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Abstract

In this thesis, I introduce Self-Interfaces as a method for creating behavior change. Self-Interfaces are interfaces 
that intuitively communicate relevant aspects of covert physiological signals through biofeedback to give the user 
insight into their behavior and assist them in creating behavior change. The human heartbeat is a good example 
of an intuitive and relevant haptic biofeedback; it does not distract and is only felt when the heart beats fast. My 
vision is to identify other covert physiological processes and instances in which they become useful, and augment 
our awareness of those signals in order to create behavior change. 

As a first case-study, I develop the Self-Interface for Electrodermal Activity (EDA), which is designed to help 
regulate attention and interest in users with Attention Deficit Hyperactivity Disorder (ADHD). EDA is a covert 
physiological signal correlated with high and low arousal affective states. Three studies were carried out to: 1. identify 
the design criteria for development of the EDA Self-Interface, 2. identify guidelines to reduce the cognitive load 
imposed by the haptic biofeedback signal, and 3. identify the aspects of the EDA that are relevant and insightful 
for the ADHD population. The insights from these studies contributed to the design and development of the EDA 
Self-Interface which has three components: EDA Sensor (Affectiva E4 Sensor), a wearable haptic biofeedback 
interface, and a phone app to process the EDA data and communicate it with the wearable interface. Lastly, I 
discuss the evaluation criteria for the EDA Self-Interface and propose a longitudinal study for such evaluation. 
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0_Preface

I have always been an extroverted introvert. I enjoy socializing with people 
I am close to, so much that some of the people in my closer circle have 
a hard time believing the internal struggles I go through when I am in 
a party full of strangers. However, every so often, especially when I go 
home to California, I struggle to get out of the house and engage in social 
activities I would normally be excited to do. I used to get frustrated when 
this happened. I had waited so many months to go back and see my close 
friends from college, and here I was, staring out the window at the San 
Francisco skyline, unable to convince myself to leave the house. 

In October of 2018, I started the Electrodermal Activity (EDA) Trainer 
experiment – an experiment that intended to train people to feel their 
EDA, a covert physiological signal that is shown to correlate with high 
and low arousal affective states. As part of that experiment and to get to 
know the signal better, I started wearing the EDA sensor every day. I did 
this every day for nine months and found patterns between my EDA and 
my interest in participating in different types of activities. I noticed that 
I had a very low EDA baseline compared to many people I was running 
experiments with, but that specific activities changed my EDA baseline. 
Some of those activities were more passive, such as going for a run or riding 
my bike to school. Others were more active such as engaging in a passionate 
conversation about my research with a mentor. In March of 2019 I went 
back to California and the first two or three days everything was normal. I 
was excited to relax and see all my friends. I was staying in the East Bay and 
had to drive to San Francisco to see most of my friends. Unlike Cambridge, 
I didn’t walk much or bike to get to places. I didn’t have access to a gym 
so didn’t get much activity that way either. After a few days, I noticed a 
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complete loss of interest in social activities. Getting into the car felt dreadful. 
I attributed this feeling to my friends and to my surroundings. What else 
can it be? How am I so different in Cambridge? What was different about 
California? On day 6, I was uploading my EDA data from the past week 
to my laptop when I noticed a very interesting pattern. The first day or 
two I had a good number of baseline jumps; the excitement from seeing 
all the people I had missed made my low EDA baseline change. But once 
the initial excitement settled, my EDA baseline was completely flat for the 
next 5 days. What if the difference in my mood had nothing to do with my 
friends, my immediate surroundings, or California? What if the difference 
was that in Cambridge I rode my bike at least twice a day and that raised 
my baseline passively at least twice? That day, I forced myself to go for a 
run around the block and instantly felt better. The run passively increased 
my interest in other activities! 

I also discovered links with my moments of high focus and productivity and 
my EDA. In retrospect, the insights I gained led to a shift in my lifestyle. 
I would make time to exercise even for 10 minutes because I knew raising 
my EDA baseline increases my focus. I used micro exercises to help me 
with focus, and longer exercises to help bring clarity to my ideas. Exercise 
became a way for me to tap into mental states that would normally be 
difficult to achieve for me. 

This is only a small example of the insights I gained from monitoring my 
EDA that year. I thought to myself, how is it that we’ve evolved to feel our 
heartbeat when it beats fast, but not our EDA when it is low, or for that 
matter when it shifts the baseline. Knowing when your heart beats fast and 
getting real-time feedback on it when you manage to bring it down has 
helped humans survive by signaling fear, fight or flight, and excitement. 
These states have been relevant to our survival since hunter gatherer days 
but staying focused for 8 hours a day has only become relevant for our 
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survival in the past 100 years. Maybe that is why we have not evolved to 
consciously feel relevant changes in our EDA. If I had an interoceptive 
awareness of how my EDA changed, in real time, my whole life, how would 
my life have been different? 

We have developed many addictive interfaces for our devices but we do 
not have an interface for the most used machine in the world; our bodies 
and brains. What does an interface for my EDA look like, feel like? How 
does it communicate the information with me? What aspect of my EDA 
do I need to be aware of ? What about other physiological signals I am 
not aware of? Can awareness of my pupil dilation help me understand my 
behaviors better? What behavior would it relate to?

I set out to answer some of these questions in my thesis and this is how 
Self-Interfaces were born.
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0.1 Outline

The first section of chapter 1 of this thesis explains the limitations in many 
of the current approaches to design and development of behavior change 
interventions and discusses a path forward with subconscious behavior change 
interventions. The next section introduces the concept of Self-Interfaces, the 
related work that motivated the specific approach to design and development 
of Self-Interfaces, and provides a development and evaluation framework 
for Self-Interfaces. Chapter 2 discusses the design and development of a 
Self-Interface case study: the EDA Self-Interface. In the first section, I 
explain the three components of the EDA Self-Interface. The next section 
describes the three studies that contributed to the final design of the EDA 
Self-Interface. The last section of chapter two describes in detail the design 
criteria, design process, hardware components, fabrication, and an initial 
pilot testing of the EDA Self-Interface system as well as the future work. 
Lastly, chapter 3 concludes by providing the future directions for Self-
Interfaces and summarizing the contributions of this work. 
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0.2 Contributions

The contributions in this thesis are summarized as follows:

• Introduce Self-Interfaces as a method for subconscious behavior 
change

• Define the framework for developing and evaluating Self-Interfaces
• Develop and build the first case-study, the EDA Self-Interface 

system consisting of the EDA sensor, a mobile application, and a 
haptic biofeedback device

• Conduct three studies to:
 º Identify the design criteria for developing the EDA Haptic 
biofeedback device

 º Investigate the effectiveness of various haptic properties for 
biofeedback under cognitive load

 º Investigate EDA as a biomarker for diagnosis or understanding 
ADHD in adults

• Propose a longitudinal study for assessment of EDA Self-Interface
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1_Self-Interfaces

1.1 The Problem: If you can’t change it, it’s NOT (necessarily) 
your fault!

Behavior change has been a great challenge for humans! We are all familiar 
with the byproducts of the desire to change our behavior for the better: 
motivational quotes, life coaches, before/after success pictures, quantified-
self apps, persuasive behavior change apps, and smart watches. Our lives 
(and Instagram feeds) have become filled with such interventions. And 
yet, it seems like only a handful of people have cracked the code. Why do 
many have the desire to change their behavior, but are failing in achieving 
the desired outcome? Why is it difficult to stick to the routines we know 
are good for us? 

Current approaches to behavior change often put the responsibility on 
the user to achieve the desired behavior. One of the most broadly used 
methodologies for behavior change interventions is the Fogg persuasive 
behavior change methodology (Fogg 2009). His model, called the FBM 
model, suggests that there are three components needed to create any type 
of behavior change: 1. Motivation, 2. Ability, and 3. Trigger. An example 
of this model is found in mobile health interventions, where the user sets 
an activity goal and receives periodic haptic or visual reminders on their 
smart watch upon periods of inactivity. 

An alternative approach to behavior change interventions are the reflective 
behavior change models where the goal is to communicate the collected 
data to the user in a meaningful way and achieve a desired behavior change 
by encouraging self-reflection (Sze 2008; Gao 2012; Hallnäs and Redström 
2001). The work in the field of personal informatics complements the 
reflective behavior change models by giving user meaningful insights into 
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the data collected by devices such as fitness trackers, as well as designing 
interactions that increase engagement and encourage extended use of these 
devices. Li et al introduce a five stage model representing the different aspects 
of personal informatics systems: preparation, collection, integration, reflection, 
and action (Li, Dey, and Forlizzi 2010). Other personal informatics models 
are discussed in (Epstein et al. 2015). Crumb is an example of a personal 
informatics model where Epstein et al. use daily food challenges to promote 
food mindfulness and increase sustained engagement (Epstein 2015). 

Many of the persuasive and reflective behavior change interventions apply 
elements of narrative and gamification to increase engagement and lower 
abandonment. For example Ubifit Garden (Consolvo et al. 2008) is an 
ambient wallpaper that changes throughout the day according to the user 
activity. Fish’n’Steps (Lin et al. 2006) is an interactive computer game 
where the user’s physical activity leads to the growth of a fish in a fish tank. 
Others such as Affective Health (Sanches et al. 2010) encourage the user 
to reflect on and interact with their own physiology. Similarly, Eloquent 
Robes (Núñez-Pacheco and Loke 2014) integrates physiological data into 
an interactive installation to encourage reflection. More recent systems such 
as WhoIsZuki (Murnane et al. 2020) combine the elements of gamification 
and narrative and reveal a story over time. 

While many behavior change interventions have proven to be successful, a 
common problem with such systems is lapse in use or complete abandonment 
after the initial novelty period. An early study into this topic (Ledger and 
McCaffrey 2014) showed that one third of smart-watch owners abandon using 
them within the first six months. Studies have shown that the abandonment 
of such devices is accompanied by feelings of frustration, guilt, regret, and even 
shame (Epstein et al. 2016). For example in the cited study, one user noted that 
that  “I feel like I am wasting my potential by not keeping on top of tracking,” and 
another user was “ashamed that I haven’t restarted, because I was doing so well.”
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As shown in the above examples, it is common to blame ourselves and our 
lack of willpower to make the desired change happen. However, I would 
argue that we are not always in full control or even aware of all the factors 
at play in our decision making. Our lifestyles have changed rapidly in 
the past century and our bodies have not had enough time to adapt and 
communicate internal processes that may be relevant to our survival today. 
If you cannot achieve what you set out to do, it may not be due to things 
you are not aware of and states that do not make it to your conscious 
understanding. Additionally, the interventions mentioned above all rely on 
the deliberate, slow thinking mind, called system 2 by Kahneman (Kahneman 
2011). Kahneman characterizes the mental processes as falling into two 
categories: system 1 and system 2. System 1 is the fast, automatic mind, and 
system 2 is the slow, thinking mind (see (Evans 2008) for a review of dual 
process theories). When an individual intentionally makes a decision, they 
are utilizing system 2 which requires effort on the individual’s end. In the 
next section, I will discuss the behavior change interventions that leverage 
system 1 to create behavior change, thus reducing the effort required from 
an individual in creating a desired behavior change.  
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1.2 A Path Forward: Subconscious Behavior Change 
Interventions 

An alternative to the reflective and persuasive behavior change model are 
interventions that help you subconsciously achieve a desired behavior. 
One common approach is to augment the user’s perception in order to 
automatically influence the behavior. Adams et al introduce the concept of 
Mindless Computing as interventions that leverage system 1, the fast and 
automatic mental processes, to create behavior change (Adams et al. 2015). 
For example in one project they alter the user’s perception of their own voice 
in order to subconsciously alter the pitch of their voice. Other projects such 
as EmotionCheck (Adams et al. 2015; Costa et al. 2016, 2017), take this 
concept a step further to measure the effects of false heart rate biofeedback 
on regulating stress levels. An alternative approach to subconscious behavior 
change interventions are ambient environmental interventions. For example 
in their work BrightBeat (Ghandeharioun and Picard 2017), the authors 
utilize subtle changes in the environment including audio and lighting to 
help regulate breathing. Others such as (Pinder et al. 2015) propose the use 
of subliminal priming to achieve subconscious behavior change.   

