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ABSTRACT

This multivariable control study investigates the feasibility of a high performance (high

bandwidth) automatic flight control system (AFCS) for a Twin Lift Helicopter System (TLHS).

Two system configurations are considered in order to see if one has any advantages over the other.

Each TLHS configuration consists of two Sikorsky UH-60A Blackhawk helicopters, jointly lifting

a heavy payload. The payload is suspended from the ends of a rigid bar. The endpoints of the bar

are attached, via tethers, below the helicopter c.g.'s. For one configuration the tether lengths are

equal (Equal Tether Configuration) and for the other they are unequal (Unequal Tether

Configuration). In each case we regulate the horizontal separation (between the helicopter c.g.'s)

and the load motion, while horizontal and vertical velocities are commanded.

It is concluded that a high performance design is feasible for each configuration provided that

model uncertainty is sufficiently low. If model uncertainty is high, the designs become unfeasible.

This is because. in such a case, the large robustness requirement forces the helicopters to undergo
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substantial pitching and oscillations in the vertical plane in order to regulate the horizontal

separation and load motion when horizontal and vertical velocities are commanded. Moreover, if

model uncertainty is high then only low bandwidth designs become feasible. This is due to the fact

that a trade-off must be made between performance and stability robustness and that this trade-off is

exacerbated by the high bandwidth objective. It is also concluded that besides providing a larger

tip-to-tip rotor clearance, unequal tethered flight offers no significant advantages over equal

tethered flight. To reach these conclusions three steps are taken.

First, guidelines are presented which can be used to systematically develop a "real world"

multi-input multi-output (MIMO) AFCS for even highly-coupled high-order Twin Lift models.

These guidelines are based on singular value ideas and the well established LQG/LTR design

procedure. Secondly, the guidelines are applied to the Equal and Unequal Tether Configurations.

Finally, the designs for each configuration are compared and the conclusions are made.
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CHAPTER 1: INTRODUCTION AND OVERVIEW

1.1 Motivation for Research

Ever since its birth in 1939, the helicopter has found itself playing a major role in areas such

as agriculture, industry, public service, and the armed forces. The helicopter has been used to

spray Crops, assist construction engineers, obtain traffic reports, and to perform vital military

operations.

As the years have passed, and the technology improved, the applications of the helicopter

have increased. The need for bigger, more powerful helicopters has also grown. During the past

few years, however, a leveling off of heavy lift helicopter production has occured (NASA, [16]).

The high development costs for a new heavy lift helicopter have become difficult for users to

justify, especially when there are much more economical alternatives. An appropriate question to

ask would be: "Does such an alternative exist at the present time and state of helicopter

technology?" The answer, of course, is affirmative. The Twin Lift Helicopter System (TLHS) is

such an alternative.

Twin Lift allows us to use already existing helicopters to demonstrate its performance for

only a fraction of the cost required to develop a new heavy lift helicopter. Twin Lift is not only

highly cost-effective, but it provides the only immediate method for achieving a significant increase

in payloads beyond the 16 tons currently managable in the Western World.

In addition to being an economical solution to the heavy lift problem, Twin Lift represents an

extremely challenging design problem for control engineers. As will become apparent in the
chapters which follow, the TLHS is 0 inherently unstable multivariable system with "highly

coupled” dynamics. In order to systematically develop a high performance multivariable centralized

automatic flight control system (AFCS) for the TLHS, a design methodology is needed which

trivializes the stabilization problem and possesses enough degrees of freedom to address the

following key feedback design issues:

(1) low frequency command following,

(2) low frequency disturbance rejection,



')

(3) Insensitvity to low frequency parameter uncertainty,

(4) stability robustness to high frequency unmodeled dynamics,

(5) attenuation of high frequency sensor noise,

(6) saturation of actuators.

An appropriate question to ask would be: "Does such a multivariable design methodology exist?"

The answer, of course, is again affirmative. The Linear Quadratic Guassian with Loop Transfer

Recovery (LQG/LTR) design methodology, when coupled with singular value ideas, constitutes

such a methodology (Doyle, Stein, Athans, Lehtomaki [5], [6], [7], [8] ).

This thesis shows how the LQG/LTR design methodology, coupled with singular value

ideas, can be used to develop a high performance multivariable centralized AFCS for a TLHS.

Having given industrial and academic motivations for Twin Lift control research, the section

is concluded with a quote:

"The practical advantages of harnessing two helicopters to the same

payload have long been recognized, but as with all technologies a

full understanding of the factors governing its use are required

before it is universally accepted." (Curtiss, Warburton [1] )

1.2 Prior Research

The dynamics of a single hovering helicopter have been understood for many years

(Bramwell, [3]). In the early 1960's, engineers at Kaman Aircraft showed how tethered

helicopters differed from their free flying counterparts (Kaufman, Schultz [2]). Much work on

helicopters carrying sling loads has also been done (Dukes, [4] ).

During the 1960's, multilift investigations were sponsored by the Department of Defense,

but no major advances were made. In 1968 Sikorsky Aircraft was funded to explore twin lift

techniques. These studies culminated in a 1970 Sikorsky demonstration of a 20-ton twin lift

configuration using CH-54B crane helicopters with rear viewing cockpits [1]. That twin lift

experience resulted in the development of a master-slave automatic control concept in which a

command pilot, in the master helicopter, flies the desired formation by manipulating his helicopter
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while the slave is automatically controlled to maintain horizontal separation as well as spreader bar

orientation. The 1970 demonstration showed that twin lift air taxi operations for short distances, at

low speeds, were definitely feasible. Because of high pilot workload, however, high speed

demonstrations were deemed unsafe. Sikorsky engineers concluded that a better understanding of

twin lift dynamics was required [1].

In order to develop such an understanding Professor Curtiss, of Princeton University, in

collaboration with Sikorsky engineer, Frank Warburton, developed a seven degree of freedon

linear model for the longitudinal dynamics of a TLHS near hover. In a joint paper [1] they

analyzed the system and used root locus techniques to identify the key parameters affecting nominal

stability. They showed that the TLHS dynamics could essentially be thought of as those of a

tethered helicopter [2] with those of a helicopter carrying a sling load [4]. The paper indicated how

separation and attitude feedback could be used to achieve nominal stability. Other practical issues

were also addressed.

The above discussion clearly indicates a steady trend toward understanding twin lift

helicopter dynamics. There are key issues, however, which have not yet been addressed in the

literature. This thesis will carefully delineate some of those issues in an effort to understand them,

quantify them, and in the end, provide a sound design process for developing a multivariable

centralized AFCS for TLHS's.

1.3 Contributions of Research

Because of the inherent coupling in TLHS's, single-input single-output (SISO) design

techniques can not easily be used to systematically develop a centralized AFCS.

The paramount contribution of this thesis is the delineation of well defined guidelines for

designing a "real world" multi-input multi-output (MIMO) AFCS for TLHS's. These guidelines

combine state space analysis methods and singular value ideas with the well established LQG/LTR

design methodology. Furthermore, the guidelines are just as easily applicable to highly coupled 16

degree of freedom Twin Lift models as to relatively weakly coupled 7 degree of freedom models.

More specifically, it is shown how singular value ideas can be used to formulate frequency
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domain performance and stability robustness specifications for MIMO Twin Lift controllers in a

manner which closely parallels classical SISO feedback control problem formulations.

Furhermore, it is shown that the LQG/LTR procedure not only trivializes the Twin Lift

stabilization problem, but also possesses enough degrees of freedom to meet pre-defined frequency

domain performance and robustness specifications.

In addition, it is shown how singular vector information can be used to understand the

input/output directionality properties of a TLHS under full automatic control. In order to help

visualize this information the notion of MOID and MOOD plots is introduced.

Another contribution of the thesis is that it provides two complete case studies of a TLHS

under full automatic control. One is for the Equal Tether Configuration and the other for the

Unequal Tether Configuration. The studies show fundamental trade-offs that must be made in

designing an AFCS (equal tethers or unequal). In particular, it will be shown that Twin Lift control

engineers must trade-off desired performance (bandwidth) versus model simplicity. More

specifically, as model simplicity (uncertainty) increases engineers must settle for less demanding

performance specifications. Moreover, this will be shown to be true whether the tether lengths are

equal or unequal.

The comparison between equal tethered flight and unequal tethered flight is another

contribution since it shows that besides providing a larger tip-to-tip rotor clearance, unequal

tethered flight offers no significant advantages over equal tethered flight when a high performance

design is the objective.

Finally, the fact that we address the TLHS high performance (high bandwidth) design

problem marks still another contribution. By addressing this challenging problem one obtains an

indication of how much can realistically be expected from TLHS's under full automatic control.

This information is crucial for Twin Lift engineers developing specifications for future "real world"

TLHS's.
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1.4 Outline of Thesis

The main body of the thesis is organized as follows:

Chapter 2 describes the TLHS to be studied and develops the mathematical model which will

be used throughout the thesis.

Chapter 3 is the first analysis chapter. In this chapter the model developed in Chapter 2 is

analyzed assuming the tether lengths are equal ("Equal Tether Problem"). The chapter describes the

three basic motions associated with any TLHS [1]. In this chapter the natural modes of the TLHS

"Equal Tether Configuration" are identified and discussed. The variables to be controlled (i.e.

outputs to be commanded by pilot) are selected and design specifications are presented using

singular value ideas. Classical-like arguments are given to understand the difficulties associated

with the development of a high performance design.

Chapter 4 is the first design chapter. In this chapter the LQG/LTR design process is

described and applied to the Equal Tether Problem. A high bandwidth LQG/LTR AFCS is

obtained and evaluated. Fundamental trade-offs regarding performance and model uncertainty are

presented. To help visualize the directionality properties of the resulting LQG/LTR-based design,
we introduce the notions of MOID and MOOD plots. These plots are entirely based on information

provided by singular vectors. The chapter shows that a high performance Equal Tether AFCS is

feasible only if model uncertainty is "sufficiently" low. Itis also shown that if model uncertainty is

high then only a low bandwidth design becomes feasible. This is because, in such a case, the

large robustness requirement forces the helicopters to undergo substantial pitching and oscillations

in the vertical plane in order to regulate the horizontal separation and load motion when horizontal

and vertical velocities are commanded.

Chapter 5 is the second analysis chapter. This chapter addresses the problem in which the

tether lengths are unequal ("Unequal Tether Problem"). The chapter essentially parallels chapter 3,

but emphasis is placed on the coupling between two of the three basic motions when the tether

lengths are unequal ("Unequal Tether Configuration"). Comparisons are made between the

Unequal and Equal Teher Configurations.

Chapter 6 is the second design chapter. In this chapter the LQG/LTR design methodology is
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applied to the Unequal Tether Problem. A high bandwidth design is obtained and evaluated. Again,

emphasis is placed on the coupling which occurs when the tether lengths are unequal.

Comparisons are made with the Equal Tether AFCS. The chapter shows that the trade-offs that a

designer must make when the tether lengths are equal remain when unequal tether lengths are used.

It is also shown that unequal tethered flight offers no significant advantages over equal tethered

flight when a high performance design is the objective. |

Chapter 7 summarizes the thesis and gives suggestions for future research.
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CHAPTER 2: MODELING A TWIN LIFT HELICOPTER SYSTEM (TLHS)

2.1 Introduction

In this chapter the Twin Lift Helicopter System (TLHS) configuration to be studied is

described. The helicopter controls which shall enter the final control law are identified and

discussed. Finally, a seven degree of freedom linear model is developed for the longitudinal

dynamics of a TLHS near hover [1]. This model shall be used throughout the thesis.

2.2 Description of TLHS; Longitudinal Configuration

The basic configuration to be studied in this thesis is shown in Fig. 2.2.1. It consists of two

nelicopters, two tethers, a "spreader" bar, two load cables, and a payload.

=D
a

|

=&lt;, 3 master

=
-

_
~rreagder

har

Fig. 2.2.1: TLHS; Longitudinal Configuration.

This configuration is referred to as the longitudinal configuration™ because the spreader bar is

parallel to the longitudinal axes of the helicopters. In studying the longitudinal configuration it is

assumed that the lateral dynamics of the helicopters and load-bar assembly decouple from the planar

+The lateral configuration is obtained by rotating the helicopters ninety degrees so that their longitudinal axes are
perpendicular to the spreader bar,
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(longitudinal) dynamics of interest. This, of course, implies that the system motion is restricted to

the vertical (longitudinal) plane and hence only vertical translation, horizontal translation, and

pitching are allowed.

The helicopters being modeled are Sikorsky UH-60A Blackhawks. They are assumed to be

identical and to have no on-board autopilots or stabilization avionics. The lead helicopter shall be

referred to as the master helicopter and the trail helicopter as the slave. Each tether is assumed to

have a fixed length .* The helicopter-tether attachment points are assumed to be a fixed distance, h,

below the center of gravities (c.g.'s) of the helicopters. Each tether is attached to one end of the

spreader bar. The spreader bar is assumed to be rigid and to have a fixed length, L. It provides

horizontal separation for the helicopters, helps distribute the load more evenly between the

helicopters, and helps vertical following of the master by the slave [1]. The payload is suspended a

fixed distance, Z, below the spreader bar c.g. via two fixed length load cables. For simplicity the

tethers, as well as the load cables, are assumed to have no compliance and to always be in tension.

2.3 Description of Helicopter Controls

Controlling the longitudinal dynamics of a TLHS near hover is the problem being addressed

in this thesis. In order to develop a control law, the pertinent control inputs must be identified and

understood. Because the thesis restricts the system motion to the longitudinal plane, only four

helicopter controls (two per helicopter) are relevant. These are the collective pitch controls and the

cyclic pitch controls [3] (Fig. 2.3.1).**
The collective pitch controls essentially control the vertical (up / down) motions of the

helicopters. A pilot ordinarily *** manipulates his collective to control the lifting power of his

¢ Real time tether length variations will not be used to control the system.
** The tail rotor pedals (directional controls) are not relevant to our study since no yawing is allowed. The throttle
control is not considered since engine dynamics are assumed to be negligible in our study.
+** We say ordinarily since in our study it is assumed that there is only one pilot which shall eventually issue only
reference commands to an AFCS which will dynamically coordinate the controls of each helicopter so as to achieve
the desired response,
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helicopter. Pulling back on the

collective pitch stick causes an increase

in the angle (pitch) with which the main

rotor blades cut through the air (angle of

attack), thus increasing the lift. The

name collective pitch control stems from

the fact that the blades pitch

Collective
pitch

control

Cyclic pitchwnVr
Hl OO00

S96 00QO. ~ Oo
Lp ~ 1 T ~~

IA
=z Tall rotor[i pedal

so
Throttle
control

No\
_— 3

a

or

-
-- i

Joes?
J

[i

simultaneously (collectively) when the

pilot issues collective pitch commands.

Fig. 2.3.1: Helicopter Cockpit.

The cyclic pitch controls™® essentially control the horizontal (fore / aft) and pitching motions

of the helicopters. A pilot ordinarily manipulates his cyclic pitch stick to control that point in the

rotation of the main rotor at which maximum blade pitching occurs. By doing so the pilot, in

effect, tilts the lift vector in the direction of desired motion thus providing more thrust in that

direction, causing his helicopter to pitch downward and accelerate forward. The name cyclic pitch

control stems from the fact that the point in the main rotor cycle at which maximum blade pitching

occurs is altered when the pilot issues cyclic pitch commands.

In actuality, the collectives also affect the horizontal and pitching motions of the helicopters

while the cyclics affect their vertical motions. Throughout the thesis, however, it is assumed that

these couplings are negligibly small.

* The cyclic control shall not be used to control roll and lateral motions since these motions are not considered in
this thesis,
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2.4 Development of Linear Model

In this section a seven degree of freedom linear model is developed for the longitudinal

dynamics of the TLHS near hover [1]. A more detailed derivation appears in Appendix 2. All

designs presented in this thesis shall be based on this model.

The following seven variables (degrees of freedom) can be used to describe the TLHS

longitudinal dynamics:

(1) x4 - Horizontal coordinate of slave helicopter c.g. with respect to hover point (ft.),

2) zg - Vertical coordinate of slave helicopter c.g. with respect to hover point (ft.),

3)6 _ Pitch attitude of slave helicopter (rads.),

(4) ©_, - Pitch attitude of master helicopter (rads.),

(5) gE - Angle that slave tether makes with vertical (rads.),

(6) € - Angle that master tether makes with vertical (rads.),

(7) Ep - Angle that spreader bar makes with horizontal (rads.).

where all counter-clockwise angles are assumed to be positive angles.

These seven degrees of freedom capture the vertical, horizontal, and pitching motions of each

helicopter (3 degrees of freedom per helicopter) as well as the pendular motion of the load-bar

assembly (1 degree of freedom for load-bar assembly).

Some very important (time invariant) TLHS parameters are:**

Wi; - Weight of master and slave helicopters (1bs.).

[, - Moment of inertia of master and slave helicopters about their pitch axes (slug ft.2),

* Appendix 1 is a glossary. It provides definitions for all Twin Lift variables and parameters. It also contains the
numerical values of all relevant TLHS parameters.
x* Their values. and all other relevant Twin Lift parameter values, are provided in Appendix 1.
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h - Distance from helicopter c.g.'s to helicopter-tether attachment points (ft.),

H_ - Length of master helicopter tether (ft.),

H, - Length of slave helicopter tether (ft.),

L - Length of spreader bar (ft.),

Wg - Weight of spreader bar (1bs.),

[5 - Moment of inertia of spreader bar about its c.g. (slug fr.2),

Z - Distance that payload hangs below spreader bar c.g. during unperturbed hover (ft.),

Wi; - Weight of payload (1bs.).

The seven degrees of freedom and the parameters described above can be visualized as shown in

Fig. 2.4.1.
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Fig: 2.4.1: Initial Seven Degrees of Freedom for TLHS

Longitudinal Dynamics Near Hover.
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To develop the model, it is assumed that the following aerodynamic forces and moments act

on the helicopters:

Xm» Xs - Horizontal aerodynamic forces acting on master and slave helicopter c.g.'s (Ibs.),

Z,» Z - Vertical aerodynamic forces acting on master and slave helicopter c.g.'s (Ibs.),

M,,» M; - Aerodynamic moments about master and slave helicopter pitch axes (ft. Ibs.).

It should be noted that the aerodynamic moments on the spreader bar are assumed to be negligible

in comparison with the other forces and moments acting on the system.

Using the aforementioned variables, parameters, aerodynamic forces and moments, a

nonlinear model can be developed using Lagrangian methods. Doing so gives a set of seven second

order nonlinear ordinary differential equations written in terms of the aerodynamic forces and

moments discussed above (see Appendices 2.1 and 2.2 for more details).

To obtain a linear model about hovering trim, with the tethers vertical and the spreader bar

horizontal, it is necessary to determine the equilibrium (trim) value of all variables, aerodynamic

forces and moments under these conditions. These values are:

&gt; »

Kso = Zsa =0

Eso = €mno = €8o =0

Xmo=Xgo=0

Zine, = Zo — Wy + 0.5[Wg + Wi]

(Helicopters hovering)

(Tethers vertical and spreader bar horizontal)

(Horizontal equilibrium)

(Vertical equilibrium)

0 =0_=M,,=M,=0
where the subsrcipts "o" are used to denote equilibrium (large signal) values. It should be noted

that the last condition assumes that the helicopter main rotor shafts pass through their c.g.'s when

at hover.

Next, each variable, aerodynamic force and moment, is written as a sum of an equilibrium

(large signal) component and an incremental (small signal) component (small perturbation from

equilibrium value). The following example illustrates how this is done.
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Ex: (For aerodynamic forces)
(For aerodynamic moments)

(For position and angular variables)

"true" quantities "equilibrium" quantities "incremental" quantities

Zn
\

Zmo
M,

AZ
AM,

Assuming that all variable perturbations (incremental components), &amp;(*), are small and neglecting

products and squares of variables gives us a set of seven second order linear ordinary differential

equations in terms of the incremental variables and the incremental aerodynamic forces and

moments acting on the helicopters; namely (AX, AZ, AM) and (AX, AZ, AM). For

notational economy we drop the 8's on the motion variables.* This concludes the linearization of

the nonlinear equations near hovering trim with the tethers vertical and spreader bar horizontal (see

Appendices 2.3 and 2.4 for more detail).

In order to exploit the "natural" symmetry of the TLHS, it is convenient to introduce the

following "natural" seven degrees of freedom [1]:

3 Average Variables:
ZX = [x +X] /2 : Average horizontal helicopter coordinate (ft.),

Xz =[z, +z] /2 : Average vertical helicopter coordinate (ft.),
20=1[0_ +06]/2 : Average helicopter pitch attitude (rads.).

3 Difference Variables:

Ax = [x,- x] : Horizontal separation between helicopter c.g.'s (ft.),
Az=[z - z] : Vertical separation between helicopter c.g.'s (ft.),

A9=[0_ - 6] : Differential pitch attitude (rads.).

1 Generalized I.oad Coordinate:

xp =x; -2x- (h +H) Z6-(Z/L) Az (ft.). r 7)

where x; is the horizontal coordinate of the payload with respect to the hover point.

* Note that only incremental (small signal) quantities shall appear in the final linear model.
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The above seven degrees of freedom are independent and hence sufficient to describe the

longitudinal dynamics of the TLHS near hover. It should be noted, however, that the following

incremental expressions are very useful:

Ax=-[hAB+Hpe -H el]
~(h6 +He]-[h6 +H,e ]

Az=Lrg

x,'=05[H,e, +He]-H 20
=0.5 [Hy (e,, - 6,)) + Hy (g,- 61 + 0.5 [H,, - HJ] 6_

e, = {2x "+H Z0]- [Ax +h AG] } /2H

e,={2 [x +H Z6] + [Ax +h A6] } / 2 H

(2.8a)

(2.8b)

(2.9)

(2.102)

(2.10b)

(2.11)

(2.12)

In a manner analogous to eqs. (2.1) - (2.6), we define an average tether angle and a differential

tether angle:

e=[e +€]/2

Ae=[e_ - El

(2.13)

(2.14)

The proof of eqs. (2.8) and (2.10) are given in Appendix 2.5. Equation (2.9) is, of course,

based on the small angle assumption for the spreader bar angle, €p. Equations (2.11) and (2.12)

follow from egs. (2.8) and (2.10).

The interpretation of the 4 average variables (Xx, Xz, 0, Z¢) and the 4 difference variables

(Ax, Az, AB, Ae) should be apparent from egs. (2.1) - (2.6), (2.13), (2.14), and the fact that the

variables are incremental (small signal) quantities. Nevertheless, we shall comment on Ax and Az

which may be a bit confusing to some.

it should be emphasized that Ax = 0 implies that the actual horizontal separation between the
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helicopter c.g.'s is L; the spreader bar length. From eq. (2.8) we see that this can occur if and

onlyif h® +H, &amp; =h6 +H e. This makes sense since the left and right sides of this

equation are merely the horizontal (incremental) distances from the spreader bar endpoints to the

master and slave helicopter c.g.'s, respectively. To better visualize this condition it helps to

interpret eq. (2.8) as indicated by Fig. 2.4.2. Note that eq. (2.8) does not capture the effect that the

spreader bar rotation has on horizontal separation. Namely, when the spreader bar rotates by an

;ie 4

— wi Na 1 C hy’ TK1 c.g.
=

16,

65.7 |
| “S\ m\ Hm

He )

M.

. i
7

slave helicopter c.g.

5

/ 4 JS J

-

AX = Xm — Xs

= [h8s+ Hees) [Bm +Hime]
spreader bar c.q.

Fig. 2.4.2: Visualization of (Incremental) Horizontal Separation.

angle €p, the horizontal separation should decrease by an amount L. (1 - COS €p)- This nonlinear

effect is not captured since Ep is assumed to be small.

{t should also be emphasized that Az = 0 implies that the actual vertical separation between

the helicopter c.g.'s is H,, - H; the difference between the master and slave tether lengths. From

eq. (2.9) we see that this can occur if and only if gp =0; ie. when the spreader bar is horizontal.

To help visualize this condition, it helps to interpret eq. (2.9) as indicated in Fig. 2.4.3. Note

that eq. (2.9) does not capture the effect that helicopter pitching and tether rotation has on vertical

separation. Namely, when the helicopters pitch and the tethers rotate, the vertical separation

decreases by an amount [H - HJ] - [H, cos ge, - Hg cos el - h [cos 0 - cos 6]. This nonlinear
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Az =Leg
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L/22 Noster helicopter c.g.“a

: 7» Nespreader bar c.g.
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Zg “~~ slave helicopter c.g

Fig. 2.4.3: Visualization of (Incremental) Vertical Separation.

effect is not captured since © _, 6, € , and €_are assumed to be small

An interpretation for x;'follows from eq. (2.10). This equation shows that when the tether

iengths are equal (HL, = H = H). then

x, =05H[(e,-6,)+( -6)]
=H [Xe - XO]

(2.153)
(2.15b)

In such a case x;'represents the average displacement of the spreader bar end points from the

helicopter-tether attachment points, measured parallel to the longitudinal axes of the helicopters.

This is shown if Fig. 2.4.4.
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Fig. 2.4.4: Interpretation of Generalized Load Coordinate (H,,= H =H).
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When the tether lengths are not equal (H,#H,), then xi 'is given by eq. (2.10). To

interpret x; ' in this case we rewrite eq. (2.7) in its more useful form:

xp -Xx=(h+H)X0+(Z/L)Az+x Top 1¢PE J)

The quantity x;-Xx shall henceforth be referred to as the load deviation from center. The quantity

rx_shall be referred to as the center. It follows from eq. (2.16) that x;' should simply be

interpreted as that quantity which must be added to (h+H) X06 + (Z/L) Az to get x; - Xx.

Substituting egs. (2.9) - (2.10) into eq. (2.16) gives us:

&lt;1 2x=h20+(Z/L)Az+05[H,e +H e]

=h20+Ze;+05[He+He]
0.5 { [he _+H,e 1+[h06 +He]}+Zeg

(2.17a)

(2.170)

(2.17¢)

This can be concisely written as follows:

A Lad ky,

Xi - 2x = XXyp + XBL

Yxyp = [Xpp + Xgl / 2

Xv =[ 00, + Hp]

xgg =[h 6, + Hq]

Xp. =Z €,

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The quantities x),p and xgp are the (incremental) horizontal distances from the master and slave

helicopter c.g.'s to their respective spreader bar endpoints. The quantity xpp is simply the
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(incremental) horizontal distance from the spreader bars’ c.g. to the load. XMB» XsB» XpL» and xp -

&gt;x can be visualized as in Fig. 2.4.5.

Xy

“« "center"
 master helicopter c.g.

T

y

Q_
A

slove helicopter c.q. Be  n\ Hm
1 Hg!
« | ‘ XmB \i

s spreader bar c.g. )
\ ——

\

XeB
—

7
om

J

hy

YY
|aa

Xai

N load deviation from center
Zx =Zxyg + XgL

Fig. 2.4.5: Visualization of Load Deviation from Center.

Equations (2.16) - (2.22) and Fig. 2.4.5 show that the load deviation from center depends on the

pitch attitudes of the helicopters, their vertical separation, and their respective tether angles. They

also show that x; -Zx = 0 if and only if Zxpp =-xpg;. Physically, we see from Fig. 2.4.5, this

means that the average horizontal (incremental) distance from the helicopter c.g.'s to their

respective spreader bar endpoint must be equal and opposite to the horizontal load displacement

(incremental) resulting from spreader bar inclination. The load deviation from center, as the name

implies, shall play an important role in regulating the load motion.

After introducing the seven incremental variables (Xx, XO, Xz, Ax, AO, Az, Xp),

manipulating the equations, and defining new parameters to simplify them (Appendix 2.6), we

develop the aerodynamic forces and moments on the helicopters by making use of the Blackhawk
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helicopter control and aerodynamic derivatives near hover (Appendix 1).

Control derivatives are constants of proportionality that allow us to introduce the four

helicopter incremental controls into the linear model. The four helicopter contols can be written as

follows:

Oe cm’ C)" "True" master and slave helicopter collective pitch controls,

Bem Bies - "True" master and slave helicopter cyclic pitch controls,

where

‘Ll
A
hi

Ocm = Ocmo + 6@cm» Ocs = Bw + 60,

Bicm = Biemo + OBjem» Bis = Beso + OB.

(2.23)

(2.24)

©. and ©,,, denote the master and slave equilibrium (large signal)components of

collective. They provide the vertical aerodynamic forces, Zio=2Zyo=Wg+05[Wg+ Wi],

which maintain the TLHS in vertical equilibrium. Band B;., denote the master and slave

equilibrium (large signal) components of cyclic. They are both zero since X,, =X, =M_ =

M., - nN.

00, and 80_ denote the master and slave incremental (small signal) components of

collective. They are to be generated by an AFCS (not a pilot). dB. and OB... denote the master

and slave incremental (small signal) components of cyclic. They too are to be generated by an

AFCS (not a pilot).

[t is assumed throughout the thesis that the incremental collectives and cyclics must always
sat No 7

00, 1&lt; 10 degrees and |B; |&lt; 15 degrees. *©)3)

Again, for notational economy we shall suppress the 8's.

In an analogous manner to the average and difference variables defined earlier, we define the

following four controls:
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2 Average Controls:
ZO, = [6, mT ©l/2 : Average collective control (rads.),
EB). = [Bin + Bl /2 : Average cyclic control (rads.),

2 Difference Controls:

AG, = ©, -©_] : Differential collective control (rads.),
AB. = [By - By] : Differential cyclic control (rads.).

(2.26)
(2.27)

(2.28)
(2.29)

Aerodynamic derivatives are constants of proportionality which allow us to express the

incremental aerodynamic forces and moments acting on the helicopters in terms of the

aforementioned incremental variables. Appendix 2.7 contains the incremental aerodynamic forces

and moments acting on the TLHS.

Substituting the incremental aerodynamic forces and moments of Appendix 2.7 into the

simpified incremental equations of Appendix 2.6 gives the final seven linear second order ordinary

differential equations describing the the longitudinal dynamics of the TLHS near hover. These

equations appear in Appendix 2.8. The equations in Appendix 2.8 can then be rearranged to obtain

the following 12% order state space model:

=Ax,+Bu;XeR12, ue R*
x, =[Zz Il Ax AB Ax AB Il £6 Az x;' Ix Z6 AZ %;']

u,=[Z6, Il AB, Il AQ, ZB, IT.

(2.31)

(2.32)

where the symbol Il is used to partition the state and control vectors.

The matricesA,and B, are given in Table 2.4.1a and 2.4.1b, respectively. TLHS parameter

values are provided in Table 2.4.2 as well as in Appendix 1. Table 2.4.3 summarizes the important

Twin Lift geometrical relationships discussed in this chapter. It is emphasized that all state and

control variables in the linear model are, by definition, incremental (small signal) quantities and

thus represent small perturbations from their equilibrium (large signal) counterparts. This model

shall be used to develop the two AFCS designs presented in this thesis. One AFCS is for the Equal

Tether Configuration (H,, = Hy) and the other for the Unequal Tether Configuration (H,, # HY).



Table 2.4.1a Linear Model For Longitudinal Dynamics of TLHS Near Hover

;
i.)ro |

—_—1 1 ri tesnte—

1
 2 2 2

Hw, -(g (14pm) +uw h] Xu -2uw, SH,
2 2 2

-EUW A -Epw, (h +H A M, Me -2uew ASH,

TT J

0
uw, S

|
Loewe2UEW,§

A —

Hu.2 u 2 s - 2Lwis wish -g[10s] we OX
TI Pp. 2 ! 2 2
3 ew,S 7 ew,Sh -€hw, Stl [AT A | MN, M

1
ATH . Z.TJ

rs 2TSh 41h ATH, 4T : w _

[4 wis] v | -[§ wis] vn Hg | an | | |(5 AS] Zz 2) g[1+us wr ATS, TH, b E HG +H) -2, TI8, 2 |

— it

———

Definitions: ¥W=1+e,+4p228(1-8) Notes: 1. Places where no entry appears implies a zero entry.

D=-0p2[1+p+(h+Hg)pe+(4T8Z/0y2)]
E=-[X,+My(h+H)]

F=(h+Hg)epwy2SHy-0,2He-4T8;ZH,
J=[pd Zw,2)l
T=[J¥11

2. This model can also be used to study the lateral dynamics.

All that is needed is a simple transformation of coordinates.

Units: radians, feet, radians/second, feet/second, pounds

Vel+(h+H)e+(1/p)+(48272/¥)



Table 2.4.1b Linear Model For Longitudinal Dynamics of TLHS Near Hover

ZOc |1+y

X
Blo

March _

B,= |
t—

-

X
Blc

M
Ble— I |

_ILY _ }
| | 129. 196,.2 | Xg1ctMpyc(h)

TLHS Parameters:

u=[Mp +Mgl/2My

Ha=2HgH, /[Hg +H, |

e=Mygh/I,

6 =Mp /[M + Mg]

Ap=Hy,/L
7=7/L

wA2=(g/Hp)
S=[Hp -Hg]/[ Hg +H]
ep =2 Ig / My 1.2

1
|

]
5

[p= (1/12)MgL?

Notes: 1. Refer to Appendix 1 or Table 2.4.2 for parameter values.

2. Although the above model assumes angles to be measured in radians,

most discussions throughout the thesis assumes angles to be measured

in degrees. Displacements and velocities are assumed to be measured

in feet and feet/second, respectively. Forces (weights) are assumed

to be measured in pounds.
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Table 2.4.2: TLHS Nominal Parameter Values

UH-60A Blackhawk Helicopter Helicopter Parameters
Wig = 14000 1bs. - Helicopter weight.

My = 434.78 slugs - Helicopter mass.

ly = 5700 slug £2 - Helicopter moment of inertia about pitch axis.

h = 3.6 ft.- Distance from helicopter c.g. to helicopter-tether attachment point.

UH-60A Control Derivatives Near Hover

XBic =2741t/ radsec? - Horizontal acceleration per radian of cyclic.

Z@c = 340.9 ft / rad sec? - Vertical acceleration per radian of collective.

Mpc =-47.24 rad / rad sec? - Angular acceleration per radian of cyclic

UH-60A Aerodynamic Derivatives Near Hover
Xu=-006 ft sec2 / ft sec - Used to characterize horizontal drag forces due to horizontal motion.

Zw = - 0.346 ft sec2 / ft sec] - Used to characterize vertical drag forces due to vertical motion.

My = 0.041 rad sec2 [rad sec”! - Used to characterize pitching moments due to forward motion.

Mg = - 3.1 rad sec? / rad sec™1 - Used to characterize rotational damping due to pitching.

Tether Lengths
Hp, = H = 13.25 ft. - Master helicopter tether length.

