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Abstract 
 

Today’s power grid is composed of different kinds of distributed energy resources (DER) such as 
solar panels, wind farms, batteries and power transformers. DERs often come with data interfaces 
and IoT sensors which generate large amounts of data. Besides monitoring device status, those 
data can be utilized to improve system efficiency and generate additional values. My thesis is to 
examine the benefits of technologies that incorporate AI algorithms on the growing DER data in a 
technical perspective;  
 
First, a new field after IoT technology, called AIoT (Artificial Intelligence Internet of Things) is 
introduced, which are new technologies combining artificial intelligence (AI) and IoT to each other 
and creating new opportunities in the distributed energy resources (DER) field.  
 
Second, the thesis focuses on three areas of AIoT applications (1) fault prediction in photovoltaic 
system and power transformers; (2) remaining useful life (RUL) prediction of IoT enabled 
equipment; (3) AI-enabled algorithms can automate processes and make real time grid system 
optimization, such as energy storage, demand response (DR) and grid flexibility. The main focus 
is on data driven AI techniques that differentiate from traditional statistics or knowledge-based 
systems, present algorithm applicability, compare improvement over traditional method and 
business value created in each area. 
 
Finally, in the smart grid concept, all AIoT powered distributed energy resources (DER) can be 
aggregated in terms of virtual power plant (VPP), which enable the management of efficient and 
reliable power network on a large scale, and coordinate demand and supply in real-time. The AI 
enabled VPP architecture is presented, which utilized all the AIoT technologies and can provide 
valuable system capacity, flexibility and reliability.  
 
 
Thesis Supervisor: Harvey Michaels 
Title: Lecturer, System Dynamics and Information Technology 
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1 Introduction 
 

Today’s power grid is composed of different kinds of distributed energy resources (DER) such as 

solar panels, wind farms and batteries. DERs often come with data interfaces and IoT sensors 

which generate large amounts of data. Beside monitoring device status, those data can be utilized 

to improve system efficiency and generate additional values. The thesis is to present technologies 

that incorporate AI algorithms on the growing DERs data in a technical perspective, including 

diagnosis and optimization of photovoltaic systems and renewable transformers. 

 

Three trends are happening to revolutionize the energy grid:  

First, the traditional power system consists of a network of generation, transmission, distribution, 

and demand loads of 3 components. With growing technology and market trend, the "smart grid" 

consists of distributed energy resource (DER) systems, which are many small-scale power 

generation or storage technologies used to provide an alternative to or an enhancement of the 

traditional electric power system. DERs are electricity-producing resources or controllable loads 

that are connected to a local distribution system or connected to a host facility within the local 

distribution system. 

 

DERs can include solar panels, combined heat and power plants, electricity storage and power 

transformers. These resources are typically smaller in scale than the traditional generation facilities. 

Following diagram shows the major components of an DER.  
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Second, IoT technology continues to advance. The Internet of Things (IoT) is a system of 

interconnected digital devices, machines and the ability to transmit and receive data over a 

ubiquitous low bandwidth network. Not only does IoT drive down the cost of sensors and 

electronic parts, but also the power consumption is reduced drastically. It enables new areas of IoT 

application that relies on low-cost battery-powered sensors.  

 

Lastly, as vast amount of data is generated and exchanged between grid components. The 

components can be managed by smart devices from generation to demand loads. For optimal 

performance, big data analytics and AI-enabled autonomous control can be applied. Artificial 

intelligence and machine learning algorithms have improved dramatically in the past decade and 

have proven to be able to solve the previous state of the art problems, which has been a challenge 

in the traditional methods, for example how to detect faults that is early enough for system 

operators to act and how to optimize the performance of an interconnected power system to achieve 

higher efficiency. This  thesis dives into the novel technology and emphasizes the improvement 

over traditional methods. 

 

1.1 AIoT Technology 

A new field after IoT technology, recently, more application and technologies combine artificial 

intelligence (AI) and IoT to each other. The sensors collect information on the system status, based 

on which the intelligent algorithms in the IoT devices as well as the edge or cloud servers to 

generate real time actionable insights or make control decisions for the actuators to react. The two 

fast developing fields have merged into the new application, called "AIoT (Artificial Intelligence 

Internet of Things)" has created a new pattern among industries. Chapter 2 presents the latest AIoT 

technology.  

 

1.2 Distributed Energy Resources 

An increase in an overall world trend in the awareness of climate change and the need for 

mitigation efforts is bringing forth huge increases in the deployment of renewable energy in 

comparison to fossil fuel energy sources. There are several driving factors for the remarkable 

growth of renewable energy systems (RES) with increasing efforts in research and development 
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in the areas. The yearly growth in the capacity of renewable power plants is becoming greater than 

the total investment capacity added in power plants based on coal, natural gas, and oil all combined 

together [1]. RESs have gained significant share of power source (See Figure 1-1) the trend will 

continue increasing at faster rates as demands for clean energy sources are continuing to grow. 

 
Figure 1-1  (A) Average annual growth rates of renewables (2008–13); (B) global electricity production (2013) 

 

1.3 Thesis Chapters 

Based on the aforementioned information, the chapters of this thesis are arranged as follows: 

Chapter 2 presents AIoT architecture and application; Chapter 3 summarizes all faults that can be 

found in a photovoltaic system and in renewable transformers, describes the data-driven models, 

supervisor learning and unsupervised learning algorithms will be presented; Chapter 4 describes a 

novel type of AI application to predict Remaining Useful Life (RUL); Chapter 5 presents AI driven 

optimization techniques for photovoltaic systems, energy storage and demand response; Chapter 

6 presents the overall virtual power plant (VPP) and present aggregate model of VPP with all AI 

technologies; Chapter 7 reaches the conclusion. 
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2 AIoT Distributed Energy Resource 

2.1 What is AIoT? 

AIoT is short for AI + IoT, the combination of artificial intelligence technology and the Internet 

of Things in a practical application. The Internet of Things (IoT) connects a huge number of device 

and machinery to the Internet; in a distributed energy resource (DER) world that includes all the 

power sources, end node and transformer switches, etc. The IoT sensors generate massive amounts 

of data to reflect the status of the power system from the generator to the end users. These data are 

processed and analyzed by software with machine learning (ML) and artificial intelligence (AI) 

algorithms. The objective of such systems is to make better decisions to operate those systems in 

the physical world.  

 

IoT is about sensors implanted into machines, which offer streams of data through internet 

connectivity. All IoT-related services inevitably follow five basic steps called: “collect, aggregate, 

analyze, insight and act”. Without artificial intelligence, “analyze, insight and act” steps are mostly 

conducted by humans. Because of the large amount of data information which is beyond human 

comprehension, most of the important value from IoT data were lost or untouched. This is where 

the AI technology plays a crucial role to enable the value of IoT. The convergence of mature IoT 

and artificial intelligence technologies has evolved into "AIoT".  

 
Figure 2-1 AIoT System Data Flow 
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Massive data from traditional industrial equipment have been collected to the cloud. How to 

manage and analyze big data and gain insights posts new challenges. In order to make the devices 

algorithm-driven, it is crucial how the device equipped with artificial intelligence is seamlessly 

connected to the huge database. Therefore, the networking framework is the key factor for AIoT 

system. In addition, the equipment has a large number of sensors, but is limited by the quality of 

the sensors and the lack of original construction, and therefore the data quality is relatively low. 

Overall, Industrial equipment has low data stability, missing data, incompatible formats, high 

uncertainty, high dimensionality.  

 

It is important to point out that the advancement of IoT and AIoT cannot be achieved without the 

development of new communication technologies, such as 5G (fifth-generation mobile 

communication technology). The 5G low-energy and low-latency is a key feature technology that 

promotes the AIoT. Some of the distributed energy resources (DER) such as solar farm and 

transformers, deploying a wired communication is not feasible. With 5G, a large amount of data 

can be uploaded to the cloud through 5G for artificial intelligence analysis. 

 

For distributed energy resources (DER) systems, it is especially valuable after a large number of 

connected machinery and sensors are connected via a closed or global network, they are different 

from the operation mode of previous unconnected generation. Artificial intelligence advances the 

evolution of DER in addition to the IOT connectivity. They can automatically recognize errors, 

autonomously optimize system operations and predict future outcome. With AIoT, a DER system 

can be defined as a "smart energy system". 

 

2.2 Types of AI Learning: Supervised versus Unsupervised  

In the artificial intelligence world, learning is a process that improves the behavior of an algorithm 

by making adjustments based on the observations or training dataset. The more training data are 

fed into the algorithm, the better the algorithm performs. There are two types of learning. 

Supervised learning is the most common one. Supervised machine learning algorithms are 

designed to work with existing datasets. When training a supervised learning algorithm, the 

training data will consist of inputs paired with the corresponding outputs. Supervised learning is 
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primary used to perform classification and regression. Unsupervised learning refers to a set of 

artificial intelligence (AI) algorithms to train on data sets which only contain input data. There are 

no corresponding outputs, which are called unlabeled. Unsupervised learning is primarily used to 

recognize patterns or behaviors. Following diagram shows the different types of learnings.  

