
1

Managing Discovered Scope Within Hybrid Agile Stage-Gate Project Delivery

Systems

By

Thomas M. Johnson

B.S. Mechanical Engineering

University of Wisconsin – Madison, 2003

B.S. Agricultural Sciences

University of Wisconsin – Madison, 1995

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

AT THE

MASSACHUESETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2021

©2021 Thomas M. Johnson. All rights reserved.

The author hereby grants MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis and electronic copies of this thesis

document in whole or in part in any medium now known of hereafter created

Signature of Author:__

Department of Systems Design and Management

December 1, 2020

Certified by:___

Eric Rebentisch

Research Associate

Department of Sociotechnical Systems Research Center

Accepted by:__

Joan Rubin

Director, System Design and Management Program

2

Managing Discovered Scope Within Hybrid Agile Stage-Gate Project Delivery

Systems

By

Thomas M. Johnson

Submitted to the Systems Design and Management Program on December 1, 2020 in Partial Fulfillment

of the Requirements for the Degree of Engineering and Management

ABSTRACT

Complex mechatronic projects have machine functionality dependent upon substantial embedded

software content delivered in coordination with the hardware componentry. This situation creates a

dilemma for project leadership as they determine which methods to utilize for managing the project.

One option is to utilize a hybrid approach where comingled Stage-Gate and Agile methods serve both

hardware and software activities. However, the need for synchronized delivery schedules between the

hardware and software components is not addressed well by Agile methods, which do not emphasize

forward planning. In contrast, the uncertainty in defining software scope challenges the up-front scope

definition relied upon by Stage-Gate methods.

Three independently operating project delivery systems have each spent more than ten years weaving

Agile software development methods into the classic Stage-Gate approaches to make their hybrid

project management systems. This study interviews Agile and Stage-Gate leadership roles within each

of these three project delivery systems to identify what has evolved to keep the schedule expectations

for scope delivery aligned to the discovery of additional scope while software development progresses.

This study finds that both the Stage-Gate and Agile leaders interviewed call for more work to be done in

the project planning stage to improve the inclusion of more rigorous software scope identification

activities. It also finds several differences in the design stage activities across the groups studied

concerning how they accommodate the discovery of new software scope into the overall scope and

schedule expectations for the project, each with a differing level of effectiveness.

The most effective traits include the formalized identification and capture of the product decomposition

and architecture so that it can be used to estimate software scope, schedule, and resources more

accurately upfront in the planning stage. During the design stage, the most effective project delivery

systems leverage the cultural acknowledgment and leadership’s enforcement of the stakeholders' need

to adjust their scope expectations in response to new scope discoveries. The addition of repeating two-

month planning events deliver timely forecasts of software deliveries, and frequent scope management

meetings allow for rapid adjustment to software scope discoveries. Each software delivery system

added dedicated Software Delivery Lead roles to act as the liaison between the Agile and Stage-Gate

management methods and to formulate mitigation activities with the rest of the functional area leads to

the mechatronic product.

3

Project delivery system developers may use these findings as a set of lessons learned to guide their

pursuits with the integration of Agile practices into an existing Stage-Gate process. Others could build

upon these findings by repeating the activity with other case studies to see if a pattern emerges, which

could guide the creation of more specific Agile Stage-Gate frameworks.

Thesis Supervisor: Eric Rebentisch

Title: Research Associate

4

Contents
Table of Figures ... 6

Definition of terms .. 7

1. Purpose ... 8

1.1 Motivation:.. 8

1.2 System of Interest ... 9

2 Literature Review ... 14

2.1 The Nature of Software: ... 14

2.3 Other Causes that Decrease Delivery Performance ... 15

2.5 Project Management Best Practices ... 18

2.6 Stage-Gate Frameworks .. 21

2.8 Agile Manifesto ... 25

2.9 Scrum .. 26

2.10 Kanban .. 27

2.11 Extreme Programming (XP) ... 29

2.12 Summary: Project Management within Classic Agile Methodologies .. 31

2.13 Scaled Agile Framework (SAFe)... 32

2.14 Large Scale Scrum (LeSS) ... 35

2.15 Hybrid Approaches .. 36

2.17 Velocity and Burn-Up Charts ... 37

2.16 Summary of Project Management Techniques .. 38

3 A Model for Analyzing Project Organizations .. 42

3.1 Causal Diagrams and System Dynamics Modeling ... 42

3.2 A Model for Designing and Managing the Dynamics of a Project Delivery System.......................... 45

3.3 Uses of the Project Delivery System Model .. 51

4 Research Method ... 54

4.1 Background Information on the Subject Organizations .. 54

4.2 Data Collection .. 55

5 Results .. 56

5.1 Survey Results ... 56

5.2 Organizational Similarities .. 56

5.3 Planning Stage Similarities .. 59

5.4 Design Stage Similarities ... 61

5

5.5 Planning Stage Differences ... 62

5.6 Design Stage Management Differences .. 63

5.7 Organizational Differences.. 64

5.8 Differences with Managing Capacity Allocation ... 65

5.9 Chain of Command Analysis .. 65

5.10 Numeric Answer Results ... 68

5.11 Interview Content Analysis ... 69

6 Discussion ... 74

6.1 Reconciliation to the “Iron Triangle” .. 74

6.2 Stage-Gate Support of Agile .. 76

6.3 Implications ... 77

7 Conclusions .. 80

7.1 Research Conclusions .. 80

7.2 Limitations ... 81

7.3 Future Work .. 82

References .. 83

Appendix 1: Interview Guide and Survey Questions .. 85

Interview Guide ... 85

Survey.. 85

Appendix 2: Survey Results from the Software Development Teams .. 87

6

Table of Figures

Figure 1: Typical Activities, Agents and Structures for Managing Agile Software Development 9

Figure 2: Fixed vs. Flexible Attributes of Agile and Stage-Gate Project Management Strategies [2] 11

Figure 3: Strategic Sharing of Resources Across Multiple Projects [8] ... 16

Figure 4: A hierarchical progression to the application of strategies for supporting team coordination

[10] .. 17

Figure 5: the SECI-Ba Model for Explaining Knowledge Generation .. 18

Figure 6:Summary of Project Management Activities [10] ... 20

Figure 7: Summary of Various Stage-Gate Representations [11] ... 22

Figure 8: Typical Product Lifecyle Cost Commitments [12] .. 23

Figure 9: The "Vee Diagram" Summarized [13] .. 24

Figure 10: The Agile Manifesto [1] .. 25

Figure 11: The Scrum Framework [17] .. 26

Figure 12: Example Kanban Chart ... 28

Figure 13: Extreme Programming Feedback Loops [20] ... 30

Figure 14: Extreme Programming Framework [20] .. 31

Figure 15: Scaled Agile Framework (SAFe) [22] .. 33

Figure 16: Development Value Stream Identification [22] ... 35

Figure 17: Large Scale Scrum Framework for Large Numbers of Teams [24] ... 36

Figure 18: Example Burn-Up Chart [27] .. 38

Figure 19: Fundamental Causal Relationship of an Expectations Gap ... 42

Figure 20: Basic Stocks and Flows Model for Project Systems [6] .. 43

Figure 21: Agile Stocks and Flows Model per Januszek [7] ... 44

Figure 22: Systems Dynamics Model of a Typical Project System [5] ... 45

Figure 23: Definition of the Expectations Gap within the Project Delivery System 46

Figure 24: Project System Level of the Project Delivery System Model ... 47

Figure 25: Ecosystem Management Loop of the Project Delivery System Model 48

Figure 26: Recursive “System in a System” Nature of the Project Delivery System Model 51

Figure 27: The Project Delivery System Model Focused Upon Expectations Management 52

Figure 28: Structural Design of the Project Delivery Systems .. 57

Figure 29: Key Roles within the Project Delivery System ... 59

Figure 30: Stocks and Flows Model for the Studied Project Delivery Systems ... 62

Figure 31: Organizational and Project Reporting Structures for Project Delivery Systems A and B 66

Figure 32: Organizational and Project Reporting Structures for Project Delivery System C 67

Figure 33: Frequency of Positive Topics: Stage-Gate and Agile Leaders .. 70

Figure 34: Frequency of Positive Topics by Project Delivery System .. 71

Figure 35: Frequency of Negative Topics: Stage-Gate and Agile Leaders... 72

Figure 36:Frequency of Negative Topics by Project Delivery System ... 73

file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166882
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166886
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166887
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166892
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166894
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166895
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166897
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166898
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166899
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166900
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166901
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166903
file:///C:/Users/Tom%20J/Documents/MIT%20Class%20assignments/Thesis/Thesis%20Document/Scope%20Discovery%20in%20Agile%20Waterfall%20Hybrids_Rev3.docx%23_Toc54166905

7

Definition of terms

Project Delivery System: The sociotechnical system, including the people, processes and tools built up

around the mission to deliver a product to the marketplace.

Mechatronic Product: A product that is built of both mechanical and electronic componentry for the

purpose of completing mechanical tasks. Typically, the electronic content is present to provide the

means for controlling the mechanical aspects of the product while it executes its mission.

Embedded Software: The software portion of the mechatronic system. The software is “embedded”

within the system and purpose built for that specific device. Contrast this with application software on a

personal computer, where the software is built and shipped separately from the hardware and is

agnostic to any specific hardware device.

Software Delivery Teams: The groups responsible for delivering the embedded software content of the

mechatronic system. For this study, the software delivery teams are utilizing Agile principles to manage

their team and develop the product.

Project Leadership, or Project Management: While there may be leadership and management roles

specific to the software delivery organizations, this study will use these terms to represent the leaders

and managers of the overall mechatronic project.

Agile Project Leadership: Leadership roles pertaining to the development, management and execution

of the Agile methods for the software delivery teams.

Scope: The tangible artifacts that developers create as part of product development activities. It

includes the final deliverables, as well as any intermediate artifacts that are created for the purpose of

creating the product or managing the project. Refer to Moser [3] for a more complete definition.

Discovered Scope: Scope that is not identified or known to be needed to meet the product’s objectives

until development has begun. It is sometime referred to as “Unknown Unknowns.” Since it is not

understood up-front, it is a disturbance to the project plan while the project is underway.

Expected Performance: What the project leadership perceives as the thresholds for the delivery

schedule, cost, and quality that allow them to determine if the software delivery teams are doing a

“good job”.

Actual Performance: the actual performance of the software delivery teams with respect to the

schedule, cost, and quality of the delivered scope.

Expectations gap: The difference between the Expected Performance and the Actual Performance. This

may be explicit and measured, or implicit and residing within the minds of the project Leadership.

8

1. Purpose

1.1 Motivation:

Agile methodologies gained popularity in the early 2000s following the "Agile Manifesto," published in

2001 [1]. The philosophy resonated with software developers and organizations developing software

products. Since the Agile Manifesto publishing, a large industry has built up around providing

consulting, tools, published books, how-to guides, and other products and services.

The original Agile methods grew from the business scenario of a single team doing development for a

given customer. Those involved with the original agile methods designed them to utilize direct

customer contact with the team. The customer frequently reviews the product deliveries and provides

acceptance or guidance for corrections in the moment.

A challenge with the original classic Agile methods has been applying the methods to organizations with

many dozens to many hundreds of people working on a single project simultaneously. In this situation,

it is no longer practical to have the actual customer review results from each of the many teams

involved. Agile framework developers have added provisions for representing the customer within each

team. These provisions effectively become the project management activity of the project within the

organization. In addition, large projects spread across multiple teams requires the results of their

efforts to contribute to the emergence of not only a desirable product but at an acceptable cost and

schedule.

Another dimension to the challenge of managing software delivery projects occurs when the delivered

product is a mechatronic system. Mechatronic systems have embedded software controlling the

system’s mechanical devices. This scenario creates dependencies between Stage-Gate managed

hardware development and Agile software development. How do the additional dependencies

supporting these mechatronic systems' design needs get handled within the Agile project management

strategies?

Project managers face a dilemma when leading the delivery of complex electromechanical systems with

substantial electronic software content. Planning and managing the project with classic Stage-Gate

approaches have been a proven method to support mechanical hardware's project management needs.

However, many will argue that software development is better supported using "Agile" methods that

favor incremental delivery flow-based process control. Project planning is accomplished differently

within these two paradigms. Stage-Gate methods expect the planning to occur up-front and the scope

to remain stable. Agile frameworks provide team-level tactical planning of small tasks. Agile expects

small work units to be delivered to the team, leaving the project decomposition and prioritization of the

larger system to be done by the customer. Neither paradigm provides for a path to support the other.

Nevertheless, we often see organizations attempting to utilize both approaches within a single project,

having to create the mechanism and behaviors to force some form of effective exchange and

coordination between them.

9

This study seeks to identify what mechatronic product delivery system leaders create to align the scope

and schedule expectations when developers discover additional needed scope as the project progresses.

It will also identify if structural, procedural, and behavioral attributes utilized by the project delivery

system leads to what leadership considers successful software delivery within these hybrid

organizations. This study will accomplish this by investigating several project delivery systems that have

stable and long-running experience with operating in Agile frameworks. The study will use

observational data, interviews, and surveys to quantify the findings. The results will assist those who are

looking to improve the methods to manage projects within organizations using Agile methodologies so

that they may be more effective in the delivery of successful projects.

1.2 System of Interest

Figure 1: Typical Activities, Agents and Structures for Managing Agile Software Development

The system of interest for this study is the project management activities that support development

teams creating software that controls large, complex electromechanical systems. To assist in

understanding the problem statement, consider the situation in Figure 1, which summarizes the typical

sequence of activities for software development within the project delivery system and the interfaces to

the leadership of the mechatronic product development project. To the left of the activities are some of

the structural elements related to this system, and to the right are the typical agents executing the

activities. This system is part of a larger sociotechnical system, with many development teams working

10

collectively to deliver the overall software solution. Each development team supports one or more

development programs that are ongoing at a given time. The leadership at the management level of the

overall mechatronic product uses a traditional Stage-Gate approach for its project management. The

software development organizations developing solutions for the mechatronic projects have adopted

Agile methodologies (discussed below) many years ago using outside consultants and formal training.

Thus, the development teams operate in a stable organizational culture that expects the use of the

prescribed methods and ceremonies that they consider part of its adoption of Agile.

The following introduces the typical activities related to delivering on a project, as reflected in Figure 1.

Identify Requested Software Scope:

The leadership of the mechatronic project completes this activity. The deliverable is documented

expectations of what is to be delivered by the organization's software development part. Many things

impact the effort the electromechanical project planners apply to the activity, including the complexity

of the software functionality asked for and the specificity of the performance and quality captured in the

request.

Software System Decomposition:

Developers need to decompose the large, complex systems into a set of smaller activities so that many

teams can work in parallel. The amount of effort applied, the time of completion (e.g., up-front

planning, or later during the development activities), and the decomposed units' size and specificity

impact the effort involved with this activity.

Product and Team Backlog Creation:

This activity identifies the work assignments, known as 'stories' and the deliverables of the story. Stories

are small in scope, usually of a size where the design, build, and test activities for delivering the scope

can be completed in a consistent, fixed amount of time, usually, 1 to 4 weeks depending on the Agile

framework. Stories are prioritized within a product backlog where the entire scope of the project is

captured and prioritized so that developers deliver the most critical work first. Each story is assigned to

a team and will be pulled into the iteration backlog when it has the capacity for it. Agile frameworks

allow for teams to have the right to reject stories if they are not sufficiently defined. However,

leadership expects the teams to adhere to the assigned priority for determining what to pull in next.

Project effectiveness is altered depending upon the effectiveness of establishing and delivering the

highest priority work first, the clarity of the expectations for the stories, the effort applied by the project

owner and the developers to create the backlogs, and the ability for the plans built into these backlogs

to remove/manage dependencies.

Agile Development:

Agile development includes all the design, build, and test activities required to deliver the scope

incrementally. While a discussion of these items is beyond this study's scope, there are several items

related to project planning and management. This includes dependency handling, effort allocation

across multiple projects, and the overall number of stories in progress at a given time.