Hg - Slave helicopter tether length; Hg = 2H, in Chapters 3 and 4 (Equal Tether Problem).

H; = 2H, in Chapters 5 and 6 (Unequal Tether Problem).

Spreader Bar and Load Parameters
L =69 ft.

Wg = 644 Ibs - Spreader bar weight.

Mp = 20 slugs - Spreader bar mass.

[g = 7935 slug fi2 - Spreader bar moment of inertia about its c.g.

Z = 34.5 ft. - Distance that load is suspended below spreader bar c.g.

Wi = 12000 Ibs. - Weight of load.

Mj = 372.67 slugs - Mass of load.

g=322f1t/ sec2 - acceleration due to gravity.
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Table 2.4.3: Important Twin Lift Geometric Relationships

Ax=-[hA8+He_-He|
(h6, +H e]-[hO +H,e ]

Az ~ 4 ET

20Hy] -+ Hy Eg€nHy,ST0.xp'=

=0.5 Hp, (e,-6,) +H (e,-6)1+0.5[ Hy, - HJ 0,

eo = {2 [x "+H, Z0]- [Ax +h A6] } /2H

E A
- 21x "+H X60] + [Ax +h AB] j /2 H,

&lt; i Zx=(h+H)ZO+ZAz+x,
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2.5 Classical Derivation of Linear Model

In the previous section a linear model was developed for the longitudinal dynamics of a

TLHS near hovering trim. The development was rigorous and based on Lagrangian methods.

Although rigorous and correct, the Lagrangian method provides little incite into the physics of

Twin Lift. This is because the method relies on energy concepts which, for complicated systems,

provide limitedincite. In order to provide incite into the physics of Twin LIft, we shall derive the

same linear model using the classical Newtonian approach. In doing so expressions are obtained

for important quantities such as the tensions in the tethers and load cables. For simplicity, small

angle assumptions shall be made from the very beginning. First, we shall consider the helicopters

and then the load-bar assembly.

2.5.1 Helicopter Equations

Consider the free-body diagram for the master helicopter shown in Fig. 2.5.1. The figure

shows all external forces and moments which act on the master helicopter. These include

aerodynamic forces and moments, the force of gravity, the force due to the tension in the master

tether, and the equilibrium (large signal) component of rotor thrust. A similar free-body diagram

can be drawn for the slave helicopter.

ot W + Wg
H f 2 Om

equilibrium
component of ter’
rotor thrust mea.

N Iy [MyXm + Mg Op, +Maye Brom |
— My [Xu¥m + Xg1c Brom |

AN —~ tether attachment point

th | Os Wve. + 8T,,

to

Fig. 2.5.1.1: Free Body Diagram For Master Helicopter.
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To obtain the equations of motion for the master and slave helicopters we apply Newton's

second law of motion.

First, we use small angle assumptions to resolve the rotor and tether forces into vertical and

horizontal components. This is shown in Fig. 2.5.1.2.

WL + Wy .
wy + —% +My Zy In+1g,.Q,,

+ WirWs Bm
Wu 2 c.g.

™N Iy[Myxm+Mg Bm +Mg Bicm |
0 My [Xu Xm + Xgic Biem _
_m~ W_+Wg

—%| nm
Wy¢

W, +Weh5]+Tm
Fig. 2.5.1.2: Free Body Diagram for Master Helicopter.

Summing forces in the z and x directions gives us the following equations for the master and

slave helicopters.

My zy, = My[Z,, 2p + Zg ©, _1- 8T,,

My zg = MylZ,, zg +Zgc SN - 8T

2.23)2

(2.34)

My Xp, = 0.5[Wp+Wg]g - [Wy + 0.5(Wp, + Wg)] 6 + MIX x, + Xp. Bier] (2.35)

My; X¢ = 0.5[W+Wglg- [Wig + 0.5(Wp + Wp) 6_ + My[X, k, + Xp. Bid (2.36)

Taking moments about the helicopter c.g.'s gives us the following equations:

Iy 8, = 0.5[Wy +Wpl he, - 0.5[W +WglhO, + LIM, k; + M6 +Mp Bi] (2.37)

T,6,=0.5[W +Wg] he, -0.5[W; +Wplh 6 +1 [M, k + M, 6, + Mg. By] (2.38)
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Taking the average and difference of each pair of equations gives us the following set of

equations:

My Z% = My(Z,, Zz +Zg, 2O,] - 0.5[3Ty, + 8T]

My Az = My[Z,, Az+Zg AB] - [3T,, - 8T]

i729)

(2.40)

My ZX = 0.5[W+Wg]Ze- [Wg + 0.5(W + Wg)] 26+ My[X, Ix + Xp. ZB] (2.41)

My; Ax = 0.5[Wy+Wg]Ae- [Wi + 0.5(W + Wg)] AB + My[X, Ax + Xp. AB] (2.42)

I, £6 = 0.5[W} +Wp] h Ze - 0.5[Wy+Wp] h £0 + IL[M, Tk + M_ 26 + Mp). IB,1 (2.43)

I, AB = 0.5[W +Wp] h Ae - 0.5[W +Wg] h A +I [M, Ak + M_ A8 + Mp. AB] (2.44)

Defining the parameters:

1 =0.5 [My+Mg]/My

e=Myh/I,

(2.45)

(2.46)

we can rewrite eqs. (2.39) - (2.44) as follows:

z= Z, Zz +Zg, ZO, - 0.5[8Ty, + 8T,] / My

Az=Z, Az+Zg AO, -[8T,-3T]/My

ZX = pug Ze-[1 + pu] g 20 + X Ix + Xp; ZB),

Ax = pug Ae - [1 +n]gAB+X,Ax+Xp.AB,

£0 = epg Te - epg TO + My IX + My 20 + Mp ZB;

AB = epg Ac - eng AB + M, Ax +M, A + Mp. ABy.

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

The quantities 8T,, and 6T represent the incremental (small signal) components of tension in the

master and slave tethers. They shall be computed shortly.

Se = { S [Ax + h A6] + 2[x;' + H 26] } /2 H, AY ) 52)
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Ae =- { [Ax +h AB] + 2S[x;'+H30]}/2H,, 1)2.x

wt

H, =2H H_/[H,+H_]

S =[Hy - Hy / [Hy +Hp]

(2.35)

(2.56)

Substituting eqs. (2.53) - (2.56) into egs. (2.49) - (2.52) gives us the desired expressions for AX,

AB, =X, and TO. After finding expressions for 6T, and 6T we can obtain the desired XZ and AZ

equations from eqs. (2.47) - (2.48). By desired we mean the equations in Table 2.4.1.

It should be noted that egs. (2.47) - (2.52) are valid for both the Equal Tether (H,, = Hy) and

Unequal Tether (Hp, # H,) Configurations. In fact, the only place that the tether lengths enter is via

&gt;e and Ae. The incite that the above relationships provide should be apparent.

2.5.2 Spreader Bar Equations

To compute the tensions 6T,, and 8T we require a free-body diagram for the spreader bar.

Such a diagram appears in Fig. 2.5.2.1. The figure contains all external forces which act on the

(HV i

of

N
i

WL +Wg re—_—] oesy e zn
2 s 2 85]

»
* eg"

AR . \

LR) 87
- 5-ca) Wg \ /

L/2 _~
J

/

5
™ -— \ ¢

~~ '

—/WW,+WHebetsB)+8Tm

tv

Fig. 2.5.2.1: Free Body Diagram For Spreader Bar.



20

spreader bar. These include gravity, the tether tension forces, and the load-cable tension forces.

Again we note that it is assumed that the aerodynamic forces and moments which act on the

spreader bar are negligible in comparison with the forces and moments shown in Fig. 2.5.2.1.

Summing forces in the z and x directions gives us the following equations:

WN o- .r

’

Mpg zg = Wy + [8Ty, + dT] - [T; sin(8 + £5) + T, sin(B - ep)]

Mpg Xp = - [Wy +Wg] Ze - [T; cos(8 + €p) + T, cos(0 - €5)]

zp=7z +2
Xg =X -ZE&amp;q

(2.57)

(2.58)

(2.59)
(2.60)

Substituting the first order Taylor series expansions:

sin(0 + €g) = sinb + cosEg
cos(6 + &amp;5) = cosOFsinb

into eqs. (2.57) - (2.58) gives us

(2.61)
(2.62)

Mp zg = Wp + [8T + 6T]- T; [sin® + cos6 gpl - Tp [sin® - cosb eg] (2.63)

Mg Xp = - (Wy + Wp) Ze - T, [cos - sin £,] + T, [cosO + sin €,] (2.64)

Taking moments about the spreader bar c.g. gives us the following expression:

Tg €, =0.5[8T,, -8T JL -0.5[T, -T,]L sin6
x"nere

Ly
p=200/0) | x2dx = (1/12)MpL?

0

It thus follows from eqs. (2.63) and (2.65) that

6Tp, + 0Tg=Mgp 2g - Wp + [T) + T,] sin6 + [T - T,] cos eg

0T, -0T,=2 (g/L) En + [Ty - T5] sinb

(2.55)

2. 20)

(2.67)

(2. 2) ”
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From these equations we see that 8T,;, and 8T can be found if the load-cable tensions, T; and T,

were known. We now compute expressions for them.

2.5.3 Load-Cable Tensions

The free body diagram for the load when the system is in equilibrium is given in Fig.

2.5 2
“y 1.

‘ne

br ~ ge
Ly te {v

LW,
Fig. 2.5.3.1: Free Body Diagram For Payload when System is in Equilibrium.

From the diagram it can easily be shown that

[10=Toy=T=0.5(W;/sin0) LL. 19)

Now suppose the system is not in equilibrium. In such a case we let

(2.70)
2.71)

and the free body diagram for the load becomes that shown in Fig. 2.5.3.2.

la

6 “8 NO +eg
 dph—

T W,
i

ie 3T,
Pe,

he

Fig. 2.5.3.2: Free Body Diagram for Payload.
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Summing forces in the z and x directions and using the Taylor expansions in egs. (2.61) -

(2.62) gives us the following equations:

M; z =[T + 8T,] [sin6 + cosB gg] +[T + 0T,] [sin® - cosd egl - WL (2.72)

M; X; =[T + 6T] [cos6 - sin gq] - [T+ dT,] [cosO + sind nl (2.73)

Rearranging these equations and neglecting products of small terms gives us the followingg

equations:

My 7; = [2T sin6 - Wy ] + [8T, + 8T,] sinf (2.74)

(2.75)

Using the fact that 2T sin = W_then gives us

(2.76)

OT, - 8T, = My [X; + gezl/ cosd (2.77)

From eqs. (2.76) - (2.77) we then get

0T; =0.5 [My Z/sin@ + Mj [X; +g gl / cost]

8T =0.5 [My z; /sin@- My [kX +g €n] / cosO]

(2.78)

(2.79)

With these expressions we can now compute the individual tether tensions, 8T,, and 8T.

2.5.4 Tether Tensions

Substituting egs. (2.70) - (2.71) into eqs. (2.67) - (2.68), and using the fact that 2T sin =

Wi. gives us

OT, + 8T, = Mp Zg + [8T; + 8T,] sinb + [8T; - 6T,] cos6 3

dT, - dT =2 (g/L) €q + [8T, - 6T,] sinB

(2.80)
(2.81)
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Sustituting eqs. (2.76) - (2.77) into these, and neglecting products of small terms, gives us

(2.82)

8Ty,-8Tg=2(Ig/L)&amp;;+M[¥[+g£5]tan6 (2.83)

where tan@ =2 (Z/L)=2 Z.

We now note that zg may be written as follows:

ig =7Z +7

=2zg-[h+Hg-0.5Legg]

=2n-[h+H;+0.5Leg]
=z -[h + 0.5 (Hy, +H]

(2.84)

(2.85)

(2.86)

(2.87)
These imply that

A 7r $ (2.88)

Using this fact and noting that tan =2 (Z/L) =2 Z and €p = Az /L we can rewrite eqs. (2.82) -

2.83) as follows:

RTubiv

OT, + 8T, = (Mp, + Mp) Xz

BT - 8Tg=MyepAZ+22My[%+ 0,2 H, Az]

ep =2Ig / My L?

0.2A“ =g/Hyp

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)
From eqs. (2.89) - (2.90) it thus follows that

8Ty =0.5 [ (My +Mp) XZ + My ep AZ +2 Z My (ip + 0,2H,Az)]

3T,=0.5[(Mp+Mp)Zz-Myey,AZ+2ZMy(%p-0,2Fl,Az)]

(2.94)

2.75)
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With these the equations for Xz and AZ, eqs. (2.47) - (2.48) become

S5=Z,52+2g,TO,-L57
Az =Z,Az +Zg, AO, - [ey Az +2Z (Mp/Mp)Gi+0,2HyAz)]

2 16)Ee

a

*
- a

(2.97)
»

¥7=[1/(1+W)][Z, Zz +Zg IO]

1+e]AZ=2Z,A2+ZgAO-418Z(+0,2H,Az)
(2.98)

(2.99)
where

d = Mp /My+Mp) (2.100)

We note that eq. (2.98) is exactly the equation for £z in Table 2.4.1. To get the expressions for Az

and x;',given in Table 2.4.1, we first need an expression for Xr.

2.5.5 Load Equation

T'o obtain an expression for Xx; we consider thee load-bar assembly. A free body diagram for

the load-bar assembly is given in Fig. 2.5.5.1.

WwW, +W
y— —2 +8Tn

(Mute) =
WtWe gr, Xee?n

2) €s ¢
7 \

c.
Xc.g.

“B\zcg
Wg :

RR IKETE

tt

"w,
Fig. 2.5.5.1: Free Body Diagram for Load-Bar Assembly.
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We want to apply Newton's law at the center of gravity of the load-bar assembly. Suppose

that the load-bar assembly has c.g. at (Xc g.v Zz. ,). By definition x, , and z.,mustsatisfy:

Mr + Mg) Zcg. = Mp Z; + Mj Zp

X =(M; ’ +Mp) c.g.

(2.101)

(2.102)

Recalling that zg =z; +Z znd xg =x; -Z €g we then have

Leg =z; + Mp Z/ My + Mp)

Xcg. = XL -Mp ZAz / (My+Mp)

(2.103)

(2.104)

Applying Newton's law at (Xc.g. Zcg) gives us

Substituting eq. (2.104) into this gives us

(2.105)

(2.106)

2)

x =(1-8)ZA7-g3e (2.107)

It should be noted that this equation can also be obtained from egs. (2.60), (2.64), (2.69) - (2.71),

and (2.76) - (2.77). Substituting this equation into eq. (2.99) gives us the desired equation for Az;

i.e. the one in Table 2.4.1. To get the desired equation for Xp' we recall that

t =x - [ZX + (h + H) 0 + Z Az] (2.108)

Using this relationship together with eq. (2.107) and the equations for AX, AB, IX, 6, Az gives

us the desired equation for X,°
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Table 2.5.5.1 summarizes the classical derivation. Table 2.5.5.2 gives the Twin Lift

equations written in terms of Ze and Ae. With the exception of the X;'equation, the equations in

Table 2.5.5.2 show no explicit dependence on the tether lengths.

2.6 Summary

In this section the TLHS longitudinal configuration was described. The relevant controls for

controlling this configuration were identified and discussed. A seven degree of freedom linear

model was then developed for the longitudinal rigid body dynamics of the TLHS near hover. This

model shall serve as the basis for developing the two AFCS's presented in this thesis. The model

assumes that both helicopters are identical. Other, more subtle, properties of the model shall be

disclosed in Chapters 3 and 5 where the "Equal Tether" and "Unequal Tether" configurations are

analyzed.
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Helicopters
Table 2.5.5.1: Summary of Classical Derivation.

My Zz = MZ, Zz +Zg, ZO__]- 0.5[3T,, + 8T)

Mp AZ =My[Z,, Az+Zg, A®__]- [8T,, - 8T]

Mp Zx = 0.5[Wp+Wp] Ze - [Wy + 0.5(W_ + Wp)] 28+ My[X, ZX + Xp). ZB]

My AX = 0.5[Wy+Wp]Ae - [Wy + 0.5(Wy + Wp)] AB + My[X, Ax + Xp, AB,]

I, 26 = 0.5[Wy_+ Wp] h Ze - 0.5[W; +W5] h 30 + I,[M, ZX + M, 26 + Mp, ZB]

I, A6 = 0.5[Wy, + Wp] h Ae - 0.5[W[ +W5] h AB +L, [M, Ak + M, AG + My, AB,]

Spreader Bar

Mg Xp = - [W[ +Wg] Ze - [8T, - 8T,] cos + W| eg

Ig £5 = 0.5 [8Ty, - STJL - 0.5 [3T; - 8T,] Lsinf , e, =Az/L

[Load-Cable Tensions

M; 7; =[8T, + 8T,] sin

Mp Xp, =-2Wp ep +[8T; -dT,Jcos®  8T;-8T,=M; [¥% +g en] / cos6

Load-Bar Assembly

Xc.o. =Xr - Mp Z Az / Mp + Mp) Kp =(1-8)ZA7-g3e

Tether Tensions

OT, + 8Tg = My Zp + [8T; + 8T,] sin6 = (Mp + M;) 22

8Ty, - 8Tg=2 (Ig /L) €g + [8T; - 8T,] sind =2 (I /L?) Az + M [% + g &amp;] tan®

xe= {S[ Ax + h AB] + 2[x;' + H 20]1}/2H, Ae=- {[Ax+h A6] + 2S[x; "+H, Z08]}/2H5
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Table 2.5.5.2 : Twin Lift Equations Written in Terms of Xe and Ae

Lz=[1/(1+WI[Z, Iz+Zg ZO]
AX =p g Ae- [1+] g AB +X, Ax + Xp. AB,

AB =e gAe-epgAb+M,AX + Mg AG + Mp. AB,
ZX =p g Ze- [1+ nu] g 20+X, Ix + Xp,ZB.

Z0=epgTe-epg0+M, Ix + Mg Z0 + Mg, ZB,

PAZ =4u8,Zg[Ze-(g/L)Az] + Z,, Az +Zg, AO,

{= [TX+ (+H) TH+ Z AZ] +5,
=-[ZX+ +H) +ZAZ]+[ (1-8) ZAz-gZe]

Note: With the exception of the Xp' equation, the above equations

depend on the tether lengths only through Xe and Ae.
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CHAPTER 3: ANALYSIS OF TLHS EQUAL TETHER MODEL

3.1 Introduction

In this chapter the linear model developed in Chapter 2 shall be analyzed using the nominal

parameter values given in Table 2.4.2. In particular, the chapter will focus on the "Equal Tether

Problem”; i.e. the case in which the master and slave tether lengths are equal (H,, = H =H). The

chapter discusses the decoupling of the "Equal Tether Model" into three sets of differential

equations which describe "3 Basic Motions" [1]. The natural modes of the Equal Tether

Configuration are identified and discussed. Outputs are selected and performance and stability

robustness specifications are presented using singular value ideas in the frequency domain. The

purpose of the chapter is to provide a thorough understanding of the Equal Tether Model so that a

high performance (high bandwidth) centralized AFCS can be developed in the next chapter.

3.2 The 3 Basic Motions

A seven degree of freedom linear model was developed in the previous chapter. This model

characterizes the longitudinal rigid body dynamics of a TLHS near hover. When the helicopters are

assumed to be identical and the tether lengths are assumed to be equal (Fig. 3.2.1), the 12th order

model decouples into three systems of differential equations. These three systems describe the "3

Basic Motions" of a TLHS. These three basic motions shall be referred to as the Average Vertical

Motion, Symmetric Motion, and the Anti-Symmetric Motion. Their associated states and controls

are listed in Table 3.2.1.

C=
slave

He =H

Be

=

—— }

master

Hm=H
spreader
bar

ulin

=_-
Sa

payload

Fig. 3.2.1: Visualization of Equal Tether Configuration.
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The Average Vertical Motion (AVM) refers simply to the average vertical velocity of the

helicopters (Xz). This motion is controlled by issuing average collective commands (Z@ - The

AVM is similar to the vertical motion of a single hovering helicopter (Appendix 3). This motion is

always decoupled from the Symmetric and Anti-Symmetric Motions; i.e. even if the tether lengths

are unequal (Chapters 5 &amp; 6). Fig. 3.2.2 shows a block diagram for the AVM.

Tabi. 3.2.1: The 3 Basic Motions”

1. AverageVertical Motion (AVM) - 1 degree of freedom
state:Xz
control: ZO ;

2. Symmetric Motion (SM) - 2 degrees of freedom
states: Ax, AG, Ax, AB
control: AB.

3. Anti-Symmetric Motion (ASM) - 4 degrees of freedom
states: 26, Az, x;',x, £6, Az, x!
controls: AO, 2B.

00 .

- L@c + pW 4 1 ss28, {+H &amp;r
ZW
{+p

Fig. 3.2.2: Block Diagram for TLHS Average Vertical Motion (AVM).

* From now on all variables and controls are incremental (small signal) quantities and the adjective incremental
{small signal) shall usually be suppressed.
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The Symmetric Motion (SM), Fig. 3.2.3, refers to that portion of the TLHS motion which is

symmetric about the equilibrium configuration (tethers vertical and spreader bar horizontal). The

SM involves the Ax, AO degrees of freedom and is controlled by issuing differential cyclic

commands (AB,.). The SM is similar to that of a single hovering helicopter tethered to a fixed

point in space [2].

The Anti-Symmetric Motion (ASM), Fig. 3.2.4, refers to that portion of the TLHS motion

which is not symmetric with respect to the equilibrium configuration. The ASM involves the Xx,

x0, Az, x;'degrees of freedom and is controlled by issuing differential collective (A® .) and

average cyclic commands (£B,.). It can be shown that when the payload and spreader bar c.g.'s

coincide (Z = 0), the ASM is similar to that of a hovering helicopter carrying a sling load [1].

The block diagrams for the SM and ASM are given in Fig. 3.2.5 and 3.2.6, respectively.

It is strongly emphasized that although the equations are decoupled in terms of the defined

variables, they remain coupled in certain quantities such as the individual helicopter controls,

velocities, and pitch attitudes. An important consequence of this is that although the AVM, SM,

and ASM's may be treated separately to obtain incite about the Twin Lift control problem, they

must subsequently be evaluated simultaneously, along with their corresponding controllers, so that

important quantities can be untangled using the following relationships:

Xm = 2X + 0.5 Ax

(A 2z+ 0.5 Az

0_ = 6 + 0.5 AB

9, = ZO, +0.5A0_

Bicm = 2B, + 0.5AB.

Xs = 2x - 0.5 Ax,

z= 2z-0.5 Az,

0, =X0 - 0.5 A6,

® =O, -0.5A0,
By... = 2B. a 0.5 AB.

(7.1)

(3.2)

(3.3)

(3.4)

{.
“8 3)

These relationships follow trivially from egs. (2.1) - (2.7). They are needed for evaluating the

response of the Equal Tether (and Unequal Tether) AFCS to exogenous signals; i.e. pilot

commands, disturbances, and sensor noise.



 |

—
=_  xX

x

_—
Pa

x

Fig. 3.2.3: Visualization of TLHS Symmetric Motion (SM).

Oo &gt;CS |—

b

O—  -—

Fig. 3.2.4: Visualization of TLHS Anti-Symmetric Motion (ASM).
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Fig. 3.2.5: Block Diagram for TLHS Symmetric Motion (SM).
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Fig. 3.2.6: Block Diagram for TLHS Anti-Symmetric Motion (ASM).
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Other useful expressions, which follow from those in Table 2.4.3, are given in Table 3.2.2.

I'at i} 2.2: Important Equal Tether Geometric Relationships

Ax = - [h AB + H Ag]

Az=L1L¢.,

0][Xe - XZ=Hxq

ge.={2[x'+HZ0]-[Ax+hA6]}/2H

eg, = {2 [x '+HZ6]+[Ax+hA@]}/2H
¢(- 3x =(h+H)20+ZAz+x'

—h30+7ZAz+ He

re =[x'+HZ0]/H

Ag— AX + hn ABI /H

3.3 Modal Analysis of TLHS Equal Tether Configuration

3.3.1 Introduction

In this section the natural modes of the Equal Tether Configuration ( H =H =H) are

.dentified and discussed. These modes are found by solving the 12th order ordinary eigenvalue

problem associated with the homogeneous system (u, = 0):

(0) =A x), x(0)=x,€ RL (5.6)“iy

where A, is given in Table 3.3.3.1 (Kailaith, Strang [11], [12]). In doing so, the solution to the

eq. (3.6) may be written as follows:
12

x(t) = efApt Xo = &gt; (w; xq) ehit V;
1i=1

(3.77



Table 3.3.1.1:A, Matrix for Equal Tether Configuration

A.

-0 2384

J

y
"

n

B.

0 9.
0 1.0000 0.
0, 0. 0. 1.0000

-1,0975 -0.8847 © -0.0600 0.

-1 2670 ~%.0777 2:2493 ~]+¥000t . \

0.
9,

rr

v
0
0.

 Nn

‘

0.
0.
0.

0.
0.
0.

£.5620
J.
0.4679

-0,2220
0.3885
0.1844

C.
5

.

.

&amp;
J]

{
5

1.0975
17.2670
2.0233

-9.5654

0

(.0600
7.3493
0.

-0.6308

nD

* 0000

1000
0.
0.9116

J.
3

(
-

°

®

0.
1.0000
0.
2.
0.

-0.3361
0.1695

He

f

(.
0.

C.
1.0000

~
 Nn

Units: degs, ft, deg/sec,ft/sec,Ibs
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Ww Wee A, y; = A Vi i=1,2,...12
HA =wHA. 1=1,2,...,12WiPAp = wit A, J

1 if i=j
Hy _5. —w; == | CL

0 if i=]

(3 8)

(3.9)

44 odad0)

and the subscript "H" is used to denote a conjugate transpose (hermitian) operation. The A, are the

eigenvalues ofAp. The v; and w; are the right and left eigenvectors of A, corresponding to the A.

From eqs. (3.6) and (3.10) it is seen that the prescription for studying real exponential

modes is as follows:

Xg=V; = x(t)=e At vy; for any real mode ( A, Vi, Ws). 31D

What is the prescription for studying complex (exponential-sinusoidal) modes? Suppose

Vi i+1= 2% jb are complex conjugate right eigenvectors corresponding to the complex conjugate

eigenvalues A... = ojo, respectively. It can then be shown that

If Xxg=k;a+kyb where k;, ky €

=&gt; X(t) = (k;2+k,2)0 Ot [a cos(at - tan"l(k, /k,)) - bsin(wt - tan"l(ky /k)] (3.12)

Egs. (3.11) and (3.12) provide mathematical formulae for studying the natural modes of the Equal

Tether Configuration (or any other dynamical system).

The modes of the Equal Tether Configuration are those of the three subsystems discussed in

the previous section. These modes are given in Table 3.3.1.2 and are plotted in Fig. 3.3.1.1. The A

and corresponding v;, for the Equal Tether Configuration, are given in Table 3.3.1.3. For

convenience the polar form of the Equal Tether Model's complex eigenvectors have been provided

in Table 3.3.1.4.
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Table 3.3.1.2: Natural Modes of TLHS Equal Tether Configuration.*

AVM: Vertical Damping Mode: A; = - 0.2384, 1=4.2 sec.

SM: Tethered Helicopter Mode: A, = 0.7561.

Horizontal Spring Mode: A3 4 = - 0.8122 £j 2.2228, (=0.34, ©, = 2.37 rad/sec, 7 =1.23sec.

Symmetric Damping Mode: Ag = - 2.2919, t= 0.44 sec.

ASM: Backflapping Mode: Ae.7 = 0.0402 £j 0.4785, {=0.084, w= 0.48 rad/sec.
Vertical Spring Mode: Ag 9 =-0.1976 £j 0.7364, [=0.26, ©,=0.76rad/sec, T= 15.06 sec.
Pendular Mode: Mo,11 =-0.5314£j2.6245, (=02, w,=2.7rad/sec, T=1.88 sec.
Anti-Symmetric Damping Mode: A, = - 2.1187, 1 =0.47 sec.

:

2

mp

'Y a)

J 4

1.8
Horizontal Spring Mode; { = 0.34

nN
—

«
bd

-

XY
1

=
n
5

1.2

D.6

N.0

-0.6

-1.2

Symmetric Damping Mode }
x

Average Vertical Damping Mode

Anti-Symmetric Damping Mode

Vertical Spring Mode; { = 0.26

 tl -Backflapping Mode; = - 0.084

Tethered Helicopter Mode

end

1 . 8B

YD 4
|
Yendular Mode: { =0.2

-3.0-
-2.0 ~-2.4 -1.8 -1.2 0.6 0.0 0.6 1.2 1.8 2.4 3.0

REAL AXIS

Fig. 3.3.1.1: Poles of TLHS Equal Tether Configuration.

* { - damping factor @. - undamped natural frequency 1 - time constant
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Table 3.3.1.3: Eigenvalues and Right Eigenvectors For Equal Tether Model
AVM: Average Vertical Damping

A, =-0.2384
-1 .0000

 wv

SM: Tethered Helicopter Horizontal Spring Symmetric Damping

A, = 0.7561 Ay4=0.8122 % j 2.2228 Ag = -2.2919
0.
0.3658

-0.7089
0.2766

-0.5360
0.0000
3.0000
0.0000
0.0000
3.0000
7.0000
3.0000

0. + 0. i
3.0613 - 0.0365]
0.3673 + 0.1073i
0.0314 + 0.16581

-0.5368 + 0,7292i
-0.0000 + 0.0000i
~0.0000 + 0.00004
0.0000 - 0.0000i

0.0000 + 0.00001
0.0000 ~ 0.00004
0.0000 + 0.00004
0.0000 + 0.0000i%

0.
0.0564

-0.3959
-0.1292
0.9074
0.0000

-0.0000
-0.0000
0.0000

~0.0000
-0.0000
0.0000

Va Va = Ve

ASM: Backflapping Vertical

Ag = 0.0402 + j 0.4785 Ago= -0.1976 + 0.7364

0. + 0. i
-0.0000 - 0.00001
0.0000 - 0.00001
2.0000 - 0.0000i
0.0000 + 0.0000§
0.1789 + 0.3106i
2.7512 + 0.0100i
0.0225 + 0.0030}

0.3746 + 0.0800}
0.1444 + 0.09811
0.0254 + 0.35981

-0.0005 + 0.0109;

0. + 0. i
-0.0000 + 0.00001
-0.0000 + 0.0000i
-0.0000 - 0.0000i
0.0000 - 0.Q000%
0.3172 + 0.24151

-0.5786 — 0.2456i
~0.0269 —- 0.02141
0.1580 + 0.3116i
0.2405 + 0.1858i
0.2952 - 0.37751
0.021% - 0.0155

Ve Ve

Pendular Anti-Symmetric Damping

Ag; = 0.5314 £2.6245 Ay, =-2.1187
0. +0, 1
0.0000 + 0.0000}
-0.0000 + 0,0000i
-0,0000 - 0.0000i
0.0000 - 0.0000i
3.2093 + 0.21604
0.0330 - 0.0083i
0.1604 - 0.0548i
0.0475 + 0.12051
0.6780 + 0, 43451
0.0043 + 0.0909i
0.2290 - 0.39494

0.
0.0000

-0.0000
-0.0000
0.0000

-0.4158
0.0124
0.0706
0.1511
0.8809
0.0263

Vie: Von =
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Table 3.3.1.4: Polar Form of Equal Tether Complex Eigenvectors

SM: Horizontal Spring
MAG PHAS
0.07134 -30.8°
0.3827 16.29°
0.1687 79.3°

0.9044 126.4°

ASM: Backflapping
MAG PHAS
0.3584 60°
0.7512 1°
0.0227 7.6°
0.383 168°
0.1721 145.3°
0.3607 86°
0.0109 92.6°

MAG = magnitude PHAS = phase

Vertical Spring
MAG PHAS
0.3987 37.3°
0.6286 - 157°

0.0344 -141.5°
0.3494 117°
0.3039 142.3°
0.4792 -51.98
0.0262 -136.3

Pendular
MAG PHAS
0.301 45.9°
0.034 -14.1°
0.1695 -161.2°
0.1295 112°

0.8053 147.4°
0.091 87.3°
0.4539 -59.7°
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In discussing the modes of the Equal Tether Configuration it is, of course, assumed that all

four incremental inputs (collectives and cyclics) are zero; i.e. only equilibrium values are applied.

Although the discussion shall be based on the right eigenvectors in Table 3.3.1.3, reference shall

be made to single helicopters, tethered helicopters, and helicopters carrying sling loads in order to

nrovide incite into the difficulty of controlling the Equal Tether Configuration being studied.

3.3.2 Discussion of AVM Modes

The AVM possesses one natural modes; an Average Vertical Damping Mode. This mode

only affect the Xz degree of freedom and can be described as follows.

The Average Vertical Damping Mode characterizes the effect of vertical aerodynamic drag

forces on the TLHS during average vertical climbs (£z). More specifically, if the TLHS is given

an initial average velocity, Xz, then this average velocity will decay exponentially to zero

with a time constant of 4.2 seconds. This mode is similar to that experienced by a single hovering

helicopter but has a larger time constant due to the extra mass in TLHS's. This is apparent fromthe

AVM differential equation:

$z=[1/(1+W]IZ, Zz +Zg ZO]
=- 0.2384 Zz + 4.0985 ZO_

(3.13)
(3.14)

where Xz is measured in feet/secondand =O . in degrees. The vertical damping mode for a single

helicopter has time constant 1/1 Z_, | = 2.89 seconds.

3.3.3 Discussion of SM Modes

The SM possesses three natural modes; a Tethered Helicopter Mode, a Horizontal Spring

Mode, and a Symmetric Damping Mode. These modes only affect the Ax, A degrees of freedom.

