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Abstract 
 
Satellite communications systems are undergoing a modernization to efficient capacity allocation from a 

traditional “bent pipe” or static allocation.  One challenge to address with a more precise usage of satellite 

resources is the change in user terminal traffic during a complete cycle of the system: collecting data, 

generating a constellation setting solution, transmitting the new solution to each satellite and executing 

changes to the satellite’s parameters.  As the system’s cycle time grows the user’s desired data rate 

changes causing an optimized solution based on an erroneous traffic model.  This thesis proposes a 

comparison of single user models using a gradient boosting algorithm, and a multi-user model using Long-

Short Term Memory neural networks (LSTM) or Gated Recurrent Unit neural networks (GRU) to forecast 

terminal traffic.  Each algorithm was tuned using a two-stage design of experiments process consisting of 

a fractional screening design to identify impactful hyper-parameters and a central composite design to 

find optimal model settings.  During a holdout period, the mean absolute percentage error using a 15-

minute lag was 10.7% with a standard deviation of 2.6% over a month of forecasting.  Networks using a 

GRU layer and tuned with Random Search had the best average performance with an error of 9.6% and 

standard deviation of 2.6%, outperforming the best found XG Boost models with an error of 9.9% and 

standard deviation of 3.5%.   
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1. Introduction 

This thesis demonstrates the performance of two machine learning algorithms, as well as 

using Design of Experiments and Random Search for parameter tuning to produce short term 

traffic forecasting for flexible, autonomous communications satellites.   

 

1.1. Static Allocation for Satellites 

The world is growing increasingly more connected and the need for internet is rapidly 

spreading across the globe.  According to Statista, today there are 3.5 billion smartphone users or 

roughly 45% of the total population, and the number of users has grown by 40% since 2016 [1].  

Facebook alone reports 2.5 billion monthly users in Q4 2019 [2].  In the U.S., the % of adults who 

do not use the internet declined from 48% in 2000 to just 10% in 2019 [3].  Data usage is also 

increasing per person in the U.S.  For example, a report from iGR determined that over 95% of the 

190 GB per month in U.S. home traffic is video [4].  Streaming video is available in higher and 

higher resolutions which require more and more data; an estimate of Youtube data usage ranges 

from 90 Mb per hour for 144p to 2.7 GB per hour for 720p and up to 23 GB per hour for 4k 

resolution [5]. 

The demand for internet traffic, defined by million exabytes per month, is projected to 

grow exponentially from 33.45 to 98.64 in 2023 [4].  These forecasts do not include the impacts 

of COVID-19 where the CEO of MainStreaming said “Telecom Italia has seen a 90% increase in 

traffic alone since the lockdown was put into place, driven by people trying to work from home” 

[5].  

While traditionally the majority of demand was satisfied through cable, DSL and now fiber, 

in 2009 10% of home internet users connect through a satellite [6].  Due to the increasing demand 

for data hungry applications (video streaming for TV & conferences and file sharing) the stage is 

set to deliver service to people who are unable to utilize terrestrial based internet providers.In the 

U.S. roughly 20% of the population live in “rural” counties [4] and are less likely to have access 

to the broadband infrastructure that exists in urban communities.  fast and affordable satellite 

broadband internet is ideal to service these types of customers.  In addition to populations without 

traditional internet access, SES also provides satellite broadband connections to VIP and 

Commercial aircraft, cruise ships and yachts and multiple government entities that are uniquely 
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denied access to a standard connection [5].  Morgan Stanley sized the 2020 global market for 

satellite consumer broadband at $7.3 billion.  However with more people demanding a broadband 

connection in locations that are traditionally unserved, Morgan Stanley estimates that by 2040 the 

market will grow to $94.8 billion [6].   

The satellite communications industry is responding to demand by first launching more 

satellites into orbit [12] and improving existing technology.  Guerster’s analysis touches on the 

technological improvements in the satcpm industry “such as digital communication payloads, 

advanced modulation, multi-beam antennas, and advanced manufacturing are used by the new 

generation of communication satellites” that improve overall performance and reduce access costs.  

Guerster suggests that bent-pipe satellites, with a fixed spatial distribution of capacity and static 

resource allocation, will not accurately meet a changing demand and the market will shift to newer 

satellites using “flexible communication payloads in the form of digital processors, multi-beam 

antennas, and flexible amplifiers capable of adapting to changing demand” [7].   

1.2. Dynamic Resource Allocation in Other Industries 

Other industries moved away from the bent-pipe style of static allocation; in companies 

like AirBnB, Uber or Tesla, users receive and pay for their exact usage.  Longer term rentals of 

vehicles or homes leaves an asset unused for a large duration of time while the user is still 

financially responsible for any unused capacity.  AirBnB allows a homeowner to lease out their 

home if they leave on a long vacation or have an empty unit in their home.  With personally owned 

vehicles there is also a large amount of unused capacity.  The owner of the car will use it to 

commute to work, go to the store or visit a restaurant but while not in use, the car sits idle in a 

parking lot.  Uber allows car owners to offer taxi style rides, whenever they want.  This reduces 

the usage downtime for car owners and reduces the need to own a car for people who only want to 

be a rider.  Recently, Tesla announced a plan to allow owners to add their vehicles to a ride-sharing 

app of robotaxis [8].   As a robotaxi, the car enters autopilot mode and rents itself out in an Uber 

like fashion but without a driver.  Instead of sitting idle, the car would be in use and generating 

revenue.  In all three examples user’s demand for these assets are cyclic with periods of high usage 

and periods of idle demand. 

 

1.3. Flexible Satellite System 
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One approach to building communications capacity uses massive, high throughput GEO 

satellites like Echostar [15] and Viatsat [16].  OneWeb [17] and SpaceX [18] are two of the 

companies focused on low latency LEO constellations.  SES is moving towards more dynamic 

allocation and resource optimization in order to service an increasing demand [10].  The static 

allocation of satellite beams and power is the equivalent of a long-term rental where a user sends 

and receives data at up to a specified rate at any time.  For most users, who have unique peak usage 

times and lulls, this is an extremely inefficient use of resources.  

 

1.3.1. O3B mPower 

SES launched a new generation of communications satellites to address this shortfall and 

improve the efficiency to meet customer’s demand [9].  SES’s O3b mPower satellites have the 

capability to provide “flexible high-bandwidth, low-latency connectivity” to markets without 

traditional internet access.  The MEO constellation will feature 7 satellites with electronically 

controllable phased array antennae.  A phased array “is two or more antennas used together to 

provide some desired characteristic or feature not available with a single anenna” [20].Each 

satellite can rapidly change its configuration electronically to maximize the number of customers 

served their full demand by using the minimum required resources..  The frequency of each beam 

in the phased array will shift along the spectrum to minimized interference and provide higher data 

rates to high demand customers.  The shape of each beam will change to group customers together 

efficiently in a single beam.  If a beam is not required it can be turned off until the user demand is 

enough for it to be operational.  When the user demand increases beyond what a single beam can 

provide through power or frequency changes, then another beam can move to that location and 

service the high demand customer.  All of these changes can happen in almost real time.   

 

1.3.2. Dynamic Resource Manager 

Currently changes to power and frequency are manually generated and updated 

infrequently with changes to beam shape and placement occurring even less often.  While the 

hardware for a dynamic system is in orbit, the software and supporting system lags behind.  The 

work of Guerster and Luis [7] proposes the creation of a dynamic resource management (DRM) 

system which can implement the flexibility of the O3b mPower satellites.  A proposed system 

architecture for the DRM is shown in Figure 1-1.  Each satellite in the constellation reports its data 
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rate usage for each terminal to a Centralized Controller.  This controller consolidates the usage 

rates across the constellation and sends the data to a Demand Estimator (DE).  The DE produces 

forecasted traffic for each terminal and sends the forecasted traffic model to the Real Time Engine 

(RTE).  The RTE generates an optimal resource allocation that attempts to minimize unmet 

terminal demand and total power consumption [10].  Further work is currently underway to include 

beam frequency, beam shaping and beam placement.  The optimal power, frequency, shape and 

beam placements are then sent back to the Central Controller and communicated to each satellite, 

which then changes configuration.   

 
Figure 1 Dynamic Resource Management Architecture 

 
1.3.3. System Cycle Rate 

The cycle period of the DRM or solution delay is a critical system parameter that 

determines how often satellites must reconfigure, the number of minutes ahead the DE must 

forecast and the frequency of produced solutions from the RTE.  The main contributors that 

increase the solution delay are the communication and compilation time of the Central Controller, 

prediction time of the DE models, the computation time required by the RTE to generate a new 

solution, the frequency of control messages sent to the satellites and the required time to 

reconfigure the constellation.  Work by Garau-Luis [10] on a single GEO satellite, using only 

changes to power and frequency, show a significant reduction in power usage and zero unmet 

demand by a genetic algorithm generated solution within 100 seconds.  Additional satellites and 

inclusion of beam size and placement will increase the computing time.   
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A faster cycle rate leads to a system that reacts to changes in traffic quicker, but also leaves 

less time for solution computation and consumes additional ground resources as more control 

messages are sent and time is spent reconfiguring.  A longer cycle rate allows for a greater 

difference between current and future traffic.  This means that the RTE computes a solution on an 

outdated traffic model which can lead to an overallocation of resources or unmet demand for the 

terminal.  This thesis assumes a cycle rate of 15 minutes or 4 updates per hour.  Additional cycle 

rates should be studied when the timing of the system is known. 

 

1.3.4. Demand Estimator 

Given a 15-minute solution delay a demand estimator needs to generate 15-minute ahead 

predictions that feed into the RTE.  This work assumes that historical traffic for each terminal be 

compiled and available to generate up to date forecasts.  It does not address RTE accuracy, timing 

or solution implementation.  The DE trains a traffic forecast model using best found parameters 

on historical data for a terminal or set of terminals every 24 hours.  After training completes, the 

model generates 15-minute ahead predictions using the most recent terminal usage available.  

Traffic forecasts generated are sent to the RTE which generates a global solution to efficiently 

meet the forecasted traffic.  Each model actively predicts terminal traffic for a 24-hour period until 

a new model is trained and implemented.   

 

1.4. General Objectives 

This thesis has two main objectives: 1) to explore the impact of traffic patterns on DRM 

performance and 2) to demonstrate the potential DRM performance improvement by forecasting 

the traffic patterns.  Without incorporating the DE into the system, any change in a user’s data rate 

over the 15-minute solution delay becomes either an overallocation of resources or unmet demand.  