 
 

Figure 2-2 Supervised Learning versus Unsupervised Learning 

 

Artificial intelligence technology enables DER systems to learn from its previous data, make 

predictive analysis, or assist in decision-making after analysis. The low-cost availability of IoT 

data is very important for the artificial intelligence learning algorithms and generate valuable 

insights. So, AIoT is the central piece of the modern DER system.  

 

2.3 Benefit of AIoT in Distributed Energy Resources 

AIoT leads to a broad range of benefits for energy systems such as proactive actions and real 

time intelligent automation, which boost the productivity and profitability of the renewable 

energy industry. 

 

Boosting Operational Efficiency 

Accurate and real-time data analytics are required to improve renewable energy generation 

efficiency and capacity. AIoT will help renewable energy companies to manage the large capacity 

of assets located in remote and widely distributed areas, which can be very complex. AIoT can 

analyze asset data in real-time with sophisticated algorithms. In addition, machine learning 
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coupled with AI can predict the operation conditions. Technology can be used to ensure that energy 

transformation is evenly distributed. AIoT can detect a change in demand and supply and 

automatically provides operators with information to react to these changes and increase efficiency. 

Hence, AIoT offers an insight into which processes are redundant and time-consuming, and the 

productivity of renewable energy assets can be improved. 

Better Production Management 

Decisions about energy generation, load switching, and network configuration changes are 

constantly changing in Distributed Energy Systems. Insightful information provided by AIoT data 

analytics can provide insights to predict power production and asset reliability. For example, AIoT 

offers real-time access to a solar farm’s operation status which can be turned into actionable 

insights, predict a broad range of risks, and automate for the prompt response.  

 

Reduces Costly Downtime 

Renewable energy includes solar panels, wind turbines, and transformer equipment which are 

remote and difficult to access. The predictive maintenance with AIoT can predict the equipment 

failure in advance and schedule proactive maintenance procedures. Hence, with AIoT, DERs can 

reduce unplanned downtime, resulting in lower operating cost. 

 

Deloitte, for example, finds the following results with AIoT: 

20% - 50% reductions in their time invested in maintenance planning 

10% - 20% increase in equipment availability and uptime 

5% - 10% reduction in maintenance costs 

 

2.4 Architecture of AIoT System 

AIoT will evolve the existing IoT standards to form autonomous future communication 

architectures to support the intelligent exchange of data between millions of devices. The 

architecture AIoT system consists of four layers: IoT hardware, communication layer, cloud 

infrastructure and data analytics. 
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Figure 2-3 AIOT System Architecture 

 

IoT Hardware: The energy assets contain their own data source that require hardware to interface 

with them. Low cost IoT sensors can also be installed to collect assets' status such as power, flow 

rate, pressure etc. IoT devices include transducers such as sensors and actuators. With the low cost 

and low power IoT hardware, the traditional power equipment become connected, such as smart 

light bulbs, connected valves and pumps, smart meters, connected power plants, smart building 

components etc. IoT devices are essentially capturing the data, which is the platform of AIoT 

architecture, the foundation of connected and intelligent solutions. It enables IoT related smart 

application for the upper layers. 

 

Connectivity Layer: responsible for gathering data and transferring over a network. The main 

components that complete connectivity layer are sensors and devices. Sensors collect the 

information and send it off to the next layer where it is being processed. With the advancement of 

technology, semiconductor technology is used that allows the production of micro smart sensors 

that can be used for several applications. 

 

The communication layer is considered as the backbone of the IoT systems. It is the main channel 

between the application layer and IoT hardware layer. AIoT system is loaded with vast amounts 

of data and information that need to be shared within the network. Therefore, it is needed to set up 

a low cost and low bandwidth connection network among these nodes. The communication layer 

needs to interpret all industrial equipment communication protocols such as Modbus, DNP3, and 

IoT Hardware 

Connectivity 

Cloud  
Infrastructure 

Analytics 

Power Meter, Environment,  
HVAC status, Customer Behaviors 

Modbus, OPC, BACNET, DNP3 

Device management, big data storage, IOT security, data API 

Transformer Status, voltage, 
Current, temperature  

5G, LTE, Nb-IoT, Lora, Zigbee 

Data cleaning and processing, Machine Learning, anomaly detection, optimization  
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transfer using either wired or wireless protocols such as Lora and NB-IoT and 5G. So, this is a 

broad layer with multiple devices, technologies, solutions (software and hardware) and functions. 

Typically, IoT gateways are used for connectivity aggregation, translation of the various protocols, 

encryption and decryption of IoT data, the management of IoT devices, some advanced edge 

computing. Moreover, networks are very vital components in AIoT to connect things to the outside 

world.  

 

Cloud Infrastructure needs to be able to manage a large number of the IoT endpoints in the fields, 

secure communication, authentication, and verification. With IoT platforms are software 

infrastructures between hardware-related layers of IoT devices and the business and application 

layers on the above.  

 

It also provides the infrastructure of big data storage and computation resources. One of the most 

important components of IoT cloud is database management that is distributed in nature. The cloud 

basically combines many devices, gateways, protocols, devices and a database that can be analyzed 

efficiently. These systems are essential of AIoT architecture in order to provide efficient data 

analysis that can help improve the services and products. 

 

Data Analytics Layer: The most important function of IoT technology is that it supports real-time 

analysis that discover anomaly and perform optimizations. This layer employs different data 

science and analytics techniques including machine learning algorithms to make sense of the data, 

can use data to find trends and gain actionable insights, to evaluate the performance of devices, to 

help identify inefficiencies, and to create more efficient models for control applications. As shown 

in Figure 2-4 Data analytics is the brain of the overall AIoT system, which can help improve energy 

operations, efficiency or even predict future events like machine failure.  
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Figure 2-4 AI Data Process Flow for IoT Applications 

 

2.5 Growth Renewable Energy 
 

For all the use cases from the generator, distribution to demand load, which also includes the 

renewable energy sources and overall power grid balance, the benefits can be categorized as 

following charts, which consist of energy source site optimization, grid (transmission & 

distribution) services, and generator & energy trading. Global supplies of renewable electricity are 

growing faster than expected and could expand by 50% in the next five years, predominantly 

driven by solar energy. The United States solar energy market is expected to grow at a CAGR of 

17.32% during 2020-2025.  
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Figure 2-5 Renewable Service Flow Chart 

2.6 AI Analytics of AIoT System 
Traditionally, IoT devices were all about collecting data. Combining with Artificial Intelligence 

algorithms, AIoT can analyze data patterns, predict future energy generation and provide business 

intelligence to enhance operation. In certain cases. In some cases, AIoT can control the system in 

automatically, which can increase the system capability and reduce human involvement. Following 

are three areas AIoT can generate values that will be described in the thesis in detail: 

 

Fault Prediction: Using multi-source sensing data to predict grid and machinery failure, to 

achieve predictive maintenance of energy production and mechanical equipment can remarkably 

improve the distributed energy resources (DER) grid and energy reliability. 

 

Service Life Prediction: AI algorithm and machine learning technology can take fault prediction 

one step further. With remaining useful life (RUL) or service life prediction of critical grid 

components, DER can drastically improve the reliability and reduce cost of maintenance. 

 

AI Enabled Optimization: AI-enabled algorithms can automate processes and make real time 

system optimization. Not only AI algorithm can make better decisions than human, they are also 

self-learning and improve and adapt automatically to whatever the grid or energy market 

environments.  
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3 Fault Prediction 
 
3.1 Overview 
 

Traditionally, faults of DER components can be detected by constantly monitoring the system 

performance. With the increasing accessibility of sensor data and artificial intelligence algorithms, 

fault prediction is a new method that allow the identification of eventual failures before they occur. 

With development of distributed energy resource (DER), energy demand and supply components 

are becoming more sparsely located, there is often the need to answer the question: when will the 

system fail? Fault prediction is data driven reliability algorithms capable of analyzing data, and 

creating machine learning-based predictive models to critical energy components such as 

Photovoltaics and transformers.  

 

3.2 IoT Sensor Devices for Photovoltaic Systems 

Sensors are the enabling assets of IoT systems. They collect and transmit data in real-time. In DER 

systems, there are pre-existing sensors and newly installed sensors to sense and collect data, for 

further processing, analytics, and decision-making. There are following commonly used sensors: 

Circuit Sensors are commonly low power IoT Current and Voltage Sensor which measure the 

basic performance of the device. Current is measured Current Transformer (CT) sensors measure 

alternating current (AC) flowing through. Some advanced circuit sensors include the capability to 

measure the harmonic and power factor for AC power.  

Environment Sensors are used to detect the fluctuations in environment such as temperature, 

humidity, solar radiation. Light sensors are used to measure luminance (ambient light level) or the 

brightness of a light, which are used for solar radiation. Humidity sensors are used to distinguish 

the amount moisture and air’s humidity and temperature sensors are used to detect the fluctuations 

on the surface. Both humidity and temperature have direct impact of Photovoltaic panel 

performance. 

Activity Sensors are used to measure all human activities external to the IoT equipment 

themselves. Activities are often related to the load or demands. The common activities are Passive 

Infrared (PIR) sensors and Proximity sensors which provide feedback to control system output.  