Because of this, the modes are symmetric with respect to the equilibrium configuration (tethers

vertical and spreader bar horizontal). The SM modes can thus be studied by assuming each

helicopter to be tethered to a fixed point in space (Fig. 3.3.3.1).
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The Tethered Helicopter Mode is an unstable

exponential mode. This mode is not present in free

flying helicopters or in helicopters carrying sling

loads. The mode, however, is present in helicopters

which are tethered to a fixed point in space [2]. The

instability is due to the tension in the tethers and the

fact that the helicopter-tether attachment points are

oN

 /
J 7 V4 rd 7 IPI

below the helicopter c.g.'s.
Fig. 3.3.3.1: Helicopter Tethered to a

Fixed Point in Space

Given the proper initial conditions (eq. (3.11)), the helicopters experience a divergence in

their relative pitch attitudes (AG) as well as in their relative positions (Ax). More specifically,

suppose the master helicopter experiences a horizontal velocity disturbance. Because the

helicopter-tether attachment point is below the helicopter c.g., a nose-down pitching moment is

induced about the helicopter c.g. As a result, a nose-down pitch attitude begins to develop. The

downward pitching causes the helicopter's forward component of rotor thrust to increase. This, in

turn, causes the helicopter to accelerate and pitch divergently. Since the slave exhibits a similar

response (only with signs reversed), we see a divergence in the relativepitch attitudes and positions

of the helicopters. Because of the nature of this instability; i.e because the helicopters tend to topple

over, the mode is sometimes referred to as the inverted pendular mode [2]. It should be noted that

as the helicopter-tether attachment points approach the helicopter c.g.'s (i.e. as h — 0), the mode

approaches a horizontal equilibrium mode (a natural integrator). Throughout the thesis, however,

the attachment points remain a fixed distance, h = 3.6 ft., below the helicopter c.g.'s. As a

consequence, a minimum gain will be required to just stabilize the SM.

The Horizontal Spring Mode is a stable, moderately damped, sinusoidal mode. This high

frequency pitching mode is due to the stabilizing effect of the tethers attached below the helicopter

c.g.'s; i.e. given the proper initial conditions (eq. (3.12)), the helicopters will pitch and translate
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back to their equilibrium positions just as if a horizontal spring were present. More specifically,

suppose that the master helicopter experiences a small forward velocity disturbance while pitching

upward. The relative airspeed causes the rotor to tilt backwards thus exerting a nose-up pitching

moment about the helicopter c.g. The nose-up pitching continues until it is arrested by the restoring

moment due to the tether. Because of the nose-up pitch attitude, the backward component of rotor

thrust decelerates the helicopter until its forward motion is arrested. At this point backward motion

begins. The relative airspeed causes the rotor to tilt forwards thus exerting a nose-down pitching

moment. The cycle is then repeated. Because of the symmetry associated with the symmetric

modes, the slave exhibits a similar behavior (only with sign reversed). This mode resembles the

anti-symmetric backflapping mode (characteristic of a hovering helicopter) to be described

subsequently, but is stable because of the restoring moment provided by the tethers. It should be

noted that as h — 0 the horizontal spring mode becomes unstable [1]; i.e. the stabilizing horizontal

spring effect due to the tethers is lossed. As a matter of fact, the mode becomes identical to the

unstable Backflapping Mode (to be described subsequently), but only at a much higher frequency

due to the extra load-bar mass in the TLHS.

The Symmetric Damping Mode is a stable exponential mode which characterizes the effect of

horizontal aerodynamic drag forces on the TLHS during symmetric translations ( Ax). More

specifically, if the TLHS is given the proper initial condition (eq. (3.11)), including an initial

differential horizontal velocity, Ax, then this initial velocity will decay to zero with a time constant

of 0.44 sec. This mode is similar to that experienced by a single hovering helocopter (Appendix 3)

but has a larger time constant which can be attributed to the extra load-bar mass. The extra load-bar

mass requires a larger component of thrust to keep the system in vertical equilibrium. It is this

larger component of thrust that results in the larger time constant.

To gain incite into the nature of the SM modes it is instructive to see the effect of varying the

load-bar weight (iL = [Mj +Mpg] / 2Mp) and the distance from the helicopter-tether attachment point

to the helicopter c.g.'s (h). Fig. 3.3.3.2 shows the effects of varying the parameter i on the

SM modal characterisics. Fig. 3.3.3.3 shows the effects of varying h [1].
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Fig. 3.3.3.2: Influence of Varying i = [M; + Mg] / 2M on SM Modal Characteristics.
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Fig. 3.3.3.3: Influence of Varying h on SM Modal Characteristics.

Fig. 3.3.3.2 shows that for a small load-bar weight (small yt), the Tethered Helicopter Mode

approaches the origin; i.e. a natural integrator. This horizontal separation equilibrium mode is due

to the fact that for it = 0, any initial helicopter separation will be maintained if no collective or

cyclic commands are issued. Similarly, for smallLL, the Horizontal Spring Mode approaches a

mode which is identical to the Backflapping Mode of a single hovering Blackhawk helicopter. This

is because for 1 = 0 the SM equations become

"Ax 0 0 1 Ax]
AB | _ I 0 0 ABAX 0 g X 0 , Ax

| 46 0 0 M, vi, | | asl

Mo
0 AB. (3.222)
XBIc

|. Mg;
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0 0 1 0 |fax
0 0 0 1 hae} .

0 -0562 -006 © | Ax
0 0 2.3493 -3.1]]A6

0.4782

[ -47.24

| 0
AB). (3.22)

when Ax is measured in ft., Ax in ft./sec., AO in degs., and A8 in degs./sec.. These equations

are identical to those for a single hovering Blackhawk helicopter (Appendix 3). Because of this,

we also see that as 1—0, the Symmetric Damping Mode approaches the Horizontal Damping

Mode of a single Blackhawk near hover. It is emphasized that jt = 0.4516 shall be used to develop

the Equal Tether AFCS (Chapter 3) and the Unequal Tether AFCS (Chapter 6).

3.3.4 Discussion of ASM Modes

The ASM possesses four natural modes; a Backflapping Mode, a Vertical Spring Mode, a

Pendular Mode, and an Anti-Symmetric Damping Mode. These modes only affect the TX, 20,

Az, x;'degreesof freedom. Consequently, in studying the ASM modes it is reasonable to assume

that Ax = A6 = 0.

The Backflapping Mode (Fig. 3.3.4.1) is a low frequency unstable exponential-sinusoidal

mode. This mode is due to the backflapping of the main rotor with forward motion and is

characteristic of a hovering helicopter (Appendix 3). More specifically, suppose that the master

helicopter experiences a small horizontal velocity disturbance (Fig. 3.3.4.1a). The relative airspeed

ir)

 A
T

(a) Vv=0 (b) =— V (¢c) V=0

\i
\!

{ 1) ‘J
-

Fig. 3.3.4.1: Visualization of Backflapping Mode.
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causes the rotor to tilt backwards and exert a nose-up pitching moment about the helicopter's c.g.

A nose-up pitch attitude then begins to develop and the backward component of rotor thrust

decelerates the helicopter until its forward motion is arrested. At this point (Fig. 3.3.4.1c) the disc

filt and rotor moment vanish but the nose-up pitch attitude remains so that backward motion begins.

This causes the rotor to tilt forward and exert a nose-down pitching moment (Fig. 3.3.4.1b).

Following this, a nose-down pitch attitude develops (Fig. 3.3.4.1a) which accelerates the

helicopter forward and returns it to the situation in Fig. 3.3.4.1d. The cycle then begins again. The

amplitude of the oscillations increase steadily because of the helicopter inertia. Since the slave

exhibits an identical response its motion need not be discussed. In addition, it should be noted that

because this mode is largely associated with £0, and hence Xx, we expect a relatively large impact

on xj.Howeverwhen x; is strongly affected we expect significant Az motion. This is confirmed by

the magnitude of the Az component of the Backflapping Modes' eigenvectors (Table 3.3.1.4).

Finally, because this mode is unstable, the AFCS will require a minimum gain just to stabilize the

ASM.

The Vertical Spring Mode is a stable, low frequency, lightly damped sinusoidal mode. This

mode is associated, primarily, with the Az degree of freedom and is due to the fact that the payload

is suspended a fixed distance, Z, below the spreader bar c.g. More specifically, suppose that the

slave helicopter experiences an upward velocity perturbation and the master helicopter a downward

velocity perturbation. This causes the spreader bar to rotate clockwise about it's c.g. This, in turn

results in the load swinging to the left of the center (x - Xx = ZAz~7Z €g&lt; 0). Consequently,

the tension in the slave tether increases and the tension in the master tether decreases, causing the

slave and master to decelerate. This continues until the slave and master motions are arrested. The

load then swings to the right and the bar rotates counter-clockwise about it's c.g. This results in the

slave moving downward and the master upward. The cycle then repeats itself every 8.5 seconds

and the motion decays with a time constant of 5.06 seconds. To better understand the origin of this

mode, it is important to note that as Z — 0, this mode approaches two real modes. One bein g
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similar to the natural vertical damping mode of a helicopter but less damped (s=Z, /

(1+) =-0.3434 )*, the other a natural vertical equilibrium mode (s =0). This clearly shows

that the Vertical Spring Mode is due to the fact that the load is suspended below the spreader bar

c.g. We note that when Z = 0, the ASM is identical to that of a single helicopter carrying a sling

load [1] [4].

The Pendular Mode is a stable, high frequency, lightly damped, sinusoidal mode. This

mode characterizes the natural tendency of the load to sway. The mode is predominantly associated

with Ze, but because the tethers are attached below the helicopter c.g.'s, it has a relatively large

impact on $6. This is confirmed by the magnitude of thepa component in the Pendular Modes'

zigenvectors (Table 3.3.1.4). This mode has a period of 2.4 seconds and decays with a time

constant of 1.88 seconds. It should be noted that this mode has a frequency of oscillation (0, =2.7

rad/sec) which is considerably larger than the uncoupled pendulous frequency, A =J/g/H,

= 1.56 rad/sec. Finally, it should also be noted that this mode decays because of aerodynamic

damping on the helicopters; not on the load-bar assembly.

The Anti-Symmetric Damping Mode is a stable exponential mode which, as the Symmetric

Damping Mode, essentially characterizes the effect of horizontal aerodynamic forces and moments

on the TLHS during horizontal translation (Xx). More specifically, suppose that the load is initially

to the right of the center and that both helicopters experience forward velocity perturbations. Their

velocities will decay to zero exponentially with a time constant of 0.47 second. This is larger than

the Symmetric Damping time constant (0.44 seconds) as well as the 0.31 second time constant of a

single Blackhawk helicopter near hovering trim (Appendix 3).

To gain incite into the nature of the ASM modes, it is instructive to see the effect of varying

he load-bar weight and the distance that the load is suspended below the spreader bar c.g., Z. The

effects of varying h on the ASM modal characteristics are shown to be of secondary importance in

1].

+ Z., is an aerodynamic derivative and ep, = (2 Ig)/(MpL2) = Wg / (6 Wg)
co —
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For M; = Mp =0 (1 = 0) the ASM equations become

Az Z, Az+Zg AB,
- 0.346 Az + 5.9494 AG,

v6] 0 0 1 [=e] [o

 | =| cg xX, 0 |]=zx|+ | Xp | 2B,
| =6 0 M, M]|z6 Mpc

0 0 1 | [ze 0

-0.562 -006 0 ||=Zx |+ 04782 |
| 0 23493 -3.1]|26| |-47.24

2B.

(3.23a)
(3.23b)

(3.24a)

(2.24b)

where Az is measured in ft., Z0 in degs., ¥x in ft. / sec., and A® ! and XB, in degs.. These

equations are identical to those for a single hovering Blackhawk helicopter (Appendix 3). Notice

that for M; = My = 0 we have no equation for xp For "small" M; and Mg (not both zero) one

can show that the equation for X;'becomes:

&amp;L' =- (g/E) x - [X, + (h + H) My] ZX - M_ (h + H) 30 - [Xp + (h + H) Mp,]ZB; (3.25)

These facts are in agreement with Fig. 3.3.4.2 which shows that as p — 0 the Vertical Spring

Mode, a damped sinusoidal mode, approaches an integrator and the vertical damping mode of

a single hovering helicopter. Similarly, as p— 0, the Backflapping and Anti-Symmetric Modes

approach the backflapping and horizontal damping modes of a single hovering helicopter. As

uw — 0, the Pendular Mode approaches the uncoupled pendular mode. This mode is an

andamped sinusoidal mode with frequency ® Ni Jeg /H=1.56rad / sec.

Again, we emphasize that 1 = 0.4516 shall be used to develop the Equal Tether AFCS

Chapter 4) and the Unequal Tether AFCS (Chapter 6).
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Fig. 3.3.4.2: Influence of Varying u = [M; + Mg] / 2M on ASM Modal Characteristics.

Fig. 3.3.4.3 shows the effects of varying Z=Z/L, the normalized distance from the

spreader bar c.g. to the load, on the ASM modal characteristics [1]. We see that as 7 — 0,

the Vertical Spring Mode approaches two real modes (s =0 ands =Z_ / (1 + ep) = - 0.3434).

The Backflapping and Anti-Symmetric Damping Mode characteristics, however, do not change

much as Z —» 0. Finally, as 7 — 0 the Pendular Mode increases in frequency and becomes more

lightly damped. It is emphasized that Z =0.5 shall be used throughout the thesis.
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ir, 3.3.4.3: Influence of Varying 7 = Z/Lon ASM Modal Characteristics.
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3.4 Selection of Outputs for TLHS Equal Tether Problem

To emphasize the decoupling of the Equal Tther Model into 3 subsystems we rewrite our

Equal Tether Model as follows:

A ‘er4
Ta

~~

Xp=ApXp +Bpuy Xx € R24,e R (2 26)

x, =[ Zz Il Ax A® Ax AG Il 26 Az x;' Tx ZB Az x'1T (3.27)

(3.28)u,=[ ZO, Il AB, Il AB, 2B, |!

(2.29)

B,= diag (Bp1s Bp, B3) (3.30)

and the pairs (Apis Bp), i=1, 2,3, describe the AVM, SM, and ASM, respectively.

In order to formulate the Twin Lift control problem we must choose outputs (quantities to

control). The number of outputs must equal the number of inputs. Since the TLHS dynamics

decouples into 3 subsystems, it only makes sense to select outputs for each of the subsystems.

3.4.1 Selection of Outputs for AVM Subsystem: The AVM Plant

The pair (Apr B,1) describes the TLHS's AVM, involves the Xz degree of freedom, and is

conrolled by issuing average collective commands (© o)- This subsystem has only one input

which can be used to control at most one output, the average vertical velocity: £z. The AVM thus

has the following state space representation:

1 —Xp1 = Ap1 Xp1 + Bp1 Up;

Yp1 = Co1 Xp1

Xpy ~ R1

Uys Yp1 € R1

~

3 31)

(3.32)

where upg = 20, Xp1 = &gt;z, Cpi€ R, and Yp1 = Yz. When Xz is measured in ft./sec. and ZO, in
degs., we have

Agi =Zq (1+) =-0.2384

B_, =Zg,/ (1 +1) =4.0985

1 23)(..

(3.34)
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Cpl= (3.3% ~

)

This SISO (single-input single-output) system has transfer function given by:

Gp (8) = Cp I-A) By,

=[Zg./(A+W]/[s-(Zy/(A+p)]
= 4.0985 / [s + 0.2384]

(3.36a)

(3.36b)

(3.36¢)

It is very easy to show that the state space triple (Apr Bo Cor) is controllable and

observable. It thus follows that the state space and transfer function representations are equivalent

minimal representations [11]. From now on the state space representation given by egs. (3.27) -

(3.28), and the equivalent I/O representation given by eq. (3.29), shall be referred to as the AVM

Plant.

For convenience all AVM Plant parameter values are provided in Table 3.4.1.1.

Table 3.4.1.1: AVM Plant Parameters

Wy = 14000 1bs., My; = 434.78 slugs

Wg =644 lbs., Mp = 20 slugs

W; =12000 1bs., My = 372.67 slugs

i= [My +Mgl/ 2M = 0.4516

Z,, = - 0.346 ft. sec’? / ft. sec I

76. = 340.9 ft. / rad. sec? = 5.949 ft. / deg. sec?

It should be noted from eq. (3.36) that the AVM plant pole is simply the single root of the

characteristic polynomial:

det (sI- A_;)=s + 0.2384 (1.3/)
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This pole has already been interpreted in the modal discussion of section 3.3.1. In that section we

described the pole as the Average Vertical Damping Mode; a mode which characterizes the effects

of vertical aerodynamic deag forces on the TLHS during average vertical translations, Xz.

It should also be noted from eq. (3.36) that the AVM Plant has no zeros.

3.4.2 Selection of Outputs for SM Subsystem: The SM Plant

The pair (Apo Bo) describes the TLHS's SM, involves the Ax, AB degrees of freedom, and

is conrolled by issuing differential cyclic commands (AB,.). This subsystem has only one control

input which can be used to control at most one output. Since the horizontal separation, Ax, is

much more critical than AB, we select Ax as the output to be controlled. Typically Ax will be

commanded to zero. With input and output clearly defined, the SM thus has the following state

space representation:

Xp2 = App Xp + Bo uo;

Yn = ;p2 Ch Xn2s

Xn?

Uy, Yo € R1

nd (7 38)

2 39)

where up, = AByg, xp = [Ax AB Ax AG ]T, Cpe R14, and y, = Ax. When Ax is

measured in ft., Ax in ft./sec., A8 in degs., and AG in degs./sec.. and AB,. in degs., we have

An
0 0 1
0 2 0 5 0

- Lo - [g(1+ HL h] X
ELM, 2 - eH h+H) M,

0 0
0 0

- 1.09748 - 0.88468

 17.267 - 5.0777

0
1
0

My
{ 0 |0 1

- 0.06 0
2.3493  -3.1

0 0
= = 0

Xp 0.478185,L 4724 |

Bp2

Cro=10[1 0 0 07

(3.402)

(3.40b)

pL 1)

[|
= %)
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This SISO system has transfer function given by:

x"1=re

G(s) = Cp (SI - App)1 Bp.
=k, [s2 + bys + byl / [s4 + 2483 + 2,52 + ays + a) (3.43b)
= 0.4782 [s2 + 3.1s + 92.475] / [s* + 3.1653 + 6.36152 + 5.785s - 9.703] (3.43c¢)

(3.43a)

ko = Xpc (3.44)

bi =-M, (3.45)

by = enw, 2 (h + H) - Mp, [ no,2h +g (1 +1) 1/ Xp (3.46)

(3.47)a3=-[M, +X]

a =M, X, + hw,2[1+e(h+H)] (3.48)

a, =M, [10,2 +g (1+W]-M, uw,?-X, enw, 2 (+H) (3.49)

a, =- enw,2g. (3.50)

It can be shown that the state space triple (Ap Bos Cp) is controllable and observable. It

thus follows that the state space and transfer function representations are equivalent minimal

representations. From now on the state space representation given by egs. (3.31) - (3.32), and the

equivalent I/O representation given by eq. (3.33), shall be referred to as the SM Plant.

For convenience all SM Plant parameter values are given in Table 3.4.2.1. Appendix 1

contains all TLHS parameter values.

From our discussion it follows that the poles of the SM Plant are simply the roots of the

characteristic polynomial:

det (I - Ap) = s* + 3.1653 + 6.3615 + 5.7855 - 9.703 (3.51)

These poles have already been interpreted in the modal discussion of section 3.3.2 which was

based on the right eigenvectors of A. In that section we referred to these poles as the Tethered
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Table 3.4.2.1: SM Plant Parameters

Wy = 14000 Ibs.

Mg = 20 slugs

w= [Mp + Mpl/2My = 0.4516

g=32.2 ft/sec?

My; = 434.78 slugs

W; =12000 lbs.

h = 3.6 ft.

0, ) -g/H=2.431/sec?

Wg = 644 1bs.

M; = 372.67 slugs

H = 13.25 ft.

I, = 5700 slug ft2

€=Mpgh/I, = 0.2746 ft'1

X,=-0.06 ft sec™2 / ft sec™]

Xple = 27.4 ft / rad sec?

M, = 0.041 rad sec? / ft sec! M, =-3.1 rad sec?/rad sec’!

Mp, = -47.24 rad / rad sec?

Helicopter Mode, the Horizontal Spring Mode, and the Symmetric Damping Mode. The Tethered

Helicopter Mode was described as an unstable exponential mode associated with helicopters which

are tethered to a fixed point in space. The instability is due to the fact that the helicopter-tether

attachment points are located below the c.g.'s of the helicopters. The Horizontal Spring Mode was

described as a stable, moderately damped, sinusoidal mode. This mode is associated with the

stabilizing effect of the tethers when attached below the c.g.'s of the helicopters. The Symmetric

Damping Mode was described as characterizing the effects of horizontal translations (Ax).

Note that unlike the natural modes of the SM Plant, which are independent of the output

selected. the zeros are functions of the output chosen. This follows from the fact that the zeros are

given by the roots of the polynomial:

det [sI -Ap “Bp = det (sI -AL) det [G,»(5)]
Coo 0

= 0.4782 [s? + 3.1 s + 92.475)

(3.522)

(3.52b)

This clearly shows a dependence on the output matrix Chae RI1x4 which selects the output, yy,»

= Ax. The roots of this polynomial are s = - 1.55+79.4906 (t=2/ M,, = 0.65 sec., { =0.16, oO
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= 0.62 rad./sec.). For reasons to be given these zeros shall be referred to as the SM Helicopter

Pltching Zeros. The pole-zero structure for the SM Plant is given in Fig. 3.4.2.1.

Since we intend to base our SM AFCS design on the SM Plant linear model it is important to

understand the nature of its lightly damped, high frequency, zeros. To do this it is necessary to

recall the definition of a tansmission zero for a state space triple (A, B, C) [7].

A state space triple (A, B, C) has a transmission zero at s = z;, if there exists an initial

condition, Xx, and an initial input direction, u,, such that when x(0) = x, is the initial state and u(t)

= eZ0ty,, the applied control then the state and output trajectories are given by x(t) = eZ0'x, and y(t)

=(0, respectively, forallt=0.
LO.

—
N

No SM Helicopter Pitching Zero; { =0.16

pe

U)
|cn|

&gt;

4 -

et 2

ov
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Symmetric Damping Mode ~~
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~f8

n
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10.
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REAL AXIS

8. 10.

Fig. 3.4.2.1: Pole-Zero Diagram for SM Plant.
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The zero, z,, the right zero direction, Xp» and the input direction, Uy, can be found by

solving the following system of linear algebraic equations:

znl-A -Bj |x - 10 et df [8
or equivalently, by solving the following right generalized eigenvalue problem:

2 B= =f Y[

¢1.522)

(3.53b)

Doing so for the SM Plant (A = Apps B= Bo» C= Cp) gives us the following for one zero:

zg = - 1.55 + j 9.4906

xg=[0 -j0.1351 0 1.2825+j0.2095]T

=[0 0. 390° j[0 0.1351e90° ¢ 1.299¢19-28T

uy =- j 0.25 = 0.25 719°

(2.54)

(3.553)

(3.55b)

(3.56)

and (zp, Xg*, ug*) for the other complex conjugate zero. To interpret these complex zeros and

directions we provide the following general result.

Suppose that (zj, xq, up) and (zp*, Xo*, py*) define a pair of complex conjugate zeros in

the s-plane; one at s = zy = 0 + jo and the other at s = zy* = 6 - jo. Suppose further that we

define

Xor=Re{ x }

u(t) =Re {e%0ly, }

x(t) =Re { e?0tx, }

Xgp =Im{x,}

y(t) =Im { e%oly, )

x;(t) =Im { eZ0tx,, )

(3.57)

(3.58)

(3.59)

where Re { +} and Im {- } imply that the real parts and imaginary parts must be taken one

component at a time. With these definitions it can be shown that for alla. be R. if
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1M

hen

ind

x00) = a xo + b x;

u(t) =a u(t) +b y(t)

x(t) = a x(t) + b x;(t)

y(t) =0

(3.60)

(3.61)

(3.62)
(3.63)

for all t= 0. The implications of this can be stated as follows:

To study a complex conjugate pair of zeros we can apply any linear
combination of the state-control vectors

Xo and Iml
| eZotu,

(? 9

Doing so gives us the same linear combination of Re { e“0ty, } and

Im { e%0ly,, }, respectively.

Applying the above genereal result to the SM Plant gives us the following:

Zp =O +j® =- 1.55 + j 9.4906

Xo=[0 -j0.1351 0 1.2825+j0.2095]T

[xp=Re(xg1=[00012825]
X0;=Im {x5} =[0 -0.1351 0 0.20951T
ug =0.25 es] 90°

eZotu, = e(C+i® 02590" = 0.25 te j(@t-90%)

= (0.25 Ot [ cos(at - 90°) + j sin (ot - 90°) ]

=[ 0.25 et sinwt1+3 [ - 0.25 eC coswt]

u(t) = Re { eZ0tuy} = 0.25 Ot sinot

uy;(0 =1Im { e%0tuy } = - 0.25 et cost_iv/=AteVip yr =-veo oc cosa
eZ0lxg =e +00 0.135179" 0 1.299¢19-28'1T

=eSt[0 0.1351 (@t-90°) ( 1.299 ej (t+ 9.28) 1T

(3.65)

(3.66)

(3.672)

(3.67b)

(3.68)

(3.692)

(3.69b)

(3.69¢)

(3.70a)

(3.70b)

(3.71a)

(3.71b)
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=[0  0.1351eS'sinot 0  1.299¢% cos(wt + 9.28) IT

£j[0 -0.1351eSt coswt 0 1.299 etsin(wt+9.28%)IT (3.71¢)

“x(D=Re { e%0xy } =[0 0.1351e%sinet 0 1.299 et cos(at+9.28%]T](3.722)

x(t) =Im { eZ0lxy } =[ 0 - 0.1351e%coswt 0 1.299 et sin(wt + 9.28")T(3.72b)

From these it follows that forall a. b e R. -f

Xp2(0)=aXo+DX
=a[0 0 0 1.2825]T + b[0 -0.1351 0 0.2095 ]T

(3.73a)
(3.73b)

snd

15(t) =au(t) + b vt

=a{ 0.25 eStsinmt] +b [- 0.25 eSt cosmt]

(3.74a)

(3.74b)
hen

Xo0)=a x(t) + J A, re)

=a [0 0.135eStsinot 0 1.299 et cos(ot + 9.28°) 1T

+b[0 -0.135eSt cost 0 1.299 eStsin(wt + 9.28%) ]T

(3.753)

(3.75b)

(3.75¢)
and

Yp2 {+) - () (3.76)

for all t=0. With these relationships, and the fact that Xn =[ Ax AB Ax A817, we have a

complete characterization of the SM Plant zeros. These zeros characterize the fact that if initially

Ax = Ax = 0 and the helicopters are given the appropriate initial relative pitch and pitch rate (eq.

(3.73)) and if the differential cyclic, Usp = AB,., is properly manipulated (eq. (3.74)), then the

nelicopters will pitch in accordance with eq. (3.75) maintaining Yoo = Ax = 0 for all time. Since Ax

[h AG + H Ae] = 0, this means that

AB =-(H/h) Ae =- 3.681 Ae (3.7. J
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for all time. This implies that if £0 = Ze = 0, then 0, =-(H/h) € 0, = 0,» and EE =-€. In

such a case we can have the situation depicted in fig. 3.4.2.1 which assumes (a =0, b= 1) in egs.

3.73) - (3.75).

QIN
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“

0.1048 “sec i]

0.0285 Ysec~

710.0676°

=.0.0184°
0.0184°.

A

 A A-NWES To. 06760
Hl H —"0.1048 sec

»-

 —
-

~0.02 3 5°/sec

~~
Fig. 3.4.2.1: Visualization of an Initial Condition to Interpret

the SM Helicopter Zeros (a=0, b= 1).

Physically, the SM Plant zeros are due to the fact that each helicopter can pitch without

undergoing translation provided that they are given appropriate initial conditions and that their

cyclics are properly adjusted. This fact shall be discussed in more detail later in the section. For

now we shall shed light on the above "numerical" analysis by providing "symbolic" relationships

which show the exact dependence of the zeros and their directions on the SM Plant parameters.

Given the definition of a transmission zero we know that if the SM Plant is properly excited

(Zg» Xp» Ug) then Ax = 0 for all time. It thus follows that Ax(0) = Ax(0) = 0. Substituting Ax =0

into the differential equations describing the SM:

[, AB = 0.5(Wy +Wp)hA€ - 0.5(Wy +Wp)hAB + LM Ak +1 MAB + [ Mp AB; (3.78)

Ae=-[Ax+hAB]/H (3.78¢)
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gives us the equation

AB(*) = — MuXpleeoo—_
Wy +0.5(W+Wg)(1+h/H)

= 0.5405 AB, (t)

AB;.(1) (2.79a)

(3.79b)

This equation completely specifies the right zero direction, Xo. More specifically the equation

shows that if AB, = 0.25 eC! cost then AB = 0.1351! sinwt and A = 1.299¢eSt cos(wt + 0.28°).

Also if AB,=-0.25¢Stcost then AB = - 0.1351e% coswt and AS = 1.299¢Ctsin(wt + 9.28%).

These, of course, are in agreement with egs. (3.73) - (3.74).

Substituting Ax = 0 and AO = AB e%ot into the SM equations and using eq. (3.79) gives us

the following quadratic in z:

"292 + Mg) zg + 0.5(WL + Wp) (1 +h /H) [h/ I, + Mp} / MyiXgyo] + Mp, g/ Xp =0 | (3.80)

where||is used to denote the absolute value of an otherwise negative quantity. This quadratic

shows that for iL = [M; + Mg] / 2My =0 (i.e. W = Wg =0), the quadratic becomes identical to

that for a single hovering helicopter with velocity as an output (Appendix 3). This fact shall be

further addressed later in the section. For now, it suffices to note that the discriminant of eq. (3.80)

for the single hovering helicopter (UL = 0) is negative: i.e.

M12 -4 Mp,|g/Xp &lt;0 (&gt; 31)

This, of course, implies that the quadratic

(3.82)

(for a single hovering helicopter with horizontal velocity as an output) always has complex
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conjugate zeros. Furthermore, since 0.5 (Wy +Wg)(1 + h/H) [h/ I + Mp! / MgXpy] is

always nonnegative, it follows that the zeros for the SM Plant (with output Ax) also occur in

complex conjugate pairs. In addition these zeros always have real part at s = - IM, /2=-1.55,

radial frequency greater than or equal to Mg,|g/ Xp. 10-5 = 7.45, and damping ratio less than

0.2. Of course, for our fixed parameter SM Plant it has already been shown that zy =- 1.55% j

9.4906 (0 =9.62, { = 0.16).

To terminate the section we note that the SM Plants’ zeros (associated with the output Ax)

might have been anticipated from our knowledge of a single hovering helicopter with horizontal

velocity as an output (Appendix 3).

As mentioned throughout the section, the SM equations reduce to those of a single helicopter

when pL =0. Setting i =0 gives us by =- g MB, / Xp. =55.52 and b; =- M, = 3.1 for which the

zeros become zg =- 1.55+j 7.29 (w_ =7.45, {=0.2). These lightly damped, high frequency,

zeros characterize the fact that a hovering helicopter can pitch without undergoing translation,

provided the helicopter (initially at rest) is given an appropriate initial pitch, pitch rate (determined

by AB = (Xp. / &amp;) AB). =0.851 AB,.), and that its cyclic control is properly manipulated. Based

on this fact alone one might anticipate the lightly damped zeros of the SM Plant where Ax is an

output.

The implications of the SM Plants’ modes and zeros on the Twin Lift Equal Tether Control

Problem shall be discussed in a later section. Now we shall select outputs for the ASM subsystem,

define an ASM Plant, and study its zeros.

3.4.3 Selection of Outputs for ASM Subsystem: The ASM Plant

The pair (Aps, B3) describes the TLHS's ASM, involves the Xx, X0, Az, x;' degrees of

freedom, and is conrolled by issuing differential collective commands (A©) and average cyclic

commands (£B;.). This subsystem has only two control inputs which can be used to control at
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most two outputs. The load deviation from center, x;-Zx, shall be selected as an output because

it will allow the pilot to directly control the load motion in a "very natural manner"; ie. by

controlling the vertical separation between the helicopters (eq. (3.11)). Typically xp -Zx will be

commanded to zero. The average horizontal velocity, £x, shall also be selected as an output since

the regulation of pilot commanded velocities is essential. The ASM thus has the following state

space representation:

Xp3 = Ap3 Xp3 + Bp 3;

yn3 =Cp3 Xn3:

X_- = i} 7

Uys Vv =7

(2.83)

R2 (3.84)

where 1,3 = [AQ 3B; IT, x5, =[20 Az x' Tk 20 Az %'IT, Cz R™, andy 3=[

Xy -2X x]T. When A® &amp; 2B,., 20 are measured in degs., ¥6 in degs./sec., Az, x{', x. ¥x

in ft., and Ix. Az. X;'in ft./sec., we have
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C —p3~(h+H) Z 1 0 0 0 0
0 0 0 1 0 0 0

0.2836 0.5 1 0 0 0 0
0 0 0 1 0 0 0

(3 87a)

(3.87b)

This TITO (two-input two-output) system has transfer function matrix given by:

sr¥A i et
” ’

Gy3(s) = Cp3 (SI- Ag)! Bs,

“g 1108) g *l
£9105) 827(s)

g;i() = n;(s) / d(s) 1,] C2

(3.88a)

(3.88b)

(7 9c)I.

and

ny;(s) = 0.147 s° + 0.465 s* + 10.969 s3 + 32.371 2 + 1.305 s + 15.142 (3.892)

ny,(s) =- 0.478 s° -1.641 s* - 52.445 s3 - 19.611 s? - 60.985 s - 0.097 (3.89b)

ny (s) = - 3.009 s* - 9.329 s3+ 26.612 s2 + 0.0004 s - 0.0024 (3.89¢c)

Ny,(s) = 0.478 s8+ 1.643 s° + 46.528 s* + 20.858 s3 + 155.97 s2 + 34.4355 + 38.1 (3.894)

d(s) = det (sl - Anz)
= 57 + 3.496 sO + 11.203 s° + 20.681 s* + 12.404 s3 + 12.694 s2

+ 1.936 s + 2.0356 (3.£9f)

(3.89¢)

The roots of these polynomials are as follows:

Roots(ny;) =- 0.099 + j 8.592, 0.055 +j 0.072, - 3.071

Roots(n;,) = - 1.544 + j 10.254, - 0.173 +j 1.076, - 0.002

Roots(ny;) = - 4.903, 18.034, - 0.0095. 0.0095

Roots(n,,) = - 1.545 £j 9.506, - 0.061 +j 1.784, - 0.112 + j 0.508

Roots(d) = eigenvalues ofAss (3.90e)
= 0.0402 £j 0.4785, - 0.1976 +j 0.7364, - 0.5314 +j 2.6245, - 2.1187 (3.901)

(3.902)

(3.90b)

(3.90c)

(3.904)
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It can be shown that the state space triple (Ap, Bs, Cp3) is controllable and observable. It

thus follows that the state space and transfer function matrix representations are equivalent minimal

representations. From now on the state space representation given by egs. (3.83) - (3.87) and the

equivalent I/O representation given by eqs. (3.88) - (3.90) shall be referred to as the ASM Plant.

For convenience all ASM Plant parameter values are given in Table 3.4.3.1.