Inclusion of a DE with better accuracy than a lagged data rate will improve the allocation 

performance of the DRM.   
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2. Literature Review 

2.1. Traffic Forecasting 

Demand & traffic estimation and the forecasting of time series data is not a new field of 

research.  According to Grooijer and Hyndman [11], in the journals published by the International 

Institute of Forecasters from 1985 through 2005, nearly one-third of all papers were time-series 

forecasting.  They chart the progress of time series forecasting by analyzing some historical 

approaches from simpler exponential smoothing, to ARIMA models with seasonality and multi-

variate inputs and finally more complex algorithms like neural networks or bagging and boosting.  

Their conclusion in 2006 was that “with the availability of very large datasets and high powered 

computers, we expect [neural networks and boosting methods] to be an important area of research 

in the coming years”.  Another study conducted by Makridakis compared the accuracy of simple 

Machine Learning algorithms like a multi-layer Perceptron, CART, and Support Vector 

Regression to traditional statistical approaches like Auto-Regressive Integrated Moving Average 

(ARIMA) and Theta Models [23].  Their review of performance on over 1,000 monthly time series 

datasets showed that the statistical methods performed as well or better than the simple Machine 

Learning algorithms.  However, this study did not include more complex algorithms, their tuning 

approaches or forecasting on higher resolution datasets (minutes).  In fact, the author 

acknowledges that datasets of much longer length can lead to the Machine Learning algorithms to 

train more optimally.  They also recommend deseasonalization of the data prior to application of 

any complex algorithm. 

 

2.1.1. Long Term Forecasting 

Past demand forecasting in satellite communication focused on efforts to predict far future 

demand, in the magnitude of years, to drive accurate creation of capacity.  An effort by de Weck 

Et al.. [12] uses a Geometric Brownian Motion (GBM) model to estimate demand over a 15-year 

system lifetime.  GBM is “is commonly used in the financial domain to model the price of a stock” 

but can be applied to broader time series modeling.  The author uses a 20% drift constant and a 

70% volatility constant to estimate demand every two years.  A Monte Carlo simulation generates 

a range of demand scenarios, a series of estimates over a 15 year timespan, for which the author 
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proposes flexible satellite architectures to more efficiently provide service for the demand in that 

scenario.  This approach predicts the macro-style demand and attempts to address the total capacity 

issue.  In the short-term capacity issues are typically handled through Time Division Multiple 

Access (TDMA) which statically allocates time slots on a beam to a terminal.  This allows multiple 

users to share a single beam and improves efficiency.  Additional work like the solution proposed 

by Yi Qian Et al. [13] shows that the system can dynamically provide fewer or additional time 

slots to optimize performance.  This approach does not address a moving demand pattern..  Sharing 

beam access creates additional efficiencies, however computing an optimal, global solution for a 

full constellation requires computational time beyond the sub second cadence of this approach..   

 

2.1.2. Other Industry Short Term Forecasting 

Other industries recognize the need to use short term forecasting to maximize their capital 

utilization.  Uber uses short term demand forecasts to optimize their driver allocation, set surge 

pricing and anticipate anomalies in usage.  Laptev Et al.. [14] propose using a high dimensional 

Long Short Term Memory (LSTM) neural network to predict the number of completed trips in the 

subsequent few days.  They show that the inclusion of relevant exogenous variables into this 

network reduces the forecast’s average MAPE to 27% from 32% by the current proprietary 

method, which uses a univariate time-series estimate.  In the utilities market, hourly demand 

forecasts are used to determine energy production levels and to ensure that the system has the 

capacity to store any unused energy.  Hobbs Et al.. [15] showed that forecasts generated using 

Artificial Neural Networks (ANN) provided a 1.9% improvement over previous methods.  They 

also concluded that this improvement equates to an $800,000 per year savings for each of the 19 

utilities included in their studies.  This type of demand forecasting and its application to efficient 

allocation is an ongoing field of research. 

 

2.2. Theoretical background on two Machine Learning Algorithms 

As predicted by Grooijer and Hyndman datasets and computational power increased 

drastically and popular algorithms like neural networks and boosting dominate the field.  This 

thesis compares using XG Boosted Trees for single terminal demand forecasting to using 

Recurrent Neural Networks (RNN) for multi-terminal demand forecasting.  Both algorithms have 

documented success in time series predictions.   
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2.2.1. XG Boosting for Time Series 

In 2009, Ye and Keogh [16] introduced the idea of using time series shapelets, subsets of 

the entire time series, for classification.  They showed that their approach “can be more 

interpretable, more accurate and significantly faster than state-of-the-art classifiers”.  The primary 

example is classification of leaves which have slight deviations to their patterns and random holes 

or missing sections.  Attempting to match the data of entire leaf to a class is hindered by the 

randomness in a single leaf.  However, using shapelets reduces the impact of the noise within the 

leaf by matching against sections that were a purer representation of the class.  Furthering the 

application, Ji Et al. [17] use a shapelet based time series XG Boost algorithm to measure 

classification accuracy of 12 different data sets from the UEA & UCR Time Series Classification 

Repository.  They used shapelets in their feature engineering process and then built XG Boost 

models using a feature set that tried to avoid noisy data.  Their results show that the XG Boost 

model had the highest average classification accuracy over traditional shapelet approaches.   

Pavlyshenko [18] uses XG Boost models to accurately predict next day drug store sales 

using daily sales data from many stores, as well as exogenous variables like promotions, pricing 

and competitor’s behavior.  He proposes stacking XG Boosted models by using their output as an 

input to a second layer of a single tree model, a linear model and a simple ANN to generate a 

weighted ensemble forecast.  This stacked XG Boost approach yielded a 1% net improvement in 

error over the next best algorithm.  Karakatsanis [19] compares the use of gradient boosting to 

seasonal ARIMA models and a Random Forest model, a bagging tree ensemble algorithm, in 

forecasting Short-term electricity load values.  Their application of gradient boosting yielded a 

model with Mean Average Percentage Error (MAPE) of forecasts of 1.32%, compared to 2.62% 

for a seasonal ARIMA and 1.97% for a Random Forest.  Their analysis included the use of an 

exogenous variable, air temperature, which was shown to be strongly correlated with electricity 

loads.  They conclude that the ARIMA models were less able to take advantage of the exogenous 

variables than the two machine learning methods and suggest the inclusion of additional variable 

to further improve forecasts.  Taieb and Hyndman [20] also use gradient boosting for energy load 

forecasting placing 5th of 105 teams in a 2012 Kaggle competition.  Their work required the 

predictions of loads in 20 different zones each with its own historical demand and temperature 

data.  They generated separate boosted models for each zone and combined the resulting forecasts 
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instead of attempting to generate a single forecast for all the zones combined.  Additionally, they 

created a separate model for each hour of the day to reduce the impact of highly seasonal energy 

usage.   

 

2.2.2. Recurrent Neural Networks for Time Series 

RNN usage for time series forecasting is very popular, making it nearly impossible to 

search the internet without running into a novel application of LSTM’s.  In addition to the 

previously mentioned efforts by Uber,  Karim Et al.. [21] demonstrate the use of fully 

convolutional neural networks (FCN) in conjunction with LSTMs that outperform other network 

models on 85 different time series data sets.  They use standard approaches for both the LSTM 

and FCN networks, concatenate each model’s output, and pass that output to a single network layer 

with a softmax activation..  Qin Et al.. [22] use LSTM networks in a dual stage attention model to 

predict NASDAQ stock prices.  They found their model to have improved accuracy over ARIMA 

and simpler RNN structures and conclude that their model “can adaptively select the most relevant 

[exogenous variables] but can also capture the long-term temporal dependencies of a time series”.  

Che Et al.. [23] use Gated Recurrent Units (GRU) with trainable decay rates to classify medical 

time series data with missing values.  They conclude that their new GRU-D can learn both from 

the patterns in the present data and from the patterns of where data is missing.  Including a 

learnable decay vector causes their GRU-D to outperform standard GRU architectures on their 

datasets.   

 

2.3. Parameter Tuning 

Machine learning algorithms require parameter tuning to improve their accuracy and 

generalization for forecasting.  While an algorithm can learn the best settings, weights or tree 

decisions, a user must decide on numerous other parameters that determine how the algorithm 

operates.  Simple algorithms like ARIMA or nearest neighbors have a few parameters to tune, but 

more complex algorithms can have hundreds of different parameters that impact the algorithm’s 

performance.  The algorithms selected for this thesis include three types of parameters to tune: 

data/feature parameters, network architecture parameters and algorithmic parameters.  An example  

parameters for XG Boost includes how many days of training data to allow, the maximum depth 

of an individual tree, and the initial estimate of the model prior to building any trees.  RNN 
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examples include: the number of previous timesteps to include in each training example, whether 

to use an LSTM or GRU layer, and the percentage of dropout entering a dense layer.  The best 

way to optimize these parameters is an ongoing field of research.  The biggest challenge is that the 

large number of available parameters to test and the larger number of options or ranges for each 

parameter creates a search problem in a high dimensional space.  Two of the easiest tuning 

approaches to implement are Grid Search and Random Search, while two more complex 

approaches are Evolutionary and Design of Experiments. 

 

2.3.1.  Grid Search 

The traditional approach to parameter search is a grid search.  Grid search creates and 

measures a model for every combination of parameter value and selects the combination that yields 

the best value.  If F parameters are selected with L number of values to attempt in each parameter, 

then LF models are built using this approach.  It is easy to implement, and the analysis is simple 

however the scaling quickly becomes computationally infeasible as L and F increase. 

 

2.3.2. Random Search 

Random Search is similar to grid search in that a number of parameters are selected to test 

and their domain of values is chosen.  However, instead of a static combination of all parameters 

and potential values, Random Search randomly selects a value within the domain of every 

parameter for each trial.  The work of Bergstra and Bengio [24] compares the results of tuning 

neural networks with grid search and random search.  They conclude that random search finds 

solutions as good or better than grid search in a small fraction of computation time.  Their logic is 

demonstrated in their example shown in Figure 2.  Two parameters are measured at 3 levels.  In 

grid search, only the three unique levels are tested, while in a random search 9 unique values of 

each parameter are evaluated.  Given a situation where only one parameter is impactful to the Loss 

function and no interaction effect is present, this means that the random search is more likely to 

find a better solution because it tests more unique values of the important parameter.  While this 

is an improvement over grid search, it can require many trials and does not yield statistical insights 

into the effects of each parameter.   
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Figure 2 Bergstra and Bengio Example of Grid vs Random 

2.3.3. Evolutionary 

Evolutionary algorithms utilize a parameter set and domain of values like Random Search.  

