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Abstract 

Autonomous underwater vehicles hold great potential in the realms of industry, military, 

scientific, and personal usage. The applications of intelligently applied autonomous functionality could 

improve work performed on subsea infrastructure, commercial shipping lane maintenance, canal and 

channel observation, search and rescue, military applications, as well as general scientific research. 

Given such potential, and supposing that existing technological barriers to progress could be 

overcome, what could a potential system architecture of future autonomous underwater vehicles look 

like? 

Fundamentally this thesis asks: “could novel architectures of AUV systems – specifically 

pairing AUVs to remote service platforms – lead to significant performance increases?” In 

approaching this subject, a specific case study is leveraged where autonomous underwater vehicles 

were extensively used: the search for Malaysian Air flight 370. This specific mission profile has been 

extensively documented by others laying a comprehensive framework. It represents the single largest 

search and rescue operation ever performed. Within this thesis, whole-system performance metrics of 

this search and rescue operation are compared against calculated performance metrics of systematically 
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generated possible architectures. In decomposing the system into its functional elements, a 

deterministic evaluation is executed followed by a probabilistic examination of the system as modeled. 

The results of the probabilistic model are also interpreted via a Pareto ranking methodology where 

Pareto surfaces are identified in multidimensional tradespaces. These component cases which 

comprise the Pareto surface are subsequently removed from the dataset, and the process is run again. 

This iterative approach demonstrated that the top ten performing architectures were comprised 

entirely out of architectures with either one or four AUVs. The outputs of these models are 

subsequently compared against the baseline system used in the search for MH370.  

Following the analysis, a major fault was identified in the foundations of all of the models 

surrounding a figure of merit wherein the time to the seafloor was calculated for all architectures. All 

of the top ten performing design vectors – systems which contained one or four AUVs – were 

unchanged due to this error. Architectures which were affected by this error – systems with more than 

four AUVs – were impacted negatively. Several methods of re-imagining the error are presented herein 

as complexities that are inherent in the system, which are not handled by these models. These new 

emergent complexities were present in the system prior to the model construction, but unaccounted 

for. Discovery of this faulty assumption laid bare several architectural decisions which are unexplored 

in this thesis, but could provide the foundation for future work in this space.  

The outcome of these modeling efforts suggests that pairing an autonomous underwater 

vehicle with an autonomous service platform can result in increases in all performance metrics. 

Specific metrics which are improved include daily search area rate, calendar mission completion time, 

and total project cost. This improvement is specifically calibrated to the case study of MH370, but the 

performance metrics themselves are not exclusively applicable to search and rescue operations.  This 

model indicates that such a system could accomplish the same mission in less time for half the cost. 

This thesis presents a vision of future autonomous underwater vehicle systems in which daily 

operational time, search area rates, calendar mission completion times, and total system costs can all 

be improved relative to the existing standards. Such improvements are equally applicable to 

commercial, industrial, military, civilian, and scientific endeavors in which autonomous underwater 

vehicles could be a potential tool. 

 

Thesis Advisor: Dr. Bryan Moser 

Thesis Co-Advisor: Dr. Maha Haji 
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1 Introduction 

In this chapter, a broad exposition to the project at hand is discussed. The broader context in 

which this work sits is explored from a holistic vantage point, and then more detail is elucidated from 

the autonomous underwater vehicle (AUV) industry as a whole. The history of AUVs is outlined and 

a case is built claiming that as a technology, AUVs are lagging behind other industries which employ 

similar foundational elements. Following this historical context, key research questions and objectives 

are stated. Finally, the structure of the research is outlined. 

 

1.1 Motivation 

The development of technology has been one of the hallmarks of human civilization. The past 

30 years have not only seen immense improvements in many fields of technology, but the pace of 

technology development has in fact been accelerating (Berman, 2016). Today’s technological 

landscape is one of rapid improvement, digitalization, and autonomy. There are countless examples 

of technology development that have seen exponential growth in the past decades. Classic examples 

include computing power – illustrated in Figure 1-1 – (Kurzweil, 2006), data transmission, luminosity, 

and battery storage capacity – illustrated in Figure 1-2 (Magee, 2014). A consistent theme in charting 

technological progress through time is to identify figures of merit upon which a particular technology 

or system can be judged. Figures of merit are defined as a numerical value which represents an aspect 

of performance of a system. In these classic examples, figures of merit include number of calculations 

per second per $1000, lumens per $, watt hours per kilogram and so forth. Selecting an appropriate 

figure of merit is an important building block to construct a comprehensive and defensible evaluation 

of any technology or system. Indeed, some products that were merely manifestations of an active 

imagination (or closely guarded military technology) are now commonplace household items.  

This progress is manifest in analyzing the specific figures of merit that are selected for any 

given technology. For instance, aerial drones with 4k video capability and multiple kilometer ranges, 

for instance, can be purchased at nearly any big-box electronics retailer at any given time. While there 

are many figures of merit that could be used to evaluate how this technology has evolved over the 

past decades, a simple approach could be to identify the cost a consumer would pay per unit time they 

could film 4k resolution imagery from these given drones. If that figure of merit were selected, then 

any time prior to 2016 would have a value of infinity – there were no such drones available to the 
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public for purchase (Dà-Jiāng Innovations, 2016). Today, this price is approximately $50 (Banggood, 

2020). This exemplifies how dramatically a single figure of merit can change through a very short 

period of time – even in the consumer product market.  

Different disciplines and fields have witnessed growth in their capacities over the last decade, 

which have made notions previously thought to be science fiction, real and commonplace. In the field 

of robotics specifically, significant advancements have been made in which robots have reduced in 

size while becoming more capable. In addition, new emergent properties of robotic systems have been 

uncovered when an individual agent is paired with another. These swarms of robots have shown 

promise in commercial and military applications. Robotic swarm research has been advancing on land, 

in the air, and in space, but there has been a proportionately slow advancement in autonomous 

underwater vehicles. Even ocean-going vessels have seen substantial technological growth with the 

expanded use of autonomous drone ships (e.g., SpaceX landing barges) and vessels which navigate 

completely without the input of human operators to a very high degree of precision (e.g., seismic 

acquisition vessels).  

However, one area of technology in which there has been continuous – but less rapid – 

technological progress has been in the realm of autonomous underwater vehicles (AUVs). To prove 

that a specific area of technology is developing “slowly” is a very difficult task. Various figures of merit 

(e.g., economic return, sensor acuity, autonomous navigation, etc. (Blidberg, 2001; Wang, 2009)) have 

indeed seen improvements over time. Is it really possible to claim with a reasonable basis that these 

improvements are “slow?” Is it not possible that they are developing at precisely the rate that they 

can? When compared to autonomous vehicles that operate in other media, the state of the art in 

underwater vehicles is significantly farther behind in terms of technological development. Consider 

again the example of unmanned autonomous vehicles – specifically aerial drones. The first proof of 

concept of swarm behavior in drones (where swarm is defined as a set of robots which distribute a 

single task amongst the collection of agents) was demonstrated in 2011 by project Perdix 

(Massachusets Institute of Technology - Lincoln Laboratory, 2011). Since then, elaborate displays 

(Figure 1-3) where over 1000 drones have behaved as a swarm have become commonplace (Jeffery 

Lin, 2018). On the ground, major automobile manufacturers are investing in technology which will 

improve traffic flow by converting traffic into a swarm through information sharing (Honda, 2017). 
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Even in space, swarms of satellites (e.g., Starlink, OneWeb, and SWARM) have become more 

common through recent years.  

Yet in the oceans and waterways, as AUV adoption advances, swarming technology remains 

stagnant. By this comparison, it is clear that there is a lack of progress in this technology relative to 

other applications. There are two possible explanations for this lag: there is a technological limitation 

that has yet to be hurdled, and/or architectures which would enable this swarming concept have not 

been adequately characterized or explored. Assuming that any specific technological limitations can 

eventually be overcome – what then would the architectures look like when examining AUV swarms 

and completely autonomous AUV systems? Is there an architectural concept which has to date 

remained unexplored through which the system could drastically improve performance? These are 

questions that will be at the heart of this paper.  

 

 

Figure 1-1: Technological development through time of computing power. Figure from (Kurzweil, 2006). 
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Figure 1-2: Technological development through time of telecom, LED, battery, and 3D printing technologies. Figure 

from (Magee, 2014). 

 

 

Figure 1-3: 2,018 UAVs perform in unison setting a world record for most unmanned aerial vehicles airborne 

simultaneously (Divis, 2019). 
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To define terms which will be utilized throughout the thesis, systems are comprised of both 

forms and functions (Edward Crawley, 2016). In decomposing systems, their component entities are 

identified. Each entity has both form and function. A single form or function that composes an entity 

is itself comprised of a set of elements which can be either formal or functional in nature. Individual 

forms accomplish their functions to varying degrees of efficacy. This performance can be measured 

in a number of different ways, and each measurement of performance is referred to as a figure of 

merit. Emergent functionality of a system is the property that couldn’t exist if the system were not 

appropriately configured. This emergent functionality is a function of all the functional and formal 

elements in the system and its performance is measured by a calculated performance metric.  

AUVs are classically defined as “underwater systems that contain its own power and is 

controlled by an onboard computer” (Wang, 2009). More expansive definitions include “while 

accomplishing a pre-defined task…[and] requires no communication during its missions” (Blidberg, 

2001). AUVs as systems have been in operation for over 100 years and they have had relatively 

consistent architectures across platforms. A schematic representation of a typical AUV is shown in 

Figure 1-4. AUVs as systems can be decomposed into the following functional elements: 

communicating outside of the system, energizing the system, navigating, propelling the system, and 

sensing the surrounding environment. What has changed significantly in the recent decades is the 

capacity for each of these functions to be performed completely autonomously with greater degrees 

of complexity. For instance, the first AUVs were only capable of propelling themselves along a single 

designated course (Museum, 1980). Today, however, there are platforms (e.g., the Bluefin AUV 

platform) which can perform sophisticated deep-water operations over 24-hour operational cycles 

launching and returning completely autonomously (Bluefin Robotics Corporation, 2015).  
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Figure 1-4: Schematic view of a small AUV built by KORDI. This represents a typical arrangement of formal elements 

within the AUV. Figure6 from (Bong-Huan Jun, 2009) 

 

With the advancement of the underlying technologies, there are a vast number of operating 

environments in which AUVs can successfully be deployed. These environments include, but are not 

limited to scientific surveys, remote search and rescue operations, underwater infrastructure 

inspection, and canal and waterway monitoring. A chief reason why AUVs may not be favored in 

these environments, however, is that as a system they are still tied to non-autonomous operations 

immediately preceding and proceeding autonomous operations. In other words, while the AUV itself 

has seen significant growth and advancement, the launching and landing procedures of AUVs are 

largely the same as they were at inception: AUVs still require people on boats or people on the land 

to fish the AUVs out and manually process data that have been collected (Figure 1-5). For this reason, 

remotely operated vehicles (ROVs) are favored in many common demanding operating environments 

such as subsea maintenance of infrastructure. ROVs differ from AUVs in that they are tethered via 

hard connections which stream power and data to a base station. These base stations can exist either 

below or above the surface of the water. ROVs are not autonomous – they have human operators 

who are in charge of maintaining operational control for any given mission. This is an area where 

AUVs stand to gain a technological edge: if AUVs can eliminate the need for non-autonomous 

elements (e.g., launching and landing an AUV), then their possible mission parameters could 

dramatically change the subsea monitoring environment.  
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In this sense, the perspective of what constitutes the AUV system must shift. Previous work 

has focused primarily on the internal formal elements of an AUV (Blidberg, 2001; Griffiths; Wang, 

2009) and not the interfaces between the AUV and the operational support elements. In other words, 

the full AUV system is not just the vehicle, but also the method with which the vehicle transfers 

information offboard, how the vehicle charges, how the vehicle receives instructions for its next 

mission, and other operational considerations (Figure 2-2). It is these operational considerations that 

have remained stagnant over the past 100 years, and these elements require architectural evaluation to 

see if a novel approach could improve full system performance of AUVs.  

The current standard system architecture of AUV missions includes pairing one or more 

AUVs with a deployment vessel. Commonly, these deployment vessels scale with the number of 

AUVs that are going to operate. In the case of search and rescue operations, deployment vessels are 

on the order of 100 meters long with a beam of 20 meters or more (Australia Department of 

Infrastructure, Transport, Regional Development, and Communications, 2018). It is not uncommon 

for these large vehicles to require to port in order to resupply and change crew on semi-regular basis. 

It should be noted, however, that it is common for these vessels to support other operations 

simultaneously. Operation of these systems frequently limits the number of active assets to one or two 

AUVs simultaneously. A single AUV will be programmed for a specific mission, and deployed. 

Following deployment, the AUV will perform its specific mission, and upon return it will be retrieved 

from the water where it will be serviced on the boat. During this servicing period, the data are 

commonly transmitted via hard link and the batteries are either charged on site, or swapped out with 

full batteries. This standard CONOPS outline is illustrated in Figure 1-5. 

Challenging this established construction requires that each component of the system be 

decomposed into its own functional and formal elements. For instance, the paired vessel serves as a 

platform upon which the AUV recharges. Any number of forms can fulfil that function, but by both 

convention, and ease of repurposing existing architectures that form is commonly a large support 

vessel (i.e., ship). Furthermore, we see in the AUV industry a distinct aversion from a product platform 

approach. Rather, in 2001, there were over 140 distinct AUVs that were all tailored to specific mission 

profiles (Blidberg, 2001). Today, there are an estimated 400+ distinct AUV designs for specific mission 

profiles (Yuh, 2000). 

This leaves the system as a whole ripe for re-imagining. Within this paper the relationship that 

exists between AUVs and the service platform is explored. Specifically, AUV swarms and autonomous 
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and mobile servicing platforms will be examined. A schematic CONOPS for such a pairing between 

an AUV and a service platform is illustrated in Figure 1-6. 

 

 

Figure 1-5: Standard CONOPS for operating AUVs. Image of launching an AUV is Figure 24 from (Australian 

Transport Safety Bureau, 2017). Image of AUV retrieval courtesy of (Monterey Bay Aquarium Research Institute, 

2014). 

 

 

Figure 1-6: CONOPS for expanded system. The AUV remains in the water for the duration of the mission. The 

status of the AUV changes depending on its relationship to the service platform. 
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1.2 Literature Review and Historical Context 

While the concept of remote operation of naval systems has existed for hundreds of years, the 

first completely autonomous underwater vehicles were torpedoes that were built by the Austro-

Hungarian Navy in the late 1880’s (Stein, 2007). The so-called “Whitehead torpedo” was a device that 

was a locomotive torpedo which contained an explosive warhead as a payload, a three-cylinder 

compressed-air engine, gearbox, propellers, rudder, and a pendulum-and-hydrostat control. By the 

late 1890s, the design was modified to include gyroscopic gears. The torpedo itself was constructed 

out of steel and bronze and had a maximum range of 800 yards (Museum, 1980). This first AUV was 

without a doubt a harbinger of the field that would emerge (Figure 1-7).  

Even in the earliest AUVs, then, there were precisely the same architectural elements present 

as in modern counterparts. Propelling the Whitehead torpedo was achieved through the gearbox, the 

compressed-air engine, and the propellers. Modern AUVs accomplish this same function with 

different formal elements. Instead of compressed-air engines, they use lithium-ion batteries. 

Gearboxes have been lightened with different materials, and propellers have been optimized for 

specific operating environments (Bluefin Robotics Corporation, 2015).  

The first major technological advancement that shifted AUVs from the realm of torpedoes to 

robotics that are more recognizable today occurred in the 1970’s with the advent of increased internal 

computing capacity (Blidberg, 2001). However, these early AUVs were still largely testbeds for 

emerging technologies. The main users of these AUV systems were largely academic entities that were 

seeking to increase research efforts in difficult to reach environments – such as the Arctic. Military 

applications of course, continued throughout the decades, although their true capabilities are not well 

documented. There are several instances in which autonomous underwater vehicles have been the 

focus of military contracts (e.g., for detecting mines (General Dynamics, 2011; General Dynamics, 

2019; Whitman, 2002)), but little in the public domain pertaining to persistent subsea monitoring or 

data collection. It was because of these successful testbed and proof of concept efforts that the 

subsequent growth in the industry was enabled. The 1980’s saw a major growth in the private AUV 

industry with major projects funded through Draper labs for U.S. Navy projects (Blidberg, 2001). 

Truly the enabling technology that was allowing for this continued growth was the increased 

miniaturization of, and increased capacity of computing elements in the system. It was here that the 
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current state of AUV architecture was also seemingly cast – there were very few prototype vehicles 

that were operated without a paired ship that acted as a mobile servicing platform. 

 

Figure 1-7: Qualitative evolution of AUVs through time. Figure 3, (Blidberg, 2001) 

 

Why was this architecture selected? It could certainly be that it was the simplest solution at the 

time, but a more nuanced claim would be to examine how the forms of the enabling technology 

influenced the functions. The main functional elements of an AUV are communicating outside of the 

system, energizing the system, navigating, propelling the system, and sensing the surrounding 

environment. Increased computing power allowed the system to improve functionality in some of 

these elements, but it did not improve in others. Specifically, increased miniaturization and complexity 

of computer systems allowed for more specialized sensors to develop, and more advanced navigation. 

However, improved computing power came with increased power requirements. Battery technology 

was not improving at the same rate as computing during the 80’s and 90’s and thus AUVs would soon 

become limited in operational time (Blidberg, 2001). To stretch their active operation, other systems 

would get further de-prioritized. Saving power by limiting communication outside of the environment 

would be one such function that would be de-prioritized. Thus, the pairing with surface vessels was 
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cemented. Surface vessels would serve as recharging platforms and also data transfer stations. 

Interestingly, this also created new mission risk parameters – if a surface vessel had to leave the mission 

area, or if communications were severed with the AUV then all of the data would potentially be lost. 

This risk, of course, led to increased mission costs as mitigation strategies had to be put in place 

(Blidberg, 2001).  

The 1990’s saw the very first emergence of operational and commercial systems (Blidberg, 

2001). It was required of these systems that very specific mission parameters be set because of the 

aforementioned limitations on some functional elements of the system. When an AUV was developed, 

it would be highly specialized and fit for purpose. 34 different vehicles were developed by nearly as 

many manufacturers for different users (Yuh, 2000). However, the purpose of each of these vehicles 

was limited to ten different missions: bottom survey, testbed, search and mapping, cable inspection, 

water column, mine countermeasures, science missions, pipeline inspection, undersea shuttle, and 

unspecified military applications (Yuh, 2000). It was in this environment that another key pain point 

of the modern AUV landscape was crystallized: instead of building platforms that standardized AUVs 

based on their mission profiles, each project was treated as a one-off and designed from more or less 

square one. Again, this leads to increased costs of operating a program with an AUV because design 

and build costs must be factored in to the overall program costs. 

In the early 2000’s, AUVs became much more commonplace. New use cases had started to 

emerge beyond research and military. Those applications included industry specific monitoring 

systems (e.g., oil and gas subsea infrastructure), climatology, and meteorology among others. It is 

because of the previously mentioned concept anchors, however, that profitability is still highly 

challenged for manufacturers and users. Some of the architectural choices that were made in the 1800’s 

are still the dominant architectures during this time such as the shape of AUVs – specifically cylindrical 

shapes (Wang, 2009) – while others naturally evolved – such as sensors and instrumentation (Wang, 

2009). One major area that had started to see improvement was in the discipline of battery power 

management. New battery technologies started to allow for more than several dozen recharge cycles 

for each battery, which greatly extended the life of a single powerplant. However, there was still 

insufficient advancement in autonomy for these AUVs to dock without assistance to their support 

vessels. Launching and retrieving AUVs was a laborious process during which care had to be taken so 

as not to damage the AUVs to the point where failures post retrieval may occur. By the end of the 

2000’s the community was once again hopeful that the coming decade would bring the technological 
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advancements that would allow for AUVs to finally take a greater role in commercial, industrial, and 

military use.  

In recent years, advancements in AUV technology have been seen in areas of sensors, 

computing power (Figure 1-1), and autonomy. Historically, the sensors onboard an AUV were limited 

to those which would measure water pressure, temperature, orientation about three axes, and imagery 

(e.g., camera or webcam) (Wang, 2009). Modern advanced AUVs can be equipped with advanced 

sensors such as high-resolution side scan sonar (Bluefin Robotics Corporation, 2015), and detectors 

for trace chemical or biological data (Randolph, 2016). Side scan sonar is a technology that is 

particularly relevant for this thesis. It is a technology where acoustic beams are emitted normal to the 

direction of the AUV on both the port and starboard sides of the craft. As an AUV flies at an arbitrary 

elevation above the seafloor, the width of investigation (swath) can either increase or decrease. Side 

scanning sonar systems have a “blind spot” (called a nadir) beneath the AUV (Figure 1-8). To 

compensate, many AUVs install multibeam echo sounders to cover this area. The advances 

experienced in sensor technology can be attributed to such factors as improved power management 

systems, miniaturizations of existing technologies, and economic drivers. Regardless of the reason for 

increased functionality of sensor suites on modern AUVs, it is unquestionable that increased 

functionality is a result of more capable and broader functioning instrumentation. This increased 

functionality is sometimes colloquially referred to as increased autonomy, but that is not precisely 

accurate. Strictly speaking, autonomy is the “capacity for a machine to perform tasks in the world by 

themselves, without explicit human control” (Bekey, 2005). By this definition, autonomy is a binary 

feature – a robot either is or is not autonomous with respect to a task. As such, it would be accurate 

to say that since the range of tasks that AUVs can accomplish has broadened in recent years, and since 

AUVs can perform those specific tasks without explicit human control, then AUVs are still 

autonomous. In other words, AUVs have not become more autonomous, so much as they have 

become more capable at performing a broader set of tasks autonomously.  

“Potential” is a word that is frequently used throughout the literature to describe the 

development of AUVs. “AUVs have a lot of potential in the scientific and military use” (Wang, 2009). 

“The potential for AUV systems is clearly recognized by most researchers” (Blidberg, 2001). “AUVs 

have various potential applications and great advantages over ROVs in terms of operational cost and 

safety” (Yuh, 2000). Despite this, their potential has perhaps been limited over their development 

lifecycle. Throughout the years, the advancements that have come to AUVs have been due to 
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technological advancements associated with the formal elements that comprise the detailed 

functionality of the system. Developments in battery capacity in the 2010s, sensors that were far more 

capable than their predecessors in the 2000’s, computerization and miniaturization in the 1990’s, and 

bold prototyping of new mechanical systems in the 1980’s all contributed to AUVs that are without 

question more capable than their earlier generations. However, the higher-level architectures have 

remained the same since the very first Whitehead torpedo. AUVs are still tied to surface vessels that 

are manned. When the AUVs mission is complete, it returns to the surface vessel where it is manually 

fished out of the water, and recharged on the deck as its data is downloaded. This is where the 

emergent opportunity may lie. What can be gained from a system when its high-level architectural 

choices are challenged? Moreover, are technologies ripe for such an overhaul? Is now the right time 

to make this jump in AUV technology? 

 

 

Figure 1-8: Image of side scan sonar data from the wreckage of MH370 (Australian Transport Safety Bureau, 2017). 

Note the blind spot in the middle of the image. In this case, the swath of investigation is ~1,000m in either direction 

from the AUV. 

 



22 
 

1.3 General Research Objectives 

 The primary research goal of this thesis is to explore which figures of merit can be improved 

by using swarms of AUVs and mobile service platforms over conventional methods. To answer this 

question, there are six implicit sub-objectives which will be touched upon throughout the text.  

1) What figures of merit can be used to effectively evaluate system elements and which 

performance metrics can evaluate whole systems such that existing non-autonomous systems 

can be compared against hypothetical designed systems? 

2) To what degree can a specific case study guide the evaluation of a full AUV system? 

3) What specific performance metrics can be improved by pairing an AUV with an autonomous 

service station compared to existing implementations? 

4) What performance metrics are in tension when evaluating the full system of AUV operations? 

5) Can specific architectural combinations of functional elements be recommended and 

defended by using statistical evaluations of classical systems architectural analyses? 

6) What – if any – are the emergent outcomes that are enabled with the novel pairing of AUVs 

and mobile service platforms? 

 These questions will all be focused through the lens of a case study where we have historical 

data that benchmarks recent AUV operations against estimated projections of future AUV 

performance metrics. The case study that will be tested is the AUV search and rescue efforts to find 

the crashed flight of Malaysian Air 370 (MH370) in 2014. This is an appropriate analogy because of 

its recent occurrence, high budget, and long-term operation. However, it is important to note that this 

report will not limit the findings to only search and rescue operations. Instead, the neutral function of 

continuous AUV operation to acquire subsurface data is a much broader application that sees use in 

many industries – including oil and gas, sub-sea data management, oceanography, climatology, 

meteorology, and other industry and academic circles.  

 

1.4 Thesis Structure 

In order to achieve these research objectives, this thesis is organized to first approach AUV 

systems and their service platforms from a neutral perspective. The initial analyses are equally 

applicable to any AUV system, although the specific forms which are investigated in detail are 

intentionally selected for the case study at hand. Following this neutral approach, the system is 



23 
 

evaluated on its performance metrics without any applied utility functions. Through the analyses all 

reported values are directly related to the underlying figures of merit. This allows for transparency and 

repeatability. 

Within this thesis, the architecture of autonomous underwater vehicles and their proposed 

service platforms will be analyzed. In Chapter 2, the functions of AUV systems will be decomposed 

into their constituent elements. There are multiple options presented as formal solutions to the 

functional requirements. These formal options are associated with a collection of figures of merit. The 

relationships between the functions are also analyzed. In Chapter 3, an operational environment is 

defined, and performance metrics are derived based off of the figures of merit described in Chapter 

2. The system is then evaluated deterministically across these performance metrics. Several key 

architectures are then identified through this deterministic approach which are in turn modelled 

probabilistically in Chapter 4. Chapter 5 focuses on synthesizing the results and interpreting the 

outcomes of the models. Specific recommendations are then made for the best overall performing 

architectures. Following this rigorous process, a serious underlying fault was found in the figures of 

merit. In Chapter 6, the impacts of this error are analyzed and recommendations are updated. Finally, 

this thesis closes with a discussion on opportunities for future research.  
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2 Architecture of AUVs and Their Service Platforms 

In this chapter, the underlying architecture of AUV technology is evaluated. A brief 

introduction of terminology is followed by listing the critical functions of an AUV system. There are 

critical differentiations between conventional AUV system boundaries and the system proposed 

herein and those differentiations are explored. Next, since this thesis focuses not only on the 

architecture of single AUVs and their proposed service platforms, the scaling relationships which exist 

between multiple entities in the system are also discussed.  

 

2.1 Introduction 

When evaluating systems as complete entities, it is important to maintain perspective 

surrounding the formal and functional elements that combine to create the emergent functionality. 

Functional decompositions of systems allow for careful examination of the purpose of each 

contributing element of the system. Figure 2-1 provides an example of a functional decomposition of 

a sailboat as an example for functional decomposition. In this example, there are two levels of 

functions that are listed – note that this is not a comprehensive evaluation of all functions that are 

required for a sailboat system, but merely a few for demonstrational purposes. Level one functions 

are colloquially referred to as “high level” functions, and these can be further decomposed into their 

component functional elements. This “lower level” of function is an example of a set of level-two 

functions.  

 

Figure 2-1: Schematic example of the functional decomposition of a sailboat as a system. 
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Formal decompositions of a system are structurally identical to functional decompositions. 

They are comprised of elements which can be broken into component elements in subsequent 

decompositions. On the other hand, however, formal decompositions allow for evaluation of the 

physical components of a system. Put simply, functional decompositions are focused on the purpose 

of parts of a system, whereas a formal decomposition looks at the individual items that comprise a 

system. In an effort to maintain neutrality surrounding the study of AUVs as a whole, a functional 

decomposition is a more appropriate analysis. The following chapter examines the specific required 

functions of an AUV and identifies possible formal solutions to achieve specific functionality.  

 

2.2 Functional Architecture Background 

For this thesis, the AUV system boundary is defined in Figure 2-2. Previously, an AUV system 

was centered about the AUV, but in this work the system has expanded. It is comprised of the AUV, 

its service platform, and the operating environment. These three elements interact with each other, 

and where that interaction occurs there is – by definition – an interface. Outside the system boundary 

exists the land-, sea-, or space-based crews or machines, data transmission mechanisms, and raw data 

conversion mechanisms. These elements all interact with each other through a different set of 

interfaces.  

 

Figure 2-2: AUV system boundary definitions. Previous system boundaries existed around the AUV itself. In this 

thesis, the system boundary has expanded to include service platforms and the operating environment. Blue lines indicate 

interfaces between the system and elements outside the system. A dashed blue line represents previous interfaces that may 

or may not exist in previous AUV analyses, but will not exist in this analysis.  
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In an AUV, there are two high level and five distinct level-two functions that must be achieved 

in the system to meet any mission requirements. High level functions are the functions that must be 

performed for the system to perform. In the case of AUVs, the high-level functions are automation 

and navigation. Automation is an emergent property of the system, and navigation decomposes into 

five level-two functions. The lack of any of these functions will result in an architecture that does not 

meet the emergent capability of being an AUV. The level-two functions are instruments which are 

employed to accomplish the higher-level functionality. They include: 

1) Communicating outside the system boundary 

2) Energizing/powering the system 

3) Propelling the system 

4) Orienting the AUV  

5) Sensing the surrounding environment  

All of these functions were present in the Whitehead torpedo to some degree – although the 

evolution of these functions has significantly improved over the last 100 years. In the Whitehead 

torpedo, for instance, there was a pressure sensor mounted on the tip of the cylinder (United States 

Naval Undersea Museum, 1980) which would sense when the contact was made with the target, thus 

fulfilling the function of sensing the surrounding environment. Modern AUVs, by contrast, employ 

cutting edge acoustic mechanisms to map their surroundings in three dimensions and high resolution. 

