Flaring Reduction Partnership, 2019). We will look at the potential use in portable combustion 

equipment used in drilling rigs and frack fleets. This makes small scale CNG technology 

downstream of NGL extraction a potential lower emission option for energy generation.   

Solar and wind renewable energy technologies are not commonly used in conjunction 

with traditional oil and gas development. They are considered an alternative to the value product 

that the upstream system produces. However, there are energy demands and consumer products 

that cannot directly use electricity produced from renewables and a hydrocarbon fuel is needed. 

Although seemingly counterintuitive, renewables can be used to reduce the emissions created 

from hydrocarbon production. This can reduce the overall emissions of the entire hydrocarbon 

value chain, from production to direct consumer use.  

The decomposition shown in Figure 6 can be expanded to include additional components 

to lower emissions during energy generation. These are not conventional in an upstream oil and 

gas system. This includes energy generated from cleaner natural gas processed from the system’s 

own produced gas, solar farms and wind farms. These additional component types are 

highlighted in bold in Figure 7. 

Accounting for expansion decisions over time 

We’ve expanded the SysML block diagram to also introduce investment agility via 

expansion decisions over time (Figure 7). Instead of evaluating one-time investment decisions 

based on a long-term projection of market conditions, investing decisions can be simulated 
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annually based on changing conditions. These decisions add complexity to the system 

architecture concept and evaluation.  The system’s attributes and subsystems may change 

dynamically, and these changes must be incorporated into the next decision.  

Not only do the invested subsystems change over time, but the amount of oil, water and 

gas produced from the well production subsystems also change. Commonly referred to as a 

decline rate, lower production in existing wells open up capacity space in the processing and 

energy generation subsystems, therefore also effecting the annual investment decisions.   

Additional complexity also comes from the difference in timescale for subsystem 

expansion. The time frame from decision to operational readiness for the subsystems varies 

greatly. Drilling and fracking onshore is a matter of days or weeks, while executing and 

installing other subsystems can take many months or many years depending on its size and type.  

Historically large oil and gas facilities that incorporate all of these subsystems would take 

more than a year to design, build, execute and ready for operation. A system development like 

this could be thought of as one cycle through the systems engineering “V”. The system 

architecture implementation changes drastically when looking towards a system developed over 

time with investment agility. By standardizing, subsystems design and procurement planning 

steps can be reused and optimized, reducing decision to operation turnaround time.  

For this case we will incorporate the use of standard size oil and gas processing 

subsystems. The decision is not only to invest in expansion of the subsystem but also which 

standard size to use. Setting up the program with decisions based on size lets us refine and 

explore subsystem capacities. By varying the subsystem sizes, costs and schedule we can 

continue to evaluate the impact of these adjustments on the overall system performance.  

Using the timescale for operation readiness, we decomposed annual expansion 

investment decisions into two main decisions. Well Production expansion and other facility 

expansions. For this case investment decisions that expand the capacity for gas processing, oil 

processing and energy generation are realized one or more years after the decision is made. 

Therefore, these decisions are made based on the next year’s production target. Well production 

investment is realized in the same year striving for the current year’s production target but is 

constrained by existing system’s processing capacities. The annual production targets are added 

in bold in Figure 7, to show they also are a component of investment decisions. 

Setting up the decision-making timeline on an annual basis allows the expanded system’s 

lifecycle to be evaluated. Evaluation over the life of the system can be done by evaluating the 
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annual “snapshots” of the system. Figure 7 shows these snapshots highlighted in bold as 

“Upstream Oil & Gas Asset Annual Instance 2-4…”. Each of these instances can be decomposed 

into its own subsystems and components like the first annual system instance.  

A system lifecycle is made up of these annual instances. Each annual instance has its own 

annual cashflow and emissions. These values can be used to evaluate the overall system lifecycle 

performance for net present value and total lifecycle emissions. Additionally, each annual 

instance can be evaluated for other metrics like specific subsystem spend, expansion decisions, 

energy required, etc.  

The system architecture diagrams help communicate the concepts needed to simulate 

performance of the architecture. By developing these models, we gained insights for structuring 

the object-oriented program. To incorporate real options the model needed to be expanded to 

show changes in the system. Additionally, each subsystem has specific calculations or values for 

determining overall system performance. These values change with the components that make up 

the subsystem. Therefore, the program must be able to account for different types or sizes of 

subsystems, even if the subsystems have similar behavior. The final insight gained is that 

multiple decisions are needed based on installation to operation timing. Consequently, both 

shorter term and longer term production targets are needed.  

System evaluation model in Python 

We used the object-oriented programming language Python to translate the system 

architecture into a simulation to explore system performance. The program used the objects 

created during architecture modeling to represent the domain classes of the system. The inputs of 

the program include necessary attributes of the class objects, including deterministic attributes 

and attributes with uncertainty. The output of the program is a system lifecycle instance, with 

attributes of net present value and total emissions, as well as the annual system instances that 

were simulated during computation.  

Evaluating a multi-stage expansion project is challenging since there are consecutive 

decisions to be made over the life of the project and these decisions are based on future 

uncertainties. For this case the decisions have been simplified to three annual decisions: 1. Oil 

pricing effect on production targets 2. Expansion of Well Production systems and 3. Expansion 

of the other primary value subsystems (oil processing and gas processing) being grouped as 

facilities. There are eight Python modules that comprise the program:  
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• main.py : Defines the inputs to start the simulation and executes the deterministic  

and Monte Carlo simulation analysis. Calls functions embedded in the other modules.  

• systemClasses.py : Defines the object classes used to describe the system 

domain. Parent and child classes are defined to enable instances of the objects with 

attributes and access to methods that the object can execute. 

• priceForecast.py : Defines the expected annual price forecasts and probability 

distribution functions used to simulate crude oil, natural gas, natural gas liquids and 

diesel under uncertainty. 

• annualSystemDecisions.py : Contains the function to create an annual system 

instance object. Simulates annual decision making and production by calling class 

methods, price forecast functions, wellsToDrill.py and facilitiesToInstall.py. 

o wellsToDrill.py : Contains the function to simulate an annual decision 

determining the number of wells production subsystems to drill and fracture. 

Uses an integer optimization program solver. Objective is to maximize well 

production constrained by the existing system capacity. 

o facilitiesToInstall.py : Contains the function to simulate an annual 

decision determining the number and type of oil and gas processing subsystem 

to install. Uses an integer optimization program solver. Objective is to meet 

next year’s production target while minimizing the capital spent on the new 

facility capacity. 

• systemEvaluate.py : Contains a function that calls methods of the System class 

to evaluate the system after annual subsystem expansion decisions are made. 

• visualizations.py : Defines functions that create graphs to explore the object 

attributes and system performance after the simulation is run.  

Appendix A provides further details for each of the Python files (modules). Excerpts of code are 

provided to support understanding of the program. Additionally, the two integer optimization 

algorithms are defined.  
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Chapter 5: Case Study - Basic Analysis of Agile vs. Deterministic 

Structure of Case Study 

We will use the Python program, described in Chapter 4, to evaluate development 

strategies for a hypothetical small onshore unconventional oilfield. Being onshore, the subsystem 

equipment is installed on the ground. Being unconventional, there is a need for fracking or 

fracturing the reservoir rock. Subsystems of well production, oil and gas processing, oil and gas 

sales and water processing (Figure 7) are all needed to develop the field.  

The analysis explores the system performance when differing the amount, size and 

installation timing of the various subsystems. The field has a production target of 40 MBPD to 

be achieved by 2025 and maintained thereafter. Production targets are based on a deterministic 

oil price forecast, which will change as prices change in the uncertainty simulations. The system 

itself changes with the expansion of the system’s infrastructure and as wells’ production decline.  