Software development teams will often find that the planned effort for delivering a story will take longer

than what was initially estimated. They may also find they need to deliver more things than initially

planned to deliver upon the project's functional expectations. We will refer to this as discovered scope,

and it presents a challenge to project management because additional scope requires additional time (if

11

resources are fixed). However, the mechanical systems are relying on the software to be available at a

specific date.

Feedback Loops:

The Agile development activity provides feedback for how the teams are progressing on the stories.

They also identify missed scope and new scope opportunities. Discovered errors requiring rework are

added back into the backlogs, and risk information is relayed to leadership. Organizations differ in how

they respond to this feedback, and this can impact the project’s success. These differences include the

effectiveness the feedback has on managing the expectations of the project leadership (thus changing

the expected scope and date), the ability for the organization to re-plan, managing the influx of new

scope, the number of planning resources available, and the ability to apply more resources when

needed.

One challenge with hybrid project management methods is in defining success. See Figure 2. Stage-Gate
approaches typically define the project's scope, then estimate the time and cost of the project, and then
compare the actual scope, cost, and schedule to the budgeted predictions. Agile methods start with
fixed resources and then focus on developing the most important things first. When the delivery date
arrives, an Agile system will deliver a valuable product, regardless of how much actual scope is present.
If deemed valuable, developers pursue a second release with the next batch of the highest priority
scope. This study will discover how these hybrid project management methods define success where
success is the level of satisfaction the leadership has with the scope, schedule, and cost of the delivered
software content.

Figure 2: Fixed vs. Flexible Attributes of Agile and Stage-Gate Project Management Strategies [2]

12

The project delivery system's structural attributes include the formal and informal activities and roles

that exist for project management purposes and the formal and informal organizational reporting

structures. It includes the following:

• The presence of any leadership teams, development teams and the responsibilities of those

teams.

• The alignment of individuals or teams to specific activities and allocating of specialists into the

team. The attributes of the solution itself, such as the relative size and complexity of the scope

and how interdependent it is with the mechatronic hardware.

• The design tools, management tools, and Information Technology infrastructure available to the

teams.

Procedural attributes are the formal and informal processes and activities executed by the agents filling

the roles. This includes the following:

• The processes used for formulating and delivering the requests for scope from the software

delivery teams. The processing and decomposition of those requests into actionable tasks by

the software delivery teams.

• The methods used to monitor delivery progress and quality and the processes that enable

steering and managing the software development teams.

• The formal communication and coordination activities, such as meetings and reviews, within

and between teams.

• The documented processes and frameworks used to guide the project execution and timing of

the activities mentioned above.

Behavioral attributes include the skill sets, capabilities, culture, and social behaviors that the agents

utilize while completing the activities. It includes the following:

• The amount and quality of informal communication that the agents complete and the

establishment of relationships, networks, trust, and rapport that the agents create to manage

the project.

• The skill with defining and communicating the expectations of the tasks, the ability to focus the

attention of the team(s), and to manage project scope.

• The ability to receive and deliver both good and bad news as feedback and work together as a

team.

• The amount of effort that the agents put into the activities and actions that they take.

13

System of Interest = Management System for the Software Development of Complex
Electromechanical Products

Emergent Property of Interest = Perceived Success with the Software Delivery

Attributes Influencing Success

Structural attributes Procedural Attributes Behavioral Attributes

Role definitions Work execution methods Communication skills

Reporting structures Methods for identifying scope Relationship building and
management

Team organizational structures Processes for decomposing the
request.

Networking

Distribution of skillsets Project monitoring methods Trust and rapport with
leadership

Size and complexity of the
requested software system

Communication activities Expectations management skills

Team locations Coordination activities Scope management

Team co-location Project estimation methods Attention management (of self
and others)

Communications infrastructure Process documentation and/or
frameworks

Effort applied to each of these
activities

Types of design, management
tools available

Relative execution timing of the
above activities

Existence and availability of
support teams

Prioritization and attention
allocation activities

This paper will first summarize the attributes of software that challenge classic project management

techniques. It then briefly reviews traditional Stage-Gate frameworks, three classic Agile frameworks,

and newer frameworks that scale the classic Agile methods to large organizations. Then it reviews hybrid

systems that combine Agile and Stage-Gate frameworks. A method for assessing a project delivery

system's completeness is proposed based upon System Dynamics principles and the best practices

identified within the Project Management Book of Knowledge [2]. An experimental design is discussed

which intends to identify the techniques used and the effectiveness of those techniques in managing the

ongoing discovery of required project scope. The paper then closes with conclusions and possible next

steps.

14

2 Literature Review

2.1 The Nature of Software:

Using software as a medium for making solutions has several inherit attributes that cause project

management challenges. Leffingwell [4] discusses several of these attributes and how they are not

addressed by classic project management practices. Each of these items is expanded upon below.

1. It is not possible to define accurate requirements for software projects upfront.

2. Requirements for software products change rapidly, causing the initial capture to become

quickly outdated.

3. System integration, when completed at the end of the development activities will not go well

and will drive a large amount of rework.

4. Software innovation activities cannot be predicted.

5. Software is easy to refactor.

As a rationale for item one, Leffingwell [4] asserts that, as opposed to mechanical systems, software is

intangible. Thus, one does not have the luxury of drawing a picture of what is wanted like for a

mechanical product. Therefore, even though the customer and the developer may go through a

rigorous effort to explain and document what is required, the customer and developer will still not have

an identical understanding of what is expected. In addition, the intangible nature of software increases

the likelihood that the customer may not realize that what was asked for. Thus, the requirements do not

match what was wanted. Once the product is delivered, the customer will realize the shortcomings in

what was asked for and therefore change the requirements to match what was really wanted.

As a final rational for item one, Leffingwell [4] asserts from his experience that when software solutions

are delivered and the customer begins to use it, the customer will change their behavior in response to

the new software and then want something different. Effectively, Leffingwell is calling out the fact that

the customer and software are part of a Sociotechnical System, where the behavior of the agents of a

system and the attributes of the instruments of the system are simultaneously changed by the influence

of the other.

The rationale for item two is based upon an assertion, likely coming from his experiences, that the

expectations of software products rapidly change, and that this change is so rapid, that the needs of the

product will change substantially even during the time that the product is being developed. He is

effectively calling out that products using software solutions are evolving so rapidly that the classic, up-

front planning approaches of classic project management methods cannot keep up. Any requirements

that are captured during up-front planning are likely to become outdated as the project progresses.

Item three ties back to the challenges with working with a medium that is intangible and pliable in

nature. This leads to the inability to explicitly manage the evolution of the interfaces being created and

modified by many teams working in parallel and results in integration issues to be created, but not be

identified until the end of the project when the integration work actually occurs. This ultimately causes

the integration activities to take much longer than predicted.

15

With item four, Leffingwell [4] calls out two uncertainties that exist during the planning phase of a

project which lead to the inability to estimate the time it will take to create software

• Unknown Unknowns: the existence of things to do that are not identified during planning.

When it is identified during the development, we refer to it as discovered scope

• We are not good at predicting the actual time it will take to develop the tasks that we know

about.

Leffingwell [4] asserts from his personal analysis and studies that software teams will underestimate

how long it will take to develop a given software artifact by at least a factor of two. He claims that the

sources of error in the estimation come from two sources; 1) assuming that there is no rework, and 2)

software development is innovative by nature, and therefore will have discovery activities that are

uncertain in length.

This is consistent with the observations of Brooks, 1995 [5] regarding the struggles to predict the actual

completion time and effort associated with software development projects. System dynamics principles

have been used by many [Lyneis and Ford, 2007 [6]] to quantify the emergent properties of a project

delivery system when initial scope and schedule estimations are not accurate. Januszek, 2017 [7]

attempted to explain the impact of unknown unknowns by extending the use of systems dynamics to

explain an Agile project management system. These efforts will be discussed with more detail in a later

section

Item five is essentially identifying that writing lines of code is cheap and fast. It is not like mechanical

hardware where there are extensive costs in procuring the materials, fixtures, machining activities, etc.

and all these activities take large amounts of time to procure and execute. Software developers can

replace lines of code in seconds, and programming tools that enable this to occur quickly are relatively

cheap. This is a key attribute of software that enables many of the Agile design principles.

2.2 Other Causes that Decrease Delivery Performance

Developers and development teams have a finite amount of effort available for a given unit of time.

They are also faced with many competing requests for the application of that effort. The following

paragraphs illustrate additional challenges that are difficult to account for with up-front project

planning.

Innovation vs Delivery: As discussed above, software development is innovative by nature. Thus, the

development teams engaged in creating software are “innovation teams” as discussed and summarized

by Thayer et. al, 2018 [8]. Innovation teams have the responsibility to identify new and innovative ways

to solve problems, ie. “thinking”. They are also responsible for delivering these new solutions to

production, ie. “doing”. Thus, the team faces a paradox in that it must possess the skillset for innovation

and delivery and manage the allocation of time and attention to each of these activities. Since software

is so cheap and easy to change, one can conclude that software development teams have an extra level

of challenge with the transition between innovating and delivering because of the relative ease to try

new ideas with little need to coordinate with others in the moment. It is easy to stay within the

innovative work activities at the expense of delivery.

16

Multiple Projects: Some organizations assign product teams to single projects, while other organizations

have a team working on many projects at once. The Project Management Institute [2017] [2]summarizes

this dependency using Figure 3.

Figure 3: Strategic Sharing of Resources Across Multiple Projects [8]

Project Management Efforts: As is often part of project management best practices, development

teams typically will have some responsibility for tracking and reporting progress on the project(s) that

they are working on. This results in effort consumption in the form of written status reports, status

meetings, and/or participation in project management/steering committees.

Coordination: When the project is large and complex, the scope of the project becomes larger than

what can be completed by a single development team, thus the project will be decomposed into smaller

activities that deliver pieces of the overall system. Multiple teams will then be formed to work on the

different activities in parallel. With this decomposition and team allocation comes the introduction of

interfaces between different elements of the product and the product teams that are engaged. Effort

must be applied to manage these interfaces and coordinate the efforts of the many teams. Moser and

Wood, 2015, [9] discuss coordination as an activity that it has no direct product, it is not performed

alone, and it often is done unconsciously. They continue by adding that complex engineering projects

17

and the trend of having teams distributed add to the effort to coordinate and then offer a model which

reflects the coordination as a co-dependence between teams. Should one or both teams fail to allocate

sufficient attention to the need for coordination, progress will slow, quality will decrease, and/or rework

can be required.

The research of Galbraith [10] further demonstrates the need to apply effort towards coordination

activities. He proposes a model that describes the organizational response to the need for coordination

as a need to process information. He then describes several information processing constructs that

allow for the necessary decision making and action plans to be formed which allow for effective

coordination [Figure 4.

Figure 4: A hierarchical progression to the application of strategies for supporting team coordination [10]

Knowledge Creation and Transfer: Maintaining and improving the knowledge within the organization is

an important activity for the sustainment of organizations engaged in new product development.

Nonaka, et. al. describe the need for companies, and thus the teams and individuals within the company

to allocate effort to two categories of activity required for knowledge creation, exchange, and

management: SECI, the creation, capture, and transfer of knowledge, and Ba, the creation and

maintenance of an environment that facilitates the SECI activities [Figure 5]. These are continuous and

dynamic activities that compete for attention with everything else that a development team must do.

18

Figure 5: The SECI-Ba Model for Explaining Knowledge Generation

2.3 Project Management Best Practices

The Project Management Book of Knowledge (PMBOK) [2] provides a general, overall discussion of the

best practices for setting up and managing projects. It asserts that project management as a discipline

helps organizations to:

• Meet business needs

• Satisfy stakeholder expectations

• Be more predictable

• Increase chances of success

• Deliver the right Products at the right time

• Resolve problems and issues

• Respond to risks in a timely manner

• Optimize the use of organizational resources

• Identify, recover, or terminate failing projects

• Manage constraints (scope, quality, schedule, costs, resources)

• Balance the influence of constraints on the project

• Manage change in a better manner

It continues with the assertion that project management should be considered a strategic competency

within organizations because of its ability to:

• Tie project results to business goals

• Compete more effectively in their markets

• Sustain the organization

19

• Respond to the impact of business environment changes by appropriately adjusting project

management plans.

A major portion of PMBOK is dedicated to the creation of the “Project Management Plan”. It defines

this as “the document that describes how the project will be executed, monitored and controlled, and

closed”. After applying a Systems Thinking perspective to this definition, one would conclude that the

project management plan is the creation of the Project Delivery System that will be used to deliver the

desired product or service.

PMBOK categorizes the activities that are part of effective Project Management Plans into “Project

Management Process Groups” and “Project Management Knowledge Areas”. See Figure 6. The activities

themselves are the project management best practices that should exist within a Project System. The

book states that the Project Management Plan, should include these activities unless there is specific

reason to scale them out. While the legacy of PMBOK is based upon Stage-Gate frameworks, the book

asserts that these activities are important for any project system, no matter if it is based upon Stage-

Gate, Agile, iterative, or any combination of these.

20

Figure 6:Summary of Project Management Activities [10]

21

2.4 Stage-Gate Frameworks

Stage-Gate frameworks have been utilized for decades and are quite mature in their definition and use.

They get their name from their typical pattern of activities (stages) followed by a leadership review

(gates) which grants permission for the project to continue to the next stage. They are built upon the

notion that the cost of correcting errors increases by orders of magnitude during the life of the project,

and therefore, applying extra effort up-front to thoroughly plan and specify the expectations and

deliverables of the entire project prior to any development activities results in improved project

performance in the dimensions of scope, cost, schedule, quality, etc.

Stage-Gate frameworks tend to complete a sequential set of activities on the entire breadth of t project

within each stage prior to beginning the work in the next stage. The work within any given stage

provides the knowledge needed to decide if the project is still worth-while to pursue. Approval to begin

the work in the next stage is granted after a leadership review, the “Gate” of the Stage-Gate framework.

The stages are typically defined to align with the product lifecycle, which typically include stages for

concepts, development, building/manufacturing, operation, and disposal. Several Stage-Gate

frameworks, as summarized by Forsberg, K., H. Mooz, and H. Cotterman, 2005, [11] are provided in

Figure 7.

22

Figure 7: Summary of Various Stage-Gate Representations [11]

Complex engineering projects are expensive to execute [12]. They also tend to accrue most of their

expenses in the latter stages of the project [Figure 8]. Stage-Gate frameworks are built to reduce the

overall cost of the project by preventing expensive rework cycles in the latter stages of the project. The

framework addresses this with using the notion that everything about the customer expectations of the

product can be identified and fixed up-front through analysis and simulation. Stage-Gate frameworks

often utilize systems engineering practices such as stakeholder analysis, decomposition, architecture,

23

requirements capture, and simulation activities in the early stages to minimize the opportunities for

errors that would cause re-work in later stages.

Stage-Gate frameworks are built upon an underlying assumption that there is nothing of value to deliver

until the entire span of the specified scope is deliverable. The stages progress everything about the

project along at the same rate until it is all ready for the next stage. This most basic form is therefore

quite reliant on the up-front planning to be correct and that the surprises at the end are minimal. Some

applications of Stage-Gate frameworks include iterative deployments for testing and validation

purposes. These product delivery iterations allow for learning from the overall integration steps to be

acted upon within the project by planning for additional design cycles. Further evolution of the

frameworks yielded the concepts of the Vee-Model [13] where the project scope is broken down into

subsystems and then components. See Figure 9. Then design on the components is followed by

hierarchical layers of validation and verification of the components, then the subsystems, and then the

overall system. Each layer of testing enables a rework loop to be taken on a smaller part of the system

before advancing to the next larger part of the system. A continuation on this notion of iterative

development is the spiral model [14], where the stages are repeated multiple times to yield prototypes

that allow for testing and learning prior to a final iteration to deliver a completed product. See Figure 10.