Mechanical Sensors are used to measure variables such as position, velocity, acceleration, force, 

pressure, levels and flow. For example, Inertial sensors, such as accelerometers or gyroscopes can 
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be used to measure position or motion. A popular application is for vibration analysis, which can 

be used for earlier fault detection. Piezoresistive sensors respond to changes in pressure. Flow 

sensors can be used to measure liquid flow.  

 

Following is an example diagram to monitor solar panel (PV) performance using wireless IoT 

devices.  

 

 
Figure 3-1 Block diagram of Solar Energy Wireless Sensor Network [2] 

 

3.3 Fault Detection of Photovoltaic Systems 

Photovoltaic system faults are often considered as the system failure or functional deterioration, 

and their major consequence is the energy collecting losses or inefficiency, respectively. Even 

worse, Hot spots or short circuit faults might be further led to fire accidents [3]. Those effects 

significantly increase the maintenance costs from a long-term perspective and threat the annual 

photovoltaic system operation. Therefore, many engineers and researchers have attempted to find 

possible strategies for carrying out the digital fault detection through the monitoring data.  

 

Remote fault detection can replace many investigation and inspection work, which were previously 

carried out by operation engineers. Since photovoltaic faults are often caused by certain physical 



 21 

reasons, based on the conventional physical model fault detection can be carried out with reliable 

interpretability. However, due to the uncertainty within the monitoring data and faint environment 

conditions, the photovoltaic faults can hardly judge only by means of the physical models. To 

alleviate engineers’ workloads and further reduce operation and maintenance costs of enterprise, 

the fast-growth demand is on the intelligent detection and enhancing the detection accuracy. 

Together with the fast development of big data technologies and cloudy computation sources, lots 

of novel data-driven models for handling the photovoltaic fault detection have emerged in last 

decades. Since physical and data-driven models are suitable for different application scenarios and 

accuracy, this thesis offers a comparison study between those two types of models; as well an 

analysis of their hybrid models is also presented. 

 

The probable triggering factor of photovoltaic system faults can be concluded as physical, 

electrical, environmental, mis-operational and other factors [4]. Mis-operation due to human 

activities during installation or maintenance is easy to be monitored but difficult to be detected in 

the light of any physical or data-driven models. Therefore, the impact of mis-operation factor on 

the photovoltaic systems will be ignored, where the primary focus lies in the inherit physical, 

mechanical or electronic faults. The environmental factor often comprises of corrosion, rodent 

chewing, water ingress, mechanical damage and aging, which are also considered as the major 

trigger factors of causing the mechanical and electrical failure of photovoltaic systems.  

 

The ultimate goal of the fault detection is to reduce maintenance costs and guarantee the secure 

system operation. To reach those points, many researchers and experts have attempted to find a 

reliable and accurate solution for the fault detection based on physical or data-driven models in the 

last decade. Notice that, two key issues should be ascertained through the fault detection, namely 

the fault type and location, which provide the useful and helpful information to the related 

maintenance workers of the photovoltaic systems [5]. 

 

Successful fault detection can work as an “expert”, who possesses reliable and rich experience, for 

the photovoltaic system and his major task is to identify the fault types as well as to raise the fault 

signal in real time. According to the literature review, common photovoltaic system faults are 

accounted in this thesis, which can be generally summarized as five main types, namely open 
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circuit, short circuit, shading, degradation and hot spot faults [4]. Each type of fault corresponds 

to certain physical phenomenon and can be detected through both I-V and P-V curves. Notice that, 

the inverse analysis, namely to make conclusions based on I-V or P-V curves, are not totally 

reliable, since faults are often subjected to certain circumstances. The aforementioned physical and 

data-driven models are applied for detecting faults and identifying fault types. 

 

From the time series perspective, fault detection can be before or after the failure occurs, 

corresponding to forecasting or back-analysis, respectively. There were many previous works 

focused on photovoltaic fault classification, detection and forecast, and among them physical 

models possessed most part, e.g. one diode model (ODM), the voltage and current characteristics 

of the PV module (I-V curve), the power and current characteristics of the PV module (P-V curve).  

 

Physical models are often regarded as the major solution for the fault detection and it has strong 

theoretical support and interpretability, due to the fact that physical models are described by a 

series of analytic solutions as usual. It is therefore nature to identify the distinction between normal 

and abnormal states by means of the threshold definitions. The result of using thresholds is stable 

and for most time is reliable and data independent. Besides, thresholds can be flexibly adjusted 

depending on the local environment and corresponding photovoltaic systems. In practice, physical 

models can be applied both on-site and remotely. Nevertheless, physical models are subjected to 

the cases without target labels and are also hard to conduct in undefined cases, e.g., anomaly 

detection. Indeed, those types of cases can only be treated by employing the data-driven models.  

 

Artificial Intelligence based data-driven models are often selected as an advanced solution for the 

fault detection and nowadays it can be combined with big data and cloud computation technologies 

to facilitate its calculation speed. Besides, data-driven models can also provide more data analysis 

tools for exhibiting and capturing the faults’ behavior of photovoltaic systems than the 

conventional physical models. Digital insight for the remote monitoring and fault detection can 

replace lots of the inspection workload. Within data-driven models, artificial intelligent algorithms 

play an important role and they are often applied throughout procedure of the data preprocessing, 

processing and post-processing. Based on the analysis of fault phenomenon of photovoltaic 

systems, the appropriate artificial intelligent algorithms are selected for modeling the fault 
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detection, for instances, artificial neuron network (ANN) [6], probabilistic neuron network (PNN) 

[7] [8], Bayesian networks (BNN) [9], residual neuron network (ResNet) [10], fuzzy logical ( [11] 

[12], etc. In addition, data preprocessing is another assignable part for artificial intelligent 

applications in solar energy field. Many researchers and experts have attempted, e.g., Kalman filter 

[13], fast Fourier transformation (FFT), etc., to gain the clean data. 

 

3.3.1 PV Fault Classifications 
 
Following are the leading faults detected in PV panels. 

 

Open-circuit Faults 

Open-circuit faults are directly caused by the disconnection of cables or connector, and leading to 

power losses of the PV system [10]. Open-circuit faults are easily to identify, since there are no 

current from the damage PV array even under the illuminated condition.  

 

Short-circuit Faults 

Short-circuit faults represent accidental connection or low-impedance among two points in a PV 

array [14], which may be caused by insulation damage of cables (due to corrosion, rodent chewing, 

water leakage, aging, etc.), PV module internal damage, mis-operation during installation or 

maintenance, etc. Short-circuit faults can be further classified into line-line and line-ground faults, 

and they would lead to a large reverse current flow that obviously reduce power output and even 

results in electric shock and fire disaster [10]. 

 

Line-Line Fault 

An LLF is defined as an accidental short circuit between any two points of different voltage 

potentials [15]. 
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Figure 3-2 PV array configuration showing possible line-to-line faults and ground faults  [16] 

 

Arc Fault 

AF is a high-power discharge of electricity across an air gap between conductors [17, 18]. Series 

AF is said to have occurred when the arc is initiated as a result of a discontinuity in any of the 

current-conducting conductors. Parallel arc faults: parallel faults also occur due to mechanical 

damage, nesting rodents, or failure within the PV module [4]. 

 

Series Arcs Fault 

Series arcs can be created across small gaps between two connecting terminals such as busbar-

ribbon connection in PV modules and connection in combiner box. The lack of scheduled 

maintenance, aging effect, weather effect (i.e., corrosion caused by rain), mechanical damage 

induced by wind, animal bites, improper wiring can cause bad joints. Bad joints decrease the cross-

section area, effectively increases the connection resistance, and significantly increase the heat 

loss. It introduces more thermal stress due to the higher operating temperature, and accelerates the 

deterioration in connections, which leads to loosen connections [19] [20]. 

 



 25 

 
Figure 3-3 Possible locations of AFs in a PV array [16] 

 
Parallel Arcs Fault 

Parallel arcs have the similar mechanism as series arc faults. They can be developed between two 

conductors in the same string, two conductors of two different strings, and conductor and 

grounding point [21]. The parallel arc faults are mainly caused by degradation and breakdown of 

insulation because of various reasons such as animal bites, mechanical damage, and aging effect, 

because most of cables and wires are exposed to the open environment (no protective enclosure) 

in PV systems [22]. 

 

Ground Fault 

Due to the existence of a high potential difference between the location and the ground, a 

substantial amount of current ensues. In contrast, the existence of low voltage between location 

and the ground leads to a lower fault current. Another indicator of GF severity is percentage 

mismatch, which specifies the number of PV modules involved in the fault [4]. It is reported that 

cable insulation failure, accidental short-circuiting of normal conductor and ground, PV module 

encapsulation deterioration, water corrosion, and impact damage are some of the causes of GF 

[15]. 

 

Partial Shading 
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Partial shading mainly refers to partly different irradiance input of PV modules in a PV array (due 

to soiling, dirt, leaves, obstruction by buildings, trees and so on) [23], which may cause power 

losses and hot spots in PV modules [10]. 