Three initial alternatives for field development are compared:  

1. Planned Capacity Architecture:  

Install one system with a nameplate capacity equal to that of the maximum 

deterministic oil production target. 1 ‘Extra Large’ Oil Processing subsystem and 

1 ‘Large’ Gas Processing subsystem. 

2. Large Scale Agility Architecture: 

Install trains with capacity half of maximum production target, 1 ‘Large’ Oil 

Processing subsystem and 1 ‘Medium’ Gas Processing subsystem. Revisit 

annually decision to install additional subsystems of same size based on 

production target uncertainty. 

3. Multi Choice Agility Architecture: 

Revisit annually facility installation and size decisions. Choice of four oil 

processing and three gas processing types. Targeting minimum objective of 

meeting next year’s production target while minimizing capital spend.  

For each scenario drilling decisions (simulated as installation of a wellProduction subsystem) 

are revisited with the objective of maximizing the capacity of the existing system. Expansion for 

oil and gas processing is also revisited for scenarios 2 and 3, as described. The existing takeaway 

and water processing subsystems capacities are large enough to be considered unconstrained. 
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Input of Case Study 

For all scenarios, the 2020 system starts with the same existing subsystems and potential 

future locations (Table 3). We start with the six horizontal exploration wells with current 

production of 800 BPD (to decline annually). A small tank battery performs the three phase 

separation for oil processing is also installed. There is no permanent gas processing installed, the 

existing equipment will be removed since it was meant only for temporary use during 

exploration. A water disposal well and partnerships for takeaway are existing.   

 

Table 3: Existing 2020 System – initializer for scenario simulations  

2020 Existing Subsystems & Future Subsystem Placeholders 

Location 
Index 

Subsystem Child 
Class Name Type Description Capacity Units Capital 

($MM) 
Year 

Installed Other 

0 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

1 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

2 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

3 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

4 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

5 wellProduction horizontal 0.8 MBPD 5 2020 0.8 (current 
production) 

6 oilProcessing small tank battery 5 MBPD 8 2020  

7 gasProcessing to be 
decommissioned 0 MMSCFD 0 2020  

8 waterProcessing disposal well 100 MBPD 15 2020  

9 gasTakeaway Partner A 200 MMSCFD 0 2020 
0.3 ($/MCF    
processing 

fee) 

10 oilTakeaway Partner B 100 MBPD 0 2020  

11-30 oilProcessing future 0 MBPD 0 future  

31-50 gasProcessing future 0 MBPD 0 future  

51-350 wellProduction future 0.8 MBPD 5 future 0 (current 
production) 
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 The system will be analyzed over a 10-year period, from 2021 to 2030. The deterministic 

production targets are in Table 4. The attributes of the oil and gas processing types are described 

in Table 5. Depending on the scenario, the annual choice for these subsystem’s is limited or 

expanded to include the various types.  

Assumptions were made to incorporate the project “iron triangle”. The three constraints 

of scope, budget and schedule can be traded off, but changing one causes a change in at least one 

of the other two. For example, increasing scope, in this case capacity, from a medium to large 

tank battery will cause an increase in cost and schedule. Additionally, the attributes incorporate 

economies of scale, where scaling capacity has a cost advantage. For example, doubling the 

processing capacity of the medium tank battery, the large tank battery is only 1.6 times the cost.

Table 4: Deterministic oil 
production targets. 

        Table 5: Oil and Gas Processing standard subsystem types to 
be annually chosen during scenario simulations.

Inputs with uncertainty 

We chose inputs that the owner of the system has less control over to model with 

uncertainty. The market is a global system that controls commodity prices and is highly 

uncertain. Reservoirs and drilling can also be difficult to predict and their characteristics effect 

directly the production sales and emissions. Prediction is so complex specialized teams are 

dedicated to creating detailed, simulation models just focused on reservoir mechanics and well 

design. Uncertainty in uptime for the gasProcessing subsystem was also included. The number of 

days compression is available varies, changing the energy requirements and emissions of the 

system.  

Year 
Target Oil 
Production  

(MBPD) 

2021 5  

2022 10 

2023 20 

2024 35 

2025 40 

2026 40 

2027 40 

2028 40 

2029 40 

2030 40 

Oil Processing Types 

Description 
Tank battery Size 

Small Medium Large Extra large 

Capacity (MBPD) 5 10 20 40 

Cost ($MM) 8 14 23 40 

Years to Operational 1 1 2 3 

Gas Processing Types 

Description 
Compressor Station 

Small Medium Large 

Capacity (MMSCFD) 20 40 80 

Cost ($MM) 5 9 15 

Years to Operational 1 2 3 
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The case is hypothetical, but representative of current market data. Commodity prices are 

forecasted by a variety of resources and companies may have their own internal price decks to 

use. For our study we will use data from the World Bank Commodities Price Forecast, updated 

in April 2020. Uncertainty in oil, natural gas, NGL composite and diesel prices are modelled as 

annual forecasts with a gamma distribution (equations 1-3). Where the mean (µ) is the 

deterministic price (World Bank Commodities Price Forecast, 2020) and standard deviation (s) is 

a fraction of the mean. The gamma distribution is appropriate since annual average prices are 

assumed to never be negative and can be skewed to have longer positive tails. The program can 

easily be configured to use any probability distribution by changing the distribution function 

located in the priceForecast.py module.  

Figure 8 through  Figure 15 show the price uncertainty over the life of the system and a 

representative 2021 price distribution. The 2021 graphs plot the probability density output of 

calling the ‘getPrice’ functions for 1e6 simulations. 
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Figure 8 & Figure 9:  Oil price uncertainty over time & 2021 probability distribution function 
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Figure 10 & Figure 11:  Natural gas price uncertainty over time & 2021 probability distribution function 

 
Figure 12 & Figure 13:  Natural gas liquids composite price uncertainty over time & 2021 probability 

distribution function 
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Figure 14 & Figure 15:  Diesel price uncertainty over time & 2021 probability distribution function 

For each well production subsystem, the annual decline rate, GOR, water cut, and gas 

heating value are selected from a normal probability distribution function (equation 4). 

Uncertainty in drilling, fracking and compression days, used to calculate combustion emissions, 

are modelled with normal distributions. Figure 16 through Figure 21 plot output histograms from 

calling the corresponding method 1e6 times. 
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Figure 16 & Figure 17:  Drilling & frack fleet days probability distribution functions 
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Figure 18 & Figure 19:  Gas heating value & water cut probability distribution functions 

 
Figure 20 & Figure 21:  Decline rate & compression days probability distribution functions 

Comparing system architecture strategies 

The program output show differences in scenario performance after simulation (3000 

runs). Comparing net present value (Figure 22), the planned capacity scenario performs poorly 

compared to the expansion scenarios. With the planned capacity we constrain the production so 

if targets increase due to an increase in oil price, the system is capped. This can be seen in the 

total capital spend (not normalized or discounted) comparison in Figure 23.  Additionally, since 

we assume that the larger subsystems take three years to operationalize, we delay the ability to 

drill wells and realize positive cash flow.  