From our discussion it follows that the poles of the ASM Plant are simply the roots of the

characteristic polynomial:

det fs] - A) =s’ + 3.496 sO + 11.203 s5 + 20.681 s* + 12.404 s3 + 12.694 s

1 1 936 s + 2.0356 (3.91)

These poles have already been interpreted in the modal discussion of section 3.3.3, which was

based on the right eigenvectors of Ap3- In that section we referred to these poles as the

Backflapping Mode, the Vertical Spring Mode, the Pendular Mode, and Anti-Symmetric

Damping Mode. The Backflapping Mode was described as a low frequency unstable

exponential-sinusoidal mode characteristic of hovering helicopters. The instability is due to the

backflapping of the main rotor with forward motion. The Vertical Spring Mode was described as a

stable, low frequency, lightly damped, sinusoidal mode. This mode is associated with the fact

that the load is suspended a distance Z below the c.g. of the spreader bar. The Pendular Mode was

described as a stable, high frequency, lightly damped, sinusoidal mode. This mode characterizes

the natural tendency of the load to sway. The Anti- Symmetric Damping Mode was described as a

stable exponential mode. This mode characterizes the effect of horizontal aerodynamic drag forces

on the TLHS during horizontal translation (Ix).

Note that unlike the natural modes of the ASM Plant, which are independent of the outputs

selected, the zeros are a function of the outputs chosen. This follows from the fact that the zeros
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Table 3.4.3.1: ASM Plant Parameters

Wy = 14000 Ibs. Mp = 434.78 slugs

W; =120001bs. Mj = 372.67 slugs

H =H H_  =: J

Wg = 644 Ibs. Mpg = 20 slugs

I, = 5700 slug ft h = 3.6 ft.

H = 13.25 ft. Z = 34.5 ft.

L = 69 ft.

u=[M; +Mgl/2My =0.4516

g = 32.2 ft/ sec?

e=Mgh /Iy = 0.2746 fr’!

ep =2 Ig / Mp L? = Mp / 6 My; = 0.0077

7Z=7/L=05

I I . 1

Ig = (1/12) Mg L? = 7935 slug ft?

H=H/L=0.192

P=1+e,+4pn228, (1-8;)=1.0295
D=-w,2[1+p+(h+H)pe+4T 8 Z/w,2] =-3.9363 ftsec?/ft
E =- [X, + M, (h + H)] = - 0.63085 ft sec’/ftsec’!

T= [18 Zw,2" = 1.9203 sec?

T=ud Zw,2/¥=0.50584 sec’?

X, =- 0.06 ft sec’? / ft sec’

M, = 0.041 rad sec? / ft sec”!

M, =- 3.1 rad sec2 / rad sec!

7, =- 0.346 ft sec?/ft sec’

Xpie = 27.4 ft sec? / rad

Mg. = -47.24 rad sec? / rad

Za. = 340.9 ft sec? / rad
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are given by the roots of the polynomial:

det ['sI- -B =det [ sI - ] det[G ]| op 0" | Ayal det [ G3(s)
Co2.9.

This clearly shows a dependenceon the output matrix Cp3e R2x7
Note that unlike the poles of the ASM Plant, which are independent of the outputs selected,

Yp3 = [xp - 2x 2x]T. The roots of this polynomial can be shown to be z; 2=-0.179%j 6.41 (t=

5.56 sec., { = 0.028, ®_ = 6.42 rad/sec) and z34=- 1.37 £j 9.81 (t= 0.73 sec, {=0.138, o,

= 9.9 rad/sec). For reasons to be given subsequently, Z,,shall be referred to as the ASM Load

Motion Zero and z4 4 as the ASM Helicopter Pitching Zero. It should be emphasized that the zeros

Z123.4 of the ASM Plant G38), are not zeros of the individual transfer functions within G38)

(egs. (3.89) - (3.90)). This fact is true for most MIMO systems with coupled dynamics [7]. The

pole-zero structure for the ASM Plant is given in Fig. 3.4.3.1.
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Fig. 3.4.3.1: Pole-Zero Diagram for ASM Plant.
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To interpret these zeros we solve the following right generalized eigenvalue problem:

ol [2]- 2h 8] [x] 1=r2s 0

for the input directions, u;, and the right zero directions, x;. Doing so gives us the following:

ASM IoadMotion Zeros:

21,=-0179%j64l=o,tj,,
x; 5 = [0.9823 -0.6349 0.0286 0 -3.8326 4.8345 -1.2902]T

+3 [0.5703 - 0.7362 0.204 0 6.1973 -3.9398 0.1475]T
= [1.14e430.1° 0.9726F130.8° (21%i82"  7.209¢H121.7°

(3.944)

(3.94b)

6.24eh39.2° 1.3e3174YT
(3.94¢)
(3.944)u; 5 =[4.3715 1.0888]T +;j[5.0917 2.1028]"

6.71 1494" 2 37 £4362.6T (3.94¢)

ASM Helicopter Pitching Zeros:

234=-137£j981=0, ,tja,,
x34=[0.1464 -0.0031 -0.0415 0 2.8309 0377 -1.2021]T

£7[-0.3092 -0.038 0.11 0 1.86 0.0217 - 0.5578]

=[ 0.34e 64.7" 0.0386074.7" 0.12eH110.7° ( 3.39e33.3" ( 38¢%i3.3" 1288151T
(3.950)
(3.954)
(3.95¢)

uz4=[-0.1019 0.2673]T +; [0.6198 -0.6156]T
= 0.63 eti99.3° (.671eH66.59T

The relations in (3.94) can be used to interpret the ASM Load Motion Zeros. From these

equations it follows that foralla.be R, u

7,30) =aRe{ x1} + bIm{ x, }  2 Yai a)
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=a[0.9823 -0.6349 0.0286 0 -3.8326 4.8345 - 1.2902]T
+b [0.5703 -0.7362 0204 O 6.1973 -3.9398 0.1475]T (3.96b)

u,3(t) =aRe {u; eZ1t } + bIm { u, e%1t) (397a)

=a[6.71 eC1t cos(w,t + 49.4%) 2.37eC1t cos(@;t + 62.6%) 1T

+b [6.71 eS1tsin(o,t +49.4°) 2.37eS1tsin(w.t + 62.6%) I (3.97b)

Xp3() =aRe { x e?1t } + bIm { x, eZ1t} (3.98a)

A =O1t [1.14 cos(m,t + 30.1°) 0.972 cos(mw,t - 130.8°) 0.21 cos(m,t + 82°) 0

7.29 cos(o,t + 121.7°) 6.24 cos(w,t-39.2°)  1.3cos(w,t + 174°)]T

+beS1t{1.14 sin(®,t + 30.1°) 0.972 sin(w,t - 130.8°) 0.21 sin(w,t + 82°) 0

1.29 sin(w,t + 121.77) 6.24 sin(o,t- 39.2°) 1.3 sin(o,t + 174°)T

(3.98b)
und

(7 29)

for all t 2 0. Considering only the real part of eq. (3.96) with (a =-1, b =0) gives

X53.0) =| - 0.9823 0.6349 -0.0286 0 3.8326 -4.8345 1.260G2] 1 (3.100)

Using the Equal Tether (Hg = H,; =H) relationships for x;'and Xp - ZX, givenin Table 3.2.2, the

initial condition in eq. (3.100) can be visualized as indicated in Fig. 3.4.3.2.

Here the collectives and cyclics are coordinated so that ACK leads XB; by 13.2° (eq. (3.97)).

This results in Az leading Xe and Xe leading £0. This in turn results in x; -Zx =0and 2x = 0.

Because these zeros, relatively speaking, are primarily associated with the Az and Ze degrees of

freedom (Az(0) = - 4.84 ft./sec., Xe(0) = 9.41 deg./sec.) we refer to them as the ASM Load Motion

Zeros.
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fo.eatt 0.989 3.8°/sec3.8%/sec\, 0.98°
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11.11

. 9.41% sec ~ 0.41 %sec
Ny

X - 2x =0ft

Fig. 3.4.3.2: Visualization of Initial Condition to Interpret
ASM Load Motion Zeros (a=-1, b=0).

The relationships in (3.95) can be used to interpret the ASM Helicopter Pitching Zeros.

From these equations it follows that forall a, be R, if

x30) =aRe{x3}+ bIm {x3}
=a[ 0.1464 - 0.0031 -0.0415 0 2.8309 0.371 -1.021 ]T

+b[-03092 -0038 0.11 0 1.86 0.0217 -0.5578]T

(3.101a)

(3.101a)

13(t) =aRe {y;e%3t} +bIm {uy e?3t}

=a [0.63 eC3t cos(m,t + 99.3%) 0.671e%3t cos(w,t - 66.5°) 1T

(3.102a)

+b | 0.63 eC1t sin(w,t + 99.3%) 0.671e%3t sin(m,t - 66.5%) 1T (3.102b)

Xp3(D) =aRe { x3e%3!} +b Im { x5 e%3t}

=a 293t10.34cos(,t - 64.7%) 0.038cos(w,t - 94.7%) 0.12 cos(w,t + 110.7%)

0 3.39cos(at + 33.3%) 0.38cos(qt+ 3.37) 1.2cos(wyt - 1517)]T

b e93t [0.34sin(w,t - 64.7°)  0.038sin(w,t - 94.7°)  0.12sin(w,t + 110.7)

(3.1033)

N 3.39sin(e,t + 33.3%) 0.38 sin(@,t + 3.3) 1.2sin(w,t - 151°)]T

(3.103b)
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and

(3.104)

for all t 2 0. Considering only the real part of eq. (3.101) with (a =-1, b = 0) gives

X03 ) =[- 0.1464 0.0031 0.0415 0 2.8309 0.371 102117 (3.795)

Using the Equal Tether relationships for x;'andx; - Zx once again, the initial condition in eq.

(3.105) can be visualized as indicated in Fig. 3.4.3.3.

&gt; 83%sec\

0.186 ft/sec

A 0.03
 53%/sec

a

_J0.0031 ft
Sx =0 ft./sec

ryt
ade

| 0.186 ft/sec

I 15°) 2.83 %secC

1 0.03°

58563] |

X, = 2X =Q ft

Fig. 3.4.3.3: Visualization of Initial Condition to Interpret
ASM Helicopter Pitching Zeros (a = -1, b=0).

Here the collectives and cyclics are coordinated so that A® lead ZB, by 165.8". Doing so results

in 2@ leading Az and Az leading Xe. This in turn results in x; - £x = 0 and Tx =0. These high

frequency, lightly damped, zeros are characteristic of a single hovering helicopter. For this reason

we refer to them as the ASM Helicopter Pitching Zeros. Note that, relatively speaking, they

primarily involve the £0 degree of freedom (Z0(0) = 2.83 deg/sec).
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The implications of the ASM Plants’ modes and lightly damped zeros on the Twin Lift Equal

Tether Control Problem shall be discussed subsequently. Now we shall combine the AVM, SM,

and ASM Plants to form an "Equal Tether Plant", G..(s)

3.4.4 TLHS Equal Tether Configuration: The Equal Tether Plant

The previous 3 sections can be summarized by simply specifying the complete state space

representation for the TLHS Equal Tether Configuration:

Xp = ApXp+Bpup; Xn = Q 12

¥p = Cp Xo: UY € RA

x, = [Zz I1Ax AB Ax AO Il 20 Az x’ Tx 28 Az &amp;']T

u,=[ 20, Il AB, II AQ, By, IT

yp=[Z2 Il Ax Il xp -Zx Zx]T

where Aj =diag (A), Ap, Ap)

Cp =diag (Cy, Cp. C3)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

and the state space triple (Ap; Bois Cri) i=1, 2, 3, refer to the AVM, SM, and ASM plants,

respectively. The transfer function matrix for our plant (Equal Tether Configuration of TLHS) is

then given by:

G(s) =C, (sI- AB,

= diag (G(s), G(s), Gp3(5))

(3.114a)

(3.114b)

where the

Gy; (5) =C,; (sI- AJB; 1i=1.2.3 (5.115)
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refer to the AVM, SM, and ASM plants respectively.

From now on when we refer to the "Equal Tether Plant”, Gps), we are referring to eqs.

(3.49) - (3.59). The matrices (Ap B, Cp are given in Table 3.4.4.1 for convenience. An

input/output visualization of the TLHS is provided in Fig. 3.4.4.1. When the tether lengths are

equal this visualization can be redrawn as in Fig. 3.4.4.2 which shows the individual AVM, SM,

and ASM Plants.
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3.5 Frequency Domain Analysis of Equal Tether Plant

Before presenting performance and stability robustness specifications, we examine the

‘functions to be shaped".* The notion of shaping is fundamental to classical SISO control theory

and, as will be demonstrated in this thesis, fundamental to MIMO feedback control system design.

The functions to be shaped are precisely the transfer functions of the AVM, SM, and ASM Plants

since these make up the transfer function matrix (tfm) of our Equal Tether Plant. In this section

we thus examine, in great detail, the Bode plots of the AVM and the SM Plants (both SISO

systems). For the ASM Plant, the singular values are analyzed.

3.5.1 Frequency Domain Analysis of AVM Plant

The AVM Plant transfer function, G(s), was given by eqs. (3.36). This SISO, first order,

system has control input 20, (degs.) and output Xz (fps). The Bode magnitude and phase

plots for the AVM Plant are given in Fig. 3.5.1.1.

The magnitude plot shows a dc gain of:

2/20, = Gy (0) = - Zg, / Z,, = 17.2 fps / degree (24.7 db) (3.116)

which is in agreement with eq. (3.30). It thus follows that to have a steady state average vertical

velocity of £z = 5 fps, it is necessary to have a steady state average collective of Z® c= 0.2907

degrees. The magnitude plot has a break at the pole frequency ® = Z, / (1+) =-0.2384 rad/sec.

The gain crossover frequency” for the AVM Plant is seen to be Wy = 4.1 rad/sec. For frequencies

above the break, the magnitude rolls off at -20 db/dec and the phase rolls off at appproximately - 45

degrees/dec to - 90 degrees as expected for a first order system.

The above characteristics imply that the AVM shall be relatively easy to control. It must be

emphasized, however, that although the AVM control strategy will not affect the ASM, it will affect

* Gain crossover frequency is the frequency at which the magnitude is unity.
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the Az motion and hence the individual helicopter velocities (e.g. z= Xz + 0.5 Az). It thus follows

that the AVM should not be treated completely independently from the ASM.

3.5.2 Frequency Domain Analysis of SM Plant

The SM Plant transfer function, G,(s), was given by eqs. (3.43) - (3.50). This fourth

order, SISO system has control input AB. (degs.) and output Ax (ft.). We now analyze this

transfer function for s = 0; i.e. at dc.

Assume that the SM has been stabilized and that a steady state differential cyclic of 1 degree

is applied to the SM Plant; i.e.

AB. = 1 degree. (3.117)

Computation of (-Ap) 1B, shows that the following steady state values will result (and are hence

necessary for equilibrium):
Ax =- 4.558 feet (13.18 db)
AD = 6.194 degrees

Ae = 18.03 degrees

(3.118)
(3.119)
(3.120)

Fig. 3.5.2.1 gives one possible visualization (Zx = 0, £0 = 0, Ze = 0) of the above steady state

conditions.
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Fig. 3.5.2.1: Visualization of SM Steady State for AB; = 1 degree.
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From the analysis, it follows that in order to bring the helicopters closer together (Ax &lt;0), a

positive differential cyclic must be applied. At first this might seem counter-intuitive; i.e. one might

expect that a positive differential cyclic is needed to sustain a helicopter separation (Ax &gt; 0). This

line of thinking is in flaw because it fails to consider the effect of the equilibrium (large signal)

components of thrust provided by the main rotor on each helicopter. These components of thrust

have lines of action which are assumed to pass through the helicopter-tether attachment points as

well as the helicopter c.g.'s. The differential cyclic should be thought of as providing that force

which keeps the helicopters from toppling over. The analysis also shows that the needed positive

differential cyclic produces a positive differential pitch attitude. This is explained by noticing that if

the contrary were true; i.e. if a positive differential cyclic produced a negative differential pitch

attitude, then the helicopters would have net horizontal forces acting on them and hence equilibrium

would be impossible.

The Bode magnitude and phase plots for the SM Plant are given in Fig. 3.5.2.2. The dc

magnitude and phase confirms eq. (3.118); i.e. the helicopter horizontal separation will decrease by

4.558 feet for every degree of steady state differential cyclic. The plots show that this dc gain

holds almost up to 0.2 rad/sec. It should be noted that the minus sign in eq. (3.118) is attributable

to the unstable Tethered Helicopter Mode. At ® = 0.75 rad/sec the magnitude breaks downward

at - 20 db/dec due to this mode. At = 2.4 rad/sec another break occurs due to the Symmetric

Damping Mode. Finally, at ® = 2.4 we have a final break due to the Horizontal Spring Mode.

Above ® = 2.5 rad/sec the magnitude plot exhibits a -80 db/dec (4 pole) roll-off. This

considerably large roll-off continues paast the gain crossover frequency (® = 3 rad/sec) until about

10 rad/sec where the SM Plant's lightly damped zeros provide an upward break. The magnitude

then rolls off at - 40 db/dec. This is due to the fact that Ax = M, (AB, /s%) for "large" s.

The phase plot shows the 180 degree phase lag due to the Tethered Helicopter Mode at dc, its

initial lead effect at low frequencies, and the combined phase lag due to the Translational Spring

and Symmetric Damping Modes near gain crossover. The phase lead due to the zero is observed
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near 10 rad/sec. It should also be noted that the SM Plant has two phase crossover frequencies; i.e.

frequencies at which the phase is + 180 degrees. One is at dc and the other is near 1.5 rad/sec.

This implies that the SM Plant can be stabilized with a single gain (~ 0.22); i.e. via separation

feedback alone. Doing so, however, would certainly not result in a high performance design.

3.5.3 Frequency Domain Analysis of ASM Plant

The ASM Plant transfer function matrix, Gp3(s), was given by eqs. (3.88) - (3.90). This

seventh order, TITO (two-input two-output) system has inputs AG, (degs.) and XB;.(degs.) and

outputs x;-2x (ft.) and ¥x (ft./sec.). This section studies the singular values of Gp3(w). Before

proceeding, however, it is convenient to recall the definition of the singular values of a matrix, the

singular value decomposition of a matrix, and their ramifications in the frequency domain [7] [13].

WW
. Er)

yo oovA

and

Consider the square (m x m) non-singular complex matrix, G. G can be witten as follows:

m

G= UxzvH = &gt; Gj yy;
1 =1

(3.121)

’ 2 = diag(oy, -.., Op) GC. ~~ O (3.122)

(3.123)U=[u; © © °° u,l Ul =H

V = [v, tre Vin] v-1 = yH (3.124)

GHG y, = c2 A (3.125a)

(3.125b)

Equation (3.121) is referred to as the singular value decomposition (SVD) of G. The o. are called

the singular values of G. The uy; are called left singular vectors of G and the v; are called right

singular vectors of G. Egs. (3.123) - (3.124) show that U and V are, by definition, unitary

matrices. It thus follows that the following relationships hold:

a. Hy, = O,; 1= 1, ees IM - zm  6a)
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Hy. = i =Viv 5; i=1,..,m (3.126b)

Equations (3.125) - (3.126) show that the 6; = A,(GFG))0 = (\(GGH)03,i = 1, ..., m. ois by

convention the maximum singular value of G and o,, the minimum singular value of G. The

maximum and minimum singular values of G are particularly important. Their importance stems

from the following fact [7]

' The matrix G is said to be large (small) if and only if its
| minimum (maximum) singular value is large (small), - (2.127)

This notion of large and small is motivated from the fact that C, and 6, may be defined in

terms of the Euclidean two-norm lixll, = (xHx)0-3 as follows:

©, = max { Gully/lull, In=0}
GC , = min { Gull, / all, lu=0}

(3.1282)
(3.128b)

Now use eq. (3.121) to consider the multiplication of the matrix G by the m-vector u; i.e. let

m

y=Cu= 2, oy (yw
1=1

(3.129)

Equations (3.128) and (3.129) show that

Ifu=y, = Y=0. u. (3.130)

Now let G = G;3(Gw). Suppose further, that the left and right singular vectors of Gp3(0),

at ®, are given by:

a. =1 lu, le dBi | u, le JB 1H g )

ve=[lvgled% lv, led%HE k=1,2

(3. 131)

(3.132)

and that the corresponding maximum and minimum singular values are 0, and O,, respectively.

Now suppose that the ASM has been stabilized and that a steady state sinusoidal control vector
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an(t) is applied to the ASM Plant. Equations (3.129) - (3.130) then imply that:

If u® =Re{yel®}
{ [ 1g ! cos (wt + 0g) | vip I cos( ot + oy5) ] }t k=1,2

= y,0 =Re { 0, ued}
= { 6, [uy I cos (@t+B) lug, I cos( wt +B) 1 } 1 k=1,2.

(3.133a))

(3.133b)

The ideas contained in egs. (3.129) - (3.133) shall be used considerably throughout the

thesis. These equations will provide us with a way of understanding the input/output properties of

the Equal Tether AFCS to be designed in Chapter 4 and the Unequal Tether AFCS to be designed

in Chapter 6. Before studying the singular values of G;(jw), we study G_3(jw) for = 0; i.e. at

qc.

Assume that the ASM has been stabilized and that a steady state differential collective of 1

degree is applied to the ASM Plant; i.e.

A® =1 degree; XB, = 0 degrees. (3.134)

Computation of (-Ap3)'Bys shows that the following steady state values will result (and are hence

necessary for equilibrium):

Sx=39=3e=x'=0
Az = 14.872 feet (eg = 12.4 degrees)

SH Xx = 7.436 feet (17.43 db)

(3.135)

(3.136)

(3.137)

Fig. 3.5.3.1 gives one possible visualization (Ax = 0, AB = 0, Ae = 0) of the above steady state

conditions

The above discussion indicates, for example, that a steady state load deviation of - 1 foot

requires a steady state differential collective of - 0.1345 degrees accompanied by a steady state

vertical separation of - 2 feet. We note that in the steady state x; - 2x = 7 Az =0.5 Az.
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Fig. 3.5.3.1: Visualization of ASM Steady State for A® . = 1 degree.

Assume now that the ASM has been stabilized and that a steady state average cyclic of 1

legree is applied to the ASM Plant; i.e.

A®_=0degrees: XB,. = 1 degree. (3.138)

From (-Ap3) 1B 3 it follows that the following steady state values will result (and are hence

necessary for equilibrium):

Tx = 18.76 feet / sec

20 = - 0.7936 degrees

Ye=Az=0

xp '= 0.1835 feet

Xp-2X = - 0.0499 feet.

(25.44 3b) (3.139)

(3.140)

(3.141)
(3.142)

(3.143)

Fig. 3.5.3.2 gives one possible visualization (Ax =0, A9 = 0, Ae = 0) of the above steady state

conditions.

The above discussion indicates, for example, thata steady state average horizontal velocity

of 5 feet/sec will require a steady state average cyclic of 0.2665 degrees accompanied by a steady

state average pitch of - 0.2115 degrees and load deviation from center of - 0.0133 feet.
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Tx (center)

SL 0.79°
CO ~ ror

Bicm = Bes =0-9°
Xm = Xs = 18.76 ft/sec

-
 2

PY_x, -Sx=-0.0499 f:

Fig. 3.5.3.2: Visualization of ASM Steady State for ZB. = 1 degree.

Note that in both cases discussed above the steadv state ye = (0 degrees. This follows from
the fact that

= ge g Xe
-

AzL=M Mj +My]Z [ LZ/BX (3.144)

(Chapter 2) and in the steady state Xp = AZ =0. Intuitively, this also follows from the fact that the

aerodynamic forces and moments acting on the spreader bar have been assumed negligible.

From the above dc analysis, it follows by linearity that the following relationships hold at dc:

xp-Xx = 7.436 AO, - 0.0499 XB,

Fx = 18.76 IB,..

(3.145)

(3.146)

The first term in eq. (3.145) is associated with the Az degree of freedom and the second term with

the Xx and X6 degrees of freedom. Equation (3.146) is, of course, associated with the X06 degree

of freedom since the helicopters must pitch in order to move fore and aft. These equations show

that at low frequencies 3B, has little affect on x; - Xx and A® has no affect on Xx; i.e. at low
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frequencies the Az degree of freedom and the 3x, 6 degrees of freedom are, for all intents and

purposes, decoupled. This confirms our intuition which tells us that x; - Zx should be controlled

through Az via A® and ¥x should be controlled through ¥0 via 2B)... The following singular

value decomposition of G3(5) = Cp3(sI -AL) By at dc confirms our intuition:

Gpa(G 0) = Cp3 (SI- As)! Bs
"7.436  - 0.0499]
_0 18.76 |
0.003 1 1876 0 0.0013 1 1 200s | 0 7.437 1 0.0013]

mw LIE

(3.1473)
(3.147b)

(3.147¢)

(3.1474)

These show thatifuz=v;=[0117theny3 = ou;~18.76[0 1]T. By thus has little

affect on xp, - Zx. Similarly, if ups =v; =[1 0] then y,;3 = o,u, =~ 7.437 [1 0]T. A®, thus has

little affect on Zx. It thus follows that x; - Zx should be controlled by A® cand x by 2B.

The ASM Plant singular values (0.(Gy3Gw)); i= 1, 2) have been plotted in Fig. 3.5.3.3. At

low frequencies we see that o, = 25.46 db (18.76) and ©, = 17.43 (7.436) which agrees with our

dc analysis.

Near = 0.5 rad/sec, the maximum ASM singular values exhibit a hump.

to the unstable Backflapping Mode ( { = 0.084).

This hump is due

The Vertical Spring Mode (C = 0.26), near = 0.76 rad/sec, is seen to predominantly affect

the maximum singular value. This follows from the fact that the maximum singular value roll-off at

-80 db/dec (Backflapping Mode and Vertical Spring Modes) just after breaking downward near ® =

0.8 rad/sec and before intersecting the minimum singular values at approximately © = 1.5 rad/sec.

This indicates coupling between the Xx and Az degrees of freedom.
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Fig. 3.5.3.3: Singular Values of ASM Plant.
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The Pendular Mode ({ = 0.2) is seen to cause a hump in the maximum singular value near ®

= 2.7 rad/sec.

The Anti-Symmetric Damping Mode (® = 2.12 rad/sec) is seen to predominantly affect the

maximum singular value. This follows from the fact that the maximum singular value roll-off at

-60 db/dec (Pendular and Anti-Symmetric Damping Modes) between ® = 4 rad/sec and ® = §

rad/sec.

I'he maximum singular value crosses 0 db just below ® = 4 rad/sec. The minimum singular

value rolls-off at -80 db/dec (Backflapping and Vertical Spring Modes) between w = 1.5 rad/sec and

ow = 2 rad/sec. It crosses 0 db just below © = 2 rad/sec.
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Near @ = 6.5 rad/sec, the minimum singular value exhibit a downward blip and then an

upward break. These are due to the ASM Plant's very lightly damped zeros ({ = 0.028) which are

asssociated with the load motion. The minimum singular value then rolls-off at -40 db/dec. This

"double integral” is associated with the load motion.

Near o = 10 rad/sec, the maximum singular values exhibit an upward break. This break is

due to the ASM Plant's other lightly damped zeros ({ =0.138) which are associated with the

helicopters (Appendix 3). The maximum singular value then rolls-off at - 20 db/dec. This "integral"

is associated with the average horizontal velocity.

The above analysis, loosely speaking, shows that singular value plots can be thought of as

'MIMO Bode magnitude plots".
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3.6 TLHS Equal Tether Control Problem Formulation

[t has been shown that the Equal Tether Plant, G,(s), consists of three plants:

1. The AVM Plant, Gy(s) = Cy; (sI- Ay) 1B,

2. The SM Plant, G(s) = Cp (SI - Ap)1 B.,

3. The ASM Plant, G(s) = C3 (sI- Ag) Bp.

It thus follows that the final "Equal Tether AFCS", to be designed in the next chapter, will

consist of three AFCS's; i.e. one for each of the above plants. In this section the structure of the

final Equal Tether AFCS is presented and discussed. Performance and robustness specifications

are presented for the Equal Tether AFCS; i.e. for the AVM, SM, and ASM AFCS's. To help meet

the performance specifications, the Equal Tether Plants, Gp1 08), Gyo(s), and G3(s) are

dynamically augmented.

The purpose of this section is to formulate the Equal Tether Control Problem and to

qualitatively discuss the feasibility of a high performance Equal Tether AFCS.

3.6.1 Structure of TLHS Equal Tether AFCS

Fig. 3.6.1.1 shows the structure of the Equal Tether AFCS to be developed in the next

chapter. The AFCS is seen, simply, to possess a negative feedback MIMO structure. The AFCS

consists of the 12th oder Equal Tether Plant (ETP), G(s), a 4% order augmentation, a

Equal Tether
Design Plant; G(s)

SR — di disturbances

 + e | ul1] wu »v xceleron22 li ret S | controls Gps) AQ ?
reference ~ oo —_— ~~ io

s ~~ |comman Compensator: K(s) TLHS ETP |

Fig. 3.6.1.1: Structure of TLHS Equal Tether AFCS.

“4

C sensor noises
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dynamic LQG/LTR compensator, Ki QG/LTR(): and a pre-filter. When properly designed, the

AFCS "minimizes" the effects of the disturbances, d, and sensor noises, n, so that the system

outputs, y, "approximate" the pilot reference commands, r.

As noted earlier, the Equal Tether Plant, G(s), consists of the AVM, SM, and ASM Plants;

.€. G(s) =diag(Gp;(s), Gpa(s), Gp3(s)) where Gis) = Coi (sI -AL! B; i=1,2,3.
The dynamic augmentation consists of four integrators (one per input channel). Reasons for

their introduction shall be provided subsequently.

The Equal Tether Plant plus the four integrators shall be referred to as the Equal Tether

Design Plant. The Equal Tether Design Plant consists of an AVM Design Plant, a SM Design

Plant, and an ASM Design Plant. These design plants have state space representations given by:

here

X= AX +B;
v;,=C;x;+d;*

[i 3
B.=[0 IT
C,=[C, 0]

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)
and

Xj =| x,Tnu; JT 1i=1.2.3 (3.153)

where i= 1, 2, 3 denote the AVM, SM, and ASM Design Plants, respectively. Their inputs are:

uj =u, =2X0,

Uy SE Uy = AB.

u3=i, =[ AB, ZB, 17

(3.154)

(3.155)

(3.156)

These are the inputs to the four integrators.

“In previous section we had d; =Qandhenceyyy =v;
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Their outputs are:

y; =z

yy = Ax

11va =[xp-XxXx]

(3.157)

(3.158)

(3.159)

Their transfer functions (assuming d. = 0) are given by:

5.'S) = Gils) / S= GC (sI - A; 1B, (3.160)

The Equal Tether Design Plant has state space representation given by:

x=Ax+Buy;

y=Cx+d;
Xx =[xy x1 x3TIT
u=[uy uy, uM”
A = diag(A,, Ay, Aj)

B = diag(B,, B,, Bj)

C =diag(C,, C,, C3)

X € R16 , ue R*

y e R4, deR4

(3.161)

(3.162)
(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

[ts transfer function matrix (tfm) is given by:

G(s) = G(s) /s

= diag(G;(s), G,(s), Gx(s))
- C(sI - AY1B

(3.168a)

(3.168b)
(3.168¢)

The Equal Tether LQG/LTR compensator consists of three compensators; one for each of

the Equal Tether Design Plants. It shall be denoted as follows:

Kyog r() = diag { KL ogLTr(®)} i=1,2,3 (3.169)

where i = 1, 2, 3 denote the LQG/LTR compensators for the AVM, SM, and ASM Design Plants,
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respectively. The order of the Equal Tether LQG/LTR compensator is 16. This is the order of the

Equal Tether Design Plant, G(s). Reasons for this, as well as the exact structure of KrocJLTR(S)s

shall be presented in the next chapter.

Since the total compensation consists of the dynamic augmentation plus the LQG/LTR

compensator, it makes sense to define the compensator, K(s), as follows:

K(s) = Ki QG/LTR(S) / S

=diag{ Ki(s)} i=1, 2, 3

(3.170a)

(3.170b)

wherei=1, 2, 3 denote the AVM, SM, and ASM compensators.

The pre-filter consists of three Butterworth filters; one for the SM reference and the other two

for the ASM references. Reasons for their introduction shall be provided subsequently. A more

detailed visualization of the Equal Tether AFCS is given in Fig. 3.6.1.2.

Before presenting design specifications for the AVM, SM, and ASM AFCS's, we must first

define some very important functions.

One important function to consider is the final loop tfm, Gy(s), given by:

G(s) = G,($)K(s)

= diag(Gy (8), Gp 5(s), Gy 3(s))
G(s) = G,(s)Ki(s) i=1, 2, 3

(3.171a)

(3.171Db)

(3.171c¢c)

and the Gp;(s) denote the final AVM, SM, and ASM loop functions.

Another important function is the final sensitivity tfm, S(s), given by:

We. rE &gt;
A 7

S(s) = [I + Gy(s)]1

= diag(S,(s), S,(s), S5(s))

Si(s) = [1 + Gy (s)]! 1=1,2,3

(3.1722)

(3.172b)

(3.172¢)

and the S;(s) denote the final AVM, SM, and ASM sensitivity functions.
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Finally, it is important to consider the final closed loop tfm, T(s), given by:

WwW here

Ts) =[I1+Gy(9)]"

= diag(T.s).

T.{s) [T+ G (S) i

G; (s)

TA(s), T2(s))

rr fs) i=1, 2,3

(3.1733)

(3.173b)

(3.1730)

and the T;(s) denote the final AVM, SM, and ASM closed loop functions.

The prime objectives of the Equal Tether AFCS, in addition to guaranteeing nominal stability,

can be listed as follows:

1. Low frequency command following;

2. Low frequency disturbance rejection;

3. Insensitivity to low frequency modeling errors;

4. High frequency sensor noise attenuation;

5. Robustness to high frequency unmodeled dynamics.

To assure the first three requires that the sensitivity functions, S;(s), be "small" at "low" frequencies

where reference commands, disturbances, and "unintentional" modeling errors have their greatest

spectral content. To assure the last two requires that the closed loop functions, T;(s), be "small" at

"high" frequencies where sensor noises and "intentionally" unmodeled dynamics have their greatest

spectral content.