 

Degradation Faults 

Degradation faults commonly result in an increase of the equivalent series resistance or decrease 

of the parallel resistance, which would mainly lead to significant decrease of the parallel resistance, 

which would mainly lead to significant decrease of power [10]. 

 

Hot Spot Fault 

Hot spot is a condition which occurs in PV cells and modules when the electrical characteristics 

of series connected cells/modules of PV string become mismatched. A sustained hot spot gives 

rise to HSF [4]. 

 
Table 3-1 Types of PV array faults according to triggering [4] 

Fault Reasons Manifestations Subtypes Symbols 
Physical  

Models 
Data-driven Models 

Disconnection Open circuit 	 𝐹!	 √ √ 

Corrosion, rodent chewing, 

 water leakage, aging, etc. 
Short circuit 

Line-Line Fault	 𝐹"	 √ √ 

Ground Fault	 𝐹#	 √ √ 

Arc Fault	 𝐹$	 √ × 

Cloudy, trees, buildings, etc. Shading 
Permanent Shading	 𝐹%	 √ √ 

Temporary Shading	 𝐹&	 √ √ 

Aging Degradation 	 𝐹'	 √ √ 

Manufacturing defects,  

cracks, shading, degradation,  

bird droppings,  

damage to bypass diode, etc. 

Hot Spot Faults 	 𝐹( √ × 

 

3.4 Data-driven Models 

Physical detection approach often requires an explicit mathematical expression, or physical 

instruments to depict the component or system circumstance. Data driven model could provide 

useful and powerful information for revealing the relationship between inputs and outputs, even 

without the detail knowledge of the complicated systems. Hence, data-driven models provide a 
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novel insight to find the solution for fault detection. In this Section, an overview of what data-

driven models were applied in the PV system fault detection is presented, followed by more focus 

on the link between data-driven algorithm and PV system faults. 

 

An increasing number of researches are investigating on data-driven models used in PV system 

fault detection. Figure 3-4 shows that the information driven methodologies are increasingly more 

popular in PV detection. During 2011 and 2014, just 1 or 2 papers were recognized on the 

utilization of information driven models for PV framework issue identification, and this number 

drastically increments to 8 or 9 of every 2017 to 2019. 

 
Figure 3-4 Trend of researches on data-driven models used in PV system fault detection 

 

Figure 3-5 illustrates different sub-categories of data-driven fault detection algorithms. Two 

primary types involved include fuzzy logic and machine learning algorithm. In practice, fuzzy 

logic approach often converts a binary fault detection process to a fuzzy process, where events can 

be assessed by the probabilities. Machine learning algorithm, including supervised and 

unsupervised algorithms, more depends on training data to obtain the internal relationship between 

measured inputs and expected outputs. 
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Figure 3-5 Methods used in Data-based fault detection algorithm for PV systems 

 

3.4.1 Fuzzy logic algorithms 

Fuzzy logic algorithms were presented in seven articles [11], [24], [25], [8], [26], [27], [12]. Fuzzy 

logic algorithm turns precise mathematical to mapping the probability of certain events. Used in 

industrial process for years, fuzzy logic algorithms show pretty good robustness, convenience and 

fitness for non-linear problem. However, it also requires extensive experience to extract a 

reasonable and reliable relationship.  

 

3.4.2 Machine Learning and Deep Learning Algorithms 

As the hottest type of algorithm nowadays, machine learning algorithms have been successfully 

applied in computer vision, natural language processing, and man-machine confrontation. When 

it comes to deployment, machine learning algorithms are also easier to implement with mature 

developed packages and tools in various programming languages. Inside the group of machine 

learning algorithms, there are supervised algorithms where labels are required during the training 

phase, and unsupervised algorithms were not. However, as for the application of PV system fault 

detection, even the unsupervised algorithms require reference labels to mark the fault type, which 

makes them close to semi-supervised algorithms. The possible reason that no pure unsupervised 

algorithm was spotted could be that the fault detection application requires a specific fault output, 

not only a description (e.g., a most common seen application is, user portrait). 
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Table 3-2 Summary of Machine Learning Algorithms for PV Diagnosis 

Algorithms Number of 

Articles 

References 

SVM 4 Yi 2017 [25], Harrou 2018 [28], Jufri 2019 [29], 

Alajmi 2019 [30]  

Decision tree 3 Zhang 2012  [31], Benkercha 2018 [32], Chen 2019 

[10] 

ANN 4 Polo 2015 [6], Chine 2016 [33], Mekki 201 [34], 

Dhimish 2018 [26] 

PNN 1 Garoudja 2017 [7] 

Deep network 1 Chen 2019 [10] 

K-means 1 Liu 2019 [35] 

K-nearest neighbors 1 Madeti 2018 [36] 

Other neural network 2 Chao 2014 [18], Liu 2019 [12] 

Self-developed algorithm  5 Dhoke 2019 [3], Lin 2017 [37], Chen 2019 [10], 

Zhang 2012 [31], Liu 2019 [12] 

 

Supervised Learning Algorithm 

Most of the machine learning algorithms used for PV fault detection fall into the group of 

supervised approaches, for the reason that labels can ensure an accurate and reliable detection 

result.  

 

Among supervised algorithms, a large group of researchers turn to neural networks for PV system 

fault detection, including traditional ANN (including back-propagation neural network), 

probabilistic neural network [7], [8], and Bayesian neural network [9]. It can be seen that neural 

networks are able to well fit the non-linear relationship observed largely in PV system fault 

detection, but still lack comprehensive physical explain of the models. There are also researchers 

attempting to utilize other algorithm or combine several algorithm ideas to create their own 

algorithms. 

 

Semi-supervised Learning Algorithm 

For those semi-supervised algorithms, the majority of the data used for training were not labeled. 

Under this circumstance, the basic idea of semi-supervised algorithms is that researchers first 

applied unsupervised algorithm to find a proper clustering solution, and then use in the light of a 

small set of reference data to finalize the detection result. 
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The model inputs for semi-supervised approach are evidently different compared to those for 

supervised approach. To better differentiate different clusters, normalization of the inputs is 

inevitable. After the pre-processing step (normalization) and the post-processing step (matching 

reference labels), different techniques utilized unsupervised algorithm to cluster the data samples. 

[15], [8], and [12] selected a center-based clustering method, where samples are clustered based 

on their distance to predefined and adjusted clustering centers. On the contrary,  [37] used a 

density-based clustering method, where each class is extended based on samples’ distances 

between each other. 

 

3.4.3 Hybrid Approach 

It was also noted during the research review that data-driven detection approach is not completely 

separated from physical model approach. Some data-driven intelligent algorithms can intervene in 

the early design phase of physical detection. [38] and [7] made use of Artificial Bee Colony (ABC) 

and applied Particle Swarm Optimization (PSO) algorithm, to extract key parameters to fit a 

physical PV model for fault detection.   

 

3.5 Fault Classification of Renewable Transformer Station 

Power transformers are also among the most expensive and complex equipment components. A 

power transformer is a piece of equipment that is of great importance to the electronic system (See 

Figure 3-6). Therefore, it is critical to improve the accuracy of fault diagnosis of power 

transformers. Power transformers are composed of oil, paper, copper, steel, iron and other 

materials. With the growing renewable energy sources such as photovoltaic, power transformers 

are becoming more and more towards large-scale and complex, with high complexity integration 

because of the volatility of the new renewable power sources.  
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Figure 3-6 Power Transformer and Renewable Energy Resources 

 

Most of traditional fault detection and diagnosis research and analysis methods are based on a 

certain factor or several factors without comprehensively considering the operating conditions and 

defects of the transformer. Limitations of testing methods, imprecision of knowledge and other 

reasons, lead to ambiguity of the detection results, which causes maintenance crew difficulty to 

rely on the results to decouple interaction and fault evolution of the transformer. The accuracy and 

timeliness of the traditional diagnosis results are far from the practical requirements. Therefore, it 

is valuable to explore the new technical system which utilizes data analytics algorithms. 

 

3.6 Transformer Fault Classifications 
Power transformer aging is an important factor leading to grid failure. The breakdown cost of any 

transformer can be catastrophic. There are many types of transformer faults, and the classification 

methods are different. Generally speaking, according to the location of the fault, it can be divided 

into internal electrical faults, external mechanical faults and thermal magnetic circuit faults. 
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3.6.1 Electrical Failure 

Short-circuit fault: mainly refers to the short-circuit of the iron core winding outlet and the short-

circuit between the winding phases. When the short-circuit fault occurs, a short-circuit current that 

is dozens of times larger than the normal current will be generated in the transformer, generating 

a lot of heat, and the winding will break down in severe cases.  

Discharge failure: Generally speaking, according to the instantaneous energy density of discharge, 

discharge failure can be divided into partial discharge, spark discharge, and high-energy discharge. 

The main discharge part has an air gap in the insulating layer, or when the insulating layer between 

windings is broken down, there may be time and high-density spark discharge. 

 

3.6.2 Mechanical Failure 

Insulation failure: The function of the transformer is determined by the service life of the insulation 

material. The performance of the insulation material determines the efficiency of the transformer. 