The subconscious behavior change interventions require less conscious 
effort on the user’s side, which may encourage sustained use. Additionally, 
these interventions reduce the burden on the user to create the behavior 
change, which may reduce the stress and guilt felt by not achieving a goal. 
These interventions present a path forward towards a more effortless and 
sustainable behavior change, but several open questions remain. A common 
theme in the above interventions is that the desired state is pre-determined 
by the system and while the result can be achieved, it does not necessarily 
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inform the user about their state and therefore the changes do not persist 
without the intervention. Can we design interventions that subconsciously 
train the user to achieve the desired goal, when the intervention is taken 
away after an initial training phase?  
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1.3 Self-Interfaces: Understanding the Why

Self-Interfaces intuitively reveal subconscious processes that happen in the 
human body and brain by providing real-time biofeedback in order to give 
people insight into their behavior and help them create behavior change. 
In other words, Self-Interfaces act as a way to amplify specific aspects of 
a covert physiological signal to make it overtly felt.

According to the conceptual act theory of emotions, affective states are 
constructed through the synthesis of interoceptive cues from the body and 
exteroceptive cues from the outside world (Barrett 2013). Therefore, it is 
possible that a conscious awareness of one’s subconscious physiological 
responses through new modalities can impact a person’s perception of 
their affective state. Additionally, studies have shown that training in fields 
which promote attention to certain bodily sensations increases coherence 
between the subjective and physiological aspects of emotion (Sze 2008). 

The human heartbeat is an interesting physiological signal. It is only brought 
to our conscious attention when it beats faster than a certain threshold. 
Consider the last time your heart was beating fast. Can you explain why it 
was beating fast? Most humans have an idea of what circumstances make 
their heartbeat rise due to a constant real-time biofeedback since childhood. 
We have also learned when an elevated heartbeat is desirable, when it is 
undesirable, and what techniques help bring it down when it is undesirable. 

My hypothesis is that similar to our heartbeat, selective, intuitive, and 
real-time biofeedback on subconscious physiological signals such as EEG, 
Electrodermal Activity, and pupil dilation can deliver meaningful insights by 
revealing correlations between a person’s physiology, affective state, actions, 
and behavior. Unlike the traditional persuasive and reflective behavior change 
technologies, if the Self-Interface signal is intuitively interpreted, it can 
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eliminate the need for the user to actively engage with the intervention. 
Additionally, providing the biofeedback in real-time and in the wild can 
eliminate the need for external interpretation of the user data; an issue that 
has been addressed through research in personal informatics (Rapp and 
Tirabeni 2018; Shin and Biocca 2017; Rapp and Cena 2016). 

1.3.1 Related Work

Interoceptive Awareness and Augmented Metacognition
A prominent category of physiological interventions that utilize system 1 
to create subconscious behavior change are interventions which increase 
interoceptive awareness as a way to achieve a desired state. Projects such 
as Disimo (Mladenović, Frey, and Cauchard 2018) and MusicalHeart 
(Nirjon et al. 2012) use biofeedback on heart rate variability to facilitate 
interactions between their respective systems and the participant to reduce 
stress. EmotionCheck (Costa et al. 2016, 2017) intentionally lowers the 
heart feedback rate in order to automatically lower the user’s heart rate. In 
EmotionCheck, although in many instances the participant was aware of 
the misalignment of the feedback with their real heart rate, the increased 
awareness of their heart rate led to a self-reported reduction in stress levels. 

An additional area of interest related to interoception is investigating the 
relationship between interoception and alexithymia, a condition where 
the individual has difficulty identifying their own emotions, as a way to 
understand the link between emotional and bodily awareness (Murphy et 
al. 2017). In this work, the TAS-20 Alexithymia test (Bagby et al. 1994) is 
used as a way to measure Alexithymia.

As seen in the above examples, current interoceptive awareness interventions 
determine the desired state for the user and subconsciously guide them to 
approach that state. However, unlike the interventions mentioned above, 
Self-Interfaces identify the relevant aspect of a signal that is normally not 
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felt and simply amplify those aspects of the signal which can potentially 
result in longer lasting effects. This approach is inspired by the work in 
biofeedback training. 

Biofeedback Training
Biofeedback training has been proven effective in various domains. EDA 
Biofeedback Training has been used to control seizures (Nagai and Trimble 
2014; Nagai et al. 2004; Nagai 2011). In these studies, Nagai et al. has 
successfully ran trials with patients with epilepsy where the participant 
was trained to increase their EDA levels through biofeedback to reduce 
the frequency of seizures. Games such as Relax to Win developed by 
the MindGames team in Media Lab Europe (Sharry, McDermott, and 
Condron 2003) have used biofeedback training to reduce EDA levels as a 
treatment for childhood anxiety, phobia, and post-traumatic stress. EEG 
Biofeedback therapy has been used to treat symptoms of ADHD (Lubar 
and Shouse 1976; Shouse and Lubar 1979). While stimulant therapy 
such as Ritalin has shown to not have long-term positive effects on the 
symptoms of ADHD, EEG Biofeedback provides sustained improvement 
on the condition (Monastra, Monastra, and George 2002).  

While these techniques have shown to be helpful, they are contained in a 
lab environment and thus do not give the user an in-depth understanding 
of how their physiological signals are affected on a daily basis. The aim of 
this work is to train the participant to detect changes and find patterns in 
their physiology in relationship to their affective state and behavior through 
persistent real-time biofeedback.
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1.4 Self-interfaces development framework

Self-Interfaces amplify relevant aspects of a physiological signal that is known 
to correlate with a desired behavior in order to help the individuals achieve 
behavior change. Here I introduce the steps for developing Self-Interfaces. 
The next chapter of this thesis applies this framework to a Self-Interface 
case study: the EDA Self-Interface.  

1. Select desired behavior and identify the user group: It is important 
to acknowledge the unique differences in physiological signals that 
may be the result of certain physical or mental conditions. 

2. Select the physiological signal you suspect might correlate with 
the behavior and identify the aspect of the signal that carries the 
most relevance to the desired behavior: As noted above, identifying 
a specific user group will allow for a more targeted study of the 
correlation between a given behavior and the physiological signal.  

3. Provide real-time biofeedback on the changes in the physiological 
signal: Real-time in-the-wild biofeedback via a closed loop system 
can reveal correlations between a person’s physiology, affective 
state, actions, and behavior.

4. Measure results: The success of a Self-Interface can be measured 
by assessing success in any or all of the below categories:

a. Meaningful Insight: After an extended daily use of the Self-
Interface, does the user find patterns and meaningful links 
between the physiological signal, their affective state, and 
their actions?

b. Behavior Change: Does the insight lead to a change in the 
user’s habits and behavior? Is the change automatic or is the 
user aware of this change?
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c. Develop Intuition: After an extended daily use of the Self-
Interface, can the user intuitively “sense” certain relevant 
changes in the given physiological signal without using the 
device? 

Some examples of physiological signal and behavior couplings can be of 
Heart Rate Variability (HRV) and stress (Healey and Picard 2005; Thayer et 
al. 2012), Alpha/Theta brain waves and creativity (Martindale and Hasenfus 
1978), and Electrodermal Activity (EDA) and Attention.

The next section of this thesis explains the development of Electrodermal 
activity (EDA) Self-Interface as a method to increase attention and interest 
in users with ADHD. 
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2_Case Study: EDA Self-Interface

2.1 Introduction

The Electrodermal Activity (EDA) Self-Interface is an interface for 
communicating certain relevant changes in the EDA. Skin conductance 
is a measurement of Electrodermal Activity (EDA), which is an indicator 
of sympathetic activity, known to change with high and low arousal affective 
states. The EDA signal is an interoceptive physiological signal and as such, 
most people are not aware of the changes in their EDA on a regular basis. 
Due to the correlation of EDA with changes in emotional state, interest, or 
attention, an awareness of one’s EDA can give additional insight into the 
perceived physical, emotional, and mental state of a person, and therefore 
has the potential to influence behavior. 

Currently, EDA is commonly used in emotion detection systems and 
algorithms to determine an individual’s affective state. For example in their 
study on call center stress recognition, Hernandez et al. were able to use Skin 
Conductance Levels to distinguish between stressful and non-stressful calls 
at a call center with an accuracy of 73% when the algorithm was trained on 
different people and 78% when trained on the same person (Hernandez, 
Morris, and Picard 2011). The generalizability of these algorithms has 
proven to be difficult due to the idiosyncrasies of each person’s signal. 
High EDA levels can correlate with arousal levels which may depict high 
stress, but can also be interpreted as high excitement or high interest. This 
is because EDA does not measure the valence of a given emotion (Kuppens 
et al. 2013). This is a challenge because valence can easily be determined 
from an individual’s context; their interactions, activity they are engaged 
in, and other indicators such as tone of voice. However, simple sensors 
cannot measure valence. 



33

These factors make EDA a great candidate for real-time biofeedback. People 
are generally able to evaluate the pleasantness or valence of a situation 
through appraisal (Frijda 1986, 1993; Lazarus 1994; Scherer 1993). For 
instance, if I am told my EDA is up, I know whether it is due to a positive 
stress or negative stress as I am experiencing it in real-time. Therefore, a 
heightened awareness of specific changes in an individual’s EDA can give 
them the additional awareness of their arousal level which may lead to 
them gaining interesting insights into their state.  
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2.2 EDA Self-Interface System

The EDA Self-Interface system has three components (Fig. 1): the E4 EDA 
Sensor, the biofeedback device, and a mobile app to process the signal from 
the sensor and send the relevant information to the biofeedback device. 
The three components exchange information via Bluetooth. The following 
sections in this chapter will describe the process for defining the design 
criteria and the development process for the biofeedback device.  

Figure 1: E4 EDA Sensor (left), iOS 
app (middle), EDA Biofeedback Device 
(right). The E4 EDA sensor sends the 
participant data to the mobile app in 
real-time via Bluetooth. The mobile app 
processes the data and broadcasts select 
changes in the signal to the EDA Self-
Interface via Bluetooth.
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2.3 Study_1: EDA Trainer to identify the design criteria

The EDA Trainer study explores whether it is possible to use biofeedback 
and train users to increase their awareness of their EDA after the training 
session. The insights from this study inspired the questions addressed in 
this thesis. 

2.3.1 Design

The main hypothesis is that through biofeedback training, users will gain 
an interoceptive awareness of their EDA levels. To test this hypothesis, 
I developed EDA Trainer to provide real-time EDA biofeedback to the 
participants in a lab setup, and measure their understanding of their EDA 
throughout the session. 

Training and Testing
Each participant completes between two and three rounds of training and 
testing in the 75-minute session. The training stage is 5-10 minutes during 
which the user watches emotionally stimulating content to change their 
EDA level. The EDA level is monitored through the Affectiva Q Sensor 
using gel electrodes. During the training stage, the participant receives 
visual feedback on how their EDA is changing in addition to auditory or 
haptic feedback to augment the visual feedback. 

The test stage consists of the same steps as the training stage with the 
difference that the participant is blinded to any of the feedback (visual, 
auditory, and haptic). The test stage varies between 2-5 minutes and is 
designed to measure whether the participant’s understanding of the change 
in their EDA has increased after each round of training. 
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Content 
The participants are asked to choose the content they are interested in 
watching. For the first Test and Training round, they are recommended to 
choose a content that would create excitement or anticipation from popular 
PG13 movies and TV shows. In the following rounds, the participant is free 
to experiment with various content types to feel how their EDA changes. 
The FilmStim database, which is a database of emotion-eliciting films 
(Schaefer et al. 2010), is also made available to the participant.