Figure 8: Typical Product Lifecyle Cost Commitments [12]

24

Figure 9: The "Vee Diagram" Summarized [13]

Figure 10: The Spiral Model [14]

25

2.5 Agile Manifesto

In light of the attributes and challenges with software development discussed above, a group of

influential software development practitioners met in 2001 in Utah and released what has been titled

“The Agile Manifesto” [1].

Figure 11: The Agile Manifesto [1]

This declaration has served as the vision that has guided the exploration and development of new

management models for organizations engaged in software development. From this declaration came

the following list of guiding principles [15], that provide more clarity to the statements in the Agile

Manifesto:

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable

software.

2. Welcome changing requirements, even late in development. Agile processes harness change for

the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4. Businesspeople and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they need

and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users should

be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity–the art of maximizing the amount of work not done–is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

26

12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts

its behavior accordingly.

To summarize these principles in terms of scope, schedule and cost, Agile principles call for additional

scope in the form of more integration and build events, as well as more release events and customer

evaluations. This extra work is offset by a reduction in the effort required for documented

requirements, planning and the overall troubleshooting of integration problems. It also implies an

assumption that the scope can be delivered incrementally, and these incremental deliveries have value,

even though the rest of the identified scope is not complete.

2.6 Scrum

Scrum is one of the major frameworks utilized by teams to embrace agile practices. The framework is

attributed to and first published by Ken Schwaber and Jeff Sutherland in 1995, known as “The Scrum

Guide” [16]. The framework is summarized in Figure 12 below [17]. As a framework, it identifies a

fundamental structure, but stops short of prescribing detailed, step-by-step processes for the structural

elements of the framework.

Figure 12: The Scrum Framework [17]

Schwaber and Sutherland explicitly call out empirical process and control theory, or empiricism as the

theoretical guide for this framework. They specifically identify transparency, inspection, and adaptation

27

as key attributes of empiricism that are enabled by Scrum. The framework itself delivers upon these

attributes using backlogs, sprint planning, daily scrums, and the sprint review.

Backlogs serve as the work breakdown structure in Scrum. There are two backlogs in the Scrum

framework, the product backlog and the sprint backlog. The product backlog serves as the prioritized

“to-do” list for the overall product. It is created and maintained by the product owner, who has sole

discretion as to the content and priority of the items listed. The sprint backlog is the “to-do” list for the

team for the next incremental unit of time (a “sprint”). In Scrum, sprints set the delivery cadence. It is

expected that incremental additions or improvements to the product are delivered with each sprint.

The sprint backlog is the scope that the scrum team agrees to deliver in the next sprint. The sprint

backlog is built during a “sprint planning” event, where the team takes items from the product backlog

into the sprint backlog. Each item is decomposed as needed and additional action items required to

deliver upon the backlog items are added. In effect, the backlog serves as the both the list of

deliverables (Scope) and the team plan (work breakdown structure) for the sprint.

There are three key activities that provide the feedback mechanisms for monitoring project delivery

progress and team performance, The daily scrum, the sprint review, and the sprint retrospective. The

daily scrum is a deliberately short meeting where team members identify what has been done, what will

be done that day, and what help they need. Data and knowledge from this meeting are intended to

allow for the team to adjustments to the work plan (sprint backlog). The product owner also

participates and monitors for information that may cause the need for adjustments to the product

backlog. Sprint reviews exist to evaluate the deliverables against the needs of the project. If the

deliverables are not deemed to meet customer expectations, due to improper execution, improper

definition of what was needed, or because the design concept was inadequate, the information will be

used to add to or change the product backlog. The information may also feed into improving the

processes that the team uses to deliver. The sprint retrospective is an assessment of the effectiveness

of team execution. Items identified during this meeting are used to determine actions that will improve

team performance.

2.7 Kanban

David J. Anderson is credited as the creator of the Kanban method for software development [18].

Kanban is a methodology that takes in considerable influence from Lean manufacturing principles which

aim to reduce inefficiency, waste, and variability from manufacturing processes. Kanban pursues these

same goals as its primary mission.

28

The Framework of the Kanban methodology models the typical activities a given team uses to deliver on

the requested functionality. It is a flow model where the requests are tracked through the different

work activities that the team completes to deliver upon the request. One could use an analogy of the

layout of a factory floorplan, where a request for a product comes in on one end of the factory, and then

all of the activities are visible as machines that complete the manufacturing activities along the way and

then the product comes out the other end. These are called “flow models” because the requests come

in and products come out continuously, with a number of requests “in process” and working their way

through the various activities. Kanban methods often depict these models with the use of a “kanban

board” as illustrated in Figure 13 below.

Like Scrum, Kanban is looking to bring structure to the development process so that it can be measured,

and therefore, improved upon. Kanban aims to identify predictability by driving for consistency in the

time it takes for a request to be processed through the team’s development activities. The flow model

allows for process bottlenecks and blocked work to be readily identified so that remedies can be found.

This creates mechanisms for continuous improvement of the development activities and thus ever-

increasing productivity.

In addition to the modeling and monitoring of the flow of requests through the team activities, Kanban

reinforces a culture that focuses upon efficient delivery with the use of several metrics that focus on

measuring consistency and throughput speed and through the limitation of “Work in Progress”. A work

in progress limit constrains the number of requests that can be within the team’s workload at a given

time. To work on the next request, one of the earlier requests needs to be completed and expelled

from the team’s workflow. This drives the team to focus on completing requests instead of allowing

them to reside in an incomplete state for long periods of time.

The work in progress limit also structures the interface to project management activities. Strictly

speaking, the framework of a Kanban model only contains a provision for a short list of requests, known

as an input queue, that are ready for the team to pull-in to their workflow system when their work in

Figure 13: Example Kanban Chart

29

progress limit allows. Any prioritization decisions regarding what is placed into the input queue are

handled by project management activities outside of the workflow model and outside of the team. The

decisions as to what the team pulls from the input queue is prescribed by rules, such as a First-In-First-

Out approach, or some type of prescribed priority system where project management activities assign

priority classes to the requests and the team pulls-in requests based upon these classes.

2.8 Extreme Programming (XP)

Kent Beck conceived the Extreme Programming (XP) concept in the mid 1990’s. His work was first

published as a book in 1999, and a second edition was released in 2005 [19]. XP intends to improve the

efficiency and quality of software development by having teams change their methods and practices for

creating software. Beck identifies “Values” that are at the philosophical core of the XP concept. Then,

“Principles” begin to focus the value statements to more tangible, actionable ideas. Finally, “Practices”

prescribe specific execution practices that teams employ. These are summarized in Table 1 below. Like

Scrum and Kanban, the primary focus is on execution, but there is some discussion about project

planning and management and is summarized in below. A detailed review of all these items is beyond

the scope of this paper and will be left as an exercise for the reader.

Values Principles Primary Practices Corollary Practices

Communication Humanity Sit Together
Real Customer
Involvement

Simplicity Economics Whole Team
Incremental
Deployment

Feedback Mutual Benefit Informative Workspace Team Continuity

Courage Self-Similarity Energized Work Shrinking Teams

Respect Diversity Pair Programming Root-Cause Analysis

 Reflection Stories Shared Code

 Flow Weekly Cycle Code and Tests

 Opportunity Quarterly Cycle Single Code Base

 Redundancy Slack
Negotiated Scope

Contract

 Baby Steps Ten-Minute Build Pay-per-Use

Accepted

Responsibility
Continuous Integration

 Test First Programming

 Incremental design
Table 1: Values, Principles, and Practices of Exterme Programming

Feedback is discussed as a value within XP to cope with the unknown and/or evolving expectations of

what is to be delivered and the coding techniques for delivering it [Figure 14]. XP values short and rapid

feedback loops, even as fast as multiple times per day. As discussed by Leffingwell above, Beck asserts

that requirements and plans built ahead of time become irrelevant quickly, thus information feedback

from what has been developed to date is needed to keep the plans relevant. The communication value

supports this need for feedback by identifying the importance of distributing the information.

30

Several principles exist to realize value from the feedback. Flow is a principle that calls for the steady

delivery of software products by identifying items of incremental value, completing all of the design, test

and delivery activities in quick succession so that the results can provide value to the customer. It also

provides information back to the organization so that it can learn and adjust right away. Reflection is a

principle that calls for the regular consumption of the feedback information and then to act on it.

Reflection occurs from the perspective of identifying improvements to delivery methods and from the

perspective of adjusting what is being asked for based upon the learning from what was just delivered.

The practice of identifying “Stories”, small pieces of functionality that can be developed and delivered in

a week, in conjunction with the practices of the ten-minute build, weekly and quarterly cycles,

incremental deployment, and continuous integration enable the team, the larger organization, and the

customer to gather information regarding product attributes and the capabilities of the development

organization.

Economics is also called out as an important principle. The discussion about economics cites the

importance of the time value of money. Deploying and selling products sooner is valuable to the

business, and the practices identified above related to providing rapid feedback also enable the scope

that is complete to be packaged and sold right away. In addition, Beck promotes the practice of

negotiating pay-per-use or subscription payment models allow the financial structure to decouple

business equation from the fixed scope model. It allows updates to flow to existing consumers more

readily and enables businesses to generate revenue in the form of new subscribers by allowing new

capabilities to be released sooner without waiting for larger, less frequent deployments of pre-defined

scope.

What is notably missing from Beck’s book is an explicit framework. Beck explains that his definition of XP

has evolved beyond that of a methodology to “…a style of software development focusing on excellent

application of programming techniques, clear communication, and teamwork…”. His colleague and

collaborator on XP, Don Wells, has published his own description of XP [20] along with diagrams which

summarizes the flow of ‘stories’ from creation to delivery [Figure 15]. From these diagrams, we can

better understand how project management and prioritization come into play. Stories are small units of

deliverable scope that have sufficient description to allow a developer to act on them. In XP, stories are

no larger than what can be completed in a week, including design, coding, building, and testing.

Figure 14: Extreme Programming Feedback Loops [20]

31

Customers are responsible for determining the stories and the priority of the stories. The team helps

the customer create the stories by completing small research activities, called “Spikes”, that provide

information to refine the stories. Stories are aggregated into a release plan, which is the list of stories

desired for the next release. This list feeds the iteration plan, which is the list of things that the

developers will do in the next iteration. Iterations are a fixed period of calendar time that the team

plans to deliver solution to the stories agreed to as part of the iteration plan.

Figure 15: Extreme Programming Framework [20]

2.9 Summary: Project Management within Classic Agile Methodologies

The Agile Manifesto, Agile principles, and three classic Agile frameworks, as expressed by their authors,

have been developed with the primary goal to care for, and enable software development teams to

deliver efficient, and high quality software, and to allow development teams and organizations to

continuously improve upon their practices based upon feedback information provided by the

frameworks. The fundamental organizational unit that the frameworks are built around is the single

software development team. The team is self-organizing, long lasting, and is assumed to have all the

needed design, build, and test capabilities present within the team and that anyone on the team can

accomplish any of these duties. The authors of the frameworks do speak to scaling of the frameworks to

larger organizations, but these techniques are not formalized within the frameworks.

Agile frameworks are built on the assumption that the inbound work requests fit into short delivery

increments, ranging from one week to one month in size. Completion of all design, build, and test

activities for the work request is expected to be completed within the delivery increment. This enables

the strategy of building frequently and then reacting to what is learned from using/testing the build

product. Creation of these small units of requested scope is the responsibility of the customer, or the

agent of the customer. For each of these requests, the customer also defines what it takes for the

requested work to be considered done. The developers on the team have the right to refuse to work on

32

the requested work item if it is not defined clearly enough or if it is too big. The customer is expected to

be embedded within the team so that active negotiation and collaboration can happen as needed.

A team that has embraced Agile will not take on project management ownership by any of the

developers. For each of these frameworks, the list of requested units of scope are created by the

customer (or agent) and placed in prioritized order. The development team simply pulls in the next

request when it has capacity to do so. In effect, prioritization decisions for project scope within the

team do not exist.

None of the frameworks address the prioritization of administrative or teaching/learning activities at all,

but Beck writes about how the small size of the units of requested scope naturally addresses the need

for collaboration outside of the team because the scope of the request is so small that there is no need

for coordination. This implies that the customer (or agent) has taken the responsibility to resolve any

coordination needs while making the prioritized list of requests. A second trait of these frameworks

that removes dependencies is that all developers have equal access and edit rights to all parts of the

code for the system, thus removing any dependencies related to access.

2.10 Scaled Agile Framework (SAFe)

Scaled Agile Framework (SAFe) [21] [22] is the decades-long culmination of the work of Dean Leffingwell

which provides guidance and a framework to address the key the challenges when trying to scale up the

classic Agile frameworks discussed above:

• Operationalizing the classic Agile frameworks across large organizations with hundreds or

thousands of software developers.

• Providing methods and structure required to provide the small units of work assignments that

allow development teams deliver incrementally using Agile techniques.

• Providing frameworks to build project and portfolio planning and management activities that

are tailored to the attributes of products that are built from software.

• Providing a roadmap and guidance to transform entire enterprises to SAFe

The SAFe framework is summarized in Figure 16. In addition to being the title of the framework, SAFe is

the business brand name for the large consulting, training, and certification business that he has built

around his work. What follows is a discussion of several aspects of the framework that pertain to the

research at hand.

At the team level, SAFe leverages a mixture of the classic Agile frameworks, utilizing the repeating

cadence and roles of Scrum to provide the initial structure. XP practices are called for to enable

incremental deliveries and product quality. Kanban techniques at the team level provide feedback

measurements of throughput and help to identify bottlenecks and process improvement opportunities.

SAFe does speak to the importance of continuous improvement and identifying impediments that slow

down the delivery of the team, but these aspects are discussed proportionately less than the classic

Agile frameworks, in favor of the topic of project management.

33

The SAFe framework places heavy emphasis on providing for alignment across teams. Several layers of

project management are provided within the framework. These layers have responsibility to process and

prioritize customer requests into a coordinated set of action items for the development teams to pull

into their work queues. SAFe synchronizes the calendar of all the design teams so that they start and

end their design iterations at the same time. This aligns the planning times, which enables teams to

coordinate their activities and manage interactions by actively planning time into their schedule for the

work.

Coordinated team planning is further enhanced by defining a planning time unit larger than a sprint,

called the Program Increment (PI), which aligns with a fixed number of sprints. The planning increment

serves to identify a larger unit of planning and delivery cadence. Coordinated Program Increment

Planning Events, bring design teams together, in the same room if possible, to plan the next larger

increment of value that will be delivered. In the planning event, everyone first hears from the product

managers about the vision and bigger picture goals for the next Program Increment. Then all the teams,

with heavy support of their product owners pull work requests into their team queues and define their

incremental deliverables for each of the design iterations of the next program increment. This event

provides for alignment of work across many teams to converge to the delivery of larger, more complex

systems.

The Program Increment Planning Event is the central activity where project planning efforts are brought

to the scrum teams and where the management of dependencies across teams occurs. When the teams

finish their planning work, they present what they intend to deliver in the next program increment.

Figure 16: Scaled Agile Framework (SAFe) [22]

Product managers can then see immediately if the aggregate plans across the teams are aligned and are

likely to achieve the goal. If needed, adjustments to the team plans are made on the spot.

34

The SAFe framework addresses the long-term planning gap of classic Agile frameworks by defining roles

and methods for processing the requested scope into units small enough for the design teams to act

upon. SAFe defines several project management roles in a hierarchical manner. Each tier has larger

swaths of ownership of the overall scope that the enterprise has in its portfolio. At each level, a backlog

is created to identify the projects to be completed and to manage the priority. Each item in the backlog

at a higher level is decomposed into multiple smaller items for the backlog(s) at lower levels. All levels of

the hierarchy work together to first understand what is being asked for and then decompose these

requests into the units of scope that product owners and teams can pull into their team backlog. Once

pulled into the backlog, they further decompose the scope into units that they can deliver in a design

iteration.

An output of the development team's planning activities is data regarding how long it took to complete

the backlog items. This data, if kept over a long time, becomes the basis for project estimation to occur.