In addition to the above five desirable feedback properties, the Equal Tether AFCS must be

designed so that the closed loop system exhibits "good internal" performance. This means that the

pitch rates of the helicopters, as well as their vertical and horizontal acceleration characteristics, must

be "passenger friendly". It also implies that the amplitude and/or spectral content of references, as

well as the closed loop bandwidth must be restricted so that the control transients do not exceed the

control limits. This saturation issue is particularly important to Twin Lift control engineers because
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of the the inherent open loop instabilities associated with the Equal Tether Configuration. The

presence of these unstable modes implies that the closed loop system will have a finite "downward

gain margin". Consequently, if the controls are permitted to saturate an effective loop gain reduction

will occur and the system may become highly oscillatory and possibly go unstable. Kapasouris,

[18], provides a design methodology for plants with saturating actuators.

The sections which follow shall present performance and stability robustness specifications

for the final Equal Tether AFCS. These design specifications shall be presented in terms of the final

AVM, SM, and ASM loop, sensitivity, and closed loop functions. The specifications will primarily

be based on TLHS capabilities, as reflected in the linear model. Before presenting the specifications

it is important to put our goals into proper perspective.

In contrast to the gain stabilization methods employed in [1], the approach taken in this thesis

will be to dynamically stabilize the TLHS and use the many degrees of freedom in the compensator

to systematically develop a high performance (high bandwidth) Equal Tether AFCS. The emphasis

of this chapter and the next, however, is not so much the design itself, but the description of the

design procedure and the trade-offs involved when a high bandwidth is desired.

In the remaining sections of this chapter we present performance and robustness specifications

for the AVM, SM, and ASM AFCS's.

3.6.2 Design Specifications for AVM AFCS

The structure of the final AVM AFCS is shown in Fig. 3.6.2.1.

AVM Design Plant;G,(s)
|

+ __ © —_ up;=28, Yer y+ .
r a i  —d zytr x LQG/LTRS) 3 control Gps) TE a2

—reference
command AVM Compensator; K, (s)

system
output

+

(=te
Fig. 3.6.2.1: Structure of AVM AFCS.

-
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It was shown in section 3.5.1 that the AVM Plant, G1), with input 20 and output Yp1 =

¥z, is nothing more than a simple first order lag. To assure zero steady state error to step reference

commands, ry, for &gt;z, the AVM Plant has been augmented with an integrator (at the plant input).

The combined AVM Plant integrator, as stated earlier, shall be referred to as the AVM Design Plant,

G(s), where

G(s) = G15) /s
=Cy(sI- A}) 1B,

(3.1743)

(3.174b)

The integrator will also guarantee complete steady state rejection of step disturbances, d; (Internal

Model Principal) (Athans, [7]).

In Chapter 4, the AVM LQG/LTR compensator, KYoG/LTRS), shall be developed. Since a

high performance design is desired, the specifications for the final AVM AFCS were selected as

follows.

AVM AECS Design Specifications

Performance

1. Zero steady state error to step commands and step output disturbances.

To guarantee this the AVM Plant was augmented with an integrator.

2. Less than 10% steady state error to sinusoidal commands and output disturbances

with spectral content at or below 0.08 rad/sec. This requires that the final AVM sensitivity

tf satisfy:

1S,(jw) 1£-20db for all ®&lt;0.08 rad/sec.

3. Gain crossover frequency: o,, = 0.5 rad/sec.

4. Noise attenuation: | T;(jo) | &lt; - 20 db for all ® &gt; 20 rad/sec.
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Robustness

1. Robustness to low frequency uncertainty and high frequency unmodeled

rotor dynamics (®_= 27 rad/sec).
To ensure this we require that the final AVM AFCS sensitivity tf satisfy:

1S;(w) I&lt; B, = 1.31 (2.3db) forall 20.

Since the AVM loop will not contain any unstable poles this specification can
be translated [21] into the following SISO stability margins.

Gain Margins: LGM, =- oo

TGM; 2B, /(B, - 1) =4.23 (12.5 db)

Phase Margin: | PM; | 2 2sin"1(1/2B,) = 45°

2. Closed loop gain crossover frequency (bandwidth): Ory1$0.5 rad/sec.

We note that the above method of presenting the AVM AFCS specifications is based on

classical Bode SISO loop shaping ideas.

Because of the simplicity of the AVM Design Plant, G(s) , the above design specifications

should be very easy to satisfy. Its Bode magnitude and phase plots, given in Fig. 3.6.2.2, indicate
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that a simple lead-lag compensator, K{(s), may be all that is needed. More specifically, it is seen

that a KL QGLTR(S) with a zero at low frequencies (to draw the AVM Design Plant poles to "nice"

locations) and poles at high frequencies (to provide sufficient roll-off in the loop) would suffice.

The development of such a compensator, using the LQG/LTR design methodology, will be

addressed in Chapter 4.

3.6.3 Design Specifications for SM AFCS

The structure of the final SM AFCS is shown in Fig. 3.6.3.1.

SM Design Plant; G,(s) d,

: + C2 [ , Up Up, =ABye “Teo YL + “AXfan o[Prectitior +@=+{K go LTRS morro | Cras) [Ee
SM Compensator; K,(s)SM Compensator, SP _— aye

reference
command

»

Fig. 3.6.3.1: Structure of SM AFCS.

It was shown in subsection 3.5.2 that the SM Plant, Gpa(s), with input Up, = AB. and

output yp, = Ax, is an unstable fourth order system with a pair of lightly damped zeros.

Since the SM Plant does not contain any natural integrators, it has been augmented with one

(at the plant input) so that we are guaranteed zero steady state error to step reference commands, 1»,

for Ax. Typically, however, Ax will be commanded to zero; i.e. I = 0. The integrator will also

guarantee complete steady state rejection of step disturbances, d,. The combined SM Plant and

integrator, as stated earlier, shall be referred to as the SM Design Plant, G,(s), where
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G,(s) = G(s) /s
=C, (sI- A)! B,

(3.134)

(3.135)

In Chapter 4, the SM LQG/LTR compensator, K? QG/LTR(S): and the SM pre-filter shall be

developed. Since a high performance design is desired, the specifications for the final SM AFCS

were selected as follows.

SM AFECS Design Specifications

Performance

1. Zero steady state error to step commands and step output disturbances.
2. Less than 10% steady state error to sinusoidal commands and output

disturbances with spectral content at or below 0.04 rad/sec. This requires
that the final SM sensitivity tf satisfy:

| S,(jw) | &lt; - 20 db for all » &lt; 0.04 rad/sec.

3. Gain crossover frequency: Wy, = 1.5 rad/sec.

4. Noise attenuation: | T,(jw) | &lt;- 20 db for all ® = 20 rad/sec.

Robustness

1. Robustness to low frequency and high frequency unmodeled rotor dynamics.

(o_= 27 rad/sec).
To ensure this we require that the final SM sensitivity tf satisfy:

1S,Gw) 1&lt;B, =1.93 (5.72 db) for all 20.
[t can be shown that this translates into the following SISO stability margins:

Gain Margins: GM, 2B, / (B, + 1) = 0.66 (-3.6 db)

TGM,2B,/(B,-1)=2.08 (6.3 db)

Phase Margin: 2sin"}(1 /2pB,) = 30°

2. Closed loop gain crossover frequency (bandwidth): Ory5&lt;3 rad/sec
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The SM pre-filter shall be selected so that references are appropriately bandlimited. A

Butterworth filter shall be used since it is "maximally flat" in the passband. The order of the filter,

as well as its cut-off frequency, will be selected from the final reference to control tf since this tf

shows clearly what reference frequencies are amplified by the AFCS.

We note that, as with the AVM AFCS specifications, the above method of presenting the SM

AFCS specifications is based on classical Bode SISO loop shaping ideas.

The Bode magnitude and phase plots for the SM Design Plant are given in Fig. 3.6.3.2.

These plots indicate that the horizontal separation will be difficult to control, even under full

automatic control. The sources of this difficulty are now described.
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The primary source of difficulty is due to the unstable Tethered Helicopter Mode (Section

3.3.2) which has a time to double of approximately 1 second.* Because of this unstable mode and

the downward gain margin specification, the SM AFCS will require a minimum bandwidth just to

stabilize the SM Design Plant.

* This mode is much too fast for open loop master-slave pilot control, Pilot workload would be too high.
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Accompanying this minimum bandwidth there will be minimum differential pitch rates and

differential cyclic rates (for fixed reference commands). These rates may be untolerable depending

upon the size and frequency content of disturbances and noise. (Pilot reference commands for Ax

are typically zero). In order to keep these rates to a minimum, it makes sense to keep the SM

AFCS bandwidth small. Doing so, however, would necessarily mean giving up performance

(speed). Since the central theme of this thesis is to address the feasibility of a high performance

AFCS for TLHS's, we chose a relatively high SM AFCS bandwidth specification. More

specifically, the SM AFCS gain crossover frequency specification was chosen to be on the order of

the SM Design Plant's gain crossover frequency (2 rad/sec). The implications of selecting such a

gain crossover frequency is well understood from classical SISO loop shaping theory [14].

There are 5 SM Design Plant poles which the SM LQG/LTR compensator, K%1 oG/LTR(S):

will have to deal with. These consist of the unstable Tethered Helicopter Mode (® = 0.7561

rad/sec), the Horizontal Spring Mode ({ = 0.34, ®_ = 2.37 rad/sec.), the Symmetric Damping

Mode ( ® = 2.29 rad/sec.), and the integrator. Each of these poles contribute phase lag at the

desired SM AFCS gain crossover frequency, Op, = 1.5 rad/sec. The Tethered Helicopter Mode

contributes 117° of lag, the Horizontal Spring Mode contributes 36°, the Symmetric Damping

Mode contributes 33°, and the integrator contributes 90°. Collectively, the 5 poles contribute a total

of 276° of phase lag at the desired gain crossover. Because of this huge amount of phase lag, the

SM LOG/L. TR compensator will require a great deal of lead (derivative action) in order for the

resulting SM AFCS loop to have a nice phase margin. This follows from the fact that the phase

margin (PM,) is measured at the open loop gain crossover frequency. Moreover, the more lead

introduced near crossover, the better our phase margin will be. More lead, however, translates into

more control activity and larger pitch rates. Consequently, the poles force us to trade-off

performance versus stability robustness.

So far we have only addressed the implication of the SM Design Plants’ poles with respect to
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obtaining a high performance SM AFCS design. What about the implication of the SM Design

Plants’ lightly damped zeros ({ = 0.16, ®_ =9.62 rad/sec) 7 One might think that these zeros are

helpful since they contribute lead at the desired gain crossover frequency (@g, = 1.5 rad/sec).

Although the zeros do contribute lead at 0 the lead is very little (3°) contributes much lag near

the desired gain crossover. Infact, the detrimental amplifying effect of the zeros, at high

frequencies, far outweighs their "nice" lead effect at crossover. Above ® = 9.62 rad/sec the zeros

contribute 12 db (40 db) of amplification per octave (decade) increase in frequency. At = 30

rad/sec, for example, they contribute about 20 db of amplification. This, of course, does not help

us as far as high frequency noise is concerned. Since attenuation of noise is necessary for high

performance it follows that the effect of these high frequency zeros must be reduced. To do this we

must introduce phase lag into the loop. Introducing lag, however, reduces our stability margins.

Consequently, the zeros also force us to trade-off performance versus stability robustness.

Because we seek a high bamdwidth design the trade-off between performance and robustness

is exacerbated. The degree to which this happens shall be addressed in Chapter 4, where the SM

AFCS is developed. From the above qualitative analysis, it is expected that a large robustness

(lead) requirement would result in substantial control action. This, of course, implies substantial

pitching in order to regulate the horizontal separation. The robustness specifications given for the

SM AFCS were appropriately selected to illustrate this point.

In Chapter 4, the SM compensator, K,(s), shall be developed using the LQG/LTR design

methodology. To address the lead issues described above a SM pre-filter shall also be developed.
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3.6.4 Design Specifications for ASM AFCS

The structure of the final ASM AFCS is shown in Fig. 3.6.4.1.
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Fig. 3.6.4.1: Structure of ASM AFCS.

It was shown in section 3.5.3 that the ASM Plant, Gp3(9), with inputs Uy = [AO . 2B, JT and

outputs y3 = [xy - Tx Zx]T, is an unstable seventh order system with two pairs of lightly

damped zeros. Since the ASM Plant does not contain any natural integrators, it has been

augmented with two (one per control channel) so that we are guaranteed zero steady state error

to step reference

commands, 13 = [r3; 13,17, for x; -Zx and Ix. The integrators will also guarantee complete steady

state rejection of step disturbances, d; =[ds3; dso] T. The combined ASM Plant and integrators, as

stated earlier, shall be referred to as the ASM Design Plant, G(s), where

Gs(s) = Gp3(s) /s
C; (sI- Ay) B,

(3.175a)

(3.175b)

In Chapter 4, the ASM LQG/LTR compensator, K3] G/L TR(S), and the ASM pre-filters

shall be developed. Since a high performance design is desired, the specifications for the final

ASM AFCS were selected as follows.
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ASM Design Specifications

Performance

1. Zero steady state error to step commands and step output disturbances in all directions.

To guarantee this the ASM Plant was augmented with two integrators (one per control

channel) at the plant input.

2. Less than 10% steady state error (lel, &lt; 0.1 lid,ll,)to sinusoidal commands and output

disturbances with spectral content at or below 0.06 rad/sec. This requires that the final

ASM sensitivity tfm satisfy:

GC hax[030®)] &lt; - 20 db for all » &lt; 0.06 rad/sec.

3. Low frequency errors on the unit circle are of equal importance. This implies that

the errors e;=[1 017, [1 1177 2, [0 117, and any error with two-norm

leall, = (e.He,)0 =1 are of equal importance and should thus receive equal312 3 x3

steady state attenuation. This implies that the final ASM sensitivity tfm should satisfy:

5 ax [530 W)] =O [S;(Gw)] (at each w)

at low frequencies. If such is the case we say that the loop singular values are matched

at low frequencies [7].

4. Gain crossover frequencies: 0.75 &lt; Wg &lt; 2 rad/sec. The gain crossover frequencies

for a MIMO system are the frequencies at which the maximum and minimum

loop singular values cross O db.

5. Noise attenuation: C .\T,im)] £-20db for all ® = 20 rad/sec.

Robustness

l. Robustness to low frequency uncertainty and high frequency unmodeled rotor dynamics

(0 = 27 rad/sec).
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To ensure this we require that the final ASM AFCS sensitivity tfm satisfy:

Opnax [S3G@)] &lt; By = 1.93 (5.72 db) for all ® 20.

(t can be shown [21] that this translates into the following mulivariable stability margins:

Gain Margin: {GM &lt;B,/(B; +1) =0.66 (- 3.6 db)

TGM &gt; B,/ (B;- 1) =2.08 (6.3 db)

Phase Margin: [PMjl 2 2sin"1(1/2B,) = 30°

2. Closed loop gaincrossover frequencies (bandwidth): cp3S2 rad/sec.

The ASM pre-filters shall be selected from the final reference to control singular values.

The above method of presenting design specifications shows that singular values help us

extend the classical Bode SISO loop shaping ideas to the MIMO case. Consequently, even highly

coupled MIMO TLHS control problems can be formulated in a manner which closely parallels

classical SISO control problem formulations. This shows why in recent years, singular values

have become particularly attractive to control system design engineers.

It should also be noted that the above design specifications have been expressed in terms of

the loop, sensitivity, and closed loop tfm's associated with the plant output (or error signal). We

thus say that the specifications have been presented at the plant output. We make this point because

in general, a designer may also want to satisfy design specifications "at the plant input". Such

specifications would be presented in terms of the singular values of the loop tfm obtained by

breaking the loop at the plant input. This issue shall be revisited in Chapter 4.

The singular values of the ASM Design Plant are given Fig. 3.6.4.2. The large slope near 1

rad/sec, due to the unstable Backflapping Mode, the Vertical Spring Mode, and an integrator

indicates the difficulty of the high performance (high bandwidth) ASM AFCS design problem. The



-115-

50.

40.
~

~~
-

~N\
|

-

m 20.
0

Wn
mo ~20.D
J

&lt; -40.

ad
L
I
2
a
Z
by =100.
(N

~-120.

i

\ |
\ \

AY
NL

NN

\
\

\

*\

| 1

\

/

|
| )

!
J

-140 ey — 2)
“JO

frequency (rad/sec)
Fig. 3.6.4.2: Singular Values for ASM Design Plant

reasoning behind this is analogous to that used in the previous section for the SM Design Plant. In

addition, the ASM Design Plant also possesses a Pendular Mode, an Anti-Symmetric Damping

Mode, and another integrator. The bottom line is that many poles near the desired ASM AFCS

gain crossovers, intuitively, even for a MIMO system, requires alot of lead to have nice stability

margins. Furthermore, the ASM Design Plant has two pairs of lightly damped zeros. As with the

SM AFCS design problem, the ASM AFCS design problem will require a trade-off between

performance and stability robustness.

Because we seek a high bandwidth design the trade-off between performance and robustness

is exacerbated. The degree to which this happens shall be addressed in Chapter 4, where the ASM
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AFCS is developed. It is expected that having large stability margins would result in substantial

pitching and oscilaations in the vertical plane in order to regulate the load motion when horizontal

velocities are commanded. The robustness specifications given for the ASM AFCS were

appropriately selected to illustrate this point.

In Chapter 4, the ASM compensator, K4(s), shall be developed using the LQG/LTR design

methodology. To help address the ASM lead issues an ASM pre-filter shall also be developed.

It must be emphasized that although the design specifications have been presented in terms of

the AVM, SM, and ASM AFCS's, it is important to make sure that overall Equal Tether AFCS

performance is "adequate" for conducting typical Twin Lift maneuvers. "Large" pitch rates,

accelerations, and controls for "simple" Twin Lift maneuvers, for example, would not be

acceptable.

3.7 Summary

In this chapter the longitudinal dynamics of a TLHS near hovering trim were examined. For

simplicity the tether lengths were assumed to be equal and fixed (Equal Tether Configuration). As

a result of this assumption, the Twin Lift model developed in Chapter 2, was shown to decouple

into three basic subsystems describing three basic motions: the Average Vertical Motion (AVM),

the Symmetric Motion (SM), and the Anti-Symmetric Motion (ASM). The natural modes of each

subsystem were identified and discussed. Outputs were then selected for each subsystem and three

plants were defined, G(s) = Cpi(sl - AB; i=1,2,3; the AVM Plant, the SM Plant, and the

ASM Design Plant. The frequency response of each plant was then analyzed. The chapter

concluded by formulating the high performance Equal Tether Control Problem. This involved

describing the structure of the Equal Tether AFCS (to be developed in Chapter 4) as well as the

structure of the individual AVM, SM, and ASM AFCS's which make it up. Also, part of the

Equal Tether Control Problem formulation was the presentation of specifications for a high

performance robust Equal Tether AFCS. Design specifications were presented in the frequency

domain for the AVM and SM AFCS's using classical SISO Bode ideas. Singular value ideas were

used to present the ASM AFCS specifications. This showed how classical SISO Bode loop
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shaping concepts could easily be extended to the MIMO case. This also showed how one could

formulate performance and robustness specifications in the frequency domain for even a highly

coupled 16 degree of freedom Twin Lift model.

In order to meet the performance specifications, the three plants, Gpi(s)s were augmented

with integrators (at the plant input) to obtain three design plants, Gy(s) = G(s) / s = C; (sI- A)'B; ;

1=1, 2,3; the AVM Design Plant, SM Design Plant, and ASM Design Plant. The

ease/difficulty of meeting the high bandwidth design specifications was also discussed. In

particular, the frequency response and pole-zero analyses were used to indicate trade-offs that must

be made in designing high performance SM and ASM AFCS's. More specifically, the analysis

suggested that in each case the trade-off would have to be made between performance and stability

robustness. Since we seek a high bandwidth design this trade-off is exacerbated. The extent to

which this happens shall be examined in the next chapter, where a high performance AFCS is

developed for the Equal Tether Configuration. From the qualitative discussion presented in this

section, however, we expect that a sufficiently large robustness (lead) requirement would require

the helicopters to undergo substantial pitching and oscillations in the vertical plane in order to

regulate the horizontal separation and load motion when horizontal or vertical velocites are

commanded.

In the next chapter we shall use the LQG/LTR design methodology and simple filtering

techniques to develop an AFCS for the Equal Tether Configuration.
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CHAPTER 4: AFCS DESIGN FOR TLHS EQUAL TETHER CONFIGURATION

4.1 Introduction

In this chapter the LQG/LTR design methodology is described and applied to the Equal

Tether Design Plant, discussed in Chapter 3*. The chapter shows how the methodology, coupled

with singular value ideas, can be used to systematically develop an AFCS for the Equal Tether

Configuration. ** A design satisfying the specifications presented in Chapter 3 is obtained and

evaluated.

In addition to demonstrating the power of LQG/LTR as a tool for developing multivariable

control laws for TLHS's, the chapter identifies and discusses important trade-offs which Twin Lift

control engineers must face. In particular, the chapter will show the extent to which Twin Lift

control engineers must trade-off performance versus stability robustness when a high bandwidth

design is the objective. Moreover, it is concluded that a high bandwidth AFCS design for the

Equal Tether Configuration is feasible only when model uncertainty is sufficiently low. If model

ancertainty is high, the design becomes unfeasible. This is because, in such a case, the large

robustness requirement forces the helicopters to undergo substantial pitching and oscillations in the

vertical plane in order to regulate the horizontal separation and load motion when horizontal and

vertical velocity commands are issued. More specifically, if model uncertainty is high then only a

low bandwidth design becomes feasible.

4.2 LQG/LTR Design Methodology

In this section the compensation scheme to be used by the Equal Tether AFCS is presented.

After describing the "model based" compensator, the Linear Quadratic Gaussian with Loop

Transfer Recovery (LOG/I.TR) design methodology is described.

4.2.1 A Model Based Compensation Scheme

Consider the it" Equal Tether Desien Plant

G;(s) = G(s) /s 4.1)

* The Equal Tether Design Plant consists of 3 design plants: the AVM Design Plant, the SM Design Plant, and the
AVM Design Plant.
% k The Unegual Tether Configuration is addres-ed in Chapters 5 an.’ _.
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=C; (sI- A) 1B, i=1,2,3 ("2)Td

where A; is n, xn; B; isn, xm,, C, 1S m; xn, and i=1,2,3 denotes the AVM, SM, and

ASM Design Plants, respectively (m; = 1, n=1m,=1,n,=35; m3 =2,n, =9). As discussed

in Chapter 3, the i" Design Plant consists of the ith plant and an integral augmentation at the plant

input. Although, in general, the designer can use any augmentation he or she deems appropriate,

it must be introduced at the plant input. The reason for this is to preserve the quantities which we

want to command. These quantities, of course, are at the plant output. (Note: An augmentation

could also be introduced at the error; i.e. in front of K'1 oG/LTR(S)- This, however, shall not be

addressed in the thesis.)

Suppose now that a compensator, K'LoG/LTR(S)s is needed so that the closed loop system

 in Fig. 4.2.1.1 satisfies prescribed design specifications (at the plant output).

to Kiae/LTr(S),
di

— 6; (s) Hor Ji
wh

- ni

¥

Fig. 4.2.1.1: Structure of i" Equal Tether AFCS.

The structure for KI oG/LTR(S) to be used is given in Fig. 4.2.1.2. Since the matrices A;,

B;, and C, are contained within K'1 0G/LTR(S)s we refer to it as a model based compensator

(Athans, [7]).
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Fig. 4.2.1.2: Structure of ith Model Based LQG/LTR Compensator.

The gain matrices Hy;and Gy; are chosen such that the closed loop system in Fig. 4.2.1.1 is

nominally stable and meets prescribed design specifications. The tfm from g; to u; is given by:

KoG/LTR(s) =QG pi (sI-A;. + B i Goi +Hui ©D1 Hy (".3)

it can be shown that the closed loop system in Fig. 4.2.1.1 has state space representation given by:

5i]= [Hc AB; G Ph c.] [2] [ 8, H, Hy | H (4.4)
1

y; =[C; 0] [5] + [001p—

Lj
A 1

(4.5)

where x; = [xpi uyT 1% is the state vector of the ith design plant and z; is that of the jth LQG/LTR

compensator.

The closed loop poles are the eigenvalues of the first matrix in eq. (4.4). Because of the

complexity of this matrix the closed loop poles are not easily identified. To obtain a more

‘transparent” state space representation we perform the following change of basis (similarity

transformation):
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[xz1=[11][Z] (4.6)

Substituting eq. (4.6) into eqs. (4.4) - (4.5) gives us the following "transparent" state space

representation:

[55] = [&amp; ci Opi A; Tk,| lo +x, H, 1,] H 4.7)
d.

y: — Cc; 0] [5] +00 1 4H (’ 8)“

Eq. (4.8) shows that the poles of the closed loop system are given by the eigenvalues of A, - BG;

and those of A; - Hj; C, (Separation Principle).

Given the above compensation scheme, it is appropriate to ask how the gain matrices Hy;

and G,; are chosen so that the closed loop system is nominally stable and meets prescribed design

specifications. To answer this question the LQG/LTR design procedure is described. The

LQG/LTR procedure not only trivializes the stabilization problem but also possesses enough

degrees of freedom which can be used to meet performance and stability robustness design

specifications.

The LQG/LTR design procedure consists of essentially two steps. In the first step the

designer develops a "target loop". In this step the "filter gain matrix," H,;" is found by solving

an appropriately formulated estimation problem (Athans, [7] ). For our purposes, the fact that we

are solving an optimal linear estimation problem is not important. In the second step the designer

obtains a compensator K' oG/LTR(): which "recovers" the target loop from the design plant, G(s).

In this step the "control gain matrix", G,;, 1s found by solving an appropriately formulated
optimal linear control problem. The two steps are now described in detail.

In our problem the design specifications heve been presented at theplant output. For this reason we compute the
filter gain matrix first. If the specifications were at the plant input we would compute the control gain matrix first
 1.
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4.2.2 Developing a Target Loop

The first step of the design process is to develop a "target loop"; i.e. a loop transfer function

matrix with desirable closed loop properties. We denote this target loop tfm by Glgg(s), where

+ Glgp(s) =C; (sI- A) Hy; 4 9)
—  Eee——

The subscript KF is used to emphasize that the target loop, and hence Hy are found by solving an

appropriately formulated Kalman filtering problem. The main results for designing Gls) are

now presented.

LetL; be an n; x m; matrix design parameter and H; a positive scalar design parameter. The

selection of L; and WL. shall be discussed subsequently. Assume that (A;, L;) is at least stabilizable

and that (A;, C,) is at least detectable [11]. The filter gain matrix, H is then given by:

(4.10)

where the above stabilizability and detectability assumptions guarantee that Zi is the unique

symmetric positive semi-definite solution of the following Filter Algebraic Riccati Equation

(FARE):

i) (4.11)

If (A; GC) is observable, as is the case for the AVM, SM, and ASM Design Plants, then z. is the

unique symmetric positive definite solution of the FARE.

It should be noted that the above stabilizability and detectability assumptions also guarantee

that the eigenvalues of A,- Hy C, all lie in the open left half s-plane. This, of course, implies that
the target loop or target Kalman Filter Loop, Gigp(s), seen in Fig. 4.2.3.1 is guaranteed to be

closed loop stable for all valid design parameters L;, lL. (i.e. (A;, L;) at least stabilizable and Hy &gt;

0) as long as (A;, C,) is at least detectable; i.e.

(A; L) stabilizable |
(A;, C,) detectable
£.&gt;0

|
y

Re). (A;-H,Cp&lt;0 forall j=1l..n. (4.12)
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Fig. 4.2.2.1: Visualization of Target "Kalman Filter" Loop.

Although the above summarizes the target loop design process, it still remains to be shown

how the design parameters L; and [1. are selected.

Suppose we define the "filter open loop" transfer function matrix, Ggop (5), as follows:

G'ror(s) = C;(sI- A) LL, (£ BI 3)

[t can then be shown (from the FARE) that

1 T 0! (8) [T+ Glp(-9)]T=1+ (1/1) [Glpor®) 1 [ Glror(-9)1T (4.14)

This relationship is known as the Kalman Filter Frequency Domain Equality (KFFDE). If s=jw

then we may write

[1+ Gligp( jo) [I + Glgp(jo)H=T+ (1/1)[GroL(jo)1[GroL(jo)IH(4.15)

since [N(jo)]H = [N*(j0)]T = N(-jw)T for any complex matrix N(jw) (with real inverse Fourier

Transform). From this equation, and the following two facts.

(4.16)

A(T +N)=1+ AN) for all matrices N, ( £17)
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it can be shown that

~  i KF JGg 1)] / KH 1 ) OC. Gl OL j )] for al1 j — 2 (“ 1b")

This relationship provides us with incite on how we can intelligently choose the design parameters

L; and yt.. From eq. (4.18) it follows that if Glgp(jo) and Glo (jw) are "large" at low frequencies

(i.e. if their minimum singular values are "large"), then

o.[G'kr(o)] = (1 Wi;) o[GroLG@)] at low frequencies. (4.13)

From this equation it follows that L; determines the low frequency shape of G;[Gkr( ®)] and that pi;

just affects the low frequency "gain" at a particular frequency. The parameter lt. can thus be used to

control the open loop and hence the closed loop bandwidth. It should be emphasized that after

the dynamic augmentation of the plant to form a design plant, the selection of L; and lL. is the

most critical part of the LOG/LTR procedure. This is because L, and i. completely determine what

we want our final closed loop system to look like. Obviously, if we ask for foolish things we will

get foolish things.

Suppose, for example, that one specification is that "low frequency steady state errors should

be independent of the direction of the applied reference, r.". This is the case for the ASM AFCS.

In such a case it is necessary that the singular values of the target sensitivity function, SikE( m) = [I

+ Glgp(jw)]'], be "matched" at low frequencies, i.e. 6: [S'KEG®)] = 6. [S'kE(®)] at low

frequencies. This, however, can only be done if o_. [Gikr(Go)] = 0, [G'KrGw)] at low

frequencies. To accomplish this we choose L; as follows:

fo = B; [C,; A; ) 7 4 ~20)

T'o show that this L; matches the singular values of Gl ) at low frequencies, we substitute eq.
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(4.20) into eq. (4.13) to get

G'roL(s)
’ hs (sI-Ai (sI "-A i

1 Bil] [Cpi Ap7 Bpi It
Using the fact that G(s) = G(s) /s=C; (sl - A)! B, in eq. (4.22) gives us

GroL(s) = [ Gis) /'s1 [ Cp (-Ap)™ Bp TL

(4.21)

(4.22)

(4.23)

Recalling that Gpi(s) = Coi (sI- A oi)! B; and substituting this into eq. (4.23) gives us

GleoL(s) = [ C; (sI- A "1 B;] [Cp (A) B11 /s. (4.24)

This equation shows that, for low frequencies (small s = i®). we have

yi 01. (jw) =1/ “ry (1725)

and hence 6. [G'roL G0) = 6.x[GFoL G0)] at low frequencies. This shows that selection

of the matrix design parameter, L;, in accordance with eq. (4.20) forces the singular values of

GlroL(j®) to be "matched" at low frequencies. What about the singular values of our target loop,

Glgp(jm) ? Suppose further that H. is chosen sufficiently small so that 0. [Gxp(w)] =(1/W,)

5. [G'roL(®)] forall j=1,..,m; at low frequencies. This can always be done once realistic

performance and robustness regions have been established. Fig. 4.2.2.2 shows what typical target

loop singular values might look like.
A dh

¢ Cmax G[ ke (jw)]
Performance
Region

— log w
Robustness

Lf » | RegionTrminl G' liw)minl KF ~e
Fig. 4.2.2.2: Visualization of Typical Target Open Loop Singular Values.

he
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It thus follows that if the singular values of Gigor(jo) are "matched" at low frequencies and if

GigOoLG ®) is ' 'large" at low frequencies then the singular values of GiKFQ W) will also be

"matched" at low frequencies. It should be noted that the parameter p, can not be made too small

for if this is done we run the risk of entering our robustness region (Fig. 4.2.2.2) and possibly

exciting high frequency unmodeled (rotor) dynamics.

The first step of the LQG/LTR procedure has been completely described. It has been shown

that to develop a target loop, Gigp(s), a designer must pick a "nice" L; and p,. The filter gain

matrix, H,;, is then found by solving the FARE. An appropriate question to ask is: "What are the

benefits of chosing H; in this manner 7?" In addition to guaranteeing the stability of the target loop,

i.e. Re AA; -Hy C,) &lt;Oforall j=1,.., n;, there are two more properties which are guaranteed

and extemely desirable. It is because of these two properties, and because our design specifications

are at the plant output, that we compute the filter gain matrix, Hi, first. (When the specifications

are at the plant input we compute the control gain matrix, G;, first [7]). The two properties

are now described. Both follow from the KFFDE and the singular value relationships (Lehtomaki,

Sandell, Athans [8]). It can be shown, for example, that

~ T+ Glgp(o)] &gt; 1 for all j=1,.,m; for ali wz20. C20)

trom this it follows that

5. [T+GgpGo)] &gt; 1 for all ®&gt;0. (4.27)

Using the fact that o_, (M)=1/c_. Ml) we get the desired inequality:

c_ [S'kr(®)] &lt; 1 for all @=0. {= "0
2400

Acnt

This inequality tells us that when the target loop is selected in accordance with the KF algorithm,

described above, then the resulting target closed loop system will possess guaranteed (low

frequency) performance properties at the plant output.
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It can also be shown that

o.T+Ggp(w)] &gt; 1/2 for all j=1,.,m; for all @=0. ¢ol

From this it follows that

5. [+ Glgp(o)] &gt; 1/2 for all @20 ¢* 0)ia.

If we define Tigg(s) = Gkg(s) [I+ Glgp(s)]'] then using the fact that Co,axM) =1/ c. (M1)

for all nonsingular matrices M gives us the desired inequality:

0, [TKE(®)] &lt;2 for all @20.
hme  yt

74.
iy 1)

This ineqpality tells us that when the target loop is selected in accordance with the KF algorithm

described above, then the resulting target closed loop system will possess guaranteed (high

frequency) robustness properties at the plant output.

In addition to the above properties, eqs. (4.28) and (4.31) guarantee that the target loop

Glp(s) can sustain modeling errors of the form k el® on each channel (both independently and

simultaneously) where k € (1/2,00) and 6 € (-60, 60 ) degrees (Safonov, Athans [21]).

We terminate this section by summarizing the target loop design procedure.

Summary of Target Loop Design Procedure

1. Given a plant G(s) = Cp(sl - A! B, augment it at the input with any system, G(s),
that can help in meeting the design specifications. This gives us the Design Plant G(s) =

G(s) Ga(s) = C(sI - A)!B. Typically G(s) =1/s.