Impact Measurement
To measure the participant’s perception of their EDA, a Playstation 4 
controller joystick is used. The participant is asked to input the perceived 
changes in their EDA during all training and test stages. The value from 
the controller joystick is between -1<x<+1. The participant is instructed 
to log positive values for perceived increases in EDA (correlating with a 
positive slope) and negative values for decreases in EDA (negative slope). 
A graph gives visual feedback on the position input over time to the user. 

Experiment Setup
There are four steps in the experiment (Table 1): Onboarding, Training, 
Testing, and Exit Survey. 

Participants are recruited via word of mouth and emails sent to the MIT 
community. On the day of the experiment, the participants are briefed on 
the experiment and are given the consent form. After signing the form, 
the Q sensor is placed on the inside of the participant’s dominant wrist 
using gel electrodes. The participant then fills out the onboarding survey 
which collects demographic data, asks about their perceived understanding 
of their EDA, and takes the TAS-20 Alexithymia test (Bagby et al. 1994).

The next stage is to perform a baseline test. This test is identical to the “test” 
stage described above and is used to determine the participant’s baseline 
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understanding of their EDA, as well as determining their EDA range 
which is used to set the auditory and haptic feedback range. Afterwards a 
minimum of two rounds of training and test follow the baseline test. The 
number of training and test rounds depends on the length of the chosen 
content and varies between 2-4 rounds.

The visual feedback is a graph showing the EDA changes over time and is 
only displayed during the training round. The auditory feedback is a beep 
with different frequencies and different length pause proportional to the 
value of participant’s EDA. The haptic feedback is generated using a 6mm 
ERM motor in a handheld housing. 

After completing at least two rounds of training and test, the participant 
is asked to fill out an exit survey and a short verbal interview to get their 
qualitative view on the experiment and also understand the confounding 
factors that may have influenced their experience.

2.3.2 Results

A total of 7 participants (4 female, 3 male) participated in the study. The 
first three participants were removed from the quantitative analysis due 
to a software bug which corrupted their respective PS4 data points. The 
data were collected in a lab environment and each session approximately 
took 75-90 minutes. The following information was collected from each 
participant: 

Onboarding: Demographics, TAS-20, EDA Awareness 
Experiment: PS4 Joystick, EDA level @2Hz sample rate, Content Type, 
Session Start and End Time 
Exit Survey: Experiment Feedback, EDA Awareness

Table 1. Experiment Flow
Total Duration = 75’
OB: Onboarding (consent form, 
demographics, TAS-20)
TØ: Baseline Test to find EDA range 
and EDA awareness
Tr(x)+T(x): Training and test round 
(xmin = 2 rounds)
XS: Exit Survey + Interview

OB
10’

Tr(x)
10’

T(x)
5’

XS
5’

TØ
5’
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Quantitative Results
To prepare the EDA files for analysis, the EDA data were collected and 
smoothed using a 5th order Butterworth filter. Afterwards the slope of 
the tangent line for every second was calculated (EDA.diff ). Since most 
participants reported that they were more confident detecting increases in 
their EDA, another EDA variable looked only at the positive EDA.diff 
values that show an increase in EDA (EDA.diffNA). 

The PS4 joystick data (PS4) were averaged over every second. Additionally, 
since there is a lag in the EDA response in the participant’s body and what 
is recorded through the device, the PS4 data was shifted by 1 and 2 seconds 
(PS4lag) and both results were compared to the EDA.diff. Lastly, the PS4 
data was also categorized into 5 categories to correct for possible input 
discrepancies due to joystick properties (PS4.simple):

PS4.simple (quick decrease) = -1 for PS4 < -0.90
PS4.simple (med decrease) = -0.5 for -0.90 < PS4 < -0.1
PS4.simple (neutral) = 0 for -0.06 < PS4 < +0.06
PS4.simple (med increase) = +0.5 for 0.06 < PS4 < +0.90
PS4.simple (high increase) = +1 for PS4 > +0.90

These thresholds were defined based on the language used to train the user 
on using the joystick as well as the standard oscillations in the joystick 
when not in use. 

For all four participants, the correlation between the six variables (PS4, 
PS4.simple, PS4lag, EDA, EDA.diff, and EDA.diffNA) were calculated 
using linear regression. For the first three participants, the variable that 
consistently showed an increased correlation during the training round was 
EDA and PS4 (Fig. 2). This shows a misunderstanding on the user’s end on 
what they are supposed to log (absolute value vs. change). The correlation 
results for PS4 and EDA for all four participants are shown below. 
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For participant 07, the researcher guided and reminded the participant 
throughout the process to log the change and not the absolute value. The 
participant reported that receiving the feedback on absolute value but 
logging the change through the PS4 joystick was confusing however their 
results show an increased correlation between EDA.diff and PS4 over the 
course of the training sessions (Fig. 3).

Due to the small sample size and the changes made to the experimental 
design throughout the pilot, the original hypothesis was not evaluated. 
However, the quantitative analysis of the data gave valuable insight that 
will be discussed further in the discussions section.

Figure 2. PS4 and EDA Correlation for 
All Participants

Figure 3. Correlation Results for Participant 
07 between EDA and PS4, and EDA.
diff and PS4
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Survey Results
After the first two participants, the exit survey was modified to include 
more quantifiable data; thus, this section only includes the results from the 
last 5 participants. Four out of five participants reported that they have a 
4/5 (5 being Master EDA Sensor) improvement in understanding their 
EDA. The fifth participant reported a 3/5 improvement in understanding 
their EDA. Four participants reported that they are better able to detect 
their EDA going up, and one person reported that they are better able to 
detect their EDA going down. Four participants find the visual feedback 
to have been the most helpful in gaining a better understanding of their 
EDA. Two participants mentioned that anxiety and stress were the emotions 
that made them learn what their EDA going up feels like. 

For the follow-up study, four participants are interested in participating in 
a follow-up study, the last participant may be interested. All participants 
are interested in having an EDA Trainer to take home which gives them 
feedback on their real-life EDA changes.

Participant 05 raw PS4 and EDA data
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2.3.3 Discussion

In this section I will discuss the modifications that were made to the 
experiment, the limitations and confounding variables that may have 
impacted the outcome of the study, and other interesting findings from 
this experiment.

Updates to the Pilot Design
After three rounds, the pilot study was modified due to a number of reasons. 
This section discusses the modifications and reasons for those modifications:

Haptic vs. Auditory Feedback: The first version of the study only included 
the auditory feedback. Analysis of the first round of qualitative feedback 
showed that the auditory feedback interfered with the audio in the content 
being watched and therefore was not effective. For the next three participants 
the haptic feedback was developed and used in the experiment.

Joystick Plot: The first round of participants showed inconsistencies in 
how they perceived the joystick to function and what they thought they 
should log. After the first round, the experiment was modified to show 
the participant a live visual graph of the joystick input and an orientation 
was given that instructed the user on what they are supposed to log using 
the graph.

Analysis of the second round of experiments also showed a confusion 
with what the participants were supposed to log. To test what the best 
method of communication would be, the researcher gave feedback to the 
last participant (participant 07) as to whether they were logging the correct 
information during the training process. As a result, participant 07 showed 
an improvement in logging EDA.diff after receiving the instructions and 
feedback from the researcher. 

Modified Exit Survey: The exit survey was also modified to collect more 
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quantifiable data on the participant’s interest in a follow-up study, their 
EDA awareness level, and what changes were easier to detect (EDA going 
up or down).

Limitations and Confounding Factors
In this section we will discuss the limitations and confounding variables 
that may have contributed to errors in the results and impacted the outcome 
of the experiment.

Joystick Input: Despite the modifications to the original design of the 
experiment, the joystick input was not intuitive and that resulted in observed 
mistakes even during the training sessions. The participants were told to 
input the slope of the graph however the participants would often log the 
“absolute value” rather than the change in the graph. This inconsistency 
of input even for the same subject may have contributed to errors in the 
results of the experiment. For example, for participant 06 there was a 95% 
correlation between the EDA value and the PS4 input during the training 
round 3, whereas the correlation between the slope (EDA.diff ) and the PS4 
input was 20%. This shows that the participant was following the absolute 
value changes in the EDA rather than slope changes. 

Time Lag: Six participants reported a time lag between when they actually 
felt the EDA sensation in their body and when they saw the change reflected 
in the biofeedback. This resulted in confusion and inconsistency of input 
for the same subject due to not knowing whether to follow the visual graph 
biofeedback or log the perceived change based on the sensation in their body. 

Even if there were no inconsistencies in inputs, it is difficult to determine 
the time lag between the actual sensation and when the sensor receives the 
change. Future experiments need to correct for this time lag and make the 
instructions clear to the user. 
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Averaging of the Data: Both the EDA data and the PS4 joystick data 
were averaged over one second increments. This may have resulted in some 
loss of resolution and reduced sharp transitions. Future analysis may use a 
different optimization method for sampling the data.

Content Type and Session Duration: Due to time limitations, the 
participant was not necessarily tested on the same content type they had 
just trained on. In addition to this, for each test round the participant 
watched a different content type to ensure there is no memorizing of the 
signal changes. These two factors may have prevented a linear improvement 
of outcomes at every step. 

Further findings
In addition to the primary hypothesis, a number of new directions were 
discovered in the course of the study that can be explored in the future work.

Detection of EDA Increase Easier than EDA Decrease: The participants 
reported that it is easier to “learn” the sensation associated with an increase 
in EDA levels than a decrease. 

Content Impact on EDA and Demographics: The participants were often 
surprised by their lack of response to certain content. After learning what 
their EDA feels like, one participant commented that certain content used 
to cause their EDA to go up and therefore they used to watch more of 
that specific content. However, as they grew older they stopped reacting 
to that content. 

Asymmetry and Content Type: Sometimes the participant felt their EDA 
changed however the change was not accurately reflected in the graph. One 
hypothesis can be that a certain content type increases the EDA levels 
asymmetrically and therefore measuring EDA levels on both hands can 
show interesting data relating to asymmetry and content type.
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EDA Baseline and Range, and Alexithymia, ADD, Introversion, and 
Culture and Ethnic Background: Although none of the participants in 
this study showed to have Alexithymia, there have been clear differences 
between EDA baseline and range between different participants. Since the 
sample size is too small, it is not possible to come to any conclusive results. 
However, in addition to data on Alexithymia, future work can collect data 
on ADD and Introversion/Extroversion, as well as more detail on the 
culture the participant identifies with the most (beyond their ethnicity) to 
find possible correlations.

2.3.4 Future Work

Although the users have reported an increase of awareness in their EDA 
levels, the outcome was not conclusive in the analysis of the quantitative 
results. This section explains the opportunities presented for future work in 
this area. The insight from this section played a significant role in shaping 
the design of EDA Self-Interface and the subsequent studies.

Biofeedback Design
Originally the idea was to give the participant a choice of haptic or auditory 
feedback in addition to the visual feedback on their EDA. However, after 
the first few sessions, it was brought up that the auditory feedback interferes 
with the content that has audio and resulted in participants tuning out the 
feedback signal. Therefore, the haptic feedback was developed and used for 
the remaining participants.

The haptic feedback was designed to “beat” at a faster rate as the EDA goes 
up. This ended up being problematic for the user since it would show the 
absolute value of the EDA and not how EDA is changing (for example a 
sudden increase in EDA would feel relatively the same as a slower increase 
since it is only showing the absolute value). This was especially problematic 
for the participants or content that had a small overall range with many 
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smaller ups and downs. The overall magnitude stayed relatively the same 
and therefore the feedback barely felt different during those sessions. One 
future direction would be to test various designs and find the most effective 
feedback for the user prior to conducting the study. 

Impact Measurement Methods
This study used the PlayStation 4 Joystick to log the perceived EDA 
changes. This method could have had a negative impact on the outcome of 
the research due to unfamiliarity of the user with the joystick, unawareness 
of how much force is required to affect the outcome, or confusion regarding 
documenting the absolute value of EDA or the change in EDA.  Future 
work in this area needs to find the most intuitive way for the user to report 
their perceived changes in the EDA. One method could be to use a slider 
with discrete states (high decrease, medium decrease, neutral, medium 
increase, high increase) instead of using a continuous input joystick. 