Each trial is measured by its performance and its probability of contributing to the population of 

the next round increases as its performance increases.  These approaches use randomness to change 

parameter values through mutation, changing a value of a parameter on a selected trial, or cross-

mutation, swapping parameter values of two selected trials.  The algorithm iteratively selects high 

performing trials and mutates them to find better and better performance.  Bergstra Et al.. [25] 

improve on their random search approach by applying a gradient-free evolutionary algorithm to 

optimize continuous parameters.  Their results yield superior performance on high dimensional 

(32 parameters) Random Search tuning for two different network examples with only 457 and 361 

trials.   

 

2.3.4. Design Of Experiments 

Lujan-Moreno [26] proposes using a two staged design of experiments approach to 

parameter tuning, which first used a screening test to determine relevant parameters to tune a 

Random Forest model and then used a Response Surface Methodology (RSM) to finalize its 

tuning.  This effort built a classification model to determine whether a person earned over $50,000 

per year based on attributes like age, race and sex.  The screening test found 5 of 7 factors to have 

statistically impactful main effects using only 24 combinations.  3 of those factors were selected 
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for an RSM design using 15 combinations to test for interactions and non-linear effects.  A single 

two-way interaction was found to be significant as well as one quadratic effect.  On the neural 

network algorithm, Sukthomya [27] applied a single staged test to tune parameters of an ANN 

used to model a manufacturing process at an aircraft engine plant.  The main effects of the 7 chosen 

parameters were measured and optimized to improve average error.  However, this effort did not 

include RNN or architectural parameters beyond the number of dense layers and the number of 

neurons in each layer. 
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3. Data 

3.1. Basic description 

SES Satellites provided the dataset for this analysis.  The data consists of forward and 

return data rates in Mbps for 7 terminals at 1-minute resolution.  Over a 4-month span from June 

through September this represents 123 days of traffic data.  No additional information is provided 

to the models to include user information, location or weather.  The objective is to generate 

accurate 15 minute ahead forecasts of each terminal’s forward data rate using its historical rate and 

its historical return rates as an exogenous variable. 

 

3.2. Descriptive statistics 

Basic statistics are shown in Table 1.  The terminals range in demand from an average of 

74.1 Mbps to 293.2 Mbps.  The standard deviations and variance do not appear problematic 

however every terminal has a minimum value of 0.  Present within this dataset are occurrences 

where traffic can drop to zero or near zero very quickly.  Roughly 1% of entries for each terminal 

are less than 1 Mbps.  An example of this is shown in Figure 3.  The forward and return rates for 

Terminal 1 drop to zero from their normal rates.  In this instance the terminal usage remained at 

zero for 6 minutes during the first drop and 39 minutes during the second.  These drops could be 

caused by satellite outages either technical or due to weather, terminal outages or errors in/missing 

data.  In order to remove these drops, every instance where the rate dropped by more than 50% in 

a single minute was replaced by the previous value.  This causes traffic to remain artificially flat 

during instead of zero when data is missing but is reasonable because the DRM would continue to 

allocate resources to the terminal at the same level as the most recent information.  Figure 3 also 

demonstrates the strong positive correlation between a terminal’s forward and return data rates.  

This was present in each terminal. 
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Table 1 Descriptive Statistics of Terminals (Mbps) 

 

 
Figure 3 Terminal 1 Traffic Rates 

 

3.3. Seasonality 

The demand for satellite communication rate appears to have a strong daily seasonality.  A 

potential seasonality shown by the pattern of Terminal 1 in Figure 4.  Each terminal displays the 

same general tendency to have a repeating low demand time period however, the timing and shape 

of this low period changes from terminal to terminal and from day to day.  Each algorithm had a 

Seasonality parameter available during tuning.  This parameter creates an additive seasonal model 

T1 FWD T2 FWD T3 FWD T4 FWD T5 FWD T6 FWD T7 FWD
Mean 255 226 74 100 293 114 72
Standard Deviation 84 88 26 35 110 41 27
Sample Variance 7032 7778 692 1226 12086 1683 721
Minimum 0 0 0 0 0 0 0
Maximum 457 483 122 199 577 207 138

T1 RTN T2 RTN T3 RTN T4 RTN T5 RTN T6 RTN T7 RTN
Mean 116 112 32 35 120 58 33
Standard Deviation 38 44 12 14 46 21 14
Sample Variance 1405 1929 141 187 2072 419 191
Minimum 0 0 0 0 0 0 0
Maximum 213 307 61 122 329 93 66
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rw

ar
d

Re
tu

rn



25 
 

using statsmodels package in python from the training data. Then, it subtracts the seasonal 

component from the dataset.  The parameter options were: “None” – no seasonal model built, 

“Daily” – a seasonal model with period 1440 was built and subtracted, or “Weekly” – a seasonal 

model with period 10080 was built and subtracted. 

 
 

 
Figure 4 Terminal 1 Traffic Rates Full Week 

3.4. Short-Term Variation 

By visual inspection of Figure 3 or Figure 4, the short-term variation of traffic is noticeable.  

Figure 5 shows the Mean Absolute Percentage Error (MAPE) for each terminal when compared 

to its demand X minutes prior.  The least noisy terminal’s change grows from 5.6% at a 1-minute 

lag to 8.6% at a 15-minute lag.   
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Figure 5 MAPE by Solution Delay 

 
 

3.5. Autocorrelations 

The Box/Jenkins [29] autocorrelation function (ACF) is the correlation between the traffic 

and lagged traffic.  The plotted ACF for Terminal 1 is shown in Figure 6 over a full day.  The data 

has a significant positive, declining correlation through the first 300 minutes before a slight 

negative correlation at near the half day mark.  The correlation returns as the lags get closer to a 

full day.  Each of the 7 terminals had the same pattern of ACF.   
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Figure 6 Terminal 1 Auto Correlation Plot 

3.6. Partial Autocorrelations 

A Partial AutoCorrelation Function (PACF) is the correlation of a future value and the 

residual values of the demand sequence and the expected correlation of all previous lags.  

Essentially, it gives insight into whether the next lagged value provides any new 

correlation/information into the most current value.  The plotted PACF for terminal 1 is shown in 

Figure 7.  The PACF shows positive correlations to residuals for up to 10 minutes.  This is similar 

across all 7 terminals. 
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Figure 7 Terminal 1 Partial Autocorrelation Plot 

3.7. Training/Validation/Holdout Split 

6% of the total data is used as the validation set for all algorithms is a 7-day period from 

Aug 21st – Aug 27th (the 81st through 87th day).  The training set is a variable during up to 75 

full days prior to the 24-hour validation period for that model.  The training set of subsequent 

models will contain the previous model’s validation set when the model is retrained.  This offers 

a 7-day cross-fold validation for each terminal to improve the generalization of the algorithms.  

The final 25% of the dataset or 31 days is used as a holdout period to test the generalization of the 

algorithms.  This period is never used during testing or tuning. 

3.8. Specific Objectives 

Current satcom literature focuses on long-term demand forecasting or short-term 

forecasting of rain attenuation [28].  The author found no examples of short-term communications 

satellite traffic to aid in dynamic resource allocation.  To the best knowledge of the author, there 

is also no literature showing a comparison of parameter tuning using design of experiments to 

other tuning methods for either RNN or XG Boosting.  This thesis seeks to show that 1) RNN and 

XG Boost algorithms provide an improvement in short-term traffic forecasting and 2) parameter 
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tuning using experimental design optimizes model performance over tuning done by random 

search. 
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4. Testing Methodology 

4.1. Overview 

This thesis proposes a two-stage design of experiments approach to tuning models using 

two algorithms: XG Boost and RNN.  Before tuning, each algorithm produces a model at its default 

or the author’s “best guess” settings.  The first stage of parameter tuning used a screening test for 

each algorithm to find important parameters with a statistically significant effect on MAPE.  The 

second stage used a Response Surface Method (RSM) test to find optimal settings for important 

parameters found in the first stage.  After conducting each stage, the best parameters found were 

used to generate models and track the contribution of each stage. A random search of parameters 

was also conducted using the same number of total runs as DOE approach.  The performance of 

all models was also compared with using the 15-minute lagged traffic as a forecast.  The full list 

of final models compared is shown in Table 2.  

 

Table 2 Models to Compare 

Model # Algorithm Version 
1 Baseline: Lag 15 minutes 
2 XG Boost Default Parameters 
3 XG Boost Screening 
4 XG Boost RSM 
5 XG Boost Random Parameters 
6 RNN Default 
7 RNN Screening 
8 RNN RSM 
9 RNN Random  

 

4.1.1. Response Metric 

Each model is scored by its Mean Absolute Percentage Error (MAPE) for each terminal.  

The below calculation is used for each terminal, over the validation period t = {0…n}, using the 

A actual traffic  and the F forecasted traffic.  The lagged MAPE uses the most recent available 

traffic  rate where Ft = At-15.   

𝑀𝐴𝑃𝐸(𝐹௫) =
1

𝑛
 

𝐴௧ − 𝐹௧

𝐴௧
൨



௧ୀ
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4.1.2. Stage 1 of 2: Screening 

The purpose of this stage is to identify which parameters are impactful and which are not.  

11 parameters that the author felt were most important were selected and a small number of 

combinations of these parameters at high and low settings were used to generate models.  Through 

deliberate selection of which combinations to run it is possible to generate statistically relevant 

estimations of the main effects of each parameter.   A linear regression is performed to estimate 

the coefficients of all relevant parameter’s main effects and create a single equation that represents 

the MAPE of a model given its parameters.   

 

4.1.3. Stage 2 of 2: Response Surface Method 

Parameters with significant main effects or effects deemed necessary to test further were 

included in the RSM Stage.  The RSM used is a Central Composite design using a Full Factorial 

2-level test with center and axial points (giving a 5-level test).  The results are analyzed in the same 

manner as the Screening Stage and an optimal setting was found using optimization on the linear 

regression model of the main, interaction and quadratic effects.  Final models were created using 

these parameter settings and evaluated by MAPE.  

 

4.1.4. Random Search 

A Random Search was conducted using the same 11 parameters and the domain established 

during the Screening Stage.  Continuous parameters were randomly set to any value between the 

low and high settings tested.  Discrete parameters randomly select either the low of high value in 

the Screening Stage.  Each algorithm runs the same number of total trials as the Screening and 

RSM stages combined.  This provides equal computing power access for each tuning approach 

and allows for a fairer comparison.   