2. Select a matrix L such that (A, L) is at least stabilizable and O.[GgoL(W)] = Gc, [C(sI -
A)1L] look "nice".

3. Select a positive scalar pu (bandwidth parameter).

4 Solve the following FARE for Z.:

0=A% +X AT+LLT.% cta/pcs,
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5. The target (desired) loop is then given by:

Ggp(s) = CsI - AH,

where Hy, =  CT(1/p).

Now that the procedure for designing a target loop with nice closed loop properties has been

described, itis essential to identify a compensator which "recovers" the target loop from the design

plant. ( Note: The bandwidth parameter, |, should not be confused with the Twin Lift parameter,

w=[M; +Mgl/2 Mg.)

4.2.3 Recovering the Target Loop

The second step of the LQG/LTR procedure is to develop a compensator, KY QG/LTR(S):

which when placed in a unity feedback loop with the design plant G(s), "recovers" the desired
loop characteristics; i.e. the nice characteristics of Glp(s). As stated earlier this step involves the

computation of the control gain matrix, Gi . A method for computing Gy; is now given.

Let M; be an m; x n; matrix design parameter and p, a positive scalar design parameter to be

discussed subsequently. Assume that (A;, B,) is at least stabilizable and that (A;, M;) is at least

detectable. The control gain matrix, Gi is then given by:

Go; = (1/p;)BTK; (=.02)’

where the above stabilizability and detectability assumptions guarantee that Koi is the unique
symmetric positive semi-definite solution of the following Control Algebraic Riccati Equation
(CARE):

0=-Kg; Aj- ATK; -MTM; + K; B (1/p,) BiTK,;. (4.33)

If (A;, B;) is controllable, as is the case for the AVM, SM, and ASM Design Plants. then Koi 18

the unique symmetric positive definite solution of the CARE.

It should be noted that the above stabilizability and detectability assumptions also guarantee

that the eigenvalues of A; - B; G,; all lie in the open left half s-plane; i.e.
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(A;, B;) stabilizable
(A;, M,) detectable ) = Re AA; - B; Go) &lt;0 for all j=1,..,n;.
p;&gt;0

( 4)‘

Er

What does this property tell us? In section 4.2.1 the model based compensator, Kl oG/LTR(S),

structure was described. It was also shown that the closed loop poles are exactly the eigenvalues of

A; - Hy; C; and those of A; - B; G,;. We have presented a procedure for selecting Hj; and Gy; so

that Re AA; -Hy; C,) &lt;0andRe AA; - B; Gp) &lt;0 forallj=1,..,n; ie. so that nominal

closed loop stability is guaranteed. The stabilization problem has thus been trivialized. But what

about the properties of the loop Gi(OK'Log/LTR(S) ? In order to "recover" the nice properties of

Glgr(s) we proceed as follows.

Suppose that the transfer function matrix GloL(s) =M; (sI - Al B; is minimum phase; i.e.

all its zeros lie in the open left half s-plane. It can be shown (Athans, [7] ) that the following is

Tue. “-

lim VPiGpi =1im [1 A/F; ) BTKy1= WM;
p;—0+ p;—&gt;0+

(£5)“8

AIm.

where W; e RM *™; js some orthogonal matrix Ww, 1 = w.T).

Suppose further that we select M; = C;. It then follows that Gg; (s) = Gi(s). Since the

AVM, SM, and ASM Design Plants, G;(s), are minimum phase we know that eq. (4.35) holds for

M; = C,. Using this "recovery" relationship it can be shown (Doyle, Stein [5] ) that

lim Gi(®) KL oG/LTR(S) = GiKE(s)
P;—0+

(4 56)

from which it follows that

lim KY} G/L 1R(S) = Gi! (5) Gikg(S).
0: —0+

\“+.57)yy

It is because of eq. (4.36) that p; is referred to as a "recovery parameter”. It can be shown that the

convergence in eqs. (4.36) - (4.37) is pointwise in s.
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A summary of the recovery procedure is now given.

Summ f Pr re for RecoveringT,

l. Given the minimum phase design plant, G(s) = C(sI - A)IB, and the target loop tfm

Gyg(s) = C(sI - A) H,, choose a "small" positive p.

) Solve the following CARE for Ky:

0=- K,A-ATK,-CTC+K, B(1/p)BTK,

3. The compensator which recovers Gyr(s) from G(s) is then given by:

Kiog TrR®) = G,(sI- A+ BG, + H,C) 1H,

where G,, = (1/ p)BTK..

4. A rule of thumb for deciding whether the recovery is good, is having

5. [GGWK og TRI] = 0, [Ggr(w)] for all ®&lt;10 w,

where GC, [GGw)K; or TrRG®,)] = (0 db.

Because the gains H; and Gi are computed using results from classical LQG (Linear

Quadratic Gaussian) theory and since the properties of the loop tfm are approaching those of

Gkp(s) we call the procedure the LQG/LTR (Linear Quadratic Gaussian with Loop Transfer

Recovery) design methodology. Actually, since we are recovering the properties of Gigg s) at the

plant output, the procedure is called LOG/L TR at the plant output. A more detailed discussion of

the LQG/LTR design methodology can be found in references [5] - [8]. The procedure is now

applied to the AVM, SM, and ASM Design Plants, G(s) = G(s) /s=C, (sl- Al B,i=1,2,3.
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4.3 Design and Evaluation of AVM AFCS

4.3.1 Introduction

[n this section the LQG/LTR design methodology is applied to the AVM Design Plant, G(s)

= Gp1(9) /s=C (sI- Ap! B,. A compensator satisfying the performance and robustness

specifications presented in section 3.6 is obtained. The AVM Design Plant consists of the AVM

Plant, G(s) = Cp1(sI - Ay! B,1, preceded by an integral augmentation. We recall that the AVM

Plant has input ZO_ (average collective control) and output Tz (average vertical velocity). 20. is

assumed to be measured in degrees (degs.) and Xz in feet/second(ft./sec.).

In developing the target AVM loop, Ggp(s) = Cy(sI - Ap! Hj; , the design parameters, L;

and H,, were chosen to be

C1 =B; [Cy CA)TB1!
hy = 1 (AVM AFCS bandwidth parameter).

(4.38)

(4.39)
Jone

The AVM loop recovery parameter, p&gt; was chosen to be
-_

P= 10% (AVM AFCS recovery parameter).

Given the above parameters, the filter and control gain matrices, H,, and Gy» can be computed

(4.40)

using the LQG/LTR procedure described in section 4.2. These matrices completely specify the

AVM compensator, K,(s), given by:

K;(8) =X ogrLTRE) / S

= Gp, (sI- Ay +B1Gy +H) 1C) TH, /s.

(4.413)

(4.41b)

Since K,(s) specifies the entire AVM AFCS, eq. (4.42) tells us that H, and Gp completely
specify the AVM AFCS. These matrices are given below:

d,,=[0.4921 0.58217T

G,1 -[ 994.75 00.3

(4.422)

(&amp; 7b)
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4.3.2 Frequency Domain Evaluation of AVM AFCS

Fig. 4.3.2.1 shows the Bode magnitude and phase plots for the target and recovered AVM

open loop transfer functions, Glgg(jo) and Gy 1G). The plots show that the recovered AVM loop

magnitude approximates the target magnitude almost up to approximately ® = 40 rad/sec which is

almost two decades above the gain crossover frequency Wg1= 0.6 rad/sec. The recovered phase

margin, measured at Ws is seen to be greater than 70 degrees. This easily satisfies our phase

margin spaceification (| PM; 1 245°). The recovered downward gain margin is seen to be infinite.

This, of course, is due to the fact that the AVM AFCS is open loop stable. The recovered upward

gain margin, measured at the phase crossover frequency ® = 81 rad/sec, is seen to be greater than
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Fig. 4.3.2.1 Recovery of Target AVM Open Loop Transfer Function.

40 db. Our upward gain margin specification is thus easily satisfied (TGM, = 12.5 db). It should

be noted that recovery can be improved by decreasing the recovery parameter, p,. By doing so the

phase crossover frequency moves toward infinity and so does the upward gain margin. Decreasing

p, can thus considerably improve our upward gain margin. In doing so, however, the phase margin
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remains relatively unchanged since, for all practical purposes, we have already recovered our target

phase margin. It should also be noted that for frequencies below ® = 0.01 rad/sec the recovered

loop looks like an integrator.

To evaluate the performance properties of the recovered AVM AFCS, we need to quantify its

ability to follow low frequency commands for £z and reject low frequency disturbances on Xz.

This is best done by evaluating the Bode magnitude plot of the recovered AVM sensitivity function.

The Bode magnitude plots of the target and recovered AVM sensitivity functions, Sgro) and

S:(jw), are given in Fig. 4.3.2.2.
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Fig. 4.3.2.2 Recovery of Target AVM Sensitivity Transfer Function.

The figure indicates that for all practical purposes the target sensitivity has been completely

recovered. Since IS;(jw)! &lt;-20 db for all ® &lt; 0.09 rad/sec, we are guaranteed that steady state

errors due to reference commands or output disturbances, with spectral content at or below © =

0.09 rad/sec, will be less than 10%. This satisfies our low frequency performance specification.

In addition to this, the low frequency slope of + 20 db/dec will guarantee zero steady state error to

step commands and step output disturbances in Xz.
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To evaluate the stability robustness of the AVM AFCS to high frequency unmodeled rotor

dynamics, as well as its ability to attenuate high frequency noise in our Xz measurement, we

examine the recovered AVM closed loop transfer function, T,(jw). Its Bode magnitude plot, as

well as that of the target AVM closed loop transfer function, Tlkr(w), are given in Fig. 4.3.2.3.

The figure shows that the recovered AVM closed loop magnitude approximates the target

AVM closed loop magnitude up to ® = 40 rad/sec. The recovered AVM closed loop bandwidth is

seen to be approximately wy;;=0.4 rad/sec and the peak value of IT (jw)! is seen to be well below

2 db for all frequencies. It is also seen that IT;(jw)l &lt;-20db for all ® &gt; 5rad/sec. This satisfies
3
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Fig. 4.3.2.3: Recovery of Target AVM Closed Loop Transfer Function

our high frequency noise attenuation specification. Also, for the selected value of py» the

recovered AVM closed loop magnitude rolls off at -20 db/dec between w = 1 rad/sec and w = 40

rad/sec. Above ® = 40 rad/sec, the recovered AVM closed loop magnitude rolls off at -60 db/dec

{one pole roll-off due to Gp1(5) and two pole roll-off due to K(s)). The high frequency break at ®

= 40 rad/sec is due to two "far away" poles of the recovered AVM LQG/LTR compensator. These
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poles shall be discussed subsequently. It should be noted that in order to achieve a faster roll-off

near the first harmonic (0, ) of the main rotor, we need the "far away" compensator poles to break

zarlier, say 1 octave below w_= 27 rad/sec. This can be done by selecting a larger value of pyr In

doing so, however, we must sacrifice our upward gain margin as well as our phase margin

(unless, of course, the gain crossover frequency is reduced). This tradeoff is easily explained as

follows. Asp, is increased the "far away” poles of the AVM compensator move closer to the

origin of the s-plane. As a result of this, the phase crossover frequency decrease and so does the

resulting upward gain margin. Furthermore, because of the larger phase lag contribution at gain

crossover due to the AVM compensator's "far away" poles, the resulting phase margin is also

reduced. These trade-offs may or may not be tolerable depending on the extent of modeling errors

near gain and phase crossover. This trade-off is fundamental to all control systems; i.e. we cannot

have an arbitrary large roll-off near gain crossover and still maintain "nice" phase and gain margins.

To understand the AVM compensator "strategy", we evaluate the Bode magnitude and phase

plots of the recovered AVM LQG/LTR compensator transfer function. The Bode magnitude and

phase plots for the target and recovered AVM LQG/LTR compensators, G;-1(jw) Glyr(jw) and

KILQG/LTRjw), are given in Fig.4324
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The plots show that the recovered AVM LQG/LTR compensator approximates the target AVM

compensator up to ® = 40rad/sec in magnitude and ® = 2 rad/sec in phase. The recovered AVM

LQG/LTR compensator is seen to exhibit a low frequency gain of - 25 db. The reason for this low

frequency gain is simply because the recovered AVM LQG/LTR compensator is trying to invert the

AVM Plant, Gp1(8)s whiich hasadCc gain of 24.7 db, in order to make therecovered AVM looP

look like an integrator at low frequencies. Near ® = 0.5 rad/sec the recoverd AVM LQG/LTR

compensator exhibits an upward break in magnitude corresponding to a phase lead. Itis this phase

lead, due to a compensator zero, that allows us to meet our nice phase and upward gain margin

specification. The plots indicate that the target compensator has the form B,(1+a/s) (at low

frequencies) where a = 0.5 and B, =(2/ 17.2). The target AVM AFCS thus implements a simple

PI (proportional plus integral) type control strategy. This implies that velocity (Xz) and position

(Zz) error information are being used to generate the average collective control signal, XO oe

Fig. 4.3.2.5 shows the Bode magnitude plot of the target and recovered tf's from the

reference command, ry, to the control, YC) o The figure shows that the most control activity will

result when references, noise, or output disturbances with appreciable spectral content near our

gain crossover frequency, ®_ = 0.6 rad/sec, are present. It also shows thatas p — 0 the high
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frequency gain approaches a constant (~18 db). This implies that for p, sufficiently small, step

commands for ¥z will result in step-like control action, 20 . This follows from the Initial Value

Theorem from the theory of Laplace Transforms [14]. It will be demonstrated when simulations

are presented. We note that since the reference to control tf is always "small", pre-filtering of Xz

commands is not necessary. Itis always "small" because the lead requirement is small.

4.3.3 AVM AFCS Poles and Zeros

To further understand the strategy of the recoverd AVM LQG/LTR compensator and its

asymptotic properties, it is instructive to compare the target AVM open loop poles and zeros with

the recovered AVM open loop poles and zeros. The target AVM open loop poles and zeros are

given in Table 4.3.3.1. These are the poles and zeros associated with the target AVM open loop

transfer function, Glig(s) =C, (sI- Apt H;. The recovered AVM open loop poles and zeros

are given in Table 4.3.3.2. These are the poles and zeros associated with the recoverd AVM loop

transfer function, G,105)K, (s).

Table 4.3.3.1: Target AVM Open Loop Poles and Zeros

Poles: s=0
s =-0.2384;: 1=4.2 sec

Zero: s =- 04245

Tabie 4.3.3.2: Recovered AVM Open Loop Poles and Zeros

AVM Plant:
Poles: s =-0.2384; 1=4.2 sec

Zeros: None

AVM Compensator:

Poles: Integrator: s=0
Far away poles: s=-45.515%j45.515; {=0.707; 17 = 0.02 sec; oO, = 64 rad/sec.

Zeros: s=-0.4818: t= 2.1 sec.
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Tables 4.3.3.1 and 4.3.3.2 show that the recovered AVM loop poles and zeros are nearly

identical to those of the target AVM loop poles and zeros. One small difference is that the

recovered AVM compensator zero is slightly to the right of the target AVM loop zero. It can be

shown that the recovered zeros of the tf Gp (I - ApH; The major difference between the

recovered and target AVM loop poles and zeros is the presence of "far away" poles in the recoverd

AVM loop. As alluded to earlier, these poles can be made larger by recovering more of the target

AVM loop; i.e. by choosing a smaller value of p,.

Before driving the recovered AVM AFCS with a typical step commands for Xz, it is

instructive to compare the target AVM closed loop poles and zeros with the recovered AVM closed

loop poles and zeros. The target AVM closed loop poles and zeros are given in Table 4.3.3.3.

These are the poles and zeros associated with the target AVM closed loop transfer function,

T'gr(s) = GIRS) + Glgp(s)]1 = C(sI - A+ Hy; C))' Hy). The recovered AVM closed loop

poles and zeros are given in Table 4.3.3.4. These are the poles and zeros associated with the

recovered AVM closed loop transfer function, T(s) = Gp1(9K;(s) [I+ G1 (9K ()] = Gp1(8)

T+ Gy i®,(5)B 1! G1 @,(s)H, [1+ C;®,(s) Hy,;1"! where @,(s) = (SI - A)! (Athans [7]).

[able 4.3.3.3: Target AVM Closed Loop Poles and Zeros

Poles: s= A(Ag - H;1Cy) =-0.3653 £j 0.3240; { = 0.75; T= 2.7 sec; ©, = 0.49 rad/sec.

Zero: s=- 0.4845.

Table 4.3.3.4 Recovered AVM Closed Loop Poles and Zeros

Poles: s=2(A1 - Hy 1Cy) =- 0.36525 + j 0.32402; {= 0.75; © = 2.7 sec; oo, = 0.49 rad/sec.

s=2A(Aq - B1Gp1) =-45.269 + j 45.268; { = 0.707; © = 0.02 sec; w,, = 64 rad/sec.

Zero: s=-04818
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Tables 4.3.3.3 and 4.3.3.4 show that the recovered AVM closed loop poles and zeros are

nearly identical to those of the target AVM closed loop poles and zeros. The major difference is

due to the presence of "far away" closed loop poles in the recovered AVM closed loop system. It

should be clear from Table 4.3.3.4 that the dominant closed loop poles are those due to A- Hj; C,

(£ =0.75, © = 2.7 sec, ©, = 0.49 rad/sec).. These closed loop poles are thus attributable to the

AVM filter (target loop), Glgg(s). The far away poles are due to A1-B1Ggy. These closed loop

poles are attributable to the so-called AVM LQ-Loop, Gp os) =G, (sl - A)1B, [7].

4.3.4 Time Domain Evaluation of AVM AFCS

Finally, it is necessary to test the recovered AVM AFCS's command following properties for

a typical Zz reference command. Fig. 4.3.4.1(a) shows the Xz response to an AVM step reference

command, ry; = 5 ft/sec (no pre-filter). Fig. 4.3.4.1(b) shows the corresponding 20, response to

the reference command.
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The Xz response in Fig. 4.3.4.1(a) is quite acceptable. The settling time is approximately 11

seconds and the overshoot is less than 10% .

The XO, response in Fig. 4.3.4.1(b) is extraordinarily fast at the beginning. This is due to

the "high-pass" characteristic of the AVM reference to control magnitude plot in Fig. 4.3.2.5. This

high-pass characteristic is attributable to two zeros which are present in the AVM reference to

control transfer function. One zero is due to the AVM compensator zero. The other zero is due to

the AVM Plant pole. Although the initial £@ . Tate may be large, the peak value is well within the

usually permitted control authority. Finally, it should be noted that the steady state collective is in

agreement with the AVM plant dc gain which dictates an average vertical velocity of 17.2 ft/sec per

degree of average collective control or equivalently, 0.2907 degrees of average collective control

per 5 ft/sec of average vertical velocity

4.3.5 Summary of AVM AFCS Design

In this section the LQG/LTR design methodology was applied to the AVM Design Plant; a

simple SISO system consisting of an integrator and a stable real pole. It was shown, as expected,

that controlling the AVM Plant presents relatively little difficulty; even when the specifications call

for a high performance (high bandwidth) design. In conclusion, the LQG/LTR-based AVM AECS

obtained in this section satisfies all of the AVM design specifications presented in section 3.6.2.

Furthermore, for a typical Zz reference command, the AVM AFCS response is quite good. The

AVM AFCS design is thus acceptable.

4.4 Design and Evaluation of SM AFCS

4.4.1 Introduction

In this section the LQG/LTR design methodology is applied to the SM Design Plant, G,(s) =

Gpa(s) /'s = Cy(sl - A») B,. A high performance (high bandwidth) compensator satisfying the

specifications presented in section 3.6 is obtained. The SM Design Plant consist of the SM Plant,
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G(s) = Cpa(sl - Ay) Bp), preceded by an integral augmentation. We recall that the SM Plant

has input AB, . (differential cyclic control) and output Ax (horizontal separation). AB, is assumed

to be measured in degrees and Ax in feet. Scaling is not an issue since the SM is represented by a

SISO system.

In developing the target SM loop, G2 p(s) = Cy(sI - A) Hp, the design parameters, L,

and lL,, were chosen as follows:

Ly =B, [Cp CA)! Bl!
My= 1 (SM AFCS bandwidth parameter).

Ihe SM loop recovery, p,, was initially chosen to be p, = 10°12,

(4 13)

(4.44)

For reasons to be explained

subsequently the recovery parameter was increased to
i

| Py = 10® (SM AFCS recovery parameter). (4.45)

Given the above parameters, the filter and control gain matrices, Hj and Gps can be computed

asing the LQG/LTR procedure described in section 4.2. These matrices completely specify the SM

compensator, K,(s), given by:

K(s) = K2 oG/LTR() /s

=G(sI- Ay +B, Gp + Hp C1 Hyp /s.

(4.462)

(4.46b)

Since K,(s) specifies the entire SM AFCS, eq. (4.46) tells us that H,, and G,, completely

specify the SM AFCS. These matrices are given below:

1] 112 22063 -490246

Gop =[955.46  - 36.449

24330 - 45238 0.21943 171

282.73 -2.6377 22.795]

(4.47)

rAel\ ’)
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4.4.2 Frequency Domain Evaluation of SM AFCS

Fig. 4.4.1 shows the Bode magnitude and phase plots for the target SM open loop transfer

function, G?gr(j®). The Bode magnitude and phase plots for the recovered SM open loop transfer

function, Gy »(jw), are also shown in the figure forp., = 10-12 and Psy = 106L2 Py y
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rad/sec and the associated phase margin is PM, = 55°. Both of these exceed our gain crossover

and phase margin specifications. The phase phase crossover frequencies are Op = 0.55 rad/sec

and Wg = 60 rad/sec. Corresponding to these phase crossovers we have a downward gain

margin of GM, =~ -10db and an upward gain margin of TGM, =~ 30 db. Both meet our gain

margin specifications. All of these properties are very good but for reasons to be explained later in

the section we had to reduce the amount recovered. We thus increased our recovery parameter to

0, = 100

For p, = 100 the recovered SM loop magnitude is seen to approximate the target SM loop

magnitude, within 6 db, up to ® = 8 rad/sec. The corresponding SM loop phase is seen to

approximate the target SM loop phase, within 5°, up to = 1 rad/sec. The recovered gain

crossover frequency and phase marin are now Woy = 1.4 rad/sec and PM, = 34°, respectively.

Both of these just satisfy our specifications. The phase crossover frequencies are Wy = 0.5

rad/sec and ) = 5 rad/sec. Corresponding to these phase crossover frequencies we have a

downward gain margin of GM = - 7 db and an upward gain margin of TGM = 10 db. Both of

these also satisfy our gain margin specifications.

To evaluate the performance properties of the recovered SM AFCS, we need to quantify its

ability to follow low frequency commands for Ax and reject low frequency disturbances on Ax.

This is best done by evaluating the Bode magnitude plot of the recovered SM sensitivity function.

The Bode magnitude plots of the target and recovered SM sensitivity transfer functions, S2¢£( ®)

and S,(jw), are given in Fig. 4.4.2.2.

The figure shows that for p, = 10712 the target SM sensitivity is for all purposes completely

recovered. For p,, = 10%, however, the recovered SM sensitivity approximates the target SM

sensitivity, within 5 db, for all frequencies. The plot shows that the AFCS will especially be
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sensitive to references and output disturbances with spectral content between ® = 0.7 rad/sec and ®

=7 rad/sec. The low frequency slope of 20 db/dec, however, guarantees zero steady state error to

step to step commands and output step disturbances in Ax. Furthermore, since IS,(jw)! &lt;- 20 db

for all w &lt; 0.04 rad/sec we are guaranteed that steady state errors due to references or output

disturbances, with spectral content at or below ® =0.04 rad/sec, will be less than 10%. Our

performance specifications are thus met.

To evaluate the ability of the SM AFCS to attenuate high frequency noise in our Ax

measurement, we examine the recovered SM closed loop tf To(jw). Its Bode magnitude plot, as

well as that of the target SM closed loop transfer function, T2p(jo), are given in Fig. 4.4.2.3.

The figure shows that for p, = 10712 the target SM closed loop magnitude is recovered up to

® = 60 rad/sec. For p, = 10-6, however, the recovered SM closed loop magnitude approximates

the target SM closed loop magnitude, within 3 db, up to w = 8 rad/sec. The plot shows that the
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102

AFCS will especially be sensitive to modeling errors and sensor noise near = 1 rad/sec since at

this frequency we have a closed loop gain of about 6 db. The recovered SM closed loop crossover

(bandwidth) is seen to be approximately Oy, = 2.5 rad/sec. Itis also seen that IT,(jw)!l &lt;- 20 db

for all ® = 10 rad/sec. This satisfies our high frequency noise attenuation specification. The figure

also shows that for Py = 10, the recovered SM closed loop magnitude rolls off at - 20 db/dec

between ® =2 rad/sec ® = 8 rad/sec. Above ® = 8 rad/sec, the recovered SM closed loop

magnitude rolls off at -80 db/dec (2 pole roll-off due to G(s) and 2 pole roll-off due to K5(8)).

The 3 pole break above ® = 10 rad/sec is due to three "far away" poles of the recovered SM

LQG/LTR compensator. These poles shall be discussed subsequently.

To understand the SM compensator "strategy", we evaluate the Bode magnitude plot for the

recovered SM LQG/LTR compensator. The Bode magnitude plot of the recovered SM LQG/LTR

compensator, K? oGLTRG®), is given in Fig. 4.4.2.4 for Py = 10-6, 10-12, and 10-15.
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The figure shows that forp,, = 106, the recovered SM LQG/LTR compensator magnitudeP2

approximates the target SM LQG/LTR compensator magnitude up to ® = 8 rad/sec. The recovered

SM LQG/LTR compensator is seen to exhibit a low frequency gain of about -16 db. The reason

for this low frequency gain is simply because the recovered SM LQG/LTR compensator is trying to

invert the SM Plant, G(s), (which has a dc gain of 13.18 db) in order to make the recovered SM

loop look like an integrator at low frequencies. Near @ = 0.25 rad/sec the recovered SM LQG/LTR

compensator magnitude exhibits a +20 db/dec upward break. This slope is sustained until ® = 2.3

rad/sec by a compensator zero. At ® = 2.3 rad/sec a +60 db/dec upward break occurs thus giving us

a +80 db/dec slope which is sustained by four compensator zeros. It is important to emphasize that

all four zeros are absolutely necessary to have "nice" stability margins for the selected gain

crossover frequency. One zero stabilizes the SM Design Plant, G,(s) = G(s) / s, and the other
three compensator zeros provide derivative action to decrease the phase lag associated with the

Horizontal Spring and Symmetric DAMD;ping Modes at the SM loop gain CTOSSOver frequency (002 =
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1.5 rad/sec). The plot shows that the 80 db/dec slope provided by these zeros is sustained until

about w = 10 rad/sec. Above this frequency the recovered SM LQG/LTR compensator exhibits a

five pole downward break which gives us a final slope of - 20 db/dec. Finally, the figure shows

that as p,—0 the compensator becomes more and more improper with a limiting slope of 40 db/dec.

In addition, the amount by which errors with spectral content above the closed loop bandwidth

(®cpy = 2.5 rad/sec) get amplified increases imensely as p,—0. It is because of this great

amplification of high frequency errors (to generate controls) that one is forced to use Py = 107° rather

than p, = 10°12, This very important trade-off between stability robustness and performance is

addressed below.

Fig. 4.4.2.5 shows the Bode magnitude plots of the recovered transfer function from the

reference command, T,, to the control, AB, for Py = 10-6: 10°12, and 10-15. The figure shows
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that reference commands, sensor noises, and output disturbances with spectral content above 3

rad/sec will be amlified to produce the necessary differential cyclic control action. The figure

further indicates that as p,, is decreased below 106, and the recovery improves, the amount by

which high-frequency exogenous signals get amplified, increases substantially. Although the

horizontal separation, Ax, will usually be commanded to zero, so that SM references do not

contribute much to the SM control activity, sensor noise and disturbances are always present. it

thus follows that if high frequency sensor noise and disturbancesare present, as is always the case,

then large differential cyclic controls may result. Large differential cyclic controls would

necessarily result in large differential pitch rates. In order to avoid the large control activity and

pitch rates one is forced to hold back on the recovery. Holding back on the recovery, however,

means trading off stability robustness. Consequently, we conclude that a trade-off must be made

between performance and stability robustness. It thus follows that because we have a high

bandwidth design, this trade-off is expected to be particularly pronounced. Moreover, because of

this, we expect a large robustness (lead) requirement to cause problems. More specifically, the

more model uncertainty the larger the robustness (lead) requirement and the more control activity

and pitching needed to regulate the horizontal separation. The extent to which this occurs shall be

seen when time simulations are presented for the recovered SM AFCS (py = 106). Finally, it

should be noted that as p,—0 the reference to control tf high frequency slope approaches 20

db/dec. This implies that if step-like commands are issues for Ax then the resulting control AB,

will be impulse-like. Typically, however, Ax is commanded to zero and only disturbances

affecting the horizontal separation matter.

1.4.3 SM AFCS Poles and Zeros

T'o further understand the strategy of the recovered SM LQG/LTR compensator (py = 106)

and its asymptotic properties, it is instructive to compare the target SM loop poles and zeros with

the recovered SM loop poles and zeros. The target SM loop poles and zeros are given in Table
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4.4.3.1. These are the poles and zeros associated with the target SM loop tf, G2kg(s) =C, (sI-

Ay)! H, 5. The recovered SM loop poles and zeros (for Py = 106,1012) are given in Table 4.4.3.2.

These are the poles and zeros associated with the recovered SM open loop transfer function,

Gpa(8)Kq(s).
Tables 4.4.3.1 and 4.4.3.2 show that for p,=10 the recovered SM open loop poles include

the target SM open loop poles, a pair of lightly damped compensator poles, and three "far away"

compensator poles. The recovered SM open loop zeros include the SM Plants’ lightly damped

zeros and four compensator zeros. The lightly damped compensator poles decrease the amplifying

effect that the SM Plants’ lightly damped zeros have on high frequency sensor noise. The four

compensator zeros, as expected from the discussion in Chapter 3, provide our stability robustness

properties. The three "far away" compensator poles provide roll-off in the SM loop so that the

four-zero compensator lead does not result in substantial control activity (AB,.) and pitching (A0)

in order to regulate the horizontal separation (Ax).

Table 4.4.3.1: Target SM Open Loop Poles and Zeros

Poles: s=0 Zeros: s=-0.34183
s = 0.7561 s =-0.8175 +j2.2269
s=-0.8122 + j 2.2228 s = - 2.2286
s=-22019

Table 4.4.3.2: Recovered SM Open Loop Poles and Zeros

SM Plant Poles: s =0.7561 SM Plant Zeros: s =- 1.55% j 9.4906
s =- 0.8122 + j 2.2228
s=-2.2919

py = 10°6)
s=0
s=- 1.4266 +j7.6892

(s=- 6.6325 + j 7.7966
|s=-12.043

(pp =10"12)
s=0
s = - 1.55 +j9.4906
s = - 39.303 + j 68.686
| s = - 80.738

s = - 0.33239

s =- 0.81742 + j 2.2264
Ss =-2.2869

‘far away" poles

SM Compensator Zeros: s = - 0.2525

s = - 0.8160 * j 2.2228
§ = - 2.2898
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Table 4.4.3.2 shows that as p,, is decreased from 106 to 10°12, two of the recovered lightly

damped poles move on top of the SM Plants’ lightly damped zeros. On the one hand, having this

pole-zero cancellation is good in that it nullifies the high frequency lead effect of the zeros. On the

other hand, however, having this pole-zero cancellation implies the pesence of lightly damped

poles. Although these poles are unobservable and hence would not affect Ax, they would affect

AB and AB,.. This gives us one reason why we would not want to make p, any smaller than 106:

although doing so would improve our robustness. This, however, is not the main reason. The

main reason for not decreasing p, below 100 (and improving our robustness) is because, as

shown in the table, this moves the compensator's "far away" poles to very high frequencies. As

discussed earlier, and as seen in Figs. (4.4.2.4) - (4.4.2.5), this results in an untolerable amount

of error to control amplification which in turn means untolerable pitch rates. Because of this

performance-robustness trade-off we fixed the value of p, at 100,

Before studying the recovered SM AFCS's (p, = 10%) time response characteristics, it is

instructive to compare the target SM closed loop poles and zeros with the recovered SM closed loop

poles and zeros. The target SM closed loop poles and zeros are given in Table 4.4.3.3. These are

the poles and zeros associated with the target SM closed loop transfer function, IO) = G2 p(s)

[I+ G2) = Cy(sI- A, + H) Cy)!H5. The recovered SM closed loop poles and zeros are

given in Table 4.4.3.4 and are plotted in Fig. 4.4.3.4. These are the poles and zeros associated

with the recovered SM closed loop transfer function, T,(s) = Gpa()Ky(s) I+ Gp(9)Ky(s)]! =

Gp1(8) [T+ Gp (5) Bol Gp @,(s) Hyp [1+ Cp Dy (5) Hol! where @,(s) = (SI - ApL.

In examining the closed loop poles and zeros presented in Tables 4.4.3.3 and 4.4.3.4, it is

essential to identify which modes shall have the greatest impact on our output, Ax, and which

modes shall have the greatest impact on "internal" quantities such as AB and AB,.. First lets

examine the target SM closed loop poles and zeros
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Table 4.4.3.3: Target SM Closed Loop Poles and Zeros

Poles: A;(Ax-Hy;9Co): s=-0.7245 + j 0.47483; { = 0.84; 0, = 0.75 rad/sec; T= 1.4 sec

s =- 0.8084 + j 2.2288; { = 0.34; w, = 2.37 rad/sec; T= 1.24 sec

s = - 2.3006; T = 0.44sec

Zeros: s=-0.3412
s=-0.8175% j2.2269; {=0.35; ©, = 2.37 rad/sec; T= 1.22 sec
s=-22864

Table 4.4.3.4: Recovered SM Closed Loop Poles and Zeros

~ les:

Zeros:

A:(Ay Hy 2Cr):

A(Ar-B 2Gp2):
'far away” poles

Plant:

Compensator:

s=-0.72449 +j 0.47483; { = 0.84; o©,= 0.75 rad/sec; T= 1.4 sec

s =- 0.80839 +j 2.2288; { = 0.34; op, = 2.37 rad/sec; © =1.24 sec

s = - 2.3006; t= 0.44sec

(py = 1076)
s = - 1.6909 + j 7.3321

| s = - 6.4223 +] 6.2478
ls =-9.77284

s=-1.55+79.4906

(pp =10"12)
s=-1.55+ 9.4906

(s=-39.288 + j 67.403
l's=-78.561

s=-1.55%;9.4906
s = - 0.25254

s = - 0.81602 +j2.2228
Ss = - 29808

s = - 0.33239

s=- 0.81742 + j 2.2264
Ss =-29869

Table 4.4.3.3, shows clearly that the dominant closed loop poles, i.e. those poles which will

have the greates impact upon Ax are those with { = 0.84, ®_=0.75 rad/sec, and © = 1.4 sec. This

follows obviously since the other target closed loop poles are approximately cancelled by

compensator zeros. It should be emphasized, however, that although the other target closed loop

poles have essentially no impact on Ax, they will have a large impact on A® and AB. (ie. on

internal variables). Similar comments hold for the recovered closed loop poles in Table 4.4.3.4.