Since the backlog items are derived from larger items on the next higher backlog, the data can be

applied to the next higher backlog items to provide an estimation.

In addressing the planning gap left by classic Agile methods, the SAFe framework re-introduces the

elements from systems engineering and systems architecture disciplines found in traditional Stage-Gate

planning activities. SAFe uses the term "Solution Intent" to represent stakeholder wants and needs,

ConOps information, and requirements capture. It has multiple System Architect roles. SAFe also calls

out the value of Model-Based Systems Engineering (MBSE) as a best practice. SAFe uses these roles and

activities to support the design of the teams' stories so that developers complete the stories with a

minimum of external dependencies, and an improved likelihood that the stories defined will aggregate

to the desired solution. The framework emphasizes that, while these activities and roles are working on

this up-front and ahead of the design teams, it is still not like a Stage-Gate approach because planners

complete the up-front work only to the fidelity required for the current needs. For example, the

product architecture may be designed at a high level to identify the product modules' primary interfaces

and work to specify only one of the subsections in detail. Then the architects work on the details for the

second module while the software developers work on the first module. This allows learning from the

first module's delivery to influence the design of the subsequent modules and supports a continuous

flow for the architects and systems engineering teams. The flow-based structure keeps an organization

and process in place that can react to the continuous scope discovery and new requests from

stakeholders.

Literature for the SAFe framework also includes a framework for deploying SAFe into an enterprise. This

deployment framework emphasizes the need to start at the top with an enterprise design activity, which

first analyzes the customer’s value stream that the organization is providing software for. This is known

as the Operational Value Stream. The software systems that the operational value stream needs to

complete the mission are identified. Then the value streams that provide software development

activities required to deliver the software are designed by the enterprise. These are known as the

Development Value Streams. See Figure 17. Kanban charts are used to capture this design and

development teams are organized around these delivery value streams. This up-front analysis allows for

process optimization to occur, and it also allows for aggregation of the right skillsets. Large projects will

have multiple value streams that deliver different parts of the product needs for the customer. Teams

working within a given value stream are aggregated together for the Program Increment planning

35

events. These groupings are called Agile Release Trains. This pattern allows for the SAFe framework to

scale to any size organization.

Figure 17: Development Value Stream Identification [22]

2.11 Large Scale Scrum (LeSS)

Large Scale Scrum (LeSS) [23] is another example of a scaled agile framework intended to work on larger

organizations and larger projects. This framework builds upon the Scrum framework discussed above

but has some adjustments to the product owner role and backlog management. First, the framework

calls for the teams to work on a single project with a single Product Owner. There is not an

accommodation for multiple projects running through the same set of development teams. The Product

Owner is responsible for the product backlog that is being built by the development teams. If the project

has more than four to eight development teams working on the product, the framework inserts

additional layers of "Area Product Owner" roles to manage the large number of teams. Area product

owners decompose the larger project into the small units of scope, known as"Stories", required for

efficient delivery team execution. It strives to keep the organization very lean. The framework calls for

the addition of an area product owner for every four to eight scrum teams working on the same project.

See Figure 18 [24] for an illustration of the product owner hierarchy.

36

Figure 18: Large Scale Scrum Framework for Large Numbers of Teams [24]

Coordination across the many teams occurs through three formalized methods. The first method is

through the area product owners' efforts as they create the product backlogs for the different teams.

The second is through an additional sprint planning event where all the teams in a given area meet

together with the area product owner and coordinate the necessary interactions. This extra sprint

planning happens on the same cadence as the regular sprint planning. Finally, the "Overall

Retrospective" occurs, where the lessons learned are shared, and requests for process improvement are

coordinated and aggregated into a unified request.

Unlike the SAFe, there is no larger planning horizon provided by Large Scale Scrum. Large Scale Scrum

does not speak about requirements or systems engineering activities. It does not provide for portfolio

planning at an enterprise level. LeSS does speak very directly about the framework's goal to expose

issues within the project delivery system. It defines the role of managers and leadership as being

responsible for improving the project delivery system. They take care of the people and work to remove

impediments that slow down the teams' work. In support of these efforts, the LeSS framework's

principles emphasize systems thinking methods to improve the system that exists for delivering the

product. These principles include systems thinking, Lean thinking, empirical process control, and

queuing theory.

2.12 Hybrid Approaches

Another concept that has emerged for managing projects with large amounts of software content is

known as "Agile-Waterfall Hybrids." As the name suggests, these methods blend the principles and

methods of Agile and Stage-Gate principles and methods.

37

 Cooper [25] offers the following table to describe the differences between Agile and Stage-Gate

methods. He describes Stage-Gate frameworks as "Macroplanning" strategies that include all the

activities related to the conceptualization of a product, all the way through the manufacturing, support,

and retirement. It includes all the functional disciplines required to proceed through the project

lifecycle, including manufacturing, engineering, marketing, and product service.

Table 2: Differences between Agile and Stage-Gate Management Practices [2]

Agile methods are more tactical in their planning horizon when compared to Stage-Gate. They focus

specifically on the planning of engineering activities completed by the engineering and testing teams.

They focus on execution and provide discipline and structure that allow engineers to stay focused on the

task at hand. They also focus on methods to provide feedback as working solutions that can be

evaluated to validate that the planned scope aligns with the customer's value.

Cooper's research indicates that the typical hybrid system applies agile techniques to the design and test

stages of the Stage-Gate framework to leverage the benefits of Agile methods. He cites research

indicating positive results of such a hybrid.

Another example, as illustrated by Bergman and Hamilton [26], speaks of hybrid systems that have Agile

methods applied to the software's design while the mechanical systems are developed using Stage-Gate

methods. This allowed for each solution medium to utilize the method best suited to it.

In these examples, the authors note that merging methods are not without effort and change to meet

both sides' expectations. They also cite the need for macro planning and leadership's willingness to

change how they monitor and lead projects. The fidelity of the tactical planning that Agile brings allows

engineering teams to plan to full capacity, thus forcing leadership to deal with the difficult prioritization

decisions instead of relying on engineering teams to absorb new requests into undocumented slack.

Secondly, the feedback information from Agile teams does not readily translate into standard stage gate

monitoring reports. This means leadership must have it translated, or they must learn the new

reporting formats and what the data tells them about overall progress and performance.

2.13 Velocity and Burn-Up Charts

The concept of "Velocity" is leveraged within SAFe and used to estimate future progress with the

backlog delivery. Velocity is defined as the amount of work a team can complete in a given amount of

time, such as a sprint or a delivery increment. The amount of work done is typically in the units of a

point system used to estimate the size of the work items in the backlog.

38

In practice, a team identifies its velocity by first establishing a routine of estimating the effort in "points"

that each of the backlog items will take. This activity can be known as "sizing" the backlog. The

definition of a point is relative to the team, although SAFe calls for the units to be somewhat consistent

across the teams, such as using a single day of work as a "point." The team then tracks how many points

it can complete in each delivery increment, and the results are averaged over several increments to

determine the "Average Velocity." A team can use its velocity and sized backlog to estimate how long

before it will deliver a certain amount of desired content. The team calculates this by dividing the total

points included in the milestone by the team(s).

Leadership monitors ongoing progress by comparing the actual progress by the expected progress at any

given point in time. It can be summarized and presented using conventional burn-down charts common

to the field of project management. However, burn-down charts miss a crucial item that Stage-Gate

frameworks ignore, and Agile embraces: scope is subject to change as developers complete work.

Therefore, the Burn-Up chart is used. Figure 19 shows a representative burn-up chart, as summarized

by Vergini [27]. The chart tracks two items. One is the work, in story points, that the team(s) complete,

and the other is the growth of the scope included in the milestone. The increase in scope can come

from improved estimates, discovered scope, or new requests added to the milestone. The main

advantage of expressing the data in this way is that it provides more insight into the reasons why a

milestone is not being reached.

2.14 Summary of Project Management Techniques

Figure 19: Example Burn-Up Chart [27]

39

Table 3: Summary of Project Management Tools per Framework

This section extracts the data, methods, and agents involved in answering this question from the

reviewed literature. Table 3 summarizes the roles and tools provided by each framework to forecast the

scope’s delivery date. Each row represents one of the reviewed frameworks. Column one contains the

name of the framework. Column two lists the data that could be used as part of the determination of

the teams’ actual performance. Column three identifies the activities used for forecasting scope at a

given date. Column four identifies the instruments or tools used for communicating the information.

Column five identifies the key people involved with the creation, processing, communication of the

forecasts. Column six lists any formalized interface structure or activity used to share the forecast data.

As discussed earlier, Stage-Gate frameworks assume that the scope can be understood entirely up-front,

and the planning and forecasting activities leverage this assumption by first completing a work

Framework Actual
Performance
Data

Expected
Performance
data

Communication
Tools

Agent to the
Customer

Interface with
the requestor

Stage Gate Time spent,
Money spent,
Tasks
completed,

Work
breakdown
structures and
up-front
estimates on
tasks, money,
and
time required,

Work
breakdown
structures,
Gantt charts,
critical path
charts,
earned value
charts

The project
management
organization
led by the
project
manager

Gate reviews,
Progress
meetings

Scrum Story Points
completed
(Velocity)

Sprint
commitments

Backlogs,

The product
Owner

Sprint Demos,
Backlog
Grooming

Kanban Story
execution
consistency

Stories per
Sprint

Backlogs,
Kanban charts

The Product
Owner

Sprint Demos,
Backlog
Grooming

XP Stories
completed per
sprint

None specified None specified The Product
Owner

Sprint Demos,
Backlog
Grooming

SAFe Story Point
estimates for
stories,
features, and
epics

Story point
estimates for,
stories, features
and epics

Velocity,
Burn Up Charts,
“Sized” Feature
and Epic
backlogs

Product
Owners,
Project
Manager,
Solution
Manager,

Program
Increment
Demos,
Planning, and
Retrospectives

Large Scale
Scrum

Story point
estimates

None specified Velocity
calculations,
Burn up charts

The product
owner

Sprint Demos,
Backlog
Grooming

Hybrid
Waterfall/A
gile

Not stated Not stated Not stated Product
Owners and
Project
managers

Not stated

40

breakdown structure for each of the stages. Then estimates of the time and cost for completing each

activity are generated. The results are captured using a Gantt chart or some similar format that can

summarize the estimation results. Progress is monitored by comparing the actual time or money spent

with the original plan. Communication occurs through formalized gate reviews and periodic meetings of

project management teams, including the project manager and representation from the design groups

involved.

The classic agile frameworks, which focus more on managing the flow of tasks through the team's design

activities, provide backlogs centered on each team as the primary means of identifying the work to be

done. The product owner is designated as responsible for creating the backlog, but backlogs are living

documents that are constantly revised to account for scope discovery, learning, and new requests.

There is no specific guidance for creating forecasts beyond the current sprint. All three of these

frameworks identify a product owner as the agent for creating and prioritizing the backlog and

representing the customer. Ideally, the frameworks call out that the customer should act as the product

owner, but there is an acknowledgment that this is not always possible. Planning sessions and

demonstrations are the means for communicating actual progress outward from the team. It seems

implied that this communication will allow stakeholders to formulate any forecasts that they deem

necessary as an activity outside of the framework.

The three classic Agile frameworks vary somewhat with the generation of forecast data. XP does not call

out a specific method, relying on the prioritization activity alone. The argument for this is that if the

design team is working on the most valuable thing and can release, longer-term estimations are not

needed. The Kanban framework relies on the team and product owner arriving at the creation and

delivery of stories sized to fit within the delivery increment. Then the stories per increment data can be

applied to the backlog to create a forecast. The Scrum Guide [16] does not directly speak of methods to

forecast beyond the current sprint commitments. All the classic Agile frameworks leave predicting the

completion dates of future work unaddressed.

Large Scale Scrum includes more agents and effort within their frameworks for planning and

decomposing larger projects into smaller units. Large Scale Scrum identifies more product owner roles

to manage the distribution and governance of priorities of stories across larger numbers of teams.

However, it does not add to the technique of using story point estimation for projecting on the expected

progress.

The SAFe adds even more structure, roles, and effort to the planning activities. It defines and utilizes

the concept of "Story Points" and "Sizing" activities to create delivery forecasts for items in the backlog.

It also introduces a multi-tiered backlog approach that allows for larger, lower fidelity activities called

"Epics" to be created and estimated early on. These activities are then decomposed to a middle-sized

"Feature," which can be sized before being decomposed again to the "Story" that teams will complete.

This framework provides a method for estimations to be created that reach further into the future with

larger, more abstract, work units listed. This can provide better long-term planning for large projects.

The literature reviewed lacks detail regarding how hybrid Agile Stage-Gate systems provide for the

activities that define the expectations gap. All the documents reviewed speak of the continued

existence of product owners and team backlogs. The documents also identify that Stage-Gate activities

exist for the non-software part of the project system. The documents offer no detail regarding what the

41

management team for the overall project is using for data or communication tools to formulate the

Agile teams' expectations gap. This study intends to expose the details related to how this works.

42

3 A Model for Analyzing Project Organizations

This chapter shares the method used to analyze the project delivery systems' structural and procedural

aspects under study. It begins with an introduction to causal diagrams and the application of systems

dynamics modeling to projects. It continues with a discussion of what a causal analysis reveals when

using the technique to describe the delivery teams' and supporting organizations' actions and behaviors

that exist to deliver sequential and concurrent software projects.

3.1 Causal Diagrams and System Dynamics Modeling

As discussed above, our system of interest is the project delivery system, a sociotechnical system

responsible for delivering solutions for mechatronic products. This system includes the software

developers and the agents and teams that lead and support the development teams. As such, the

dynamics of this system are of particular interest because the effectiveness of the mechanisms that

excite or control the dynamic interactions between the agents, activities, structures, and behaviors will

impact the organization's emergent performance.

Causal diagrams are a useful tool to express the nature of the relationships between attributes of the

system [7] [6]. Causal diagrams are expressed as sequences of nodes and edges. Nodes represent the

variables of interest within the system, and the edges represent the links between them. Edges are

directional and are also assigned a positive or negative sign, representing the type of relationship.

Positive signs identify that an increasing value of one node increases the value of the other node.

Negative signs identify that an increasing value of one node decreases the value of the other node. The

direction of the arrow represents the direction of the cause and effect relationship.

Figure 20: Fundamental Causal Relationship of an Expectations Gap

Figure 20 illustrates this study’s relationship of interest in a causal diagram format. The diagram

represents perceived performance in terms of an "Expectations Gap" that results from the difference

between Leadership’s expected performance and the team’s actual performance. This diagram indicates

that the expectations gap increases with a decrease in actual performance or an increase in the

expected performance.

Expected

performance
Actual

performance

Expectations

Gap

+ -

43

Lyneis and Ford [6] discuss the use of causal diagrams to frame a model that describes how governing

actions reverberate through the sociotechnical system that is delivering a project. The causal diagram is

merged with the stocks and flows modeling concept, Figure 21, that expresses scope flowing from a

stock of “Work to Do” to a stock of “Work Done” or through a rework loop.

Januszek proposed an expansion to the basic stocks and flows model to account for Agile methods, as

summarized in Figure 22. His model accounts explicitly for the discovery of scope. At the same time, the

model includes stocks of "Unknown Unknowns," which is the scope needed to deliver upon the project's

expectations but is not identified at the beginning of the project. Unknown Unknowns are discovered

during regular development activities or are identified as risks which will require explicit scope to be

added to mitigate the uncertainty related to them. This model subjects the discovery of Unknown

unknowns to an approval process while the risk mitigation is added directly to the product backlog.

Figure 21: Basic Stocks and Flows Model for Project Systems [6]

44

Combining the causal diagram concept of Figure 20 with the stocks and flows diagram of Figure 21

provides the causal relationships between the actions taken to control the system's stocks and flows and

how it ultimately impacts the delivery of scope. Figure 23 is an example of such a combination. The

application of system dynamics for modeling project behavior has been considered a successful

endeavor with many extensions of the fundamental model utilized for many project scenarios.