 

4.1.5. Holdout Performance 

The parameter settings from each stage and the best performing parameters from Random 

Search were determined based on performance during a 7-day validation period.  The performance 

of these 4 settings, Default, Screening, RSM, and Random, is measured over a 31-day holdout 

period.  Because this data was not used in any parameter tuning it is the final measurement of 
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performance for each algorithm and is the best representation of the algorithm’s ability to 

generalize to new data.   

 

4.2. XG Boosting 

4.2.1. How it works 

Gradient Boosting creates an ensemble of weak models, typically a Classification and 

Regression Tree, by iteratively adding weak models that improve on the overall Loss function.  In 

1996 Freund and Schapire [30] introduced AdaBoost, the predecessor to gradient boosting.  

AdaBoost also creates an ensemble of weak classifiers to improve the overall error rate.  This 

method iteratively places more and more importance on training point that are incorrectly 

classified by the ensemble.  New weak classifiers are selected by their weighted error rates (larger 

weights on misclassified training points), are given a voting power and added to the ensemble.  

This method was built upon by Breiman in 1997 [31] who introduced the idea of treating the 

boosting algorithm as an optimization of a Loss function.   

In 1999, Friedman [32] created the first gradient boosting algorithm, which instead of 

reweighting training points finds a function F that minimizes the Loss function of F and the target 

y.  The strong learner function F is defined as the summation of the output of n weak learners h 

times a constant gamma.   

 

𝐹 = min
ி

𝐿(𝑦, 𝐹(𝑥)) 

𝐹(𝑥) =  𝛾ℎ(𝑥) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡



ୀଵ

 

 

A fundamental difference between AdaBoost and Gradient Boosting is that the weak 

classifiers are trained on the “pseudo-residuals” of the target and the current F as opposed to 

weighted training points.  The new weak learner h is then trained on the dataset (xi, rin) as opposed 

to (xi, yi). 

 

𝑟 = 
𝜕𝐿( 𝑦 , 𝐹(𝑥)

𝜕𝐹(𝑥)
൨ 
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Once the new weak learner is trained, the constant gamma is computed by finding a value 

that results in the minimum overall Loss.  Finally the new weak learner is added to the strong 

learner F.  This process is repeated until a certain number of weak learners are created, the newest 

weak learner does not improve the Loss function enough or some other exit criteria. 

𝛾 = min
ఊ

𝐿(𝑦 , 𝐹ିଵ(𝑥)  +  𝛾ℎ(𝑥)) 

𝐹(𝑥) = 𝐹ିଵ(𝑥) +  𝛾ℎ(𝑥) 
 

Each round n adds a new weak learner which predicts the residual error of the target and 

the strong learner resulting in a strong learner which very accurately fits the training data.  Gradient 

Boosted Trees uses the above method and only produces smaller CART trees as weak learners.  

The algorithm concludes and returns a strong model, the ensemble of CART trees, when it has 

built the maximum number of trees or cannot find a new tree to add that improves the strong model 

beyond a given threshold. 

 

4.2.2. Pre-Processing Steps 

Before training a XG Boost model the dataset goes through several steps of feature 

engineering, transformations or controls.  Some of the pre-processing steps, Remove Seasonality 

and Create Day Lags, are considered model parameters and can either be optional or can change 

in their operation. 

 

1. Remove Drops – Replaces declined traffic of 50% or greater with the prior value 

2. Pick Users – The algorithm is built to predict a single terminal’s traffic and the 

inputs are limited to only that terminal’s prior traffic and return data rates.  Other 

terminal information is dropped from the dataset. 

3. Normalization – The traffic and return rates are normalized based on the entire 

history prior to the validation set by subtracting the mean rate and dividing by the 

standard deviation of that sample. 

4. (Parameter-Removable) Remove Seasonality – An additive seasonal 

decomposition is subtracted from the terminals traffic and return rates.  If set to 

“None” this step is not executed. 
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5. (Parameter) Create Lags – Creates features using the lagged traffic and return 

values of that terminal.  The number of lagged features is a variable parameter of 

the model. 

6. (Parameter-Removable) Create Day_Lags – Creates features using the lagged 

traffic from the same time as the target but on the prior day.  The number of prior 

day values included as features is a variable parameter of the model.  If set to 0, 

this step is not executed. 

7. Create Date Categorical Features – Generates features from the date time index.  

Minute and Hour are left as numerical features while “day of the week” and 

“month” are one-hot encoded categorical features. 

8. Train/Validation Split – Creates a training set of 75 days prior to the validation 

set by removing all current rates and leaving only the lagged variables at every 

time step.  Creates a target set using only the current rates for every time step.  

Validation sets are created using the same method but for a set 24-hour period. 

4.2.3. Training 

An XG Boost model is trained using the given parameters for that run using Mean Squared 

Error (MSE) as its loss function.  Predictions are generated using the lagged values of the 

validation set.  Seasonality is replaced if a seasonal model was used in pre-processing and the 

predictions are then unnormalized.   

 

4.2.4. Parameters to tune 

11 parameters were selected for tuning.   

 

 Lags: The number of previous minutes included in each timestep.  A lag of 60 would 

include the past hour’s traffic to forecast the next value or a lag of 5 would only have the 

previous 5 minutes.  The author selected a default value of 15 minutes which covers the 

duration of significant partial autocorrelations for each terminal. 

 Day_Lags: This parameter decides how many previous day’s values from the same time as 

the target to include as features.  The author selected a default value of 7 days which gives 

the model an example from each day of the week. 
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 Seasonality:  Whether a seasonal decomposition is applied to the normalized data rates 

before training the boosting model.  The potential seasonal models will be additive with 

periods of 1 day or 1 week.  The seasonality is calculated using the statsmodel python 

package with 60 days of training data.  After a model is trained, the seasonality is reapplied 

to the resulting predictions for analysis. 

 Depth: The maximum depth allowed for any weak learner tree.  A higher value allows 

trees that are more complex, making them better able to predict the target, but also more 

prone to overfitting.  The default setting is 6. 

 Gamma: The minimum reduction on the Loss function to create a new leaf on a tree.  A 

higher value will prevent more complex trees from forming if they only contribute minimal 

benefit to the overall Loss.  The default setting is 0. 

 Eta:  The dampening learning rate that reduces the impact of each new tree.  This helps to 

slow the learning and to allow future trees to contribute more to the overall model.  The 

default setting is .3. 

 Subsample: The ratio of total training data available when creating a new weak learner 

tree.  This is a bagging technique that randomly samples a subset of the training data at 

every iteration.  The new tree is built only from that subset of data.  A lower value can 

reduce overfitting.  The default setting is 1. 

 Colsample_bytree: The ratio of features available when constructing a new weak learner 

tree.  This limits the available features to a randomly selected subset at every iteration.  A 

lower value can reduce overfitting.  The default setting is 1. 

 Number of Estimators: The maximum number of weak learner trees that can be added to 

the ensemble.  The default setting is 100. 

 Basebias:  The initial estimate made for every point at iteration 0.  The first set of residuals 

is computed by subtracting this basebias from the target values.  The default setting is .5.  

 Return Rate Drop:  Whether to remove the return data rate from the dataset and make it 

unavailable as an exogenous variable for training.  The author selected a default value of 

False, to use the Return Rate as an exogenous variable. 

4.3. Recurrent Neural Networks 

4.3.1. How it works 
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RNN’s are a type of Artificial Neural Network based on the work of Rumelhart [33] which 

maintains a hidden vector state to learn sequences.  By sequentially stacking RNN nodes one after 

another, the hidden vector state serves as a second input to a new node. This allows the node to 

make more accurate predictions based on the current input and historical insights passed from 

previous nodes.  LSTM networks are a more complex version of RNN from Hochreiter and 

Schmidhuber [34].  The full process is skillfully described by Graves [35] and an example is 

depicted in Figure 8.  At every timestep each LSTM cell has a hidden vector state h similar to the 

RNN and also a memory vector state m.  Each cell makes use of 3 gates: the “forget” gate – which 

allows the cell to remove previous information that is no longer useful, the “update” gate – which 

determines what new information is important to add to the current state and an “output” gate – 

which determines what new information is important to add to the current state to become the next 

output.  The cell also uses a hyperbolic tangent activation for both the hidden and memory state 

before passing their outputs to the next stage.  The equations for each timestep are shown below 

using W to represent the weight matrices, I to represent the projection matrices, x as input and σ 

to represent the sigmoid function.  

 

GateUpdate = σ(Wuht-1 + Iuxt) 
𝐺𝑎𝑡𝑒ி௧  =  𝜎(𝑾𝒉௧ିଵ  +  𝑰𝒙௧) 

GateOutput = σ(Woht-1 + Ioxt) 
mt = Gf * mt-1 + Gu * tanh(Wcht-1 + Icxt) 

ht = tanh(Go * mt) 
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Figure 8 LSTM & GRU Architectures 

4.3.2. Pre-Processing Steps 

Before training a RNN model the dataset goes through several steps of feature engineering, 

transformations or controls.  Some of the pre-processing steps, Drop Return Rates and Remove 

Seasonality, are considered model parameters and can either be optional or can change in their 

operation. 

 

1. Remove Drops – Replaces declined traffic of 50% or greater with the prior value 

2. (Parameter – Removeable) Drop Return Rates – This parameter gives the option to 

remove the return data rates as an exogenous variable from the model.  If True, the 

model is based on the traffic only. 

3. Normalization – The traffic and return rates are normalized based on the entire history 

prior to the validation set by subtracting the mean rate and dividing by the standard 

deviation of that sample. 
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4. (Parameter-Removable) Remove Seasonality – An additive seasonal decomposition is 

subtracted from the terminals traffic and return rates.  If set to “None” this step is not 

executed. 

5. Train/Validation Split – Creates a training set of 75 days prior to the 1-day validation 

set. 

6. (Parameter) Create Lookback Tensors – Creates training and validation tensors by 

generating sequences of “lookback” length of prior traffic.  This parameter controls 

how far back the algorithm can see for each timestep. 

 

4.3.3. Training 

An RNN model is trained using the given parameters for that run using Mean Squared 

Error (MSE) as its loss function.  Predictions are generated using the lagged values of the 

validation set.  Seasonality is replaced if a seasonal model was used in pre-processing and the 

predictions are then unnormalized.   