The factors that affect the insulation performance of the transformer are: temperature, humidity, 

overvoltage. 

Iron core failure: When the transformer is in normal operation, there is only one ground terminal 

of the iron core. If two points are grounded, the iron core will overheat, and the transformer will 

be burned in severe cases. 

 

3.6.3 Thermal Failure 

The common fault related to transformer is that the oil temperature rises and exceeds the rated 

temperature. When such a fault occurs, first check whether the transformer load is within the 

capacity and cooling system is normal. The fault may also be caused by coil eddy current, short 

circuit of the internal winding of the transformer. The power should be cut off immediately for 

such case to prevent catastrophic failures.  

 
 

3.7 Transformer Condition Monitoring Techniques 

Transformers condition are commonly depending on the monitoring the tremendous data collected 

on power stations. Traditional transformer condition monitoring techniques have been developed 
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to uncover issues and ensure the reliability of the power stations. Following are the four common 

techniques that have been developed [39]. 

 

Thermal Analysis of the transformers can provide useful information about its condition and can 

indicate any incipient fault inside it. Oil temperatures are direct indicator of the condition and 

capacity of the transformers. [40] 

 

Vibration Analysis has been widely used yet relatively new for conditional monitoring for major 

machinery. Its research and development for transformer application has been developed. The 

health condition of the core and windings can be assessed using vibration signature of transformer 

tank. [41] 

 

Dissolved Gas Analysis (DGA) analyzes gas emission from the oil-based insulation of 

transformers and their correlation with electrical performance. The problem of the usage of DGA 

analysis in assessing the condition of the transformer is that it needs special equipment to measure 

the dissolved gases. [42] 

 

Frequency Response Analysis (FRA) method uses Fourier Transform technique to the signals of a 

transformer winding, and use the frequency signatures to detect transformer mechanical structure 

and windings defects. [43] 

 

3.8 Data Driven Models 

Traditional methods of diagnosis include dissolved gas analysis (DGA), Thermal/vibration 

analysis, and frequency response analysis (FRA) have been widely used in industries. However, 

these methods are complicated to deploy and exabit low detection accuracy [44].  

 

With the continuous development and the deployments of sensor monitoring on transformers in 

the field and internal status, the data collected presents the characteristics of multi-source and 

heterogeneous, which are well suited for data analytics. The data collected from transformers 

according to different data structures, they can be divided into two categories. (1) Structured data, 

such as temperature, voltage, DGA data, etc. (2) Unstructured data is such as images, videos, logs 
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etc. Research has been developed utilizing both structured and unstructured data. How to use and 

process collected data continues to be the future development of the research direction of 

management of transformers. 

 

The first data driven technique for power transformer fault detection has been to apply supervised 

or semi supervised learning techniques. Bacha etc. [45] developed a fault classification method of 

power transformer based on support vector machine (SVM) using train data to build a multi-layer 

SVM classifier. This classifier has superior performance in identifying transformer fault types. [46] 

presented an intelligent method for power transformer fault diagnosis based on selected gas ratio 

and SVM. They used a genetic algorithm (GA) to obtain the optimal dissolved gas ratio (ODGR) 

for DGA ratio selection and support vector machine parameter optimization. Zheng etc. [47] 

proposed a transformer stability prediction algorithm with an enhanced SVN algorithm called least 

squares support vector machine (LS-SVM). Their results demonstrated superior results relative to 

SVM methods.  

 

The second common method for transformer diagnosis is a probabilistic neural network (PNN). 

Similar methods have been widely used in PV system diagnosis which was reviewed in the 

previous sections. Wang etc. [48] developed proposed their methods of probabilistic neural 

network (PNN), and they also applied the technique in Dissolved Gas Analysis. They also use 

particle swarm optimization (PSO) to optimize the parameters of PNN. 

 

Similar to PV system diagnosis, the third method that was widely used is back propagation 

Artificial neural network (BP-ANN) or some time deep neural network. Trappey etc. [49] 

developed their data-driven models based on deep neural network to detect potential faults in 

transformers. The Principal component analysis (PCA) and BP-Artificial Neural Network (BP-

ANN) are used in their models.  Zhang etc. [50] developed a method of fault diagnosis for 

mechanical failures based on deep learning. 

 

Yadaiah and Ravi [51] presented the methodologies for The Dissolved Gas Analysis to detect 

incipient faults and has been improved incipient fault detection in Power transformers for off-line 
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and on-line method. An artificial neural network (ANN) is used to detect off-line faults and 

whereas Wavelet transforms are being used for on-line fault detection.  

 

Lastly, there were many fuzzy logic-based techniques proposed. Three and four-digit coding with 

faulty information and fuzzy logic is used to improve the result by Wagh and Deshpande [52], and 

they have applied the method to Dissolved Gas Analysis of the transformer. Evsukoff and Schirru  

[53] proposed fuzzy logic systems for fault detection and isolation. 

 
Table 3-3 Summary of Data Driven Algorithms for Transformer Diagnosis 

Algorithms Number of 

Articles 

References 

SVM 3 Bacha 2012 [45],  

Li 2016 [46], Zhang 2018 [47] 

PNN 1 Wang 2009 [48] 

Deep network 2 Trappey 2015 [49], Zhang 2018 [50] 

Hybrid 1 Yadaiah 2007 [51] 

Fussy Logics 2 Wagh 2014 [52], Si 2011 [53] 
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4 Remaining Useful Life (RUL) Prediction 
 

As photovoltaic penetration of the power grid increases, accurate predictions of system 

performance require accurate prediction of decreased power output over time. An extension of 

fault diagnosis is to predict the failure, enhance the prediction accuracy and hence gradually 

becomes a major solution. Knowing the remaining useful lifetime (RUL) of particular equipment 

is of great importance for making good operational and financial decisions. For the aim of 

improving application of data driven algorithms on fault diagnosis and prediction, Remaining 

Useful Life (RUL) of photovoltaic (PV) modules and a transformer, RUL prediction can provide 

many advantages, such as: predicting in advance that something will happen, the time and location 

of the fault, predicting the life expectancy of the entire system, and improving the system operation 

reliability [54]. 

 

In Figure 4-1, it shows an example of the degradation profiles of historical run-to-failure data sets 

from an equipment are shown in blue and the current data from the equipment is shown in red. 

The measured data is converted into a Conditional Indicator. There is a predefined failure threshold, 

which the equipment Conditional Indicator cross over at the event of failure. Based on the 

historical Conditional Indicator trend, one can predict the time to failure, which is the Remaining 

Useful Life (RUL). [55] 

 
Figure 4-1 Illustration of RUL prediction. 

 

Despite its importance, it is still a challenge to accurately determine how long a PV module or 

transformer system will continue to operate within its normal condition. The performance of a PV 
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module or transformer system is influenced by multiple factors such as the environment, 

technology, workload, as well as installation quality. In order to determine the lifetime of a system, 

continuous monitoring is required and either physical models or mathematical models are utilized 

to make the prediction.  

 

4.1 Physical Models 

The ability to accurately predict system output is of vital importance to the growth of the 

photovoltaic (PV) industry. As we have described earlier, PV efficiency is mainly determined by 

sunlight radiation and power conversion. However, this relationship does change, and actually 

degrades, over time. An accurate quantification of power decline over time, also known as 

degradation rate is essential. Jordan and S. Kurtz [56] reviewed degradation rates of flat‐plate 

terrestrial modules and systems reported in published literature from field testing throughout the 

last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, 

have been assembled from the literature, showing a median value of 0.5%/year. The following 

section explains several physics-based material degradation mechanisms to quantify the 

degradation rate of photovoltaic (PV) modules. 

 

4.1.1 Cumulative Exposure Model 

Subramaniyan etc. introduced the cumulative exposure model for quantifying the degradation path 

of PV modules [57]. Their approach starts from the physical fundamental of degradation, which is 

due to the exposure to sunlight and other environmental stresses. Because continuous exposure to 

these environmental stress factors initiates defects such as encapsulant browning, solder bond 

degradation, etc., over time the module power production decreases. The cumulative exposure 

model uses the information about environmental factors to calculate the instantaneous degradation 

using physics-based stress-effect function and then accumulate these stress effects over time to 

study the cumulative damage of environmental stress on module power output. The major 

assumption of the model is to quantify the degradation using a degradation function. The predicted 

cumulative degradation should be equal to the actual degradation measurement, which can be used 

to estimate the degradation function parameters.  
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4.1.2 Dynamic Covariate Models 

Because a degradation process is a stochastic process, time-varying covariates have been 

incorporated into degradation models. Bayesian linear degradation path models [58], stochastic 

degradation models [59] and a time-varying model [60] were proposed. They introduced a time-

varying component into the cumulative exposure model’s degradation function. Hong etc. [61] 

extended this approach by using B-spline models to incorporate the unknown effect of dynamic 

covariates on the degradation behavior. Pan etc. [62] also showed that dynamic covariates can be 

incorporated to model the lifetime of PV modules with known degradation path. The article 

presents an approach to PV degradation modeling that includes the effects of module-specific 

stresses (module static temperature, module cyclic temperature) and other environmental stresses 

including cyclic temperature, ultraviolet (UV) radiation, and relative humidity (RH). 