- 152-

This will be seen when transient responses are presented. The impact of the ( = 0.23, © =7.53,

t = 0.59) pole, near the SM lightly damped zeros, will be of particular interest. Although Ax is

usually commanded to zero, it must be noted that when such commands are issued the low

frequency compensator zero at s = - 0.25 will have a tremendous impact on the output Ax [14].

4.4.4 Time Domain Evaluation of SM AFCS

(A) Ax Command Following

Typically the horizontal separation, Ax, will be commanded to be zero. When it is

commanded, however, the command should be pre-filtered so that the high-pass effect of the

compensator lead on control activity and pitching is reduced. To decide on the filter structure we

referred to the reference to control Bode magnitude plot in Fig. 4.4.2.5. In order to reduce the

80 db/dec slope, between = 3 rad/sec to ® = 8 rad/sec, to 20 db/dec we chose a third order

Butterworth filter:
H(s) = eS

3+ 2m52+20052+
4 4
of,A&gt; +7)

with @, = 4 rad/sec. Fig. 4.4.4.1 shows the responses of the recovered SM AFCS (p, = 10%) to a

step and filtered step command for Ax.

Fig. 4.4.4.1a shows the step response of the third order Butterworth filter (0, = 4 rad/sec).

Fig. 4.4.4.1b shows the horizontal separation, Ax, responses to a step and to a pre-filtered

step. The figure shows a tremendous overshoot in Ax. This overshoot is attributable to the

interaction between the dominant closed loop poles (C = 0.84, w, = 0.75) and the low frequency

compenator zero (s = - 0.25) (Ogata, [14]). We see that pre-filtering commands does not help this

overshoot.

Fig. 4.4.4.1c shows the corresponding differential pitch attitude, AB, responses. Without

pre-filtering we have a peak AO of about 10 degs. When the pre-filter is used, the peak AO

decreases to 5 degs. The figure also shows clearly that when references are pre-filtered the effect

of the lightly damped pole ({ = 0.23, @, = 7.53, © = 0.59) is substantially reduced. Pre-filtering
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references thus makes a big difference.

Similar comments hold for the differential cyclic control AB, responses in Fig. 4.4.4.1d

(B) Ax Disturbance Rejection

Next we examine the ability of the SM AFCS to regulate the horizontal separation. Fig.

4.4.4.2 shows the response of the SM AFCS for an initial condition of Ax = 1 ft. One can think

of this as a disturbance rejection evaluation. (We note that the SM pre-filter does not play a role in

this simulation).
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Fig. 4.4.4.2a shows a very good Ax response; Ax settling down in about 3 seconnds. The

corresponding differential pitch response (Fig. 4.4.4.2b), however, shows rather large pitch

rates. The corresponding differential cyclic control (Fig. 4.4.4.2d) is also a bit excessive for the

relatively small initial condition (Ax = 1 ft.). Obviously, this could be reduced by lowering the

bandwidth. This, however, would mean less performance. If a high bandwidth design is indeed

the objective then the only way to reduce the amount of control activity and pitching is by reducing

the effect of the lead. This amounts to reducing the robustness requirement. This, however, can

be done only if model uncertainty is low. Thinking in terms of the Nyquist plot for the SM AFCS

loop tf, this amounts to having sufficiently small net uncertainty between the two phase crossover

frequencies. Consequently, a high performance SM AFCS is feasible only if model uncertainty is

sufficiently low. If model uncertainty is high then such a design becomes unfeasible. This is

because, in such a case, the large robustness requirement forces the helicopters to undergo

substantial pitching in order to regulate the horizontal separation. More specifically, the

simulations show that if model uncertainty is high then only a low bandwidth design becomes

feasible. Sucha design can be obtained by increasing the SM AFCS bandwidth parameter HK, and

selecting p, small enough so that the robustness requirement is met. Finally, it should be pointed

out that removing the integrator would significantly reduce the extent to which performance and

robustness must be traded off.

4.4.5 Summary of SM AFCS Design

In this section the LQG/LTR design methodology was applied to the SM Design Plant; an

unstable SISO system with considerable low frequency phase lag and two lightly damped high

frequency zeros. It was shown, as expected from Chapter 3, that controlling the SM Plant is ver

difficult; particularly when the specifications call for a high performance (high bandwidth) design.

More specifically, it was shown that a trade-off must be made between performance and stability

robustness. In addition, it was shown that when the specifications call for a high bandwidth

design then this trade-off becomes particularly pronounced.
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In summary, we conclude that a high performance SM AFCS is feasible only if model

uncertainty is sufficiently low. If model uncertainty is high then such a design becomes unfeasible.

In such a case, only a low bandwidth design becomes feasible.

4.5 Design and Evaluation of ASM AFCS

4.5.1 Introduction

In this section the LQG/LTR design methodology is applied to the ASM Design Plant, G5(s)

= Gp3(s) [s=C5(sI- Ag)! Bj. A high performance (high bandwidth) compensator satisfying the

specifications presented in section 3.6 is obtained. The ASM Design Plant consists of the ASM

Plant, Gp3(s) 2 Cpa(sl - A) Bs, preceded by an integral augmentation (one integrator per

command channel). We recall that the ASM Plant has inputs AB, (differential collective control)

and 2B. (average cyclic control) and outputsx; -Xx (load deviation from center) and rx (average

horizontal velocity).

It is assumed that the controls are assumed to be in degrees (degs) and the outputs in feet (ft)

and feet/second (ft / sec), respectively.
In developing the target ASM open loop transfer function matrix (tfm), G3gg(s) = C5(sI -

Aq)! H 3, the design parameters, L; and |L,, were chosen as follows:

L,- Bj; [Cp3(-A3) Bal
KH. =1 (ASM AFCS bandwidth parameter)

(4 48)

(4 49)

Choosing L; as in Eq. (4.48) assures that the target ASM singular values are matched at low

frequencies. This was shown in section 4.2.2. We want the loop singular values matched because

the design specifications presented in Chapter 3 stated that "low frequency errors are equally

important in all directions". The recovery parameter, p,, was chosen to be

' p3=10" (ASM AFCS recovery parameter).
Ir—————— om —

For reasons similar to those given for the SM AFCS, p, was not decreased any further. Given the
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above parameters, the filter and control gain matrices, Hj; and Gps can be computed by using the
LQG/LTR procedure described in section 4.2. These matrices completely specify the ASM

compensator, K1(s), given by

K(s) = K3 0G TR) /s

= G3(sI- Ag + B3Gp3 + H3Cy)1H3/5.
(4.51a)

(4.51b)

Since K;(s) specifies the entire ASM AFCS, eq. (4.51) tells us that H 3 and G3 completely

specify the ASM AFCS. These matrices are given below:

H 3 =

G.. =p3—

0.3605 1.6237 0.0017 -0.1552 0.2494 0.6729 0.025 0.1201 -0.0239
-1.0979 0.3121 0.0117 1.0734 0.0244 -0.2014 -0.0129 0.0605 0.0477

T

49.7344 138.3322 156.5858 149.8413 45.5383 87.648 153.479 13.0342 -1.1653 |
-63.2715 -74.8953 -79.9454 275.6631 -17.1355 -27.2046 -49.3773 -1.1653 23.592

(4.52)

(4.53)

4.5.2 Frequency Domain Evaluation of ASM AFCS

Fig. 4.5.2.1. shows the singular values of the target ASM open loop tfm, G3kp(jo). The

singular values of the recovered ASM loop tfm, G3 (jw), are also shown in the figure.
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The figure shows that the recoverd maximum and minimum ASM loop singular values

approximate the target singular values within 3 db up to about 8 rad/sec. The recovered maximum

and minimum singular values cross 0 db at about 1.5 rad/sec and 0.8 rad/sec, respectively. Both

satisfy the gain crossover specifications presented in section 3.6.

To evaluate the performance properties of the recovered ASM AFCS, we need to determine

its ability to follow typical reference commands and reject typical disturbances in x; -Xx and IX.

This is best done by studying the input/output frequency domain properties of the recovered ASM

sensitivity transfer function matrix, S3(jw). This matrix should be thought of as relating the ASM

references, I5(jw), and disturbances, d;(jw), to the ASM tracking error e3(Jw). The ASM tracking

error is given by

= jm)Ex (J0) =13(0 jw(jo) - y33jw) =t1
= S30) [13Gw) - d3(w)] + T3(0) n3(Gw)

(4.54)

(4.55)

where T3(jo) is the recovered ASM closed loop transfer function matrix and n;(jo) is the ASM

noise vector due to feedback measurement error in x;-Zx and &gt;X. T3(Gw) and nz(jw) shall be

discussed subsequently. For now, however, we focus on the first half of eq. (4.55).

Equation (4.57) shows that to keep the ASM tracking error "small" we will need S;(jw) to be

small” at low frequencies where the ASM references, r3(jw), and output disturbances, d;(jw),

typically have their greatest spectral content. From section 3.5.3 we recall that a matrix, say S;(jw),

is "small" (in the sense of the two-norm) if and only if its maximum singular value is "small". Fig.

4.5.2.2 shows the singular values of the target and recovered ASM sensitivity transfer function

matrices, S3gr(jo) and S3(w).

The figure shows that for ps = 10° the recovered ASM sensitivity approximates the target

ASM sensitivity, within 3 db. for all frequencies. The worst case sensitivity is 3 db B, = 1.4125)

and it is seen to occur near ® = 1.5 rad/sec. This worse case sensitivity translates into the following

guaranteed stability margins:
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LGM; =B,/ (B; + 1) = 0.59 (- 4.6 db)

TGM; = B,/(B;- 1) =3.42 (10.7 db)

PM; | =£2sin}(1/2B,) =%41.5°

(4.56)

(4.57)

(4.58)

all of which satisfy our margin specifications B, &lt; 1.718 (4.7 db)). The figure also shows that for

all frequencies below ® = 0.06 rad/sec, the maximum singular value of S,(jw) is below - 20 db.

This satisfies our low frequency performance specification.

If S;(jw) consisted of two decoupled SISO sensitivity transfer functions then the interpretation

of these facts would be clear since each singular value would simply be an independent Bode

magnitude plot. Because S3(jw) is a coupled TITO transfer function matrix, it is necessary to

carefully explain the significance of the above facts. This is best done by providing a graphical

interpretation for the singular value decomposition (SVD) of a matrix.

Consider the matrix S(j) relating e(jm) and d(jw) as follows:

e(jm) = SGw) dw) (4.59)

vhere
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—[d, si t+0,)7_ jot d,,d, € RdO =[ G30 ter ol)] Im {del™) 1%
= in(ot+6¢;) = jot«0 [S Sn (aro) Im {ge

d =[d;ed% d,ei8H
e = [eg e JO; e, e102]H

(40)= a

(4.61)

(4.62)
(4.63)

In the discussion which follows, we refer to the time signal d(t) and the complex vector d

interchangeably. We do the same for g(t) and e. Suppose that S has SVD given by:

 Ss = 3%VH

bo [oo Eo]
a
— Ou, vil +o,u, v,H

(4 64)

(4.65)

(4.56)
wl.

H = a.2SUS yi =0i"y;

SSHuy;=6.21 i=1,2

vio; = jj
uu; = &amp;;; i,j=1,2

1 if i=j
%= 10 if i]

Vv V:+ “jo; j[ iv € il Vin e Jo1H § ~ 2.

a; = [u;q eiBin Ur eiBpH i=1,2 o,Be (nn)

o; =max {IISdll, /lidll, 1d#0 de C2)

0, =min {ISdll, /lidll, 1d#0 de C2)

(4.67)

(4.68)

(4.69)

(4.70)

4.71)

(4.72)

(4.73)

(4.74)

4.75)

where lIxll, = xHx) 172 js the standard Euclidean norm (two-norm).From these facts it follows that
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0, &lt; ISdll, &lt; o-
dil

5)Coodl

where the left equality holds if and only if d = v, and the right inequality holds if and only if d=

vi. These inequalities tell us that g, and g, represent the maximum and minimum amplifications of

 $inthesenseoftheEuclideannorm. Illl,. It follows from eq. (4.76) that if lidll =/d2+d,2 =
r, where &gt; 0, then 6, r &lt; llgll, = lISdll, =Ve,;2 +e,2 &lt;0, t foralld e C2. This tells us that all

disturbances d € C2, such that lidll, =r, get mapped to a point on an annulus in e;e,-space.

Furthermore, it follows from eq. (4.66) that if

¢nen

d=kvy;+k,v,kp,keR?

£ =Sd
= (v,7d) 6; 11 + BPD 0; uy
=k, 0, 4, +k, O05 1.

(4.77)

(4.78)
(4.79)
(4.80)

From eqs. (4.68) and (4.76) we see that

dil? = dHd
Bkyvy™ + kvMT][kvg+ky]
£2 + k,2

(4.81)
(4.82)
(4.83)

This implies that lidll,2 = 12 if and only if k,2 + k,2 = 12, or equivalently d,2 + d,2 =r2. It thus2 1 2 ou 1 J

follows from eq. (4.80) that the circle lldll, =r (i.e. k;2 + k,2 = 12) in the d;d,-plane gets mapped,

via S, to an ellipse in the ee, -plane. This is visualized in Fig. 4.5.2.3. The equation of the

sllipse in the €,e,-plane is given bv:

vi a EY wv

(6,/6,) + (&amp;/0,)% =1

4] = [ora Oauy; | [a1]LE, O1up Ooupnl Le

(4.34)

(4 "33)
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It is also useful to note that eq. (4.76) implies that

JA dll, &lt; ligll, &lt;yv/m lig, foralld,ee C™ (m=2here) (4.86)
and

lellos &lt; llell, &lt;o, lidll, (4.87)

since llell,,= max (lel, le,l} &lt;ve2+e,2 =lell,. The above inequalities in turn imply that

(1 Vm) 0, ld, &lt; lel, &lt; lilly &lt; op lid, (m = 2 here) (4.88)

The inequalities in eqs. (4.86) - (4.88) combined with the geometric interpretation provided by fig.

4.5.2.3 is all we need to interpret the singular values of S;(jw) in Fig. 4.5.2.2.

Assume for notational simplicity that ¢ = €3, d = -dj, and that S = §S; so thate =S d. Since

0, ax 1S(jm)} &lt;£0.1 (-20 db) for all ® &lt;0.06 rad/sec. it follows from eq. (4.88) that

ell, &lt; llell, &lt; 0.11dll, &lt; 0.1v2 idl, (4.39)

for all m &lt; 0.06 rad/sec for alld e C2 This inequality tells us that for all w &lt; 0.06 rad/sec the

ASM AFCS provides at least -17 db (0. V2= 0.14) disturbance attenuation or equivalently
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about 86% disturbance rejection in the sense of the infinity norm, ll-ll,,. Replacing d with r5 in eq.

(4.89) tells us that over this frequency range we also have 86% command following (in the sense

of lI*ll..). Itis emphasized that these statements are statements about the nominal ASM AFCS, i.e.

they are statements of guaranteed nominal performance. After guaranteeing nominal performance a

designer must address the issue of performance robustness. To do so an unstructured

characterization of modeling errors is needed and the concept of structured singular values (Doyle,

[10]) must be used. Performance robustness is an area of ongoing research and is beyond the

scope of this thesis.

Fig. 4.5.2.2 shows that the worst case amplification of disturbances (in the sense of the two-

norm) occurs at ®_ = 1.485 rad/sec. At this frequency we have

Ma

0&gt;0
= |[SGoy] =joy] = 04Omax [SUM i

YY, 52 (3.67 db) ‘ ¥af0)

A SVD of S(jw) at this frequency provides us with two important facts. One of the facts can be

stated mathematically as follows:

d= [ Qos sin @,t fi e=5d  _ | 5250[0.98996 sin(w,1+27.76%)1996 sin(e, t+40. = &amp;=5 agoin(e,t+40.95°) ft/sec 0.14132sin(w, 1+40.48%) fi/sec (4.91)

This fact summarizes the information contained in the singular vectors associated with the

maximum singular value at 0, It tells us, loosely speaking, that payload disturbances, due to

wind gusts, at this frequency will be particularly troublesome. It is interesting to note that the

frequency @_ = 1.485 is very close to the "effective pendular frequency” given by g/H = 1.56

rad/sec. The other fact can be stated mathematically as follows:

d= 20.1996 sin wt ft e=Sd
_ 0.9798 sin(w,t+40.95%) ft/sec = £=1.161

0.14132_sin(w,t - 104.49) ft|Gutsasincagt 1064 ft/sec (4.92)
This fact summarizes the information contained in the singular vectors associated with the

minimum singular value at @_. It tells us that horizontal wind gusts at this frequency will make it



-164 -

difficult to control Xx.

Since Cp ax [SGw)] provides us with the "maximum amplifications" of disturbances (and

references) it is useful to get a feel for the type of disturbances that result in this maximum

amplification. To do so we plot lvy,l and Iv{,| versus frequency. This plot shall be referred to as a

Maximum Qutput-Input Direction (MOID) plot. Corresponding to this MOID plot we can plot

o,luy;l and o,lu;,| versus frequency. Such a plot will be referred to as a Maximum Qutput-Output

Direction (MOOD) plot. It should be noted that similar plots can be constructed for the minimum

singular value. Also we can similarly plot the phase information contained in the singular vectors.

Since only magnitude information is typically known about disturbances and since we're interested

in "maximum amplifications", the MOID and MOOD plots are by far the most useful. The

information which such plots provide, as will be demonstrated in this chapter, is extremely

valuable for understanding the directionality properties of any MIMO feedback system.

Fig. 4.5.2.4. contains a MOID plot for the ASM sensitivity tfm, S(jo) = S3(jw). In this plot

the solid curve corresponds to Ivy! and the dashed curve corresponds to lv ,l. This convention

shall be used throughout the remainder of the thesis. Since the output vector is given by y =

[xp -Zx ZxX]T, and since S(jw) relates disturbances to tracking errors, it follows that Ivy!

corresponds to x; -Xx disturbances and Iv,,! corresponds to Zx disturbances. The plot should be

interpreted as specifying the magnitudes of sinusoidal disturbances which when properly
coordinated in time will result in maximum amplification; i.e. given lvy;! and Ivy,l, where lv, 2 +

vio? =1, there exist phase angles 0, 0, € (-i,x] such that if

4 = iiglll, | vyp!sin (ot +6) ft |viol sin (ot +015) ft/sec
ya

\ C 3)

for some lidll, &lt;eo, then

fell, Saw { llell, )
_§ ak

dll, &lt; 6; Vm lidll_ (m = 2 in our problem)

(4.94)

“40:Y)
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With this interpretation of the MOID plot in Fig. 4.5.2.4 we see that the ASM AFCS will be most

sensitive to x; -Xx disturbances at low frequencies. As the frequency is increased above 0.2 rad/sec,

however, the sensitivity to such disturbances decreases while the sensitivity to Xx disturbances

increases. This continues until approximately 0.4 rad/sec. Above this frequency the sensitivity to

x; -Zx disturbances increases and the sensitivity to Xx disturbances decrease rapidly. Between 1

and 3.5 rad/sec we are particularly sensitivity to x; -Xx disturbances. Just above this frequency

range the Zx disturbances will be particularly troublesome and at high frequencies x;-Zx and Zx

disturbances will be equally troublesome.

Fig. 4.5.2.5 contains the MOOD plot which corresponds to Fig. 4.5.2.4. In this plot the solid

curve corresponds to ©, lu;,l and the dashed curve corresponds to ©, luy,l. This convention shall

also be used throughout the chapter. The o4lu;;! corresponds to errors in x; -Zx and the clus!

corresponds to errors in Xx. Given a disturbance d as in eq. (4.93), the corresponding tracking

error, € = S d, will be given by
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The figure shows that for all frequencies below about 4 rad/sec. we will have our largest

racking errors in x; -2x when the disturbances are collinear with the right singular vectors of

3:(j0): i.e

If d=Im {Ilkley ®t }

| vy! sinot + 61; + 6,) ft ]vio! sin(ot + 64, + 6) ft/sec

where k = Ikle fe C , then

e=Im{ oc. klu, ®t )

[ sin(ot+¢,)ftluol sin(wt + ¢q,) ft/sec

A597)

4 18)A

(4.99)

(4.100)

Above 4 rad/sec if d is collinear with v, then Xx errors will be larger than Xj -2X errors but not by
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more than 12 db.

To evaluate the ability of the ASM AFCS to attenuate high frequency noise in our x;-Zx and

Yx measurements, we examine the recovered ASM closed loop tfm, T5(w). Its singular values, as

well as those of the target ASM closed loop tfm, Tr (jw), are given in Fig. 4.5.2.6. The

corresponding MOID and MOOD plots for ¢,[T3(jw)] are given in Figs. 4.5.2.7 and 4.5.2.8,

respectively 0
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Fig. 4.5.2.6 shows that the worst case frequency (in the sense of the two-norm) is at =

0.73907 rad/sec. A SVD of T3(jw) at ® o gives us the following two very useful pieces of

information. For notational simplicity let ¢ = €3 I =T3,andn= nj. It can be shown that

n= [0.833 sin Wt ft e=Tn
10.553 sin(w,t+121.1°) fi/sec = € = 1.654

[0.903 sin(w,t-42.29) ft
[0.43 sine t+122.1°) fy/sec

(4.101)

and that

n= [ -0.553 sinwt ft ] e=Tn = 0. 0.833sin(e, t+121.19) fifsec ~~ e=093 | 0.43 sin(e t+11.99) ft ]L 0.903sin(w t+96.29) ft/sec (4.102)

Eq. (4.101), loosely speaking, implies that the ASM AFCS will be particualarly sensitive to noisy

measurements in x; -Xx. These equations tell us about noise attenuation.

At this point it is useful to point out two very useful and inciteful stability robustness tests due

to Lehtomaki and Athans [9]. Suppose that the "true linear" loop tfm can be written as:

) 1

WN;~  yr A-ra

Gis) =[1+ A (jo) ] Gi 3(w)

SaxBnGO]&lt;11G)forall20

(4.103)

(4.104)

It can then be shown that the "true linear" closed loop system (with Dm at the plant output) will be

stable if

0.x [300] &lt; I"1(w) forall @&gt;0 (4.105)

This condition is a sufficient condition for the stability of the "true linear" closed loop system. The

condition, however, becomes necessary if no directional information is known about A_(J).

AG w) is referred to as a pre-multiplicative modeling error. If no directional information is known

about A_ (jw) then it is said to be an unstructured modeling error.

For simplicity suppose that

— 2[+A _(5)=02/(s +20 s+ m2] (4. 16)

where ®_ = 27 rad/sec is the first harmonic of the main rotor. We then have

A_(s)=-s[s+2{w] I/(s2+2lws + 02) AY‘A1(.¥h)
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Suppose all we know is that

Omax! An] S15,G0) = 1s[s + 2{w1/ [s* + 2Los + 02] Ij, (4.108)

We then have

ln 1G) = 1[s? +200 s+ ©2] /s[s +2{o] | = jo

We then ask the following important question: How small a { can we tolerate before losing our

guaranteed stability ? To answer this all we need do is consider smax[T;(jw)] from Fig. 4.5.2.6

and 1, 1G). The stability test can be visualized as in Fig. 4.5.2.9. The answer to this question

falls out easily by making Bode magnitude approximations for 1 1Gw) at w = o_= 27 rad/sec.

Doing so gives us

0 hax! 1 Go)=0.0316 &lt; 11a) =2¢V1-0% = 2¢ (4.110)

which yields

{ = 0.0158 (4.111)

A db

60

 1 1

sp

J
3

—— eww

) ¢

zg! (jw)

27

0.43 0.74 3 ow
= = 1_ -316421 0.0316 0 O%°

Fig. 4.5.2.9: Visualization of Pre-Multiplicative Stability Robustness Test.
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Fig.4.5.2.9 shows that if { 0.0158 and if we know nothing about the directionality (phase)

properties of A_ (jw) then the closed loop may go unstable.
Now suppose that the "true linear" loop tfm can be written as:

2LO
~ ha

G30) = [I+ AG)! Gy5G)

Omaxl3g00] &lt; 3G) for all 20

(4.112)

(4.113)

[t can then be shown that the "true linear" closed loop system (with A4 at the plant output) will be

stable I

Op ax [5300] &lt;141Gw) for all ®20

This condition is also a sufficient condition for the stability of the "true linear" closed loop system.

The condition becomes necessary if no directional information is known about A gw). A gw) is

referred to as a pre-division modeling error. If no directional information is known about A JU)

then it is said to be an an unstructured modeling error.

The stability robustness conditions in eqs. (4.102) and (4.111) are very useful since they

show us how to determine stability given only magnitude information about the error in our linear

model. These results should be particularly attractive to classically-oriented design engineers since

they are direct multivariable extensions of classical SISO Nyquist ideas. It should also be noted

that the conditions in egs. (2.102) and (4.111) show why the target loop properties:

0. [Tkr({m)] &lt;2db for all ®&gt;0

o_ [SPkr(®)] &lt;0 db for all ®&gt;0

(4.115)

(4.116)

are very desirable to have. Other stability robustness tests are given in [9].

Fig. 4.5.2.10 shows the singular values of the recovered ASM LQG/LTR compensator,

K3LoG/LTRG®)- Fig. 4.5.2.11 shows the singular values of the ASM compensator, K3(s) =

K31 QG/LTR(S) / s. K3(s) takes the error signals, €3, and generates the control signals, u 3, to the

ASM plant, G3(8).
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In these figures we see the high-pass structure of the recovered ASM compensator. This

high-pass structure is due to the fact that the ASM Design Plant, G5(s) = G5(s) / s has singular

values which roll-off at -40 db/dec and -60 db/dec whereas the target ASM (Kalman filter-based)

loop, G3gr(s), has singular values which both roll off at -20 db/dec.

In fig. 4.5.2.11 we see that errors in the frequency range 2 to 20 rad/sec will be amplified to

generate the controls (A® : and XB 1c) to the ASM plant, G3(8). ASVD at th€ WOrst case

frequency (@_ = 4.75 rad/sec) shows that errors which are collinear with

2(t) = 10.8703 sin wt fi
0.493 sin(w,t + 37.8°) ft/sec J (4.117)

will produce controls which are collinear with

3.(t) =14374 0.58 sin(@t + 30.3%) deg of A,0.157 sin(w,t- 6.1%) deg of ZB, ] (4.118)

This implies that large errors in x;-Zx (load deviation from center) will require a large A®

(differential collective).
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In order to better understand the directionality properties of the ASM compensator, we have

provided MOID and MOOD plots for K5(s) in figs. 4.5.2.12 and 4.5.2.13, respectively.
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Fig. 4.5.2.12: ASM Compensator MOID Plot Fig. 4.5.2.13: ASM Compensator MOOD Plot

The MOID plot in Fig. 4.5.2.12 shows that the error directions which receive maximum

amplification vary considerably with frequency. The MOOD plot in Fig. 4.5.2.13 shows much

less variation in the corresponding outputs.

Finally, it is important to understand the effect of reference commands and sensor noise on the

controls. This is best done by examining the reference to control tfm. Fig. 4.5.2.14 shows the

singular values for the recovered ASM reference to control tfm. Figs. 4.5.2.15 and 4.5.2.16 show

the corresponding MOID and MOOD plots, respectively.
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Fig. 4.5.2.14: Recovered ASM Reference to Control Singular Values.



-173 -

~ iC

20.  -
= C10.
o,
Lae.
©

i, -20.

_
oO
=

0.
oN

-20.
’

A

' % ’

A \
Ix

wv.

@

%

y
a

Jd
1-1-4 /

god

-40.

10,

7
'

80

eee et]
10! 10°

frequency (rad / sec)

Fig. 4.5.2.15: Reference to Control MOID Plot Fig. 4.5.16: Reference to Control MOOD Plot

deat
10}

ie deedLLa
10°

\
-

. ”~

Fig. 4.5.2.14 indicates that some references commands forx; -Xx and Xx in the frequency

range 2 - 20 rad/sec and 6-20 rad/sec will be amplified to generate the appropriate controls A® :

and XB... A SVD at the worst case freqeuncy (© o = 4.75 rad/sec) shows us that references which

are colinear with

r(t) = [0.863 sin at ft
0.506 sin(wt + 24°) fi/sec J (4 »19)

oroduce controls which are colinear with

u(t) = 1.33 [ar sin(wt + 23.3%) deg0.16 sin(w,t-11.99) deg (4..20)

Typically we want to regulate the load motion (xy - Tx = 0) and command Xx. To assure

reasonable controls for given reference commands, Fig. 4.5.2.14 indicates that pre-filtering is

desirable. For this reason we recommend that x; - Zx and Xx reference commands be passed

through a 3™ order Butterworth filter:

H(s) = 0,3 / (s2 + 2005? + 20,25 + 0,3) (4.121)

with ©, = 4 rad/sec. This reduces the + 80 db/dec slope between ® = 2 to 4 rad/sec to 20 db/dec.
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Finally it is important to emphasize the affect of decreasing p3. Decreasing p, causes the "far

away" compensator poles (to be discussed subsequently) to move further from the origin. This

improves our stability robustness. Doing so, however, increases the amount that errors and

references are amplified to generate controls. This means more control action, pitching, and

oscillations in the vertical plane. In order to keep the control action, pitching, and oscillations

"somewhat reasonable" we did not lower Py below 10-3; i.e. we traded-off stability robustness for

performance. The extent to which this trade-off is pronounced shall be shown when time simulat -

ions are presented. It should be noted that as p30, however, the reference to control tfm

becomes improper. This implies that for small enough P,, step-like commands result in impulse-

like controls.

4.5.3 ASM AFCS Poles and Zeros

To further understand the strategy of the recovered ASM LQG/LTR compensator, it is

instructive to compare the target ASM loop poles and zeros with the recovered ASM loop poles and

zeros. The target ASM loop poles and zeros are given in Table 4.5.3.1 and are plotted in Fig.

4.5.3.1. These are the poles and zeros associated with the Target ASM open loop tfm,

G3kg(s) =C3(sI -A3)! HH3: The recovered ASM 0pen loop poles and ZeroS (p3 —-_ 107) are

given in Table 4.5.3.2. These are the poles and zeros associated with the recovered ASM open

loop tfm, G3(s)K5(s).

Tables 4.5.3.1 and 4.5.3.2 show that for p,=10"3 the recovered ASM loop poles include the 7

poles of the ASM plant, Gp3(8), 2 poles associated with the integrators, and 9 poles associated with

the ASM LQG/LTR compensator, K31 oG/LTRE): The poles of K3LoGLTR (s) are simply the

eigenvalues of the 9 x 9 matrix A3-B3G 3-H ;3Cs. The tables also show that the recovered ASM

loop zeros include the 4 zeros of the ASM plant, Gp3(5), and 7 zeros associated with the ASM

LQG/LTR compensator, K31 0G/LTRE)- The zeros of K3L oG/LTR(S) = Gp3(sI- Ag+ B3Gy3 +

H,3C3) 1H, 4 can be shown to be the zeros of the transfer function matrix. G3(sI - A) 1H. This
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follows from the fact that

(sI-A2+B;G +H .C. -H l= -B [sa -H ] B 0 ]Sg ests y Gy? oH Cy 1 (4.122)

The tables show that the 9 ASM LQG/LTR compensator poles consist of 5 poles which would

move off toward infinity if p; were decreased. These poles are referred to as "far away poles” in

Table 4.5.3.2. The other 4 ASM LQG/LTR compensator poles are lightly damped poles which

would move toward the ASM plants’ lightly damped zeros if p; were decreased. This follows from

the fact that the ASM plants’ lightly damped zeros do not appear in Fig. 4.5.3.1 which shows the

target ASM loop poles and zeros. That is, they are not zeros of the target ASM open loop tfm,

Table 4.5.3.1: Target ASM Open Loop Poles and Zeros

Poles:
s = 0, 0 (Integrator per channel)
s = 0.04022 + j 0.4785; { = 0.084; 0, = 0.4802

s =-0.1976 £ j 0.7364; { = 0.2592; , = 0.7624
s=-2.119
s=-0.5313 + 2.624; { = 0.1984; o, = 2.678

Zeros:

s=-0.3754 £j 0.71707; { = 0.4671; Oo, = 0.8038

s=-0.2724 £j 0.735; { = 0.5877; ©, = 0.4635
s=-2.127

s=-0.5349 £j 2.622; { = 0.199; 0, = 2.676
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Table 4.5.3.2: Recovered ASM Open Loop Poles and Zeros

ASM Plant Poles:

ASM Plant Zeros:

ASM Compensator Poles:

ASM Compensator Zeros:

s = 0.04022 + j 0.4785, 0, = 0.4802, { = - 0.084

s =-0.1976 £j 0.7364, 0, = 0.7624, { = 0.2592
s=-2.119
s=-0.5313 +) 2.624, 0, = 2.678, {= 0.1984

s=-0.1786 +j6.413, wo, = 6.415, { = 0.02784

s=-1.3371%j9.807, wo, = 9.902, { = 0.1385

s = 0, 0 (Integrator per channel)
s=-1.887 8.578, o, = 8.783, { = 0.2149

s=-0.8031 + j4.311, w, = 4.386, {=0,1831

s=-3.6351j3.942, 0, = 5.362, {=0.6779
s=-5974
s=-11751j 8.402, 0, = 14.44, { = 0.8133

s=-02272+ 0.344, 0, = 0.4122, { = 0.5511

s =- 0.3391 + j 0.6977, @, = 0.7785, { = 0.4372
s=-2.124
s=-05319 2.621. ow, = 2.675, { = 0.1989.

G3kx(s) = C3(sl - AH 3. These lightly damped poles shall be discussed in more details

subsequently.

The tables also show that the 7 zeros of the ASM LQG/LTR compensator consist of 3 zeros

which make the Anti-symmetric Damping and Pendular Modes uncontrollable, and 4 more zeros

which provide damping for the Vertical Spring and Backflapping Modes. The fact that the

Anti-symmetric Damping and Pendular Modes have been made uncontrollable is not very alarming

since these modes are near our gain crossover frequencies and would otherwise deteriorate our

stability margins.