 

4.3.4. Parameters to tune 

11 parameters were selected for tuning to include parameters that determine the 

architecture of the RNN.  A representation of the potential network architectures is shown in Figure 

8.   

 

4.3.4.1. Network structure parameters:  

 First Layer:  Whether to use a LSTM or a GRU in the first layer. 

 Stateful:  When training, does the final state of RNN nodes become the initial 

state of the next epoch. 

 Dense Nodes: How many nodes are in the dense layer? 

 RNN Nodes: How many nodes are in the RNN layer? 

 Extra RNN layer:  Whether to include an extra LSTM layer?  If included, this 

causes the first layer to be stacked and the hidden states at each timestep are 

returned to the cell. 

 Extra Dense layer: Whether to include an extra Dense layer? 
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4.3.4.2. Other parameters 

 Lookback:  The # of minutes of lagged traffic available at each timestep. 

 Return Rate Drop:  Whether to remove the return data rate from the dataset 

and make it unavailable as an exogenous variable for training. 

 Seasonality:  Whether a seasonal decomposition is applied to the normalized 

data rates before training the boosting model.  The potential seasonal models 

will be additive with periods of 1 day or 1 week.  The seasonality is calculated 

using the statsmodel python package with 60 days of training data.  After a 

model is trained, the seasonality is reapplied to the resulting predictions for 

analysis. 

 RNN Dropout:  The % of recurrent cell weights excluded from updates during 

training. 

 Dropout:  The % of weights from the final RNN layer to the Dense layer that 

are excluded from updates during training. 

 

 
Figure 9 Recurrent Neural Network Flexible Architecture Visualization 

 
4.4. Design of Experiments 

DOE is a method of selecting runs and controlling experiments to more accurately and 

statistically determine the effects of multiple factors over their numerous levels or values.  Runs 
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are conducted under specific conditions where one or more of the factors change values and the 

response variable or result of the process is measured.  Historical usage of DOE is most common 

in agriculture or manufacturing, where the settings of the production plant are factors and the 

quality of the product is the response variable.  This thesis proposes a two staged approach for 

both XG Boost and RNN tuning using a Plackett-Burman screening design [48] followed by a 

Central Composite design.   

 

4.4.1. Screening 

11 factors are identified as parameters to tune for each algorithm.  A full-factorial design 

would require every combination of these factors and levels be tested.  This quickly becomes 

computationally infeasible with 7 terminals to test over a 7-day validation period.  2048 

combinations of parameter settings would be created for each terminal and day.  In total over 100k 

models would be trained and evaluated.  If each model took one minute to train and evaluate, this 

process would take nearly 70 days of computation.   

 

4.4.1.1.   Fractional Factorial Designs 

According to Montgomery’s text “Design and Analysis of Experiments” [36, p. 320], 

“fractional factorial designs are among the most widely used types of designs for product and 

process design”.  Fractional designs can provide statistical insight to main effects and low order 

interactions by conduction a smaller fraction of trials required by a full-factorial design.   

 

4.4.1.2.   Notation 

Fractional designs are typically notated in the following form Lk-p.  L is the number of 

levels or values to test each factor.  K is the number of factors to test.  P is the number of 

independent generators or assignments of main effects to higher order effects.  Standard 

approaches use 2 level designs to simplify the generation of a test matrix and would use a different 

method, like a response surface, to create tests with K > 2.  This notation is useful also quickly 

determine the number of runs; a 25 design requires 32 runs while a 25-2 only requires 23 or 8 runs. 

 

4.4.1.3.   Aliasing 
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The key concept lies in combining the effects of higher order interactions with main effects 

or low order interactions.  This process is called Aliasing.  The simplest example starts with a 22 

Design with Factors A and B at levels ‘+’ and ‘-‘.  A full factorial design for these two factors has 

4 trials with levels shown in the left side of Table 3.  When a 3rd Factor is added to the experiment 

and the number of trials is held at 4, the design changes to a 23-1 where factor C is aliased with 

the interaction of AB.  Montgomery shows the two possible settings for C where the levels of C 

are set at either AB or -AB.  The main effect of changing the level of C is indistinguishable from 

the interaction of AB.  This also causes the main effects of A and B to be aliased with the other 

interactions of BC and AC.   

 

4.4.1.4.   Resolution 

A common metric to describe these designs is its Resolution, a generalization of the 

aliasing schemes.  The example shown is a Resolution III design, which means that no main effects 

are alias with other main effects, but main effects are aliased with two factor interactions.  A 

Resolution IV design has no main effects aliased with other main effects or any two factor 

interactions, but two factor interactions may be aliased with each other.  A Resolution V design 

allows two factor interactions to be alias with three factor interactions. 

 

Table 3 Fractional Design Example from Montgomery 

 
 
4.4.1.5.   Plackett-Burman Design 

In 1946 Plackett and Burman developed an approach to building fractional designs that 

ensured that for each pair of factors their level combinations will all be tested the same number of 

times.  This creates a design with a more complex alias scheme than a standard fractional design 

but allows for more interesting approaches in analysis.  These designs can project themselves very 
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successfully into lower order fractional designs with higher resolution.  In the example by 

Montgomery [36], a 12-run design of 11 factors can be folded into a 23 full factorial plus a 23-1 

fractional design of just 3 factors.  This allows the estimation of interaction effects of a smaller 

number of factors once non-important factors are identified and eliminated from the analysis.  The 

trade off is a complex alias scheme where main effects are partially aliased with two factor 

interactions.  For example, instead of A being fully aliased with CD in a 4-factor test, A is aliased 

with 1/3 BC + 1/3 BD + 1/3 CD. 

 

4.4.1.6.   Selected Design 

This thesis uses a 36 run Plackett-Burman design with 11 factors at 2 levels.  This design 

is considered resolution IV but has a complex aliasing scheme with each factor partially aliased 

with two factor interactions.  The alias scheme for Factor A is shown in Figure 9.  Ideally, multiple 

main effects for each algorithm will have no significant impact and the design can be projected 

into a higher resolution design to more accurately estimate the remaining factors and their 

interactions. 

 

 
Figure 10 Alias Scheme for Factor A in Screening 

 
4.4.1.7.   Blocking 

These tests are conducted using 7 terminals and a 7-day cross fold validation approach.  

Each terminal and day introduce additional variability in forecasts.  Some terminals may have a 

lower MAPE and are easier to forecast and some days may have less overall variation leading to a 

lower MAPE.  It is important to ensure that the generated best settings generalize to all terminals 

over all days, so the test is replicated a full 49 times, once for each combination of terminal and 

day.  These replications are blocked in the design, which means that their effects are measured and 

removed from the general error term but are not part of the overall model.  George Box said, “block 

what you can, randomize what you cannot”.  In this case, randomization has no impact on 

algorithm building because there is no overall learning curve occurring and models with initial 

random settings are already randomized.   



43 
 

 

4.4.1.8.   Analysis 

The response variable MAPE is analyzed using Minitab software.  First an analysis of 

variance (ANOVA) is performed calculating the sum of squares (SS) for each factor, the squared 

difference between the actual value and the mean.  An F-test, which is a ratio of the factor’s SS to 

the total SS, yields a statistic to measure whether the error explained by that factor is statistically 

significant.  The resulting p-value represents the probability of seeing the given result if there is 

no significant impact from that factor.  A low p-value causes the rejection of the hypothesis that 

the factor has no effect.  The software then generates a regression equation to estimate the 

coefficients (impacts) of each factor on the response variable.  These values are used to select the 

optimal levels for each factor resulting in the “best found” solution in the Screening stage.  If there 

are multiple main effects with high p-values, the analysis is re-run without those factors included.  

This results in the projection of the conducted lower resolution test into a higher resolution test. 

 

4.4.1.9.   Down-Selecting Parameters 

Main effects or two-way interactions that are significant are considered for further testing.  

If the factor has only two settings (True/False), then the optimal level found in Screening is used 

and no further testing is done.  For significant, continuous factors additional testing is required to 

measure non-linear effects or interactions. 

 

4.4.1.10.   Screening Test Values (36 runs) 

The high and low settings for each parameter in XG Boost are shown in Table 4 and the 

same is shown for RNN in Table 5.   

Table 4 XG Boost Screening Parameters 

Boosting Variable Description Low High 
RTN Drop Remove RTN values from training FALSE TRUE 
Lags # of minutes of prior values available  10 180 
Day Lags # of prior day values 0 7 
Depth Maximum Depth of Trees 4 8 
Eta Learning Rate .2 .4 
Gamma Minimum benefit required for a new leaf 0 .1 
Subsample % of training data available to each new Tree .8 1 
Column Sample % of factors available to each new Tree .8 1 
N_estimators Maximum number of Trees built 50 250 
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Basebias Initial estimated value for each point 0 1 
Seasonality Period of seasonal adjustment for each terminal Daily Weekly 

 
Table 5 RNN Screening Parameters 

RNN Variable Description Low High 
Lookback # of minutes of prior values available  15 250 
RNN Dropout % of RNN cell weights to exclude 0 .2 
RTN Drop Remove RTN values from training FALSE TRUE 
First Layer Use a GRU or LSTM GRU LSTM 
Stateful Use final state as initial state for next epoch FALSE TRUE 
Dense Nodes # of Nodes in the dense layer 32 256 
RNN Nodes # of Nodes in LSTM/GRU layer 32 256 
Extra LSTM Add a second LSTM/GRU layer and make the first layer 

return/stacked 
FALSE TRUE 

Extra Dense Add an additional Dense layer after RNN FALSE TRUE 
Dropout % of weights from final RNN layer to exclude 0 .2 
Seasonality Period of seasonal adjustment for each terminal Daily Weekly 

 
4.4.2. Response Surface Methodology 

The second stage test was conducted using a subset of important factors found in the 

screening stage using a RSM for both XG Boost and RNN tuning.  This test looks to measure non-

linear effects (quadratic) and two-way interactions between factors.  According to Montgomery 

[36] the RSM is “useful for modeling and analysis of problems in which a response of interest is 

influenced by several variables and the objective is to optimize this response”.   