The core functionality, however, remains unchanged. 

The highest level of operation requires two functions to be carried out: autonomy and 

navigating the surrounding environment. Both of these functions are emergent through the interaction 

of lower-level forms and functions. Navigating is an emergent outcome when powering the system, 

propelling, sensing the surrounding environment, and orienting the AUV are all successfully 

integrated. The outcome of navigation is the ability of the AUV to locate where it is now, identify 

where it needs to go, reorient itself, and get to the target location.  

Colloquially, autonomy is used to refer to an overall advancement in the capabilities of a 

system as a whole. In the realm of AUV operation, this usually refers to either the task complexity 

(specifically, the more complex a task an AUV can accomplish, the higher the level of autonomy) or 

task magnitude (specifically, the ability to accomplish more tasks simultaneously or throughout a single 

mission). This definition is insufficient for a technical analysis of the functionality of an AUV because 



27 
 

they both belie the critical fact that AUVs are by definition completely autonomous. Rather, they are 

each a different measure of the value that is delivered by AUVs in specific operating environments, 

or under different mission parameters. The ability to execute more complex tasks (measured in 

resolution, data acquisition, or other figures) and increased task magnitude (measured in different 

instrumentation used for instance) are nothing more than figures of merit that clarify that, in fact, an 

AUV is performing autonomously. Autonomy itself is an emergent function of all of the low-level 

functions previously listed. Without achieving any of these second-level functions, autonomy, as a 

high-level function, is lost. Detailed analysis of the underlying functional capability as it stands now 

will allow for a detailed tradespace analysis of the AUV industry as it currently stands as well as where 

it could exist in the near future with new architectures. 

 

2.2.1 Communicating outside the system boundary 

Modern AUVs utilize several different mechanisms for communication outside of the system 

boundary. There are two main categories of communication that are of concern in this analysis: 

communication directly to a control station (or service platform) and communication with other 

AUVs during operation. When communicating directly with a control station, communications can 

be required to either transfer data or to transfer operational requirements. For instance, an AUV could 

need to update its mission parameters (e.g., go to a different location and collect new types of data) 

or transfer (or stream) the collected data from a mission to a service platform. Communications 

between AUVs in operation are required if fleet operations need to be synchronized, or if there are 

different vehicles that specialize in different data collection operations. 

Fundamentally, communication in an underwater environment is fraught with challenges 

because of the physical limitations on signal speed and attenuation in water. Both of these challenges, 

of course, are circumvented if a direct line is attached to the vehicle. However, by definition, if there 

is a direct connection between an AUV and a surface vehicle which provides either power or data 

transmission capability to the AUV, then the AUV is classified as an ROV – remote operated vehicle 

(Blidberg, 2001). When evaluating the communication options, the specific figures of merit include 

transfer range, data transfer rate, power consumption, and cost. By using these figures of merit, the 

different forms that achieve communication are comparable across the tradespace.  
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Communicating with a control station or service platform is a major hurdle for the AUV 

industry to overcome. Most existing systems transmit data to service platforms via direct 

communication following the mission. Generally, this is accomplished either through direct ethernet 

connection (or similar standards wired data transmission) or wireless networks once the AUV has 

been retrieved (Bluefin Robotics Corporation, 2015). Direct communication via dedicated network 

protocol (either through ethernet connection or via wireless transmission) is a very effective solution 

when the AUV is communicating with a surface vehicle, but the distance between the AUV and the 

surface vehicle must be very small. If the connection is wired, to achieve system autonomy (meaning 

no direct connection to the service platform), then the connection process at the service platform 

must also be automated. Wireless data connections have very low losses and very small delays when 

operating in air, but because of the physical properties of water, typical wireless signals are absorbed 

in fractions of a meter in a sea-water environment (Umair Mujtaba Qureshi, 2016; Anonymous, 2016).  

Radio waves suffer this same difficulty with very low frequency waves. Thus, even standard 

radio frequencies (~20,000Hz) can only penetrate tens of feet of seawater (The United States Navy, 

2001). The largest radio antennae in the world have around 30 miles of overhead signal transmission 

line, and even then, operating at 76Hz, radio frequency penetration into ocean waters is limited to 

hundreds of feet (The United States Navy, 2001).  

One final electromagnetic solution currently being explored in academia and in industry is 

using laser communication (lasercom). Lasercom requires a direct linkage between the source and the 

receiver. In water, laser beams are limited in their capacity because of electromagnetic absorption of 

water. However, if a link is established very high data transfer rates (megabits per second) are within 

the range of possibility. To date, there are only experimental proofs of concept that work in controlled 

test environments and over short distances (tens of meters) (Parde, 2018).  

Unlike light-based communications, acoustic-based communications in the subsea 

environment are far more effective than in air. However, there are physical challenges that face 

acoustic communications. Multi-path propagation and low bandwidth are the two most important 

hurdles to address. When a single source of sound waves is emitted, it can travel many different paths 

to arrive at a hydrophone receiver. The main issue with this limitation is that the time at which the 

signal will arrive is different depending on the length of the path that the wave traveled. Concerning 

the second physical limitation, bandwidth available in acoustic signals is generally very low. In 2017, 

NATO announced JANUS, the first standardized protocol with the intention to transmit digital 
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information using acoustic waves underwater (North Atlantic Trade Organization, 2017), and in 2019 

the first publicly available modem that communicates in this frequency was made available. The 

Popoto Modem uses a 11.52kHz carrier frequency to transmit data acoustically at a rate of 80 bps 

(DellaMorte, 2019). 

The five viable options for communication outside of the system boundary are direct 

connection, wireless protocol, radio frequency, lasercom, and acoustic. Each of these options have 

distinct advantages and disadvantages. Table 2-1 summarizes existing technologies and compares the 

figures of merit for each of these methods. While each of the figures of merit are estimated, the critical 

limitations are laid bare – the tension exists between communication range and data transfer rate. As 

range increases, the data transfer rate decreases with different options for the architecture. 

 

Table 2-1: Options for forms that achieve the function of communication outside of the system for AUVs. All cost 

values are estimates. Sources: 1 - (IEEE 802.3 Ethernet Working Group, 2020), 2 - (IEEE 802.11 Working 

Group, 2018), 3 - (Kinkade, 2016), 4 - (Whited, 1979), 5 - (DellaMorte, 2019). 

 

2.2.2 Energizing and powering the system 

While the earliest AUVs were powered via a range of methods and mechanisms, modern 

AUVs are exclusively powered electrically. The electricity in the system is what provides the AUV with 

the power to run sensors, internal computers, control surfaces, propellers, and all other system 

functionality. Because everything runs on electrical power, the only existing architecture for providing 

the electricity used by the system are battery packs. The battery packs themselves vary in their 

chemistry (e.g., lithium-ion, lithium-polymer, nickel-metal hydride, and lead-acid options for instance) 

but they are all limited in their abilities as their recharging capacity is located outside of the AUV itself. 

In this examination, the service platform would act as a recharging station. While some architectures 
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may exist where onboard generators convert fuel to electricity in the AUV itself, such options would 

only shift the burden of requiring electricity transfer to fuel transfer. Finally, the question of generating 

the electricity which will charge the AUV must be considered. For remote service stations, there are 

options that include renewable assets (e.g., solar panels, or wind turbines) as well as conventional 

methods (e.g., diesel electric generator). While there is ongoing work in the field of AUVs capable of 

self-charging (D. Richard Blidberg, 2004), they are considered outside of the scope of this research. 

Thus, for energizing the system, three distinct sub-categories must be considered: 

1) Internal AUV battery – size and chemistry 

2) Energy transfer method between service platform and AUV  

3) Method to harvest electricity on the service platform 

When evaluating battery options, it is important to recognize that there may be multiple uses 

in the system for batteries. Specifically, the remote servicing platform may require a significant power 

bank in which energy will be stored for some number of operational vehicles. This battery architecture 

may be different than that which is present in the AUV itself. As such, the figures of merit and metrics 

bear special consideration. For the AUV, classic operational metrics are of critical importance – 

specific energy (Wh/Kg), energy density (Wh/L), and power density (W/Kg) being of utmost 

importance. However, for the service platform battery bank, those metrics may matter considerably 

less than the cost of the batteries, number of cycles delivered from the power bank, and maintenance 

requirements. The maintenance costs associated with battery operation on the service platform are 

expected to be minimal compared to the maintenance costs associated with energy generation, but 

they will certainly scale with location to the service platform – the more remote the platform, the 

higher the associate maintenance costs. As such, it is prudent to prioritize system redundancy and 

longevity in the platform over other figures of merit.  

 

2.2.2.1 Internal AUV Battery 

There are two main factors to consider for placing batteries inside AUVs: the battery size and 

the battery chemistry. There exist four proven battery chemistry technologies that are currently used 

in industrial capacities: iron acid, nickel metal hydride, lithium-ion, and lithium-polymer. There are 

also emerging technologies in batteries that could improve upon existing chemistry. For instance, solid 

state batteries could improve battery performance by factors of 2.5 or greater. (Nancy J Dudney, 2015). 
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There are five figures of merit across which batteries will be compared: specific energy (Wh/Kg), 

energy density (Wh/L), power density (W/Kg), cycles to 80% (number), and cost ($). Cycles to 80% 

represents how robust a battery architecture is to frequent recharging. If there is a high number of 

cycles before a battery degrades to 80% of its initial energy capacity, then it is more robust to 

recharging. Costs that are provided are based on similarly sized 7-9V examples (Battery University, 

2017). These 7-9V costs will likely not be identical to 12V or 24V systems that could be emplaced on 

an AUV, but power conversion systems tend to “decrease as system voltage increases” (United States 

Department of Energy, July 2019). Thus, the cost estimates for these batteries represent a realistic, 

current, medium to high-end estimate. Low and high estimates for all architectures are provided to 

demonstrate that by subtle variations in the physical construction of the battery, different performance 

can be met. These ranges represent the possible outcomes for specific architecture forms, as there is 

no single correct or standard value for any battery architecture across these figures of merit. 

Lithium-based batteries are frequently used in electronic devices and large consumer 

electronics worldwide. Lithium-ion and lithium-polymer batteries are very common. Lithium-ion 

batteries have slightly improved energy density, and are considerably cheaper than their lithium-

polymer counterparts, but lithium-polymer batteries have greatly improved battery degradation 

characteristics (Sabatini, 2011). Existing architectures tend to favor lithium-polymer solutions because 

of their flexible design and improved long-term performance (Bluefin Robotics Corporation, 2015).  

Lead-acid batteries were the first rechargeable batteries that were ever invented (Battery 

Association of Japan, 2015). They have low specific energy, energy density, power density, and poor 

cycle degradation characteristics compared to lithium-based batteries. However, where they excel is 

their cost. Lead-acid battery configurations can cost up to five times less than lithium batteries 

(Wholesale Solar, 2018). For systems that rely on increasing the number of functions that can be 

completed autonomously, lead-acid batteries are not the ideal solution. They have shorter lifespans, 

require regular maintenance, and perform more poorly.  

Finally, nickel-metal hydride batteries have been used in industry since the 1970s. One of the 

driving reasons that they are no longer used in the modern autonomous vehicle industry is the poor 

battery degradation characteristics compared to other architectures – specifically lithium-ion 

architectures (Paul Gerin Fahlstrom, 2012). Other performance limiting features include high 

operating temperatures and frequent full discharge cycles to prevent further performance degradation. 

A summary of existing battery metrics is summarized in  Table 2-2.  
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Table 2-2: Summary of existing battery technologies and their associated metrics. Sources: 1 - (Sabatini, 2011) 2 - 

(Battery University, 2017), 3 - (Bluefin Robotics Corporation, 2015), 4 - (Panasonic, 2020), 5 - (Harding Energy, 

2020), 6 - (PowerTHRU, 2016), 7 - (Battery Association of Japan, 2015), 8 - (Wholesale Solar, 2018), 9 - (Paul 

Gerin Fahlstrom, 2012). 

 

2.2.2.2 Energy Transfer Method Between Service Platform and AUV 

Beyond storing energy for the AUV in the form of a battery, there must exist a system in place 

to recharge the energy expended through nominal and off-nominal operations. From an architectural 

perspective, there are two viable methods for recharging the energy storage system – either a direct 

contact method or an indirect method. Indirect methods of energy transfer include electromagnetic 

induction, magnetic resonance, electric field coupling, and radio reception. Direct contact methods 

are numerous, but share many architectural elements (e.g., cables that connect directly to the 

electronics system of the target device, and the energy storage device). In exploring energy transfer 

architectures, the critical figures of merit for each recharging technology are recharging rate current 

(amperes), power delivery (watts), efficiency (a percentage of energy provided to the target relative to 

the energy drained from the source), and transmission distance (meters). It is critical to note that the 

transmission distance is reported in air as a medium instead of water. If wireless transmissions were 

performed in air, then attenuation would be much lower, and thus the possible communication range 

would increase. 
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Concerning indirect methods of energy transfer from energy storage sources to targets, the 

most commonly used method today is electromagnetic induction. Electromagnetic induction transfers 

power between the source and the target via magnetic field. This technology is used in small appliances 

such as toothbrushes, electric shavers, prosthetic devices in the medical field, and has recently 

experienced a surge of usage in small electronic devices such as cell phones. Modern standards for 

electromagnetic induction are evolving. A common standard for small products is the Qi open 

interface standard which specifies low power transfer constraints up to 30W (Wireless Power 

Consortium, 2017). Higher power standards have yet to be established. Using Qi standards – which 

are optimized for small electronics – the rate of current transfer is 1.67A (at 15W and 9V). The 

efficiency of electromagnetic induction charging changes as a function of distance between the source 

and the target, as well as alignment between the two, but efficiencies of up to 88% have been recorded 

(A. Berger, 2016). Using this method, transmission distance is highly limited using existing 

architectures – on the order of centimeters between the source and the target. 

A complementary technology called magnetic resonant power transfer can extend the distance 

between the source and the target to up to two meters with an associated drop in transfer efficiency 

to 40% (Aristeidis Karalis, 2007). There are two differences between electromagnetic induction and 

magnetic resonant power transfer. First, as the distance between a source and receiver coil increases, 

their coupling decreases. This leads to lower power transfer efficiency (Wireless Power Consortium, 

2018). Second, in order to increase transfer efficiency, the transmitting and receiving coils oscillate at 

matching frequencies (André Kurs, 2007). Figure 2-3 demonstrates a schematic of these differences. 

This technology is still developing, but there are large commercial offerings (such as WiTricity) where 

this technology is actively developed. Power delivery on the order of 1 to 10kW with efficiencies 

increasing to 90% as transmission distance decreases have been documented across multiple 

demonstrations (Takehiro Imura, 2009; Taylor M. Fisher, 2014). 

Technology that is still under early exploration is the concept of electric field coupling wherein 

instead of matching magnetic resonance between the transmission source and the receiver, the 

impedance is matched. This architecture is a simpler design than magnetic resonance, can match power 

delivery and transfer efficiency, but can be limited by coupling distance and geometrical constraints 

(Bien, 2013). Experimental technology exploration has yielded results of power delivery up to 2kW at 

~7.5A, transmission distances of up to .15m, and efficiency of 80% (H. Zhang, 2016).  
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Power transmission via radio, micro, or light waves utilize fundamentally different 

architectures than other indirect methods of energy transfer. Energy is emitted from an antenna 

regardless of whether a receiver is in place to receive the energy or not. This method of power transfer 

is traced back to attempts by Nikola Tesla and Heinrich Hertz at the turn of the 20th century. While 

early wireless power transmission efforts were highly inefficient, the development of antennas that 

can focus beams (instead of radiating in all directions) and a greater command over frequency control 

and advanced rectennas has led to the ability to advance this technology significantly. Despite decades 

of research, however, major limitations exist concerning transmission efficiency with the highest 

recorded efficiency of 84% (Matsumoto, 2002). Additionally, the power delivery is proportionate to 

the area of the receiver. It is very difficult to bound the precise figures of merit for this method of 

energy transfer given the prolific history, but a classic cited example delivered 100W of power at 

approximately 1A and an efficiency of 13% at a distance of approximately ten meters (Brown, 1984).  

 

Figure 2-3: Schematic diagram illustrating the differences between two modes of wireless charging. Modified from 

(Wireless Power Consortium, 2018). In resonant mode, the two coils oscillate at constructively interfering or identical 

frequencies. There is no requirement for the coils to have the same dimensions. 

 

It is critical to note that with all of these methods of wireless energy transfer between a source 

and a target, the medium in which the transmission occurs must be considered. In this instance, it is 
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highly likely that any AUV and their paired service platform would commence energy transfer 

operations in at least partially wet – if not entirely underwater – environments. The result is that any 

method of energy transfer via electromagnetic (EM) spectrum would be attenuated through the lossy 

medium that is water. For a method such as microwave power transmission, this would severely lower 

efficiency at distance because water attenuates signals with lower frequency more than signals with 

high frequency (Pope & Fry, 1997).  

Direct methods of energy transfer are very common in commercial, industrial, and personal 

application worldwide. For the purposes of examining applications in the AUV space, established 

standards that are applied to electric vehicles (EVs) provide excellent anchor points to compare figures 

of merit against indirect energy transfer methods. By and large, these standards fall into one of three 

categories: Level 1, Level 2, or Level 3. Direct transfer, overall, sees much better performance in our 

figures of merit, but there are two qualitative elements that must be considered – degree of automation 

and corrosion of contacts. With a fully autonomous system, there will need to be significant 

engineering effort applied to engineer a system where ports on the AUV and the service platform will 

be connected. This is a non-insignificant process that merits significant consideration in the scheme 

of architectural goals. Secondly, whereas an indirect method of energy transfer can be completely 

isolated from the elements (specifically seawater) direct connections will expose the connectors 

between the AUV and the service platform. Corrosion of the contacts that facilitate energy transfer 

will be an issue requiring regular maintenance, which further impacts the viability of a completely 

autonomous relationship between the service platform and the AUV. This can be mitigated with 

automated cleaning and maintenance procedures applied to the connectors between the AUV and the 

service platform, but those processes would require further power demands and design efforts. 

For direct connection standards and methods, the EV market has seen massive progress in 

recent years. Due to the similarity between AUVs and EVs (both are vehicles that travel from one 

point to another, or from one point returning to the same point), EV infrastructure provides a wealth 

of information about what modern energy transfer rates can be. Recharging electric vehicles with a 

Level 1 AC charging station means that household current is used to provide the power delivery. 

According to the industry standard SAE J1772 (revised October 13, 2017), at 120V, there are ranges 

of recharging rate currents from 12A to 16A delivering power between 1,400 and 1,900W. Charging 

efficiencies vary depending on the temperature of the surrounding environment, and how much 

energy was delivered to the battery overall. For Level 1 AC charging, average efficiency was found to 
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be 83.8% (J. Sears, 2014). The transmission distance is limited by cable length, but for most practical 

solutions, less than five meters is ideal.  

Level 2 AC charging standards are different than Level 1 standards because of the operational 

voltage and recharging rate current. SAE J1772 defines the operational voltage for a Level 2 AC 

charger to be between 208V and 240V with currents ranging between 12A – 80A and typical values 

of 30A. The power delivery of these systems is considerably greater than Level 1 AC charging stations 

with 2,500W – 19,200W delivered, and typical values of 7,000W. Efficiencies of Level 2 AC charging 

stations are also considerably better than those of Level 1 AC charging stations with average values of 

89.4% (J. Sears, 2014). Similar to Level 1 AC charging stations, the transmission distance is limited to 

approximately five meters before further performance degradation is to be expected. 

The most powerful charging stations are classified as Level 3. These are far less widespread 

than the previous two types of charging stations, but their planned deployment has increased in recent 

years (Li Zhang, 2015). SAE J1772 defines the operational parameters for Level 3 AC charging as: 

using between 208V and 600V to produce a recharging rate current ranging from 50A to 400A 

(typically 60A), and a charging power of up to 240,000W with typical values of 50,000W. There are 

very few estimates available for the efficiency of Level 3 AC chargers, but initial trials demonstrate 

efficiencies between 84% and 88% (J. Channegowda, 2015).  

When weighing the options between direct and indirect methods of energy transfer between 

an AUV and a power supply, there are several key features that have been demonstrated. First, by and 

large, indirect energy transfer methods deliver lower recharging rate currents and power delivery. This 

means that in any comprehensive architectural review, a service platform that functions as a recharging 

station would take longer to recharge a single AUV using indirect energy transfer methods. To 

accommodate an operational fleet size equal to one supported by a faster charging solution, the service 

platform would have to have the ability to recharge more vehicles at any given time, and the total idle 

fleet size would be greater by comparison. Second, while direct connections can accommodate much 

faster charging rates, there are issues that would arise in mechanical complexity and product 

maintenance. Two issues that are not captured by our four primary figures of merit. A summary of 

these findings is found in Table 2-3. 
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Table 2-3: Figures of merit compared across energy transfer architectures. NOTE: transmission distance is reported for 

transmission in water. If transmission occurs in air, the attenuation would affect the system differently and distances 

would increase for indirect transmission, while stay constant for direct transmission. Sources: 1 - (Wireless Power 

Consortium, 2017), 2 - (A. Berger, 2016), 3 – (Aristeidis Karalis, 2007), 4 - (Takehiro Imura, 2009), 5 - (Taylor 

M. Fisher, 2014), 6 - (Bien, 2013), 7 - (H. Zhang, 2016), 8 - (Matsumoto, 2002), 9 - (Brown, 1984), 10 – 

(SAE Standard J1772), 11 - (J. Sears, 2014), 12 - (Li Zhang, 2015), 13 - (J. Channegowda, 2015). 

 

2.2.2.3 Energy Harvesting Method Co-located With the Servicing Platform 

Fundamentally, there are two categories that are under consideration for harvesting energy: 

renewable sources of energy, and non-renewables sources. Potential candidates for renewable sources 

of energy include solar, wind, and wave power generation. Diesel and gas generators and gas 

microturbines are likely the most viable options for non-renewable power sources due to their size, 

advanced capabilities, and power production characteristics. Across the planet, 26,951TWh of 

electricity was generated in 2019 (IEA, 2020), with approximately 97% of that electricity generated by 

turbines driven by combusted gases, steam, wind, or water. When considering a system to harvest 

energy from the operating environment of the AUV, this fact should remain at the forefront of the 

system: turbines are highly mature, reliable, and robust architectures that are generally not prone to 

failure or excessive maintenance. In order to compare across renewable and non-renewable 

architectural options, the following figures of merit are considered: electrical power output (Watts) 

and 10% discounted cash flow over ten years per electrical power output (dollars/Watt). For the 

purposes of this work, size restrictions will not be considered, and calculations will assume that any 

of the architectures could be built in such a way that the service platform and the energy harvesting 

system could physically operate in the same location.  
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 Solar power is a very promising technology for an integrated AUV and service platform 

architecture. Solar panels have recently greatly decreased in cost and are much more viable options 

for energy harvesting than in the past (J. Hernandez-Moro, 2013). There are issues of frequency of 

power delivery (for instance if the sun does not shine), but most of these concerns can be addressed 

through increasing power delivery and power storage options, effectively increasing the reserve of 

power onboard the service platform, and increasing the rate at which that storage could be refilled in 

times of sunlight. Importantly, solar power systems do not perform identically in different locations. 

For instance, high latitudes receive less solar radiation per unit space (Coddington, Lean, Pilewskie, 

Snow, & Lindholm, 2016), and thus solar panels are less productive in such environments. 

To create a solar array on the service platform, a collection of commercially available solar 

panels would be integrated into a larger system. The standard size of a single solar panel is 

approximately 1.65m2 and the top ten solar panels for 2020 produce between 285 and 360 Watts at 

standard testing conditions (Zientara, 2020), or between 174 and 220 W/m2. For standardization 

purposes in the following calculations, a 32-panel solar array (with each panel measuring a standard 

165cm by 100cm) is assumed, creating a solar array with an area of approximately 53m2. The nameplate 

power capacity of this system at standard test conditions would be between 9,100W and 10,200W. 

The average solar radiation that arrives at the top of the earth’s atmosphere is 1,361W/m2 

(Coddington, Lean, Pilewskie, Snow, & Lindholm, 2016). As the sun’s energy travels through the 

atmosphere, it is attenuated to approximately 1,120 W/m2 on a horizontal surface at ground level 

(Newport Corporation, 2020) which represents a decrease of approximately 18% of all the energy that 

intersected the upper atmosphere. Furthermore, this represents only the instantaneous peak irradiance 

that can only be experienced when the sun is at its zenith on a cloudless day. In an effort to average 

this value over an hour, and evaluate commercial panels at a standard irradiance level, standard testing 

conditions are set to an irradiance of 1,000W/m2 which is subsequently referred to as a “peak sun 

hour.” The capacity of a system is thereby governed by the number of peak sun hours that a specific 

location may experience on average over a given period of time. In other words, in counting the 

number of peak sun hours at a given location, one can account for seasonal and location specific 

variability in solar irradiation variation. For instance, across areas near the equator, average annual 

peak sun hours per day are between four and six hours (Bowden, 2019).  Theoretically, the power 

output is limited not by the solar panel, but rather by the footprint of the array. The space-efficiency 

of this footprint expansion will be governed by the distance the array is from the equator – the farther 
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north or south from the equator, the less space-efficient a solar array will be. To account for this 

variation from standard testing conditions, in this thesis, the total output of the system will be cut by 

80% resulting in a capacity factor of 20%. This discounting is verified through publications which 

examine the performance of offshore solar power plants (C. Diendorfer, 2014) which estimate total 

solar irradiance in offshore environments from raw high-resolution satellite data (Lamont-Doherty 

Earth Observatory/Columbia University, 2020). 

When examining commercially available solar photovoltaic power solutions, costs per Watt 

are approximately $3.10 for systems that are approximately 4kW – 6kW in size (Solar Reviews, 2020), 

which verifies a continued trend of lower costs per Watt over time (J. Hernandez-Moro, 2013). The 

total system under consideration would have a power output at standard testing conditions between 

9,100W and 10,200W, and cost between $28,200 and $31,600. A major advantage to solar arrays 

powering the support platform and the AUV system is the considerably low requirement for ongoing 

maintenance costs and operational expenditures (OPEX). The solar power inverter that is present 

within most systems is replaced on average once every ten years and generally costs approximately 

1.5% of the total capital expenditure (CAPEX) (Power from Sunlight, 2017). If the system is located 

in a very remote location and requires maintenance, then these numbers will increase dramatically. For 

offshore environments, marine operations costs (including boat rental, fuel, and crew) are usually 

approximately $0.03/kWh for large systems which have capacities of tens of MW (Vincent S. Neary, 

2014). It is assumed here that these estimates for marine operations are quite low for high-end 

estimates, and as such are taken at full rental and crew costs, rather than normalized. In this case, the 

rental, operation, and support for a medium vessel with the capacity to service remote offshore 

environments ranges from $1000/kW to $2500/kW (Vincent S. Neary, 2014). This range is expected 

to scale up and down depending on what type of vessel is required and how frequently maintenance 

is required. For the purposes of this study, a static value of $20,000 is assumed for each round trip a 

service vessel must make. If the AUV and is service platform were located in less remote environments 

(beyond the scope of this thesis) then it is likely that this annual cost estimate is inaccurate and high. 

This means that the total 10% discounted cash flow over ten years per electrical power output is 

between $23/W and $136/W. These values can be linearly scaled up to systems that are upwards of 

10,000W of power delivery with larger and larger solar arrays. Finally, it is worth noting that upscaling 

the size of the solar array would have the added benefit of increasing tolerance when there are 
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extended periods of time without ideal sun conditions. Larger farms could recharge battery banks 

quicker making better use of shorter time windows. 

Similar to solar panels, wind turbines could be used to create an arrayed power generation site. 

Wind turbines are well established, but still evolving in the technology space today. The range of 

products that could be deployed is very broad. The largest turbines have rotor diameters of hundreds 

of meters and produce over 10MW of power (General Electric, 2020), with small personal turbines 

with rotor diameters just over one meter and producing power on the same order as a single solar 

panel (Avant Garde Innovations, 2020). The price of a wind turbine tends to scale directly with the 

power that is produced. Existing turbines cost approximately $1.1 million/MW (WEPD Staff, 2019).  

From the perspective of power output, there are few practical options that provide less than 

500W of power delivery. Additionally, for the purposes of this exploration, there is little reason to 

consider using more than several 10,000W turbines which would require significant engineering to be 

properly anchored and secured aboard the service platform. For the purposes of modelling in this 

thesis, a standard operational size of ten wind turbines with 1,000W nameplate capacities, for a total 

of 10,000W capacity, will be used. 

 From an operational perspective, both the OPEX and maintenance costs associated with 

onshore wind scale with installed capacity as well. Average OPEX and maintenance costs are 

approximately $38/kW (IHS, 2018), which means that a small wind farm with a 10kW capacity would 

have annual OPEX costs of approximately $380. However, based on the distance from the project to 

the maintenance facilities and the meteorological ocean climate where the AUV service platform is 

operating, maintenance costs could scale annually up to $144/kW  for relatively nearshore projects 

(for a total of $1,440 annually), up to annual costs of $20,000 for emergency maintenance (specifically 

marine operations and several hundred dollars in repair parts) in highly remote areas similar to the 

emergency repairs required for solar arrays (Tyler Stehly, 2018). Finally, similar to solar arrays, output 

from wind farms must be discounted against their installed capacity via a capacity factor to account 

for time that wind is not blowing within ideal speed windows. In 2019, there were 105,583MW of 

installed wind capacity in the United States (American Wind Energy Association, 2019). This means 

that if all wind farms in the United States operated at nameplate capacity, there would be 924,907GWh 

of energy generated in 2019. However, only 300,071GWh were produced. This means that on average, 

wind farms across the U.S. are only 32% efficient relative to their nameplate capacity. Estimates for 

offshore windfarms suggest that offshore wind capacity factors could range between 29% and 52% 
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(International Energy Agency, 2019). For our model, a 32% capacity factor will be applied to our 10x 

1,000W type architecture, which brings total power output to 3,200W. The range of discounted 

cost/power output for wind power generation then, ranges from $5.0/W to $44/W.  