Figure 22: Agile Stocks and Flows Model per Januszek [7]

45

Figure 23: Systems Dynamics Model of a Typical Project System [5]

While the actual creation of an executable model that can simulate a project's dynamics is not the

intention of this thesis, causal diagrams are a powerful modeling tool that will be leveraged for this

analysis.

3.2 A Model for Designing and Managing the Dynamics of a Project Delivery System

Based on the research summarized above, the following framework is proposed, allowing one to

appreciate the dynamic aspects of a project delivery system. This model is intended to represent the

dynamics in the project delivery system, regardless of the management methods applied within the

system. This model is created to assist with expressing and processing the research activities of this

study. However, it may also be useful as a general framework to assist in the design, analysis, or active

management of new or existing project delivery systems.

This model's perspective is defined to be a project delivery system that consists of the organization,

tools, processes, people, and skillsets engaged in delivering software solutions for a single project, or

many ongoing projects running through the project delivery system at the same time. This is an

expansion of the models of Lenius and Ford, and Januszek, presented above, in that their models

focused on a single project. Figure 24 illustrates the core of the model, where the software development

46

teams, residing within the Team System, hold a central role. These teams deliver product scope to the

larger mechatronic project. Their scope delivery activities can be measured in terms of speed, quality,

and cost and are represented as Actual Performance in the model. This Actual Performance is compared

to the Expected Performance, the performance levels that the Project Leadership has for the software

development teams. The Expectations Gap is the difference between what leadership expects from the

software development teams and what is delivered.

This thesis will focus on the causal loops that affect how the Actual Performance and the Expected

Performance change due to control activities and project management mechanisms that evolve within

the organization. For that reason, the stocks and flows portion of the classic systems dynamics model

occurs within the Actual Performance node, where the level of actual performance represents the

success with converting "Work to Do" to "Work Done."

The Expectation Gap node represents the project leadership's perspective regarding how well the Agile

development teams are delivering against what the project leadership is expecting. This may be in terms

of cost, schedule, scope, quality, or other factors, but we will concentrate upon the delivery of the

desired scope on a regular schedule for this study.

The Expected Performance node represents what project leadership expects to have delivered by the

software development teams. This is in terms of the amount of delivered product at the expected

schedule, quality, or cost. It is an input to determining the Expectation Gap and is the central area of

emphasis for this study. In this study, project leadership is working in a Stage-Gate framework above

the software development teams that govern themselves using Agile methods.

Figure 24: Definition of the Expectations Gap within the Project Delivery System

47

The Actual Performance node represents the work completed by software development teams. Of

interest in this study is the metrics related to describing the performance of the team. For example, in a

Scaled Agile framework, the performance metrics would include measuring the delivered scope in story

points and perhaps a historical record of story point deliveries per sprint.

Figure 25 expands on the Team System by introducing the project management activities. It also

illustrates two control loops that can exist to govern the actual performance. The Self-Adjust loop

represents the actions that the development teams take on that are within their control to improve

their performance. The Control the Projects loop represents the project management activities that a

governing team takes that change the level of Actual Performance or the Expected Performance to

reduce the Expectations Gap.

There are three sources of scope for the Project Delivery System Model. The New Requests node,

represented as a cloud in this diagram, is one source that drives activity within our Project Delivery

System. This model applies to systems that are executing more than one project within the system;

therefore, the new requests can be for any number of projects that the Project Delivery System is

delivering upon.

The Discovered Scope node represents additional work requiring completion to deliver to the

goals/requirements of the pursued project(s) but not identified up-front. Therefore, it is not factored

into the original Expected Performance value that the leadership has for the project(s). It also includes

dependency management and coordination activities, as discussed within the literature review, which

can be considerable with developing complex products. The Discovered Scope is represented as a cloud,

Figure 25: Project System Level of the Project Delivery System Model

48

which implies an unlimited stock exists, but this is a simplification for graphical purposes. The reality of

discovered scope is that it is bounded by the project's defined expectations, as Januszek demonstrates

within his model.

The Non-Project Work node represents those requests upon the development teams that is not part of

any official projects. It may include administrative activities, training, support or troubleshooting of

completed products, or work on unofficial "side projects" that the team gets recruited to support

outside of the defined Project Management activities.

The Project Management node represents the completed activities that define and control the project(s)

as it progresses towards its goal. This node delivers guidance, priorities, work breakdown structures,

architectures, requirements, and other information to the development teams and project leadership.

The activities completed within this node influence and define the Expected Performance that project

leadership has for the software development teams. These activities may occur within different parts of

the organization, including the development teams, project management teams, and systems

engineering and architecture teams. The agents of this node include the program/project management

team for the overall mechatronic system and the product owners of the software development teams.

The Project Management node has three categories of activities within this node, Complexity

Management, Scope/Risk Management, and Expectations Management. These sub-activities are further

described later in this section. As illustrated in Figure 25, the Expected Performance is derived from

project management activities. It may be dynamically adjusted over time as new information is available

from the Project Delivery System's overall development activities. Agile methods and Stage-Gate

Figure 26: Ecosystem Management Loop of the Project Delivery System Model

49

methods differ in that Stage-Gate methods generally expect changes in expected performance to be an

exception. Therefore, the need for constant adjustment may not be provided for, while Agile methods

only provide monitoring Actual Performance and do not cover the need to change the Expected

Performance.

Figure 26 illustrates the Ecosystem Layer of the project delivery system model. This level represents the

overall structural, organizational, and procedural attributes of the system and the management

activities used to adjust them. While the inner layers focus more on project execution, this layer controls

and enhances the project delivery system's performance.

The model nodes account for all the activities of project management and execution. PMBOK [2]

provides the project management activities considered to be best practices for an effective project.

Table 4 summarizes the relationship between the project management activities discussed in PMBOK

and the project delivery system model's nodes.

50

Table 4: Project Management Activities for Each Node of the Project Delivery System Model

Complexity
Management

Scope
Management

Expectations
Management

Leadership
Adjustments

Actual
Performance

Collect
Requirements

Develop Charter Estimate Activity
Duration

Project
Management
Plan

Deliver Scope

Create WBS Direct and Manage
Work

Manage
communications

Plan quality
management

Control
Quality

Identify Risks Monitor and
Control Project
Work

Monitor
Communications

Plan Resource
Management

Manage
Quality

Perform Risk
Analysis

Perform Integrated
Change Control

Monitor
Stakeholder
Engagement

Acquire
Resources

Implement
Risk
Responses

Define Activities Close Process Phase Manage
Stakeholder
Engagement

Manage Team

Sequence activities Define Scope Schedule
Management
(Identification)

Control
Resources

Plan Risk Responses Validate Scope Develop Schedule Plan
Communications
Management

 Control Scope Plan Risk
Management

 Estimate Costs Implement Risk
Responses

 Determine costs Plan
Procurement
Management

 Estimate Resources Control
Procurement

 Plan Risk Responses Conduct
procurements

 Monitor Risks Plan scope
management

 Identify
Stakeholders

51

Like all systems, a project delivery system exists within still larger systems. Figure 27 illustrates how the

Project Delivery System model can scale recursively to handle more complex project delivery systems.

The situation under study could fit into this scenario in that there may be a complete software project

delivery ecosystem that resides within a broader ecosystem for mechatronic projects.

3.3 Uses of the Project Delivery System Model

The project delivery system model's primary uses are expected to be the analysis of existing project

delivery systems or as a framework that assists with either a new design or the improvement of existing

project delivery systems. Every white square represents activities, and each arrow represents

information or commands between the nodes of activity. The project system developer exercises this

model by asking the following questions at each activity node.

• What are the goals?

• What are the activities?

• Who are the agents that complete the activities?

• What information is required, and where does it originate?

• What information or commands are delivered, and to what activity?

Figure 27: Recursive “System in a System” Nature of the Project Delivery System Model

52

• How often does the activity need to occur?

• What tools and processes are needed?

As these questions are answered, more fidelity can be added to the model as more specific nodes and

callouts of what information circulates. From here, more analysis and modeling techniques from the

disciplines such as systems engineering, architecture, control theory, sociology, and business disciplines

can be applied. The use of the model may be valuable as a static framework. However, system dynamics

methods can also be applied to the model to create simulations of the project delivery system's

performance, which allows for experimentation of various system architectures.

As an example, the model is applied to the classic Agile and Stage-Gate frameworks to identify gaps in

the system when combining the frameworks to manage leadership expectations. First, the model is

reduced to the causal loop of interest, which is the loop that includes the setting and managing of the

expected performance. See Figure 28

Stage-Gate frameworks leverage a planning stage where the requirements are identified, and an

execution plan is created with sufficient detail to create estimates of the amount of work and the time it

will take to create it. This constitutes the creation of the initial value of the expected performance.

Classic Agile frameworks do not provide long-term planning; thus, there is a gap in a hybrid system

concerning defining a realistic expected performance that can be used to compare against actual

performance.

Classic Agile frameworks expect that the team regularly and frequently delivers information on what

scope has been completed. This data can be used by product management to create and refine the

expected performance, but because such a concept is outside of the Team System, classic Agile

Figure 28: The Project Delivery System Model Focused Upon Expectations
Management

53

frameworks do not address this. Stage-Gate frameworks generally assume that the initial planning

captures most of the total scope, along with some extra capacity, or slack, to account for small amounts

of undiscovered scope. The framework does not account for the continuous flow of newly discovered

scope.

Based on the gaps identified in the analysis of classic Agile and Stage-Gate frameworks, the following

hypotheses are offered as potential remedies in the studied hybrid Agile Stage-Gate project delivery

system.

• Agile teams engage in more up-front planning.

• More slack is added to agile team planning.

• Increased effort applied to change the Expected Performance.

• Ongoing scope and priorities management activities are added to the Stage-Gate part of the

system.

• Delivery goals become more incremental, and therefore more fitting for Agile methods.

54

4 Research Method

This study will investigate the structures, methods, and behaviors that have evolved within several

different product delivery systems to learn more about what emerges from within an Agile Stage-Gate

project delivery system to manage and align leadership expectations to newly found scope. The

investigation is expected to expose several different solutions for managing expectations, and the

overall effectiveness, of each.

Focusing the project delivery system model upon the experimental questions yields the diagram found

in Figure 28. The research seeks to identify what has evolved within the studied organizations' systems

to manage the program leadership expectations when the teams discover previously unknown scope.

The survey questions are designed to expose the processes, agents, and the data exchanged between

the system nodes.

The chapter starts with some background regarding the subject groups for this study. It then discusses

the methods used to collect the data.

4.1 Background Information on the Subject Organizations

The subject groups are project delivery systems responsible for delivering large complex mechatronic

products requiring hundreds of engineers to develop. The primary project management method for

these mechatronic systems leverage Stage-Gate frameworks, which was introduced decades ago when

the products had no electronic or software content.

These mechatronic product development systems include a software development organization that

produces solutions tailored to the specific mechatronic product. The software within these products

exists to control and automate machine functions to improve the machines' performance and usability

while they perform their duties. For each of these products, the introduction of electronics began

slowly, requiring only small teams responsible for relatively simple control systems. Over the last two to

three decades, the size and complexity of these products' software content have been growing

exponentially, requiring proportional growth in the number of engineers dedicated to the product's

software development needs.

Agile frameworks were first introduced into the software development organizations between 2003 and

2007. Once established, no further large-scale outside consulting or training activities continued after

this initial introduction.

The Agile frameworks have not expanded beyond the software development efforts, including coding,

testing, and calibration. For the subjects within this study, the software needs are determined mainly by

the mechatronic machine's needs; thus, the customer to the software groups is the parent project

developing the mechatronic product. The mechanical portions of the mechatronic product are still

developed and managed using the established Stage-Gate methods.

55

4.2 Data Collection

Several project delivery systems were screened using informal screening interviews of the Stage-Gate

project managers to identify the relative success the software development teams achieve with

delivering to the parent mechatronic project's expectations. From this screening, three subject

organizations with different organizational structures were selected for a more in-depth study.

Next, people who could provide the desired information about the project development system were

identified and invited to participate. The participants include the leadership roles of the parent

mechatronic project system. These are the people who possess the performance expectations that

need to be managed as the project progresses. The participants also include leadership within the Agile

project management organization that delivers software to the parent mechatronic project system. In

all, the study included fourteen interviewees spread across the three project delivery systems.

The study pursued input from surveys of the software developers on the Agile software development

teams. Candidates were identified by reviewing the organizational charts for the software delivery

teams. Approximately 10-15 candidates were identified for each project delivery system.

The study participants are divided into three categories: the mechatronic project leaders, Agile

leadership, and the software developers. Interviews were conducted with the project leaders and the

Agile leadership. Software developers were questioned using a survey. The same questions were used

for all the interviews, and similar questions formatted into the survey for the software developers. At

least two responses were targeted for each category of respondents and each project system evaluated

to provide corroborating information and supports the anonymity of the respondents. Appendix 1

includes the interview guide and the survey questions utilized for the data collection. As stated above,

the questions intend to expose the activities, agents, and information used to manage project

leadership expectations.

The interviews were conducted using video conferences and were about an hour in length. The

interviews were recorded to augment and confirm the accuracy of the notes taken during the interview.

The surveys were delivered digitally using an existing survey delivery software package available within

each organization. This survey software is known to assure the anonymity of the survey participants.

56

5 Results

This chapter will illustrate the similarities and differences between project delivery systems from the

structural, procedural, and behavioral viewpoints. The chapter will conclude by reporting the common

themes and fundamental differences that the interviewees shared while explaining how each project

delivery system operated and its strengths and weaknesses.

5.1 Survey Results

The data collection using surveys experienced several challenges that resulted in this portion of the data

collection to be abandoned. The first issue was a general reluctance by the development teams'

managers to allow the survey to be distributed to their teams. A second issue was a low response rate

by the survey candidates. The first group of development teams for one of the project delivery systems

yielded only three responses; thus, no conclusions could be drawn. The data is not presented here but

included in Appendix 2 for reference.

5.2 Organizational Similarities

Figure 29 illustrates the general structure found in all three project delivery systems with highlighted

areas identifying where the structures are notably different.

57

Figure 29: Structural Design of the Project Delivery Systems

Each project delivery system has planning and governance structures with many similarities. They use

Stage-Gate process centered upon the delivery of mechanical systems. In each case, very few items

have been added to the process that speak to managing software delivery. These additions are helpful,

but the overall Stage-Gate processes are considered insufficient for the project delivery system’s needs.

Each project delivery system utilizes hierarchical project governance, which is responsible for the scope

and schedule decisions. This Stage-Gate structure is what the enterprise has used for decades. Each

project delivery system has many projects in flight at the same time. Each project has a project-specific

core team that provides governance and coordination between the main program functions, such as the

different engineering disciplines, manufacturing, supply management, customer support, and

marketing, to name a few.

Above this, a portfolio leadership team monitors and steers priorities across the many programs that are

in flight. The highest level is the executive level, which includes the vice-president level of the

enterprise. Minor adjustments to scope and schedule are handled at the lower layers. At the same time,

changes that alter testing or product release plans are elevated to the executive level for approval.

Likewise, a hierarchical leadership organization exists for the Agile development teams within all three

project delivery systems. This organization is parallel to the program leadership organization. Its role is

to support and develop the Agile development teams instead of direct management of scope, schedule,

or resources. This organization creates and maintains the Agile methods and ceremonies that are used

58

by the software development organization. It also monitors quality and efficiency and looks for

adjustments and improvements to the tools, methods, and organizational structure to improve quality

and efficiency.

For each project delivery system, the size of the software delivery organization is governed by

mechanisms independent of any given project. Therefore, staffing does not scale according to the

project’s overall scope. This is a strategic decision that keeps the overall spend on research and

development aligned to each company's overall performance. This causes staffing levels to be a slow

adjustment that lags the need for any given project to a level that prevents it from being a useful lever

for responding to scope discovery. The only fast-acting staffing lever available is to divert people from

one project to another project.