 

As these factors are material properties, any estimates should be reasonable to the specific material 

under study. In most cases, the unavailability of these parameters poses a serious hindrance to the 

determination of acceleration factors for various acceleration tests involving temperature, UV, RH, 

etc. Since the lifetime of PV modules depends on dynamic environmental factors, these physics-

based models could aid in determining the functional form for covariate effects in building the 

cumulative damage model for PV modules. 

 

In addition, there are other physics-based models such as Arrhenius model, Peck model, Coffin–

Manson model, etc., for studying the effects of various environmental factors [63]. 

 
Combining the performance information collected over a period of time, as well as the 

environmental conditions like temperature (activation energy), radiation, etc., degradation 

function can be estimated. Once the model estimates are known, the degradation of corresponding 

module technology can then be predicted for other cases.  

 

4.2 Data Driven Models 

Degradation rate physical model-based monitoring degradation of existing systems to forecast the 

remaining lifetime of PV modules have already been used. However, issues related to physical 

models are that they strongly depend on the availability of data points related to the model. If an 
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insufficient number of data points for the model is available, physical models’ capability will be 

limited. In addition, physical models are not able to capture the underlining trend of the dataset 

and will be dominated by short‐term effects in the dataset, which might not represent the actual 

performance evolution of a PV system. 

 

Both statistical data-driven and machine learning based approaches were developed, which heavily 

rely on past observed data and statistical models to predict the occurrence of failures in the future 

time. RUL can be used to detect the state of PV modules or the transformers.  These methods have 

great fault diagnosis capabilities, there are many intelligent and machine learning methods, they 

can be used and mathematical models are utilized to determine the lifetime of PV modules and 

systems in shorter periods. Data‐driven techniques can be divided into two categories: statistical 

techniques (regression methods, autoregressive moving average ARMA model) and artificial 

intelligence (AI) techniques (neural networks (NNs), fuzzy systems (FSs), etc.). 

 

4.2.1 Regression Model 

A smart prognostic method for PV module health degradation and RUL prediction was proposed 

by Laayouj etc. [64]. The proposed model for prognosis aims to assess the machine’s performance 

degradation, and a data-driven method based on the relevant vector machine (RVM) technique to 

predict degradation and RUL through the regression of diagnosis and prognosis in a manner that 

can take the strengths of each. To apply this method, an online monitoring process is first carried 

out to acquire the system’s condition. The data obtained from the diagnosis can be properly 

managed and utilized by the RVM approach for making a prediction. 

 

Sheng proposed an autoregressive moving average (ARMA) model-filtered hidden Markov model 

to predict the residual life for complex systems with multiphase degradation and to fit the multi-

phase degradation data with unknown number of jump points, together with an iterative algorithm 

for parameter estimation [65]. They applied the model to predict the residual life of photovoltaic 

(PV) modules. Their experiment shows a degradation trend with multiple jump points, which are 

mixed effects of two failure modes: a soft mode of continuous smooth degradation and a hard 

mode of abrupt failure. Both modes need to be modeled jointly to predict the system residual life 
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(RUL). This algorithm converges fast with satisfactory parameter estimates accuracy, regardless 

of the jump point number. 

 

4.2.2 Support Vector Machine (SVM)  

Kyeong-Hee Cho etc. [66] proposed failure diagnosis logic using a support vector machine (SVM) 

classification as a failure diagnosis method that can classify normal vs. failure data. The failure 

data were processed to be used as the fault diagnosis logic for solar power generators. Their failure 

diagnosis method uses four years operational data for power generation and solar radiation of an 

operational 50-kW PV generator. Fault data were generated and the operation data of the PV 

generators were diagnosed by applying the proposed method to demonstrate improved accuracy.  

 

Van TungTran etc. [67] proposed a novel method for assessing the machine degradation using 

only normal condition; only the normal operating condition of machine is used to create 

identification model for recognizing the dynamic system behavior. A “Degradation index” is used 

for indicating the machine degradation is subsequently created based on the root mean square of 

residual errors. They combined ARMA, PHM, and SVM in association with time-series techniques 

with prediction techniques for estimating the RUL. The result shows that the proposed method 

could be used as a reliable tool to machine prognostics.  

 

4.2.3 Neural Networks 

Artificial neural network (ANN) models have been utilized for better renewable energy prediction. 

They have been emphasis on understanding assets’ reliability issues utilizing ANN networks with 

prediction techniques for estimating the RUL.  

 

Polo and others [68] have built liability models to incorporate monitoring data on operating assets, 

as well as information on their environmental conditions based on artificial neural networks 

models, which allows updating assets reliability analysis according to changes in operational 

and/or environmental conditions. The ANN models are used for early detection of degradation in 

energy production due to power inverter and solar trackers functional failures.  
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Kutylowska’s work [69] is to predict failure rate using artificial neural network. failure rate 

prediction and BFGS algorithm was used to learn the network. The correlation between 

experimental and predicted data was acceptable. 

 

4.2.4 Hybrid Models 

Yan and etc. [70] presented a hybrid method for on-line assessment and performance prediction 

of remaining tool life in drilling operations based on the vibration signals. Logistic regression (LR) 

analysis combined with maximum likelihood technique is employed to evaluate tool wear 

condition based on features extracted from vibration signals using wavelet packet decomposition 

(WPD) technique. Auto-regressive moving average (ARMA) model is then applied to predict 

remaining useful life based on tool wear assessment result. In addition, failure risk distribution is 

discussed. Even though their developed method is used in drilling operation, the same algorithm 

and method can be also implemented to photovoltaic modules. 

 

4.2.5 Fussy Logics 

In previous data driven models, different factors such as outliers in the dataset, seasonal variations, 

and many other reducing factors (e.g., soiling) should be separated from long‐term non‐reversible 

degradation. The lack of a systematic and flexible approach to select parameters of these 

techniques and their black box character limit the understanding and control of their performance. 

Ismail Kaaya  etc. [71] address this issue by proposing a systematic and flexible approach with 

adjustable model parameters to evaluate the degradation trend based on the nature of the dataset 

under evaluation. The proposed method aims to evaluate the irreversible long‐term degradation of 

PV modules and systems. To achieve this, they proposed an iterative algorithm for degradation 

trends evaluation that allows to separate seasonal variations and other reversible performance 

reducing effects from irreversible degradation. 
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Figure 4-2 Schematic diagram of the modeling approach to evaluate degradation trend, failure time and RUL [71] 

 

Finally, following table summarize all the data driven research articles that were referred in the 

chapters. The algorithms share significant similarity as data driven model for fault detections. 

 
Table 4-1 Summary of Data Driven Algorithms for RUL Prediction 

Algorithms Number of 

Articles 

References 

Regression 2 Laayouj 2016 [64],  Sheng 2019 [65] 

SVM 3 Cho 2020 [66],  Van TungTran 2012 [67] 

ANN 2 Polo 2015 [68],  Kutylowska 2015 [69] 

Hybrid 1 Yan 2007 [70] 

Fussy Logics 1 Kaaya 2020 [71] 

 

 

 

 

 

 
 
 
  



 43 

5 Optimizing Renewable Energy Systems 
 

Currently, Variable Renewable Energy (VRE) such as solar and wind accounts for 22% of grid 

generation capacity and 17% of the net power generation. EIA projects that renewables will 

provide nearly half of world electricity by 2050. The differences between wind and solar power 

comparing with conventional coal, natural gas and nuclear power is that their output greatly 

depends on the weather condition. The growing percentage of VRE presents challenges for the 

power grid to stay balanced. As the proportion of wind and solar energy increases, more changes 

in grid operation may be required.  

 

 
 

Figure 5-1 World net electricity generation (1990-2050) 

 
5.1 AI Enabled Energy Storage 
Energy storage systems (ESS) are expected to play a major role in the future smart grid. They 

provide a back-up to the intermittent renewable sources and ensure continuous electricity supply 

to the consumers. Locally, they help in the management of the distribution grid by improving its 

efficiency and reducing costs. ESS helps in mitigating the peak energy demand on the local grid 

and bridge the gap for renewable energy supply. 

 

Artificial Intelligence methods mainly focus on the real-time decisions of the best time to charge 

and discharge the ESS. Optimization helps the system maximize its capacity and its financial 

returns.  
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5.1.1 Demand Side Optimization 

Utility companies implement incentive or penalty programs to encourage the usage of alternatives, 

which decreases the stress on the main power grid. Demand charges are additional fees that utilities 

charge non-residential or commercial customers for maintaining constant supply of electricity. 

These fees usually amount to a substantial sum of money that businesses must pay on monthly 

electric bills.  

 

 
Figure 5-2 Peak Shaving with Energy Storage and Solar PV 

 
Energy storage systems (ESS) can enable flexible bidirectional adjustment with a fine grain time 

scale of millisecond to control the charge and discharge of the system. As shown in Figure 5-2, 

ESS combined with Renewable energy can be utilized the perform peak shaving of the energy 

profile and reduce the demand charges to business. Numerous researches have been done to 

integrate artificial intelligence algorithms to improve the performance of both ESS and Renewable. 