  46 

 
Figure 22:  Net Present Value for Initial Scenarios 

 
Figure 23:  Total Capital Spend for Initial Scenarios 

 

 Comparing the expansion scenarios, the large scale agility scenario slightly outperforms 

(NPV) the multi choice scenario under uncertainty. Interestingly under unchanging conditions, 

the multi choice system performs significantly better. This is mainly due to the early production 

years, when production is realized faster since the large scale system waits two year for the large 

oil and medium gas processing subsystems to come on line.   
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Further information to support recommendation 

The system performance curves (Figure 22 and Figure 23) show some of the information 

needed to make a recommendation. Reviewing the annual profiles for overall capital, facilities 

spend and oil production gives additional insights (Figure 24-26). We can also confirm and 

analyze the total number of subsystem types that were decided using the optimization algorithm 

(Figure 27).  The planned capacity profile has two capital investment peaks, a large facility 

investment in 2021 and then drilling a large number of wells to fill the facility when it is ready 

for operation in 2024. 

 
Figure 24, 25, 26 & 27:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem Types – 

Planned Capacity 

Reviewing the investments made for the large scale agility scenario, the majority of the 

time, three trains, where a train is a large tank battery and medium compressor station, are 

installed by 2030 (Figure 31). The investment comes in two to three separate peaks (Figure 28). 
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Most simulation runs build a train in 2021 and 2023 (Figure 29). The third train is built sometime 

after, depending on when the production target increases due to an increase in oil price. Part of 

the additional value for this scenario is the earlier oil production realization (Figure 30) since a 

train operationalizes a year earlier than a full capacity system (Table 5). 

 
Figure 28, 29, 30 & 31:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem Types – 

Large Scale Agility 

 The multi choice agility scenario has a smoother and lower investment profile (Figure 

32).  The mean spend is less than $100MM and the majority of the facilities spend is spread over 

the first four years of the system’s life (Figure 33).  The production profile (Figure 34) is also 

smoother and closer to the target profile (Figure 36) since facilities operationalize sooner to 

allow for drilling investments. Interestingly, typically three types of oil processing and two types 

of gas processing subsystems were selected (Figure 35). 

 The multi choice system architecture better supports a corporate strategy of agility. The 

smoother capital investment profile and faster realized production de-risks low likelihood, high 
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consequence scenarios. Investing smaller amounts in facilities that can be operationalized 

quickly, can free up capital for other investments in the portfolio.  

Additionally, as the system is incrementally developed more information can be used to 

update the model for future decisions. Learning curves for procurement, construction and design 

for subsystems installation can be incorporated.  

The size of initial investment commitment can affect the timing of decision-making 

processes. Management may be constrained by annual budgets or larger commitments may need 

higher levels of endorsement. Looking at the multi choice strategy, to realize any production, in 

2021 we need to commit around $20MM for facilities and $30MM in well costs (2022: $50MM 

total capital minus $20MM facilities. We subtract 2022 facilities cost since their capacity will 

not be used until they are operational at least a year later).  

Making an initial investment commitment of $50MM vs. $150MM (large scale agility) or 

$255M (planned capacity) may require a different process for management. In addition, we de-

risk the investment by seeing production within in a year of the decision vs. two or three years 

where more can change in the market. A large investment commitment can take longer to 

endorse and if the decision is delayed changes to the market, technology or system’s context may 

take place during that time. 

We’ve shown a basic analysis for an upstream system designed to incorporate real 

options vs. deterministic planning. We’ve compared architectures that allow for expansion based 

on uncertainty and shown the advantage of preparing and reacting to market changes. The next 

chapter will explore improvements to the multi choice agility scenario, using the same Python 

program to refine the subsystem choices.  
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Figure 32, 33, 34 & 35:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem Types  – 

Multi Choice Agility 

 
Figure 36:  Oil Production Target Profile – All scenarios 
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Chapter 6: Case Study - Extended Analysis 

Refining the subsystem types 

 In the initial analysis, the subsystem alternatives were broad in the multi choice agility 

scenario. We gave the program four sizes for oil processing and three sizes for gas processing 

subsystems. In systems engineering, the definition of subsystem requirements leads to 

component detailed design (Figure 3).  Having many alternatives to continue into the next design 

and planning phase would be unreasonable and a potential waste of resources.  Figure 35 shows 

which of the types were selected using the optimization program within the simulation. The 

optimization selects the number and type of subsystem to meet production with the minimal 

capital investment. At the end of the 10 years, the simulations had selected small, medium and 

large tank batteries for oil processing and small and medium compressor stations for gas 

processing.  

 Refining the agile investment scenario, we eliminate the less selected options of large 

tank batteries or medium compressor stations. Using the program, the updated scenario can 

easily be run under the same uncertainty conditions as the initial scenarios. Comparing the 

system performance is interesting (Figure 37), the refined strategy performs significantly better 

than both of the original agility strategies. Under deterministic conditions both the original and 

the refined multi choice strategies have the same performance. This implies that the larger 

subsystem selections happen during uncertain conditions and it is these choices that create the 

difference in performance. 

Although more capital would be spent over the life of the project (Figure 38), we still see 

a low but drawn-out capital expenditure profile for the refined case (Figure 39 and Figure 40). 

The increase in performance can be attributed to facilities becoming operational faster after 

investment decisions are made. This is evident especially in 2024, where the production average 

is over 30 MBPD for the refined scenario (Figure 41) vs. close to 20 MBPD in most of the 

original multi choice scenario (Figure 34). Not only does performance increase but less 

subsystem types need to be designed (Figure 42), reducing other costs and complexity not 

included in the analysis.  
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Figure 37:  Net Present Value for Agility Scenarios 

 
Figure 38:  Total Capital Spend for Agility Scenarios 
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Figure 39, 40, 41& 42:  Capital Spend Profiles, Production Profile & 2030 Facility Subsystem Types – 

Refined Choice Agility 

Exploring emissions and energy generation subsystems 

We looked at the desired metric of net present value and now investigate the undesirable 

emergence of emissions (Figure 43). The relationship of the curves is very similar to the NPV 

curves, this makes sense since production is the main driver of both metrics. For a similar reason 

the emissions and energy required over time (Figure 44 -51) follow similar profiles to capital 

expenditure and oil production curves, respectively, for each of the scenarios over time.  
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Figure 43:  Total Emissions for Uncertainty Scenarios 

 

 
Figure 44 & Figure 45:  Emissions and Energy Required Over Time – Planned Capacity 
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Figure 46 & Figure 47:  Emissions and Energy Required Over Time – Large Scale Agility 

 
Figure 48 & Figure 49:  Emissions and Energy Required Over Time – Multi Choice Agility 

 
Figure 50 & Figure 51:  Emissions and Energy Required Over Time – Refined Choice Agility 
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In Figure 7 we expanded the system decomposition to include non-traditional energy 

sources that reduce emissions. We can use the energy required graphs to develop potential 

strategies to implement these different sources. For the refined choice scenario, annual energy 

required averages between 100,000 MWh a year for all architectures. This would be equivalent 

to a 11.4MW power source that has 100% utilization and efficiency. The compression source 

will have a more consistent demand than the drilling and fracking generators, which may have 

much higher instantaneous peaks of energy. We will assume for now that these peaks will be 

supplemented by available diesel sources as in the base case.  

To fully support the demand curve, we can estimate the annual power source capacity 

needed to be operational: 2022: 3.4MW, 2023: +3.4MW, 2024: +4.6MW. To explore the 

renewable component sources and to keep with a standard size strategy, we compare adding a 

3.5MW source for each of these years and the conventional energy sources will make up the 

difference (Table 6). 