 

4.4.2.1.   Central Composite Design 

The Central Composite Design (CCD) is “the most popular class of designs used for fitting 

these models” Montgomery [36].  A typical CCD is comprised of a two level factorial design, a 

set of center point tests (using the median value for each factor) and a set of axial points (more 

extreme values beyond the two-level values).  Figure 10 from the Montgomery text shows example 

level settings of a 3 factor test.  The cube is the factorial design with a center at the origin and axial 

points extending beyond the volume of the cube. 
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Figure 11 Montgomery Central Compsite Design Spacial Example 

4.4.2.2.   Selected Design 

The XG Boost design had 5 continuous factors to test.  The result is 52 total runs: 25 runs 

for a full two-level factorial, 10 replications at the center and 10 axial points.  The RNN design 

had 3 selected factors, lookback, RNN Nodes and first layer(categoric).  The design has 26 total 

runs: 23 runs for a full two-level factorial, 10 replications at the center and 8 axial points.   

 

4.4.2.3.   Analysis 

The analysis was conducted in the same manner as the Screening Stage, except that two-

way interactions and quadratic terms were included in the model.  Contour plots of the interactions 

and non-linear effects were generated and useful in understanding the relationship of all factors.  

An optimization of the resulting regression equation provides the “best found” settings for the 

RSM stage. 

 

4.4.2.4.   RSM Test Values (52 runs/26 runs) 
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The axial values for XG Boost are shown as Low and High in Table 6.  The axial values 

for the RNN are shown as Low and High in Table 7.  These are the parameters that warranted 

further testing in the RSM stage and in some cases their ranges expanded. 

Table 6 Boost Central Composite Parameters (52 runs) 

Boosting Variable Description Low High 
Depth Maximum Depth of Trees 4 8 
Eta Learning Rate 0 .4 
Subsample % of training data available to each new Tree .7 1 
Column Sample % of factors available to each new Tree .7 1 
N_estimators Maximum number of Trees built 50 250 

 
 
Table 7 RNN Central Composite Parameters (26 runs) 

RNN Variable Description Low High 
Lookback # of minutes of prior values available  5 180 
RNN Nodes # of Nodes in LSTM/GRU layer 32 256 
First Layer Use a GRU or LSTM GRU LSTM 

 

4.4.3. Random Search 

In order to compare the benefit of the DOE process and establish a baseline for tuning 

benefits a Random Search was also conducted.  Each algorithm used all 11 of its factors and 

randomly selected a value between the low and high settings during the screening stage.  88 

randomly generated trials were conducted with XG Boost and 62 randomly generated trials were 

conducted with RNN.  Models were built in the same fashion as DOE, where the XG Boost 

produces a single model per terminal, the RNN produces a single model for every terminal and 

both algorithms were tested across the 7-day validation period.  The trial with the lowest average 

MAPE over the validation period was selected for holdout testing. 
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5. Results 

5.1. Default Settings 

The baseline comparison for each algorithm performance is against the MAPE of a simple 

15-minute lag.  It is also important to measure the accuracy gains of algorithm tuning, so the default 

settings of each parameter or a best guess were used to generate the default models.  All settings 

are found in Table 8.  The average MAPE using a 15-minute lag was 10.3% averaged across all 

terminals and validation days.  Applying either algorithm at default settings was an improvement 

to 9.5% for XG Boost and 9.2% for RNN.  Figure 11 shows the average MAPE over 7 days of 

each algorithm at default settings for each of the 7 terminals.  Terminal 7 proved the most 

challenging to predict and was the only instance where either algorithm failed (XG Boost – 12.0%) 

to outperform the lag (Lag – 11.9%).  Figure 12 shows an example of previous value forecasts vs 

an RNN forecast.  The previous value repeats the pattern that occurred 15 minutes prior, while the 

RNN forecasting uses the prior examples to learn what values to expect. 

 

Table 8 XG Boost & RNN Default Settings 

XG Boost Variable XG Boost Default RNN Variable RNN Default 
RTN Drop FALSE Lookback 15 
Lags 15 RNN Dropout 0 
Day Lags 7 RTN Drop TRUE 
Depth 6 First Layer LSTM 
Eta .3 Stateful FALSE 
Gamma 0 Dense Nodes 128 
Subsample 1 RNN Nodes 128 
Column Sample 1 Extra LSTM TRUE 
N_estimators 100 Extra Dense TRUE 
Basebias .5 Dropout .2 
Seasonality Weekly Seasonality Weekly 
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Figure 12 Default Model Performance by Terminal 

 

 
Figure 13 15-Minute Ahead Forecasts 

 
5.2. Screening Results 

5.2.1.   XG Boost Screen 
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36 trials or 1764 total models are analyzed using MAPE as the response variable.  Analysis 

of Variance (ANOVA) results in Table 9 show that 9 of the 11 factors have significant main effects.  

Only lags and daylags had p-values above .05.  The results had a total sum of squares (SS) of .608 

and the resulting model only accounted for .544 which gives the model an R2 of .89.  Interestingly 

the vast majority of attributed model SS was to the blocked features: day and terminal.  This means 

that which terminal and on what day has a much larger impact on the forecast’s accuracy than the 

parameters of the algorithm.  Each main effect is considered significant if the p-value from the F-

Test in the ANOVA table is below .05.  The linear effect of each significant factor is shown in 

Figure 12 with the optimal value of that parameter as the lowest MAPE value.  

 
Figure 14 XG Boost Main Effects and Optimal Values 
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Table 9 XG Boost Screening ANOVA and Regression Coefficients 

 
 
 

5.2.1.1. Non-Impactful Factors 

The parameters number of lags and number of prior day lags did not show a statistically 

significant main effect.  The coefficient on lags is slightly negative, which means that increasing 

the number of minutes the algorithm can access results in a lower MAPE.  The coefficient on 

daylags is slightly positive, which means that less day lags result in a lower MAPE.  While neither 

coefficient is statistically significant, it does represent the unbiased estimator, and so the higher 

lag value and the lower day lag value are used for future tests and performance models. 

 

5.2.1.2. Impactful Binary Factors 

Of the 9 impactful effects, 2 are binary variables which only have categoric settings.  The 

seasonal parameter tested a daily and a weekly seasonality correction.  This showed a significant 

main effect with the daily option superior to weekly.  RTN Drop is a True/False variable.  When 

this parameter is True, the return data rate is dropped and not included in the model as an 

exogenous data stream.  This showed a significant main effect with the option to drop the return 

data rate preferred and did not find performance improvement by including the return data rate in 

the model.  The values of both these variables are held at daily and True for future tests and 

performance models. 

 

5.2.1.3. Impactful Factors with set values 
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2 of the remaining 7 continuous variables had impactful main effects but do not warrant 

further testing.  Gamma showed a significant main effect with the lower value of 0 being preferred.  

0 is the default value of gamma, so this value is held, and no further testing of gamma is performed.  

Basebias showed a significant main effect as well.  The preferred value is 0.  Because the data is 

normalized, it  centers on 0 so an initial estimate of 0 would be closest to an unbiased estimation..  

Given more time and computing power, this factor would be included in further testing, however 

it is held at 0 and no further testing is done on basebias. 

 

5.2.1.4. Impactful Factors 

The remaining 5 factors: depth, eta, subsample, column sample and number of estimators 

had impactful main effects.  None of their  computed optimal values for this problem were the 

default settings of the algorithm or values that would cause the parameter to do nothing; ex. a value 

of 1 for column sample means that there is no subset sampling.  These factors continue to the RSM 

stage for further testing and optimization.   

 

 
5.2.1.5. XG Boost Screening Lessons Learned 

The test showed that the number of lags given to the model did not significantly impact its 

performance.  This could suggest that the model only needs 10 minutes of history which 

corresponds with the partial autocorrelation of the traffic data.  The results also suggest that there 

is no correlation between the previous day’s traffic and the current day.  This could be due to shifts 

in the daily patterns of the customers (ex. an aircraft takes off 10 minutes later than it did the 

previous day) or that correcting for a daily seasonal pattern removed the correlation from the 

previous day.  The results strongly suggest that the return traffic rate is not a useful exogenous 

variable in the model.   

The model parameters suggest that generalization is challenging.  A lower depth builds 

more simple trees that are much less exacting (a depth 4 tree can have 16 end leaves while a depth 

8 tree can have 256 leaves).  A higher value of eta directly scales down the learning speed by 

limiting the impact of new trees.  This higher value helps to prevent overfitting.  Both subsample 

and column sample improved performance suggesting that there could be outliers in the data that 

can cause overfitting.   
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5.2.2. RNN Screen 

36 trials or 252 total models are analyzed using MAPE as the response variable.  ANOVA 

shows that 6 of the 11 factors have significant main effects.  Dropout, the number of dense nodes, 

lookback, statefulness and RNN dropout had p-values above .05.  The results had a total SS of 

.440 and the resulting model only accounted for .415 which gives the model an R2 of .94.  Similar 

to XG Boost the vast majority of attributed model SS was to the Blocks (day/terminal).  This means 

that which terminal and on what day has a much larger impact on the forecast’s accuracy than the 

parameters of the algorithm.   

 

Table 10 RNN Screening ANOVA and Regression Coefficients 

 
 
5.2.2.1. Non-Impactful Factors 

Dropout had a p-value of near 1 and showed a rounded SS of 0.  With a regression 

coefficient of near 0, this factor does not warrant further testing and is set to .2 (the default dropout 

value).  The number of dense nodes did not have a significant main effect and warrants no further 

testing.  The regression coefficient is slightly positive, so a lower value is preferred.  Additionally, 

more nodes in the dense layer increases total training time, so the lower value is selected.  The 

statefulness of the first RNN layer did not have a significant main effect and warrants no further 

testing.  It’s regression coefficient is slightly positive which means a value of False is preferred.  

RNN dropout did not have a significant main effect and warrants no further testing.  Its regression 

coefficient is slightly positive, so a lower value is preferred.  While lookback’s p-value was not 
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below .05, it is not as high as these other 4 factors.  It is also one of only 2 remaining continuous 

factors and does warrant further examination. 

 

5.2.2.2. Impactful Factors with set values 

Extra LSTM layer, Extra Dense layer, return rate drop, and seasonality each had significant 

main effects and are binary variables that do not warrant further testing.  With positive coefficients, 

neither of the extra layers was preferred.  The daily seasonality model outperformed the weekly 

and it was beneficial to remove the return data rate from the input.  These values are set for all 

further testing at the lower values in Figure 13. 