In [72], Li etc. proposed a two-stage optimization using Artificial Neural Network (ANN) to solve 

the established optimal model. It includes the day-ahead plan and the intraday correction to 

respectively schedule the ESS and Renewable during each dispatch interval. The proposed mothed 

can effectively improve the integration of wind power and reduce system operation costs. Rahbar 

et al. [73] propose an algorithm that optimizes the energy-charged/discharged using the shared 

ESS concept to profit the consumers. 

 
Stem is a technology startup based in California to utilize artificial intelligence software Athena 

and onsite battery ESS system to optimize commercial customer peak demands [74]. Athena 
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accurately forecasts energy demand onsite and energy demand on the grid, and optimizes energy 

usage by automatically switching between battery power, onsite generation and grid power. 

Athena constantly makes economic tradeoffs when determining how much energy to deploy or 

store up for later. 

 

EnerNOC, acquired by Enel in 2017, is another commercial example of utilizing battery ESS and 

artificial intelligence software to reduce energy costs for large commercial and industrial (C&I) 

energy users. Their product promises that customers will save at least 15% on their energy costs 

after installing their intelligent battery [75]. 

 

5.1.2 Supply Side Optimization 

Conventional grid designs focus less on energy storage, but with distributed energy system, which 

commonly accompanied with energy loss reduction voltage fluctuations, less reliability etc. The 

ESS is an integral component that can transform the current grid structure and operation. ESS 

combined with intelligent energy management is the most appropriate solutions in this area.  

 
Figure 5-3 Schematic diagram of micro-grid system with Energy Storage 

 

As shown in Figure 5-3, ESS is an integral component that can transform the current grid structure 

and operation. Artificial Intelligent enabled control software can manage the charging or 

distribution to the power grid. [76], [77] and  [78] all proposed real-time distributed algorithm, to 
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balance the energy demand through charging and discharging of ESS. They can provide targeted 

energy to all the components of the grid at a different level making the grid reliable and smarter.  

 

5.2 AI Enabled Demand Response 
Demand response (DR) is one of the promising approaches for providing demand flexibility to the 

power grid. The AI enabled DR schemes requires a framework which is automated and smart. It 

is increasingly apparent that AI can contribute greatly in the success of DR by learning the behavior 

of both demand side and VRE production, and make the most optimal system wide decision.  

 

The rising interest in AI-based solutions in the DR sector is well illustrated by the sharp increase 

of research interest in this domain. The number of scientific publications with the usage of AI 

approaches has increased with the majority using AI techniques for forecasting and scheduling and 

control tasks [79]. 

 
Figure 5-4 Evolution of AI research publications used for specific DR application areas 

 

The most commonly used strategy for Demand Response (DR) is to forecast the load on both 

demand side and on the power grid. The user can improve their energy usage pattern and provide 

flexibility to the overall power grid in a cost-effective way. Artificial Intelligence (AI) and 

Machine Learning (ML) can be used as key technologies to provide real time decision with the use 

of large-scale data. AI methods can be used to tackle various challenges, ranging from selecting 

the optimal set of consumers to respond, learning their attributes and preferences, dynamic pricing, 
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scheduling and control of devices. Overall, AI methods can help enhance the DER energy grid to 

operate in a more efficient way.  

 

Forecasting 

Demand forecasting is the process of estimating the forecast of energy demand by analyzing 

historical energy data. Using a prediction model can lead to more informed decision making in 

DR, as well as better rewarding of the participants through a more accurate baseline estimation. 

Traditional forecasting models relies on statistics-based model such as ARIMA, Auto Regression 

(AR), Integrated Moving Average, and exponential smoothing method. Those type of models are 

generally linear in nature and have been shown to provide less accurate results in load forecasting 

[80].  

 
In data driven method of demand forecasting, the most heavily utilized is artificial neural networks 

(ANN) [81], which have been widely studied. The advantage of ANNs is to learn arbitrary, non-

linear, complex functions, which makes it suitable for demand forecasting in demand response 

(DR) application. Tamizharasi etc. [82] built ANN model for prediction for long term energy 

consumption producing and demonstrated superior results comparing with ARIMA and SVM 

methods. As we noted, ANNs can be computationally expensive and usually require a large 

amount of data in order to outperform other less flexible methods. ANN’s performance can vary 

greatly depending on the availability of historical data sets, tuning the network structure and 

parameter selections.  

 

Deep neural networks (DNNs) are also used for the purpose of load forecasting. DNNs are ANNs 

with several hidden layers, adding complexity to its structure. A Deep Neural Network architecture 

was proposed for short term load forecasting to integrate deep neural network layers to process 

energy demand [83]. Another example of DNN is [84] is to use DNNs to predict the monthly 

electricity demand in Australia based on time series of consumption rates as well as socioeconomic 

and environmental factors. Figure 5-5 illustrates the schematics of the DNN structure.  
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Figure 5-5 Schematic view of a deep neural network with multiple layers of autoencoders stacked with a classical 

neural network 

 

Unsupervised Prediction 

To build an accurate ANN or DNN model requires large amount of training data, in most cases 

hourly energy data are needed to produced acceptable results. However, in some DR scenarios, 

there are very limited amount historical data, for example residential energy data. As a result, using 

unsupervised learning algorithms are the only viable options. The simple unsupervised learning 

algorithm is clustering. One of more advanced unsupervised learning, reinforcement learning (RL), 

was introduced in power system area to predict the energy consumption [85] using unlabeled 

historical data, namely State-Action-Reward-State-Action (SARSA) and Q-learning. 

 

Another type of applications of unsupervised models is to segmenting electricity customers by 

using only the Advanced metering infrastructure (AMI) data [86]. In the article, they use 

clusterwise regression model to segment customers to their coincident monthly peak contribution 

(CMPC), which quantifies the contribution of individual customers to system peak demand. 

 

Dynamic Control and Scheduling 

Demand response (DR) is used to encourage end-users to make short-term reductions in energy 

demand in response to a DR request by grid operator to shift energy usage to periods of low 

demand, or to periods of high availability of renewable energy. Traditional control mechanisms 

for DR are in general model-based control where the main problem is intractable and there is no 

feasible way to model all the involved agents, such as Model Predictive control (MPC). Among 

all the artificial intelligent methods, reinforcement learning (RL) methods have been mainly 



 49 

successful in controlling system loads and automating DR operations. RL approaches do not 

require a model of the environment to be applied, and this provides an advantage in designing DR 

control systems. Moreover, deep RL has been shown to work better in high-dimensional tasks. 

 

In Dusparic etc.’s research [87], the authors propose a multi-agent approach that uses load 

forecasting for residential demand response, and electoral loads are controlled by reinforcement 

learning agents which, using the information on current electricity load and load prediction for the 

next 24 hours, learn how to meet their electricity needs while ensuring that the overall demand 

stays within the available transformer limits.  

 

The most widely used RL algorithm in DR is Q-learning, researchers have employed multi-agent 

RL methods to tackle the problem of the large state space. [88] formulates an applied methodology 

for an agile demand response using mathematical micromodels and simple Q-learning technique 

in a decentralized fashion is proposed. The optimal strategy chosen by an aggregator is the 

maximization of the benefits from demand flexibility.  

 

Another optimization when DR is requested from a smart grid is to use direct load control (DLC) 

by shutting down or regulating part of system to act as an effective means to respond. In [89], a 

newly proposed power demand optimization scheme predicts the building cooling demand and the 

power limiting threshold in response to a received DR request, as illustrated in Figure 5-6. A 

system sequence control resetting scheme determines the number of operating chillers/pumps to 

be retained. An online control/regulation scheme ensures the system power following the expected 

profile by regulating the total chilled water flow delivered to the building and therefore the chiller 

load.  
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Figure 5-6 Example Flow of fast demand response control strategy during DR events  

 

Controlling power equipment at a DR event primarily operates by shutting down the part of the 

system that can be sacrificed. Another way to respond to a DR event is by scheduling, where time 

uncritical tasks are pushed to off peak time to operate. The commonly used methods are GA and 

PSO. 

 

Overall, when DR-related data sources become more available, AI approaches for controlling are 

able to provide more advanced and versatile DR services via dynamic control or schedule energy 

demands.  

 

5.3 AI Enabled Grid Flexibility 

The electric grid contains power plants as supply and industrial/residential demands. The grid does 

not store electricity. The power generated must be the same as the power being consumed. The 

power grid always maintains flexible resources in order to meet variable electricity demand in 

every instant. There are many mechanisms available to increase grid flexibility in the short term, 

as well as the long-term. 

 

The power load profile has changed over the years with more DER recourses are deployed on the 

grid. In the following Figure 5-7, the “Load” line shows the normal demand variable during a 

typical day. Because wind and solar energy output varies, the “Net Load” demands (indicated in 
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red line) to conventional generation has drastically changed. The grids must increase its capability 

to accommodate larger swings during a day.  

  
Figure 5-7 Electricity daily demand profile 

 

To solve the problem of variability or any outage from renewable energy, power grid implements 

reserved power plants, which only used as a backup or insurance of the power grid, is called 

Ancillary Services. There are currently three types of Ancillary services exist. These options give 

the grid’s Balancing Authority different levels of time granularity to control power supplies. 