 Additional Gas Processing Solar Wind 

Energy Capacity 
Needed (MWh) 30660 30660 30660 

Power Capacity 
Needed (MW) 3.5 3.5 3.5 

Factors 0.8 (uptime) 
0.3 (efficiency) 

0.18 (capacity 
utilization factor) 

0.3 (capacity 
utilization factor) 

Rated Capacity 2 MMSCFD 20 MW 12 MW 

Cost $1MMfor NGL extraction + 
$1MM for CNG processing $20MM $24MM 

Table 6: Energy Supply Subsystem Types 

After running the updated energy supply scenarios through the program, Figure 52 shows 

that net present value is very similar for all scenarios. We then look at total capital (not 

discounted) in Figure 53 and total emissions in Figure 54. As expected, total capital increases 

significantly for wind and solar farm scenarios and only slightly for gas processing. Also as 

expected the total combustion emissions is significantly decreased for solar and wind, and less 

reduced with additional gas processing. 

Figure 55 shows total capital and emissions for all 3000 simulations of each scenario, 

excluding wind. Wind as an energy supply will always have higher capital expenditure than the 

solar farm scenario. By omitting it in Figure 55, we can clearly see the tradeoffs for the refined 
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choice scenario with traditional energy supply, with additional gas processing and with solar 

farm. There is a clear trend, that emissions increase with capital expenditure. This makes sense 

since additional compression and drilling, especially due to diesel use (Figure 56 and Figure 57) 

would increase both of metrics. It also is clear that the addition of a solar farm reduces emissions 

but with a greater increase in capital expenditure than with gas processing.  

 
Figure 52:  Total Net Present Value for Energy Supply Scenarios 

 
Figure 53:  Total Capital Spend for Energy Supply Scenarios 
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Figure 54:  Total Combustion Emissions for Energy Supply Scenarios 

 
Figure 55:  Total Combustion Emissions vs. Total Capital Spend for Energy Supply Scenarios 
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Figure 56 & Figure 57:  Diesel Required Over Time – Refined Choice without and with Additional Gas 

Processing 

 

Subsystem recommendations 

 Based on the analysis the recommendation is to develop the field using a strategy of 

investment agility. The subsystems should meet the requirements in  Table 7. The initial 

commitment in 2021 is $60MM, $21MM for facilities (1 medium tank battery, 1 small 

compressor station with additional gas processing) + ~$39 MM for drilling of wells in 2022 

(Figure 58 and 59). Investment decisions should be revisited annually.  

The expected net present value is $3.2B (Figure 52), when compared to the initial 

planned capacity scenario is almost a $500MM increase. Expected lifetime emissions from 

combustion sources is 1,250,0000 CO2e tons, a reduction of 75,000 tons for the multi choice 

scenario. Annual capital expenditure is expected to peak in 3years at $150MM, however in the 

first two years commitment is under $100MM. Production starts only one year after initial 

commitment. 

The team will need to develop the design, procurement and construction plans for the 

recommended subsystems and their integration. In addition, the team should study the system 

changes and costs to use a solar farm as a substitute or supplementary energy supply. Once 

additional cost information and technical challenges are explored, we can use the same Python 

program to evaluate the impacts of paying for this flexibility. We are recommending this 

additional work since the emissions reduction is extremely beneficial, but the cost is high under 

the initial strategy studied.  
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A solar farm has the potential to have greater agility than the other subsystems explored, 

which were assumed to be operational after a year or more. Solar farm infrastructure may take 

this long to implement, but additional solar panels with smaller capacity could be operational 

faster. This agility was not explored in the model, but after further engineering, the model could 

be updated to evaluate the impacts on the system. If necessary, the Python program could be 

updated with an additional “decision” (optimization algorithm) for how many solar panels to be 

installed annually.  

Innovation in solar energy and battery technology will also continue, with the potential to 

reduce costs and increase utilization factors. Since the system will be designed for subsystem 

agility and solar farm flexibility, the model can be used annually to make expansion decisions. 

The inputs can be updated with lessons learned during operations and market prices for 

equipment. The strategy allows the business decision maker the option to continue or stop 

investment, but they can also take advantage of learning curves from previous subsystem 

installations and other solar farm users. 

Table 7: Recommended Subsystem Requirements for Further Design Development 

Figure 58 & Figure 59:  Capital Spend Profiles for Recommended Design  

Subsystem Oil Processing Gas Processing Energy Supply 

Description Small tank 
battery 

Medium 
tank battery 

Small 
compressor 

station 

Additional gas 
processing Solar Farm 

Capacity 5 MBPD 10 MBPD 20 MMSCFD 2 MMSCFD 
Continue 

engineering 
Cost ($MM) 8 14 5 2 

Years to 
Operational 1 1 1 1 
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Chapter 7: Adapting the Model and Future work 

Adding and changing subsystems 

  The model’s architecture is one way to decompose an upstream system. The system 

architecture includes primary value subsystem and then expanded to explore a secondary 

subsystem for combustion emissions. Different subsystems, especially supporting functions and 

objects can be added depending on specific use cases. These additions can be done in both the 

OPD and SysML system models and then as a child class in the Python program.  

A deepwater oil and gas development may be another use case. Deepwater fields are 

located under a body water. The hull is a floating structure that supports the majority of the 

primary value instruments (processing equipment). The OPD could be expanded to include the 

hull as a subsystem (Figure 60). An additional child class and its interactions could be added to 

the program’s subsystem class. Additional subsystem attributes needed to evaluate the 

interaction with the hull are weight and footprint. Architectures with different hull capacities 

could then be examined. For example: the hull is designed for planned capacity; a larger hull is 

installed to allow for further expansion of other subsystems; or even a scenario with multiple hull 

designs. These architectures can be evaluated against uncertainty conditions. 

 
Figure 60: System Architecture Object Process Diagram - Deepwater Asset Type 
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Adding and changing decision strategies 

 In the current program there are three main decisions: 1) How market conditions effect 

production targets, 2) How many wells to drill annually and 3) How many and what type of oil 

and gas subsystems to build.  The development of these decisions stems from three factors, the 

uncertainty drivers, the decision sequence and the time the decision takes effect on the system.  

 The decision strategies can also be explored to give insights to different drivers. For 

example, the relationship between production targets and market prices. Production targets are 

currently a constraint used in both subsequent capital investment decisions. In the program a 

simple factor is used to adjust targets. We assume that this decision takes instantaneous effect on 

the system with no delay in becoming an annual constraint. The simple algorithm used to define 

the change in production target due to oil price could be derived as an output from a business 

unit or enterprise-wide optimization program.  

The integer optimization program used to simulate subsystem selection could also be 

modified. By modifying the objective function of the program, decision strategies can be studied. 

The current program drills wells to maximize the capacity of the system but is constrained by the 

production target. Instead the objective function and constraints could be written to only be 

constrained by system capacity. Or the optimization program could be modified with additional 

constraints like number of rigs available for simultaneous drilling.  

The third decision’s optimization could also be modified. An example of this is another 

unconventional asset but we want to explore multiple field developments with a large footprint. 

The future well locations may be spread over a large surface area, many miles apart. In this case 

an additional supporting subsystem should be added to the architecture for the transfer of fluids 

(Figure 61). Long pipelines between the different processing locations could become costly. The 

integer optimization algorithm could then be converted into a multi-integer linear program 

(MILP). The MILP’s objective function minimizes the capital cost of the subsystems, including 

pipeline costs. Decision variables would include continuous variables for the volume of oil, 

water, or gas being transferred between subsystem locations. An example MILP set up is in 

Appendix B. 
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Figure 61: System Architecture Object Process Diagram – Shale Multi-Field Asset Type 

Operationalizing the model 

 We created the program to be efficient using assumptions and simplified calculations. For 

example, net present value calculations do not take into account taxes, depreciation or additional 

operating expenses outside of fuel costs. Conversions for fuel to energy output use one rate for 

generator efficiencies. To be more accurate these would use load efficiency curves. Additional 

assumptions use simple heating value calculations for NGL and residue gas production. There is 

industry used simulation software that do a better job of chemical process calculations, like 

Aspen HYSYS. To use the program in a corporate setting, assumptions would need to be vetted 

and documented, since opportunities should be compared on a consistent basis. 