A third viable option to harvest energy for the service platform and the associated AUVs 

would be to utilize the emerging field of wave energy. Wave power captures energy of waves in the 

ocean and converts that directly to electrical energy using one of several methods – point absorber 

buoys, surface attenuators, oscillating wave surge converters, oscillating water column devices, 

overtopping devices, or submerged pressure differential converters (Figure 2-4). A limiting factor that 

is common among many of the wave energy harvesting architectures is that they rely on being moored 

or anchored to the ocean floor. It is this mooring or anchoring that provides a static point against 

which the waves can move and generate forces to either pump hydraulic fluid through turbines or to 

actuate a piston. If this architectural hurdle could be overcome and a design could be fitted with sea 

drogues or other forms of position management, then there could potentially be viable options to 

supply power to the service station. Currently, however, this has not been commercialized. There are 

active areas of research that are working to resolve this technical limitation. Power output can range 

between 3,000W and 7,500W depending on the selected architectures at peak performance (Ocean 

Power Technologies, 2020). Similar to solar and wind power options, this power output should be 

discounted via a capacity factor to represent the reality that there will not always be ideal circumstances 

for the wave power generators to operate. Comprehensive studies on the comparisons of levelized 

cost of energy suggest that depending on the precise form selected, this capacity factor can range from 

30% to 70% (D. S. Jenne, 2015). For this study, a value of 50% is assumed. It is also very difficult to 

find accurate estimates of pricing, but the units themselves are estimated to cost at least $40,000 

(Johnson, 2012). For architectures that are commonly associated with wave ocean energy projects 

such as point absorbers, the capital cost can range between $13,000/kW for large projects of 100 

individual units or more, and $61,000/kW for small projects of fewer than ten individual units 

(Vincent S. Neary, 2014). OPEX and maintenance for these systems is extremely low by design, and 

can range between $400/kW for large arrays and $4000/kW for small arrays annually (Vincent S. 

Neary, 2014). 

In examining this system, it is far more likely that the total number of units will be between 

one and 100, and so in calculating the total CAPEX required, the low-power output option of 1,500W 

is multiplied by the high CAPEX cost per kW, and the high-power output option of 7,500W is 
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multiplied by the low CAPEX cost per kW. Thus, the total CAPEX for wave power, is estimated to 

be between $91,000 and $98,000. For calculating long-term costs, OPEX and maintenance are 

combined to equal the estimates set forward by national reports. Similar to CAPEX, the high OPEX 

is paired with and multiplied with the low-power output, and the low OPEX is multiplied with the 

high-power output option. This means that the total 10% discounted cash flow over ten years per 

electrical power output is between $79/W and $13/W for the 1,500W and 7,500W systems 

respectively. 

 

Figure 2-4: Comparison of the six major wave power generation methods. Clockwise from upper-left modified from: (J. 

Engström, 2013; Robertson, 2010; Ghasemi, 2014; Lorenzini, 2015; B Drew, 2009; Dara O’Sullivan, 2016) 

point absorber buoys, surface attenuators, oscillating wave surge converters, oscillating water column devices, overtopping 

devices, and submerged pressure differential converters. 

 

Generators are a reliable technology that are deployed worldwide to produce energy from 

various hydrocarbon sources. These fuels can either be diesel, gas, methane, or propane. These 

generators represent the simplest form of creating electricity on the service platform to recharge 

AUVs. However, there are significant logistical hurdles that would need to be overcome. Using OPEX 

and maintenance estimates from offshore platforms as analogues, logistics and administration (e.g., 
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costs associated with maintenance) are approximately one half of OPEX field facilities costs (Oil and 

Gas Authority, 2018). However, the maintenance costs that are assumed in our model will use the 

same $20,000 per service visit that is used to estimate the cost of a single visit to the remote platform 

for the renewable power options.  This means that OPEX costs are dominated by the cost of visiting 

the service platform. OPEX costs that are commonly associated with small (less than 10kW capacity 

generators) are approximately $50 annually, and larger models can increase to $2,000 annually (Home 

Advisor, 2020; Benjamin O. Agajelu, 2013) less fuel costs. Generators that operate under 20kW 

capacities consume approximately 1.5 gallons of fuel per hour, whereas 25kW systems consume 

approximately 2.5 gallons of fuel per hour at full load (Diesel Service and Supply, 2020). Average retail 

fuel costs in early 2020 are approximately $3 per gallon (U.S. Department of Energy, 2020) which 

means that if these generators are run at full load for 24 hours a week, the fuel costs would be between 

$39,420, and $65,700 annually. Assuming that generators’ fuel tanks would have to be refueled twice 

monthly, maintenance costs would balloon to $480,000. If a much larger fuel tank is utilized, and 

refueling can be achieved only six times annually, then the maintenance costs will be reduced to 

$120,000. This would clearly reduce autonomous functionality of the service platform, as the service 

platform is now required to receive fuel at regular intervals. However, there are generators that could 

provide very wide ranges of power delivery which could be scaled to the size of the system – power 

output can range from 1,000W to upwards of 25,000W. Additionally, given how advanced generator 

technology is, and how saturated the market is, there will rarely be any problems securing replacing 

equipment as needed. Considering fuel consumption and maintenance costs, and discounting them 

over a 10-year operational lifespan, the cost/power ratio of most generators is between $1,097/W and 

$149/W for 1kW and 25kW systems respectively.   

Another option to generate power with non-renewable fuel is to use microturbines. 

Microturbines are effectively very small-scale powerplants that evolved from auxiliary power units. 

They are comprised of relatively few moving parts, they are compact in size, scalable in series (i.e., 

multiple units can be connected in series to increase power production linearly) and are generally quite 

efficient (Capehart, 2016). Most microturbines are run on an external fuel source – either propane or 

natural gas. Microturbines have CAPEX costs that range from $2.5/W to $3.2/W and for systems 

with capacities up to 1,000kW, OPEX costs which are between $50 and $1,000 annually (U.S. 

Department of Energy, 2016). From a CAPEX perspective, this means that 10kW systems would cost 

$25,000 to $32,000, and 200kW systems could cost between $500,000 and $640,000. Depending on 
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system size, fuel consumption rates range from 0.38MCF to 4.05MCF of natural gas per hour (U.S. 

Department of Energy, 2016), and assuming natural gas prices of an average of 2019 prices which 

equals $3.85/MCF (U.S. Energy Information Administration, 2020) this would mean that fuel costs 

for microturbines could range from $12,700 to $136,000 annually However, a 200kW system only 

consumes approximately 2.2MCF of natural gas per hour, which suggests that a more reasonable high-

end estimate for the system under consideration would be $94,400 annually. Similar transport 

assumptions must be made to those of diesel generators, where the maintenance costs are largely 

related to the costs of shipping the fuel to the platform. Combining these variables together, the 

average cost per Watt of power output over a discounted 10-year timespan could range from $92 to 

$23 for a 10,000W system or 200,000W system respectively. Table 2-4 summarizes the findings of this 

architectural analysis. 

 

Table 2-4: Comparison of formal elements to harvest energy for AUV platforms. Sources: 1 - (C. Diendorfer, 2014), 

2 - (Lamont-Doherty Earth Observatory/Columbia University, 2020), 3 - (Solar Reviews, 2020), 4 - (Vincent S. 

Neary, 2014), 5 - (WEPD Staff, 2019), 6 - (Tyler Stehly, 2018), 7 - (International Energy Agency, 2019), 8 - 

(Ocean Power Technologies, 2020), 9 – (D. S. Jenne, 2015), 10 - (Johnson, 2012), 11 - (Oil and Gas Authority, 

2018), 12 - (Benjamin O. Agajelu, 2013), 13 – (Diesel Service and Supply, 2020), 14 - (U.S. Department of 

Energy, 2020), 15 - (U.S. Department of Energy, 2016), 16 - (U.S. Energy Information Administration, 2020). 

 

2.2.3 Propelling and orienting the AUV 

The combinations of the propelling and orienting functions of the AUV are implicitly 

interlinked. The combined function of propelling and orienting an AUV in an underwater 

environment are considered under an umbrella emergent function referred to henceforth as 

“controlling.” The reason to collapse these functions into a single higher-order function is because of 

a very small number of architectures that can accomplish the tasks of propelling and orienting, and 

they are mutually exclusive of one another. There are two architectures to propel an AUV – propellers 

and impellers – and there are two architectures under considerations to orient and AUV – rudders 
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and thrusters. Fundamentally, in order to accomplish controlling, the acts of propelling and orienting 

must be accomplished (to some degree) simultaneously. By forcing water to flow over control surfaces, 

the orientation of the craft can be changed. If the control surfaces are completely independent of the 

propulsion architecture, then in the case where there is no propulsion, the orientation of the AUV 

cannot change. Similarly, if the control surfaces are the same surfaces as the propulsion architecture, 

then without propulsion, there can be no orientation change. The figures of merit to consider are 

largely qualitative or binary for the combinatorial function of controlling the AUV. There are six total 

architectures that will be evaluated across the figures of merit: power consumption 

(low/medium/high) high velocity maneuvering capability (very poor/poor/medium/good/very 

good/exceptional), low velocity maneuvering capability (medium/good/very good), zero velocity 

maneuvering capability (very poor/poor/medium/good/very good/exceptional), and overall 

complexity.  

The function of propelling an AUV is accomplished by converting slow moving or static water 

and speeding it up to faster moving water by a mechanism mechanically attached to the AUV. This 

conversion applies an equal force to the AUV and creates motion in the opposite direction of the 

force applied to the water. The oldest architecture to accomplish this function was a standard propeller 

(United States Naval Undersea Museum, 1980), which converted power into thrust by accelerating the 

water and creating a pressure differential behind the propeller. Modern propellers function in precisely 

the same way. There are many advantages of propellers as a method of propelling a system: it is a tried 

and true and very robust architecture. The main drawbacks exist in operation environments when 

there is a high possibility of debris getting tangled around the propeller. However, shrouds and grates 

can prevent this from happening and in some cases also improve the efficiency of the drive system. 

As a principle, propeller efficiency increases at lower speeds and denser fluids (Rawson, 2001).  

Another modern method of propelling vessels through the water is by the use of impellers. 

Impellers spin and create a low pressure at the center of an impeller and shoots water out of the 

impeller radially in channels because of the associated centripetal force generated at the center of the 

impeller blades. As water exits the impeller, its pressure increases and exits the system at high pressure 

and eventually high velocity. By pushing the low or zero velocity water through the impeller system, 

the and equal and opposite force is imparted on the vehicle. One inherent disadvantage to impellers 

is the requirement for the water intake to constantly be clear. If any debris is caught in the input, then 

there will be decreased performance to the point where it could stop performing its primary function. 
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In contrast to propellers, different designs of impellers have efficiency curves that generally increase 

with greater capacity and specific speeds (Evans, 2012) 

The oldest method of orienting an AUV was to include control surfaces that were rudders 

oriented about normal axes to one another (United States Naval Undersea Museum, 1980). These 

rudders were oriented at the aft section of the AUV and would be able to control pitch and yaw of 

the craft when it was in motion by flexing either up, down, left, or right. Early AUVs were not capable 

of controlling roll because the vertical and horizontal rudders were interconnected. Modern 

architectures exist that can control roll with the same four rudders that are independently controlled 

(Yinghao Zhang, 2017). These advanced rudder systems still require water to flow over the control 

surfaces to orient the craft – thus inexorably pairing propelling and orienting.  

A second method of orienting an AUV is to use devices called thrusters along all three axes 

of orientation (Xianbo Xiang, 2020). Thrusters generate thrust in any of these directions using either 

of the methods outlined in the propelling function. Thrusters are generally equally effective at 

orienting an AUV at any velocity, as they contribute new force vectors that act upon the vessel, rather 

than alter existing ones. One downside to thrusters is their placement often must be precisely located 

at equal distances away from or exactly at the center of mass of the vehicle. This can lead to shapes 

that are far less hydrodynamic which can reduce the operational capacities of a vehicle, although 

through-body thruster designs have begun to improve this aspect of thrusters (Xianbo Xiang, 2020).  

One other method of orienting an AUV is through the use of thrust vectoring and the novel 

control algorithms that are associated with it (Tao Liu, 2019). This method allows whichever method 

of propulsion is under consideration to gimble about two axes. If the main forward propelling method 

is gimbled, then the vectoring allows for control of pitch and yaw.  

There are six distinct architectural combinations to take into consideration when examining 

the function of controlling an AUV. They are compared across qualitative figures of merit – as 

quantitative figures of merit require specific operational parameters and lower decisions in place. The 

figures of merit to evaluate controlling an AUV are power consumption, high-, low-, and zero-velocity 

maneuvering capability. These findings are summarized in Table 2-5. These architectural combinations 

represent real decisions required to successfully create an AUV that can autonomously operate. There 

is no dominant combination of figures of merit – however all solutions that use propellers instead of 

impellers will likely have lower power consumption than their impeller counterparts because of their 
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aforementioned efficiency differences. For that reason, it is likely that there will be very few cases 

where impellers would be the ideal architectural selection, and architectures with propellers would be 

able to achieve the same performance with lower power consumption. Effectively, depending on the 

specific mission parameters or operating environment, the controlling system will likely be different. 

For instance: if very large swaths of ocean floor are to be examined by acoustic imaging, then speed 

is of critical importance, and orientation via vectoring would likely be the best solution, but if very 

precise control near reefs or sensitive equipment is required, then thrusters would be ideal.  

 

Table 2-5: Comparison of all possible architectures that could be evaluated for controlling an AUV. Sources: 1 - 

(Rawson, 2001), 2 - (United States Naval Undersea Museum, 1980), 3 - (Yinghao Zhang, 2017), 4 - (Xianbo 

Xiang, 2020), 5 - (Tao Liu, 2019), 6 - (Evans, 2012). 

 

2.2.4 Sensing the surrounding environment 

While there may be hardware that is specific to a certain mission or operational environment, 

all AUVs, by definition, need the capacity to sense and negotiate the surrounding environment. In 

effect, there must be some method of identifying where the AUV is relative to where it should be and 

making an autonomous decision about how to reach the desired location. Methods to sense and 

negotiate the environment include dead reckoning methods and paired acoustic sensors (or laser range 

finders) with decision making software to avoid collisions, and finally more advanced software which 

utilizes acoustic data to create on-board geometric models of locations visited. 

Dead reckoning as a location and navigation tool has long existed in the nautical realm. Dead 

reckoning utilizes velocity, depth, and directional data to calculate deviation away from a known fixed 

starting location (Zheping Yan, 2010). Dead reckoning requires very few instruments to run in order 

to function, and as such is a very low power option to achieve the function of sensing and negotiating 
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along a path. However, a critical drawback to this method is that the area under consideration for 

investigation must already be known – a plan must already be in place for the AUV to execute. There 

is implicit error associated with all dead reckoning, and this error propagates as time goes on. The 

result being an increased error through longer and longer operations of an AUV that relies exclusively 

on dead reckoning, although modern processing techniques utilizing onboard navigation software 

have reduced these propagation rates significantly (M. T. Sabet, 2018). Additionally, given that there 

are no sensors to detect and avoid collisions, there must be reasonable confidence that there will not 

be any such surprises. This also excludes this architecture from any system that would perform 

detailed, close-range investigations of any features of the ocean floor.  

Collision avoidance systems are a second architecture that assist in sensing the surrounding 

environment. It is a major field of study in the AUV sector, as any work that requires close examination 

of material in the ocean requires such a system to assure no damage comes to the vehicle. A common 

method to detect possible collisions utilizes a sonar beam which provides return times to the AUV 

which are then converted to a distance to possible objects. Rapid scanning rates provide a grid of data 

that the AUV can find an obstacle free path to navigate (Schjølberg, 2018). These collision avoidance 

systems have become more nuanced over time, and are quite advanced at this point with early 

detection allowing for highly efficient route planning (Alexander Inzartsev, 2010). A drawback of using 

exclusively collision avoidance systems is that they can only be used for upcoming obstacles. 

Effectively, there is no way to carry out a specifically located mission because there is no way for the 

AUV to navigate to or from a known (or nearly-known) location. As such, relying exclusively on this 

architecture can have significant challenges in remote environments.  

Environmental modeling is a method of location and mapping which is the most advanced 

and power intensive method of those explored. From this technique, forward facing sonar data are 

obtained and utilized to develop an environmental model of the surroundings. As the AUV travels 

through the ocean, the environmental model of the surrounding area is updated and referenced back 

against earlier iterations to locate the current position of the AUV by matching features (Tiedong 

Zhang, 2008) . This emerging technique requires a much higher power requirement from the AUV as 

the computations that are undertaken are substantial, but unlock new pathing methods in an 

operational environment (C. Denniston, 2018) in which efficient route planning with specific mission 

objectives can be achieved, as opposed to less-efficient pathing. Thus, it is not entirely known if this 

method would necessarily lead to higher power consumption over many missions. Similar to collision 
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avoidance systems, this system operating on its own has problems navigating over long distances as 

there is no way to reach a certain target that is outside of the range of its sonar.  

In reality, with higher capability computers which utilize less power, and increased capability 

required from AUVs in recent years, collision avoidance systems have been more or less replaced (or 

are in the process of getting replaced by) environmental modelling methods to generate paths in 

operational environments that require medium- and close-range encounters. Both of these methods 

must be paired with dead reckoning in order to achieve full autonomy and both start and return to a 

known location. The result is that a common practice is to pair these two methods to allow for 

significant improvements to performance and capability for a very low material, power, and 

computational cost. For that reason, the function of sensing the surrounding environment and 

negotiating obstacles is effectively a dominated tradespace with only one high-level architectural 

solution. Recent research has also been delivering promising results in using leader-follower 

architecture to help enable sense ranges to and from other AUVs in swarm environments (E. M. 

Fischell, 2020).  

 

2.3 Scaling relationships between architectural decisions 

Most of the architectural decisions that have been outlined above have complex, systemic 

interactions as they scale in size. For instance, while it is possible to add more and more battery 

capacity to a single AUV, the marginal utility of the energy supplied through that addition may not be 

consistent – likely, the marginal utility would increase to some point, and then decrease. To this 

particular example, there has been substantial work to constrain and optimize AUV operations from 

a generalized perspective where any particular scalar field’s error is minimized by tuning the parameters 

governing the AUV’s operation. Specifically, two common trade-offs during surveys are AUV speed 

in tension with survey resolution, assuming a consistent survey area. In several studies, it was found 

that decreasing the electrical load of all sub-systems active in a specific AUV would result in no 

improvement in minimum error collected by the vehicle (Bellingham J. S. and Willcox, 1996; Willcox, 

2001). Using a faster vehicle (which would effectively lower the resolution of a given survey) would 

result in minor improvements in error, while in total energy capacity (e.g., quadrupling battery capacity) 

would result in minimum error improvements on the order of 8% (Bellingham J. S. and Willcox, 1996; 

Willcox, 2001). However, the largest improvement that can be made is by increasing the number of 
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AUVs operating. Two AUVs performing the same task as a single AUV could result in a twofold 

improvement of using a faster AUV (Willcox, 2001), and using four AUVs instead of one would result 

in a minimum error reduction of 19% (Bellingham J. S. and Willcox, 1996). Thus, the complex 

systemic interaction of scaling AUV systems can be summarized in one simple conclusion – if the 

objective of an AUV is to collect data with minimum error, then the best way to achieve that goal is 

to increase the number of AUVs rather than attempt to dramatically increase the performance of a 

single AUV. 

Given this substantial increase in performance – that one can improve by scaling the number 

of AUVs in operation, rather than the individual components of the AUVs – what have the limiting 

factors been on preventing AUV swarm operations to date? For this research, swarm operations is a 

term which refers to operational parameters in which two or more AUVs are working together to 

achieve the same mission. As outlined in the previous sections, there are highly specific decisions that 

can be made within the design space of AUVs that can inherently prevent swarm operations. One of 

the most critical factors that has faced the industry is the ability for multiple craft to communicate 

with each other during mission operations (Zimmer, 2007). In order for craft to communicate with 

each other, there must be specific intent at the early design phase to create a craft which is capable of 

sending and receiving communications, as well as making decisions based on the communications it 

has received from other AUVs during operation. While there have been significant gains in modelling 

the decision capabilities of AUVs (C. Cai, 2019) fundamental physical constraints exist with the 

communication mechanisms. Depending on which form is selected for communication between 

AUVs (Table 2-1) there will be limitations on which tasks can be accomplished with some number of 

AUVs. Put another way, if an AUV can only communicate with another AUV within 1m, then they 

can only ever take the data gathered from the other AUV into account when they are very close to 

each other. In order to achieve “swarm behavior” (where decisions are made with constant input from 

all swarm members), neither AUV could ever be more than 1m away from another. This would seem 

at first glance to be an extraordinarily inefficient use of resources. Emerging research has shown that 

by exploiting doppler effect changes in known frequencies from a leader AUV, coupled with changes 

in the magnitude of these known frequencies, swarm communication could be enabled via acoustic 

methods (E. M. Fischell, 2020). From a practical standpoint, this means that AUVs in this system 

could operate with greater autonomy, and potentially network tasks. Communication could be more 
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frequent as well, which would allow for changing mission parameters based on the conditions 

encountered during operations.  

However, the truth is that depending on which figures of merit are of most importance to the 

user, and depending on the specific operational environment of the system, there could, in fact, be 

cases where such an architecture would be a viable option. Granted, that for the sake of argument, 

these use cases would be the extreme minority – there are rarely circumstances where having multiple 

AUVs within 1m of each other would make any sense – as soon as the range expands, the possibilities 

grow. Simultaneously, if there is no need for complete uptime of swarm behavior, and instead it is 

appropriate for the AUVs to operate in a solo configuration for some period of time, then converge 

with other AUVs to decide collectively what the next step in operation would be, then the possibilities 

once again expand.  

 

2.4 Summary and Conclusion 

In this Chapter, usable definitions of systems, and their component entities were established. 

The component entities of a level of a system are comprised of both functional and formal elements. 

The decomposition exercise is undertaken as a functional decomposition. Each functional element is 

broken down into different forms which can accomplish that function. Following a functional 

decomposition, formal elements were proposed which can perform each constituent function.  

Throughout this exploration of the functional and formal elements that comprise AUVs the 

specific architectural components have been identified and examined. The functions that have been 

analyzed include communicating between elements of the system, energizing the system, propelling 

and orienting the system (collectively forming a functional module which achieves controlling the 

system), and sensing the surrounding environment. There are multiple viable forms (Table 2-6) that 

can accomplish these specific functions. Tensions exist between different figures of merit that are 

used to govern the efficacy and performance of each functional element. For instance, in the case of 

data communication, there is a tension that is exposed between data transfer rate and data transfer 

distance. It is the combination of all of these tensions that will yield differential architectures through 

an exhaustive evaluation of all possible concepts using each viable formal solution to functional 

requirements.  
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Table 2-6: Summary of all architectural options and decisions summarized above. 
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3 AUV and Service Platform Architectural Evaluation 

In this chapter, a deterministic evaluation of a proposed AUV system is proposed. In order to 

ground-truth the model, a case study of historical AUV operations is used as an anchor. To generate 

this evaluation, seven performance metrics are proposed. Of these seven performance metrics, three 

are directly calculated from figures of merit – properties implicit to the architectural option selected 

for a single architectural decision. A detailed exploration of some architectural decisions and their 

formal options is undertaken. Finally, the deterministic evaluation examines which performance 

metrics are in tension, which architectural decisions have the largest impact on the results, and which 

architectures dominate which tradespace. 

 

3.1 Defining Operational Environments – Introduction 

For the purposes of these analyses, the whole system includes AUVs and a service platform. 

In order to adequately examine the entire system for the AUV, specific operational environments must 

be taken into consideration. These restrictions will place several needed constraints in tradespace 

evaluation and in the architectural review. In constraining the system, selected architectures will be 

subject to review from a less neutral ground. However, the tensions that will emerge between figures 

of merit will have far more bearing than if speaking in purely abstract or hypothetical terms. The 

guiding questions that we aim to answer in this section are: what are the specific architectural choices 

that can lead to improved functional performance in an AUV’s operating environment? And what 

functionality is improved through the use of simultaneous operation of AUVs as opposed to individual 

AUVs? 

Additionally, in defining specific use cases, it is important to note that the figures of merit to 

be analyzed will change significantly from one case to another. This is because each operational 

environment and use case will have different mission critical objectives. If those objectives are not 

met, then other figures of merit are effectively meaningless.  

 

3.2 Operational environment: Deep-Water Search and Rescue 

The first operational environment that will be examined is one where AUVs have successfully 

seen deployment in the past. Some search and rescue operations have historically used AUVs. One 

such example that is often highlighted is the search for the wreckage of flight Malaysia Airlines flight 



54 
 

370 (MH370). MH370 was a commercial passenger flight in which a Boeing 777 disappeared en route 

from Kuala Lumpur International Airport to Beijing on March 8th, 2014. All 239 people on board at 

the time perished. The final sighting of the airline was from a military radar where its location was 

above the Andaman Sea, north of Indonesia and east of the Indian Ocean. The search for MH370 

was the costliest in aviation history (Australian Transport Safety Bureau, 2017). 

In the search of MH370, AUVs were used to conduct detailed surveys. AUVs were run in 

series operations over the course of three phases of investigation – which combined accounted for 

approximately 285 days of AUV operation, 17,156 line km flown, and 34,312km2 mapped (Australian 

Transport Safety Bureau, 2017; Gartland, 2018). The operating conditions for this particular 

environment were particularly challenging – specifically the water depth of up to six km at which the 

investigation took place was much deeper than the initially anticipated four km water depth 

(Trauthwein, 2014; Australian Transport Safety Bureau, 2017).  

The reference architecture that will be used as an anchor point in this analysis is a Bluefin-21 

AUV (Figure 3-1) from Bluefin Robotics – now General Dynamics (Orr, 2014). The Bluefin-21 is 

described as “highly modular autonomous unmanned underwater vehicle able to carry multiple 

sensors and payloads at once” (General Dynamics, 2020). It is 4.9 meters in length, and can cruise up 

to 4.5 knots. It communicates with computers after missions via ethernet interfaces. There are 

13.5kWh of every stored aboard nine 1.5kWh lithium-polymer batteries. It navigates the subsea 

environment with a gimbaled thrust vector. Additionally, it is equipped with standard payloads 

including side scan sonar packages, sub-bottom profilers, and multibeam echo sounders (General 

Dynamics, 2020). This AUV was used during the search for MH370, and so it is an excellent 

benchmark against which our system can be evaluated. This AUV can operate for up to 24 hours in a 

single mission with its standard payload operating on its 13.5kWh of internal energy (Bluefin Robotics, 

2010). The time that this AUV takes to dive to the operational depths or resurface from those depths 

is approximately 2.5 hours (MIT Spectrum, 2014) and it operates moving at approximately three knots 

throughout its mission.  

 

Figure 3-1: Bluefin-21 AUV from general dynamics. 
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The first figure of merit that any new system attempting to operate in this environment must 

tackle is the speed at which it can search a square kilometer of ocean floor. Each reference AUV was 

capable of collecting side scan sonar data at a width of 1,000m on either side of the AUV at an altitude 

of 45m from the sea floor moving at 5.5km/h. Knowing that the AUVs operated lines summing to 

17,156km during the most intensive parts of the investigation, we can surmise that a total of 34,312km2 

were mapped (Australian Transport Safety Bureau, 2017). An average single mission collected side-

scan sonar data that covered an area of approximately 205km2 having traversed tracklines of 

approximately 102.7km. Side-scan sonar data are collected by a vehicle by using sonar emitted normal 

to the pathway of the vehicle creating a large swath (or plane) of measurements at high collection 

rates. It is worth noting that the AUVs that were used in this investigation (the reference architecture) 

never fully searched the initially defined 60,000km2 area, nor the 120,000km2 expanded search area. 

Figure 3-2 shows the initial 60,000km2 area, and the 120,000km2 expanded search area in context with 

the Indian Ocean. Figure 3-3 shows traces of the tracklines of each of the three operating AUVs 

during the search for MH370 against the expanded search area.  

 

 

Figure 3-2: Initial area designated for search for MH370 (Yellow), and the expanded search area (red outline). Figure 

51, (Australian Transport Safety Bureau, 2017) 
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Figure 3-3: Trace of tracklines which AUVs followed during the search for MH370. Figure 65, (Australian Transport 

Safety Bureau, 2017). In this image, the 230 days refers to the number of days which constituted days in which AUVs 

were operating. The figure of 285 days represents the total number of days during which the system which supports the 

AUVs was active (i.e., travel time, refueling, and so forth.) 

 

There are two key differentiators in our architectural concepts that deviate from this historical 

example: first, the AUVs will be completely autonomous, rendering the costs of maintaining and 

fielding large support craft moot, and second the AUVs will operate in this system as elements in a 

swarm (E. M. Fischell, 2020). The lack of autonomy in the search is due to a system boundary that 

has changed. The individual AUV could carry out its mission autonomously, but it had to be launched, 

programmed, caught, have its batteries changed, and download data all non-autonomously (Figure 

1-5).  Additionally, during the search and rescue mission, there was only one AUV which was ever 

operating at any given time. For the purposes of this thesis, in order to achieve complete autonomy, 

a given AUV or set of AUVs will need to perform all functions – except for emergency operations – 

without direct input from human operators.  