Following table shows the typical balancing operations, and three broad categories of cooperation 

at the operational level: regulation, primary (spinning) reserve, and supplemental (non-spinning) 

reserve.  

 
Type of Ancillary Services Requirements 

Regulation Respond <10 seconds 
Duration 5-30 minutes 

Primary (spinning) Reserve Respond in 10 minutes 
Duration 30minutes-2hours 

Supplemental (non-spinning) Reserve Respond 10-30 minutes 
Duration 30minutes-2hours 

 

AutoGrid [90] pioneered the science of flexibility management that enables energy providers to 

mine and extract data to balance supply and demand in real time. AutoGrid is the leader in 

flexibility management software for the energy industry. AutoGrid DERMS software uses 

artificial intelligence (AI)-driven predictive algorithm to control connected, distributed and 

flexible energy assets in real time and at scale. 
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Packetized Energy [91] focused on solving energy problems through grid edge flexibility. They 

developed an innovative research platform, Grid Resilience and Intelligence Platform (GRIP), 

which focus on leveraging advances in artificial intelligence to improve resilience in power 

distribution networks. Behind-the-meter distributed energy resources (DERs), like energy storage, 

PV systems, and even smart thermostats, can work together to enable critical energy services to 

continue, even when the bulk power grid fails. Packetized Energy leverages AI to enhance grid 

edge flexibility, which can be a valuable tool in enabling resilience. 
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6 AIoT Powered Renewable Virtual Power Plant 
 

6.1 Virtual Power Plants (VPP) 

Distributed energy resources (DER) account for 22% of grid generation capacity and 17% of the 

net power generation. EIA projects that renewables will provide nearly half of world electricity by 

2050. The differences for distributed energy resource (DER) are that they greatly depend on the 

weather condition and they operate individually without any coordination. The growing percentage 

of DER presents challenges for the power grid to stay balanced, which leads to decrease of main 

grid reliability. Virtual power plants (VPP) aggregate geographically distributed energy resources 

(DERs) enabling the management of flexible capacity in the power network on a large scale. 

 

For instance, wind, solar and energy storage are internetworked. Controlling these together allows 

more effectivity and greater grid benefit [92]. The distributed DERs of a certain area constitute a 

VPP; therefore, the whole VPP is not restricted by the geographical area, and the control mode can 

be decentralized or centralized. The VPP is proposed to integrate all kinds of DER, including the 

Distributed Generation (DG), Demand Response (DR) and energy storage (ES) which is shown in 

Figure 6-1. 

 

 
 

Figure 6-1 Scheme of Virtual Power Plant 
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A VPP is a flexible representation of a portfolio of DER that can be used to make contracts in the 

wholesale market and to offer services to the system operator [93]. VPP is characterized by a set 

of parameters usually associated with a traditional transmission connected generator, such as 

scheduled output, ramp rates, voltage regulation capability, reserve and so on.  

 

VPPs enable the inclusion of distributed energy resources into ancillary service provision, typically 

for load-frequency control. Ancillary services demand reliable communication systems for the 

exchange of relevant information.  

 

6.2 VPP Models 

VPP functions as a Cloud-based or SaaS-based platform which governs multiple decentralized 

power plants through various distribution routes and demand centers. Distributed DERs can be 

remotely operated and controlled through VPP [94]. Generally, VPP operates as normal plant, with 

contracted energy which needs to be supplied to the grid. Once connected to power grid, 

production scheme for specific period of time must be followed in order to keep stability in the 

network. Following are the three VPP model that shall be addressed the same as traditional power 

plants. 

 

Power Flow  

Optimal power flow (OPF) is an approach to quantify aggregated DER capabilities and maximize 

capacity of the injected active power and consumed reactive power.  OPF also takes into account 

limitations of the generators, networks and demand [93]. 

 

Production Planning 

Production of energy in VPP is generally planned for a longer period of time (e.g.,24 or 48 h).  

This is called offline method. If there is a need for adjusting generation to the changing demand 

or if one of the generators is corrupted, online method takes place, which means online 

rescheduling generation between others units. This method is used in the unexpected situation.  

 

Load management 
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Load management in VPPs are mainly based on demand response (DR). VPP controls many 

controllable loads like air conditioning systems, electric heaters or freezers. Load control is used 

for load reduction during requiring peak usage periods These methods generally base on a peak 

load reduction or minimization of production costs for given period of time [95].  

 

6.3 AIoT enabled VPP Architecture 

Figure 6-2 shows a representation of the capacities of DER, distribution and transmission networks 

as well as central generation of today’s system and its future development under two alternative 

scenarios both with increased penetration of DER. Future (Status Quo) represents simple 

centralized control and passive distribution networks as today. Where, Future (Active), represents 

the intelligent system control that fully optimize system supply and demand in real time.  

 

 
Figure 6-2 Power capacity in different scenarios 

 
To meet the future challenge, VPP must utilize AIoT technique that harness real time DER IoT 

data, energy market data and power grid data that will enable systems based on DER to become 

the means for future cost efficient.  AI algorithm shall play significant contribution of all three 

aspects of VPP modes in order to enhance the control capability of the system [93]. This is where 

AI is able to handle the complexity. VPP utilize load and generation forecasts and feed into 

optimizers that provide outputs on the best way to operate.  
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VPP is the center of the optimal management of Distributed Energy Resources (DERs) and upper 

layer grid operator, also called Independent System Operators (ISO) or Regional Transmission 

Organization (RTO). VPP and other intelligent control are the key management and integration of 

the dynamic energy supply and demands in the systems. With all the artificial intelligent 

algorithms and AIoT technologies, an AIoT enabled VPP architecture is proposed in Figure 6-3 

VPP System Architecture with AI Enabled Modules.  According to the architecture, each module 

is capable of making intelligent decisions based on IoT data within the system including advanced 

scheduling, forecast, scheduling and reliability management. 

 

Demand and Supply Forecast 

Photovoltaic are typical DER systems under virtual power plant (VPP). A number of transitional 

and Artificial Intelligence algorithms have been developed to predict DER power. In present case 

studies, the widely used forecasting algorithms developed are can be classified into three typical 

approaches: physical model, statistics model and data driven model.  

Demand and Supply Reliability  

With AIoT data, fault detection and diagnosis (FDD) can utilize data driven artificial intelligence 

(AI) algorithms for early diagnosis to prevent severe downtime of DER system and transmission 

infrastructure. FDD fault detection algorithms can apply to almost all system modules such as 

DERs (PV, wind farm etc.), energy storage, transformers. 

Intelligent Equipment Management 

Predictive health monitoring (PHM) are artificial intelligence (AI) techniques to predict the 

remaining usage life (RUL) of critical grid assets such as transformers. PHM can further guarantee 

the required health state of the grid and minimize grid level downtime. 

Grid Flexibility 

Besides production related, there is tremendous potential to create enough grid flexibility with 

optimal control of DERs. AI algorithms can create the flexibility of the assets and combines them 

in such a way that they become a reliable and dispatchable source of capacity for grid use. 

VPP AI algorithm can then utilize the aggregated DER by shifting energy load from peak hour to 

off hours, by setback power equipment, or by reducing system peak to avoid turning on fossil-fuel 

based reserves. Complex solutions like wholesale market trading, ancillary services (such as 

frequency control), and increasing hosting capacity for renewables may also address this issue. 
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Figure 6-3 VPP System Architecture with AI Enabled Modules 
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VPP Power Optimization  

Currently, many of the operations in the power system are done manually or with a basic level of 

automation. VPP offers the most important control over all the unpredictable energy resources.  

Large amounts of IoT data availability with artificial intelligence algorithms will increase the self-

learning capability of the VPP controller. It uses all the AIoT data collected combined with AI 

algorithms to deliver predictive and optimal control. There are four major components for an AI 

enabled VPP controller: (1) demand and supply forecast; (2) optimal scheduling; (3) flexibility 

management; (4) reliability management. All of these AI’s self-learning algorithms can use 

predicted demand and supply trend to generate the most optimal system configuration and DR 

events in order to optimize operations for maximum productivity.  
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7 Conclusion 
 

Different kinds of distributed energy resources (DER) such as solar panels, storage and power 

transformers pose increased challenges in microgrid. AIoT-enabled technologies which combine 

artificial intelligence (AI) and IoT and create new opportunities in the distributed energy resources 

(DER) field. All the AI algorithms related were reviewed and compared in depth. Their 

applications mostly focus on three areas: fault detection and diagnosis (FDD), remaining useful 

life (RUL) prediction, and system optimization and forecast. Finally, the smart grid concept section 

identifies how all AIoT powered distributed energy resources (DER) can be aggregated in terms 

of virtual power plant (VPP), which enable the management of efficient and reliable power 

network on a large scale, and coordinate demand and supply in real-time. The proposed VPP 

architecture provides guidance to navigate through all microgrid modules and their applicable AI 

algorithms. In summary, utilizing AIoT technologies for distributed energy resources (DER) 

system can greatly add to valuable system capacity, flexibility and reliability.  
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