 The program takes ~20 minutes to run 3000 simulations when ran on a local laptop 

computer. To scale the program’s processing efficiency, cloud computing would need to be 

considered to reduce simulation time. Additionally, we used an academic GurboiTM license for 

integer optimization. Other solvers could be assessed for corporate licensing. 

A friendly, easy to use user interface (UI) would need to be developed. Although it is 

simple to manually change inputs in the Python code, the normal user would need an easier way 

to interface with the program. The user’s ability to change inputs, subsystem types, system 

calculations and output graphics would need to be evaluated and incorporated in the UI.  
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Chapter 8: Conclusion 

We developed a program that demonstrates a practical and efficient method to quantify the 

tradeoffs between building small with agility vs. large scale. The program allows for expansion 

decisions made under uncertainty to be included in the early stages of system architecture 

development. There are business and market conditions when one strategy may outperform the 

other. The method allowed us to investigate subsystem changes by simulating their effect on 

overall system performance. We explored architectural decisions and made real, specific 

recommendations for subsystems requirements.  

Projects in oil and gas have a long history of following a bigger is better strategy. 

Uncertainty in the hydrocarbon market is not new but seems increasingly volatile in the next 

decades. From increased pressure to confront climate change, cheaper renewable technologies 

and continued innovation in hydrocarbon production, much seems uncertain. To be competitive 

under uncertainty, we proposed projects designed for agile investment as a strategy. We 

suggested leveraging two enablers, annual decision making and smaller, quicker to operation 

standard subsystem designs. To quantitatively compare strategies, we combined and expanded 

concepts in system architecture, real options analysis and object-oriented programming. 

Starting with system architecture modeling, this step was needed for communicating and 

defining the system to be simulated and analyzed. Using the modeling languages of OPM and 

SysML, along with the techniques of abstraction and zooming, these diagrams paint a clear 

system framework. We applied these tools to an upstream, oil and gas project. Decomposing the 

oilfield’s production system into seven physical subsystems.  

Using the framework and concept diagrams, the system architecture was translated into 

an object-oriented programming language to quantitatively evaluate the architecture. Parent and 

child classes for system lifecycle, annual system and subsystems were developed from objects 

defined in concept modeling. Class methods and functions mirror the processes and interactions 

found in the concept modeling. The program first analyzed scenarios using deterministic 

conditions and then uses Monte Carlo simulation to evaluate under uncertain conditions. 

 Variables with uncertainty are modelled using probability distribution functions and the 

program runs simulations by discretely choosing inputs from these distributions. Running of the 

program emulates system development over time and the emergent metrics are shown in a 

cumulative distribution graph. The graphs indicates the probability of the emergent outcome. 

Using object-orient programming allows for the program to store class instances and their 
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attributes as the simulations run, allowing for further exploration and analysis of the outputs and 

decisions made.   

To evaluate the real options of expansion, the program must simulate the decisions made 

under changing and uncertain conditions. This was done using integer optimization programs 

embedded into the simulation. The output gives the optimal investment decision during that point 

in time given the conditions known at the time to the decision maker. This is powerful as 

decision requirements could also be changed to examine different decision strategies’ impact on 

system performance.  

To show practicality of the program, we used it to study a hypothetical, but representative 

example. The development of a small, onshore, unconventional oilfield would need all of the 

subsystems defined in concept modeling. The development could be done as a large scale, one-

time investment or with varying levels of investment over time. In the analysis we first show 

overall value in agile investing with an expected 5% increase in net present value. The upper tail 

of the cumulative distribution curve is the most insightful, we see how planning to build only 

once, to a predetermined capacity, caps potential value if the market price increases. 

Additionally, we see the value in getting production online faster, in the early years when there 

may be less uncertainty and revenue is not as discounted. 

Further investigation of the agile investment strategy leads to a refinement in subsystems, 

which actually increases net present value again, over 18% vs. the system with planned capacity. 

We also explore non-traditional energy sources, which can be leveraged since the capital profiles 

are more consistent. With this strategy the drilling profile and therefore diesel use is smoother 

over time. We look at replacing the diesel, with lower emission fuel sources. Recommending 

additional gas processing to be implemented over several years reduces lifetime combustion 

emissions by 6%. 

In this case we justify the agile investment strategy not only because of performance but 

also because of the committed capital profile. In the planned capacity, to see any returns from 

production we must wait 4 years with an investment of $255MM. With our recommendation, 

2021 capital needed is $60MM, with the ability to revisit the next commitment the following 

year. The recommendation does increase the number of subsystem types to be developed, but 

this number was reduced and refined from an initial multichoice proposal. Keeping in mind that 

this analysis would be completed in the early phases of system design, we would want to balance 
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agility choice with the work required to develop those choices. Design, procurement and 

construction planning would need to be completed for each subsystem type.  

For this thesis these steps were completed by the author but in reality, different teams and 

domains would complete them. The importance of communicating between these steps is 

paramount to support decision making. Not only does the complexity of a system need to be 

communicated but the quantitative analysis’ logic needs to be understandable and emulate the 

architecture. 

The system analyzed is complex and complicated. Typical systems have hundreds, if not 

thousands of components and physical pieces of equipment with many types of processes, 

interactions and relationships. Analyzing just one of the subsystems or components of the system 

is the work of teams of subject matter experts, such as geologists, drilling engineers, surface 

facility engineers, electrical engineers. Cutting through the complexity, business decisions and 

architectural development strategies must be developed to give clear direction for the detailed 

work and engineering of the subsystems done by the varying teams.  

Future work on the program to address high level simplifications and omitted cost 

assumptions is needed. Additional subsystems, decisions and metrics could also be added. Using 

the program requires coding experience in Python so user friendly interface should be developed. 

Visuals were created in Python, but refinement or other visualization software could be used to 

interrogate the outcomes.  

Decisions must be made in the face of this complexity. Combining the right level of 

abstraction but with the right level of detail for quantitative insights is a challenge. The upstream 

energy system itself is complex and so is its context, both the system and the conditions it 

operates in have uncertainties. 

This work expands the fields of real option valuation and system architecture by 

combining them with object-oriented programming. Using concepts and tools from all three 

fields, a complex system’s performance was simulated. By using the program and repeatedly 

refining the inputs, persuasive arguments can be explained for specific subsystem requirements. 

We’ve developed and demonstrated a method to analyze subsystems designed for agility in the 

early phases of system development. 
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Appendix A: Python Program Detailed Explanation 

The Python program used to evaluate system architecture implementation scenarios 

contains 8 modules (about 1600 lines of code). In the next sections we provide descriptions of 

the modules and example code. 

 
main.py 

 To start a system analysis there are three main inputs into the program, an initial system 

containing existing and potential subsystems, potential facility subsystem types and production 

targets for each year of the evaluation timeframe. The initial system is the first index of a list of 

annual system instances. This list will be built upon to create the evolution of the system 

throughout its lifecycle.  

The production targets are a Python dictionary class with the key as a year and value of 

oil production for that year. The program first evaluates the system lifecycle deterministically 

and the production targets do not change. However, when the program continues into simulating 

uncertainty these targets change on an annually based on a changing oil sales price, meant to 

simulate the uncertainty in market conditions. The oil production target for the current year and 

next year is updated to reflect a scaled change for the realized oil price vs. the forecasted 

expected price.  