Training Content and Duration
A common problem in this experiment is that people show different 
responses to video content. Some participants showed great interest and 
engagement with all content whereas other participants’ EDA signal barely 
changed with the video content. Additionally, some genres did not have 
any particular effects on the participant compared to other genres. 

Real life scenarios on the other hand will affect EDA levels in more varied 
ways and can make a larger impact on the participant’s awareness of their 
EDA. Therefore, it will be beneficial to conduct a longitudinal study with 
an EDA biofeedback wearable device to give the participant awareness of 
their EDA in real-life settings. The insights from real-life EDA- impacting 
scenarios can then be used to find the most effective content type for the 
participant.

This insight played a significant role in inspiring the EDA Self-Interface. 
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Sensation or Biofeedback
Another future work is to determine once the participant has been trained 
to “feel” their EDA, if false biofeedback signals will make them falsely “feel” 
a change in their EDA levels. For example, one way to test this would be 
to instruct the participant to solely report the changes in their EDA based 
on physical sensation (not biofeedback) and to see if they log changes for 
false signals.

Bi-directionality of Biofeedback Signal
One of the main inspirations for this work is to explore the possibility of 
passive regulation of EDA levels using biofeedback. Can the signal used 
to train the participant to “feel” their EDA become bi-directional? Can it 
be used to passively regulate the participant’s EDA levels?

The work on brain plasticity and sensory substitution such as the Vest 
(Novich and Eagleman 2015) shows that the brain is able to link certain 
signals to internal changes in the body and cognition. One hypothesis 
would be that if the user trains long enough with the EDA Trainer, their 
brain would link the changes in their EDA to the biofeedback signal. That 
signal can be used to passively regulate EDA levels.

Additionally, if the finding that an increase in EDA is easier to detect, one 
future direction might be to use false biofeedback for the EDA decrease 
since the participant may rely more heavily on the biofeedback for a decrease 
in their EDA. 
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2.4 Study_2: Haptic Study to identify the most intuitively 
interpreted signal under cognitive load

The EDA Trainer study emphasized the importance of the design of the 
biofeedback signal. Based on this insight, as part of the testing protocol for 
the EDA Self-Interface, I incorporated a calibration step where I, along with 
the user and using other insight from literature, customized the biofeedback 
to match the user’s mental model. During the initial qualitative user testing 
(discussed in detail in section 2.6), I found that the users find it difficult 
to effortlessly interpret the biofeedback signal while engaged in other 
activities. Upon further inspection of literature, it became clear that there 
are no clear guidelines that examine the design and interpretation of haptic 
signals under cognitive load. This insight motivated the following study. 

Haptics signals have gained popularity as an alternative to traditional 
Graphical User Interfaces (GUIs). This interest is primarily because haptic 
signals can be perceived in an ambient, discrete, and passive manner 
(MacLean 2009) and with a smaller response time compared to visual 
and auditory modalities (Scott and Gray 2008). Additionally, haptics have 
been shown to be a robust alternative to visual communication methods 
when the user’s visual channels are under high cognitive load (Enriquez 
2008). Thus far, much of the work on haptics has been focused on low-level 
perceptual studies such as defining haptic properties (Enriquez 2008; S. A. 
Brewster and Brown 2004) and studying the perceptual limitations such 
as just noticeable differences ( JND) of those properties (Gunther 2001; 
Pongrac 2007), on perception and mapping of haptic patterns (Mojtaba 
Azadi and Jones 2014; Lee and Choi 2012), or on meaning association of 
haptic patterns (MacLean 2008; Hasti Seifi 2019; Hasti Seifi and Lyons 
2016). Despite the widely-held expectation that haptics are effective ambient 
interfaces, prior empirical work examines haptics in isolated environments 
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where the participant’s attention is focused entirely on the haptic task. 
There is a gap in systematically studying how these haptic properties and 
patterns are interpreted ambiently under cognitive load. 

The purpose of this study is to understand each haptic property – amplitude, 
waveform, duration, rhythm, and spatio-temporal pattern – as first introduced 
by Brewster et al (S. A. Brewster and Brown 2004), and evaluate how 
effectively they encode information under cognitive load. We conduct a 
study with 16 participants, who each wear a haptic feedback device on their 
forearm. Participants perform a primary delayed response task the 1-back 
task (Mehler, Reimer, and Dusek 2011) and are asked to simultaneously 
interpret a haptic signal. The haptic signal encodes data using only one of 
the five properties, and we determine the degree to which it interferes with 
the primary task by measuring the time taken by participants to respond, 
and their error rate. We also administer qualitative and quantitative post-
study surveys (e.g., the NASA-TLX(Hart and Staveland 1988; Hart 2006)) 
to gather participants' subjective experiences and preferences.

This study titled “The Effectiveness of Haptic Properties Under Cognitive 
Load: An Exploratory Study” is done in collaboration with Nathalie Vladis, 
Yuanbo Liu, and Arvind Satyanarayan.

2.4.1 Related Work

Chan et al. (Chan, MacLean, and McGrenere 2008) identify four factors 
when designing haptic signals: how easily stimuli can be associated with 
the target meaning, how easily discernible an item is in a set, the salience of 
an individual stimulus, and whether that saliency persists under cognitive 
workloads. Prior work in haptics has primarily focused on the first three 
components. For instance, studies have been conducted to determine the 
perceptual limitations of haptic properties including identifying the just 
noticeable differences ( JND) in amplitude, frequency, and rhythm (Gunther 
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2001; Summers et al. 1997; Pongrac 2007), the thresholds for identification 
(M. Azadi and Jones 2013), discrimination (Israr, Tan, and Reed 2006) and 
resolution (Meier et al. 2015), and the impact of body location (Mojtaba 
Azadi and Jones 2014).

Researchers have begun to codify these experimental results into heuristics 
and tools for haptic design. For example, Ternes and MacLean proposed 
and empirically validated a series of heuristics for rhythm design (Ternes 
and MacLean 2008) finding that note length and unevenness are key 
characteristics for discriminability. Similarly, Israr et al. introduce a library 
of haptic vocabulary, or mappings between linguistic and haptic patterns 
and, through VizBiz (H. Seifi, Zhang, and MacLean 2015), Seifi et al. 
taxonomize haptic characteristics and expose it via an interactive tool for 
end-user customization.

Despite this work, and a long-running recognition that design guidelines 
can spur the development of new haptic interfaces (MacLean 2008), much 
current-day haptic design remains ad hoc. Designers often approach their 
respective problems through an iterative approach and by testing each 
iteration (e.g., as described by the authors of ActiVibe (Cauchard et al. 
2016) or HaNS (Tam et al. 2013)). Where current haptic guidelines have 
been used, designers have found them wanting. For example, Prasad et al. 
(Prasad, Russell, and Hammond 2014) use waveform and spatio-temporal 
patterns to communicate verb phrases through haptic models, and their 
design choices are informed by the heuristics described above.  However, on 
evaluating these designs, haptic performance fared poorly in comparison to 
auditory performance – these performance differences are not well-captured 
by existing design guidelines.

We believe that this gap is due to a lack of work around Chan's fourth 
factor: how well the saliency of different haptic characteristics persists under 
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cognitive load. Most empirical work around haptics has had participants 
attend primarily to the haptic signal, which does not mimic the real-world 
use cases of haptics as transparent interfaces (MacLean 2008). When haptic 
interfaces have been studied in situ (Tam et al. 2013), it has not followed 
the systematic approach of empirical studies. Thus, it has been difficult 
to refine existing design heuristics and guidelines to reflect the cognitive 
performance of different haptic characteristics.

Our work begins to address this gap. We isolate five haptic properties 
from Brewster et al.'s taxonomy (S. Brewster and Brown 2004) – 
amplitude,waveform, duration, rhythm, and spatio-temporal pattern – and 
have participants perform a delayed digit recall task – the 1-back task – 
designed to emulate the auditory and memory load of daily tasks (Mehler, 
Reimer, and Dusek 2011). We measure participants' performance and error 
rate on both tasks, and gather qualitative and quantitative preferences via 
the NASA-TLX survey (Hart and Staveland 1988; Hart 2006). This setup 
is inspired by work in the automotive industry examining the cognitive 
impact of car interfaces on drivers (Mahr et al. 2012) as well as work 
studying the impact of multi-modal interfaces on cognitive load (Leung 
et al. 2007). Our goal is similarly inspired by work on graphical perception 
in the data visualization literature (Cleveland and McGill 1984) which has 
developed an ordering for the effectiveness of visual encoding channels 
(e.g., position, color, size).  

2.4.2 Design

Haptic Device Prototype
For this study, we used the same haptic biofeedback device that is developed 
for the EDA Self-Interface system. This section provides a brief overview 
of the device however the details for design and development of the device 
is covered in section 2.6.
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The haptic device (Fig. 4) consists of four Linear Resonant Actuators 
(LRA). Each actuator is driven by a motor driver (DRV2605L) that has a 
preset library of over 100 waveforms and amplitudes. Each motor driver is 
connected to the Bluetooth-enabled Arduino board via a multiplexer for 
individual control. The LRAs are chosen instead of the Eccentric Rotating 
Mass motors due to their robustness, the consistency of the vibration pattern 
they produce and their efficiency. Four motors are arranged in a line to 
create the spatio-temporal pattern experimental condition (explained in the 
next section). Each actuator has a 3D-printed housing and is embedded 
in a high performance, skin-safe silicone rubber casing. The silicone casing 
conforms to the user’s body. This design allows for maximum skin contact 
with the actuators and the silicone provides the flexibility needed for the 
device to maintain full contact with the skin. The device is secured to the 
participant's forearm using medical-grade tape. A number of physical forms 
were explored for the design of the silicone casing, ranging from more device-
like to biologically inspired forms. The final design used in this experiment 
was in between the design spectrum of the two typologies. Additionally, 
the design iterations explored a 2x2 arrangement of the actuators as well 
as a linear arrangement. The linear arrangement was selected because it 
allowed for exploration of multiple spatio-temporal patterns and sequences. 

Experimental Design
To determine the effectiveness of haptic design while under cognitive load 
(the fourth goal identified by Chan et al. (Chan, MacLean, and McGrenere 
2008), we conducted a within-subjects laboratory study with five conditions. 
Participants performed two tasks simultaneously: the 1-back delayed 
response task, and a haptic detection task where the gradient of the signal 
was encoded using one of five haptic properties identified by Brewster et 
al. (S. Brewster and Brown 2004).

(c)

(a)
(b)

Figure 4. Assembly diagram of the haptic 
device.  (a) actuator housing (b) Four 
LRAs (Linear Resonant Actuators) (c) 
silicone casing. The version of the device 
used in this experiment did not have the 
wings that normally hold the adhesive 
because the experiment only had to be 
temporarily attached to the participant 
instead of a full day. 
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1-back Task
The 1-back task is a delayed digit recall task developed by the MIT Agelab 
(Mehler, Reimer, and Dusek 2011). The participant is presented with a 
random sequence of recorded auditory stimuli (single digits 0-9, recording 
provided by Mehler et al. and MIT Agelab) and are required to respond 
with the next-to-last stimuli presented. This task design approximates the 
type of auditory and memory load that is induced in daily tasks (e.g., having 
a phone call or a conversation). We measured participants' error rate and 
recorded their voice to later identify their response time. Each experimental 
condition comprised 60 digits, with the first 10 digits used to establish a 
participant's baseline performance before the secondary task was introduced.