 

 
Figure 15 RNN Main Effects and Optimal Values 

 

5.2.2.3. Other Impactful Factors 

While GRU’s outperformed LSTM’s this is a fundamental architectural decision that 

deserves further exploration.  While not statistically significant and heavily aliased with other 

effects, the two-way interactions are interesting to observe.  In Figure 14, there is a possible 

interaction between the first layer and lookback and the first layer and RNN nodes.  The LSTM 

seems to benefit more from having a higher lookback, while the GRU seems to perform better with 

less nodes.  This screening test was not sufficient to accurately estimate these potential effects, so 

they are explored further in the next stage.  The number of RNN nodes had a significant main 

effect with the smaller number of nodes preferred.  This factor requires additional testing to 

optimize. 
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Figure 16 RNN Screening Interaction Plots 

 
5.2.2.4.   RNN Screening Lessons Learned 

Similar to XG Boost the RNN results show that a daily seasonality improves the model and 

the return traffic rate is not a helpful exogenous variable.  The most significant parameters found 

were binary and categoric (extra layers, first layer type, seasonality and return drop) which limits 

further testing unless those parameters have a second level interaction or a non-linear effect.  

Further testing is used to try and identify these more complex interactions and effects.  The most 

interesting potential interaction found is the relationship between the number of nodes in the RNN 

layer and the type of layer.  The results show that the number of nodes impacts GRU performance 

which could be due to the GRU having a simpler architecture and generalizing to the data better 

with less nodes.  This relationship isn’t found for the LSTM.   

5.2.3. Best found 

The “best found” settings after screening for both XG Boost and RNN are in Table 11 and 

the resulting MAPE by terminal for the validation period is in Table 12.  The XG Boost regressed 

in performance from the default values from 9.5% to 9.7%.  In terminals 1 and 5 the algorithm 
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increased its MAPE by over 2%.  The RNN improved overall from a 9.2% to a 9.0% average 

MAPE and either improved or had steady performance for all terminals. 

 

Table 11 Screening Stage “Best Found” Parameters 

XG Boost Variable XG Boost Screening RNN Variable RNN Screening 
RTN Drop TRUE Lookback 15 
Lags 180 RNN Dropout 0 
Day Lags 0 RTN Drop TRUE 
Depth 4 First Layer GRU 
Eta .4 Stateful FALSE 
Gamma 0 Dense Nodes 32 
Subsample .8 RNN Nodes 32 
Column Sample 1 Extra LSTM FALSE 
N_estimators 50 Extra Dense FALSE 
Basebias 0 Dropout .2 
Seasonality Daily Seasonality Daily 

 

Table 12 Screening “Best Found” Performance 

 
 
 
5.3. Response Surface Results 

5.3.1.   XG Boost CCD 

This test was 52 total trials and generated 2548 models.  This test was 52 total trials and 

generated 2548 models.  As shown in Table 13, of the 5 factors tested only eta’s main effect and 

quadratic term and depth’s quadratic term showed a statistically significant effect on MAPE.  

Although not statically significant at a .05 level, the other 3 factors possibly have a quadratic effect.  

All 5 factor’s non-linear effects are shown in Figure 15 and a local minimum MAPE near the 

center of the design space.  No two-way interactions were significant.  The model R2 was .91.  This 

improvement over the .89 R2 for the screening test could be due to allowing parameters to have a 

quadratic effect. 
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Table 13 XG Boost CCD Non-Linear Effects 

 

 
Figure 17 XG Boost CCD Non-Linear Effects 

5.3.1.1.   XG Boost CCD Lessons Learned 

The strong linear effect of depth found in the screening stage is not significant in the CCD 

results and is replaced by a quadratic effect.  The optimal depth value found is actually the 

algorithm’s default depth of 6.  This result confirmed the linear effect of eta found in the screening 

and added a quadratic effect as well.  The final three parameters also replaced their linear effect 

with a quadratic effect.  Generalization is still a challenge for the algorithm, but the parameters 

which slow learning are tuned down slightly by the results of this test. 
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5.3.2. RNN CCD 

This test required 26 total trials and generated 182 models.  As shown in Table 14 all 3 

main effects were significant, the quadratic terms of lookback and RNN nodes were significant 

and the interaction between RNN Nodes and the first layer was significant.  The model R2 was 

.99. 

 

Table 14 RNN CCD Regression Coefficients 

 
5.3.2.1.   RNN Non-Linear Effects 

Lookback had a statistically significant quadratic term.  The minimum of its effect shown 

in Figure 16 is at 127 minutes.  Similarly RNN nodes had a significant quadratic term with a 

minimum at 144.  The combined contour map of these two factors is shown in Figure 17 where 

the lighter region represents the combined minimum MAPE area for both parameters. 
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Figure 18 RNN CCD Non-Linear Effects 

 
Figure 19 RNN CCD Contour Plot 

5.3.2.2. RNN Two-Way Interactions 
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RNN nodes and the first layer of the network had a statistically significant interaction 

visible in Figure 18.  The LSTM had a lower minimum MAPE that required a higher number of 

RNN nodes, while the GRU’s minimum was overall higher but required a smaller number of 

nodes.  Intuitively this makes sense because the LSTM is a more complex architecture and could 

require more paths through the network to better fit the data. 

 
Figure 20 RNN CCD Interaction Plot 

 
5.3.2.3. RNN CCD Lessons Learned 

A more powerful test with less factors seems to reveal more about these three parameters.  

Lookback’s linear effect is now significant and its quadratic effect is significant.  The optimal 

lookback value of 127 minutes gives the model a long sequence to utilize.  Because the algorithm 

uses full sequences to learn it makes sense that the lookback value is more similar to the 

autocorrelation vs the partial autocorrelation.  The optimal lookback is shorter than the significant 

correlation (around 300 minutes) which could be due to the algorithm learning from correlations 

between terminals and not requiring additional lookback.   
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The interaction between the first layer type and the number of nodes is confirmed in this 

test.  The more complex architecture of the LSTM improves performance when enough nodes are 

available for it to learn.  While not statistically significant, the interaction between the first layer 

type and lookback follows the same logical pattern.  The LSTM makes use of a longer lookback 

more effectively than the GRU. 

5.3.3. Best found 

The “best found” settings after RSM for both XG Boost and RNN are in Table 15 and the 

resulting MAPE by terminal for the validation period is in Table 18.  The XG Boost improved in 

performance from the screening values from 9.7% to 8.9%.  Performance on every terminal 

improved from screening but terminals 1 and 5 still have a higher MAPE than the default settings.  

The RNN improved from the screening stage very slightly from a 9.02% to an 8.98% average 

MAPE. 

 

Table 15 RSM Stage “Best Found” Parameters 

XG Boost Variable XG Boost RSM RNN Variable RNN RSM 
RTN Drop TRUE Lookback 127 
Lags 180 RNN Dropout 0 
Day Lags 0 RTN Drop TRUE 
Depth 6 First Layer LSTM 
Eta .3 Stateful FALSE 
Gamma 0 Dense Nodes 32 
Subsample .86 RNN Nodes 144 
Column Sample .84 Extra LSTM FALSE 
N_estimators 150 Extra Dense FALSE 
Basebias 0 Dropout .2 
Seasonality Daily Seasonality Daily 

 

5.4. Random Search Results 

5.4.1.   XG Boost 

88 unique parameter settings were randomly generated and tested over the validation 

period.  The average MAPE of all 88 combinations was 9.3% and the best performing trial was 

8.9%.  The settings for the best performing trial are shown in Table 16.  Also in Table 16, is a 

comparison of the top 25% of trial’s parameters to all 62 trial parameters.  For continuous factors 

the average value of each group is shown and for categoric factors the percentage with the same 
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value as the “best found” in RSM is shown.  Every trial in the Top 25% used a Daily seasonality.  

No other factors seem to be overrepresented in the Top 25% of trials. 

 

Table 16 XG Boost Random Search Results 

Parameter Evaluation Top 25% All Trials “Best Found” 
RTN Drop % TRUE 50% 45% TRUE 
Lags Average Value 94 91 138 
Day Lags Average Value 3 3 4 
Depth Average Value 6 6 6 
Eta Average Value 0.35 0.30 .36 
Gamma Average Value 0.06 0.05 .05 
Subsample Average Value 0.90 0.91 .88 
Column Sample Average Value 0.90 0.90 .95 
N_estimators Average Value 144 143 218 
Basebias Average Value .45 .46 .25 
Seasonality % Daily 100% 50% Daily 
Average MAPE Average Value 9.0% 9.3% 8.9% 

 

5.4.2.   RNN 

62 unique parameter settings were randomly generated and tested over the validation 

period.  The average MAPE of all 62 combinations was 9.2% and the best performing trial was 

8.9%.  The settings for the best performing trial are shown in Table 17.  Also in Table 17, is a 

comparison of the top 25% of trial’s parameters to all 62 trial parameters.  For continuous factors 

the average value of each group is shown and for categoric factors the percentage with the same 

value as the “best found” in RSM is shown.  A value of FALSE is overrepresented in the Top 25% 

for both the extra LSTM and extra Dense layers.  Every trial in the Top 25% used a Daily 

seasonality.  These results seem to confirm the RNN Screening results for main effects of these 

factors.   

 

Table 17 RNN Random Search Results 

Parameter Evaluation Top 25% All Trials “Best Found” 
lookback Average Value 147 142 146 
RNN_Nodes Average Value 133 141 42 
dropout Average Value 0.12 0.09 .01 
extra_lstm % FALSE 81% 53% FALSE 
extra_dense % FALSE 75% 50% FALSE 
Dense_Nodes Average Value 143 149 52 
stateful % FALSE 69% 50% TRUE 
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first_layer % LSTM 44% 48% GRU 
RNN_dropout Average Value 0.10 0.11 .04 
seasonal % Daily 100% 52% Daily 
RTN_Drop % TRUE 50% 60% TRUE 
Average of MAPE Average Value 9.0% 9.2% 8.9% 

 

5.5. “Best Found” Settings Validation Period Results 

The parameter settings for each stage’s best found values, the default parameters and the 

random search’s best found settings are in Tables 18 and 19. 