 The main.py module houses the code that starts the program and calls the other python 

modules to execute their code. The final output is a simulated system over the entire lifecycle. 

The system lifecycle attributes of net present value and total lifecycle emissions are then 

calculated and plotted. Additionally, every simulation object is stored allowing details of the 

annual decisions and attributes to be further explored.  

 
systemClasses.py 

There are three parent classes used to describe the domain: SystemLifecycle, System, and 

SubSystem, this emulates the first three levels of decomposition abstraction discovered in the 

formation of Figure 7.  

The System Lifecycle class have the attributes name, description, evaluation year, 

discount rate and a list of annual system object instances. It also has two methods that can be 

called to evaluate the system lifecycle using its attributes, creating net present value and total 
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emissions. The SystemLifecycle class definition and methods is shown below as example of the 

Python syntax for class creation.  

 
class SystemLifecycle(): 
    def __init__(self, name, description, evalYear, 
systemAnnualInstances, discountRate = 0.15, netPresentValue=None, 
totalEmissions=None,):       
        self.name = name 
        self.description = description 
        self.evalYear = evalYear 
        self.discountRate = discountRate 
        self.systemAnnualInstances = systemAnnualInstances 
    def evaluateNPVNoCarbonPricing(self): 
        npv = 0 
        for s in self.systemAnnualInstances: 
            if s.year >= self.evalYear: 
                t = s.year - self.evalYear 
                cashFlow = s.productionRevenue - (s.capexDrilling 
+ s.capexFacilities + s.fuelCosts) 
                npv = npv + cashFlow/((1+self.discountRate)**t) 
        self.netPresentValue = npv 
    def evaluateTotalEmissions(self): 
        totalLifetimeEmissions = 0 
        for s in self.systemAnnualInstances: 
            totalLifetimeEmissions = totalLifetimeEmissions + 
s.emissions 
        self.totalEmissions = totalLifetimeEmissions 

  

The System class is used to describe the system as an annual snapshot in time. The object 

class has several attributes, including name, description and the year of the system instance. 

Similar to the SystemLifecycle class it has a list of decomposition objects, in this case 

SubSystem objects. Additional attributes are used to record values that were used during the 

creation of the object instance or were created to evaluate the system. Attributes for the market 

conditions (pricing), the oil production target and realized production are recorded for 

traceability during an annual System instance creation. Other attributes like capital, fuel costs, 

energy generated, and emissions are evaluated from the class methods. These evaluation methods 

are called after the subsystem object list is generated.  

The SubSystem class defines attributes and methods that all child SubSystems have in 

common. These attributes include the name, type description, capacity of the subsystem, the 

units for the capacity, the capital cost, a location index and the year the subsystem was installed. 

The SubSystem class has child classes which inherit its attributes and methods. The child classes 
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are created since different subsystems have additional specific attributes or methods that are 

needed in computation.  

The SubSystem parent class has three methods that allow for filtering of a list of 

SubSystem objects. These methods are used throughout the rest of the program’s modules. An 

example is below. This method provides a filtered list of attribute values based on the subsystem 

and year installed.  

 
    @staticmethod 
    def getAttributeOfSubSystemInstalled 
(attribute,subSystemList, subSystem): 
        output = [] 
        for ss in subSystemList: 
            if ss.yearInstall != 'future': 
                if ss.subSystem == subSystem: 
                    output.append(getattr(ss,attribute)) 
        return output    
 

Child classes of SubSystem correspond to those shown in Figure 7, 

WellProductionSubSystem, GasProcessingSubSystem, GasTakeawaySubSystem, 

OilProcessingSubSystem, WaterProcessingSubSystem and EnergySupplySystem. Defining these 

as child classes allow them to inherit the attributes and methods of the parent but allow for 

further flexibility in defining the subsystem.  

The WellProductionSubSystem class has the most additional attributes and methods 

needed to describe the subsystem. This subsystem defines the throughput production in each of 

the subsequent subsystems. In the program the currentProduction attribute is oil production with 

unit of MBPD (thousands of barrels per day).  

Over time the currentProduction declines and a decline rate or a percentage of oil 

production decrease is used. For this program a decline rate function (static method) is called in 

other parts of the program and gives either a deterministic decline rate or a random value from a 

normal probability distribution describing a probability of a decline rate. The below is example 

code for returning a deterministic decline rate of 15%. If the seed variable is given this indicates 

the program is running a simulation with uncertainty and should return a random value from a 

normal distribution with a mean of 15% and standard deviation of 1%. This is the typical 

structure for simulating a variable with uncertainty.  
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    @staticmethod 
    def getDeclineRate (seed = None): 
        if seed is None: 
            declineRate = .15       
        if seed is not None: 
            declineRate = np.random.normal(.15, .01) 
        return declineRate 
 

It is common to calculate the gas production using a gas to oil ratio (GOR). The gas 

production is the amount of gas that must be processed in the GasProcessingSubsystem objects. 

Water production is usually described by water cut or percentage of a well’s total fluid that is 

water. This factor is used by the program to calculate the water production needed to be 

processed by the WaterProductionSubSystem objects. Both GOR and watercut are attributes that 

are estimated using similar methods as decline rate.  

 WellProductionSubSystem objects contain two of the main sources of combustion 

greenhouse gas emissions, from drilling and fracking. These methods return the energy required 

in MWh and the diesel equivalent required in gallons. A normal probability distribution is used 

for the days spent drilling or fracking and a nominal diesel per day is used. Diesel is converted 

into energy units using a given diesel generator efficiency. 

The other child subsystem classes have additional attributes and methods that are 

particular to calculations in the program. Using class structure in object-oriented programming is 

a clean way to organize specifics attributes and behaviors of a subsystem, system and system 

lifecycle. By using this structure class definitions could be expanded or refined by the subsystem 

experts and engineers with specialized knowledge.  

 
priceFroecast.py 

The commodity prices used in oil and gas project evaluations are long term forecasts, 

decades long. The program uses an annual price forecasts for crude oil, natural gas, natural gas 

liquids and diesel for calculation of profits and fuel costs. For this case the uncertainty of each 

commodity price is represented as a normal distribution, with the expected annual price as the 

mean and a percentage of that mean as the standard deviation.  

An example of the oil price definition as a Python dictionary class, the key being a year 

and value corresponding to a price. The function is similar to the getDeclineRate method in the 

WellProductionSubSystem class. The function is used in the annualSystemDecisions,py module.  
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oilPriceP50 = {2020:35.00 , 2021: 42.00, 2022: 44.50, 2023: 47.0, 
2024: 49.80, 2025: 52.70, 2026: 56.16, 2027: 59.62, 2028: 63.08, 
2029: 66.54, 2030: 70, 2031: 73.46} 
def getOilPrice(year,seed = None): 
    p50price = oilPriceP50[year] 
    if seed is None: 
        price = p50price       
    if seed is not None: 
        price = np.random.gamma((p50price/(p50price/6))**2, 
(p50price/6)**2/p50price) 
    return price 

 
annualSystemDecisions.py 

The cornerstone of the analysis program is simulating the system annually, taking in the 

inputs for the year and making decisions that alter the system. The following year the same 

decisions must be made with new inputs and so on.  

Annually there are three major changes, two are driven by uncertainty and one driven by 

the decisions made in the previous year. The changing conditions for price due to market 

uncertainty and current production due to decline rate, GOR and watercut uncertainty are 

simulated using the systemClasses.py and priceForecast.py methods as described earlier. The 

system itself also changes based on the previous year’s capital investments of wells and other 

subsystems installed.  