The software development teams of the project delivery systems organize around a given technology

domain of the mechatronic system. Thus, the backlog of any given software development team will

have work coming from multiple projects. The software development teams report to managers and

senior software leadership separate from the project leadership structure described above. The

management level of the software delivery teams assists with coordination between the software

development teams. They also have responsibility for providing the tools, processes, and training for the

software development teams. The software leadership has brought Agile into each of these product

development systems, and they have done it by "pushing" it upon the Stage-Gate program management

structure.

All three project development systems utilize the role of a delivery lead. However, this role is a more

recent addition to Project Delivery System C. Delivery leads are responsible for the software delivery to

a specific mechatronic project. At the same time, product owners are assigned to a specific Agile

software delivery team. The delivery lead works as the liaison between the Agile software development

teams and the Stage-Gate program management teams, as illustrated in Figure 30. The delivery lead

participates in the Stage-Gate leadership meetings and reports on the software delivery teams' progress

and issues. They participate in all the Agile planning and coordination meetings to gather information

and distribute guidance from the Stage-Gate program leadership. When needed, they also shoulder the

responsibility of initiating the mitigation plans with the rest of the program stakeholders

Before delivery leads, these activities were shouldered by the product owners, but the product owners

have the identification of requirements and team governance as their first responsibility. This caused

the project management duties above to be left undone because the product owners did not have

enough time to do both.

59

The delivery lead facilitates communication from the Stage-Gate program leadership back to the

software delivery teams. The venues used for this communication include informal communication as

part of existing status and planning meetings with software delivery teams and team product owners

and by the Agile software organization's software status and coordination meetings. Some of the

groups also expect the delivery lead to share information regarding project leadership decisions at the

delivery increment planning sessions.

5.3 Planning Stage Similarities

There are several similarities concerning the initial project planning. All three project delivery systems

start with similar processes for digesting the marketing and product planning activities into a list of

features to include in the project. The products delivered by these systems are new generations of an

existing product, such as when an automotive company redesigns an existing automobile. The general

architecture is an evolution of the previous architecture with new technologies and customer features

added. Thus, the project scope is discussed as the list of changes from the previous product even

though its magnitude can be significant.

The products produced by each of these project delivery systems first started as entirely mechanical

devices, with projects introducing increasing electronic content in the last two to three decades.

Therefore, the Stage-Gate project management processes focus on the delivery of mechanical

Figure 30: Key Roles within the Project Delivery System

60

componentry. Classically, initial project milestones are defined by marketing and by the needs of the

testing organization. Prototype builds are the dominant project milestones. They are set based upon

hardware development processes. The physical system builds are completed to demonstrate progress

and allow for testing and feedback.

 The products adopted electronic content slowly, with modest functionality in the beginning. Formalized

processes for managing software delivery were not required. Project management could plan the

software scope with simple line-item callouts of functionality that was very often related to translating

an operator command into a given actuator's motion to achieve the desired function and performance.

Management did not have to concern themselves with the software because the mechanical systems

harbored the risk.

The planning processes provided by the Stage-Gate methods have not evolved to provide for software

scope planning. All the project delivery systems report that the initial project planning processes are

currently insufficient for the complex electronic and software content that is now a substantial portion

of the project's overall engineering effort. This results in unmeetable expectations concerning the

delivery of software scope at cost and schedule. The recent efforts of Project Delivery System A related

to improving their project planning and management system have begun to demonstrate improvement

in setting realistic expectations. This will be discussed further in a later section.

Once a program is planned and underway, all three project delivery systems utilize Agile sprint and

delivery increment planning and reporting. This is high fidelity planning and is expressed in the units of

stories and story points. It takes the completion of many stories to add up to items of interest to the

Stage-Gate leadership. The delivery leads process the high fidelity, story-based progress information

from the planning events, the 6-month projections, and the burn-up charts into a message that is in the

form that the project leadership can understand.

All project delivery systems report that the software development teams identify much of the scope

discovery incrementally as small units of effort. As discussed in the paragraph above, scope discovery is

at too high of fidelity for project leadership to process. One interviewee used the phrase "death by

1000 cuts" to explain the phenomenon. All the project delivery systems leverage the burn-up charts and

six-month projections to identify and quantify the small units of discovered scope. The delivery lead is

monitoring sprint and delivery increment results and the burn-up and six-month projections to form the

communication of delivery risk and the need for mitigation that is at an aggregate level.

Virtually everyone interviewed within three product delivery systems reported dissatisfaction with

software delivery because the planning phase of the Stage-Gate Process they use does not provide

adequate and effective software planning. Several of the program managers interviewed stated that

there is almost no mention of software deliverables at any program milestone reviews within the Stage-

Gate program management process documentation. The Stage-Gate process utilized by these

organizations do not seem to account for the fundamental need to reconcile the "Iron Triangle" of

scope, schedule, and cost/resources for the project's software portion.

In the planning stage, the Stage-Gate processes used quantifies the scope of the project's design effort

by quantifying the number of physical part designs that need to be released. This assessment of "part

count" assumes a standard part design and release process and is known well enough to make

reasonable effort estimates. This method does not readily apply to the software. The entire

61

mechatronic system's software only has a few actual "part numbers," and this in no way corresponds to

the effort to design it. With no prescribed method for identifying software scope, the project plan that

this process delivers regarding software scope is in the form of a bulleted list expressing the general

desired functionality.

The interviewees in all the project development systems report that this is insufficient to make any

reasonable estimation. When combined with the rigid staffing constraints discussed above, this leads to

unachievable schedules and frustration with the software teams' overall inability to keep the schedule.

Some also reported that the lack of explicitness in the software expectations upfront leaves the actual

expectations open to change as the project progresses. One interviewee used the term "gold plating" to

explain the phenomenon where the technical leads and developers add more capabilities and higher

expectations to the deliverable than what was originally called for. Another interviewee cited the

example where the initial expectations of the user interface have no definition to them at all when the

project starts, leaving it entirely to iterative exploration as the work progresses.

5.4 Design Stage Similarities

Progress forecasting is provided by six-month projections of the anticipated software delivery using

sprint and delivery increment planning events and the accompanying preparation meetings. These

processes are based upon the Scaled Agile Framework discussed in the literature review. Delivery

Increments for each project delivery system are eight weeks long and subdivided into four two-week

sprints. Story point systems quantify the amount of work the backlog items will take. Each scrum team

will make detailed plans for the next delivery increment, and less detailed plans for the next two

delivery increments, resulting in a six-month forecast.

In addition to the six-month forecasts, all three project development systems utilized burn-up charts as

a secondary progress reporting method. The milestones are usually set using the build dates of the

mechatronic system. Agile leadership uses the burn-up charts to signal the need to research and

mitigate the causes of falling behind with delivery. This reporting tool was not always utilized as a

reporting format when presenting to the Stage-Gate program leadership because of insufficient

understanding of what the document reveals. Some interview respondents identified that it was

uncomfortable to see the "target" line moving. Presumably, because in their mind, the target, in terms

of the delivered capability, is unchanging. Burn-up charts are in units of story points, which represents

effort, not the delivered capability. Therefore, they are from a perspective that does not align with the

Stage-Gate leadership's perspective.

The flow of software scope through the project delivery system during the design phase can be

visualized with a modified version of the stocks and flows diagram proposed by Januszek. Figure 31

illustrates the flow of scope through the system.

62

Figure 31: Stocks and Flows Model for the Studied Project Delivery Systems

The key differences from Januszek's model include acknowledging that bugs are not necessarily

repaired. All three systems utilize a decision activity that evaluates the bug and determines the value of

repairing it and the risks of leaving it. Sometimes low risk, low reward bugs are left in the product. A

second difference is an explicit acknowledgment that new scope can enter the system as a request,

which is evaluated as part of a scope management activity. Finally, like the discussion on bugs, it is

possible that risks, once understood, may be left unmitigated if the risk is small and the effort to

mitigate it is large.

5.5 Planning Stage Differences

While Project Delivery Systems B and C are still in a situation where their planning stage aligns with the

discussion above, Project Delivery System A has taken on a significant process adjustment to resolve the

issue of insufficient scope definition in their most recent projects. This organization has spent several

years building and capturing the architecture and system decomposition of the electrical, electronic, and

software systems included within the mechatronic products they produce. This architecture has high

fidelity, down to software components that a team can generally complete in one or two delivery

increments.

The most recent projects launched by Project Delivery System A are not allowed to exit the planning

stage without explicit estimates of the software content and the effort required to deliver it. They are

using this well-documented architecture to allow the planners to identify what software components

will have to be changed and the magnitude of the change. The software plans are coordinated with the

mechatronic hardware deliveries and testing schedule. The detail available within the software plans

allows the delivery lead to engage with the rest of the project management team with data available to

justify the need to negotiate scope and schedule.

The addition of an organization that creates and maintains the architecture for the embedded software

was substantial and done primarily for managing the rapidly increasing complexity of the software

contained within the products. The utilization of this work for project planning purposes is an additional

benefit that satisfied the Stage-Gate and Agile interviewees.

63

5.6 Design Stage Management Differences

All three of these project delivery systems have recognized the need for more resources and events

dedicated to the ongoing planning and coordination effort beyond product owners and the functional

area managers that have existed since the first adoption of Agile. As discussed above, each has

embraced the need for delivery leads. These delivery leads have different organizational structures that

they work in and experience differing levels of authority bestowed upon them.

Product Delivery System A has bestowed substantial authority to the delivery leads regarding the ability

to renegotiate initial scope and the scope content of delivery milestones. In the planning stages of the

project, the delivery lead is responsible for building the program backlog using estimates provided by

software development teams and software architects. As discussed above, the electronic architecture

and decomposition are leveraged heavily for this. The backlog is considered 'sized' once the initial

estimates are complete. The delivery lead then collaborates with the other subsystem leads for the

mechanical systems to create an aligned plan.

The delivery leads in Product Delivery System A are supported by the rest of the organization

structurally and culturally. Once development is underway, the delivery lead is monitoring progress and

reporting risks. When progress falls behind the original plan, the delivery lead brings this to a scope

management meeting. This is a working-level meeting that meets weekly. All development areas

participate so that comprehensive delivery adjustments which account for the reality facing the

software development team are made by all groups. Before this meeting, delivery leads are trained to

proactively reach out to the affected groups and begin the mitigation planning so that the scope

management meetings are more effective.

Product Delivery System A has engrained the need for reconciling scope to schedule into its culture.

Stage-Gate program leadership has clear expectations that all development teams will adjust their plans

collaboratively to maintain the delivery milestone dates. This includes reducing the capabilities of

included features and removing less essential features from the mechatronic program. By far, this

project delivery system is the most developed in these activities, with clear expectations, culture,

processes, and events developed to fulfill the need to account for discovered scope and managing

expectations.

The processes of Product Delivery Systems B and C do not support the need to reconcile scope to

schedule as well as the most recent projects within system A. These groups have a culture that does not

provide for the acceptance of the need to adjust the expected scope. When delivery leads in these

systems need to make changes to the original scope or dates, there is less willingness by the rest of the

development areas to adjust their expectations from the software group. This makes it difficult for the

delivery leads to negotiate the necessary adjustments without active senior leadership support.

Project Delivery System B has made efforts to improve the project execution by adding explicit line-

items related to software delivery to the Stage-Gate exit reviews. One example of this is an explicit call

out of a content "Freeze Date" several months before the milestone. This has the effect of forcing the

prioritization and management discussions to occur earlier. It also introduces some slack into the system

64

so that software delivery teams can address late-discovered bugs before the milestone. These line-items

were recently brought back into their general process documentation.

5.7 Organizational Differences

While Project Delivery System A maintains a single set of project management meetings for all

functional areas, Product Delivery System B has built a parallel multi-tiered, project leadership structure

devoted to the software effort for all projects within the system. Most of the same leadership that

participates in the Stage-Gate leadership meeting also participate in these meetings, but this meeting

discusses all projects that are in-flight at the same time. The meetings exist to allow for the negotiation

of mitigation actions across all in-flight projects to account for software falling behind the original plan.

In this system, it appears that it takes higher levels of organizational leadership to enable the ability to

adjust the original plan.

Project Delivery System C has introduced delivery leads only in the last year and only on one of the in-

flight projects. Before introducing delivery leads, the product owners held the responsibility to try and

negotiate mitigation plans. This proved challenging from a workload standpoint because the product

owners were tied to the teams and not the projects. The software functional area manager was

responsible for participating in the Stage-Gate project leadership meetings. However, these groups met

separately from each other. There was no ability and little incentive for the different Stage-Gate

leadership teams to support mitigation activities that may reduce their requested scope.

Before introducing the delivery lead, Project Delivery System C added a dedicated program manager to

the Agile software development area. This person was of the same seniority as the Stage-Gate program

managers, and this person has a high level of trust and rapport with those within the broader project

delivery system. The software delivery teams have been planning at the delivery increment level for

years, but no data was being processed or conveyed formally from these activities. This program

manager was also able to justify the addition of a person to work with the scrum masters and product

owners to collect and process the projections that came from the planning. This allows the Agile

program manager to use it as leverage for negotiating changes to scope or schedule with program

leadership.

The software program manager of Project Delivery System C leads a twice-weekly coordination meeting

that the product owners, the delivery lead, and the software managers attend. This meeting is used for

tactical coordination and news distribution regarding scope, schedule, or priority changes that the

Stage-Gate leadership teams have made. Each team's progress is monitored against the delivery

increment planning and the next milestone. This system also has a separate software calibration

organization that is highly dependent upon software deliveries. This group meets weekly to coordinate

the availability of the calibration staff and equipment with the software deliveries. This group is also

useful for creating mitigation plans for software deliveries that are not holding to the original schedule,

since this group is usually the first downstream users of the new software.

65

5.8 Differences with Managing Capacity Allocation

Another area where the project delivery systems differ is the method used to allocate resources to the

various projects. All the project delivery systems have multiple projects being managed through Stage-

Gate activities. Thus, the software delivery teams need to know how much of their capacity to dedicate

to the various projects. Project Delivery System A has adopted a formal method for allocating capacity

based upon the Scaled Agile framework. The delivery leads in this system all report to a single manager

who manages the Agile processes and brings the Stage-Gate project managers together regularly to

manage the distribution of the collective capacity of the Software development teams to the different

projects. This is done in a lump-sum allocation, meaning that the project leaders agree to what percent

of the total capacity they will receive, but not the details of who does what. Those decisions are left to

the delivery leads and Product Owners to determine during their regular planning events.

Neither Project Delivery Systems B nor C interviewees identified a formal system for allocating capacity.

Software leadership meetings serve to decide upon the allocation using project value, the relative

schedule state, and budget spend. The results of which are communicated via delivery leads and

functional area managers. Project delivery systems use timecard entries to record the amount of time

spent on each project. Delivery leads and the software developers' managers communicate and

coordinate the effort applied to each project according to the guidance from the leadership meetings.

5.9 Chain of Command Analysis

All three project delivery systems have introduced staff into the Agile software development

organization that is explicitly responsible for executing the project management activities. This includes

the delivery leads discussed above, and some form of a leadership role focused on the building and

execution of an Agile project management method. Figure 32 represents the reporting hierarchy with

the project decision-making chain of command overlaid upon it for Project Delivery Systems A and B.

Figure 33 represents the same structures for Project Delivery System C.

66

Project Delivery Systems A and B's reporting structure has the software functional managers and the

delivery lead manager reporting to a senior software functional manager. This management chain is

focused mostly upon maintaining and improving software development teams' capacity to deliver

project scope and removing structural, organizational, and tool and process impediments that hinder

this. The software functional managers have the software developers as direct reports, and the delivery

lead managers have the delivery leads as direct reports. This structure allows each of these managers to

focus on the needs of the roles that report to them, with the software functional manager focusing

more on what software developers need for building software, and the delivery lead manager focusing

more on what the Delivery Leads need. While not pursued as a direct question, many delivery leads and

delivery lead managers provided comments that support this conclusion.