Experimental Conditions: Haptic Gradient Detection Task
For the secondary task, participants were asked to identify the gradient 
of the haptic signal using their dominant thumb (i.e., thumbs up if they 
perceive the signal to be increasing, and down for decreasing). The signal 
was encoded using only one of five properties drawn from Brewster et al 
(S. Brewster and Brown 2004). We were unable to study frequency due to 
limitations with the actuators we used in our prototype device. We further 
eliminated body location based on feedback from pilot study participants 
described in the subsequent subsection. To reduce confounds, each condition 
was optimized using existing just noticeable difference ( JND) guidelines, and 
was further refined through piloting to ensure discernibility. Additionally, 
during an initial training phase, the amplitude was tuned to ensure the 
lowest vibration can be felt by the participant. We used an 80% amplitude 
base wave as the basis for all signals, and based on the participant sensitivity, 
the lowest threshold was set to either 40% or 60%. 

The five experimental conditions are as follows (see Fig. 5): 

1. Amplitude, or varying the intensity of stimulation. In our design 



54

the up signal was stronger (100% amplitude) than the down signal 
(40% or 60% based on participant sensitivity).

2. Rhythm, or varying how pulses are grouped, or the spacing between 
pulses. In our design, we used 3 pulses for both conditions. The up 
signal pulsed more quickly with a 500ms interval, and the down 
signal pulsed more slowly with a 1s interval between pulses.

3. Duration, or varying the length of one pulse. In our design the up 
signal was the same length as the base wave, and the down signal 
was 3x longer than the base wave.

4. Waveform, or varying the shape of the wave. In our design the up 
signal was a ramp going up and the down signal was a ramp going 
down (low threshold set to 40% or 60%).

5. Spatio-temporal Pattern, or changes in active actuators over time. 
As this dimension presents a rich and continuous design space, we 
picked two alternative designs for simplicity. Our haptic device 
has four actuators and in all the above conditions the middle two 
actuators are active. Under this condition, we used the same wave for 
both up and down signals but varied the set of active actuators – the 
first two actuators are active for up and the second two for down.

Pilot Study
We arrived at our experimental design after conducting a series of pilot studies. 
Our pilot design focused on testing two haptic signal designs – signal 1 used 
waveform encoding and signal 2 used a combination of duration and rhythm, 
along two body locations – forearm and upper back, and two spatio-temporal 
patterns – pattern or no pattern, for a total of 8 experimental conditions. We 
installed a haptic device on both body parts at the start of a study session, 
which was broken into two phases: in the first phase, participants felt one 
of the two signal designs on both body parts and with both types of spatio-
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temporal patterns; then, after a 5 minute break, the study resumed with the 
second signal design. Participants were tasked with both the 1-back and 
gradient detection task, and we measured their error rate.  We conducted 
the pilot with 6 participants, who were compensated $10 for their time.

Piloting helped us refine our experimental design. We decided to measure 
response times on the 1-back task, as error rates alone did not reflect 
variations in performance observed by researchers. We chose to additionally 
administer the NASA-TLX survey (Hart and Staveland 1988; Hart 2006) 
to capture participant preferences. Perhaps most dramatically, we scoped 
the final design down to studying each haptic property in isolation. We 
eliminated the body part conditions as participants universally disliked the 
neck position for its inconvenience. Additionally, all participants performed 
better with the second haptic signal design but it was difficult to ascertain 
why as it entangled two properties (duration and rhythm). Finally, isolating 
haptic properties as experimental conditions affords a more uniform design: 
spatio-temporal patterns are now just one condition, rather than a component 
studied in conjunction with other properties.

Figure 5. The five experimental conditions 
of our study. The top row displays the 
base waves we used, derived from the 
DRV2605 built-in haptic library. The 
left-hand side shows how these base waves 
encode an up or down signal for each 
experimental condition (note, the lowest 
amplitude is set to 40% or 60% based on 
each participant's detection threshold). 
The right-hand side shows which 
actuators are active for the condition.

Base Wave
Amplitudes: 

Active 
Actuators:100% 80% 60% 40% 

Amplitude:

Rhythm:

Length:

Waveform:

Spatio-temporal 
Pattern:

0 1s 2s 3s
Duration:
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Procedure
16 participants (9 female) were recruited via departmental mailing lists and 
through word-of-mouth. They ranged from 21–32 years of age, and received 
a $15 gift card as compensation. The study was conducted in a private 
meeting room on the university campus. In addition to the participant, two 
researchers were also present in the room (Fig. 6) to control and record 
performance on each of the two tasks.

The study took approximately 60 minutes to complete. Participants first 
read and signed a consent form, and researchers provided an overview 
of the study and explained its goals. The 1-back task was explained, and 
participants had the opportunity to practice. Once participants felt ready, 
researchers installed the haptic device on participants' non-dominant hand, 
and explained the haptic task. Participants were given a demo of the up and 
down signal variants for the first condition, and were instructed to use their 
dominant thumb to indicate the direction they perceived the haptic signal. 
Participants received 10 random trials of the up or down signal, to practice 
interpreting the haptic signal, and indicating its gradient. If participants 
were unsure of the gradient, they were instructed to leave their thumb in 
the horizontal position. We generated 20 random orderings of conditions 
and assigned them to participants. We tried to split the orderings evenly 
amongst male and female articipants 

Figure 6. The study setup: (a) one 
researcher conducted the 1-back task, and 
recorded errors from (b) the participant; 
(c) another researcher provided the 
haptic stimulus and recorded errors to 
the secondary task; (d) the participant 
used their dominant thumb to indicate 
a signal up or down; (e) the haptic 
device was worn on the participant's 
non-dominant forearm, and was (f ) 
connected to the researcher's laptop.

(c)

(b)

(a)

(d)

(e)
(f)
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Once training was complete, and once participants were ready, they began 
to perform the two tasks simultaneously. For each condition, participants 
received the first 10 digits (of 60 total digits) of the 1-back task without 
any haptic signal to establish a baseline. We determined performance by 
measuring participants' response time and error rate on each task. 

At the end of each condition, participants completed a short survey to 
determine the interpretability of the signal.  This survey also contained 5 
questions from the NASA-TLX measured on a 5-point Likert scale: (1) 
How mentally demanding was the task? (2) How hurried or rushed was the 
pace of the task? (3) How successful were you in accomplishing what you 
were asked to do? (4) How hard did you have to work to accomplish your 
level of performance? (5) How insecure, discouraged, irritated, stressed, and 
annoyed were you? Finally, participants were asked to provide any open-
ended feedback about the condition's haptic signal design.

At the conclusion of the study, participants completed an exit survey. The 
survey collected demographic information including their age, gender, 
ethnicity, and native language – native language was asked to determine 
the cognitive load imposed by the 1-back task on non-native speakers. The 
survey also asked participants to rank the different conditions based on 
difficulty in the training and test phases, comment on their current or past 
use of wearable devices, their preference with regards to body placement 
of the device, and any comments about their overall experience.

2.4.3 Results

We used non-parametric statistical methods throughout the analysis to 
account for the skew in the data and the fact that some responses were 
ordinal (e.g. Likert Scales). When comparing time or performance scores 
across conditions, we used the Kruskal-Wallis test, which allowed us to assess 
whether there was a difference in the median values between the five haptic 



58

conditions. For all other pairwise comparisons, we used the Wilcoxon test 
for data coming from the same participant (with R’s wilcox.test function 
with argument ‘paired’ set to ‘True’)  and the Mann-Whitney test for 
independent samples (R’s wilcox.test function with argument ‘paired’ set to 
‘False’). For each raw p-value reported in the analysis, we also provided an 
alternative adjusted p-value computed via the Holm method. Out of the 16 
participants, 9 were female, and 7 were male. To facilitate reproducibility, our 
collected and analysis notebooks are included as supplementary material.

Response Time Comparisons
We observed that participants were faster in Amplitude, followed by 
Duration, Spatio-Temporal Pattern, Rhythm and Waveform. Following 
a statistically significant Kruskal-Wallis test (H=10.251, df = 4, p-value = 
0.0364), a post hoc pairwise comparison with the Wilcoxon test indicated 
that Amplitude median time was significantly shorter compared to both 
Rhythm (V = 6, p-value = 0.0004272, Holm adjusted p-value = 0.0038) and 
Waveform (V = 3, p-value = 0.0001526, Holm adjusted p-value = 0.0015) 
(results figure in Fig. 7). 

We also found that Rhythm was significantly longer than Duration (V = 
17, p-value = 0.006287, Holm adjusted p-value = 0.0503); however, this 
effect was attenuated after Holm’s adjustment in the pairwise comparison, 
it remained statistically significant. Overall, we visually observe that female 
participants had longer times but also more widely spread distributions 
compared to males (see Fig. 8).

Figure 7. P-value Summary from Post 
hoc Pairwise Comparisons Using 
Wilcoxon Signed Rank Test with Holm 
Adjustment.

Amplitude Pattern Rhythm Waveform

Pattern 0.203 - - -
Rhythm 0.004 0.392 - -
Waveform 0.002 0.701 0.991 -
Duration 0.701 0.991 0.050 0.392
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Performance in the 1-back Task across Conditions
Although we did not obtain statistically significant differences amongst 
conditions (see Fig. 9). We did observe a visual trend in increased performance 
at the 1-back task for Amplitude and Duration (see Fig. 9). We also observed 
that performance in Rhythm was the lowest. When breaking down results 
by Gender, we found that males scored significantly higher in Rhythm 
(W = 12.5, p-value = 0.048) and we almost found a significant difference 
in Spatio-Temporal Pattern (W = 14, p-value = 0.068). While the Holm 
correction attenuates these effects, we see in the raw data that in contrast 
to female participants, all males consistently score above thirty points.

Figure 8. Response Time Differences by 
Gender across Conditions.
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Performance in the Haptic Gradient Detection Task
While the Kruskal-Wallis analysis between conditions did not yield 
statistically significant results, we observed higher scores during both 
Amplitude and Duration which interestingly yield very similar distributions 
(see Fig. 10). Similarly to the scores from the 1-back task, we also see a 
decrease in performance in Rhythm for both male and female participants. 
After conducting a more in-depth comparison between males and females 
showed a difference nearing significance in Spatio-Temporal Pattern (W = 
16.5, p-value = 0.095). While the Holm correction further attenuates these 
effects, upon visual inspection, we can see that scores from male participants 
tend to aggregate towards higher values on the scale (see Fig. 10).

Figure 9. 1-back Task Scores.
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NASA-TLX Survey Responses
A subset of questions from NASA-TLX allowed us to learn more about 
each subject’s perceived workload and performance for each condition 
(see Fig. 11). We observed that overall participants scored Amplitude as 
the least demanding condition (Question 1) but also the most successful 
(Question 3). Interestingly, this is consistent with both time and performance 
data. Besides, Amplitude was the task where participants reported having 
worked the least hard to achieve their level of performance (Question 4) 
and being the least insecure (Question 5). On the other hand, Waveform 
and Spatio-Temporal Pattern ranked overall highest in mental demand 
(Question 1). Waveform was, on average, ranked as the most difficult 
(Question 4) as well as least successful (Question 3). When we took a 

Figure 10.  Haptic Gradient Detection Scores.
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closer look at differences between genders, we observed additional trends. 
In all conditions except Amplitude, female participants rated themselves 
as least successful as male participants did. Female participants also rated 
Waveform as the most mentally demanding (Question 1) and most difficult 
condition (Question 3). Male participants rated Duration on average as 
the most mentally demanding (Question 1) and most difficult condition 
out of the five (Question 3). Lastly, we observed that female participants 
rated themselves consistently higher than their male counterparts across 
conditions as more insecure, discouraged, stressed, and annoyed (Question 5). 

We asked all participants to rank the five conditions based on how easily 
they were able to discern haptic patterns before and after combining it 
to the 1-back task with ‘1’ being the best and ‘5’ the worst condition. We, 
subsequently, averaged those responses and grouped them by gender.