The annualSystemDecisions.py’s function appends an annual system instance object to a 

list after capturing and “deciding” what changes to the system should be made. The function is 

recursive, it calls itself after executing, which simulates starting the decision process over again 

with the changes that were made the previous year.  

The function continues to create an annual system instance for each year a production 

target is available and ends when there is no target available. It first copies the initial system and 

appends it to the list, updating the year attribute by one. Thus, creating a new annual system to 

be updated and allowing for the existing subsystem objects to be maintained in the subsystem 

list. 
 
def createAnnualInstances(systemAnnualInstanceList  
, subSystemTypes, productionTargets,seed=None):  
     

#if the last system in systemAnnualInstanceList has the 
same year as the last year of the productionTargets end the 
function 
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#else capture uncertain conditions and make decisions that 
change the system as a new annual system to append to the 
systemAnnualInstanceList.  
 

#Function calls itself after making changes 
createAnnualInstances(systemAnnualInstanceList, 
subSystemTypes, copyOfProductionTargets,seed) 

 

The beginning of the function body can be thought of as the start of the planning cycle, 

starting with an existing system infrastructure. Next, the current commodity prices attributes of 

the system are updated, and existing production is updated using a decline rate.  

The changed prices are eventually used to evaluate the system, but also are used to 

imitate a business decision updating the annual oil production target. In this program the 

relationship between oil production target and price is simple and calculated by a scaled linear 

change factor for the realized oil price vs. the forecasted expected price. Both the current year 

and next year’s oil production targets are scaled to be used in the subsequent decision-making 

algorithms.  

 
wellsToDrill.py 

Using the updated attributes, the first of two decision functions are executed. The first 

business decision is how many additional WellProductionSubSystem Objects to install. The 

production of these new wells will be realized this year, therefore is constrained by the existing 

system’s processing and takeaway subsystems’ capacities. The updated current year’s production 

target also acts as a constraint. In the program the decision’s objective is to maximize the 

production of the system given these constraints. A simple integer optimization program was 

used to determine the optimal amount of production. The equation described was translated into 

Python syntax using a GurobiTM solver package extension and license.  

 

Sets  

𝑧 = 1,… , 𝑍 : set of future WellProductionSubSystem Locations 

 

Parameters 

A: Annual production target  

gor: projectd future WellProductionSubsystem GOR  

wc: projectd future WellProductionSubsystem watercut 
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𝑚S:  future WellProductionSubSystem estimated initial rate of production (Barrels per 

Day) 

P: Aggregated current oil production of current WellProduction objects,  

G: Aggregated current gas production of current WellProduction objects, calculated using 

P and GOR object attributes 

W: Aggregated current water production of current WellProduction objects, calaculated 

using P and watercut object attributes 

𝑀𝑃 : Aggregated capacity of currently installed OilProcessingSubSystem objects 

𝑀𝑊: Aggregated capacity of currently installed WaterProcessingSubSystem objects 

𝑀𝐺 : Aggregated capacity of currently installed GasProcessingSubSystem objects 

𝑀𝑇: Aggregated capacity of currently installed OilTakeawaySubSystem objects 

𝑀𝑃: Aggregated capacity of currently installed GasTakeawaySubSystem objects 

 

Decision variables 

𝑑S = 	 Z
1
0  Drill WellProductionSystem location or not 

 

Objective Function 

Maximize new well oil production 

[𝑏S ∗ 𝑚S

]

S^F

	 

 

Subject to:  

[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝐴,		 

[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝑀𝑃	 

[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝑀𝑆	 

([𝑏S ∗ 𝑚S) ∗ 𝑤 +𝑊 ≤
]

S^F

𝑀𝑊		 
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([𝑏S ∗ 𝑚S) ∗ 𝑔𝑜𝑟 + 𝐺 ≤
]

S^F

𝑀𝐺		 

	([𝑏S ∗ 𝑚S) ∗ 𝑤𝑐 + 𝐺 ≤
]

S^F

𝑀𝑃	 

 

After the integer program is executed, it will return the future WellProductionSubSystem 

objects to drill. These are updated in the current system object’s list of subsystems which allows 

the additional production to be captured. The new production needs to be accounted for in the 

second decision which determines the type and number of the facility subsystems to be installed 

during the current year.  

 
facilitiesToInstall.py 

Facility subsystems are assumed to take a year to operationalize, so the decision taken to 

build is based on the next year’s production target, estimated based on the change in current 

change in price. Similarly, to the well production decision the number of subsystems is to be 

determined, representing decision making. In addition to the quantity, the type of oil processing 

and gas processing subsystem are decided.  

The assumption is there are multiple standard size subsystems that can be installed at the 

same potential oil or gas processing location. The subsystem types are given to the function 

createAnnualInstances when it is called. The subsystem types are created as 

oilProcessingSubSystem and gasProcessingSubsystem objects with differing capital cost and 

capacity attributes. 

The objective chosen for simulating this decision is minimizing capital spend on the 

facilities. The decision is constrained by meeting the projected next year’s production target, the 

existing infrastructure’s capacities and an estimate of production at year end.  

Similar to the wellsToDrill.py, the facilitiesToInstall.py module contains an integer 

optimization function. The output of this function are binary decision variables for executing 

contracts for takeaway or installing processing facilities type-location combinations.  

Sets 

𝑧 = 1,… , 𝑍 : set of future WellProductionSubSystem Locations 

𝑏𝑇 = 1,… , 𝐵𝑇 : set of OilProcessingSubSystem Types 

𝑏𝐿 = 1,… , 𝐵𝐿 : set of future OilProcessing Locations 
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𝑔𝑇 = 1,… , 𝐺𝑇: set of GasProcessingSubSystem Types 

𝑔𝐿 = 1,… , 𝐺𝐿 : set of future OilProcessing Locations 

𝑤 = 1,… ,𝑊 : set of future WaterProcessing Locations 

𝑝 = 1,… , 𝑃 : set of future GasTakeaway Locations 

𝑠 = 1,… , 𝑆 : set of future OilTakeaway Locations 

 

Parameters 

A: Annual production target  

gor: projectd future WellProductionSubsystem GOR  

wc: projectd future WellProductionSubsystem watercut 

𝑚S:  future WellProductionSubSystem estimated initial rate of production (Barrels per 

Day) 

 

P: Aggregated current oil production of current WellProduction objects,  

G: Aggregated current gas production of current WellProduction objects, calculated using 

P and GOR object attributes 

W: Aggregated current water production of current WellProduction objects, calaculated 

using P and watercut object attributes 

 

𝑀𝑃 : Aggregated capacity of currently installed OilProcessingSubSystem objects 

𝑀𝑊: Aggregated capacity of currently installed WaterProcessingSubSystem objects 

𝑀𝐺 : Aggregated capacity of currently installed GasProcessingSubSystem objects 

𝑀𝑇: Aggregated capacity of currently installed OilTakeawaySubSystem objects 

𝑀𝑃: Aggregated capacity of currently installed GasTakeawaySubSystem objects 

 

𝑋𝐵i: set of future OilProcessingSubSystem Types 

𝑉𝐵i: set of future OilProcessingSubSystem Capacities 

𝐷𝐵B: set of future OilProcessingSubSystem Capital Costs 

𝑋𝐺l: set of future GasProcessingSubSystem Types 

𝑉𝐺l: set of future GasProcessingSubSystem Capacities 

𝐷𝐺l: set of future GasProcessingSubSystem Capital Costs 
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𝑉𝑊m: set of future WaterProcessingSubSystem Capacities 