 

Table 18 XG Boost Best Found Parameter Values 

XG Boost Variable Default Screening RSM Random  

RTN Drop FALSE TRUE TRUE TRUE 

Lags 15 180 180 138 

Day Lags 7 0 0 0.4 

Depth 6 4 6 6 

Eta 0.3 0.4 0.3 0.36 

Gamma 0 0 0 0.05 

Subsample 1 0.8 0.86 0.88 

Column Sample 1 1 0.84 0.95 

N_estimators 100 50 150 218 

Basebias 0.5 0 0 0.25 

Seasonality Weekly Daily Daily Daily 

 

Table 19 RNN Best Found Parameter Values 

RNN Variable Default Screening RSM Random 

Lookback 15 15 127 146 

RNN Dropout 0 0 0 0.04 

RTN Drop TRUE TRUE TRUE TRUE 

First Layer LSTM GRU LSTM GRU 

Stateful FALSE FALSE FALSE TRUE 

Dense Nodes 128 32 32 52 
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RNN Nodes 128 32 144 42 

Extra LSTM TRUE FALSE FALSE FALSE 

Extra Dense TRUE FALSE FALSE FALSE 

Dropout 0.2 0.2 0.2 0.01 

Seasonality Weekly Daily Daily Daily 

 

5.5.1. Best Performance by Terminal 

Table 20 shows the average MAPE results over the 7-day validation period for each 

algorithm’s best parameters after each stage.  Highlighted in green is the algorithm and stage with 

the lowest average MAPE.  XG Boost had the lowest average MAPE for every terminal.  The RSM 

parameters were best for 4 terminals and the Random parameters were best for the other 3 

terminals.  There is a large disparity between the performance of these two parameter settings for 

XG Boost by terminal.  When RSM is accurate, the Random settings are a full percentage point 

higher.  The reserve is typically true with over 3% disparity between RSM and Random for 

terminal #5.   

 

Table 20 Validation Period MAPE by Terminal & Algorithm 

 
 
5.5.2. Parameter Tuning Impacts 

XG Boost benefitted the most from parameter tuning and lowered its average MAPE over 

all terminals from 9.5% to 8.9%.  The RNN also benefitted from parameter optimization but 

showed improvement from the Default (9.2%) to Screening (9.0%) and minimal improvement 

from the RSM (9.0%).  The Random parameters for RNN outperformed Screen and RSM on every 

terminal. 
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5.6. Holdout Performance 

The previously untouched 31-day holdout period data provides an opportunity to test each best 

found setting for generalization to estimating traffic for each terminal.   

 

5.6.1. Best Performance by Terminal on Holdout 

RNNs performed better over the holdout period than XG Boost.  When comparing the best 

performing parameter settings, the RNN performed better than XG Boost on 4 of 7 terminals.  

Additionally, on the terminals where XG Boost had a lower MAPE, the gap between the two 

algorithms was very small (within 0.1%).  The gap between the algorithms when the RNN had a 

lower MAPE was similarly small for 2 terminals but was nearly a full percentage point for the 

remaining two.  This caused the overall average MAPE of the RNN (9.6%) to be slightly lower 

than XG Boost (9.8%). 

 

5.6.2. Parameter Tuning Generalization 

The impact of parameter tuning is more obvious in the holdout results.  XG Boost improved 

its performance on the holdout period at every stage, while it did not show improvement in the 

Screening stage for the validation period.  The magnitude of overall average improvement also 

increased and from Default to RSM the algorithm reduced MAPE by 1.2%.  RNN also improved 

its performance on the holdout period at every stage.  The tuning benefits of the RNN from Default 

to RSM are five times larger on the holdout period than the Validation period.  The Random Search 

parameters performed just as well or slightly better than the RSM tuning; a result that is very 

similar to the Validation period. 

 

Table 21 Holdout MAPE by Terminal & Algorithm 
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5.6.3. Algorithm Lift Noise 

MAPE Lift is defined as the difference between the Lag MAPE and the algorithm’s MAPE 

for that day and terminal and is used to show the benefit of an algorithm over the baseline Lag.  

Using this lift value reduces the variance from each day and terminal, allowing comparison of 

algorithm performance.  During the holdout period, the Random RNN had a more consistent 

performance than the RSM XG Boost.  Table 22 shows the average MAPE Lift and standard 

deviation for days and terminal combinations separated by the average Lag MAPE.  The number 

of records, one record for each terminal each day, is shown for each bucket.  When the Lag MAPE 

is below 5%, the RNN on average outperforms XG Boost and has a much lower standard deviation 

for these 20 observations.  In each bucket of Lag MAPE, the RNN has a lower standard deviation 

and a higher or very equivalent average lift.  One hypothesis for this performance is the utilization 

of “forget gates” in the LSTM.  The algorithm learns which values to discard from learning and 

can ignore information from some outliers. 

An example of this is found in Terminal #2’s traffic decline at the start of the holdout 

period.  The traffic is consistent until the 2nd day of the holdout.  There it drops significantly and 

then establishes a new pattern.  The difference between the lagged MAPE and the average MAPE 

for the best performing RNN and XG Boost are shown in Figure 19.  Performance is shown as 

MAPE lift over lag for ease of comparing different day’s performances.  When the traffic declines 

in the 2nd day of the holdout, the XG Boost model has an average MAPE up to 20% larger than 

the pure lag.  During the same period, the RNN peaks at less than 4% larger than lag.  Both 

algorithms eventually return to a state of outperforming the lagged traffic, but the RNN suffers 

less performance degradation when traffic is in flux.   

Table 22 MAPE Lift by Average of Lagged MAPE 
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Figure 21 Terminal 2 Daily Average Traffic 

 
Figure 22 Terminal 2 Best Algorithm Lift Over Lag 
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6. Conclusion 

This thesis showed the improvement of more sophisticated time-series forecasting 

algorithms for short term traffic estimation in a state-of-the-art satellite communications system.  

When implementing a Dynamic Resource Management system to take advantage of flexible 

communications satellites it is desirable to reduce the error introduced by the system cycle rate 

and changing traffic.  Short term traffic forecasting is more accurate than using the most recent 

available traffic data.  XG Boost models and RNN models provided approximately a 1% 

improvement over using the most recent traffic when solution delay is set to 15 minutes.  This 

equates to a 1% more efficient allocation system or the ability to serve an additional 1% of user 

traffic. 

 

6.1. Which tuning worked the best 

Using design of experiments in a two staged approach with a screening test followed by a 

response surface test to optimize final parameters reduced the average MAPE for each algorithm 

at each stage.  If both algorithms were only built with the default settings, neither would outperform 

using the previous traffic data and the entire system would not require a Traffic Estimator.  Going 

through a tuning process improved the models produced by each algorithm to a performance level 

that makes a Traffic Estimator worthwhile.  Random Search also provided the same benefit in 

terms of performance gain over the Default settings.  Using the same number of runs, a random 

search produced a parameter setting that was either as good or better than the DOE approach.   

 

6.1.1. Benefits of Random Search 

Random Search is very easy to implement.  The coding requirement and statistical 

knowledge is minimal.  It is easy to test a larger number of factors or test factors over a larger 

range.  Because there is no symmetry or orthogonality requirements in trials, adding a new factor 

or increasing the range during testing does not diminish the value of already concluded trials.  The 

main drawback to this approach is a lack of statistical explanation of why one parameter setting is 

better than another.   
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6.1.2. Benefits of Design of Experiments 

DOE provides a structured method of testing algorithm parameters and then yields 

statistically relevant impacts of each factor.  These impacts allow the user to explain why certain 

parameter values are included in the final algorithm.  It also provides insightful information for 

interactions between factors that is easily missed when conducting random search.  This approach 

does require additional knowledge and extra steps in setting up which trials to test and to evaluate 

the results.   

 

6.2. Which algorithm worked the best 

The RNN using a GRU resulted in the lower average MAPE and better robustness over the 

holdout period.  The algorithm performance could improve with the addition of more terminals 

and relevant exogenous data.  While the RNN is more resilient to changes in the traffic patterns 

than XG Boost, it was still outperformed by the lagged value during some of these periods.  An 

implementation of this system should track model performance and include a way to switch off 

the RNN and revert to a simpler algorithm during inconsistent periods of traffic. 

 

 

6.3. Future Work 

There is still room for improvement in this application of forecasting and more efficiency 

to gain through estimation, though this work can serve as a baseline evaluation of expected 

performance. This thesis also compared two strategies of parameter tuning: Design of Experiments 

and Random Search.  Neither approach strongly dominated the other in this example, but there 

could be other approaches that would perform as well or better.  This is an on-going field of 

research that will get more and more attention as model’s are squeezed for every bit of performance 

possible.  Future works should use multiple approaches for tuning to compare the value of each.  

Simply conducting one tuning approach and quoting its benefit does not further this field. 

 

6.3.1. More Terminals 

RNN algorithms allow for cross terminal learning and benefit.  A sequence of traffic seen 

in Terminal #1 can influence the estimation in Terminal #2 and improve its forecast.  This work 

had 7 total terminals.  A full constellation of O3-b mPower satellites could have hundreds to 
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thousands of terminals active at any time.  The addition of more terminals to the model should 

cause an improvement in overall performance.  If computing power and time is prohibitive, it could 

also be possible to cluster similar, or more beneficial terminals, together in a model and create a 

single model for each cluster within the constellation.  Cluster generation techniques based on 

traffic levels, usage patterns, location or terminal type should be explored or a gradient based 

technique could be used to add the most beneficial terminals to a cluster until a computational limit 

is reached. 

 

6.3.2. Weather/Flight Data 

The return data rate seemed to have minimal benefit in forecasting the forward traffic rate.  

However, there could be other exogenous variables that would have a stronger impact on model 

performance.  The weather at the terminal location is the most direct example.  Typically satellite 

communications are degraded due to rain attenuation.  The inclusion of a weather model into the 

traffic data could aid by forecasting when rain would be present and would lower the usage of that 

terminal.   If the terminal is an aircraft, the scheduled take off and landing of that plane would also 

be beneficial to the model.  More exogenous variables should be explored in these types of models 

by SES or in an academic setting if the anonymity of the users can be protected. 

 

6.3.3. Unmet Traffic 

This thesis assumed that the error from a low forecast, where a user is given a lower data 

rate than they trafficked, is equivalent to a high forecast, where a user is given more capacity then 

they needed.  This assumption may change depending on the situation.  Some users may need to 

have their full traffic met at any time, while some may be satisfied with their full traffic going 

unmet.  One approach to this problem could be to use an asymmetrical loss function in the traffic 

estimator.  This would penalize either type of error more than the other and cause the forecast to 

try and minimize the more important error type. 

 

6.3.4. Integration with RTE 

The traffic estimator should be simulated with the RTE allocation software to test for any 

interaction effects of these two systems.  There may be constraints on either system that prevent 

the other from optimal performance.  For example, if a terminal has a large increase in traffic 
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forecasted, but the RTE has a limitation on the change to power from cycle to cycle then the overall 

traffic could go unmet.  Future work could include a multi-step forecast to identify these upcoming 

large changes and to smooth them out over time to accommodate the limitations of the physical 

system. 
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