While the sample size was relatively small, and the statistical tests were 
not significant, we were able to observe several trends (see Fig. 12). Both 
male and female participants ranked Waveform and Rhythm as more 
difficult and Amplitude as less difficult when the 1-back task was added. 
Interestingly, for Duration and Spatio-Temporal Pattern opinions shift 
between genders. Opposite to females, males ranked Duration as harder 
and Spatio-Temporal Pattern as easier. These results are consistent with the 
NASA-TLX Survey responses as well as with the time and performance 
scores described in previous sections. 

Response Time Trends across Trials
We computed rolling averages to uncover patterns relative to the passage 
of time within each condition. A window of four, allowed us to smooth the 
lines enough so that trends become more prominent while preserving most 
of the original structure in the data (see Fig. 13). A steep slope becomes 
apparent as participants transition from the training phase (Trials 1 to 
10) to the experimental phase, where they become exposed to the haptic 
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Figure 11. NASA-TLX Responses by 
Gender across Conditions

Figure 12. (left) Changes in participant preference ranking of 
experimental conditions before (during the trial period of the 
haptic gradient detection task) and after (during the combined 
haptic gradient detection task and the primary task)

Figure 13. (right) Response Times across 
Trials
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signal. Strikingly, response time remains relatively stable in Amplitude 
while it increases in Waveform and Rhythm which suggests that there is 
no habituation for these two conditions. Lastly, we observe an increase in 
response time across all five conditions after the fiftieth trial. 

Summary
The three data points collected from the experiment were the response time 
data from the n-back task, the performance score on the n-back task, and 
the performance score on the up/down Haptic Gradient Detection task. 
We consider the response time in the n-back task to be a good indicator of 
cognitive load imposed on the participant by the haptic condition. 

Results from all participants showed that the response time for Amplitude 
was significantly shorter than Rhythm and Waveform. Amplitude was 
followed by Duration which was significantly shorter than Rhythm as 
well. Although we did not find any statistically significant results on the 
performance score on the n-back task and on the haptic task, we observed 
a visual trend whereby participants performed best on both tasks with the 
Amplitude and Duration condition. Interestingly, the participant preference 
on the NASA-TLX survey validated this finding. Overall, participants 
found Amplitude to be the condition ranked as least demanding and most 
successful.

On the other hand, while not statistically significant, our results revealed that 
Waveform followed by Rhythm were the two conditions the participants 
took the longest to complete. We also found the lowest scores in Rhythm 
and Spatio-Temporal Pattern on the n-back task, and Rhythm, Waveform, 
and Spatio-Temporal Pattern on the haptic task. This finding also aligned 
with the NASA-TLX results where Waveform and Spatio-Temporal 
Pattern ranked as highest mental demand, and Waveform was ranked as 
least successful and most difficult. 
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2.4.4 Discussion

In this study, we begin to systematically study how effectively different 
haptic properties are able to encode information under cognitive load. In 
contrast to prior studies, where participants primarily attend to the haptic 
task, our work takes one step closer to the in situ, real-world situations 
where haptic feedback is perceived in an ambient fashion. In addition to 
revealing differences in response time and error rate, our results also show 
that the participant preferences change when ranking a haptic property in 
isolation compared to ranking it in the context of a primary task (see Fig. 
fig:before_after_difficulty). In this section, we will discuss the implications 
of our findings on the design of haptic interfaces, as well as limitations and 
future directions.

Impact of Signal Length and Time
Our results showed that the Amplitude and Duration conditions 
outperformed Waveform and Rhythm. One explanation for this result might 
be differences in the length of the haptic signal. Analyzing participants' 
qualitative feedback revealed that longer signals, and especially the signals 
that change over time, are more difficult to understand during a simultaneous 
task as they require shifting attention for a longer period of time. On the 
other hand, signals that are instantly distinguishable and identifiable are 
easier while performing a simultaneous task. Although this point was noted 
by six participants in some way, one participant noted that Waveform was 
their favorite condition because they could take their time to process the 
signal and attend to it at their convenience. This contrast in opinions may 
suggest that people employed differing cognitive strategies to complete the 
two tasks, which impacted the signal design they preferred.
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Baseline Independent Signals
The post-experiment survey also revealed that the participants preferred 
signals which did not rely on a baseline comparison. For example, the 
Waveform condition used a ramp design to indicate up or down. Therefore, 
the difference between the two signals was inherently built into each signal 
and did not rely on a comparison between the two signals. This can be 
an important factor to remember when having more than two signals to 
communicate or when the frequency of information being communicated 
is low (e.g., one signal every hour). However, if the difference between the 
two signals is very clear (e.g., low amplitude is perceptible but extremely 
weak and high amplitude is very strong), participants do not perform a 
comparison between the two signals, and thus such an encoding can also 
be used in less frequent applications.

Participant Mental Model
The last important factor that impacted participant preference was how 
well the signal matched the user's expectation or mental model. Specifically, 
we found that some participants did not find the Spatio-temporal pattern 
intuitive due to the horizontal orientation of the haptic device on their 
forearm. Ironically, we chose this orientation specifically for this experimental 
condition, hypothesizing that it may be beneficial to the actuators aligned 
along the cutaneous nerves (Gray and Goss 1974). This decision resulted 
in a trade-off for intuitiveness because the vertical orientation may have 
better matched participants' mental model for up/down. One interesting 
observation is that one participant had a 0% accuracy on the up/down 
task in the Spatio-temporal pattern condition. This participant noted that 
because the reverse pattern made more sense, they subconsciously adjusted 
the encoding to mean the reverse of what the experiment had intended. They 
realized this reversal mid-way through, but decided to continue with their 
preferred encoding. As a result, we counted their accuracy on this test as 100%.
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Individual Preferences
Our results also point to several opportunities for personalizing signals 
based on perception thresholds and individual preferences. In the qualitative 
surveys, we find that subjective ratings and comments were not uniform. For 
example some participants found Waveform and Rhythm to be the most 
intuitive whereas others found them the least intuitive. Although Amplitude 
and Duration were statistically shown to impose a lower cognitive load 
overall, the impact on performance based on individual preferences should 
be studied further. The minimum and maximum comfortable amplitude for 
participants was also different. Thus, it is important to do a calibration phase 
to ensure that the highest amplitude does not startle the participant and 
that the lowest amplitude can be felt but is not too strong. This calibration 
can also become a standard feature in developing wearable haptic devices 
where the user can set their minimum and maximum desired amplitude 
and that can be applied to all haptic signals used in the device.

Limitations
Our results indicate that participants' gender or native language significantly 
affects performance and preference. As most of our female participants 
were also non-native English speakers, it is difficult for us to disentangle 
these two factors. The male/native group, preferred Duration and Spatio-
temporal patterns and males nearly significantly performed better on the 
Spatio-temporal patterns. Our female/non-native group had, on average, a 
longer  response time across all conditions which may imply an increased 
cognitive load compared to the male/native group. 

Given these differences, future work might consider controlling these 
factors in separate studies. Additional tweaks to the tasks may also help 
better isolate these effects. For instance, future studies may consider using 
a shape-back task (rather than an n-back task). And, rather than asking 
participants to repeat the item out loud, a simple interface (whether paper 
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or digital) could be used (e.g., participants could point or click on the item). 
Such an interface may also provide more precise measurements of response 
times (whereas our current design relied on a digital timer operated by the 
same researcher). Of course, such changes would need to be empirically 
validated outside of the specific context of haptic interfaces to determine 
how they affect participants' cognitive load in comparison to the n-back task.

Our female/non-native population also reported higher stress ratings on the 
NASA-TLX survey. Future work might consider measuring these values more 
precisely (e.g., using electrodermal activity as a proxy (Villanueva, Valladares, 
and Goodridge 2016) to both determine the degree to which self-reported 
scores match, but also to assess the impact of stress on cognitive load and 
the effectiveness of the haptic properties. Such a design may suggest that 
particular properties are more desirable in high- or low-stress environments.

2.4.5 Future Work

This study takes a first step at studying the fourth haptic design factor 
identified by Chan et al. (Chan, MacLean, and McGrenere 2008) how the 
saliency of haptic signals persists under cognitive workloads. Our results 
suggest several promising directions for future work. 

To simplify our experimental design, we chose only a single body location 
and two spatio-temporal patterns. Future research should investigate the 
degree to which positioning the device for the motor clusters to be supplied 
by different cutaneous nerves makes a difference in participant performance 
(Gray and Goss 1974). Similarly, future work could investigate the effect 
of spatio-temporal patterns on various body parts – in our pilot we found 
that the perception of signal in the neck is different from the upper back. 
Moreover, sensors placed on bones produce different sensations compared 
to fatty tissues, and some body locations offer the opportunity to include 
the two in close proximity (e.g., the chest). In the post-experiment survey, 
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participants reported wrist, hand, forearm, belly, back, neck, and arm as 
possible locations they would consider using a haptic wearable device. 
Two participants noted that they would have different preferences based 
on the specific use. These body placements can be explored as alternatives. 

Perhaps most exciting is systematically extending the design of the haptic 
signal. To scope our study, we made two simplifying choices. First, our 
haptic signal encoded only a single bit of information: whether the signal 
is going up or down. Prior work, although it has not studied the cognitive 
workload impacts, has used haptic feedback to encode discrete (nominal or 
categorical) information (i.e., tactile icons). How to use haptic feedback to 
communicate continuous or quantitative information remains a rich and 
open question. Our results already indicate that there may be an effectiveness 
ordering to the haptic properties (see Fig. fig:rolling_time). Extending our 
work to these alternate data types will allow us to develop this ordering 
more robustly (akin to the effectiveness orderings for visual channels by 
data type (Munzner 2014). Second, we chose to study each individual 
haptic property (e.g., amplitude, waveform, duration, etc.) in isolation. 
During our pilot studies, we observed that if multiple properties were used 
to encode information redundantly (e.g., via amplitude and duration) or 
different properties were jointly used (e.g., three short pulses for going 
up vs. one long pulse for going down), it was easier for the participant to 
understand the data. Here too, the visual perceptual psychology literature 
offers some inspiration by studying and categorizing visual channels as 
integral, separable, or asymmetric (MacEachren 2004).
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2.5 Study_3: ADHD and EDA to identify the user group and 
the relevant aspects of the signal

This is an on-going study which corresponds to the steps 1 and 2 of the 
Self-Interface Development Framework (section 1.4); identifying a desired 
behavior and the physiological signal that correlates with that behavior. 
While conducting the EDA trainer study, a unique characteristic of tonic 
EDA changes (Boucsein 2012; Kreibig 2010) in certain participants was 
observed where their tonic EDA level was very low (<1 μs) and some 
phasic changes were present but certain activities would drastically increase 
the baseline and amplify the phasic changes. In our small sample, this 
characteristic was only present in the two participants with Attention 
Deficit Hyperactivity Disorder (ADHD). Experiment 3 was conducted 
to investigate this relationship further, and identify specific aspect(s) of 
the EDA signal that may correlate with increased attention and interest 
in ADHD participants. 

2.5.1 Motivation

Electrodermal Activity (EDA) has been used widely as a measure for 
arousal levels. My hypothesis is that certain patterns in the EDA might 
be correlated with ADHD (Attention Deficit/Hyperactivity Disorder). 
The specific EDA pattern could suggest that activities such as exercising 
influences the EDA pattern in people with ADHD in a positive way. This 
finding is aligned with other literature that uses exercise as a natural way 
to increase focus in people with ADHD (Archer and Kostrzewa 2012; 
Heijer et al. 2017; Fritz and O’Connor 2016).

Additionally, currently the only method for diagnosing ADHD is through in-
person diagnosis by a therapist, or by conducting tests. There has been much 
controversy surrounding diagnosis of ADHD and the validity of the tests (Santosh 
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et al. 2005). If our hypothesis is true, it can become an objective and quantifiable 
method for diagnosing ADHD. In this study I will be testing this hypothesis 
with the ADHD population in order to validate/invalidate the hypothesis.

Lastly, studies have shown comorbidity of ADHD and other habit-forming 
illnesses such as alcoholism and substance dependence (Ohlmeier et al. 2008). 
This study seeks to understand the impact of alcohol or drug consumption 
on EDA in ADHD patients. 