𝐷𝑊m: set of future WaterProcessingSubSystem Capital Costs 

𝑉𝑆B: set of future OilTakeawaySubSystem Capacities 

𝐷𝑆B: set of future OilTakeawaySubSystem Capital Costs 

𝑉𝑃n: set of future GasTakeawaySubSystem Capacities 

𝐷𝑃n: set of future GasTakeawaySubSystem Capital Costs 

 

 

Decision variables 

𝑑S = 	 Z
1
0  Drill WellProductionSubSystem location or not 

𝑖𝑏ioip = 	 Z
1
0  Install OilProcessingSubSystem type at location or not 

𝑖𝑔lolp = 	 Z
1
0  Install GasProcessingSubSystem type at location or not 

𝑖𝑤m = 	 Z
1
0  Install WaterProcessingSubSystem location or not 

𝑢B = 	 Z
1
0  Execute OilTakeawaySubSystem contract for location or not 

𝑒n = 	 Z
1
0  Execute GasTakeawaySubSystem contract for location or not 

 

 

Objective Function 

Minimize capital spent on facility subsystems 

[𝑒n ∗ 𝐷𝑃n

r

n^F

+	[ 𝑖m ∗ 𝐷𝑊m

s

m^F

+[ [ 𝑖𝑔lolp ∗ 𝐷𝐺l

to

lo^F

tp

lp

+[ [ 𝑖𝑏ioip ∗ 𝐷𝐵i

uo

io^F

up

ip

	 

 

Subject to:  

[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝐴	 
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[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝑀𝑃 +[ [ 𝑖𝑏ioip ∗ 𝑉𝐵i

uo

io^F

up

ip

 

	([𝑏S ∗ 𝑚S) ∗ 𝑤 +𝑊 ≤
]

S^F

𝑀𝑊 +	[ 𝑖m ∗ 𝑉𝑊m

s

m^F

 

([𝑏S ∗ 𝑚S) ∗ 𝑔𝑜𝑟 + 𝐺 ≤
]

S^F

𝑀𝐺 +	[ [ 𝑖𝑔lolp ∗ 𝐷𝐺l

to

lo^F

tp

lp

	 

	[𝑏S ∗ 𝑚S + 𝑃 ≤
]

S^F

𝑀𝑃 +[𝑢B ∗ 𝑉𝑆B

v

B^F

 

([𝑏S ∗ 𝑚S) ∗ 𝑔𝑜𝑟 + 𝐺 ≤
]

S^F

𝑀𝑇 +	[𝑒n ∗ 𝐷𝑃n

r

n^F

	 

 
systemEvaluate.py 

After the decision optimization program executes through all project years, the annual 

systems are enumerated through using an evaluation function. This function calls several system 

class methods which return sums or calculation as attributes for the system at that point in time. 
 

def evaluateAnnualInstance(annualSystemInstance,seed = None): 
    annualSystemInstance.calculateProduction() 
    annualSystemInstance.calculateRevenue() 
    annualSystemInstance.evaluateCapexDrilling() 
    annualSystemInstance.evaluateCapexFacilities() 
    annualSystemInstance.calculateEnergyRequired() 
    annualSystemInstance.evaluateEnergyCreated() 

    annualSystemInstance.calculateFuelCostsAndEmissions() 
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Appendix B: Multi-Integer Optimization Program for Expanded Model 

Production, Oil and Compression Only - Type and Location Optimization Framework 

Sets 

𝑧 = 1,… , 𝑍 : set of Well Pad Locations 

𝑙 = 1,… , 𝐿 : set of Potential Component Locations 

𝑡 = 1,… , 𝑇: set of Tank Battery Types 

𝑠 = 1,… , 𝑆 : set of Compressor Station Types 

Parameters 

 𝑚S :  Well Pad rate of production (Barrels per Day) 

𝑑𝑧𝑡Sx: Euclidean distance between Well Pad Location and Locations 

𝑐𝑡y: Cost of Tank Battery Types 

𝑀𝑡y  : Capacity of Tank Battery type 

GOR: Gas to oil ratio 

𝑑𝑡𝑠xx: Euclidean distance between Tank Battery Location and Compressor Station 

𝑐𝑠B: Cost of Compressor Station Type 

𝑀𝑠B  : Capacity of Compressor Station type 

𝑓:  Cost per foot of pipeline ($/foot) 

Decision variables 

𝑥𝑧𝑡Sx : Production rate from Well Pad Location to Tank Battery Location  

𝑥𝑡𝑠xx : Gas rate from Tank Battery Location to Compressor Station Location 

𝑏𝑡xy = 	 Z
1
0  Tank Battery of type is built at Location or not 

𝑏𝑠xB = 	 Z
1
0  Compressor Station of type is built at Location or not 

 

Objective Function 

Minimize CAPEX cost  

[[𝑐𝑡y

o

y^F

∗ 𝑏𝑡xy +
p

x^F

[[[𝑏𝑡xy

o

y^F

∗
p

x^F

𝑑𝑧𝑡Sx ∗ 𝑓 +[[𝑐𝑠B

v

B^F

∗ 𝑏𝑠xB +[[[𝑏𝑠xB

v

B^F

∗
p

x^F

𝑑𝑠𝑡xx ∗ 𝑓
p

x^F

p

x^F

]

S^F
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Subject to:  

[𝑥_𝑧𝑡Sx

p

x^F

= 𝑚S, ∀𝑧	 = 1,… , 𝑍	 

[𝑥_𝑡𝑠xx

p

x^F

=[𝑥_𝑧𝑡Sx

]

S^F

∗ 𝐺𝑂𝑅, ∀𝑙	 = 1,… , 𝐿	 

 

All production must be processed: For each well pad the production produced there must be 

equal to the production that arrives at the tank batteries. For each tank battery the gas separated 

there must be equal to the gas that arrives at the compressor stations.  

 

[𝑥_𝑧𝑡Sx

]

S^F

≤[𝑀yy ∗ 𝑏yxy		
o

y^F

				∀𝑙 = 1,… , 𝐿	 

𝑥_𝑧𝑡Sx ≥ 0,							∀𝑧 = 1,… , 𝑍,					∀𝑡 = 1,… , 𝐿 

[𝑥_𝑡𝑠xx

p

x^F

≤[𝑀BB ∗ 𝑏BxB

v

B^F

				∀𝑙 = 1,… , 𝐿	 

𝑥_𝑡𝑠xx ≥ 0,							∀𝑙 = 1,… , 𝐿,					∀𝑙 = 1,… , 𝐿 

Interface & Capacity Constraints of Locations: The production rate to each tank battery 

location must be less than the capacity of that tank battery type. If it is not built it must be zero 

and cannot be negative. The gas rate to each compressor station location must be less than the 

capacity of the compressor station type. If it is not built, the gas rate must be zero and cannot be 

negative.  

 

𝑏_𝑡xy ∈ {0,1}	,				∀𝑡 = 1,2,3,				∀𝑙 = 1,… , 𝐿 

𝑏_𝑠xB ∈ {0,1}	,				∀𝑠 = 1,2,3,				∀𝑙 = 1,… , 𝐿 

Binary Build Decisions: Build decisions must be binary for all tank battery locations and types 

 

[𝑏yxy

�

F

+[𝑏BxB

�

F

≤ 1, ∀𝑙 = 1,… 𝐿				 

Co-Location Constraints: Tank Batteries and Compressor Stations cannot occupy the same 

location and only one type of component can occupy that location.   
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