As previously discussed, adding AUVs to the system is a very efficient way to improve system-

wide performance relative to individual component changes (e.g., speeding a reference architecture 

up, or increasing battery life by adding more batteries) because the area that any single AUV needs to 
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evaluate is equal to 
1

𝑛
 where n is equal to the number of AUVs present in the system (Bellingham J. S. 

and Willcox, 1996). Based on this, the answer would seemingly be to add an ever-increasing number 

of AUVs to the system to instantaneously examine the entire 34,312km2 area. However, there is a limit 

on how quickly a swarm could accomplish the same task as a single AUV. The time to reach the start 

of the survey point is effectively constant (~2.5 hours) in the case of the single launched AUV. For a 

swarm, however, the more agents added, the longer it will take for an individual AUV to reach the 

starting point for their survey. For the purposes of this thesis, an arbitrary mission profile of 2.2 million 

m2 per mission will be considered (Figure 3-4). This profile can change depending on mission 

parameters or program goals. The governing principle that will determine the degree to which the 

operational time will shrink is that the platform will remain stationary during remote operations. Thus, 

each AUV will launch from a single location and steer itself to the predetermined starting location at 

the seafloor. If there are up to four AUVs working a single mission, then the time to the seafloor 

remains unchanged, but the addition of a fifth AUV would result in horizontal distance as well as 

vertical distance to reach the mission start location (Figure 3-4). This scaling in non-linear. There will 

variations in the increases in time as more vehicles are added because of the geometry of the square 

search grids (Figure 3-5).  

 

Figure 3-4: Schematic example of descent time increasing as AUVs are added to the system. Leftmost box represents 

the area that a single AUV can survey in a single given mission.  
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Figure 3-5: Time to seafloor scales non-linearly with the addition of more AUVs to the system. 

 

Because of this factor, the operational time scales negatively and non-linearly with the distance 

away from the service platform with the addition of additional AUVs to the system. In other words, 

daily operational time (which is related to scannable area in a single dive mission) decreases as the scale 

of the swarm increases. For the purposes of this examination, average operational depth will be 4km 

(MIT Spectrum, 2014). With this information, it is clear that a figure of merit that would adequately 

quantify the performance of an AUV in this deep-water search and rescue environment is calendar 

time to complete a sea-floor survey of 34,312 continuous km2 measured in days. This time is formally 

split into two distinct metrics: operational days for mission completion time (i.e., how many days 

involved active AUV survey missions) and mission completion time (i.e., total duration of subsea 

operations, including port days and non-operation days). In the case of the reference architecture, 285 

days of operation were required for mission completion (230 of which were occupied performing 

maritime operations), but those days were spread in a total mission completion time of 730 days 

(Australian Transport Safety Bureau, 2017). 

This primary figure of merit (days to complete total survey) will be the product of average 

daily operational time in hours of a single AUV and the average area in km2/hour that any given AUV 

would survey in that same day. These two separate variables are the values that will change as the 
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architectural decisions shift. The architectural decisions will drive average operational time or average 

survey area per hour up or down. As the morphological matrix evolves it is here where many system-

wide tradeoffs will be made.   

A second set of highly important figures of merit to enter into the evaluation of this 

architecture concern costs. The reference architecture for this operational environment costs 

approximately $5 million (Parker, 2014). While the total cost for a single AUV is important to consider, 

this study assumes that any AUV architecture that is produced will have comparable costs in initial 

production for the AUV.  Each AUV was also paired with a multi-purpose survey vessel to act as 

support. Each vessel (the Fugro Equator, the Fugro Supporter, and the Havila Harmony (Australian 

Transport Safety Bureau, 2017)) carried approximately 50 support personnel during the operation 

(Fugro, 2017; Fugro, 2014; Havila, 2020). According to the Australian Transportation Safety Board, 

A$170 million were spent on the underwater search. 1,904 days were spent during the underwater 

search operations, and 285 of those days were dates when the Equator, the Supporter, and the 

Harmony were engaged in AUV operation (Australian Transport Safety Bureau, 2017). Three AUVs 

were used in this search, and so the total mission costs are estimated to be $17,812,500 (conversion 

from AUD to USD = 0.7). Since three AUVs were used in the search, $15,000,000 is added to this 

sum to bring the total estimated costs to $32,812,500. For the purposes of this analysis, the capital 

costs of all AUVs – for both the existing architectures and the proposed architectures – are assumed 

to be distributed to a single mission. In reality, these AUVs would all likely be deployed to other 

mission profiles throughout their operational lifetimes. On an operational basis, this means that each 

operational day costs $115,000 or $6,100 per operational hour. The entire AUV operation, however, 

required an additional 450 days to complete, which means that on a per day basis for the total mission, 

costs were $45,000. Since the remote autonomous system seeks to improve system-wide performance, 

it is possible that the total cost of the mission and the total mission daily costs will decrease, even if 

the operational hour costs increase. For the purpose of this study, the remote autonomous service 

platform’s initial capital cost is estimated to be equal to two times the cost of the number of individual 

AUVs that are using it as a base of operations, or $10 million. As the architecture expands, and AUVs 

are added to the system, the initial costs for the autonomous service platform are assumed to increase 

by $2 million. This uncertainty will be modeled probabilistically in Chapter 4.  

Table 3-1 summarizes the project metrics and the goals of an autonomous system. These goals 

are set in context to the reference architecture that was employed during the search and rescue 

operations for MH370.  
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Table 3-1: Summary of the seven metrics by which the AUV system will be evaluated. 

 

Finally, there is one additional architectural decision to add to the evaluation procedure, and 

that is the number of AUVs that will be present in the system. Assuming that a single AUV capable 

of operating in this environment costs approximately $5 million, then it is highly unlikely that there 

will ever be a practical use case where more than a handful of AUVs would be cost effective. In order 

to fully evaluate the tradespace, options for the number of AUVs will be in increments of four – 

consistent with the increasing time to starting location outlined above – and have a maximum of 20 

and include one. This way, a broad range of possible outcomes can be explored. 

 

Table 3-2: Summary of all considered options for architectural decisions. 

 



61 
 

Specific architectural decisions that have been previously outlined will impact the system in 

different ways:  

• The communications option will govern how quickly a set of sea-floor scanning data will be 

transmitted to the service platform. This could govern the time that a single AUV can operate 

in a single day if the data rate is too slow. Some processed files have file sizes for side scanning 

raw sonar data on the order of 1.7KB/km of trackline (Nancy T. DeWitt, 2010). This means 

that on average, during a single reference 19-hour mission an AUV would collect 

approximately 178KB of data. However, these processed output files are likely greatly eclipsed 

by the actual size of files acquired in the acquisition process which scale on the precise 

sounding parameters (Poole, 2020). In order to accurately model these raw files, a static size 

of 10GB is assumed. The reference architecture transmits data once it is collected by a ship 

via gigabit ethernet cable, which results in transmission of the data in under a minute.  

• The selection of a battery will impact cost of the overall system. The number of AUVs that 

will operate will drive the amount of energy that must be stored on the service platform, and 

the costs to house that energy will be based on which battery is selected. The reference 

architecture uses a lithium-polymer battery which delivers its energy at 30V (Bluefin Robotics, 

2010). Based on the architectural decomposition results detailed in Chapter 2, this is estimated 

to cost approximately $3,000 total. 

• would be recharged in just over 9.5 hours. At a high-power delivery of 1,900W, those same 

batteries would be recharged in approximately seven hours. Since the reference architecture 

has people on board the craft who swap out the batteries instead of waiting for the AUV to 

recharge, the 19 hour daily operational time can be fully utilized, and the 7 to 9.5-hour charge 

time is not used as a penalty against the reference architecture. The costs associated with 

having maintenance crews on site to perform this work are reflected in the total operational 

costs of AUV operations in search and rescue missions.  

• Power generation method will have a large impact on cost. The reference architecture that is 

examined recharges their batteries through AC power generated by the diesel generators on-

board the support vessels. The fuel cost that would impact the overall cost of operations in 

the reference case, however, are already accounted for in the marine operations summaries 

(Australian Transport Safety Bureau, 2017). Thus, no additional costs will be applied to the 

reference case to account for fuel or maintenance. In evaluating the system, power generation 
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method will also influence the number of batteries used to support the system. To account for 

the variability implicit in renewable sources of electricity, there will be a reverse capacity factor 

applied. This factor is different for all three renewable sources. The factor will be equal to the 

inverse of the capacity factor. The purpose of this reverse capacity factor will be to estimate 

the amount of storage required at the service platform to account for periods of prolonged 

conditions of non-ideal power generation. This means that the total battery capacity of the 

service platform will need to be increased by a factor of 5 for solar, 3.125 for wind, and 2 for 

wave sources of electricity. Power output for generators and microturbines meet their 

nameplate capacity and refueling costs are structured into maintenance approximately $3,000 

total. Because costs are directly related to energy storage, and can be inversely related to voltage 

(United States Department of Energy, July 2019) the estimates for 9V examples are acceptable 

for deterministic modelling purposes. 

• Additionally, the size of the energy storage available on the platform will scale with the selected 

power option – e.g., if solar power is used a larger platform battery bank would be prudent in 

case of inclement weather.  

• As a deliberate decision, all AUVs will be assumed to have the same 13.5kWh energy supply 

that the reference architecture has (Bluefin Robotics, 2010). This choice is made in order to 

stabilize the initial operational time that any given AUV can utilize. In order to equal the 

required energy, battery chemistry architectures could lead to differences in either the size or 

the weight of the AUV, both of which would lead to worse hydrodynamic performance, which 

would manifest as lower average hourly survey rate. If weight is conserved or if a slightly 

smaller battery pack is used, then there would be a positive impact on the average survey rate.  

• Operational time in a single day will be impacted by power transfer method. The longer a 

single AUV takes to recharge, the longer it will take to start its subsequent mission. The 

reference architecture uses what is effectively a Level 1 AC direct connection to charge its 

batteries. At a low-power delivery of 1,400W, the 13.5kWh batteries and OPEX costs, and so 

no additional factors should be applied to the number of batteries onboard the service 

platform for these methods of power generation. 

• While the AUV’s control systems are critically important for the AUV architecture, they will 

not have an impact on the figures of merit under consideration for this operational context, 
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as all architectures are sufficient to maneuver at high speeds. The reference architecture uses 

vectored propellers to control orientation and speed (Bluefin Robotics, 2010). 

 

3.2.1 Decision and Metric Sensitivity Analysis 

Seven key metrics have been selected for this operating environment: daily operational time, 

average survey coverage per hour, operational days for mission completion, calendar days to mission 

completion, total mission cost, cost per operational hour, and total mission daily cost. Between these 

seven metrics, the reference system can be evaluated. The performance metrics include daily 

operational time (PM1 – hours), average survey area rate (PM2 – km2/hour), operational days for 

mission completion (PM3 – days), mission completion time (PM4 – days), cost (PM5 – $), operational 

hour cost (PM6 –$/hour), and total mission daily cost (PM7 – $/day). These metrics are all effected 

in some degree by the architectural decisions that have been selected for analysis. The linkage between 

an architectural decision and a performance metric are described qualitatively as sensitivity. Qualitative 

sensitivity of an architecture decision is at its highest when a single decision has a high impact across 

multiple metrics. In this regard, changing a single sensitive architectural decision will impact many 

performance metrics. Contrarily, a sensitive performance metric is one that is linked across multiple 

architectural decisions. If a sensitive metric is examined closely, there could be multiple ways in which 

that metric could be influenced. The qualitative sensitivities that exist between the architectures and 

performance metrics of this system are summarized in Table 3-3. 

 

Table 3-3: Sensitivity table displaying the most sensitive performance metrics (PM) and architectural decisions (AD) 

(green) and the least sensitive performance metrics and architectural decisions (red). 
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It is unsurprising that even from a qualitative standpoint, the least sensitive architectural 

decision is the AUV control decision. In fact, because of how insensitive it is it will not be included 

in the morphological matrix analysis as a decision in subsequent analyses. Rather, it will be represented 

as a single selected option – vectored propeller. The most sensitive decision outlined in Table 3-3 is 

the number of AUVs present in the system. This means that changing the number of AUVs will have 

a large qualitative impact across multiple metrics. Similarly, the power generation method will have 

very high impacts concerning cost related metrics. Operational time, survey rate, and operational days 

are the least sensitive metrics relative to the architectural decisions considered. This is by and large 

due to the fact that the purpose of this analysis is not to optimize a single AUV and squeeze marginal 

performance gains from a single mission. Instead, operational time as a percentage of a single day is 

largely already optimized, and architectural decisions can only detract from the existing architecture. 

In as much as they can, the operational time is impacted most by the energy transfer method selected.  

 

3.3 Morphological Matrix and Concept Selection 

 Table 3-4 summarizes the updated list of all architectural decisions under consideration for 

concept selection and morphological matrix evaluation. Table 3-5 shows how this table can be used 

to select individual architectural decisions and create a single concept. The highlighted concept is the 

reference architecture for the Bluefin-21 AUV against which our system will be judged. There are 

several minor exceptions to these architectural decisions discussed above, but none that aren’t 

accounted for in the metrics against which the new system and concepts will be evaluated. Within this 

set of architectural decisions, there are no choices which are mutually exclusive. As such, the full 4800 

entry morphological matrix can be explored. In creating this morphological matrix, all decisions are 

initially based on deterministic input parameters. It is likely that each metric is a function of 

probabilistic input parameters which will be discussed in detail during probabilistic analysis in Chapter 

4. 
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Table 3-4: Summary of all architectural decisions under consideration for concept selection and morphological matrix 

evaluation. 

 

 

Table 3-5: Reference architecture concept mapping. 

 

The first step in creating a comprehensive morphological matrix comprised of all possible 

architectures that could result from all possible permutations of every architectural decision is to 

calculate the impact that each decision has on each performance metric. The impact that each 

architectural decision has is based on their own figures of merit that were uncovered in the 

architectural decomposition of each functional element. 
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3.3.1 PM1: Daily Operating Time (DOT) 

Daily operational time in hours is a metric which expresses how many hours of active scanning 

the AUV can perform at the seafloor in a single charge. Table 3-3 shows that this metric is sensitive 

to communication method, energy transfer method, and the number of AUVs which are operating 

simultaneously. The reference architecture has a daily operating time of 19 hours (Table 3-1) which is 

achieved by using ethernet connections for data transfer, and one AUV. The energy transfer method 

that is used in the reference architecture is not a valid option for exploration in this tradespace, as it 

requires human intervention. In the reference architecture, when an AUV is retrieved for servicing 

people swap out the vehicle’s depleted batteries with full batteries in order to maximize operational 

time. As such, the energy transfer time is very close to zero. The impact of this servicing method is 

that since the reference architecture requires 0 hours to transfer energy to the AUV, no matter which 

architectural decision is selected for the autonomous platform/AUV system, the output of PM1 within 

this morphological matrix will be less than 19 hours.  

To calculate the impact on PM1 due to the communication method selected for a given 

architecture, an assumed file size of 10GB is converted to bits, then divided by the data rate and 

converted to hours. This calculated amount is then subtracted from the daily operating time. The 

following equation governs the influence of communication method on PM1. 

 

∆𝑃𝑀1𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 = − (
𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ∗ 8

3600 ∗ 𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐴𝐷1𝑂𝑝𝑡𝑖𝑜𝑛

) 

 

Additionally, the selected method of power transfer will impact PM1. There are eight options 

for this architectural decision. Each option has a different amount of power that they can deliver to 

the AUV during a recharge cycle. While it is possible that there will be variation in the actual power 

delivery of each method, the values outlined in the architectural decomposition are representative 

averages that each option could reach. The reference battery size which is assumed as a constant across 

all architectures contains 13,500Wh of energy. This energy value is divided by the Power delivery in 

Watts to determine the time in hours required to recharge a battery. The following equation governs 

the influence of power transfer method on PM1. 

 

∆𝑃𝑀1𝑃𝑜𝑤𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = − (
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑖𝑧𝑒

𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐴𝐷3𝑂𝑝𝑡𝑖𝑜𝑛

) 
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As previously outlined, as the number of AUVs increase, the distance to the starting location 

for an individual AUVs survey increases (Figure 3-5). There are six options for the number of AUVs, 

and in each of the options the single unit travel time is calculated. The average amount of time that it 

takes for each unit to reach the sea floor is then calculated for each architectural decision. This value 

is then doubled, as it is assumed that each AUV will take an equal amount of time submerging as 

surfacing. In actuality, it is likely that AUVs will take different amounts of time surfacing than 

submerging because AUVs are usually positively buoyant, and they will likely be in a different location 

at the end of a survey then they were when they started the survey. Such differences are not accounted 

for in this analysis. The following equation governs the influence of the number of AUVs on PM1. 

 

∆𝑃𝑀1𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑈𝑉𝑠 =  − (2 ∗ 𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑒𝑎𝑓𝑙𝑜𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
) 

 

Each of these architectural decisions output a value in hours. These outputs are deviations 

away from the 24-hour possible daily operational time. These deviations are summarized in Table 3-6. 

The governing equation for PM1 is: 

 

𝑃𝑀1𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 = 𝑃𝑀1𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + ∆𝑃𝑀1𝐴𝐷1𝑂𝑝𝑡𝑖𝑜𝑛
+ ∆𝑃𝑀1𝐴𝐷3𝑂𝑝𝑡𝑖𝑜𝑛

+ ∆𝑃𝑀1𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
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Table 3-6: Summary of PM1 impacts from each pertinent architectural decision option. 

 

There are several options which were eliminated from subsequent morphological matrix work 

based on these calculations. If the time required for any of these methods was over 24 hours, then it 

was eliminated as a viable design. In the case of communication methods, this mean that using radio 

waves and acoustic options as a way of communicating data was considered non-viable, as it would 

take over 1,000 hours for radio waves and over 250,000 hours for acoustic communications to transfer 

10GB of data to the service platform. In the case of power transfer methods, low power 

electromagnetic induction and radio reception were similarly eliminated as non-viable design options. 

For low power electromagnetic induction, it would take 900 hours to charge a vehicle, and for radio 

transmission, it would take 135 hours. It is worth noting that these are not inherently non-viable 

designs, but their slow transfer and charge times were deemed too slow for the purposes of this 

exercise, and as such eliminated from subsequent analyses.  
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3.3.2 PM2: Search Area Rate (SAR) 

Search area rate (SAR) in km2/hour is a metric which expresses how quickly an area can be 

scanned using sonar. Table 3-3 shows that this metric is sensitive to battery chemistry, method of 

AUV control, and the number of AUVs which are operating simultaneously. The reference 

architecture has a search area rate of 11 km2/hour (Table 3-1) which is achieved by travelling at 5.5 

km/hour and having a sonar beam width of 1km on either side of the AUV. In the case of the search 

of MH370, the nadir (a narrow strip of seafloor which can’t be imaged by a side scanning sonar) 

underneath the AUV was covered by multibeam echo sounders which left a continuous swath of 2km 

at an elevation of 45m above the seafloor (Australian Transport Safety Bureau, 2017). In this 

architectural exploration, the precise acquisition parameters are left unchanged. Thus, the only way to 

alter the search area rate metric is to change the efficiency at which an AUV operates. An estimate for 

this efficiency is derived from mass. A more massive AUV will expend more energy to travel at the 

same speed, and any increase in craft size will potentially increase drag. 

Battery chemistry impacts the search area rate by changing the hydrodynamic properties of an 

AUV. These properties are generally made worse by increasing the weight of the craft, as more energy 

would be required to move the craft the same speed. Additionally, if there is any movement in the 

ocean which is not parallel to all currents, then the reference area of the craft will increase if there is 

an increase in craft length. This increase in reference area would mean that there would be an increase 

in the drag that an AUV experiences, further decreasing energy efficiency. To calculate the search area 

rate impact that the battery chemistry would have, the power density of each option was considered. 

The reference value was divided by the option value. Lower power densities would then have 

multipliers above 1, and higher power densities would have multipliers of less than 1. These factors 

were then multiplied by the reference search area rate to create a value expressed in km2/hour. The 

following equation governs the influence of battery chemistry on PM2. 

 

∆𝑃𝑀2𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦 = 𝑆𝐴𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − (
𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐴𝐷2𝑂𝑝𝑡𝑖𝑜𝑛

∗  𝑆𝐴𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

 

AUV control methods would also impact the search area rate. For this morphological matrix, 

only option three was considered for this architectural decision. The reason for keeping this option 

constant is that vectored propeller designs in this operational space are dominant architectures (as 

previously explored). Regardless, if operational speeds were lowered because of options selected in 



70 
 

this architectural decision space, then there would be a speed factor applied be dividing the reference 

architecture operational speed by the option architectural decision speed. This factor would then be 

multiplied by the reference search area rate to create a value expressed in km2/hour. This value is held 

constant throughout all deterministic modeling. 

Finally, increasing the number of AUVs will have a positive impact on the search area rate. 

With an increased number of AUVs simultaneously operating and coordinating with each other, there 

will be greater edge space covered in each individual mission. Additionally, assuming swarm 

coordination can be achieved (E. M. Fischell, 2020), with the additional coordination of AUVs, the 

precise location of each AUV will improve resulting in more usable swaths. This coordination factor 

scales with the number of AUVs present in the system, and an arbitrary value of 5% is assumed to be 

a constant with the addition of four AUVs to the system. These factors are then multiplied by the 

reference search area rate to create a value expressed in km2/hour. The following equation governs 

the influence of the number of AUVs on PM2. 

 

∆𝑃𝑀2𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑈𝑉𝑠 = 𝑆𝐴𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − [(1 + 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
) ∗  𝑆𝐴𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒] 

 

The impact of each of these architectural decisions creates an output which is expressed in 

km2/hour. From these values, a new search area rate is calculated from the reference architecture. 

These derived values are summarized in Table 3-7. The calculation of PM2 is summarized by the 

equation: 

 

𝑃𝑀2𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 = 𝑃𝑀2𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + ∆𝑃𝑀2𝐴𝐷2𝑂𝑝𝑡𝑖𝑜𝑛
+ ∆𝑃𝑀2𝐴𝐷5𝑂𝑝𝑡𝑖𝑜𝑛

+ ∆𝑃𝑀2𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
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Table 3-7: Summary of PM2 impacts from each pertinent architectural decision option. 

 

3.3.3 PM3: Operational Time 

 Operational time is a metric which measures the amount of time in days that are spent by all 

AUVs performing operations. It is calculated from the operational hours and the total calendar 

mission completion time in the model. However, in the case of the reference architecture, this value 

is calculated slightly differently. In the reference case, the total operation took 730 days, but of those 

730 days, only 285 were active mission days (Australian Transport Safety Bureau, 2017). The rest were 

spent en route to sites, in port, or other marine operations to facilitate the search. To calculate this 

value for the reference case in Table 3-1 the value of 285 days is multiplied by the quotient of 

operational hours per day by 24 hours per day. The result of this calculation is 285 days * (19 DOT/24 

hours) = 226 days of operation. At its core, this represents the total time when AUVs were actively 

performing operations. In the subsequent model, this value is much more consistent across 

architectures with similar search area rates and operational hours per day even with multiple AUVs 

compared against single AUVs. This metric removes the bias that multiple AUVs could impart on an 

evaluation. To calculate PM3, the following equation is utilized: 

 

𝑃𝑀3𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 = 𝑃𝑀4𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 ∗ (
𝑃𝑀1𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

24 hours
) ∗ 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛 
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3.3.4 PM4: Calendar Mission Completion Time 

The time that it will take the system to achieve mission completion is a function of the daily 

operational time, survey area rate, and the number of AUVs performing the task of scanning the floor. 

This metric is therefore influenced by all of the architectural decisions that are inputs to these metrics. 

In other words, communication method, battery chemistry, power transfer method, AUV control 

method, and the number of AUVs in a specific architecture are all important architectural decisions 

in this context. The equation to calculate mission completion time takes the mission area of 60,000km2 

and divides it by the product of the daily operating time and the search area rate. This value is 

subsequently divided by the number of AUVs in the system which represents dividing the task evenly 

between the different vehicles. This means that the equation used to calculate PM4 is: 

 

𝑃𝑀4𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 =
60,000 km2

𝑃𝑀1𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 ∗ 𝑃𝑀2𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 ∗ 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
 

 

 

3.3.5 PM5: Total System Cost 

The total system cost is a metric which sums up the costs of all system components. Some of 

the components are static (e.g., the cost of an AUV is held constant at $5million) and some are 

dynamic. Static costs include the costs associated with communication methods, battery chemistries, 

and power transfer methods. Dynamic costs are associated with the installation of power generation 

and service platform storage capacities.  

For each member of the morphological matrix, static costs were assigned. The costs were 

estimated from previous decomposition cost estimates. For communication methods, a cost/AUV 

was assigned and subtracted from the reference architecture. This cost difference was then multiplied 

by the number of AUVs present in the system resulting in a summed cost delta over the individual 

AUV cost. Similarly, battery chemistry costs were compared to the reference case and multiplied by 

the number of AUVs in the system as were methods of power transfer. The results of this are 

summarized in Table 3-8. This governing equation is summarized arithmetically as: 

 

∆𝑃𝑀5𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 = 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛 ∗ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐴𝑈𝑉𝐴𝐷1𝑂𝑝𝑡𝑖𝑜𝑛
− 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐴𝑈𝑉𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 
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Table 3-8: Summary of PM5 static costs assigned on a per AUV basis. Cost delta values are calculated in USD. 

 

Dynamic system costs are tied into the architectural systems that surround power generation 

and storage. For deterministic modeling, a static value was selected from the functional decomposition 

survey to estimate the power output capacity of each option for this architectural decision. This power 

output was then multiplied by the previously discussed cost per Watt to calculate a total cost for a 

single power plant. This cost per power output was an average that was calculated between the high- 

and low-end costs that are previously discussed (Table 2-4).  This cost was then added to each entry 

in the morphological matrix along with the other AUV associated costs. However, depending on 

which system concept was selected, this value could change further – thus these costs are termed 

dynamic. For instance, if the system concept calls for more than a single power plant to be emplaced 

on the service vessel, than the single unit cost is not the total cost of power generation. There are 

substantial changes associated with the impact of power generation options associated with specific 

operating concepts (Table 3-9). The following equation summarizes the costs that are created with 

emplacing a single power system selected as an option from AD4: 

 

𝑃𝑀5𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑙𝑎𝑛𝑡
= 𝑆𝑦𝑠𝑡𝑒𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛

∗ 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
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Table 3-9: Summary of PM5 dynamic cost basis for power generation selection. Cost delta in this architectural decision 

refers to the increased cost above the previously discussed capital costs associated with the addition of a power plant to the 

system of a given type. 

 

3.3.6 PM6 and PM7: Operational Hourly Cost and Total Mission Daily Cost 

These metrics serve to normalize the total system cost with both temporal elements present 

in the operational parameters associated with this specific use case. Operational hourly cost is 

calculated by taking each total system cost and dividing it by the total number of operational hours 

required to complete the mission. This metric is expressed in $/hour and represents the operational 

costs per hour. Ultimately, this would be the cost to acquire one hours’ worth of data if a user was 

interested in employing this system. Similarly, the total mission daily cost is calculated by dividing the 

total system cost by the total calendar mission completion time. This metric is expressed in $/day and 

represents the costs that a single day of operations would incur for a potential user. It is critical to 

note that this is based on a total mission that covers a 60,000km2 area and if the survey area is different, 

then this value (and many others) would also change. These two equations are summarized as: 

 

𝑃𝑀6𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 =
𝑃𝑀5𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

𝑃𝑀3𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒
 

 

𝑃𝑀7𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 =
𝑃𝑀5𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

𝑃𝑀4𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒
 

 

 

3.3.7 Operational Concepts 

In order to provide a robust analysis, several overarching design concepts were examined. The 

three operational concepts under consideration are termed “Tiny Battery,” “Big Battery,” and “Scaled 
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Power.” Each represents very different configurations of the service vehicle which have major 

implications on the interaction between the AUVs and the service platform. There are many different 

ways that these concepts could be tuned further, but these provide end-members for future analyses.  

 

3.3.7.1 Tiny Battery Concept 

The tiny battery concept is one where cost is treated as a constraint in the model. There are 

only enough batteries onboard to back up the AUVs in operation for one charge cycle. For instance, 

if there is one AUV in the system, then there will only be 13.5kWh of energy stored on the service 

platform in a battery bank. If four AUVs are in operation for a specific design vector, then there will 

be 54kWh of energy stored (13.5kWh/AUV * 4AUVs). This concept is named “tiny battery” because 

there are some batteries that are present on the service platform – as opposed to directly recharging 

without any energy storage capacity – but those batteries may not be sufficient to provide for the 

entire system. If the power generation option is incapable of recharging those batteries in one day, 

then the AUVs will have to wait at the service platform until the AUV batteries can completely 

recharge. This means that daily operational time is relaxed as a constraint as systems become more 

and more energy-hungry. Effectively, the longer that an AUV has to wait, the lower the average daily 

operational time will become.  

This change in daily operating time is calculated by examining the following parameters. First, 

the number of AUVs is examined and multiplied by the number of kWh required in each AUV. This 

value is compared against the product of the power generation capacity of the selected power system 

(in Watts) over a full day of energy collection. If the energy generation potential exceeds the energy 

required for that specific system, then the daily operating time remains unchanged for that design 

vector. However, if more energy is required than is generated in a 24-hour cycle, then further values 

are computed. The number of days required to reach the energy requirement is calculated by dividing 

the required energy by the daily power generation capacity and converted. Finally, a new fractional 

daily operational time is computed by dividing 24 hours per day by the product of static operational 

time per day and days required to fully charge the system. This fractional daily operational time is then 

the updated operational time that is used for future calculations and reporting for all products 

associated with the tiny battery concept. If there is insufficient power capacity to charge the AUVs in 

the system in a 24-hour period, then the following equation is used to adjust and replace PM2 for that 

architecture in the tiny battery system concept: 
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𝑃𝑀2𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑇𝑖𝑛𝑦 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
=

𝑃𝑀1𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

(
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑖𝑧𝑒 ∗ 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛

𝑆𝑦𝑠𝑡𝑒𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
∗ 24 hours

)

 

 

Two practical examples help further clarify this system concept. The first example is a solar 

powered system, with one AUV, and a ten hour daily operating time. The AUV will consume 13.5kWh 

of energy in a single mission. A single solar plant operating at the service platform has a power 

generation capacity of 2kW, which means that over a 24-hour period, 48kWh of energy are produced. 