2.5.2 Design

Experimental Design
The purpose of this study is to understand the EDA characteristics in 
individuals diagnosed with ADHD, and how these characteristics are 
impacted by activities such as exercising, and caffeine, drugs, and alcohol 
consumption. This study is designed as a longitudinal study where the 
participants wear the E4 EDA sensor 24 hours a day and for 10 days while 
documenting their activities in detail.  More specifically, the following data 
is collected from each participant: 

1. Empatica E4 sensor: The sensor will record participants’ skin 
conductance level (EDA), heart rate, temperature, and acceleration 
on both wrists. 

2. Two daily Surveys: The two surveys are distributed throughout 
the day; one at 3 pm reporting on their activities from when they 
woke up, and the other before going to bed. The two surveys are 
collected on Qualtrics platform. 

3. 3-5 Random Probe Short Surveys: The short survey is intended 
to capture the user’s state at the very moment they are probed 
and is very short. 

4. On-boarding and exit surveys and demographic information
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Daily Surveys
Twice every day, once at 3 pm and other before going to bed, the participant 
is prompted to itemize activities that have occurred in 30 minute increments. 
Additionally, they are asked to list the most exciting, anxious, or tense event 
as well as the most relaxing or peaceful event, and the event with highest 
focus during the day among the ones reported, and the times in which 
those events occurred. They are also asked to report the times of exercise as 
well as their alcohol, drug, and medication usage amount and time. Every 
night, they will be asked to report any issues they had complying with usage 
criteria during the day, and will be asked to check and charge the sensors. 

Random Probe Surveys
Each day participants will receive 3-5 random triggers via a secure online 
app, Ethica (“Ethica,” n.d.). This survey asks the participant to report their 
focus, stress, anxiety, relaxedness, happiness, and pleasure levels as well 
as the activity they are doing at that moment. Because the daily surveys 
have a 30 minute window for every activity reported, the random probe 
is designed to capture the accuracy of the reported data and have at least 
three well-synchronized data points. 

Procedure
The study has three phases; a one hour on-boarding session, a 10 day data 
collection, and a short off-boarding session. The criteria for participation 
is carrying an official ADHD diagnosis and engaging in physical activity 
that raises your heart rate for at least 20 minutes every day. During the 
on-boarding process, participants will receive the study information, copies 
of consent forms, and complete measures of personality using the Big 
Five Inventory – BFI ( John, Srivastava, and Others 1999), Edinburgh 
handedness Inventory short form – EHI (Veale 2014), alexithymia – TAS-
20 (Tsaousis et al. 2010) and trait level anxiety – STAI-20 (Spielberger 
1983). The participants will also fill out a survey to record basic demographic 
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information. The researcher will then discuss specific details about the 
study protocol, apply the sensor and provide instructions for care, install 
the software and provide a tutorial for uploading the data, and complete 
the installation for the app providing the short surveys. Additionally, the 
specific details of the study protocol and the procedures that need to be 
followed by the participant will be communicated during this period. The 
participants are instructed to wear one or two EDA (E4 or Q Sensors) on 
one or both wrists throughout the day.  The participants will be informed 
to remove the sensors during showers or other water activities. Lastly, they 
will be assigned a participant ID which is the ID used by the participant 
in the surveys and online reporting of their activities. Every morning, the 
researchers will review participants’ logs and message subjects to remind 
them to report missing data. At the end of the study, participants will 
be asked to do an exit survey which asks about their experience during 
the study as well as any history of addiction and/or depression and their 
history of drug and alcohol usage. This survey is collected in person as part 
of the off-boarding process. All the data collected is deidentified and the 
participant is only identified by their participant ID. 

2.5.3 Discussion and Future Work

This work is currently in the data collection phase which has been halted 
due to Covid-19 pandemic, and therefore no analysis has been conducted. 
One limitation of this design is that as noted above, the majority of the 
activity is reported in 30 minute increments (unless noted on the random 
probe survey). Therefore it may be difficult to identify what may have caused 
the specific change in the participant EDA. 

If the initial hypothesis is validated, a future direction can include developing 
a system that probes the participant when a specific EDA pattern is detected 
in order to get a better real-time understanding of the participant context.    
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Lastly, if the results show a correlation between tonic EDA characteristics 
and ADHD, the user group for the EDA Self-Interface longitudinal 
study will be limited to individuals diagnosed with ADHD. Similarly, the 
biofeedback will correspond to the tonic changes in the EDA as opposed 
to  the phasic feedback in the current design. 
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2.6 The EDA Self-Interface System Design

As mentioned in the beginning of this chapter in section 2.2, the EDA 
Self-Interface has three components: the EDA Sensor (Affectiva E4 
Sensor), the haptic biofeedback device, and the mobile app which receives, 
processes and transmits the data. In this section, I will discuss the design 
insights from the three studies that were used to develop the biofeedback 
device, and the design and fabrication process of the device. 

2.6.1 Design Criteria

The EDA Trainer pilot study helped me identify the design criteria and 
other considerations for the biofeedback device. These findings were divided 
into two groups of iterable and non-iterable considerations. The iterable 
criteria could be adjusted during the user testing whereas the non-iterable 
criteria had to be decided on prior to development of the biofeedback device. 

Non-iterable Criteria
An important finding was that because the device is meant to provide 
feedback to the user in all waking hours, it cannot interfere with the 
perceptual systems that are most used during the day. This condition was 
used to narrow down the two non-iterable criteria; interface and signal 
modality. 

Interface modality: a wearable interface was chosen as opposed to a mobile 
application because the wearable interface can provide feedback without the 
user actively interacting with it. The mobile application component is solely 
used to process and relay the relevant signals to the biofeedback device. 

Signal modality: a haptic (vibrotactile) biofeedback signal was chosen 
as opposed to auditory or visual because unlike auditory and visual, most 
haptic feedback will not interfere with daily activities, and is more discreetly 
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felt. Furthermore, visual feedback requires a shift in attention to perceive 
the feedback signal whereas a haptic signal can be perceived involuntarily. 

Iterable Criteria
In addition to the non-iterable criteria, a number of other important factors 
were discovered during the EDA Trainer study. In this section I will discuss 
the original design of each factor. In the future work section, I will address 
the proposed modification to each factor for the final longitudinal study. 

Data processing: One important finding was the importance of data 
processing where a number of questions were highlighted: What aspect of 
the EDA signal needs to be communicated with the user? Are the phasic 
or tonic changes in the signal of higher importance? Should the feedback 
communicate the increase or decrease in the EDA signal or should it 
communicate the absolute value? As a first step, I decided to communicate 
the phasic changes in the EDA based on the qualitative findings in the EDA 
Trainer experiment and the insight in (Wass, de Barbaro, and Clackson 
2015) showing the relevance of phasic changes in EDA. 

Haptic pattern: How can the haptic pattern be intuitively understood by 
the user without increasing cognitive load? The initial user testing of the 
device was done prior to the completion of the Haptic study (Study 2). 
Therefore the initial approach to addressing this problem was to complete 
a calibration phase with the user where the researcher proposed a number 
of options and the individual selected the haptic biofeedback signal that 
matched their mental model best. 

Haptic placement: Considerations for the placement include resolution 
of the haptic receptors in the specific region on the body, movement of 
the body part (Gemperle et al. 1998), privacy considerations, ability to be 
perceived subconsciously, and interference with daily tasks or other devices. 
Additionally, the strength and spacing of haptic motors had to consider the 
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tactile acuity and the resolution of the receptive field in that region (Kandel 
et al. 2000). The first series of designs were developed to be placed on the 
upper back because it could be discreetly placed, did not interfere with the 
movement of the body, and did not interfere with the other devices such 
as smart watches or other sensors. Wrist and fore-arm were not selected 
due to potential interference with other devices and also because current 
devices have trained us to consciously tend to the signals received on our 
wrist which may impact our results.  

Flexibility of the design: To accommodate the above considerations, I 
decided that the first version of the device should be designed to process 
the signal in a variety of ways, flexibly test a variety of haptic patterns on 
different body parts, and use materials that can conform to the body.

2.6.2 Design

An important consideration in the design of the device was its ability to 
adhere to the body using tape, while maintaining the flexibility to move 
with the wearer. Two materials were selected to satisfy this requirement in 
conjunction with each other: a flexible skin-safe silicone rubber – Smooth-on 
Dragon Skin™ 10 FAST (“Dragon SkinTM 10 FAST Product Information” 
n.d.) to allow the device to move with the body, and thin plastic structure to 
facilitate adhesion to the body through medical-grade adhesive. The interplay 
of the two materials allowed for playful exploration of design concepts. 

Figure 14: Design Typologies. 
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A variety of design iterations were explored to identify the most desirable 
design language ranging from more device-like designs to more biologically-
inspired typologies (Fig. 14) and imagined the different ways Self-Interfaces 
can manifest themselves. Most of the commercially available wearable devices 
fall closer to the device-like design language. In the initial user-testing, I 
found that the users are intrigued by the biologically inspired designs and 
spend more time engaging with them. However, the users preferred the 
designs in the center of the spectrum. For example, one user noted that the 
geometry of the device in the far right reminds them of an insect and they 
are less likely to wear it on their body. However, they liked how some of the 
other designs felt like an extension of the spinal cord. Another interesting 
insight was that the material color that was most similar to human skin 
(second from the right) was noted to be too flesh-like by three users. 

Lastly, the design iterations examined a linear arrangement of the actuators 
as well as a 2x2 arrangement. The linear arrangement was chosen because 
it provided an increased flexibility by accommodating variation in the 
sequence of the beats. 

Based on the user feedback, the final chosen design was the spinal cord 
design. 

2.6.3 Hardware

The final design of the interface utilizes four 10mm Linear Resonant 
Actuators (LRA) with a vibration force of ~1.72G and a frequency of 205 
± 0.1 Hz. The LRAs were chosen instead of the Eccentric Rotating Mass 
motors due to their robustness, the consistency of the vibration pattern they 
produce and their efficiency. Having four actuators provided the flexibility 
needed to try different signal sequences (which actuator fires first), strengths 
(signal amplitude), and patterns (duration of each on and off beat). Each 
actuator is driven by a motor driver that has a preset library of over 100 
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wave types and strengths. Each motor driver is connected to the Bluetooth-
enabled Arduino board – Adafruit Feather 32u4 Bluefruit LE (“Adafruit 
Feather 32u4 Bluefruit LE” n.d.) via a multiplexer for individual control 
of each motor (Fig. 15).

Figure 15: Hardware Components: 
Adafruit Feather 32u4 Bluefruit LE 
Microcontroller, TCA9548A I2C 
Multiplexer, 4 x Linear Resonant 
Actuators, 4 x DRV2605L Haptic Motor 
Driver.
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2.6.4 Fabrication

Figure 16 shows the assembly of the actuators and the casing. Each actuator 
has a 3D-printed housing and is embedded in the silicone casing. The 
silicone casing conforms to the user’s body due to its inherent material 
and geometric properties. Additionally, a thin 3D-printed structure is cast 
into the silicone and is used to adhere the device to the user’s body via a 
medical-grade adhesive. The adhesive structure is 3D-printed with one 
layer of PLA filament for maximum flexibility. The 3D-printed motor 
housing and the two-part mold for casting the silicone are also printed 
with standard PLA filament (Fig. 17). The silicone is then poured into a 
mold which has the final shape of the device. The mold is capped with a 
flat piece holding the adhesive structure and an insert to create the cavity 
for the 3D-printed housing and wires. Embedding the adhesive structure 
into the silicone ensures a seamless connection between the silicone and 
the adhesive structure. Finally, the insert is removed after the silicone is 
cured and the actuators are inserted (see Fig. 18-23 for fabrication steps). 