The direct reporting structure of delivery leads to a delivery lead manager reinforces the expectations of

the delivery leads to focus on deliveries and the management of delivery expectations. The delivery

lead manager is also the process developer for the Agile project management methods and leads the

delivery increment planning events. Likewise, having software developers report to a person responsible

for assuring that the software is built using best practices and is of high quality reinforces what the

developer's primary focus is.

The projects' command hierarchy starts with a program management leader who has the program

managers as direct reports. Program managers convene project management teams consisting of those

responsible for managing the deliveries from their respective functional areas. The software delivery

leads are the participants from the software functional area. The software delivery leads then interact

Figure 32: Organizational and Project Reporting Structures for Project Delivery Systems A and B

67

directly with the software delivery teams' product owners, sharing capacity guidance from the project

leadership meetings led by the program manager.

When new scope is discovered, the primary path of action follows the project chain of command and

not the reporting hierarchy. The product owners on the scrum teams report it to the delivery leads, who

bring it to the program manager in a one to one conversation or during the project management team

meeting. As discussed above, it is typical for the delivery lead to collaboratively formulate a mitigation

plan with the other functional areas before the project management team meeting. If the issue requires

trade-offs between the different programs, the item is brought to the senior project leadership

meetings to formalize the negotiation between the programs.

Figure 33: Organizational and Project Reporting Structures for Project Delivery System C

An analysis of the reporting hierarchy of Project Delivery System C reveals some additional complexities

within the structure. One difference is that the delivery lead reports to the software functional

manager. As discussed above, this organization has a software program manager instead of having a

delivery lead manager. The software program manager serves a dual role in developing and managing

the execution of Agile management practices and the project management activities that are classically

associated with a program manager. The software program manager reports to the program

management leader, along with the other program managers, and therefore benefits from the direct

relationships and support of this functional area.

68

As discussed above, this project delivery system has a calibration team separate from the software

development teams. This calibration community is very dependent upon the scope and timing of the

software deliverables. This community is also a shared resource across all the mechatronic projects of

this project delivery system. Because of these characteristics, a dedicated calibration lead provides

coordination leadership between the calibrators, the software developers, and the mechatronic

projects.

This organization’s software delivery teams are split into two groups with separate software functional

managers. The organizational split enables explicit project assignments for each organizational branch.

There is also a technology boundary that aligns with this organizational split, where the scrum teams

dedicated to the single project are using different electronics hardware for their project. The software

functional manager completes the activities of both the software project manager and the delivery lead

for the project assigned to those teams. This organizational split does make it harder to share work

across the organizational divide, which can impede the ability to adjust to changing priorities.

5.10 Numeric Answer Results

Table 5 summarizes the interview participants' responses when asked about their perception of their

project delivery system's overall effectiveness. The numeric range was defined as a one to ten scale,

where one was equal to not effective at all, ten was perfectly effective, and five was functional, but with

substantial issues. The average, range, and the number of responses are provided. The results are

divided based on the project delivery system and which side of the Agile/Stage-Gate divide the

interviewee worked in.

Table 5: Reported Overall Effectiveness of the Project Delivery System

Likewise, Table 6 provides the interview participants' responses when asked to provide their perception

of how much the scope of the project grows during the time that the project is underway. It is important

to note that most interviewees worked on different projects within the project delivery system. The

results are categorized in the same manner as Table 5.

Average Range Responses Average Range Responses

System A 5.7 4 to 9 3 5.5 4 to 7 2 5.5

System B 4.75 3.5 to 6 2 5 5 1 4.8

System C 5 4 to 6 2 6.7 5 to 8 3 5.8

Overall 5.2 3.5 to 6 7 5.7 4 to 8 7

Overall Software Delivery Effectiveness of the Project Delivery System

Overall
Stage Gate Agile

69

Table 6: Reported Scope Growth by Project Delivery System

Table 7 summarizes the interview participants' responses when asked to rate the effectiveness of the

methods that the project delivery system uses to keep the delivery expectations in line with the ongoing

discovery of scope during the product design phase. Like above, the numeric range was defined at a one

to ten scale, where one was equal to not effective at all, ten was perfectly effective, and five was

functional, but with substantial issues. The average, range, and number of responses are provided, with

the results divided based upon the project delivery system and which side of the Agile/Stage-Gate divide

the interviewee worked. The results are categorized in the same manner as Table 5

Table 7: Reported Effectiveness of Scope Alignment Activities for the Project Delivery System

5.11 Interview Content Analysis

Each interviewee took the opportunity to explain their answers and discuss the general situation within

their project delivery system. An analysis of the system attributes that the interviewees chose to discuss

is summarized below. The information is split into the two categories of "Positive Topics" and "Negative

Topics." Positive Topics were attributes that the interviewee presented as beneficial to the system.

Negative Topics were attributes that were presented as detrimental to the system. Each category is

presented from two perspectives. Figure 34 presents the most often identified positive topics and the

frequency in which an Agile leader or a Stage-Gate leader chose to discuss it. Figure 35 presents the

positive topics again, this time sorted by the project delivery system. Figure 36 and Figure 37 present

the negative topics using the same pattern.

Average Range Responses Average Range Responses

System A 7.7 7.5 to 8.5 3 7 6 to 8 2 7.2

System B 4.5 4.5 to 5 2 7 7 1 5.5

System C 5.5 5 to 6 2 7.7 7 to 8 3 6.8

Overall 5.9 4.5 to 7.5 7 7.2 6 to 8 7

Effectiveness of Leadership Alignment Activities

Overall
Stage Gate Agile

70

Figure 34: Frequency of Positive Topics: Stage-Gate and Agile Leaders

71

Figure 35: Frequency of Positive Topics by Project Delivery System

72

Figure 36: Frequency of Negative Topics: Stage-Gate and Agile Leaders

0%
20%

40%
60%

80%
100%

Unwillingness to reconcile scope schedule…

There is no slack in agile

Stage gate leadership does not…

Dates worked backwards from scope…

Software missing from Stage-Gate process

Insufficient up-front estimation effort

Insufficient understanding of software…

Fixed resources

Frequency of Negative Topics: Stage-Gate and
Agile Leaders

Agile Leaders
9 Total

Stage Gate Leaders
5 total

Overall
14 Total

73

Figure 37:Frequency of Negative Topics by Project Delivery System

0%
20%

40%
60%

80%
100%

Unwillingness to reconcile scope schedule…

There is no slack in agile

Stage gate leadership does not…

Dates worked backwards from scope…

Software missing from Stage-Gate process

Insufficient up-front estimation effort

Insufficient understanding of software…

Fixed resources

Frequency of Negative Topics by Project Delivery
System

System A
 6 total

System B
 3 total

System C
5 total

74

6 Discussion

The numeric data and the interview commentary indicate that Project Delivery System A seems to be on

a path to the most successful integrating of Agile and Stage-Gate methods of the three systems studied.

Systems B and C feel that they are improving but are still struggling relative to System A. System B

expressed the most difficulty. The following discussion highlights what this research and analysis would

suggest the key differences are.

6.1 Reconciliation to the “Iron Triangle”

Almost all interviewees expressed lower levels of satisfaction with the product delivery system's overall

effectiveness than their satisfaction with the structures and processes that provide the ongoing

alignment of the delivery expectations with newly discovered scope. When expanding upon the

rationale for scoring the overall effectiveness so low, the interviewees cited the lack of effective project

planning activities for the software scope as the root cause of the issue. This was consistent with both

the Stage-Gate and the Agile leaders.

The interviewees' comments imply a fundamental gap within their processes for accounting for the

concept of the Iron Triangle. Scope, schedule, and cost must be reconciled with each other to have a

realistic project plan. This does not appear to be happening for most of the projects within these

project delivery systems. All systems reported that staff levels are fixed using a process outside the

project’s control. Budget and staff allocation is based upon the revenue the mechatronic system

generates. Scope and schedule seem to be set based upon the mechatronic system's non-electronic

hardware content. Except for the most recent projects of Project Delivery System A, software scope is

not reconciled to the schedule within the planning activities. This results in unattainable project

expectations being set concerning the software's delivery and sets the project up to fail with meeting

expectations right from the start.

Many interviewees cited insufficient effort to understand the scope of the software content that is part

of the overall mechatronic project. They also call out that a formal estimation of the effort to deliver

the content is also not done. Two reasons surfaced for this lack of planning: the lack of software

planning activities within the Stage-Gate processes and insufficient resources applied to the planning

effort.

The products delivered by these project delivery systems started as 100% mechanical products. Thus,

the project delivery system and project leadership optimized to the needs of developing mechanical

systems. The rapid rise of these systems' embedded content appears to have outpaced the ability of the

project delivery system to adapt to the presence of such a large amount of software scope. Agile

methods have been introduced by software delivery leadership in more of a grassroots approach. The

mechatronic products' project leadership has not built an understanding of what needs to change to

allow for more effective project management for these new software laden mechatronic products. This

75

has prevented the significant evolution of the project management processes and, therefore, the gap in

software planning as part of the process's planning stage.

Why does there need to be a plan? Why can't the software simply be added when it is ready? Is the

angst caused by having delivery milestones required for software only a remnant of a Stage-Gate

legacy? Why not simply ship what is done? While Agile philosophies do make these arguments, the

highly coupled relationships between the software and the hardware of these mechatronic systems

force the need for planning. Hardware development has a different delivery cadence and different

testing needs. The mechatronic systems these project delivery systems deliver cannot function without

a high level of software scope present to operate all the hardware components present within the

system. Thus, the software's delivery schedule must be planned out to align with the hardware

deliveries so that the mechatronic system can be operated for testing and the sale to the customer.

As discussed above, Project Delivery System B has attempted to address some of the gaps with the

project management processes by proposing additions to the overall Stage-Gate project management

process. Although beneficial, interviewees within the Project Delivery System B acknowledged that they

are insufficient to deal with all the issues.

Project Delivery System A has taken the most significant amount of action to fill the software planning

gap with the project delivery system. This group has leveraged its architecture initiative to provide the

knowledge necessary for improved planning. Before the launch of the most recent mechatronic project,

this project delivery system established a documented functional decomposition and architecture for

the software system. This is a graphical model using Model-Based Systems Engineering methods to

identify the functions, the essential requirements for those functions, and the plan for the needed

software components and subsystems.

This architecture was then used for an up-front estimating effort by the scrum teams. Before the

estimation activity, the scrum teams completed training, which included reviewing the estimated versus

actual effort during previous projects to deliver similar software solutions. In effect, this was an activity

to calibrate the estimators' minds before delivering the new estimates. Data for the training activity

came from the Agile sprint planning and delivery increment planning activities of the previous project.

The product decomposition and the estimating activity had allowed this project delivery system to build

up the teams' backlogs with sufficient fidelity to project when elements of software scope were likely to

be completed. The delivery lead could then use these estimates to negotiate milestone content with

the rest of the non-software functional areas. This is being done in a culture that expects that the

software plan will be explicitly delivered before the exit of the planning stage of the mechatronic

project, even though it is not explicit within the process documentation. This level of planning is new to

this organization, and the effectiveness of this planning effort is not available yet because the first

project to use this is only now exiting the planning stage. However, both the Agile and Stage-Gate

leadership interviewed involved with this project express satisfaction with the results to date.

Project Systems B and C have yet to improve their current process gaps with reconciling the requested

scope to the schedule during the up-front planning. This is the most likely reason why these groups

have the fewest positive comments and most negative comments about preplanning activities.

76

6.2 Stage-Gate Support of Agile

All three project delivery systems benefit from forecasting that comes from the regular planning events

of Agile methods. The forecasting brings transparency to the project progress, and therefore the

opportunity to act more quickly. As discussed in the introduction and literature review, the classic Agile

methods do not provide guidance for how to act upon the data. It merely becomes the responsibility of

"The Customer," but with these project delivery systems, the customer of the software is the

mechatronic project. Therefore, the Stage-Gate project management methods must respond to the

feedback that Agile systems provide.

Culture is the key difference between the project delivery systems regarding the management of

discovered scope. All groups report that Stage-Gate leadership does not understand Agile well enough.

However, Project Delivery System A reports that the non-software functional areas have been directed

to support the need to adjust their requested software scope to maintain milestone dates. They have

also been coached to accept the schedule forecasts coming from the Agile planning events and to work

with the delivery leads to identify the mitigation plan.

This cultural shift has enabled Project Delivery System A to create an efficient system for adapting to

discovered scope. Recall Figure 32 above. Culture allows for the delivery leads to be more effective

with creating mitigation plans without as much need for support from higher-ranking leadership. A

single weekly meeting with the project core team is all that is required to keep most sources of scope

additions managed. The delivery lead has the authority and backing of leadership to make the

necessary adjustments compared to the other project delivery systems.

Project Delivery System B and C have additional structure and roles within their management systems to

compensate for the lack of a culture that accommodates the need to keep scope aligned to the

schedule. Project Delivery System B has a duplicate set of project leadership meetings with all project

leadership and functional area managers participating. These meetings provide the forums for

negotiation of scope and schedule by the more senior levels of leadership. This method appears to

require more collective effort by the organization than Project System A requires creating mitigation

plans.

Project Delivery System C compensates for the lack of cultural support for Agile methods with the

software program manager role. As discussed above, this role reports to the same leadership as the

mechatronic program managers and possesses the same hierarchical rank in the organization. The

delivery lead is responsible for identifying and recommending the mitigation plan that will compensate

for the discovered scope but often must rely upon the software program manager for leverage with the

other functional areas. Project Delivery System C also lacks any formalized methods for coordinating

priorities across the multiple mechatronic projects in flight. It is the software program manager that has

sufficient leverage to procure concessions from the different programs. Before having this role present,

the product owners and the software functional area manager shouldered the competing requests of

the different programs directly and did not have sufficient organizational leverage to allow them to

procure concessions effectively.

77

6.3 Implications

This section explores the implications of the findings of the literature review and the interviews on what

a project delivery system could do to continue to improve. This will be done by proposing improvements

to the project delivery system and a rationale for these improvements.

Let us consider Project Delivery System A as a baseline starting point to build the improvements upon.

Like all the project delivery systems studied, this system has embraced both sprint and delivery

increment planning activities to provide delivery forecasts and visibility to added and discovered scope.

Like the other systems, this system has added roles dedicated to managing these planning events and

delivery leads who are responsible for formulating any needed adjustments. This system already has

the vital cultural traits in place and supported by the top of the organization that drives the collaborative

reconciliation of scope to schedule. Thus, the organization is already efficient with its project chain of

command and the meetings that support rapid adjustments to the project plan.

The classic Agile frameworks require small units of work to be packaged ahead of time and fed into the

software development teams' backlog. They do not account for who or how these backlog items are

created. Project Delivery System A has provided for this need by leveraging the efforts to define and

capture the product functional decomposition and physical architecture. The decomposition and

architecture allow the product system to be subdivided into modules assigned to individual teams. The

decomposed modules' interface plan allows the teams to coordinate their activities and their project

plans more readily. The software product owners have been able to leverage this information to

improve their backlog’s fidelity and their estimate’s accuracy because they have visibility to a complete

dataset of the intended scope.

The nature of software introduces high levels of uncertainty with defining what is needed. This makes

estimating very difficult. Another item that needs to be accounted for more completely is that there is

no slack in Agile planning. The planning activities within all the Agile frameworks reviewed result in all

the capacity being utilized. Combining that with the tendency to underestimate the effort required and

the inherent uncertainty of the requirements, makes the need for mitigation activities a certainty. This

is what upfront planning should account for to improve planning within these project delivery systems.

The first adjustment proposal is to expand the up-front planning activities to proactively account for the

certainty of scope overruns with respect to schedule. Two methods should be considered. The first

leverages the concept behind what the Scaled Agile Framework prescribes, which creates explicit

prioritization of the features that are part of the project. Since the project will certainly be faced with

reducing scope at some point, the planning stage should confront the issue up-front with explicit

prioritization agreed upon by the software and non-software functional areas. This creates an

understanding up-front of the reality that a feature may have to be dropped from the scope. Thus, the

contingency plans can take advantage of the flexibility that comes with acknowledging this up-front.