The generation capacity of 2kW has already accounted for diurnal cycles and plant capacity factors as 

described in Chapter 2. A 48kWh supply of energy is sufficient to recharge the single AUV. This 

means that the AUV will continue to reach its ten hours of daily operation metric – the AUV is not 

waiting for any extra processes or functions. However, if we examine this same system, only this time, 

there are four AUVs operating, then the energy requirements of the system increase from 13.5kWh 

per day to 54kWh. Despite this increased energy demand, the solar plant can still only produce 48kWh 

of energy every day. There is no way in this system concept to expedite this energy harvesting exercise, 

and so the AUVs must wait for the solar plant to charge their batteries for longer than a 24-hour 

operational cycle. The AUVs will no longer operate for ten hours per day. To generate 54kWh of 

energy, the solar plant will have to operate for 27 hours. If we use the equation outlined above, then 

we find that instead of a ten-hour daily operational time, this system would on average only achieve 

8.89 hours of daily operation. 

The costs associated with the tiny battery concept include the static costs associated with the 

selected power plant, and also a set of costs associated with the onboard energy storage. Just as the 

AUVs had four different battery chemistry options, the service platform also has four different battery 

chemistry options. However, their performance is not considered as a limiting factor. Instead, an 

additional morphological matrix is created for the tiny battery concept in which each of the valid 2,160 

concepts from the previous matrix are given platform battery chemistry options. In so doing, the 

matrix for the tiny battery concept expands to 8,640 individual design vectors which are visualized in 

Figure 3-6.  
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3.3.7.2 Big Battery Concept 

The big battery concept is one where cost is completely relaxed as a constraint, and instead 

daily operational time is prioritized. In many respects, the big battery concept represents a different 

end member in solving the energy requirement from the tiny battery concept. The concept assumes 

that the mission completion time is known a prioi. That knowledge is then used to calculate how much 

energy will be expended by the system throughout the mission, and a battery bank that exactly meets 

these requirements will be put in place on the service platform such that at the time of mission 

completion, the battery bank will be completely depleted.  

The size of the battery that will be required to accomplish this follows the following reasoning. 

First, the number of AUVs is examined and multiplied by the number of kWh required in each AUV. 

This value is compared against the product of the power generation capacity of the selected power 

system (in Watts) over a full day of energy collection. If the energy generation potential exceeds the 

energy required for that specific system, then no additional battery banks are required for the specific 

design vector. However, if there is an energy deficit, then the total daily deficit is multiplied by the 

calendar time required for mission completion (PM5). This will output a total amount of energy 

backup required per mission measured in kWh/mission. The following equation summarizes how this 

energy requirement is calculated: 

 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

= (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑖𝑧𝑒 ∗ 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛)

− (𝑆𝑦𝑠𝑡𝑒𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
∗ 24 hours) ∗ 𝑃𝑀4𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 

 

The two previous examples used to illustrate the tiny battery concept can again be employed 

to help understand this concept more fully. Consider again our one AUV system with a solar plant. 

Every day there is sufficient energy delivered to the AUV to allow for nominal operations. As such, 

there are no extra batteries that need to be added to the service vehicle. An important effect of this, 

is that the tiny battery and big battery system concepts are indistinguishable from each other in this 

case. All metrics will be identical to each other. However, once the single solar plant can no longer 

deliver sufficient energy to power four AUVs, these concepts will differ. In considering the big battery 

concept, there will be a daily required energy of 6kWh that will be stored on the service platform (as 

calculated from the total energy required by four AUVs minus the power harvestable per day by the 
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platform = 54kWh – 48kWh). These 6kWh of energy will never be replaced or replenished for the 

mission duration, as the system will operate at an energy deficit for the entire mission. Knowing a 

priori that the mission will take (for example) 70 days to complete with four AUVs, we know then that 

the total required energy to be stored on the service vessel is 420kWh. By storing this power onboard, 

there is a considerable cost to consider – but that cost buys the system daily operational time. Since 

the addition of extra batteries eliminates the daily energy deficit, each AUV will be able to operate at 

their ten hours of daily operating time.   

From the battery chemistry decomposition, an individual battery’s cost per kWh can be 

calculated by dividing the cost of an AUV battery by 13.5kWh – the size of a single AUV battery. This 

value is then multiplied by the previously calculated energy requirements to be stored on a service 

platform for any particular mission. This process is repeated across each of the four options for service 

platform battery chemistry. However, all of these costs represent the additional battery costs, and as 

such, they are added to the already existed static costs that are assigned to the system. Effectively, 

these batteries are an add-on to any previously outlined system. The result is the same matrix size as 

the tiny battery concept of 8,640 unique solutions which are visualized in Figure 3-7. 
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3.3.7.3 Scaled Power Concept 

If the tiny battery concept constrains cost completely, and the big battery concept constrains 

daily operational time completely, then the scaled power concept exists in between these two end 

members. The overarching theme that governs the scaled power concept is that the platform should 

not operate at a power deficit, but it could be more cost effective to buy additional power plants and 

place them on the service platform as additional system level costs instead of creating enormous 

backup battery banks. In so doing, the daily operational time should exactly equal the daily operational 

times which are achieved in the big battery concepts, but ideally in some cases for a lower total system 

cost.  

To calculate the total cost that each design vector will be assigned, the number of AUVs is 

examined and multiplied by the number of kWh required in each AUV. This value is compared against 

the product of the power generation capacity of the selected power system (in Watts) over a full day 

of energy collection. If the energy generation potential exceeds the energy required for that specific 

system, then no additional power plants are required for the specific design vector. However, if there 

is a daily energy deficit, then an additional power plant is added to the system until there is no daily 

energy deficit. The calculated daily energy deficit is divided by the energy produced by the selected 

power plant over a 24-hour period.  This value is then rounded up to the nearest integer to prevent 

treating power plants as fractional systems – you either have to purchase a second plant or make due 

with one for instance. This value represents the additional number of power plants which are required 

to prevent a daily energy deficit.  

 

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝑠𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
= 𝑅𝑜𝑢𝑛𝑑𝑢𝑝 [

(13.5𝑘𝑊ℎ ∗ 𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛)

𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
∗ 24 hours

] 

 

𝐶𝑜𝑠𝑡𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

= (𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜𝑠𝑡𝐴𝑈𝑉)

+ (𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝑠𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛
∗ 𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝐴𝐷4𝑂𝑝𝑡𝑖𝑜𝑛

) 

 

In considering the same two examples from the previous sections, further insight can be 

gained concerning the scaled power concept. In the first case, the system has a single solar plant which 

is sufficient to charge a single AUV every day of the mission. In this case, there will be no difference 
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between the scaled power option and the other two system options. However, consider the four AUV 

case. In the tiny battery concept, operational time suffered as the power generation was insufficient. 

In the big battery concept, the cost suffered as 420kWh of energy had to be stored on the service 

platform for the case of a 70-day mission. In the scaled power concept, a second solar plant would be 

purchased explicitly to eliminate the daily energy deficit. Then the total energy harvested daily would 

be 96kWh (2*2kW*24 hours). In so doing, the four AUVs would have the energy requirements to 

operate to their prescribed parameters.  

To calculate additional costs from this point in the analysis, the specific cost that is associated 

with that power plant (Table 3-9) is multiplied by the additional plants required to prevent a daily 

energy deficit and added to the system cost. Each service platform will still need sufficient batteries 

onboard to store one set of AUVs, so similarly to the tiny battery concept, each of the solutions was 

compared across each option for service platform battery chemistry. The result is an 8,640-entry 

morphological matrix which is visualized in Figure 3-8. 
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3.4 Deterministic Evaluation 

Having created a thorough deterministic model of the paired AUV and service platform, an 

evaluation of each of the architectural decisions is performed. The order in which the analysis is 

presented is in the order of impact on two prioritized metrics – PM4 (calendar mission completion 

time) and PM5 (total system cost). These two metrics are prioritized because they are excellent ways 

of evaluating the proposed paired system with the existing reference architecture. A utopia point 

would exist in a tradespace between these two metrics where the mission was accomplished in zero 

time for zero money. The reference architecture completed the total mission over the course of 730 

days and approximately $37 million (Table 3-1). The goal of this evaluation is twofold: first to identify 

if the reference architecture exists within or without the Pareto frontier established by the constructed 

morphological matrix, and second to expose the tensions that emerge between the selected metrics 

and the decisions made within the architecture that lead to such tensions.  

 

3.4.1 Establishing the Pareto Frontier 

For the deterministic model, only valid designs were considered across the three previously 

discussed concepts. The result is a morphological matrix with 25,920 unique design vectors to 

consider. The full tradespace is shown in Figure 3-9. In this tradespace the x-axis is a measure of total 

system cost, and the y-axis is a measure of calendar mission completion time (note: the y-axis is on a 

logarithmic scale), with the existing reference architecture represented as a large red dot. The Pareto 

frontier that exists within this tradespace is defined by the lines which connect all design vectors 

wherein no individual metric can be improved without sacrificing another. This Pareto frontier in the 

PM4-PM5 space is represented as a thick green line. Finally, the utopia point in this space is labelled 

with a yellow star. From this initial pass, it is clear that the reference architecture does not exist on the 

Pareto frontier, but is instead well inside the Pareto frontier. In fact, with the deterministic model 

constructed as described, the reference architecture is worse than every single design vector for at least 

one of the two metrics shown. The reference architecture only improves calendar time to mission 

completion compared to 900 design vectors. The reference architecture is a lower cost option than 

21,600 design vectors. Finally, there are 3,420 design vectors which are better in both PM4 and PM5 

when compared to the reference architecture.   
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3.4.2 AD6 – Number of AUVs 

The number of AUVs that are used has the largest impact on the total cost of the system. This 

is because the number of AUVs that are selected for a specific design vector is several orders of 

magnitude greater than any other single individual component that can be selected. In the case of this 

model, AUV costs are assumed to be static and $5 million with minor changes affecting the 

component levels which can shift costs slightly above or below this benchmark. These individual 

changes in architecture are important because they impact other metrics, but concerning cost they 

simply do not add up to enough to make much of a difference relative to the $5 million price tag of a 

single AUV. Furthermore, with the addition of more AUVs to the system, the service platform must 

expand as well. In this model, the platform expansion accounts for less than half the other price 

expansion due to the number of AUVs, but it still makes a significant impact.  

 The addition of multiple AUVs is most clearly seen when illustrated first on a single concept. 

The tiny battery and scaled power system concepts clearly illustrate how the total system cost increases 

with the changes in AD6 (Figure 3-6 and Figure 3-8). This step-wise increase in cost is also mirrored 

in the big battery system concept, although the delineation is blurred as battery costs begin to balloon. 

There is no other architectural decision within this system that has such a dramatic impact on the 

overall cost of the system.  

The number of AUVs that are in the system also carries importance in all metrics concerning 

daily operational time. The interaction that exists between the number of AUVs and daily operational 

time is multivariate and will be discussed in greater detail in future sections. However, on first glance, 

since daily operating time is governed in part by the number of AUVs present in the system, an initial 

claim is supported that as the number of AUVs increase in the system, the daily operating time 

decreases because of increased time to the seafloor (Table 3-6). This relationship is shown in the 

tradespace as well when examining very specific subsets of the data. For instance, Figure 3-10 clearly 

shows that when the data are filtered to limit the tradespace to a few select architectures, a pattern 

emerges where higher numbers of AUVs present in the system lead to lower actual daily operational 

time.  
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3.4.3 AD4 – Power Generation 

The method of power generation has the second largest impact on the total cost of the system. 

Knowing that there are groupings that exist within each set of AD6 options within the PM4 and PM5 

tradespace, we can begin to dive into more nuanced changes that influence the metrics. In examining 

the tiny battery system concept exclusively, in a subset of data which only include one AUV in the 

system, there is a clear trend which shows that all renewable options are more cost-effective than all 

non-renewable options (Figure 3-11). Moreover, within the options that are available for renewable 

sources, it appears that performance in PM4 is equal for each architecture, while wind is the cheapest, 

and wave power is the most expensive. However, when we examine another case – say with more 

AUVs present in the system – the pattern is less clear-cut. Figure 3-12 demonstrates that there are 

differences in cost and PM4 for all of the different possible power generation options within the tiny 

battery concept and 20 AUVs. The general trend that renewables are cheaper than non-renewables is 

still present, but in some design vectors, wave power is now less expensive than wind power. 

Additionally, there is a significant difference in PM4 between otherwise identical architectures – 

keeping power generation method constant. An otherwise identical design can range in values for 

calendar days to mission completion from 11 days to 60 days, and cost can range between $150 million 

to $156 million. Figure 3-13 illustrates this complex relationship emerging in the tiny battery system 

concept. There are some limitations that begin to impact the system as the number of AUVs scale. As 

the power plants can no longer supply the number of AUVs with the energy required for daily use, 

the daily operational time decreases rapidly, and the advantage of increasing the number of AUVs is 

somewhat eroded. If the value proposition of a paired AUV and service vessel is that the mission 

completion time will decrease, then this is an integral limitation to explore. Figure 3-14 shows these 

same points, except compared in PM5 and PM1 (actual daily operating time) space. If the power plants 

were able to supply all of the required power for this architecture, then the daily operating time should 

be equal across all design vectors. However, in the case of all renewables, and in the case of a diesel 

generator in the 20 AUV option, there is a point where daily operating time decreases due to a lack of 

sufficient power. From this graph, it can be concluded that for this set of architectures, a single solar 

plant cannot supply sufficient energy to operate four or more AUVs without sacrificing daily operating 

time. Similarly, for wind power plants, eight AUVs or more require more energy than the power plants 

are capable of delivering. Wave energy cannot support 12, 16, or 20 AUVs.  This trend is alleviated 

when examining system concepts. If we take only the solar power plant options from this example, 
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and add the other two concepts in for comparison, then we see that the daily operating time (PM1) 

stays constant (Figure 3-15).  

Figure 3-15 also makes it clear that the costs associated with power generation method vary 

depending on which concept is selected. When looking at only the architectures described in Figure 

3-15, the costs for all three concepts are identical for a single AUV case. However, the differences in 

cost increase as the number of AUVs increase. By the 20 AUV option for AD6, there is a $12 million 

cost difference between architectures with the same power generation option for AD4. This 

relationship where costs are inconsistent across otherwise identical architectures is extant for all power 

generation methods.  Critically, the tension that exists between power generation, energy storage, and 

cost is at the heart of the AUV and service platform pairing viability question. If the pairing is to be 

successful, then energy must be generated and stored in such a way that projects are completed with 

improvement in metrics that are most important for the specific stakeholders. 
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3.4.4 AD3 – Energy Transfer 

The primary contributor to increasing or decreasing calendar mission completion time is which 

energy transfer method is selected. There is a non-linear inverse relationship that exists between actual 

daily operating time (PM1) and total calendar mission completion time (PM5). This relationship is best 

explored first through a small subset of the data that simultaneously exposes the impact that energy 

transfer can have on the system. Figure 3-16 shows this relationship in a very small subset of the data. 

The data only include architectures with ethernet communication, lithium-ion AUV batteries, solar 

power generation, one AUV, and a lead-acid battery installed at the service platform. Additionally, 

these points only include the tiny battery system concept. There are two trends that are revealed in 

this small subset of data which are consistent across all architectures. First, a higher daily operating 

time (PM1) will result in a lower calendar mission completion time (PM4). Second, there is a clear 

pattern that the changes in energy transfer method directly impact the actual daily operational time.  

As discussed in Table 3-6, daily operating time is influenced by communication method, 

energy transfer method, and the number of AUVs. Figure 3-16 shows that there are changes of two 

operational hours or more as a different option is selected for energy transfer method with otherwise 

identical architectures. When this restricted selection is expanded to include all design vectors for one 

AUV systems, it is clear that the trend of decreasing daily operational time is due primarily to energy 

transfer method (Figure 3-17). This systematic decrease in daily operational time is seen even in more 

complex interactions. For instance, as AUVs are added to the tiny battery system and the selected 

power plant is unable to supply the system with sufficient energy for daily operations, the actual daily 

operational time decreases by definition. The energy transfer method, however still impacts the system 

across comparable architectures (Figure 3-18). The interaction between number of AUVs and energy 

transfer is also non-linear depending on which specific design vectors you are comparing. For instance, 

in Figure 3-18 it is clear that a single architecture with one AUV compared with its identical 

counterpart with four AUVs loses two hours of operational time per day if the selected option for 

energy transfer is Level 3 AC. However, this loss is less than one hour if the energy transfer method 

is EM induction. If there is sufficient energy to transfer (e.g., big battery and scaled power concepts), 

then the energy transfer method will always show systematic decreases with respect to daily operating 

time. Figure 3-19 shows this relationship across all architectures that are generated for the big battery 

concept with ethernet communication methods. 
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3.4.5 AD2 – AUV Battery Chemistry 

The next largest contributing factor which impacts calendar mission completion time is which 

AUV battery chemistry is selected. This architectural decision does not impact the daily operating time 

of an individual AUV. In Figure 3-20 the different points are plotted with color representing different 

options for battery chemistry for the big battery concept. Even though mission completion time 

increases with different architectures, the daily operational time is consistent for the same architectures 

where the only change is the battery chemistry. Instead, the battery chemistry is an important factor 

which governs the survey area rate (PM2).  Using the same subset of data from the previous figure, 

Figure 3-21 shows a systematic change in the survey area rate depending on which battery chemistry 

option is selected. Additionally, given this and previous analyses, it is clear that in these dimensions, a 

calendar mission completion time is a function of multiple variables. If AUV battery chemistry were 

the sole governing architectural decision impacting project mission completion time, then there would 

also be a systematic trend along the x-axis. As previously outlined, total mission completion time is a 

function of the size of the mission, the daily operational time, and the survey area rate.  

AUV battery chemistry plays a minor role in cost as well. The individual batteries which power 

a single AUV are not identical in cost (Table 3-7), and so as the system increases the number of AUVs, 

more expensive components will lead to larger cost increases. For a single AUV, these changes are 

minor. However, when scaled to 20 AUVs, these individual component changes sum to appreciable 

amounts. While negligible in the sense that they are a minor cost in the system, it is important to note 

that the costs are not identical (Figure 3-22). In the case of 20 AUVs, the difference in costs due 

exclusively to different AUV battery chemistries is $140,000. That is approximately 1/10th of a percent 

of the total system cost for a 20 AUV system. Importantly, this would suggest that when considering 

this architectural decision, the utility gained by selecting a more expensive AUV battery could well be 

worth it, as the additional cost is so small relative to the entire system. 
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3.4.6 AD1 – Communication Method 

Communication method does not impact the calendar mission completion time or the cost in 

any major fashion. There are minor improvements in completion time, but they are on the order of 

less than 1% of the total mission completion time or less. With every other design option held 

constant, the greatest impact that communication method has with respect to mission completion 

time is one day (Figure 3-23). This impact is seen when the system has the smallest number of AUVs 

in the system. When there are larger numbers of AUVs this time difference decreases because the 

number of data transmissions from the AUVs to the platform are handled in parallel rather than in 

series. Each individual AUV can only transmit its own data at the conclusion of a mission and so 

simultaneously transmitting more missions results in less calendar time of transmission expiring. On 

the other hand, from a cost perspective, the cost scales linearly with additional AUVs. The largest cost 

difference is in the 20 AUV case where a LaserCom option costs $19,000 more than an ethernet 

connection.  
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3.4.7 AD7 – Service Platform Battery 

The selection of a specific battery for service platform only holds major impact in the big 

battery concept. Given how much power is required to be stored, the size of the batteries can in places 

account for more than the cost of the entire remainder of the system. For the tiny battery and the 

scaled power concepts, however, there is little impact on cost due to the very small number of batteries 

required on the service platform. In the big battery concept, there is a complex, non-linear interaction 

that exists between total system cost, power generation method, and service platform battery 

chemistry option. Figure 3-24 illustrates this scaling relationship with a subset of data which include 

only the renewable options for power generation and options for four, eight, and 20 AUVs selected 

for ease of visualizing. There are several key messages to note from this figure which are consistent 

across the big battery platform. The first is that the big battery concept balloons in cost in magnitudes 

that are not seen in other architectures based on service platform battery selection. The reason that 

this happens is because of the magnitude of batteries that must be stored onboard in order to provide 

sufficient power to the system for the duration of the mission. Nearly $240 million is added to the 

project if lithium-ion batteries are selected instead of lead-acid batteries in the case of 20 AUVs with 

solar power generation options. Considering that the most expensive option of any scaled power or 

tiny battery concept is less than this difference, this is not to be overlooked.  

Second, while there are differences in total system cost (PM5) depending on how many AUVs 

are selected, there is overlap in the PM5 dimension across the number of AUVs selected. In other 

words, in some cases, service platform battery chemistry selection can be a more impactful cost driver 

than the number of AUVs – which was not the case in the tiny battery or the scaled power system 

concepts. This overlap is pronounced in the case of renewables. However, in the case of non-

renewables, there is no such overlap. This is because both the diesel generator and the natural gas 

microturbine options for power generation are able to provide ample energy to the system on a daily 

basis lowering or eliminating the requirement for massive onboard energy storage. This phenomenon 

is captured in Figure 3-25 which uses the same data filters as Figure 3-24 only with non-renewable 

power generation options selected. 
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3.5 Summary and Conclusions 

The guiding questions that were posed starting this chapter were: what are the specific 

architectural choices that can lead to improved functional performance in an AUV’s operating 

environment? And what functionality is improved through the use of simultaneous operation of AUVs 

as opposed to individual AUVs?  

In order to determine the answers to these questions, seven performance metrics were 

established. Three of the seven performance metrics (daily operating time – PM1, search area rate – 

PM2, and total system cost – PM5) are derived directly from figures of merit associated with individual 

architectural decision options. The remaining performance metrics are algebraic transformations 

performed upon these three foundational performance metrics to examine the system from various 

normalized perspectives. 

The second step to evaluating the system was to create a morphological matrix where every 

possible design vector was examined and evaluated based on the performance metrics set forth. This 

morphological matrix was generated by creating a list of unique architectural design vectors. Every 

permutation of every architectural decision and system concept were evaluated. 

Additionally, a deterministic model was employed wherein every design vector from the 

morphological matrix had every performance metric calculated. A Pareto frontier was established in 

PM4 and PM5 space where designs from each of the options for number of AUVs was represented. 

Some architectural decisions were dominant in the tradespace (e.g., communication method was 

dominated by the ethernet option). Some architectural decisions weakly dominated others (e.g., Level 

1 AC charging options outperformed Level 3 AC charging options on price, but not on total mission 

completion time). Depending on the operational prioritization, different architectural decisions can 

be made along the Pareto frontier – specifically how many AUVs should be present in the system. 

Finally, in all deterministic cases, wind power generation options were the most cost effective, 

followed by solar, then wave power generation. This was true regardless of how many AUVs were 

present in the system. Importantly, when compared to the tradespace, the existing Bluefin-21 

architecture is dominated across multiple dimensions. There is no position in the tradespace where 

the existing architecture is on the Pareto frontier or outperforming the modeled architectures (Figure 

3-9).  

The overall system autonomy is improved as well in these architectural frameworks. As 

previously discussed in Chapter 2, autonomy itself is a property of a system. The measure of autonomy 

is rather the degree of complexity in the tasks that the system can perform without human 
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intervention, the number of tasks a system can perform without human intervention, or the longer a 

system can operate without human intervention. The degree of complexity that the AUV would 

perform would remain unchanged in this system. However, there are many tasks which would be 

added to the system by pairing an AUV (or several) with a servicing station. Furthermore, the previous 

method of operating the reference architecture would only produce a 24-hour mission before human 

interaction was required. This system is designed intentionally to operate autonomously for much 

longer intervals of time – on the order of years. Therefore, by two out of the three possible measures 

for increased levels of autonomy, this system has improved.  

One final observation is that the scaled power system concept improves upon multiple 

performance metrics when compared with the big battery and tiny battery concepts. In many ways, 

the scaled power concept is the best of both worlds. While not as affordable as the tiny battery 

concept, the time to mission completion is identical to the big battery concept. In many situations, the 

constraint imposed on cost will not prohibit a system concept change from the tiny battery to the 

scaled power concept, as the relative difference between the costs is quite small. Thus, a general 

recommendation from the deterministic analysis would be to build a system which has sufficient 

generation capacity to fill each of the AUV batteries within a 24-hour window. Besides the 

improvements in performance metrics, each of the scaled power options will generate an excess of 

energy per day. This extra energy could be quite beneficial if some extra storage were to be added in 

subsequent design refinement to allow for tolerances when circumstances were not ideal for power 

generation.  
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4 AUV and Service Platform – Probabilistic Analysis 

In this chapter, the deterministic model is refined through probabilistic analysis. In order to 

accomplish this, a subset of design vectors from the deterministic analysis are selected to represent 

the best performing architectures from the perspective of calendar time for mission completion and 

total system cost. Each architectural decision option is assigned a distribution of possible values – as 

opposed to single inputs in the deterministic case – and a Monte Carlo simulation is run. The results 

from the Monte Carlo simulation are analyzed to determine confidence intervals around specific 

design vectors and performance metrics. Finally, the tradespaces which were analyzed in the 

deterministic space are re-evaluated in the probabilistic realm.  

 

4.1 Selecting Design Vectors for Analysis 

The purpose of performing a probabilistic analysis in addition to the detailed deterministic 

model is twofold. First, to address issues of uncertainty that underly key assumptions in the model. 

The uncertainties that will be probed are the input parameters that output the metrics of concern. 

However, in creating a probabilistic model, there is little to be gained from modelling each individual 

design vector. Instead, an important first step is to consider which vectors merit consideration. If all 

points are modelled probabilistically, then the resulting point cloud is often too busy to draw 

meaningful conclusions. Instead, a limited number of design vectors are going to be selected based on 

specific criteria, and evaluated against one another. The outcome of this probabilistic approach is that 

the different vectors will be more representative of actual outcomes given uncertainties surrounding 

system inputs. The second purpose of performing a probabilistic analysis is to begin to quantify 

degrees of confidence in which different scenarios are in fact different from each other in the multi-

dimensional performance metric space. Ultimately, this could lead to conclusions about specific 

architectures that are more likely than others to outperform. 

The goal of selecting a subset of points to model is to pick points that represent important 

places within the tradespace. Specifically, points that represent the best case given a certain set of 

parameters. If cases that only exist on the Pareto frontier are modelled, then there would only be six 

points selected for probabilistic analysis. However, as outlined in the deterministic model, there are 

some decisions that are possibly too constrained and if these constraints are relaxed and a range of 

possible inputs are allowed, then the shape of the Pareto frontier could shift dramatically. In other 

words, if some of the estimates surrounding these parameters change only slightly, the tradespace in 
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general could be altered significantly. One specific example is well illustrated in Figure 3-12. Here, 

there are two distinct trends captured in the deterministic model: renewable forms of energy harvesting 

are more cost-effective, and non-renewable forms of energy harvesting result in shorter mission 

durations. These conclusions are not completely robust, however, because any individual architecture 

only captures a single set of input parameters. A probabilistic model allows further exploration by 

varying these input parameters and producing a set of outputs. Fundamentally, a probabilistic model 

allows conclusions to quantify the degree of difference between different architectures.  

By modelling these decisions probabilistically, over-constraint is examined in a more holistic 

sense. The three main architectural decisions to be explored are the system concept (tiny battery, big 

battery, and scaled power), number of AUVs present in the system (AD6), and power generation 

option (AD4). These decisions are selected specifically because they have the largest impact on the 

two key metrics that have been discussed at length – total calendar mission completion time (PM4) 

and total system cost (PM5). All of the inputs which contribute to these metrics will be modelled 

probabilistically with different distribution parameters assigned to each input variable. 

A set of design vectors are selected wherein the metrics of total calendar mission completion 

time (PM4) and total system cost (PM5) are minimized under specific criteria. Architectural decisions 

for the number of AUVs (AD6) and the power generation method (AD4) are selected individually 

such that each design option is optimized. In essence, the decision option set is that which minimizes 

PM4 with AD4 and AD6 sequentially – selecting specific options will then index to a specific platform 

design ID with complete architectural decisions listed. The end result is that each system concept has 

30 platform IDs which are identified as minimizing either PM4 or PM5 for a total set of 60 platform 

IDs for each concept, and a total subset of the data which is 180 entries.  

There are 13 designs which are duplicated in this examination. When an entry is duplicated, it 

means that a specific entry simultaneously minimizes total calendar mission completion time and total 

system cost. All in all, this means that the total number of design vectors to analyze from a probabilistic 

perspective is 167 unique points. These points are illustrated in a tradespace in Figure 4-1.  

In an effort to further downselect a smaller portion of the tradespace on which a detailed 

probabilistic analysis can be performed, only one system concept was selected for further analysis. 

Starting the probabilistic modeling process with examining an architecture which is thought to be a 

generally dominant architecture saves computational and analytical time as well. Learnings from initial 

probabilistic modelling is also useful in selecting subsequent data to model in future iterations. There 

are significant constraints that are implicit to both the big battery and the tiny battery system concepts. 
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The scaled power option provides flexibility where both of these system concepts are constrained. 