Figure 16: Haptic wearable biofeedback 
device assembly diagram.
(a) assembled unit (b) adhesive structure 
(c) actuator housing (d) Linear Resonant 
Actuators (e) silicone casing

(e)

(c)

(d)

(c)

(b)

(a)



Figure 17: Molds and inserts for casting 
the silicone
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Figure 18: Inserts are placed and adhered 
to the acrylic sheet

Figure 19: Part A of the silicone is mixed 
with the silicone dye. Then Part A is 
mixed with Part B.

Figure 20: Silicone is poured into the 
mold. Then the acrylic sheet with the 
inserts are inserted into the silicone. 



87

Figure 21: The part is removed from the 
mold. The inserts that are designed to 
create a void are removed. Other inserts 
such as the adhesive structure wings 
remain inside the silicone part. 

Figure 22: The actuators are encased in 
the housing (pictured in blue). Then the 
assembly of actuators and housing are 
inserted into the silicone (in place of the 
inserts that were removed).  

Figure 23: Final products
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2.6.5 Mobile Application 

An iOS application (Fig 24) was developed (in collaboration with a 
developer) to receive the EDA data from the Affectiva E4 Sensor, process 
the data, and transmit the relevant signals to the biofeedback device for 
testing. The app was developed for iOS devices using Swift. The app has 
four screens that can be navigated through the bottom navigation bar. The 
first screen – E4 Connection – is to discover, connect, or disconnect the E4 
sensor via bluetooth. The second screen – Arduino Connection – connects 
to the arduino chip on the biofeedback device. The third screen establishes 
a TCP connection between the device and a computer for debugging 
purposes. The final screen – Logs – maintains a log of all the completed 
sessions. The user can email or share a zip file of their data from the session 
using this screen. 

Figure 24: iOS Application Interface
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2.6.6 Usability Testing

The EDA Self-Interface system was tested with four users to debug hardware 
and software issues, refine testing and tuning process for the final longitudinal 
study, and to receive feedback on data processing, haptic pattern, and design 
and ergonomics of the biofeedback device. 

Procedures
Every testing session started between 9-10 am. Each user first got an 
overview of the project and wore the EDA Sensor so I could establish a 
baseline measurement and find their EDA threshold. Then I installed the 
mobile application on their phone and set their EDA threshold in the 
app. Next the haptic device was placed on the user’s upper back. In this 
study, the user received biofeedback based on three change thresholds 
signaling 1. EDA going up, 2. EDA going down, 3. EDA going up by a 
large threshold. The haptic tuning step involved going through a number 
of haptic effects and using the user feedback, setting up a feedback signal 
for each of the three conditions. Then I would test the different signals to 
ensure the user understood what each signal meant. The user would use 
the EDA Self-Interface for two hours and then have one more check in 
to evaluate the thresholds set as well as the feedback signals. Necessary 
changes were made during this adjustment phase. Then the user would use 
the system for another 4-5 hours, until 5 pm. The final step was taking off 
the device, discussing the user experience, and completing the exit survey. 
The testing setup is shown below (Fig. 25).

Figure 25: Usability testing setup. 
This test is used as a prototype for the 
longitudinal experiment.

Onboarding Adjustment Testing Offboarding
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Results and Learnings
The usability testing was helpful in detecting and debugging the hardware and 
software bugs in the system. Additionally, they provided insight to improve 
the testing process. As a result of the usability testing, the adjustment step 
was shown to be very important and therefore a testing process similar to 
that in the EDA Trainer experiment was added to the longitudinal study 
(explained in the next section). 

Similar to the EDA Trainer study, 3 of 4 users were more aware of the 
changes in their EDA after trying the Self-Interface. One user wore the 
Self-Interface while conducting interviews with potential candidates and 
found a relationship between their EDA feedback and their communication 
“I could feel it go up every time I had to start the interview as well as close it 
down. Common for both is that I was a bit more energetic in my expression 
than in the middle part of the interview - Interesting.” Others noted that 
“I like to be able to monitor data instantly. Was super interesting to see it 
changing in the app and getting immediate feedback.” and “I like getting 
to know my own body.”, validating the users’ interest. 

The users were asked to provide feedback on the experience of wearing the 
interface. Three of the four users liked the upper back placement although 
one noted that it was “both kind of cool and kind of scary because you feel 
like a robot or a trans-human.” The fourth user wanted to have it on the 
wrist and asked for an interface that allowed him to glance down at the 
device and check the data.  

Lastly, the usability testing highlighted the importance of having an intuitive 
biofeedback signal that can be tested and easily interpreted in the wild. 
Despite the haptic tuning step and designing the signal according to the 
user’s mental model, three of the four participants found it difficult to 
understand the meaning of the signal when they were engaged in other 
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activities (such as a meeting or interview). Accordingly, the haptic study 
was developed to assess the effectiveness of the haptic properties under 
cognitive load. 

2.6.7 Discussion and Future Work

This chapter discussed the design and development process for the EDA 
Self-Interface. As demonstrated earlier, the development process was 
complex and required many components working together. Therefore the 
three studies were conducted to provide answers to the open questions that 
were faced during the development process; EDA Trainer to identify the 
design criteria, the Haptic Study to identify the most intuitively interpreted 
signal under cognitive load, and the ADHD and EDA to identify the user 
group and the relevant aspects of the signal. Additionally, usability testing 
with the EDA Self-Interface system was done to ensure all components 
of the system are working properly. The final step in the development 
process is to conduct a longitudinal 10 day study (Fig 25) to evaluate the 
effectiveness of the EDA Self-Interface which will incorporate the findings 
from the haptics study as well as the ADHD study (upon completion of 
the ADHD and EDA study). 

Procedures
The study will be conducted with n=20 participants who have been diagnosed 
with ADHD, over a period of 10 days. After the initial survey, the EDA 
measurement is taken and used to calibrate the data processing in the 
app. Currently the data being communicated is indicating phasic EDA 
changes. However, if the ADHD study shows that the tonic changes are 
more relevant to participants diagnosed with ADHD, this study will be 
conducted with ADHD participants and provide feedback on the tonic 
EDA changes. Then the haptic device is placed and the haptic pattern is 
adjusted to match the participant’s sensitivity and preference. After the initial 
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tuning, the participants will go through the adjustment phase for an hour 
where they will watch various content affecting their EDA to ensure that 
the signal is relevant and the haptic feedback is intuitive. The motivation for 
this step is to ensure the selected thresholds correctly match the participant’s 
EDA baseline and minimum and maximum change. Additionally, this step 
ensures that the haptic feedback is easily interpreted under cognitive load. 
After the initial setup, the participants will continue wearing the sensor 
and biofeedback device for 10 days and keep a daily log of their activities, 
similar to the procedure in the ADHD study.  

The EDA Interface will be evaluated based on the following criteria:

1. Meaningful Insight: Does the user find patterns and meaningful 
links between the EDA signal, their affective state, and their actions?

2. Behavior Change: Does the insight lead to a change in the user’s 
habits and behavior?

3. Develop Intuition: After a 10-day daily use of the device, can the 
user intuitively “sense” certain relevant changes in their EDA signal 
(inspired by the work on brain plasticity and sensory substitution 
such as the Vest (Eagleman 2014) which shows that the brain is 
able to link certain signals to internal changes in the body and 
cognition)?

Figure 25: EDA Self-Interface Longitudinal 
Study Design

Onboarding Adjustment Longitudinal Testing Offboarding
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Future Directions
If the hypotheses in this work are validated, the EDA Self-Interface can 
be considered as a method for reducing or eliminating the use of stimulant 
drugs in individuals with ADHD. Additionally, this intervention can be 
complemented with behavioral support to raise EDA levels optimally.

Another interesting observation in the EDA of individuals with ADHD is 
the effects of alcohol. Literature has shown a decrease in skin conductance 
levels upon consumption of alcohol (Naitoh 1972). However, preliminary 
data in the ADHD study conducted in this thesis has shown that alcohol 
consumption may have a reverse effect in ADHD participants and increase 
their skin conductance levels. Studies have shown a correlation between 
ADHD and alcoholism (Ohlmeier et al. 2008). If the hypothesis that 
alcohol increases EDA in ADHD patients proves to be true, this reverse 
effect can be one explanation for increased alcoholism in individuals with 
ADHD. If a person is not able to actively increase their affective arousal 
(and hence their EDA level) by engaging in daily activities that increase 
their EDA, they may rely on alcohol or other substances in order to achieve 
an increased affective arousal level. The EDA Self-Interface can act as a 
reference for these individuals and help them discover other activities that 
increase their arousal levels and possibly help control alcohol consumption. 
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3_Conclusion and Future of Self-Interfaces

3.1 Future of Self-Interfaces

The long-term vision of this work is to assist people in changing a habit or 
achieving a desired behavior. If the hypotheses proposed in this work are 
validated, the EDA Self-Interface can be used as a case-study for the future 
development of new Self-Interfaces that examine the correlation of other 
physiological signals with specific behaviors. For example, an Alpha/Beta 
Brainwave Self-Interface can be developed to increase creativity. 

Alternatively, Self-Interfaces can give people insight into aspects of their 
body they are not aware of in order to help improve their health. For 
example, a Self-Interface that provides real-time feedback on lung health 
can motivate activities that improve lung health and reduce activities with 
negative effects on the lung such as smoking. Similarly, this insight can 
help the person understand what works and does not work for their body 
better, thus reducing or eliminating the need for medication (as described 
in the ADHD example). 
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3.2 Ethical Implications

As with all work involving technology today, there are positive and negative 
ethical implications that can arise from this work. I will attempt to cover 
those implications in this section as completely as possible. 

Firstly, the ability to tune behavior and achieve a desired behavior 
subconsciously would be a great achievement. In addition to this positive 
outcome, biofeedback on relevant aspects of covert physiological signals may 
help individuals better understand their own affective state. This approach 
can reduce the need for interpretation of an individual’s context and a top-
down determination of their needs. This approach gives authorship to the 
user, allowing them to infer insights about the relationships between their 
context, behavior, and physiology. Lastly, the insights gained from the use 
of such devices can reveal connections between physiology, behavior, and 
affective states which could ultimately contribute to theories of mind. 

On the other hand, Self-Interfaces may also have negative implications. 
As with all physiological measurement devices, the concern for privacy and 
ownership of the data is a relevant concern. Unlike many other physiological 
measurement systems, the EDA Self-Interface is processing the data locally 
and leaving the interpretation of it to the user. If responsibly collected, 
because there is no central processing is needed, Self-Interfaces can eliminate 
the concern over privacy and give the user authorship over their own data. 
However, access remains a major concern. Self-Interfaces are difficult 
to access cheaply due to their hardware. As opposed to digital behavior 
change interventions, it is difficult to scale the production, use, and as a 
result impact of Self-Interfaces. 

From a more philosophical perspective, Self-Interfaces can raise deeper 
questions about freewill and the concept of self by bringing light to the 
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blackbox affective states. If a person is used to attributing their current state 
to the events they are consciously aware of, the realization that physiological 
processes that are not readily perceived have much control on our behavior 
(if proved right), can cause distress to the person acknowledging it. 

Lastly, if the hypothesis on false biofeedback and its ability to control 
one’s affective or physiological state shows to be true, a number of ethical 
concerns should be raised. Who is able to control the false biofeedback I 
receive? Who is responsible for determining what state is the ideal state 
for an individual to be in? 

These ethical implications need to be considered, examined, and discussed 
with all stakeholders as this work is developed further. 
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3.3 Conclusion

In this thesis, I introduce Self-Interfaces as a novel method for subconscious 
behavior change and propose a framework for development and evaluation 
of Self-Interfaces. As a first case-study, I developed the EDA Self-Interface; 
a wearable haptic biofeedback device that connects to the Affectiva E4 EDA 
sensor and provides real-time biofeedback on the changes in the EDA. I 
conducted three studies to define the design criteria, improve the biofeedback 
signal, and identify the aspect of the signal relevant to the selected user 
group, and proposed a final longitudinal study for evaluation of the EDA 
Self-Interface. Lastly, I discussed future directions for Self-Interfaces.
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