Upfront contingency planning also reduces the emotional reaction to enacting the plan because the

path is already understood.

The second adjustment proposal is an extension of the first one but is likely more difficult and more

nuanced. The first adjustment prioritized scope at the feature level and called for contingency planning

that would remove features from the scope. This proposal is to create scaled versions of the desired

78

feature as contingency plans that proactively exchange effort for scope. In effect, this an "Intra-Feature

Scaling and Contingency Plan." Consider the analogy to the "80/20 rule," which asserts that you can get

80% of the benefit from 20% of the work. This proposal calls for the software functionality requesters to

determine several levels of deliverable capability for the feature, each with a different level of effort and

a different level of expectations for what/how the feature will do/perform. This increases the options

that can be pursued when faced with scope overruns while executing the project.

An additional benefit to this second proposal is that it allows the project to achieve a testable product

more quickly. This will better support the testing cadence of the non-software parts of the product

because the software has at least a baseline functionality that enables a sizeable amount of system

testing. It also enables the opportunity to decide that the product has reached a level of value to the

customers where it can go to production without all the planned scope present. This is a valuable

opportunity due to the potential to reduce the development length. It also provides better visibility into

what is being asked for and thus provides a management lever for managing scope creep or the "gold

plating" of features by including things of little incremental value to the product overall.

Finally, all the established and proposed methods need to be incorporated into the Stage-Gate process

documentation, and the rationale behind the added activities must be trained. Most interviewees

identified insufficient coverage of software activities within the Stage-Gate project management

processes as the primary contributor to their low assessment of the overall project delivery

effectiveness. Many interviewees also reported insufficient knowledge of Agile and how it works within

the project delivery system as a problem. The size, complexity, coordination, and codependence

between the hardware and software functions of this organization's mechatronic products drive the

need for Stage-Gate methods to provide the planning required for the use of Agile for software

development. Stage-Gate leadership must be trained so that they can support those needs.

Software Functional Decomposition

Software Physical Architecture

Prioritized Software Feature Backlog

Feature Level Contingency Plans

Intra-feature Scaling and Contingencies

Feature-to-Team Assignments

Team Level Backlogs with Intra-Feature Scaling Options

Agile Planning Event Support

Regular Schedule Forcast Reviews

Regular Scope Management Meetings

Ongoing Architecture and Decomposition Manitenance

Ongoing Capacity Allocation Management

Ongoing Contingency Plan Maintenance Activities

Stage-Gate Process Additions to Support Agile Project Management

P
la

n
n

in
g

P
h

as
e

(E
xi

t
C

ri
te

ri
a)

D
es

ig
n

 P
h

as
e

Table 8: Stage-Gate Process Additions to Support Agile Project Management

79

Table 8 summarizes the additions to the Stage-Gate methods identified and proposed within this body

of work. The additions to the planning phase can be activities that should be completed as exit criteria

of the stage. Additions to the design phase are different in that they are ongoing activities that repeat

on a regular cadence within the stage. The activities allow the project delivery team to more respond to

risks of new or discovered scope more readily.

80

 7 Conclusions

7.1 Research Conclusions

Software development, by its nature, is full of uncertainties. It is difficult to understand and express

what is expected for the solution. There are many technical unknowns about how to deliver the

solution. Along the way, the consumer of the solution may discover new expectations that were not

expressed initially. These events result in scope being added to the project that was unaccounted for in

the initial project planning. This paper refers to this as discovered scope.

Stage-Gate project management systems fail to acknowledge the nature of software development

because it assumes that the requirements can be wholly understood up-front and satisfies this with a

thorough planning phase. Discovered scope is an exception to the normal process and is treated as an

anomaly. There is also an assumption that slack exists in the estimates that account for small amounts

of discovered scope.

In contrast, Agile methods assume that the requirements cannot completely be determined up-front

and instead react to new learning in-flight. However, this creates issues when using Agile methods as

part of the development of mechatronic products, which have heavy scheduling dependencies between

the hardware content and the software content. The classic Agile frameworks of Scrum, Kanban, and XP

do not provide methods to coordinate and manage the delivery schedule of hardware and software

scope.

Furthermore, there is an implicit assumption that the software is mostly free from hardware

dependencies within the classic Agile methods. The final product delivered to the customer is the

software itself. Complex mechatronic products are products that utilize software as a component of the

larger mechanical system. Consumers of mechatronic systems are fulfilling needs centered around the

mechanical attributes and may not care or even realize that software plays a role in the system. Thus,

the software is a layer removed from the actual customer, and a surrogate is required. The actual needs

of the software are derived from what the mechanical systems need to execute their functions.

This study concludes that mechatronic system development utilizing Agile methods for software

development stands to benefit from a superseding Stage-Gate method that provides the planning and

coordination between the software and non-software deliverables of the project. Classic Agile methods

provide tactical planning for the design stage of the typical Stage-Gate process. The efficient execution

of these methods relies on a modified set of Stage-Gate deliveries and activities to manage priorities in

the presence of discovered scope. The planning stage of Stage-Gate provides a method to process the

software requests into Agile stories using architecture and functional decomposition of the project into

the small autonomous units that the Agile methods require for efficient execution.

This study identified many effective process, organizational, and cultural adjustments that have been

successful within the project delivery systems studied. This includes embracing a culture that

proactively responds when faced with the reality that all the project scope cannot be known upfront.

81

This also includes up-front planning that leverages the explicit capture of a software functional

decomposition and architecture and creating multiple layers of scope prioritization and mitigation plans.

Once the design stage is underway, the systems studied demonstrated several ongoing scope

management activities and chain of command structures of varying effectiveness. This includes Agile's

focus on efficient delivery, while Stage-Gate focuses on processing requests into an actionable set of

scope to be delivered and providing governance all scope delivery efforts. It includes Stage-Gate

activities that digest and respond to the valuable and rapid feedback that the regular software planning

and forecasting activities deliver. It includes establishing scope management activities to vet the need to

pursue new or newly discovered scope and facilitating the creation of mitigation plans when scope

delivery is not meeting the schedule. It also includes capacity allocation activities that explicitly identify

how much of the collective software development effort is to be used for the various projects in flight.

This study concludes that there is value to the addition of dedicated delivery lead roles that facilitate

communication and coordinate response activities when hidden scope is discovered. The addition of a

role responsible for developing and leading the execution of Agile management practices is also

valuable.

This study concludes that there is a benefit to having the entire project delivery system embrace the

reality that scope discovery and scope additions will occur and must be addressed promptly and

collaboratively by all functional areas. This allows the project delivery system to evolve to a more

efficient organizational structure and a suite of processes.

Because of the inherent lack of slack within Agile planning, the nature of humans to under-estimate the

size of the project effort, and the reality of new scope being discovered, this study proposes that the

planning phase should include proactive project-wide and intra-feature contingency planning. This

expedites project recovery and reduces the angst that comes with short-notice mitigation activities.

This study also found that executing an explicit Agile Stage-Gate hybrid project management process

requires training as a necessary activity to allow for the Stage-Gate and Agile practitioners to understand

how to provide for the needs of these combined methods.

7.2 Limitations

There are several limitations to the extensibility of the conclusions of this study. While each of the

project delivery systems studied operate independently of each other, they build from the Scaled Agile

Framework concept. It is unclear if the results would be different if a different Agile method would have

been used by some or all the subject systems.

The mechatronic products developed by these project delivery systems may or may not have unique

relationships between hardware and software, which may hinder the application of these findings onto

other systems. This study did not attempt to identify any such relationships or compare them to other

mechatronic products.

The interpretation of the Interview results is subject to the author's biases, who is a systems engineer by

training and has his own experiences with the use of Agile Stage-Gate hybrids.

82

All the information from the interviews are subjective, including the numeric responses and subject to

the interviewees' biases. Whenever possible, interviews of different individuals in the same or similar

roles were completed to compare the responses to help mitigate the chance for biases. In addition, the

number of interviews captured within each project delivery system could allow for the biases of a single

or small group of individuals to impact the results.

7.3 Future Work

As an expansion to this body of work, the following activities could be considered.

A follow-up study with one or all these project delivery systems could be pursued, should any of them

choose to apply some or all this study’s recommendations. There are opportunities to evaluate the

repeatability of the success that one of the project delivery systems had when the treatments are

applied to the other two systems.

The modified systems dynamics model of Januszek could be expanded upon to create a set of simulation

results to identify the repercussions of the proposed adjustments.

A repeat of this study or a comparison of the results of this study to a similar study on additional

organizations could bring additional support to the conclusions of this study. This study could also be

repeated with a group explicitly using a different Agile framework as their starting point to see if this

impacts the results.

The software development groups within these organizations pursued Agile methods by having the

software organizations push it into the project management practices. This bottom-up approach could

be part of why the non-software parts of the organization have been slow to adopt any changes.

Comparing an organization that pursued the Adoption of Agile Stage-Gate hybrids from the top-down

would be an interesting comparison.

Finally, this work, the proposed future work above, and the existing work of others may enable a future

activity of creating a more explicit and specific framework for Agile Stage-Gate project management

systems to be proposed.

83

References

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, M. Fowler, R. Martin, S. Mellor, D. Thomas, J.

Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, K. Schwaber and J. Sutherland,

"Manifesto for Agile Software Development," 2001. [Online]. Available:

https://www.agilealliance.org/agile101/the-agile-manifesto/. [Accessed 7 June 2020].

[2] Project Management Institute, A guide to Project Management Body of Knowledge (PMBOK

Guide), Newtown Square: Project Management Institute, 2017.

[3] B. Moser, "Scope Patterns for Projects Modeled as Sociotechnical Systems," The Journal of Modern

Project Management, Vols. January-April 2017, pp. 118-122, 2017.

[4] D. Leffingwell, Scaling Software Agility, Upper Saddle River, New Jersey: Addison-Wesley, 2007.

[5] F. Brooks, The Mythical Man-Month, Boston: Addison-Wesley, 1995.

[6] J. Lyneis and D. Ford, "System dynamics applied to project management: a survey, assessment, and

directions for future research," Systems Dynamics Review, vol. 23, pp. 157-189, 2007.

[7] S. Januszek, "Master's Thesis: Analyzing the Impact of Agility Enabling Team Structures on the

Performance of Product Development Projects," Massachusetts Institute of Technology, Boston,

2017.

[8] A. Thayer, A. Petruzzelli and C. McClurg, "Addressing the Paradox of the Team Innovation Process:

A Review and Practical Considerations," American Psychlologist, vol. 73, no. 4, pp. 363-375, 2018.

[9] J. Stjepandic and W. Verhagen, Concurrent Engineering in the 21st Century, Switzerland: Springer

International Publishing, 2015.

[10] J. Galbraith, "Organization Design: An Information Processing View," Interfaces, vol. 4, no. 3, pp.

28-36, 1974.

[11] K. Forsberg, H. Mooz and H. Cotterman, Visualizing Project Management, New York: J, Wiley and

Sons, 2005.

[12] B. Blanchard and W. Fabrycky, Systems Engineering and Analysis, Upper Saddle River: Prentice Hall,

1998.

[13] Federal Highway Administration, "Clarus Concept of Operations," October 2005. [Online].

Available:

https://web.archive.org/web/20090705102900/http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_t

e/14158.htm. [Accessed 8 June 2020].

84

[14] B. Boehm, "A spiral Model of Software Development and Enhancement," Computer, vol. 21, no. 5,

pp. 61-72, 1988.

[15] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, M. Fowler, R. Martin, S. Mellor, D. Thomas, J.

Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, K. Schwaber and J. Sutherland, "12

Principles Behind the Agile Manifesto," Agile Alliance, 2020. [Online]. Available:

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/. [Accessed 8

June 2020].

[16] K. Schwaber and J. Sutherland, "The Scrum Guide," 2020. [Online]. Available:

https://www.scrumguides.org/scrum-guide.html. [Accessed 8 June 2020].

[17] Scrum.org, "What is Scrum?," 9 June 2020. [Online]. Available:

https://www.scrum.org/resources/what-is-scrum. [Accessed 9 June 2020].

[18] D. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business, Sequim

Washington: Blue Hole Press, 2010.

[19] K. Beck, Extreme Programming Explained (Second Edition), Boston: Addison-Wesley, 2005.

[20] D. Wells, "Extreme Programming: A Gentle Introduction," 8 October 2013. [Online]. Available:

http://www.extremeprogramming.org/. [Accessed 9 June 2020].

[21] D. Leffingwell, R. Knastner, I. Oren and D. Jemilo, SAFe Reference Guide 4.5, New York: Pearson

Education, 2018.

[22] Scaled Agile, Inc., "SAFe," Scaled Agile, Inc, 2020. [Online]. Available:

https://www.scaledagileframework.com/. [Accessed 9 June 2020].

[23] The LeSS Company B.V., "LeSS," The LeSS Company B.V., 2020. [Online]. Available:

https://less.works. [Accessed 10 June 2020].

[24] The LeSS Company B.V., "LeSS Huge," 2020. [Online]. Available: https://less.works/less/less-

huge/index.html. [Accessed 10 June 2020].

[25] R. Cooper, "Agile-Stage-Gate Hybrids," Research-Technology Management, vol. 59, no. 1, pp. 21-

29, 2016.

[26] A. Hamilton and E. Bergmann, "Agile & Waterfall: living together in perfect harmony!," 1 August

2013. [Online]. Available: https://www.agilealliance.org/resources/sessions/agile-waterfall-living-

together-in-perfect-harmony/. [Accessed 10 June 2020].

[27] S. Vergini, "Burn Down vs Burn Up Chart," Project Management.com, 2020. [Online]. Available:

https://www.projectmanagement.com/blog-post/40731/Burndown-vs-Burnup-Chart. [Accessed 19

August 2020].

85

Appendix 1: Interview Guide and Survey Questions

Interview Guide

1. How effective are the project management methods of this organization with respect to

managing software delivery?

2. How does project leadership assess if the software development work is meeting expectations?

While the software development teams are doing their work, they can discover more things that

can, should, or must be done in to deliver to the requirements of the system.

3. Over the length of the project, how much more work is discovered and added to the original

estimates?

4. How much of this discovered scope is shared with project leadership?

5. What is the method for sharing?

6. When new scope is discovered by the team, what methods does the project leadership use to

adjust the expected schedule, scope, and/or resources to allow for the completion of the

additional work?

7. How are these changes expressed by the project management?

8. How often do these activities occur?

9. How effective are these mechanisms with keeping the scope, schedule and resource

expectations aligned with the discovery of additional work?

10. What activities do you find particularly effective? What barriers exist that prevent this from

occurring?

Survey

Each question will have a 7 level range from Bad/Ineffective to Good/Effective. A few questions will have

an open section where participants can add more information.

1. How effective are the project management methods of this organization with respect to

managing software delivery? While the software development teams are doing their work, they

can discover more things that can, should, or must be done to deliver to the requirements of the

system.

While the software development teams are doing their work, they can discover more things that

can, should, or must be done in to deliver to the requirements of the system.

2. On average, how often does this occur within your team?

86

a. Daily, Many times per week, Once per week, Many times per month, about once per

month, about once per Quarter, About once per year.

3. Over the length of the project, how much more work is discovered and added to the original

estimates?

a. Less than 10%, 10-30%, 30-60%, 60%-100%, greater than 100%

4. How is the discovered scope shared with project leadership?

a. Respondents will type in their answer

5. How effective are the mechanisms for sharing the discovered scope with Project leadership?

a. 7 levels from not effective to very effective

6. What is done to adjust the expectations of the project leadership to account for the newly

discovered work?

a. Respondents will type in their answer

7. How often does project management adjust project scope or delivery targets in response to the

discovery that there is more work to do than originally estimated?

a. Never

a. About yearly

b. About quarterly

c. About every other month

d. Monthly

e. Per sprint

f. Weekly

2. How effective are the project management activities with keeping the delivery targets aligned to

the newly discovered work to be done?

a. 7 levels from not effective to very effective

87

Appendix 2: Survey Results from the Software Developers

88

89

90