Specifically, the tiny battery concept is constrained in cost, and flexible in daily operational time. The 

big battery concept is inversely constrained by daily operational time, and flexible in overall project 

costs. However, by allowing for flexibility in the system architecture, the scaled power option provides 

solutions for each design vector which only require slight project cost increases (in a deterministic 

sense) and achieve daily operational times that are equivalent to the big battery concept. This is 

illustrated clearly in Figure 4-2 where orange stars plot closer to utopia (bottom left of the graph) 

compared to their identical options with different system concepts. The points in red represent the 

tiny battery concept and are slightly less expensive than the scaled battery options, however, the time 

to complete a mission is significantly longer. Similarly, examining points which represent big battery 

options (blue stars in Figure 4-2) it is clear that the scaled power system concept is less expensive, yet 

makes little to no sacrifice in mission completion time. For this reason, the scaled power option was 

selected as the primary option to pursue for probabilistic modelling.  

In so doing, the final set of points that were modeled probabilistically was limited to 60 

platform IDs in the scaled power system concept. The 60 platform IDs represent 60 different 

scenarios which are modeled. Each scenario is subsequently examined by a Monte Carlo simulation 

with 1000 unique case runs. Each scenario has a consistent architecture, but the output from the 

probabilistic model will differ for each case, as each case will a unique set of values which are 

determined for input parameters. 
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4.2 Probabilistic Model: Method and Constraints 

In order to create a robust probabilistic model, each governing input from the deterministic 

model was given a distribution of possible values. These values are summarized in Table 4-1. Each 

parameter was selected randomly during a Monte Carlo simulation and all performance metrics were 

calculated from the unique samples. Thus, each case of the 1000 cases that create the tradespace in 

which a single scenario is likely unique in at least one dimension. Not all architectural decisions 

contribute to this outcome. AD1 (communication method) and AD5 (AUV control) are both set to 

constant values in this probabilistic run, and thus, they do not have probabilistic distributions 

associated with them. Throughout many variables, a technique called the range rule was used to 

estimate values for a standard deviation about a mean for a given parameter. The range rule claims 

that 𝜎~
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

4
 , where 𝜎 is the standard deviation, and Xmax and Xmin are the maximum and 

minimum values of the parameter, respectively. This estimate is handy when there are few data points 

that give an indication for the shape of the curve, but there are well established end-points for the 

parameter of interest. Wherever the range rule was employed in this analysis, the values for a 

parameter’s minimum and maximum values are catalogued in the architectural decomposition of that 

specific parameter.   

 

4.2.1 AD2 – Battery Chemistry 

Battery chemistry has an impact in calculating search area rate (PM2) and total system cost 

(PM5). The input parameters that were probabilistically modeled were the power density (W/kg) and 

the raw cost of a 13.5kWh battery that would charge a single AUV ($). In calculating distributions for 

power density, the range rule was employed. For calculating ranges of costs for a 13.5kWh battery, 

standard deviations that were 10% of the mean value were used regardless of the specific chemistry 

selected. The mean values that were used in modelling were the same values that were used in the 

deterministic model.  

 

4.2.2 AD3 – Power Delivery 

Method of power delivery impacts daily operating time (PM1) and total system cost (PM5). 

The input parameters that were probabilistically modeled were the power delivery (Watts) and power 

delivery method cost ($). In selecting the set of design vectors that would be modeled probabilistically, 



117 
 

only two methods of power delivery were viable options: Level 1 AC, and Level 3 AC. Level 1 AC 

systems were less expensive than Level 3 AV systems, but they all provided lower daily operating time, 

and thus prolonged mission durations. In this respect then (in deterministic space) there was no single 

dominant solution for power delivery method. To compute a distribution for both the power delivery 

and the cost of either option for AD3, the range rule was employed. The mean values for either option 

was the same as was used for the deterministic case. 

 

4.2.3 AD4 – Energy Harvesting 

The method of harvesting energy has a major impact on total cost of the system (PM5). Since 

the tiny battery system concept was eliminated from probabilistic evaluation, there is no impact that 

AD4 has with respect to daily operating time (PM1). The input parameters that influence cost of the 

system include cost per Watt for a single system ($/W) and single system power output (W). There 

are five different architectural decisions which are iterated through in different scenarios. These five 

options include three renewable options (solar, wind, and wave power) as well as two non-renewable 

options (diesel generators, and natural gas microturbines). All standard deviations away from mean 

values are computed using the range rule. Mean values are all equal to values used in the deterministic 

model. 

 

4.2.4 AD6 – Number of AUVs 

The number of AUVs that are present in the system influences daily operational time (PM1), 

search area rate (PM2), and total system cost (PM5). The input parameters for AD6 include the time 

to travel to the seafloor (hours), coordination factor (unitless), AUV cost ($), and number of AUVs. 

A constant standard deviation of 10% of the mean is applied to the time to travel to the seafloor. For 

coordination factor and unit cost, the standard deviation of input parameters increases as the total 

number of AUVs increases. This increase scales non-linearly with the addition of more AUVs to the 

system. This increase captures uncertainties that surround coordination effects as well as scaling cost 
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savings and expenses. The actual number of AUVs is a constant with no standard deviation. All mean 

values for all options in AD6 are the same as values that were used in the deterministic model.  

 

4.2.5 Monte Carlo Simulation 

All 60 scenarios were modeled using the same Monte Carlo method relying on repeated 

random sampling to obtain statistically viable, robust numeric results. The domain of possible inputs 

within the problem set include all input parameters outlined in Table 4-1. During each case, a single 

numeric input is randomly selected from the distribution of each defined input function. These input 

parameters are then treated as a deterministic case with a unique set of input parameters. The 

subsequent trial run will randomly select a new set of input parameters. Ultimately, there are 1000 

cases that are run for each scenario. These 1000 cases are sufficient to define confidence intervals 

throughout the solution tradespace. The code used to model this are found in Appendix A (modified 

from (Goolsby, 2020)).   
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Table 4-1: Table summarizing inputs for all parameters for probabilistic modeling. 
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4.3 Probabilistic Model Outcome and Discussion 

The output of the probabilistic model – similar to the deterministic model – includes seven 

performance metrics. However, of the seven, only three of them are directly computed from the input 

parameters of the model. The remaining four metrics are simply normalizations applied to these points 

to compare in more practical terms. The three computed performance metrics are actual daily 

operational time (hours – PM1), survey area rate (km2/hour – PM2), and total system cost ($ – PM5). 

Thus, the entire tradespace as calculated by the probabilistic method outlined above can be illustrated 

on a single tradespace with three variables displayed (Figure 4-3). In this tradespace, there are two 

distinct point clusters. These clusters represent the differences between using Level 1 and Level 3 AC 

charging. Additionally, in selecting the initial 60 scenarios to model, selection was based on minimizing 

cost and calendar completion time. In minimizing costs, Level 1 AC was always paired with lead-acid 

battery chemistries. In examining the two distinct clusters of points, charging method governs the 

position of points on the x-axis (PM1 is a function of AD3) and battery chemistry governs the position 

of points on the y-axis (PM2 is a function of AD2).  

In either of the two clusters of points there is a general trend where more expensive 

architectures increase the survey area rate. This trend is due to increased costs associated with 

increased numbers of AUVs. Figure 4-4 illustrates this same tradespace with 90% confidence interval 

ovals for each scenario. There are only 12 visible ovals in this figure as architectures that differ only 

in AD4 (energy harvesting, for which there are five options), will have identical plots in PM1(daily 

operational time) and PM2 (search area rate) space. Thus, each oval is in reality five different ovals. 

By examining the overlap between these confidence intervals, a complex picture begins to emerge – 

there is significant overlap between each of the 90% confidence ovals for each scenario. The 

implication is that there is considerably less distinction between each of the scenarios than initially 

suggested through the deterministic evaluation.  

In order to make more nuanced and specific conclusions, however, we need to further 

detangle the tradespace. PM1 and PM2 are directly computed from the inputs of the model, however, 

PM4 (total calendar days to mission completion) combines both of these metrics into a single output. 

From that, it is possible to better visualize the tradespace between all three dimensions. Figure 4-5 

illustrates all of the 60,000 cases for the 60 scenarios in a PM5 (total system cost) vs. PM4 tradespace. 

Each point is colored and shaped by power harvesting option (AD4). Here, a clear trend is visible 

where – similar to the deterministic model – with increasing cost, there is an associated decreased 

calendar mission completion time. Previously, it was noted that with increased daily operating time 
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and survey area rate, there was an increase in cost. As survey area rate and daily operating time increase, 

the calendar mission completion time is going to decrease, as the 60,000km2 search area will be covered 

in a shorter period of time. Once 90% confidence intervals surrounding each scenario are added to 

the tradespace examined in Figure 4-5, the ovals unique to each scenario are pulled apart from each 

other in the cost dimension (Figure 4-6). This demonstrates that the number of AUVs in the system 

(AD6) impacts both the overall mission time (PM4) and the total system cost (PM5). 

There are additional conclusions that can be drawn from the probabilistic model at this point. 

First, as seen in Figure 4-6, there is no overlap between the 90% confidence intervals in cases with 

Level 3 AC charging and cases with Level 1 AC charging. This is consistent with findings from the 

deterministic modelling efforts. The probabilistic model provides robust support that architectures 

with Level 3 AC charging will complete the mission in fewer days than architectures with Level 1 AC 

charging. Second, there is no overlap between the 90% confidence intervals for scenarios with Level 

3 AC charging when examining architectures across different options for different numbers of AUVs 

in the system. In other words, within the confidence interval ovals shown in Figure 4-6, there is a 90% 

chance that the mean values for cost and mission completion time will exist for architectures with any 

one of the six options for AD6, and with that same confidence, we can conclude that the mean values 

will not overlap for architectures that have different options for AD6. This does not mean that there 

are non-exclusive regions in which these architectures exist. Single dimensions of performance can 

overlap between scenarios (e.g., there is overlap in cost between the 16 and 20 AUV case for L3 

charging), but there is not overlap in all dimensions simultaneously. Naturally then, a corollary of this 

process is that there are specific regions that are defined by each scenario, and once specific 

architectural decisions have been made – such as the number of AUVs – then there will be strict 

limitations on the system’s performance envelope. This is one of the critical reasons that systems 

architecture should be performed prior to making architectural decisions. Within this probabilistic 

exercise, the most critical decisions have been identified, and (given all the mentioned assumptions) 

performance regions across all metrics have been established. Without changing the assumptions or 

adding new assumptions, there would be little reason to expect performance outside the realm of these 

identified regions. 

There is a second set of conclusions that are borne from the probabilistic modeling. These 

conclusions are associated with the lack of confidence in our assertions in differentiating scenarios in 

the first place. Consider for a moment, the scenarios in which one AUV is modeled probabilistically. 

There are ten scenarios with different architectural decisions. The deterministic tradespace is shown 
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in Figure 4-7. It is clear in this figure that all ten scenarios are plotting in unique positions in the 

tradespace, although the renewable options – solar, wind, and wave options for AD4 – plot very close 

to one another. When this set of scenarios is modeled probabilistically, the tradespace changes 

significantly (Figure 4-8). When modelled probabilistically, it is clear that there is at least some degree 

of overlap between different architectures. The primary question, however, the probabilistic analysis 

allows us to answer is “with what confidence can it be claimed that the mean value of each design 

vector will be different that another design vector?” In other words, while it is useful to note some 

overlap in the cases between different architectures in Figure 4-8, additional information is gleaned 

where the confidence intervals do and do not overlap.  

Figure 4-9 clearly shows where the confidence intervals of individual scenarios overlap. These 

90% confidence interval ovals are the same ovals that are seen in the upper left of Figure 4-6. Our 

previous conclusion – that Level 3 and Level 1 AC charging result in statistically significant differences 

in performance metrics – are well illustrated. The upper set of confidence intervals never overlaps the 

lower set of confidence intervals. There are four sets of overlapping confidence intervals in this figure. 

They correspond to areas associated with specific AD4 options selected.  

Figure 4-5 illustrates how the Level 1 and Level 3 AC charging impacts the tradespace in terms 

of PM4 and PM5. This tradespace is then re-visualized from the perspective of 90% confidence 

intervals (Figure 4-6). The leftmost sets of ovals which overlap correspond to all architectures with 

either solar, wind, or wave power options. The right most ovals represent architectures with diesel 

generators or natural gas turbines (Figure 4-6). The renewable power options all overlap with each 

other, and the non-renewable options overlap with each other. However, at no point do non-

renewable power options and renewable power options overlap with each other. This means that 

within our 90% confidence ovals, the mean metrics for these specific scenarios is likely to occur, and 

that mean value will be different between renewably and non-renewably powered options (with a 90% 

confidence). From a system cost perspective (PM5), this quite simply means that if a one-AUV system 

is under consideration, then renewably powered systems will cost less than non-renewably powered 

systems. Moreover, there is currently no definitive method in place to differentiate between the costs 

associated with any of the renewable methods, which could suggest that the important architectural 

decision is less “which method of renewable should the system employ?” and more “should the system 

use renewably sourced energy?”  

Figure 4-7 further illustrates that while the deterministic cases may appear to plot in unique 

positions within the tradespace, it is likely that these design vectors are in actuality not precisely that 
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different from each other. When these deterministic cases are modeled probabilistically (Figure 4-8) 

There is still some differentiation between the renewable and the non-renewable power options. By 

adding 90% confidence intervals to the visualization (Figure 4-9) it is demonstrated that while there is 

overlap between specific renewable options (solar, wind, and wave power generation) and non-

renewable options (diesel generators and microturbines) there is no overlap between the 90% 

confidence intervals of the renewable and non-renewable sets of options. The implication is that it is 

reasonable to conclude with 90% confidence that the mean value for cost will be different between 

the renewable and non-renewable power options. Figure 4-10 then shows these confidence intervals 

overlain on top of the deterministic outputs to compare the two outputs of the two modelling 

techniques. 

 Figure 4-11 illustrates the tradespace for the deterministic model for all architectures selected 

for probabilistic analysis where there are 20 AUVs present in the system. Similar to the scenario with 

one AUV present in the system, there are clear differences between where the deterministic points 

plot. However, when the probabilistic model is run for this set of ten scenarios, the outcome is 

considerably different than that which is seen in the one AUV scenarios. Even though it represents a 

deterministic set of cases,  Figure 4-12 is equivalent to Figure 4-8 – it shows all modeled cases for the 

ten scenarios covered by the filtered subset of interest. It is clear even from a cursory inspection that 

in the scenarios with 20 AUVs modeled probabilistically (Figure 4-8), there is considerably more 

overlap than what was seen in the one AUV case. Indeed, when the 90% confidence intervals are 

plotted on top of the cases (Figure 4-13) almost all of the confidence intervals overlap each other. 

Moreover, Figure 4-14 shows that all five deterministic cases are contained within each of the five 

90% confidence intervals for either the Level 3 or Level 1 AC charging cases. Unlike the cases where 

there is one AUV in the system, this suggests that there is very little difference in the different 

architectures which can solely be attributed to the number of AUVs given the model’s assumptions. 

As the number of AUVs increase from one to 20, it follows that the influence exerted on metrics by 

power generation method becomes less and less.   
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4.4 Summary and Conclusions 

The probabilistic model was constructed to address specific uncertainties that are present, but 

not acknowledged in the deterministic model, and to quantify confidence that specific architectural 

permutations are different from each other. To that end, all input uncertainties were quantified and 

distributions of those inputs were used in a Monte Carlo simulation, and the outputs of these 

simulations were captured with 90% confidence intervals. The probabilistic analysis leads us to several 

key conclusions: 

1) With >99% confidence, the mean values for PM4 (total calendar days to mission 

completion) will be greater for architectures using Level 1 AC charging when compared 

to Level 3 AC charging. This leads to the conclusion that all else being equal, there are 

substantial differences between scenarios which use Level 1 AC versus Level 3 AC 

charging methods. Specifically, there is significant evidence that given this model and the 

attributes assigned to it, that all scenarios which employ Level 3 AC charging will have 

improved calendar days to mission completion when compared to their equivalent 

scenarios which use Level 1 AC charging. 

2) For all architectures with Level 3 charging, with 90% confidence, the mean values for PM4 

will decrease with increased numbers of AUVs present in the system. This simply means 

that there is substantial merit to the claim that, given these model parameters, adding 

AUVs will speed up the mission. 

3) For all architectures with Level 3 charging, with 90% confidence, the mean values for both 

PM4 and PM5 (total system cost) will be different (i.e., non-overlapping) for architectures 

which use different numbers of AUVs present in the system. This means that the number 

of AUVs in the system impacts all three primary figures of merit (PM1, PM2, and PM5) 

which then influences all derived figures of merit (e.g., PM4). 

4) For all architectures with one AUV present in the system, with 90% confidence, 

architectures which employ any of the aforementioned renewable methods of charging 

service platform batteries will cost less than any architectures which employ either diesel 

or natural gas microturbines to supply energy to the system. Ultimately, this means that 

with appropriate caveats surrounding the model itself, renewably powered AUV systems 

will cost less than non-renewably powered systems when there is one AUV used in the 

system. There is also no differentiation yet discovered between the methods of renewables. 
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That is to say that confidence intervals associated with solar, wind, and wave power 

options all overlap each other. 

5) For all architectures with four AUVs present in the system, with 50% confidence, 

architectures which employ any of the aforementioned renewable methods of charging 

service platform batteries will cost less than any architectures which employ either diesel 

or natural gas microturbines to supply energy to the system. The difference that was 

observed between renewables and non-renewables in the single AUV case is less 

pronounced in the four AUV case. 

6) For all architectures with eight, 12, 16, or 20 AUVs present in the system, the mean values 

of PM4 and PM5 may be indistinguishable from one another. This means that if 8-20 

AUVs are selected for the system, then the method of power generation will likely not be 

the primary cost driver if the scalable power system concept is utilized.    

 

The probabilistic model has advanced the nuance of understanding in building this AUV and 

service platform system significantly. By beginning to introduce uncertainty into the analysis and by 

quantifying degrees of difference between specific architectural design vectors, several explicit design 

recommendations can be made. In general, there are no circumstances where renewably powered 

systems are outperformed by non-renewably powered systems. When examining the renewable 

options in specific detail, there is little differentiation between them. The conclusion to be drawn from 

this observation is that when evaluating power options, from a system performance standpoint – with 

all assumptions built in thus far – there will be little advantage to choosing one option over another. 

For that reason, operational advantages and engineering advantages should be given considerable 

thought and careful consideration.  

This probabilistic model also requires the systems architect to re-consider some options which 

may have been eliminated early in the architecture process. Knowing now the degree of uncertainty 

(i.e., the sizes of the confidence intervals) it is possible that some design schemes which were 

previously deemed “different” in performance metric space, are in fact “very similar” if modelled 

probabilistically. For future iterations, this should be taken under consideration. Finally, it is worth 

noting that both the deterministic model and the probabilistic model are operation neutral. They can 

be adjusted and adapted very easily to fit new mission parameters. For instance, if one shifted to a 

nearshore shallow operating environment, only constants pertaining to the time to seafloor, 
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maintenance costs (specifically maritime operations costs), and total search area would need to be 

altered. 
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5 Findings, Discussion, and Interpretation 

In this chapter, the deterministic and probabilistic models are more thoroughly evaluated and 

discussed. The explicit goal of this thesis is to zero in on which architectural decisions are most 

important to consider when designing and AUV system which pairs with a remote service platform. 

Such conclusions are identified within this chapter. Furthermore, specific recommendations are made 

for those architectural decisions. These recommendations are made based on the results of a series of 

Pareto rankings. These rankings examine the Pareto frontier – a set of points which are Pareto efficient 

– for a multidimensional surface. Design vectors are removed from the dataset as they appear in this 

Pareto surface, and a new surface is calculated in a second round. This process is repeated, effectively 

expanding the Pareto frontier with each rank. Architectures which appear more frequently throughout 

this ranking exercise are the best performing models, and thus the recommended architectures.   

During this detailed examination, a fundamental assumption that was implicit to all models 

was uncovered. In the end of this chapter, the impacts of that error are examined. Beyond categorizing 

and quantifying the error, actions are recommended for future research which can further expand 

upon the model. This error revealed elements of complexity in the system that were previously 

unaccounted for. This complexity should be considered in future architectural modeling efforts. 

Finally, several methods of re-imagining the underlying assumptions are posited. While none of these 

reimagined methods are rigorously tested via the same models that are previously established, they lay 

the foundation for future work in the research pertaining to AUV and service platform pairing. 

 

5.1 Architectural Recommendations 

In an effort to reach actionable conclusions, specific recommendations regarding architectural 

decisions are to be provided. These recommendations are the result of the architectural decomposition 

in Chapter 2, the deterministic modeling in Chapter 3, and the probabilistic modeling in Chapter 4. 

These recommendations are all based on the parameters that were used for the models. If parameters 

change, then the recommendations will possibly also change. However, if the assumptions and 

parameters are reasonable, then the following methods and recommendations are defensible. The 

assumptions that are built into the deterministic model in the form of figures of merit, which are 

variables used to calculate performance metrics, are outlined in detail in Chapter 2. These assumptions 

are considered to have static values for the deterministic model discussed in Chapter 3 , and normally 

distributed values in the probabilistic model detailed in Chapter 4. The parameters assigned to specific 
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assumptions are summarized in Table 4-1. These assumptions are structured around the figures of 

merit associated with battery chemistry (AD2), power transfer method (AD3), power generation 

method (AD4), and number of AUVs (AD6). They include battery cost (AD2), energy density (AD2), 

power transfer method cost (AD3), power transfer rate (AD3), energy cost (AD4), energy generation 

capacity (AD4), AUV two-way travel time (AD6), AUV coordination factor (AD6), AUV cost (AD6), 

and number of AUVs (AD6). 

 

5.1.1 Recommendations from Probabilistic Tradespace Analysis 

By performing a set of deterministic analyses as was done in Chapter 3, recommendations for 

architectures can be generated. In fact, the recommendations that would come from that evaluation 

would be the architectures which define the Pareto frontier. However, if any of the parameters used 

in calculating performance metrics were inaccurate, then there is a possibility that the recommendation 

would change. Not only that, but there is an element of implied certainty that surrounds a deterministic 

model. Since the input parameters are single values, the implication is that those values are accurate 

and precise. In practice, however, these values – especially at this phase of investigation – are likely 

inaccurate and imprecise to some degree. This was part of the motivation to perform more thorough 

evaluation of system performance from a probabilistic perspective. 

The probabilistic model, developed in Chapter 4, allowed some of these assumptions to be 

relaxed. In running a Monte Carlo simulation with 1000 cases for each of the selected scenarios from 

the deterministic model, a sufficiently large dataset was generated such that conclusions with a firmer 

basis could be reached and quantified with degrees of confidence. However, when evaluating 

probabilistic data clouds, it is much less straightforward to recommend specific architectures. 

Consider performing the exact same process as the deterministic method employed – identify 

the Pareto frontier and report the architectures from those points as the system architecture 

recommendations. This was employed and the results are summarized in Table 5-1. This approach, 

however, is not ideal. By definition, the cases that are selected for the Pareto frontier are all located 

outside of the 90% confidence interval of all of the scenarios. The 90% confidence intervals which 

are discussed at length in the preceding chapters are defined as areas in which 90% of the outcomes 

of the simulation will fall. The implication is that one can claim with 90% confidence that the mean 

output of the function will land within that defined space. Since the cases which are selected for the 

Pareto frontier are the cases which are distant from the centroid of this confidence interval, they 
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represent the most extreme outputs of an individual scenario. That being said, however, the probability 

of these extreme cases being the mean performance case for a given scenario are exactly equal to any 

other case regardless of distance away from a confidence interval centroid. 

The strength of the probabilistic evaluation is not that there are single cases which should be 

anchor points. Rather, the probabilistic model excels at showing a range of outcomes. It follows that 

the approach to evaluating a probabilistic model should appropriately consider a range of outcomes. 

Instead of focusing on the first set of cases which define the Pareto frontier, a broader perspective 

should be adopted. 

 

5.1.1.1 Pareto Ranking Theory 

Solving multi-objective optimizations problems (MOOPs) is an area of study which will prove 

to be useful in teasing recommendations from the probabilistic tradespace. While there are many 

methods of solving MOOPs, the “onion-peeling”, or Pareto ranking, method is one which is 

particularly applicable to this problem (M. Davoodi Monfareed, 2011). These methods search through 

a feasible search area (e.g., an n-dimensional tradespace) with the objective to identify a Pareto optimal 

front. Following that, subsequent frontiers are established after the previous frontiers are eliminated 

from the feasible search options. The result is a set of points in n-space which are ranked by their 

occurrence in sequential Pareto frontiers. In other words, if a point is located on the first Pareto 

frontier, it is ranked as “1” and if a point is located on the third Pareto frontier it is ranked as “3.” 

This onion peeling concept was applied to systems concepts by K. Rong as they processed 

data associated with teamwork dynamics and problem spaces. The code developed (Rong, 2019) 

would ingest tradespace data and output ranked solutions (Figure 5-1, Figure 5-2). This method was 

limited to deterministic cases however. 
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Figure 5-1: Schematic views of the goals of multi-objective evolutionary algorithms. and solutions ranked by non-

dominated principles. Figure 4, (M. Davoodi Monfareed, 2011) 

 

 

Figure 5-2: Interaction score vs cost showing ranked Pareto frontiers. Utopia is marked in the upper left. Figure 3, 

(Prakash Manandhar, 2020) 
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5.1.1.2 Pareto Ranking Execution 

The Pareto ranking code (Rong, 2019) was refined (Mandahar, 2020) and generalized to ingest 

any n-dimensional tradespace and output ranked unique IDs (Appendix B). This code enabled onion-

peel style exploration of the probabilistic tradespace in this thesis. In this study, three dimensions were 

examined to identify a Pareto efficient surface. These dimensions are daily operating time (PM1), 

search area rate (PM2), and total system cost (PM5). Every probabilistic case was evaluated in every 

dimension to identify if it was part of the 3-dimensional Pareto surface. Each ranking round completed 

this process once. After identifying all of the cases which defined the Pareto surface, a list of cases is 

output, and the cases are removed from the scenario list. A subsequent round then initiates. In these 

senses, the Pareto ranking process is identical to those outlined above, only applied to a different use 

case.  

It is worth noting that Pareto ranking is not designed to work explicitly on probabilistic 

tradespaces. It is commonly used in deterministic circumstances and specific architectures are selected 

based on their pareto rank. With this updated script, each rank round outputs a set of unique 

identifiers. In this case, the unique identifiers (UIDs) are the unique identifiers associated with every 

case from the probabilistic tradespace analysis. These UIDs can then be re-associated with their 

specific scenarios. Thus, the scenarios are tied to their occurrence within specific rank rounds. Table 

5-1 shows the scenario associated with each case in column two for ranking round 1 – the first Pareto 

frontier.  

In subsequent rank rounds, the previous cases are dropped from the examined dataset, and a 

new multi-dimensional tradespace is created. A new Pareto frontier is established, and the second 

round of ranking is tied to all of the cases which define that subsequent Pareto frontier. In essence, 

this method is treating a multi-dimensional Pareto frontier not as a single surface, but a set of 

hierarchically organized surfaces. In considering recommendations, it is this implicit hierarchy that 

empowers the architect to draw meaningful insight. One way to consider this hierarchical organization 

of Pareto surfaces is to imagine that as subsequent Pareto surfaces are ranked, the single Pareto 

frontier thickens and – at least conceptually – the thickened Pareto frontier begins to approach 

identifying best architectures similarly to the probabilistic method. It relaxes constraints concerning 

how many cases must be non-dominated in order to define a thicker frontier.   
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5.1.1.3 Pareto Ranking Results 

One limitation in utilizing this method of examining a probabilistic tradespace is that it is 

inherently computationally intensive. The first run of this script took over two hours, and each 

subsequent run takes longer than the previous because more points define the Pareto frontier, which 

means more comparisons must be performed. While optimization would help solve this issue, there 

are practical computational limitation which exist currently preventing this specific approach from 

widespread application in very large data sets (i.e., data sets which contain more than 100,000 points). 

Optimization solutions applied to the method is an area for future work such that these practical 

limitations can be mitigated. 

In this evaluation, 18 consecutive ranking rounds were run over three days of data processing. 

This equates to the first 18 Pareto frontiers that would be defined in this dataset. It is estimated that 

approximately 60 Pareto frontiers would be required to fully classify the entire 60,000 case tradespace. 

Several specific methods of visualizing these data can aid in deriving recommendations for 

architectures to peruse.  

The first method would be to look at which scenarios are most represented in the first Pareto 

frontier. This is very similar in execution to treating the probabilistic model like a deterministic model 

and placing importance on the edge cases. There are several pitfalls of this approach outlined above, 

but if those pitfalls are deemed acceptable, then the ranked list of architecture occurrence in the first 

round of Pareto ranking would be summarized as Table 5-2. In this summary, there are nine 

architectures (scenarios) which are represented in the Pareto frontier. Additionally, there are only 72 

total cases which are required to define the Pareto frontier (Table 5-1). This Pareto ranking technique 

allows for an impartial evaluation across multidimensional spaces, and higher ranking architectures are 

visible. 

However, there is still a case to be made that stakeholders needs and preferences could 

influence architecture selection. If all stakeholder preference was given to the architecture which is 

most represented in the first Pareto frontier, then the recommended architecture would be scenario 

2: an architecture with ethernet data transfer, lithium-ion batteries, Level 3 AC charging, energy 

captured via wind turbine, a vectored propeller, and 20 AUVs operating in the system occurring 34 

times on the Pareto frontier (Table 5-2). There is nothing from a theoretical or practical standpoint 

which mandates that a stakeholder make this selection however. If there are extenuating reasons for 

such decisions, a different architecture may be selected by stakeholders even though they are not the 

highest ranked architectures. What the Pareto ranking method does provide is a neutral, 
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computationally based analysis of probabilistic models. If a key stakeholder maintains their non-

optimal solution preference, then the Pareto ranking method also provides a basis for nuanced 

discussions and quantitative statements about to what degree a non-optimal solution would impact 

the system’s performance metrics. 

In calculating the performance metrics, an average of all calculated performance metrics for 

cases which have been selected is used (i.e., ignoring metrics which have not landed in the Pareto 

frontier). For instance, if five cases were selected for the Pareto frontier for a given scenario, the 

reported performance metrics are an average of those five cases – not the 1000 cases. For subsequent 

ranks, the performance metrics of all previously selected cases were kept in the dataset to calculate 

average performance.  

In this specific selected architecture (Table 5-2), the total mission completion time would be 

approximately 233 days, and is predicted to cost approximately $16,848,785. Detailed analysis of the 

statistical distribution of the performance metrics for ranked scenarios is outside the scope of this 

examination. To compare these performance metrics back to the human operated designs that were 

used in the search for MH370, the mission was completed in 285 days (using only days where the 

survey vessels were actively deploying the AUVs – this number could be as high as 730 days to 

encompass all days in which the survey vessels were operating) and cost a total of $32,812,500. To put 

it simply: if all assumptions and estimates are valid up to this point in the analysis, then the expectation 

would be for this architecture to complete the mission profile faster, and for almost half the cost. This 

improvement is possible because of several factors. First, the reference architecture uses a lithium-

polymer battery, which can have lower energy density than lithium-ion batteries. This results in a new 

architecture with a higher search area rate. Second, the reference architecture used a battery hot-swap 

method and this new architecture uses Level 3 AC charging which minimizes time lost at the service 

platform waiting for batteries. Finally, by using an autonomous service platform, the overhead costs 

associated with the reference architecture are laid bare, as the new architecture is far more affordable.  

More power can be brought to bear from the MOOP method, however. If multiple ranking 

runs are considered, then a far more detailed picture emerges showing how certain architectures are 

dominant at different points in the tradespace. When the 18 consecutive ranking runs are visualized 

there is more information to absorb. For instance, one can examine how the number of cases for each 

scenario exist on Pareto frontiers for each round (Figure 5-3). From this, it is clear that within the first 

18 Pareto frontiers, there are three architectures which tend to be selected more frequently than all 

other architectures. These architectures are scenarios 1, 2, and 3. These architectures are identical to 
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each other, save the power generation method (AD4). These three scenarios represent the renewable 

options for generating power. To examine the cumulative impacts of selecting n-dimensional Pareto 

surfaces, the number of cases selected for each scenario in each rank round can be summed. The 

results of this are summarized in Figure 5-4. Scenarios 1, 2, and 3 are clearly selected above other 

scenarios through the first 18 rank rounds. However, this graph also supplies a new way to select 

architectures based on when they cross arbitrary thresholds. For instance, scenarios could be 

prioritized based on when they cross 100 cases selected for Pareto frontiers. This would represent 

greater than 10% of a scenario’s cases selected as an optimal solution to the MOOP. This could be 

analogous thinking to a specific percentage selected for a confidence interval. As the cutoff percentage 

increases, the requirement is stricter. For instance, using the 10% cutoff, there are 16 scenarios which 

meet selection criteria. However, if a stricter cutoff of 20% were used, then only seven scenarios meet 

the selection criteria. The ranking for 18 cumulative ranking runs is summarized in Table 5-3. 

A third method for selection can also be used. For this method, a scenario’s rank (i.e., low 

ranks have the most cases present in a single ranking round) is noted for each iteration. Then that 

overall rank is tracked for each subsequent round. Initially, this is a somewhat chaotic evolution of 

cases, however, in subsequent rank rounds, scenarios begin to detangle and fall into constant overall 

ranks. This is visualized in Figure 5-5. Note how after ranking round 13 there is considerably less 

shifting in the rankings when compared to ranking round five. Architecture selection using this 

method focuses on the stability of a given scenario. If a given architecture is broadly distributed in the 

tradespace then the ranking will likely be much lower than a similar architecture with a narrower 

distribution. 

Using any one of these three outlined methods will result in defensible architectural selections. 

However, in looking at all three simultaneously, there is a glaring trend that emerges for this particular 

examination. Regardless of which method is selected, there is a consistent high ranking for 

architectures which have a single AUV. Table 5-3 shows the cumulative cases for scenarios after 18 

ranking rounds, and of the top ten selected scenarios, seven of them are architectures which include 

one AUV. When looking at when specific cutoffs (as a percentage of the total number of cases) 

scenarios 1, 2, and 3 greatly outperform other architectures – all of these architectures have over half 

of their cases selected on Pareto frontiers within the first 17 ranking rounds. Additionally, the only 

differentiator of these architectures is that they utilize different renewable methods of energy 

harvesting (AD4). As previously discussed in Chapter 4, it is not demonstrable that the different 

renewable methods can be distinguished from each other with regards to the performance metrics of 
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interest. With that in mind, the Pareto ranking method of high-grading specific architectures would 

suggest that an architecture with one AUV, utilizing ethernet data transfer methods, lithium-ion 

batteries, Level 3 AC charging, and renewable energy harvesting methods is the best architecture to 

pursue. Given all the modelling assumptions, such a system would be able to complete the mission in 

between 243 and 247 days with a cost of approximately $17 million. This is faster than the existing 

methods (between 285 days and 730 days), and almost half the cost ($32,812,500). The major caveat 

to these conclusions, however, is that they are only valid for a single, very specific use case where the 

area of interest is in four km of water, in a highly remote location, and has an area of 60,000km2. For 

other scenarios, this advantage may not be as pronounced, or present at all. 
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Table 5-1: Table listing the probabilistic cases which generate the Pareto frontier.  
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Table 5-2: Table summarizing the occurrence of each scenario and their architectures in the first round of ranking. 

Architectures are sorted by the most commonly occurring scenarios. 
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5.1.2 Operational Considerations 

Several practical and operational considerations have not been included in this thesis and could 

alter architectural recommendations and performance metrics. These operational considerations have 

thus far been out of scope of this investigation, but it is certainly worth noting what some of them are 

in order to qualitatively capture their impact. When examining these operational considerations, they 

are classified into “-ilities” or broad categories which could have overarching implications across the 

system. Here, reliability, mobility, durability, flexibility, affordability, and feasibility will be discussed, 

but there are far more which could have an impact on practical deployment activities. Eventually, 

these considerations could be integrated into a model if sufficiently impactful. 

The first operational consideration to examine is reliability. Reliability in this case refers to 

elements of the system performing in consistent, repeatable, and predictable ways. Thus far in the 

analysis, there has been no degree of tolerance that all input parameters were expected to meet or 

exceed. Reliability has been handled largely by dealing with averages across ranges. However, there are 

cases where this might not be an appropriate approach. For instance, in the big battery system concept, 

the precise amount of battery storage required was kept onboard the service platform. However, 

between battery decay over time, battery exposure to harsh elements, as well as possible battery burn-

out over time, there is likely insufficient reliability built into that aspect of the model. One way to 

refine this aspect would be to perform a comprehensive reliability assessment of the system now that 

some of the major architectural decisions can be made. Modeling reliability in rapidly evolving systems 

can be a difficult task, and so by eliminating some variables, such an approach is more realistic. 

However, this also comes at a cost. During the systems architectural analysis phase, some architectural 

decisions which may increase reliability were explicitly not considered and thus could be out of scope 

for systems engineering. For instance, one way to increase energy production reliability could be to 

have multiple systems present on the service platform for energy generation redundancy – a wind 

turbine to supply power when the sun does not shine and solar panels to supply power when the wind 

does not blow.  

A second operation consideration that was not included in the existing model is the 

consideration of mobility – specifically mobility of the service platform. Mobility is defined for the 

purposes of this discussion as the capability (in terms of speed, range, and agility) of a system and its 

components to relocate from one position to another. It is not difficult to imagine the problems that 

would arise in trying to scan a 60,000km2 area over the course of ten days with 20 AUVs to transport 

over the course of a few hours before they disembark. This activity would require additional power 
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(which is not modeled) as well as additional instrumentation for geolocation. Furthermore, if 

inclement weather was inbound to the service platform, having some degree of capability to move 

away from a potentially damaging storm could prove to be useful. Since this operational consideration 

has not been modeled at all, there is no way to know a priori if it would have a significant impact on 

the performance metrics. It is likely that it is at least partially dependent on the number of AUVs 

present in the system, as that number will govern the size of the platform which will in turn have 

implications about how the platform will navigate, and orient. Platform drift must also be considered. 

It is possible that if little motion on the part of the platform is required, then drift could be utilized in 

favor of the system by drifting to a new centroid location from which the platform could launch its 

AUVs. If greater distances were required, than sail plans would have to be planned and executed in a 

timely manner to ensure acceptable system performance. 

Along these lines, there is also a question of durability, which is defined as the propensity of 

mechanical and electrical components to resist critical failure. Additionally, there are elements of 

durability system-wide. If redundancies are emplaced, then a single critical component failure may not 

lead to a system failure. Current models have all AUVs and the service platform performing with zero 

errors. However, operating in a harsh offshore environment is likely to be fraught with potential 

dangers for the system. These dangers could be man-made (e.g., a passing ship could run over the 

service platform, or garbage could get tangled in the docking mechanism for the AUVs), or they could 

originate from the environment itself (e.g., biofouling and organism growth on the system, or large or 

small sea creatures investigating the new element to the ocean system). Regardless of the cause, it is 

important to consider durability from the perspective of the pertinent performance metrics. It is 

entirely possible that because of issues associated with durability the daily operating time decreases. 

Additionally, in order to safeguard against possible damage to the service vehicle or the AUVs there 

could potentially be more robust designs for the exteriors – but this would possibly impact total system 

price, or daily operating time if the dynamics of the AUV were changed.  

Flexibility is possibly the most important operational constraint to consider in future work. 

Flexibility in this thesis refers to the capacity for an AUV and service platform to operate across a 

broad set of operational parameters and environments. For the purposes of this examination, a very 

specific operation was considered. But this limited scope had significant ramifications for some 

architectural decisions. For instance, in considering the method of energy generation, the largest costs 

that the non-renewable methods encountered were the costs associated with refueling the generators. 

If the operating environment itself changed, then it is entirely possible that the performance metrics 
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associated with these architectural decisions would change. An example of flexibility would be the 

capacity for the system to operate in remote areas autonomously, but also have the ability to operate 

close to the shore. The applications for this could be very wide-reaching and the more an architecture 

can support multiple roles, the more likely it is to solve some of the issues that have plagued 

widespread adoption of AUVs for so long – specifically high hourly operational costs. However, just 

because an architecture is well-suited to one operational environment does not mean that it will be 

successful in another. Capturing some measure of flexibility would be an ideal enhancement to this 

model. 

Affordability, which is to say highly rigid cost constraints – is unique as an operational 

consideration, as it is explicitly labeled in this model as a performance metric as cost. However, the 

purpose of calling affordability out as a specific operational consideration is to point out that when 

examining an architecture for practical deployment, there are almost always going to be real cost 

limitations that are at play. For instance, if a company developing this technology is unable to fund a 

$200 million-dollar project, then all architectures above that price point are infeasible regardless of 

how well they perform in other metrics. That the Pareto ranking method favored low-cost options is 

very promising for this particular constraint as it would suggest that the Pareto surfaces are not 

disproportionately dominated by expensive architectures which have comparatively small 

improvements in some performance metrics.  

Feasibility is a wide-ranging subject in the professional AUV realm. Feasibility in this case 

refers to the technology readiness level (TRL) of the system and its component parts. Currently, the 

very feasibility of networked AUV swarms is technically not proven. This means that as a practical 

matter, any architecture with more than one AUV is going to be at some degree of lower technology 

readiness level . There are other architectural elements which are specifically discussed in this analysis 

(e.g., Level 3 AC charging) which would be a welcome addition to the tradespace, but frankly, Level 

three AC charging is not yet widely accepted for standards. This is rapidly changing, however, and it 

is possible that very soon this particular element be at a much higher TRL.  

 

5.2 Overall Method Strengths and Weaknesses 

The method of walking through an architectural decomposition (Chapter 2), then modeling 

the system deterministically (Chapter 3), and finishing with a probabilistic model (Chapter 4) is entirely 

viable for performing several evaluations. By breaking down a system into its highest-level 
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components first, and focusing on functional decompositions, the essence of what a system is 

designed to accomplish begins to unravel. Through this process, the elements which truly define the 

system are brought forward and new ideas can be generated for ways to accomplish the function rather 

than be locked into a form. By creating a deterministic model, macro trends are viewable for any set 

of architectures. The exercise of walking through a morphological matrix is very useful to define all 

possible permutations of a system. Some of the permutations may never have been evaluated before 

and some existing architectures may be used to ground truth your model. Moreover, a probabilistic 

model allows for quantitative statements to be made about trends between architectures, the likelihood 

of a single architecture to meet specific performance criteria, and assessing assumptions and 

acknowledging areas with high uncertainty in the deterministic model. Finally, this process is iterative 

and can be completed multiple times incorporating the learnings from previous iterations into future 

iterations. In so doing, the models improve, and the final system that is built will be engineered upon 

higher confidence principles. The speed with which these iterations can be completed is also a major 

advantage to this approach. 

However, the methods employed in this study are not all encompassing and there are several 

glaring issues that are not addressed. The first of these issues concerns nominal and contingency 

operations. There is no operational model associated with the system at this time, and that operational 

model would help aid in understanding nearly every operational consideration outlined above. 

Flexibility, mobility, and reliability are operational concerns that are not addressed using the methods 

outlined in this paper. The decomposition, morphological matrix constriction, and modeling 

approaches that were followed are simply not the ideal methods to approach such questions in detail. 

Furthermore, these questions are not easy to approach from a blank slate. By firming up at least some 

architectural decisions prior to approaching questions about flexibility, mobility, and reliability, the 

results from operational models can provide much more meaningful conclusions for the architectures 

under consideration. Just as the systems architecture models are potentially an iterative process, the 

systems architecture models can be – and should be – revisited following significant systems 

engineering reviews. 
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5.3 Critical Model Failure 

Following the analysis outlined above, a major fault was identified in the foundations of the 

models. Figure 3-4 details the method that was used to calculate a figure of merit that was used 

throughout all of the models called “time to seafloor.” This figure of merit is an estimate of the average 

time it takes the number of AUVs in the system to reach a depth of 4,000m. The amount of time will 

increase with the number of AUVs as described in Chapter 3. However, upon detailed analysis, the 

values that were used in order to calculate the spacing were determined to be incorrect. The result of 

this is a cascading error throughout the model that can potentially invalidate a large portion of the 

result. In this section this failure is analyzed in detail and its impact quantified. Then, the assumptions 

which are in place for this are model re-imagined, and recommendations for improvement are made. 

 

5.3.1 Determining Time to Seafloor 

In order to calculate the time to seafloor, the distance that the AUV travels must be known as 

well as the descent rate. For a single AUV, the distance to travel to reach the ocean bottom is equal 

to the depth of observation. In this model, that distance is 4,000m. Descent rate is determined through 

analysis of the MH370 case study. A single AUV descends to the seafloor over the course of 2.5 hours 

(MIT Spectrum, 2014). To calculate descent rate, the following governing equation is used: 

 

𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝑈𝑉𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝑅𝑎𝑡𝑒 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟

𝑇𝑖𝑚𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟
 

or 

𝑇𝑖𝑚𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
=  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟

𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝑈𝑉𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝑅𝑎𝑡𝑒
 

 

For a single AUV, then, the descent rate is equal to 0.44m/s. This descent rate is assumed to 

be constant for all AUVs in the system regardless of the number of AUVs present. In the existing 

model, a grid pattern of AUV deployment is proposed (Figure 3-4, Figure 5-6) with the service 

platform and started of deployment of all AUVs located at the center. In this grid deployment, the 

assumption is that each square an AUV would investigate would represent the maximum area that an 
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individual AUV could cover in a single operational time span. As the number of AUVs increases, the 

search grid would expand and the distances that an AUV would need to travel from the service 

platform at the center in order to reach its operational starting location would increase. As soon as 

more than four AUVs are present in the system, the distance to the ocean floor is no longer 4,000m, 

but rather a larger value, since the AUVs must transverse across areas that are otherwise scanned by 

previous AUVs. Figure 5-6 details how sets of AUVs would have the same values for their distance 

to the ocean floor. A critical error was made at this point in the modelling effort. The transverse 

distance that was used in the model was assumed to be 1,478m.  

This value is too small, as the area scanned within a square of that size would be far less than 

what a single AUV could scan in a single operation. The correct value to use – assuming a square grid 

search pattern – would instead be closer to 14,000m – an order of magnitude increase. In order to 

calculate this number, the original figures of merit from the MH370 report are examined. The total 

line length that AUVs covered over the course of 167 operations was 17,156km as shown in Figure 

3-3 (Australian Transport Safety Bureau, 2017). Each operation was 19 hours in length – the time 

required to descend 4000m was 2.5 hours (MIT Spectrum, 2014) – and the side scan sonar beam width 

was 2,000m (Australian Transport Safety Bureau, 2017). By dividing the total mission line length by 

the number of missions and multiplying by the beam width, the total mission area scanned, and by 

taking the square root of this number the edge of a square grid search pattern is calculated. This 

operation is summarized in the following equation: 

  

𝑆𝑞𝑢𝑎𝑟𝑒𝐺𝑟𝑖𝑑𝐸𝑑𝑔𝑒 = √
𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠
∗ 𝐵𝑒𝑎𝑚𝑊𝑖𝑑𝑡ℎ 

 

Since we assume that the descent rate remains constant for each AUV, and the performance 

metric that this figure of merit influences is daily operational time, the value that must be captured by 

the model is average time to the ocean floor across all AUVs. Thus, the previous equation can be re-

written as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝑇𝑜𝑆𝑒𝑎𝑓𝑙𝑜𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
=

∑ 𝑇𝑖𝑚𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛

𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
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Figure 5-6: Grid pattern of deployment for a System including 20 AUVs. Squares which share the same color have 

identical distances to ocean floor. 

 

5.3.2 Quantifying Impact to Results 

From a practical standpoint this error correction means that for each AD6 option, there will 

be an increased average time to the seafloor, despite constant times to the seafloor for all AUVs under 

consideration. This is illustrated in Figure 5-7 where the modelled values are compared against the 

corrected values. As AUVs are added to the system, the time it takes to reach the seafloor only 

increases. Table 3-6 details the average times to the seafloor which were used in the model. Table 5-4 

details the corrected values, and compares them against the values which were used in the initial design. 

For cases where there are four or fewer AUVs in the system (AD6 option 1 and option 2) then there 

is no impact on the output of the model. The reason for this is that the distance to the ocean floor 

has remained unchanged for those cases. However, as the distance increases and the errors propagate, 

the disparity between the model which was used in this thesis and the correct version becomes more 

and more apparent. In the case of 20 AUVs (AD6 option 6) the average time to the seafloor is 23.4 

hours (nearly an entire day), but when closely examined, all AUVs 13-20 require more than 24 hours 

to descent to the seafloor (Table 5-5). Since the batteries onboard the AUVs only carry sufficient 

energy for 24 hours of operation, this means that if the square grid assumption is to continue to be 

used in this capacity, there is no reason to pursue any architecture with more than 12 AUVs. The 

AUVs simply won’t have the energy to descend, operate, and ascend barring energy free ascents (e.g., 

positive buoyancy) which were out of scope for investigation in this thesis. 
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Figure 5-7: Comparison of the average AUV time to seafloor between modelled values (orange) and corrected values 

(blue). Note that the times are the same for cases where there are 4 or fewer AUVs in the system.  

 

This error sheds insight into several assumptions which were previously unaccounted for. By 

fixing this error in the underlying model, there would be a substantial bias against architectural 

solutions which use large numbers of AUVs. The Pareto ranking analysis detailed earlier on the 

uncorrected model data ran for 18 consecutive Pareto frontiers. Following this ranking exercise, the 

top ten architectures by Pareto ranking were architectures which only had one or four AUVs present 

in the system. For those architectures, this correction would have no effect on any of their 

performance metrics, since their time to reach the ocean floor remained unchanged. Furthermore, 

after 18 runs of Pareto ranking, 5,530 points were selected along all 18 Pareto frontiers. Over 68% of 

all points selected were architectures that had either one or four AUVs present in the system. The top 

ten architectures, therefore, represent over 63% of all selected architectures. These facts all suggest 

that while there are certainly errors in the initial model, some of the key insights remain unchanged – 

the recommended architectures including one and four AUVs in the system do not have their 

underlying figures of merit changed, which means they will continue to be the dominant architectures.  
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Table 5-4: Summary of system impact of correct values used for time to seafloor. The time to seafloor is unchanged 

between models for the case of one and four AUVs. 

 

 

Table 5-5: Examination of design viability for square grid search patterns where squares have edge lengths of 14,334m. 

Any design which incorporates more than 12 AUVs is deemed non-viable because it will take greater than 24 hours 

for the AUV to reach the seafloor. 
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5.3.3 Reimagining Time to Seafloor Calculations 

While it is good to know that some of the key insights are still valid, if this model is to be 

improved, then there must be a different way to approach the subject of calculating time to seafloor 

in a way that does not invalidate all architectures which utilize more than 12 AUVs. One major 

problem in reconsidering the square grid style of deployment is that the distance an AUV must 

transverse will change as the number of AUVs increases. That is, in order to maintain a truly square 

grid and ensure total coverage, all squares must be equal in size. In order to accomplish this, the AUV 

which translates the farthest during descent will be the AUV which determines the search area for all 

other AUVs as it can spend the least amount of time on the seafloor. Further complicating the square 

grid search pattern is the fact that the area which can be searched is not only impacted by the time to 

seafloor, but also by each architectural decision which impacts PM2 (search area rate). For these 

reasons, the square grid search pattern is likely not an optimal search pattern to develop fully.  

There are two methods which can be implemented in order to re-imagine time to seafloor 

calculations. The first is to re-tool the search pattern away from the square grid. The second is to 

consider expanding the architectural scope to include methods of improving performance – that is to 

say ways in which descent time can be improved other than changing search patterns. In considering 

new patterns for searching the problems that are encountered in the square grid search, pattern must 

be at the crux of the discussion. There are two implicit constraints which are factors in the square grid: 

the requirement for all search squares to be the same dimensions, and the requirement for sets of 

AUVs to begin their search in different locations.  

If the constraint for all AUV search paths to be equal is relaxed, then a new possible search 

pattern emerges, termed the “swim lane” search pattern. In this search pattern, the AUVs travel first 

to their start location, then out for as long as they can where they then turn around and come back. 

Much like a swimmer in a lap pool, the AUV will travel in one lane on the outbound trip, and the 

adjacent lane on the return trip to maximize the total area covered in the scanning operation. Each 

lane is defined by the side scan sonar beam width. In this case, the lanes are separated by the beam 

width of 2km, preventing overlap. This concept is schematically represented in Figure 5-8. There are 

several values to be calculated in order to estimate the impact that this will have on the model: the 

length of the lane, the width of the lane, and the distance that an AUV must traverse to reach its 

starting location.  

It is known that on average the AUVs operating in the MH370 search and recovery effort 

scanned 17,156 line km over the course of 167 operations (Australian Transport Safety Bureau, 2017). 
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This means that on average, the AUVs were collecting 5,406 line meters per hour. Whenever possible, 

AUV missions were undertaken once every 24-hours (Australian Transport Safety Bureau, 2017) as 

that was the limitation of the AUVs stored energy reserves. From this a total operational line of 

102,731 meters is calculated for a 19-hour operation. The dimensions of the swim lane are therefore 

defined by the following equations: 

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 24 hours − 2 ∗ (𝑇𝑖𝑚𝑒𝑇𝑜𝑂𝑐𝑒𝑎𝑛𝐹𝑙𝑜𝑜𝑟𝐴𝐷6𝑂𝑝𝑡𝑖𝑜𝑛
) 

and 

𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑖𝑛𝑒 =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝐿𝑖𝑛𝑒𝑀𝑒𝑡𝑒𝑟𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟 

and 

𝑆𝑤𝑖𝑚𝐿𝑎𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ =  
𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑖𝑛𝑒 − (𝐵𝑒𝑎𝑚𝑊𝑖𝑑𝑡ℎ ∗ 2)

2
 

and 

𝑆𝑤𝑖𝑚𝐿𝑎𝑛𝑒𝑊𝑖𝑑𝑡ℎ = 𝐵𝑒𝑎𝑚𝑊𝑖𝑑𝑡ℎ 

 

 

Figure 5-8: Schematic representation (not to scale) of the swim lane search concept. The star represents the start and end 

location of a single AUV. An individual AUV travels out, turns around, returns, and navigates back to the starting 

position. This path is represented by a dashed line. The circles represent the beam width of an individual AUV as it 

turns a corner. 

 

These parameters are sufficient to calculate the area of each AUV as well as the dimensions 

of all viable designs. The results of these viable designs are summarized in Table 5-6 and the summary 

compared to the time to seafloor used in the model for this thesis is summarized in (Table 5-7). Similar 

to the square grid method, there are some designs which are non-viable, but they are only in cases of 

20 AUVs or more. When comparing to the values of time to seafloor that were used in the model 

discussed in this thesis, the values for AD6 option 1 and 2 are identical for the same reason that these 
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options remained unchanged in the square grid configuration. AD6 option 3 is only slightly larger in 

the swim lane method, and thus the results are likely going to be similar for many AD6 option 3 

outcomes. However, for AD6 option 4, 5, and 6 there are still substantial differences from the model 

used in the body of the thesis. 

 

 

Table 5-6: Summary of viable designs for the swim lane method of AUV spacing. Similar to the square grid method, 

there are designs which become non-viable because of their travel time. Unlike the square grid method, these designs only 

occur when swarms greater than 20 AUVs are considered. 
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Table 5-7: Summary of system impact of swim lane values. Reference architecture only used for time to seafloor. 

 

The swim lane method relaxes the constraint of consistent dimensions of the scanned areas, 

and a cursory examination of the swim lane method shows how significant the scanned areas change. 

A scale schematic representing 20 AUVs in the system is presented in Figure 5-9. Each lane gets 

smaller as the transverse distance increases. This representation is to scale only for the reference 

architecture. Any other architectural decisions which impact the search area rate will have a cascading 

effect on this scale. Visualizing the scale of the variation in the swim lanes brings up a concern which 

has to this point gone largely unrecognized in the discussion – how can complete coverage be ensured 

and how can performance be maximized using a system such as described? If a non-square grid is 

used, some sort of tessellation will have to be employed to ensure total coverage. This is another set 

of “-ilities” to be considered in future work. The tradeoffs that exist between the swim lane and the 

square grid search methods are worth exploring in greater detail. At the surface, there seems to be 

tension between two new metrics. The swim lane method allows for greater numbers of AUVs to 

operate – compare Table 5-5 and Table 5-6 – which could lead to performance improvements. 

However, the imperfect tessellation of a swim lane diamond search pattern may not be worth those 

improvements, as a square grid can be perfectly tessellated.  
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Figure 5-9: Scaled schematic showing how the reference architecture would perform in the swim lane search pattern. Other 

architectural considerations that impact search area rate are not taken into consideration. This scaling would change with 

those decisions factored into the examination.  

 

Another option that can be considered as far as re-imagining the square grid search method is 

termed herein the “flower petal” method. This option keeps the constraint that each AUV scans the 

same area, but relaxes the constraint that they start their search in different locations as they are all 

deployed from the same location at the center of the flower. Following a flight path similar to the 

swim lane method (i.e., out and back) the AUVs would scan in a pattern exhibited in (Figure 5-10). 

The advantages to such a method would be that each AUV can operate for their full duration scanning 

a large area. Downsides of this method include overlapping search areas close to the center of the 

flower and completely unscanned sections at the edges of the circle.  
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Figure 5-10: Schematic illustration demonstrating the possible lanes for a flower petal search pattern. Note the 

substantial overlap in the center of the area of investigation and the lack of coverage in the edges of the search area. 

 

A second method altogether that can be employed to address this shortcoming in the model 

and test for sensitivities is to create a new class of architectural decisions that will directly impact 

descent functionality. The reference AUV descends through the water column at a rate of 0.44 m/s – 

a rate that is less than one third the speed at which it can scan the sea floor, and even less than the 

cruising speed when not collecting data. Thus, increasing the descent speed could considerably 

improve performance. There are a number of ways that this could be achieved (e.g., detachable dive 

weights, changing the buoyancy of the AUV itself, etc.) and each one comes with system-wide impacts. 

Additional architectural decisions could include not launching all AUVs simultaneously and instead 

moving the service platform to the launch location, eliminating or reducing the transverse distance 

required to travel for the AUVs, or adding additional service platforms which could in effect act as 

“catchers” for AUVs after they had completed their operations. With a mobile service platform, the 

burden of translating to a new seafloor patch to search is shifted from the AUV to the service platform 

and would have implications for the platform’s design and operations. 

While the error in discovered in the existing model is important to note, there have been 

several key conclusions that have come from its identification. First and most importantly, the system 

is more sensitive to the impact of time to seafloor than was initially thought. Second, despite this 

sensitivity, the top ten dominant architectures remain unchanged, as they were not influenced by the 
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change in time to the seafloor value. Third, several options for new ways of imagining the search area 

grid have been posited to different degrees of depth. Future work should recognize the sensitivity the 

model has to search patterns and dedicate effort in establishing which search patterns are ideal in 

which situations, and which architectural decisions – if any – can influence the performance of the 

system from the perspective of descent time. 
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6 Recommendations for Future Work 

This thesis has focused on evaluating the AUV system from a holistic perspective by 

broadening the range of what was included inside and outside of the system boundary. While AUV 

technology has progressed throughout the years (from the Whitehead torpedo to the Bluefin-21), it is 

challenged in this thesis that a systems-wide view imposed on AUV technology could aid in reaping 

the benefits that may emerge. This thesis represents a method of evaluating an established technology 

and within offers real recommendations for practical applications. While the model proved to have a 

critical fault within its foundational constants, these recommendations remained unaffected, and the 

design vectors which were affected by the error were impacted negatively. This means that the 

conclusions reached herein are still supported by the model with all of the built-in assumptions despite 

the error in construction. Within this chapter, these conclusions are summarized and future areas of 

research is suggested.  

 

6.1 Research Summary 

Chapter 1 was constructed to provide the general context in which this research lies. The 

motivation for the project was to frame the research as a question – in what ways is the AUV space 

lagging behind some other similar technologies? In examining the history of AUVs there are several 

instances where it seemed as though major breakthroughs were just around the corner only to be 

hampered by technological limitations. The overall structure of research and methods was laid out, 

and a general structure of the documentation was captured.  

Chapter 2 of this thesis was focused on decomposing the AUV system into its component 

entities. The system boundaries were expanded from conventional thinking to include sub-systems 

that integrate charging, launching, transferring data, and so forth to and from the AUV. These 

operational elements are important to understanding the true cost and value that such a technology 

can bring to bear, yet they can sometimes be left outside of the system boundary for analysis. The 

component entities which comprised this newly expanded AUV and service platform system were 

then decomposed into functional elements. The functions that have been analyzed include 

communicating between elements of the system, energizing the system, propelling and orienting the 

system (collectively forming a functional module which achieves controlling the system), and sensing 

the surrounding environment.  
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Following this decomposition Chapter 3 modelled the system via a deterministic method logy. 

In order to evaluate a model, seven system performance metrics were established based on the figures 

of merit identified during decomposition. These seven performance metrics provided a common 

framework from which different design vectors could be compared. A single design vector is a unique 

set of options for each identified architectural decision. A morphological matrix containing every 

permutation of these design vectors was used to compare all possible architectures against each other. 

This resulted in the deterministic analysis where a Pareto frontier was established in the PM4 and PM5 

space. Within this Pareto frontier, there are several key observations. First, there are architectures for 

each option for number of AUVs in the system. Second, the Scalable Power system concept was 

favored over other system concepts because it realized improvements cost (PM5) relative to the Big 

Battery concept without sacrificing calendar mission completion time (PM4) compared to the Tiny 

Battery concept. The third conclusion that was reached from the deterministic approach was that in 

renewable power generation options were always more cost effective than non-renewable options.  

In Chapter 4, the top performing architectures as well as other design vectors which 

permutated between several architectural decisions which were inconsistent across the deterministic 

tradespace were then selected for probabilistic analysis. The purpose of probabilistic analysis was 

twofold. First, a robust probabilistic analysis allowed for uncertainty (which had been previously been 

unaddressed) surrounding baseline assumptions to influence the model outcomes. A second objective 

of the probabilistic analysis was to quantitatively evaluate the similarity (or dissimilarity) between 

selected architectures. The probabilistic model demonstrated how uncertainty played a larger role in 

some architectures than others (e.g., there are much wider cost spreads when examining total system 

cost for 20 AUV systems). Additionally, in some circumstances specific architectural decisions were 

differentiated with 90% confidence (e.g., renewably charged, single AUV systems are less expensive 

than non-renewably charged single AUV systems). Some architectures which were clearly distinct in 

the deterministic model (for instance, all renewable options were more cost effective than their non-

renewable counterparts) were no longer differentiated in some circumstances. This effect was 

especially pronounced in design vectors with large numbers of AUVs selected for analysis.  

Chapter 5 saw a detailed analysis of the results of the probabilistic model. A method of Pareto 

ranking was employed to begin classifying which design vectors occurred most frequently on multi-

dimensional Pareto surfaces. In order to perform this, an individual Pareto surface was defined, then 

the component design vectors were removed from the tradespace, and a second ranking began. This 

process repeated iteratively over the course of 18 ranks. Architectures with one AUV present which 
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were powered renewably were the favored architectures, accounting for over half of all selected points. 

Based on the cumulative modeling efforts, it is herein presented that such an AUV could be able to 

complete the MH370 mission in between 243 and 247 days with a cost of approximately $17 million. 

This is faster than the existing methods (between 285 days and 730 days), and almost half the cost 

($32,812,500).  

In Chapter 5, discussion was also dedicated to an error which was identified in the underlying 

assumptions built into the models. This error was in the time estimated for AUVs to reach the seafloor. 

Importantly, not all architectures were impacted by this error to the same degree. Architectures with 

one or four AUVs were entirely unaffected, as their calculated times to ocean bottom were correct. 

As the number of AUVs increased in the system, the error propagated to a larger extent. 

Fundamentally, this error does not change the proposed recommended architecture which consists of 

one AUV. The discovery of this error also prompted deeper thought surrounding an architectural 

decision which was not part of the model at all. The search pattern that a set of AUVs utilizes to scan 

the seafloor may (or may not) have a significant impact on system performance. This and other 

operational decisions should be an area of focus for future work. 

Following the robust deterministic and probabilistic modelling efforts, it is appropriate to 

return to the initial questions raised about the purpose of these analytical methods. The motivation 

for this work is ultimately to examine the potential viability of paired AUVs and service vessels. Critical 

questions surrounding the possible performance envelopes of the entire AUV system were raised. The 

recommendations that are proposed within this thesis do not represent the final solutions in answering 

some of the questions about the performance of AUV systems. However, the methods and thought 

processes which are employed are defensible and present a reasonable framework for future research 

to stand atop 

 

6.2 Revisiting Key Assumptions and Future Work 

The purpose of this thesis was to examine the AUV and the AUV service platform system 

from a holistic perspective and begin to address some of the implicit and explicit assumptions that 

have governed the technology since its inception. To that end, some of the large architectural decisions 

have been laid out, modeled, and evaluated. However, as with any model there are areas in which it 

could be improved. Future work is herein separated into two different types of possible 
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improvements: improving the existing models, and expanding the investigation through the 

introduction of new models. 

 

6.2.1 Improving Existing Models 

A key assumption in this thesis is associated with a single mission profile. There is considerable 

variation that could be further quantified by examining the single mission profiles. Specifically, for this 

study, a single mission is assumed to cover an arbitrary 2.2 million m2 per mission. This assumes a 

square scanning pattern for each AUV. There are system-wide optimization parameters that could and 

should be further tuned. For instance, if more AUVs are added to the system, then perhaps different 

mission scanning patterns should be considered, as discussed in Chapter 5. Perhaps there are 

advantages to “ribbon” scanning (where AUVs scan in a straight line) as opposed to “lawn mower” 

(where a square area is covered by switching back frequently) which could result in different emergent 

outcomes of the system. As it stands, there are two emergent outcomes of this initial arbitrary setup. 

First, since the spacing of AUVs is relatively small, there is an expected overlap of scanning. This 

means that data will be more robust – readings of one AUV can be duplicated and verified by another 

AUV. Second, since the AUVs will be operating close to each other emerging technologies which will 

enable swarm behavior will not be constrained to the most demanding distance requirements between 

individual AUVs.  

Another assumption that is built into these models is that there is a single architecture that is 

common to the AUV. In Chapter 1 it is noted that, to date, many operating AUVs are highly 

specialized with their mission profiles in mind. For the purposes of this thesis, a common specialized 

architecture for all AUVs that were in the system allowed for the assessment of large-scale architectural 

decisions. As future mission profiles are explored however, this assumption that all AUVs share an 

architecture should be challenged. It could be possible that there are circumstances where a single 

architecture is not the optimal solution – in order to optimize multiple mission profiles a set of various 

AUVs should be maintained, or perhaps single architectures should have their own capacities 

increased to handle broader sets of missions. 
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6.2.2 Expanding the Investigation with New Models 

Based on the lack of operational focus in this initial exploration, a deep-dive into the 

operational reality of a system that has been identified from this analysis would be a logical next step 

(Figure 6-1). There are several methods which could be employed that would capture the behavior of 

this system, but an agent-based model – defined for the purposes of this discussion as a class of model 

wherein individual elements of the model behave autonomously and interact with other agents – 

would appear to be a logical next step. In the framework presented in this thesis, agents may be the 

AUVs and the service platforms, comprising a “system-of-systems”. An agent-based model differs 

from the deterministic and probabilistic models that are explored in this thesis because it is focused 

on the execution of a specific mission instead of the end state exclusively. For instance, in this case 

study an AUV may “choose” to depart a service station at a time before its battery is full in order to 

make room for the next AUV which is running out of energy. If other service platforms are under 

consideration, the an AUV could choose to dock at a different service platform than the one that they 

launched from. There is great promise in developing an agent-based model for this project, especially 

if other operational environments are under consideration.  

A model which focuses on operational elements of the system could answer a great number 

of questions. From an architectural perspective, there could be substantial refinement surrounding the 

requirements of visiting the system during regular operations. This includes activities ranging in scope 

and complexity from refilling fuel tanks to regular required maintenance of individual components. 

Digging deeper into the architectural influence that such a model could hold, a sufficiently advanced 

and detailed operational model could examine different missions (specifically those with different 

water depths and areas of investigation) and classify different architectures vis a vis their 

appropriateness for individual missions. This could shed light on questions about systems which are 

tailor made for certain mission profiles versus systems which are built to be more of a jack-of-all-

trades style of solution. Following an architectural exploration, an operational model could explore 

the viability of multiple systems operating in parallel to accomplish single missions. For missions that 

require rapid flight plan development based on collected data, systems of systems (i.e., multiple service 

platforms with 1-20 AUVs instead of a single service platform with 1-20 AUVs) could prove to 

provide a significant opportunity. Beyond the system, such an operational model could begin to 

examine how the system interacts with its environment. By considering forms and functions that were 

outside the scope of this thesis (e.g., method of relaying data from the service platform to the data 
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owners) new performance metrics could be introduced, and existing performance metrics could be 

refined. Finally, the previously mentioned “-ilities” that have gone largely unexplored could be probed 

with an operational model. Issues of mobility, reliability, and flexibility could be well constrained, 

classified, and quantified. 

 

Figure 6-1: Schematic possibility of what a “system-of-systems” of AUVs paired with remote servicing platforms could 

evolve to. Multiple methods of providing power, shared AUVs between multiple service platforms, and communication 

outside of the system are all operational considerations not addressed in this thesis. Modified from (M. Haji, 2020). 

 

There are multiple operational environments that should be explored in this operational model 

in an effort to approach the flexibility questions raised. The first use case that should be examined is 

the initial search and rescue of MH370. Ideally, this operational model would confirm some of the 

conclusions that have been witnessed in the modelling to date. Beyond that initial anchoring exercise, 

there are several other operational environments: surveying the foot of sea ice, monitoring and 

inspecting sub-sea infrastructure (e.g., oil and gas infrastructure, as well as fiber cable monitoring), and 

frequent, high-resolution mapping of high-traffic shipping channels. In order to accomplish any of 

these tasks, a more generalized form of the system will need to be refined. Performance metrics will 
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need to be either generalized as well, for each individual operating environment and mission will 

require unique performance metrics. 

Both during and following operational modelling, there are several technologies which lag 

behind in terms of readiness level. The most difficult of these to tackle are the technologies required 

to have AUVs communicate underwater. Additionally, improving charging methods to approach 

Level 3 AC charging rates is important. Pushing these technologies to TRLs which are ready to deploy 

is a critical hurdle for this project to come to fruition. Finally, once the TRLs have advanced, and 

iterative designs have been refined the next step to follow would be to begin the prototyping process. 

Even with some technologies which are low TRLs, prototypes could be developed and findings from 

the prototyping could be integrated into future architectural, operational, and engineering models. 

 

6.3 Concluding Thoughts 

The following statements were issued as challenges for this research. Assuming that any specific 

technological limitations can eventually be overcome – what then would the architectures look like 

when examining AUV swarms and completely autonomous AUV systems? Is there an architectural 

concept which has to date remained unexplored through which the system could drastically improve 

performance? Throughout this research, some answers have been presented. It is herein argued that 

the architectures that such systems could resemble would have some number of AUVs which paired 

with at least one service vehicle. This pairing would enable significant development in the nature of 

AUV autonomy and functionality. This concept to date has not been explored by any large-scale 

modelling. Assuming the technical challenges that face AUVs can be overcome, there are significant 

leaps that can be made in many performance metrics. Depending on the user, there may also be a 

great number of architectures from which to choose.   
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Appendix A – Monte Carlo Simulation Code  

from model import Architecture 

import tradespaceEvaluator 

import monteCarloEvaluator 

import constants 

import readexcel 

 

 

''' This File runs all major aspects of model''' 

''' This File is modified from monte carlo simulations methods written by T.C. Flemming 

Goolsby, MIT Systems Design and Management, 2019''' 

 

 

""" 1)    Test Model""" 

AD2 = 'AD2_Op2' 

AD3 = 'AD3_Op8' 

AD4 = 'AD4_Op1' 

PlantSize = 'AD4_Op1' 

AD6 = 'AD6_Op4' 

NumAUVs = 'AD6_Op4' 

Test_Arch = Architecture(AD2,AD3,AD4,PlantSize,AD6,NumAUVs) 

print(Test_Arch.DOT) 

print(Test_Arch.SAR) 

print(Test_Arch.SC) 

# 

#""" 2)    Tradespace""" 

#tradespace = tradespaceEvaluator.runTradeSpace() 

#df_X_Pareto_SAR,df_Y_Pareto_SAR=plotter.plotTradespace(tradespace, 

NamePrefix="AD2",GroupingFilter=constants.DOT_AD3.index) 

 

 

"""3)    MonteCarlo""" 
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concepts_df = readexcel.createdf('MC_Concepts') 

#plotter.plotTradespace(tradespace, NamePrefix="Concepts",GroupingFilter=concepts_df.Name) 

concepts = concepts_df.to_dict('records') 

monteCarloResults = monteCarloEvaluator.runMonteCarlo(concepts, numberOfSeeds=1000) 

#plotter.plotMonteCarlo(monteCarloResults,df_X_Pareto_SAR,df_Y_Pareto_SAR) 

# 

'''4)    Export to .csv for visualization purposes''' 

import pandas as pd 

 

df = pd.DataFrame() 

options = list(range(0,2)) 

#dropcolumns = [0,1,2,3,4,5,6] 

 

for option in options: 

    print(option) 

    MCR = monteCarloResults[option] 

    dftemp= pd.DataFrame(MCR) 

    dftemp2 = dftemp#.drop(dftemp.columns[dropcolumns], axis = 1) 

    dftemp2['Option'] = option + 1 

    df = df.append(dftemp2, ignore_index = True) 

     

df.to_csv('MonteCarloOutput.csv') 
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import numpy as np 

import pandas as pd 

from pandas import ExcelWriter 

from pandas import ExcelFile 

import readexcel 

            

#create AD option distribtuion inputs 

DOT_AD3 = readexcel.createdf('DOT_AD3') 

DOT_AD3 = DOT_AD3.set_index('Options') 

print("1") 

 

DOT_AD6 = readexcel.createdf('DOT_AD6') 

DOT_AD6 = DOT_AD6.set_index('Options') 

print("2") 

 

SAR_AD2 = readexcel.createdf('SAR_AD2') 

SAR_AD2 = SAR_AD2.set_index('Options') 

print("3") 

 

SAR_AD6 = readexcel.createdf('SAR_AD6') 

SAR_AD6 = SAR_AD6.set_index('Options') 

print("4") 

 

SC_AD2 = readexcel.createdf('SC_AD2') 

SC_AD2 = SC_AD2.set_index('Options') 

print("5") 

 

SC_AD3 = readexcel.createdf('SC_AD3') 

SC_AD3 = SC_AD3.set_index('Options') 

print("6") 

 

SC_AD4 = readexcel.createdf('SC_AD4') 
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SC_AD4 = SC_AD4.set_index('Options') 

print("7") 

 

SC_PlantSize = readexcel.createdf('SC_PlantSize') 

SC_PlantSize = SC_PlantSize.set_index('Options') 

print("8.5") 

 

SC_AD6 = readexcel.createdf('SC_AD6') 

SC_AD6 = SC_AD6.set_index('Options') 

print("8") 

 

SC_NumAUVs = readexcel.createdf('SC_NumAUVs') 

SC_NumAUVs = SC_NumAUVs.set_index('Options') 

print('8.75') 

 

class Constants: 

    def __init__(self, AD2, AD3, AD4, PlantSize, AD6, NumAUVs, seed=None): 

        self.DOT_AD3 = DOT_AD3.loc[AD3,'Norm_Mean'] 

        self.DOT_AD6 = DOT_AD6.loc[AD6,'Norm_Mean'] 

        #print("9") 

         

        self.SAR_AD2 = SAR_AD2.loc[AD2,'Norm_Mean'] 

        self.SAR_AD6 = SAR_AD6.loc[AD6,'Norm_Mean'] 

        #print("10") 

         

        self.SC_AD2 = SC_AD2.loc[AD2,'Norm_Mean'] 

        self.SC_AD3 = SC_AD3.loc[AD3,'Norm_Mean'] 

        self.SC_AD4 = SC_AD4.loc[AD4,'Norm_Mean'] 

        self.SC_PlantSize = SC_PlantSize.loc[PlantSize, 'Norm_Mean'] 

        self.SC_AD6 = SC_AD6.loc[AD6,'Norm_Mean'] 

        self.SC_NumAUVs = SC_NumAUVs.loc[NumAUVs, 'Norm_Mean'] 

        #print("11") 



189 
 

         

        if seed is not None: 

            np.random.seed(int(seed)) 

            self.DOT_AD3 = 

np.random.normal(DOT_AD3.loc[AD3,'Norm_Mean'],DOT_AD3.loc[AD3,'Norm_Mean']*DOT_

AD3.loc[AD3,'Norm_Std'],1)[0] 

            self.DOT_AD6 = 

np.random.normal(DOT_AD6.loc[AD6,'Norm_Mean'],abs(DOT_AD6.loc[AD6,'Norm_Mean']*D

OT_AD6.loc[AD6,'Norm_Std']),1)[0] 

            #print("12") 

             

            self.SAR_AD2 = 

np.random.normal(SAR_AD2.loc[AD2,'Norm_Mean'],SAR_AD2.loc[AD2,'Norm_Mean']*SAR_A

D2.loc[AD2,'Norm_Std'],1)[0] 

            self.SAR_AD6 = 

np.random.normal(SAR_AD6.loc[AD6,'Norm_Mean'],SAR_AD6.loc[AD6,'Norm_Mean']*SAR_A

D6.loc[AD6,'Norm_Std'],1)[0] 

           #print("13") 

             

            self.SC_AD2 = 

np.random.normal(SC_AD2.loc[AD2,'Norm_Mean'],SC_AD2.loc[AD2,'Norm_Mean']*SC_AD2.lo

c[AD2,'Norm_Std'],1)[0] 

            self.SC_AD3 = 

np.random.normal(SC_AD3.loc[AD3,'Norm_Mean'],SC_AD3.loc[AD3,'Norm_Mean']*SC_AD3.lo

c[AD3,'Norm_Std'],1)[0] 

            self.SC_AD4 = 

np.random.normal(SC_AD4.loc[AD4,'Norm_Mean'],SC_AD4.loc[AD4,'Norm_Mean']*SC_AD4.lo

c[AD4,'Norm_Std'],1)[0] 

            self.SC_PlantSize = 

np.random.normal(SC_PlantSize.loc[PlantSize,'Norm_Mean'],SC_PlantSize.loc[PlantSize,'Norm_Me

an']*SC_PlantSize.loc[PlantSize,'Norm_Std'],1)[0] 
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            self.SC_AD6 = 

np.random.normal(SC_AD6.loc[AD6,'Norm_Mean'],SC_AD6.loc[AD6,'Norm_Mean']*SC_AD6.lo

c[AD6,'Norm_Std'],1)[0] 

            self.SC_NumAUVs = np.random.normal(SC_NumAUVs.loc[NumAUVs, 'Norm_Mean'], 

SC_NumAUVs.loc[NumAUVs,'Norm_Mean']*SC_NumAUVs.loc[NumAUVs,'Norm_Std'],1)[0]             

            #print("14") 
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import constants 

import math 

 

 

class Architecture: 

    def __init__(self, AD2, AD3, AD4, PlantSize, AD6, NumAUVs, seed=None): 

        "Initialize Variables" 

        if seed is not None: 

            self.constantValues = constants.Constants(AD2, AD3, AD4, PlantSize, AD6, NumAUVs, 

seed) 

        else: 

            self.constantValues = constants.Constants(AD2, AD3, AD4, PlantSize, AD6, NumAUVs) 

         

        #deterministic tradespace calculations 

         

        self.name = "{}-{}-{}-{}".format(AD2, AD3, AD4, AD6) 

        self.DOT = 0 

        self.SAR = 0 

        self.SC = 0 

        

        self.DOT_AD3=self.constantValues.DOT_AD3 

        self.DOT_AD6=self.constantValues.DOT_AD6 

        

        self.SAR_AD2=self.constantValues.SAR_AD2 

        self.SAR_AD6=self.constantValues.SAR_AD6 

         

        self.SC_AD2=self.constantValues.SC_AD2 

        self.SC_AD3=self.constantValues.SC_AD3 

        self.SC_AD4=self.constantValues.SC_AD4 

        self.SC_PlantSize=self.constantValues.SC_PlantSize 

        self.SC_AD6=self.constantValues.SC_AD6 

        self.SC_NumAUVs=self.constantValues.SC_NumAUVs 
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        "Run Model" 

        # Daily Operating Time 

        self.DOT=(24-(13500/self.DOT_AD3))+self.DOT_AD6 

         

        #Search Area Rate 

        self.SAR = 11+(11-((250/self.SAR_AD2)*11))+self.SAR_AD6 

         

        #System Cost 

        if (self.SC_NumAUVs*13500) < (self.SC_PlantSize*24): 

            self.SC = (self.SC_AD2-14000)+(self.SC_AD3-

500)+(self.SC_AD6)+(self.SC_NumAUVs*2000000)+10000000+(self.SC_AD4*self.SC_PlantSize) 

        else: 

            self.SC = (self.SC_AD2-14000)+(self.SC_AD3-

500)+(self.SC_AD6)+(self.SC_NumAUVs*2000000)+10000000+((self.SC_AD4*self.SC_PlantSize)

*(math.ceil((self.SC_NumAUVs*13500)/(self.SC_PlantSize*24))))+(self.SC_NumAUVs*3500)  
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from model import Architecture 

import constants 

 

 

def runTradeSpace(): 

    architectures, DOT, SAR, SC= [], [], [], [] 

    for Op_AD2 in constants.SC_AD2.index: 

        for Op_AD3 in constants.SC_AD3.index: 

            for Op_AD4 in constants.SC_AD4.index: 

                for Op_AD6 in constants.SC_AD6.index: 

                    ArchitectureInstance = Architecture(Op_AD2,Op_AD3,Op_AD4,Op_AD6) 

                    architectures.append(ArchitectureInstance) 

                    SC.append(ArchitectureInstance.SC) 

                    DOT.append(ArchitectureInstance.DOT) 

                    SAR.append(ArchitectureInstance.SAR) 

 

    return {"Architectures": architectures, "SC": SC, "DOT": DOT, "SAR":SAR} 

 

from numpy import linspace 

from model import Architecture 

 

 

def runMonteCarlo(concepts, numberOfSeeds): 

    seeds = linspace(1, numberOfSeeds, num=numberOfSeeds) 

    for concept in range(len(concepts)): 

        architectures,name, DOT, SAR, SC = [], [], [], [], [] 

        for seed in seeds: 

            architectureinstance = Architecture(concepts[concept]['AD2'], 

concepts[concept]['AD3'],concepts[concept]['AD4'],concepts[concept]['PlantSize'], 

concepts[concept]['AD6'],concepts[concept]['NumAUVs'],seed) 

            architectures.append(architectureinstance) 

            name.append(architectureinstance.name) 
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            DOT.append(architectureinstance.DOT) 

            SAR.append(architectureinstance.SAR) 

            SC.append(architectureinstance.SC) 

        concepts[concept].update({"Name": name, 

                                  "DOT": DOT, 

                                  "SAR": SAR, 

                                  "SC": SC}) 

    return concepts 
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Read Excel 

import pandas as pd 

 

file = r"C:\...\Probabilistic" 

 

def createdf(sheetname): 

    df = pd.read_excel('PythonInput.xlsx', sheet_name=sheetname) 

    return df 
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Appendix B – Pareto Ranking Code  

''' 
 

MIT License 
 

Copyright (c) 2020 Prakash Manandhar 
 

Permission is hereby granted, free of charge, to any person obtaining a copy 
 

of this software and associated documentation files (the "Software"), to deal 
 

in the Software without restriction, including without limitation the rights 
 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
 

copies of the Software, and to permit persons to whom the Software is 
 

furnished to do so, subject to the following conditions: 
 

The above copyright notice and this permission notice shall be included in all 
 

copies or substantial portions of the Software. 
 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY 

KIND, EXPRESS OR 
 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, 
 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO 

EVENT SHALL THE 
 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 

DAMAGES OR OTHER 
 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 

OTHERWISE, ARISING FROM, 
 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

OTHER DEALINGS IN THE 
 

SOFTWARE. 
 

''' 
 

 
  

import pandas 
 

 
  

class ParetoRank: 
 

    """ 
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        Performs Pareto based ranking of given tradespace points. 

 
        Args: 

 
            input_file  (str):  

 
                path to file that contains the input data. A CSV  

 
                (comma separated value) file is expected. 

 
            output_file (str): path to file to output data to (existing 

 
                 data will be overwritten). The output file is a CSV file with 

 
                 columnns: "id" and "rank" 

 
             

 
            id_col (str): name of column containing the unqiue identifier. An  

 
                integer valued identifier is expected. Please note that column 

 
                names sometimes need to contain spaces if the names are separated 

 
                by spaces after comma in the CSV file. 

 
            utility_cols (str array): array of column names for the utility  

 
                vector.Please note that column names sometimes need to contain  

 
                spaces if the names are separated by spaces after comma in the  

 
                CSV file. 

 
            utility_minmax (bool array): array of True or False values in the same 

 
                order as utility_cols that indicates whether this utility is to 

 
                be minimized or maximmized. 

 
    """ 

 
    def __init__(self,  

 
        input_file, output_file, \ 

 
        id_col, utility_cols, utility_min): 

 
         

 
        self.input_file = input_file 

 
        self.output_file = output_file 

 
 

  
        self.id_col = id_col 

 
        self.utility_cols = utility_cols 

 
        self.utility_min = utility_min 
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        self.dominates_map = dict() 

 
 

  
    """ 

 
        returns whether the given id is dominated by the send id 

 
        vector J1 dominates J2 iff  

 
            J1i <= J2i forall i, and  

 
            J1i < J2i for at least 1 i 

 
    """ 

 
    def dominates(self, id1, id2): 

 
        row1 = self.data[self.data[self.id_col] == id1] 

 
        row2 = self.data[self.data[self.id_col] == id2] 

 
        key = f'{id1}-{id2}' 

 
        if key in self.dominates_map: 

 
             dom = self.dominates_map[key] 

 
        else: 

 
            condition1 = True 

 
            condition2 = False 

 
            for col_i in range(len(self.utility_cols)): 

 
                col_name = self.utility_cols[col_i] 

 
                J1i = row1[col_name].values[0] 

 
                J2i = row2[col_name].values[0] 

 
                 

 
                if J1i > J2i: 

 
                    condition1 = False 

 
                    break 

 
                 

 
                if J1i < J2i: 

 
                    condition2 = True 

 
         

 
            dom = condition1 and condition2 

 
            self.dominates_map[key] = dom 

 
        return dom 
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    """ 

 
        checks if a given row index is dominated any other datapoint 

 
    """ 

 
    def is_dominated(self, i): 

 
        dom = False 

 
        rowi = self.data[self.data[self.id_col] == i] 

 
        idi = rowi[self.id_col].values[0] 

 
        print(f'is_dominated ({i}) with {len(self.data)} rows') 

 
        for j in self.data[self.id_col].values: 

 
            if i == j: 

 
                continue 

 
            rowj = self.data[self.data[self.id_col] == j] 

 
            idj = rowj[self.id_col].values[0] 

 
            if self.dominates(idj, idi): 

 
                dom = True 

 
                break 

 
        return dom 

 
 

  
    def perform_ranking(self): 

 
        # load data 

 
        self.data = pandas.read_csv( 

 
            self.input_file, usecols=[self.id_col] + self.utility_cols) 

 
 

  
        # if a given column is not to be minimized, invert the data 

 
        for col_i in range(len(self.utility_cols)): 

 
            if not self.utility_min[col_i]: 

 
                self.data[self.utility_cols[col_i]] = -self.data[self.utility_cols[col_i]] 

 
         

 
        self.data = self.data.sort_values(self.utility_cols, ascending=False) 

 
        self.data_orig = self.data.copy() 
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        ofp = open(self.output_file, 'w') 

 
        ofp.write(f'{self.id_col},rank\n') 

 
         

 
        curr_rank = 1 

 
        pareto_front = [] 

 
        while (len(self.data > 0)): 

 
            print(f'Running pass {curr_rank}...') 

 
            print(pareto_front) 

 
            self.data = self.data_orig.copy() 

 
            self.data = self.data[~self.data[self.id_col].isin(pareto_front)] 

 
            for i in self.data[self.id_col].values: 

 
                #print(f'Checking {self.id_col} == {i}...') 

 
                if not (self.is_dominated(i)): 

 
                    rowi = self.data[self.data[self.id_col] == i] 

 
                    idi = rowi[self.id_col].values[0] 

 
                    ofp.write(f'{idi}, {curr_rank}\n') 

 
                    pareto_front.append(i) 

 
                else: 

 
                    self.data = self.data.drop(self.data[self.data[self.id_col]==i].index) 

 
            curr_rank += 1 

 
            print('\n') 

 
 

  
        ofp.close() 

 