Finally, the trade-off between performance and stability robustness should be made apparent.
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Decreasing p, improves our stability margins. This, however, results in a loop with more lead

and lightly damped poles. This, of course, results in larger controls, pitching, and oscillations in

the vertical plane. Increasing p;, worsens our stability margins but improves our performance. The

trade-off is thus apparent.

Before studying the recovered ASM AFCS time response characteristics, it is instructive to

compare the target ASM closed loop poles and zeros with the recoverd ASM closed loop poles and

zeros. The target ASM closed loop poles and zeros are given in Table 4.5.3.3. These are the poles

and zeros associated with the target ASM closed loop transfer function matrix, T3 p(s) = G3yg(s)

[I+G3gg(s)] = Cs(sI-Ag +H, ;3C)) 1H 5. The recovered ASM closed loop poles and zeros are

given in Table 4.5.3.4. These are the poles and zeros associated with the recovered ASM closed

1+C3®@4(s)H, 5]! where D4(s) = (sl - Ag). For convenience the target and recovered closed loop

poles and zeros have been plotted in Figs. (4.5.3.2) - (4.5.3.3).

In examining the closed loop poles and zeros in Table 4.5.3.3 and 4.5.3.4, itis essential to

identify which modes will have the greatest impact on our outputs, xp - 2x ansd Xx, and which

modes will have the greatest impact on internal quantities such as A® &gt; Az, ZB, and X80. First

we examine the target ASM closed loop poles and zeros.

Figs. 4.5.3.1 - 4.5.3.2 convey the basic strategy of the ASM AFCS. The figures show that

the Anti-Symmetric Damping and Pendular Modes will be made uncontrollable and that the Vertical

Spring and Backflapping Modes will be drawn toward compensator zeros. From these figures we

expect the ({ = 0.42, ®_ = 0.69, T=3.5) poles, associated with the Backflapping Mode, to have

a predominant effect on £x, £6, and ZB;.. Because of coupling, however, this mode may also

affect x; - Xx. Similarly the (€ = 0.32, w_=0935, t=3.2) poles, associated with the Vertical

Spring Mode, is expected to have a predominant effect on Xp - ZX, Az, and A©® oo As far as the

recovered closed loop poles are concerned the poles of greatest impact are those which approach the
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Table 4.5.3.3: Target ASM Closed Loop Poles and Zeros

 Poles A;(Az - Hyy3C3): s = - 0.5423

s=-0.5748
5 =- 0.2907 + j 0.6241, @, = 0.6885, { = 0.4222

s = - 0.3062 + j 09024, @_= 0.9529, { = 0.3214
s=-2.113
s=-0.5323 + j 2626, 0, = 2.679, { = 0.1987

Jerr »

Lie s=-0.2724 + j 0.375, o, = 04635, {= 0.5877

s=-0.3754 + j0,7107, o, = 0.8038, =0.4671
s=-2.127
s=-0.5349 + j 2.622, o, = 2.676, { = 0.1999

Table 4.5.3.4: Recovered ASM Closed Loop Poles and Zeros

Poles: A;(A3-H;3C3):

Ai(A3-B3Gp3) :

Zeros: ASM Plant :

ASM LQG/LTR Compensator:

s = - 0.5423

s =-0.5748

s=-0.2907 £j 0.6241, ©, = 0.6885, = 0.4222

s =-0.3062 * j 0.9024, wo, = 0.9529, { = 0.3214
s=-2.113
s =-0.5323 + j 2.626, 0, = 2.679, { = 0.1987

s=-1.005=%j4.177, 0, = 4.296, { = 0.2339

s=-3463 %j 3.199, 0, = 4.715, { = 0.7346
s =-4.907

s=-1.891%j847, 0, =8.679, {= 0.2180
s=-1125%j 7.797, wo, = 13.69, {= 0.8218

s=-0.1786 +j6.413, w, = 6.415, {= 0.027841
s=-1371+j9.807, 0, = 9.902, {= 0.1385

s=-02272+j 0.344, 0, = 0.4122, { = 0.511

s=-0.3391% j 0.6977, 0, = 0.7758, { = 0.4372
s=-2.124
s=-0.5319 + 2.621, @_ = 2.675, { = 0.1989
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lightly damped zeros (C = 0.23, ® =4.3, t=1) and ({=0.22, ®_=8.7, T= 0.22). Because

the T = 0.22 pole, approaching the "helicopter zero", decays so rapidly we expect it to have little

affect on the outputs. Its greatest impact is expected to be on ZB;.. The impact of the © = 1 pole,

approaching the "load motion zero", is expected to affect the output x; - x somewhat. Its

greatest impact, however, is expected to be on Az.

4.5.4 Time Domain Evaluation of ASM AFCS

In this section the ability of the ASM AFCS to regulate the load deviation from center (xg - 2x)

and follow average horizontal velocity (x) commands is examined. Although Xp - 2x is usually

commanded to zero we'll also look at a nonzero command for the variable.

(A) Zx Command Following

To examine the ASM AFCS's ability to follow x commands we will drive it with a pre-filtered

step. The pre-filtered step will be the output of a 3™ order Butterworth filter with cut-off frequency

at Ww, = 4 rad/sec which is above the closed loop bandwidth (®e4= 1.5 rad/sec). The resulting

ime responses are given in Figs. 4.5.4.1 - 4.5.4.2.

Fig. 4.5.4.1a shows the resulting average horizontal velocity, Zx, response with an overshoot

of 5% and an undershoot of 15%. The risetime (time to reach 1 ft/sec) is seen to be on the order of

1.5 secs and the response takes about 12 secs to settle down. Because of the integral augmentation

we see that the Ix response exhibits zero steady state error. This response is primarily governed

by the closed loop poles ({ =0.32, © =0.96, t=3.2) which are associated with the ASM

Backflapping Mode.

Fig. 4.5.4.1b shows the resulting load deviation from center, Xp - ZX, response which is

dominated by the (§ = 0.32, ®_=0.96, T= 3.2) pole associated with the Vertical Spring Mode.

The lightly damped pole ({ = 0.23, ® , =4.3, t= 1) which would approach the "load motion

zero" if p, werte decreased, also has a noticeable impact on the response. The response shows
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that a filtered Xx = 1 ft / sec command results in a peak x; - Zx of about 0.225 ft.

Fig. 4.5.4.1.c and 4.5.4.1d show the corresponding average pitch attitude, £0, and vertical

separation, Az, responses. Although the 20 response is quite reasonable, the Az response exhibits

far too large rates. The reasons for the large rates are two-fold. One reason, obviously, has to do

with the lightly damped poles near the lightly damped load motion zeros. If we were to make P3

larger (recover less of our target loop) then these rates would decrease substantially but they would

do so at the expense of our stability margins; i.e. a trade-off between performance and stability

robustness. Because we have a high bandwidth design this trade-off is exacerbated. It thus

follows that the main reason for the large rates is because of the high bandwidth specification

coupled with the "relatively large" stability robustness specification. Consequently, ahigh

performance (high bandwidth) design is feasible only if modeling errors are sufficiently small.

The Xe response shown in Fig. 4.5.4.1e also exhibits more oscillation than desired.

Finally, the 2B, and A®, responses in Fig. 4.5.4.2 exhibit similar characteristics to the 28

and Az responses.
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Fig. 4.5.4.2: ASM AFCS Controls for a Xx = 1 ft / sec Filtered Step Command.
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In summary, thes responses confirm the rather intuitive fact that a high performance (high

bandwidth) design is feasible only if model uncertainty is sufficiently low. If model uncertainty is

high then a high bandwidth Equal Tether AFCS becomes unfeasible. This is because, in such a

case, the large robustness requirement forces the helicopters to undergo substantial oscillations in

the vertical plane in order to regulate the load motion when horizontal velocities are commanded.

Moreover, if model uncertainty is high then only a low bandwidth design becomes feasible.

(B) x1, - Zx Command Following

Although typically the load deviation, x; - Zx, will be commanded to zero, it is instructive to

see the effect of an x; - Xx step command. In this section we drive the ASM AFCS with a

pre-filtered x; - Xx = - 1 ft step. Physically, this amounts to commanding a vertical separation,

Az, of - 2 ft (slave above master). This is because in the steady state x; - Zx = 7 Az=0.5Az. As

before, the pre-filter shall be a 37d order Butterworth with cut-off frequency at w, = 4 rad/sec. The

resulting time responses are given in Figs. 4.5.4.3 - 4.5.4.4.

Fig. 4.5.4.3a shows the resulting Xx response. We see that a filtered x; - Zx = -1 step

command results in a peak Xx of about 0.19 ft / sec.

Fig. 4.5.4.3b shows the load deviation, x; - Zx, response. The figure shows that the

response exhibits a 17% undershoot and about a 19% overshoot. These rather large excursions are

due to the lightly damped poles ({ = 0.23, ® =4.3, T=1) and the load motion zero's near them

(€ =0.03, ® =6.42, 1=75.6). The response’s settling time is dominated by the ({ = 0.32, © =

0.96, T= 3.2) poles associated with the Vertical Spring Mode and the zeros ({ = 0.44, © =0.78,

T = 2.95) near them.

Figs. 4.5.4.3c and 4.5.4.3d show the corresponding £0 and Az responses. As expected,

they are more oscillatory than desired. If p; were increased these oscillations would decrease

substantially. Increasing p,, however, would result in smaller stability margins. For Pz = 10°



184

2

ie |AE — [oI
Tp

I ¥ +
9 —

p—
&gt;a

I

A

LN I |

= r

8 eh \
= [ \
he -.€ Wien a!

42 A
09} —

.06 -

O03 bb — ,

ad I + 5 6 7 8 8 A

time (seconds)

td
L
©
pat,

10 I—
id
Pa

~" :

nx Vr iit

5 r 7 8 9 10

time (seconds)

b) Load Deviation from Center

-f,

a) Average Horizontal Velocity

5

a

n+ TT + =
-—

y )

= EL | sited 1
f

2 —

— 0 } la7 i hz§ Lr bot Lr
&gt; 1 /! he

/ | :

1 5 - 4 A 6 7 8 ° it

=&gt; -.z hh
8 Eb LAV
 Te J {
N -.s ;

&lt; \ LL

_ i1 Le +
Ra TTS . 5 € 7 a

time (seconds)

=

fed

time (seconds)

c) Average Pitch Attitude d) Vertical Separation

od
Ye i VI |

.5 ”Ty a]
: NLT TT

I T ~t— m——

—
SH

BS
s

©
 «9

. «

by a

wt —

de
8 9 i

time (seconds)

e) Average Tether Angle

Fig. 4.5.4.3: ASM AFCS Response to an xy -2x = -1 ft Filtered Step Command.



.18§.

the ASM AFCS has a guaranteed multivariable phase margin of 41.5°. If the bandwidth of the

design were reduced we could have such a margin without the substantial pitching and oscillations.

The bottom line is that, in general, a trade-off must be made between performance and stability

robustness and that the high performance specification only serves to make this trade-off worse.

Fig. 4.5.4.3e shows the average tether angle, 2g, response resulting from the filtered load

deviation command. The response is seen to be dominated by the Pendular Mode ({ =0.2, ® =

2.7, t=109)

Finally, Figs. 4.5.4.4a and 4.5.4.4b show the corresponding average cyclic, 2B,., and

differential collective, A® -» responses. We see that these responses have characteristics similar to

those exhibited by the £6 and Az responses.
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In summary, the above time responses further confirm the fact that a high performance (high

bandwidth) ASM AFCS is feasible only if modeling uncertainty is sufficiently low.
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(C) xp - Zx Disturbance Rejection

Finally, to examine the ability of the ASM AFCS to regulate the load motion (x; - Zx) in the

presence of disturbances, we shall consider an initial condition response in which initially the load

is displaced 1 ft to the left of the center (x; - Xx = - 1 ft) due to an initial average tether angle, Ze =

-4.3 degs (initially we have 28 = Az =0 and x; - x = x; '= H Zg). The resulting time responses

are given in Fig. 4.5.4.5 - 4.5.4.6.

Fig. 4.5.4.5a shows the resulting Xx response. The response shows that a peak value of

about 0.8 ft/sec occurs. The response takes about 10 seconds to settle down to zero.

Fig. 4.5.4.5b shows the corresponding x; - Zx response. The response exhibits a very large

overshoot and is dominated by the ({ = 0.32, o =0.96, T=3.2) pole, associated with the

Vertical Spring Mode, and the zeros (§ =0.44, w_=0.78, T= 2.95) near them.

Figs. 4.5.4.5c and 4.5.4.5d show the corresponding X60 and Az responses. As with the

command following responses, these responses are too fast. To remedy this we can either increase

p5 and give up stability robustness or increase I; and give up performance (speed).

Fig. 4.5.4.5¢ shows the Xe response and Figs. 4.5.4.6a and 4.5.4.6b contains the

corresponding controls, XB;. and A® «» Tespectively.
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In summary, the responses show that a high performance (high) bandwidth) design is feasible

only if model uncertainty is sufficiently low. In such a case we can increase p; to reduce the

substantial pitching and oscillations that the helicopters must undergo in regulating the load motion.

[f model uncertainty is high, however, then the above high bandwidth ASM AFCS becomes

unfeasible. Chapters 5 and 6 attempt to remedy this by examining the virtues of a TLHS in which

the master and slave tether lengths are unequal. Comparisons are made with the Equal Tethered

AFCS developed in this chapter.

4.5.5 Summary of ASM AFCS Design

In this section, the LQG/LTR design methodology was applied to the ASM Design Plant; an

unstable TITO system with considerable low frequency phase lag and four lightly damped high

frequency zeros. It was shown, as expected from Chapter 3, that controlling the ASM PLant is

very difficult; particularly when the specifications call for a high performance (high bandwidth)

robust design. More specifically, it was shown that for such specifications the trade-off between

stability robustness and performance is particularly pronounced. Raising the bandwidth would
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exacerbate the situation since this would result in more control action and larger oscillations in the

vertical plane. Lowering the bandwidth would, of course, help but would be sacrificing our "high

performance”.
In summary, we conclude that the LQG/LTR design procedure can be used to develop a real

world ASM AFCS. A high performance (high bandwidth) ASM AFCS, however, is only

feasible if model uncertainty is sufficiently low. If model uncertainty is high then a high

performance design becomes unfeasible. This is because, in such a case, the large robustness

requirement forces the helicopters to undergo substantial pitching and oscillations in the vertical

plane in order to regulate the load motion when horizontal velocity commands are issued.

Moreover, if model uncertainty is high then only a low bandwidth design becomes feasible.

Chapters 5 and 6 shall examine whether having unequal tether lengths lessons the above trade-off

between performance and stability robustness.

4.6 Final Time Domain Evaluation of Equal Tether AFCS

For completeness, we examine the time characteristics of the combined AVM, SM, and ASM

AFCS's. More specifically, in this section the following command scenario is studied:

¥z = 5 ft / sec unfiltered step command;

Ax =1 ft initial condition;

Xp - ZX =-1 ft (Ze =-4.3 degs) initial condition;

&gt;x = 5 ft/sec filtered step command.

As before, a 3rd order Butterworth filter with ®, = 4 rad/sec is used to generate the TX step

command. The resulting time responses for the individual helicopters and tethers are given in Fig.

4.6.1. As expected they exhibit the helicopters undergo substantial pitching and oscillations in the

vertical plane in order to regulate the horizontal separation and load motion while following the

horizontal and vertical velocity commands.
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4.7 Summary of Equal Tether AFCS Design

In this chapter the LQG/LTR design methodology was applied to the Equal Tether Design

Plant discussed in Chapter 3. The method was used to systematically develop an Equal Tether

AFCS satisfying the performance and robustness specifications presented in Chapter 3. The Equal

Tether AFCS, consisting of an AVM AFCS, a SM AFCS, and an ASM AFCS, was evaluated in

the frequency domain and in the time domain. The concept of MOID and MOOD plots were

introduced to help visualize the directionality properties of the TITO ASM AFCS.

Finally, it was shown that a high performance (high bandwidth) Equal Tether AFCS is only

feasible if model uncertainty is sufficiently low. If model uncertainty is high then such a design

becomes unfeasible. This is because, in such a case, the large robustness requirement forces the

helicopters to undergo substantial pitching and oscillations in the vertical plane in order to regulate

the horizontal separation and load motion when horizontal and vertical velocities are commanded.

Moreover, when model uncertainty is high then only a low bandwidth design becomes feasible.

Such a design can be obtained by increasing Hi» Hy, and ly in order to get target loops with lower

bandwidths. Removing the integrators is another option to consider since it would lessen the

trade-off between performance and stability robustness. Making h = 0; i.e. attaching the tethers

directly to the helicopter c.g.'s may help considerably since in such a case the unstable Tethered

Helicopter Mode moves to the origin giving us a natural integrator in the SM AFCS loop. None of

these options shall be addressed in this thesis. Chapters 5S and 6, however, examine the feasibility

of a high performance (high bandwidth) AFCS design for a TLHS with unequal tether lengths. It

is hoped that having unequal tether lengths would lesson the trade-off between performance and

stability robustness.
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CHAPTER 5: ANALYSIS OF TLHS UNEQUAL TETHER MODEL

5.1 Introduction

In this chapter the linear model developed in Chapter 2 is analyzed using the nominal parameter

values given in Appendix 1. In particular, the chapter will focus on the "Unequal Tether Problem,"

l.e. the case in which the master and slave tether lengths are unequal (Hg=2H_; H =H). The

chapter discusses the coupling that results between two of the three basic motions (AVM, SM, and

ASM) when the tether lengths are unequal. The natural modes of the Unequal Tether Configuration

are identified and discussed. Comparisons are made between the Unequal Tether and Equal Tether

Configuration properties. The purpose of this chapter is to provide an understanding of the

"Unequal Tether Model" and how it differs from the Equal Tether Model so that we may formulate

design specifications for the Unequal Tether AFCS to be developed in Chapter 6. The primary

reason for studying the Unequal Tether Configuration here is to examine whether or not having

unequal tether lengths lessens the trade-off between performance and stability robustness when a

high performance (high bandwidth) design is desired.

5.2 Coupling Between the Symmetric and Anti-Symmetric Motions

5.2.1 Introduction

It was established in section 3.2 that, regardless of the tether lengths, the AVM is always

decoupled from the Symmetric and Anti-Symmetric Motions. This is due to the fact that the vertical

and horizontal linear dynamics for a hovering helicopter are decoupled (Bramwell, [1]). It was also

shown that when the tether lengths are equal, H=H,,theSymmetric and Anti-Symmetric Motions

decouple from one another. This is due to the perfect symmetry of the TLHS when the helicopters

are identical and the tether lengths are equal. When the tether lengths are not equal (Fig. 5.2.1.1)

C
—/ |

slave

master

Hn=H
spreader
har

J

payload
Fig. 5.2.1.1: Visualization of Unequal Tether Configuration.

vl
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(Hg # H,,,), however, this decoupling does not take place and one must analyze the Symmetric

and Anti-Symmetric Motions simultaneously.

The Symmetric Motion (SM) involves the Ax and AB degrees of freedom and the control input

AB,.. The Anti-Symmetric Motion (ASM) involves the ¥x, 20, Az, and xp'degrees of freedom

and the control inputs A® _ and XB;.. The combined Symmetric and Anti-Symmetric Motions shall

be referred to as the Symmetric-Anti Symmetric Motions (SASM).

To get a feel for the coupling that results when H, # H_, it is necessary to examine the linear

model in Table 2.4.1 - 2.4.2. Inspection of Table 2.4.1 shows the presence of a tether length

"coupling parameter”, S = (H,,-Hy) / (Hj, +H). It thus follows that if H,=2H,_, then § &lt;0. In

such a case Table 2.4.1 shows that the ASM "drives" the SM with £6 and xp, while the SM

'drives" the ASM with Ax and AB. This can be visualized as in Fig. 5.2.1.2.

AB, SM Ax (feet)
(degrees) Ax, A

[Coupling
 —  — 1

26,x!
A®, —1
2B. —

(degrees)

ASM — +X —2x (feet)
—— +=&gt;x (feet/sec)

Fig. 5.2.1.2: Visualization of Symmetric - Anti Symmetric Motion (SASM).

The degree to which this coupling occurs (when H, = 2H; H_, = H) shall be examined later in

the section. Before proceeding with the analysis of the Unequal Tether Model, we recall some

basic geometric relationships.

For the Equal Tether Problem the relationships for the horizontal separation, Ax, the

zeneralized load coordinate, X; ', and the load deviation from center, Xp -2X, were simply as follows:
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Ax = - [h AB + H Ag]

- 20][Xe=HXp =

x -Zx=hZ0 +Z Az + H Xe

(5 1a)Fw

(5.1b)

(5.1¢)

These relationships, obviously, are not valid for the Unequal Tether Problem. When Hg # H_the
relationships are as follows:

Ax=-[hAO+He-Hge]
x '=0.5 [ Hy(e0) + Hye8)]+05 [Hy -H16_

=05[Hge+ Hye 1-H 20
¢ Tx =(h+H)Z0+Z Az + x;

(£.2)

(5.3a)

(5.3b)

(5.4)

From eqs. (5.2) - (5.3) we get the following two useful expressions:

e ={2[x'+H;Z0]-[Ax+hA6]}/2H

e. ={2[x'+H;Z0]+[Ax+hAB]}/2H;

(5.1)

¥
4 ar~N 3)

Eqs. (5.2) - (5.6) were given in Table 2.4.3.

5.2.2 Notation for Unequal Tether Model: The SASM and Unequal Tether Plants

This chapter shall focus on the case where H =2H_ and H_ =H. Since the SM was

described by the state space triple (App, Bo Cro) and the ASM by (Ags, Boss C3) the SASM

shall be represented by the state space triple (Ajo3&gt; Bross Ch23)- The SASM shall henceforth be

denoted as follows:

X23 = Ap23 Xpp3 + Boz Ups

Yr23 = Chaz Xp3

G3(8) = Cpp3(sI-Aps)1B5s

xo3€ RM nye R?

Yn3 € 33

(t1)

(..8)sr

(5.9)
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Ups = [AB 11 AG, zB, JT

Xp23 = [Ax AB Ax AQ|Z0 Az x’ Ix 6 Az xT

v3 = [Ax Il xg -Zx ZX1T

(5.10)

(5.11)

(5.12)

where Ax, x;', and x;-Zx are given by egs. (5.2) and (5.4), respectively. The state space triple

(Ap23s Boss Cp23) and thetfm G23(8) shall be referred to as the SASM Plant. we note that the

SASM Plant is a three-input three-output system.

Given that the SASM is described by egs. (5.7) - (5.12), the entire Unequal Tether Model (Hg

=2H;H,=H) is given as follows:

Xp =ApXn+By
Yo = Ca Xn

_ -1

G(s) = Cp(sI-Ap) B,
where

u, = [up us TIT
Xp = [Xp1 Xp03TIT

Yp = [Yp1 ¥3 IT

x, € R12 ; Ly€RA

YA = iT a
E

§

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
Lou]

Ap w= diag(Ap;, Ap3)

GC = diag(C,,;, Cp23)

(5.19)

(5.20)

(5.21)

The scalars Apts Bs Cor Ups Xp» and Yp1 Were defined in Chapter 3. The matrices Ajo3s

B23 and Chas are given in Table 5.2.2.1. The SASM Plant parameter values are given in Table

52279



Table 5.2.2.1.1a: State Space Representation For SASM Plant.
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cam? |eemZonomg [uo lu |-2uendsu a wah Ba) Ry Fg TVET

Sen ——————————] — — a
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Definitions: Wm 1+e,+4pZ28 (1-8)

Du-mp2(1+p+(h+H)pe+(4T820x0)
Em-[X,+My(h+H)]
Fau(hsll)epo,2SH,-0,21,-4T8ZH,
mpd Zwy2y!
Tu(J¥]!
Vels(heH)es(1/n)+(48.222/¥)

Poa

0. 0. 1.0000 O. C.
0. 0. J. 1.0000 J. :

-0.8231 -0.8674 -0.0600 0. 0.2538
42.9500 -4.0065 2.3493 -3.4000 3.9928
- 0, 0. 0 .

n, 0. :
0. 0. nD Vv.
0.1372 -0.0006 0.4351

-2.1584 -0.1356 1.9964
| -0.2529 -0,0159 0.7018
{ 1.6248 0.1065 -1,7896

0. 0.
0. Q.
0.5487 t
8.6336

0.
0.
r

0.
 Dr |

.

0000

J.
iT 0.8231
3. 12.9520

-0.308% 1.5175
0.1044 -10.1690

 - 0000 0.
1.0000

.»0600
7.3493
0.

~1. 1741

1000
J.
1.6284

0.3361
D.11399 0.

tay

or”

-
 ~~o\

Notes: 1. Although the symbolic representations for Ap23s B23. Cp23 assume that all pitch angles and controls
are measured in radians, the numerical representations assumes them to be measured in degrees.

2. Displacements and velocities are assumed to be measured in feet and feet/second, respectively.

3. Forces (weights) are assumed to be measured in pounds.



Table 5.2.2.1b: State Space Representation For SASM Plant.

X51! -
Hye] ”

0. 0.
0. ec,
0.4702 (.

47.2400 c
0. \
r,

0

Fr.

B r23

i Zo.

T%ec™S LZ

Xp1c ;

|
Marc : i

| “aie Mare PH! J

Ve

. 0.4782

0. -4/,2400
5.7789 0.

¢

1 0 0 0 0 0 0 0 0 0 0

Cp23 =| 0 0 0 0 (h +H) Z 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

Fo

1.0000 0. 0. = 0.
0. 0. 0. 0.0. 0. 0. 0.

0.
0.5253
0

0. 0. 0. 0. 0. 0.
0.5000 1.0000 0. 0. 9. 0.
0. 0. 1.0000 0. 0. 0.

[LHS Parameters:

w=[ M+Mg]/2My 8 =Mp/[ML + Mp]

Hp=Hp/L
7Z=7/L

wp 2=(g/Hp)

Hp =2H Hy / [Hg +H]

e= My h/ly

n=(1/12)MgLZ

S=[Hy -Hg]/[ Hg + Hp, ]

ep,= 21g/MyLZ

—
\

J
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Table 5.2.2.2: SASM Plant Parameter Values.

Wy = 14000 Ibs.

I, = 5700 slug ft2

g=32.2 ft sec2

My = 434.78 slugs Wg = 644 1bs. Mp = 20 slugs

L=499"eR 4 h —- 35 1t. Z = 13.25 ft.

H= 13.25 ft.

8 =M / IM;+Mg]=al = 0.9491

Ig = (1/12) Mg L2 = 7935 slug ft?

e=Mgh/I, =0.2746

H_ =H =13.25 ft.

Hy =2H H_/[H,+H]=17.6667

S=[H,- HJ /[H, +H] =-0.3333

w,2=(g/H,) =1.8226

ep =2 Ig / Mp L2 = 0.0077

Z=7/L=05

H, = 2H = 26.5 ft.

H, =(H, /L)=0.2561

P=1+ey+4nZ28(1-8)=1.0295
D=-0,2[1+p+h+H)pe+@TSZ/®,2)]=-10.169
E=-[X,+M, (+H) =- 11741

F=h+H)epw,2SH -0,2H,-4T8ZH,=-2.2247ftdeg’!
J=(1/p8 Zw,2)=2561
T=ud, Zw,2/¥=0.3793
V=l+h+H)e+(1/w)+48.272/¥)=12.356

X,=-0.06 ft sec? / ft sec”

M,, = 0.041 rad sec? / ft sec’]

M, = - 3.1 rad sec?/radsec’!

Z., =- 0.346 ft sec? / ft sec!

Xp =2741t sec? / rad

Mg, = - 47.24 rad sec? / rad

Ze. = 340.9 ft sec? / rad
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It can be shown that the state space triple (Ap B,, Cp is controllable and observable. It thus

follows that the state space and tfm representations are equivalent minimal realizations. From now

on the state space representation, given by eqs. (5.13) - (5.14) and the equivalent input/output

representation, given by eq. (5.15), shall be referred to as the "Unequal Tether Plant". Figs.

5.2.2.1-5222 provide input/output visualizations for the TLHS and the Equal and Unequal

Tether Plants.

In this chapter we analyze the internal as well as the input/output properties of the Unequal

Tether Plant. Comparisons are made with the Equal Tether Plant. It should be emphasized that

both the Equal and Unequal Tether Plants contain the AVM Plant. This follows from eqs. (5.19) -

5.21). The AVM Plant was carefully examined in Chapter 3. Consequently, we shall not pay

much attention to it in this chapter. Instead we shall focus on the SM, ASM, and the SASM

Plants.
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5.3 Modal Analysis of TLHS Unequal Tether Configuration

5.3.1 Introduction

In this section the natural modes of the Unequal Tether Configuration (Hy = 2H; H, = H) are

identified and discussed. Comparisons are made between the modes of the Unequal Configuration

and those of the Equal Tether Configuration. To facilitate the comparisons, the modes of the

Unequal Tether Configuration shall be described using the same names used to describe the modes

of the Equal Tether Configuration in section 3.3.

The natural modes of the Unequal Tether Configuration are found by solving the 12 order

ordinary eigenvalue problem associated with the homogenous system (u,=0):

X,=A,x, (5.20)

where A, =diag(Apy, Apps) and x, = [x X03TIT. Before discussing the modes of the Unequal

Tether Configuration, we compare the "Equal Tether and Unequal Tethjer A;; matrices” which are

both given in Table 5.3.1.1.

It was shown in Chapter 2 that AX and AB are determined by the following two second order

ordinary differential equations:

My; AX = 0.5 [Wy + Wg] Ae - [Wig + 0.5 (Wy + Wg)] AB + My[X AX + Xp AB] (5.23)

I, AB = 0.5[W; + Wg] hAg- 0.5 [Wy + Wglh AB + I [M AX + MAB + My, AB] (5.24)

xr Apar3 ra

Age =-[(Ax+hAB)+25(x;'+HX06)]1/H, (5.25)

From eq. (5.25) we have

Ae = - [4.3245 Ax + 0.2717 A9] (5.26)

for the Equal Tether Configuration and

Ae = -13.2434 Ax + 0.2038 AB] + [2.1623 x;'+ 0.9999 X0] \~
~‘| 1)

for the Unequal Tether Configuration. It follows from egs. (5.23) - (5.25) that the only contribution
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of Ax, x;',and20 to A% and A@ is through Ae. Equations (5.26) - (5.27) show that doubling the

slave tether length reduces the contribution that Ax and A have on AX and AB. Tt also results in Xy

and 20 both driving Ax and AB. These observations are confirmed in Table 5.3.1.1.

It was also shown in Chapter 2 that ¥x and 6 are determined by the following two second

order ordinary differential equations:

MpZX = 0.5 [Wp + Wg] Ze - [Wy + 0.5 (Wp + Wp)] 20 + M[XZX+Xp,.ZB,.] (5.28)

1,26 = 0.5[W + Wg] h Ze - 0.5 [W; + Wg] h 28 + IL [M_Zx + M_Z6 + Mg; ZB, ] (5.29)

Inere

Ye={S[Ax+h AO] + 2[x;"+H26]}/2H, \- ? -0)

From eq. (5.28) we have

Fe = 4.3245 x,' + 20 (8.31)

for the Equal Tether Configuration and

Xe = - [0.5406 Ax + 0.034 AO] + [3.2434x;' + 1.499920] ‘5a2)

for the Unequal Tether Configuration. It follows from eqs. (5.28) - (5.30) that the only contribution

of Ax, AB. and x; 'to ¥X and x0 is through &gt;e. Furthermore, it follows from egs. (5.31) - (5.32)

that doubling the slave tether length reduces the contribution of Xp'to &gt;X and 8 while increasing

the contribution of ¥0 to ¥X and 38. It also results in Ax and A8 both driving ¥X and 58. These

observations are also confirmed in Table 5.3.1.1.

To understand the effect of doubling the slave tether length on the Az and A
og equations we

recall the following differential equations from Chapter 2:

WAZ=4p8 ZgSe-Az/L]+Z, Az +Zg, AO, (5.3- )
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i'=-gll+p+(h+H)ep+48272 (1/¥g)lZe+g[l+p+(+H)ep56
f[4pd,222g1(1/¥(1/¥L)Az-[X,++H)M,]Zk-(h+H)M,ZHS 1

(28, I'P)[Z,, Az+Zg, AB ]- [Xp + (h + H) Mp;.] ZB; (5.34)

Equation (5.33) shows that the only dependence of AZ on Ax, AG, x; ', and Z6 is through Xe.

Moreover, the only dependence that AZ has on the tether lengths is through Ze.

Equation (5.34) shows that the only dependence of X;'on Ax, A6, and x;'is through Ze.

The equation also shows that X|'dependsexplicitly on the slave tether length, H,. This is because

of the explicit dependence that x; has on Hy:

0 ZzHyHee]+€n[Hp50.[| = (£.25)

From egs. (5.31) - (5.34) it follows that doubling the slave tether length reduces the

contribution of Xp to AZ and increases the contribution of 0 to AZ and Xr !. The contribution of

Xp. to Xp ls however, increases because of the increase in the Ye coefficient. For a similar reason

the contribution of ¥6 to X;! also increases.

Finally, egs. (5.31) - (5.32) also show that doubling the slave tether length results in Ax and

AQ driving both AZ and XI. These observations are confirmed in Table 5.3.1.1.

Having discussed the differences between the "Equal and Unequal Tether A, matrices" we are

now ready to discuss the differences between the natural modes of the Equal and Unequal Tether

Configurations. The eigenvalues, A., and right eigenvectors, v;, associated with the Equal and

Unequal Tether A, matrices are given in Tables 3.3.1.1 and 5.3.1.2, respectively. For

convenience Table 5.3.1.3 contains the magnitudes and phases associated with the complex entries

of the Unequal Tether complex eigenvectors. To facilitate the comparison between the Equal and

Unequal Tether modes we have tabulated the Equal and Unequal Tether eigenvalues in Table

5.3.1.4. It is emphasized that the discussion which follows assumes that displacements are

measured in feet and angle in degrees.
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Table 5.3.1.2: Eigenvalues and Right Eigenvectors For Unequal Tether Model

AVM: Average Vertical Damping
A. =-0.2384

Units: ft, degs, ft/sec, deg/ sec

-1 0000

V1 —

SASM: Tethered Helicopter
As = 0.6604

0.
0.4780

-0.6795
0.3157

-0.4488
-0.0261%
0.0224
0.0694
9.0121

-0.0172
-0.0146
0.0458

Voy =

Backflapping
Ag.7 = 0.0478 + j 0.4698

0. * 0. i
0.0649 + 0.0559i
0.0363 + 0.0403i

-0.0232 + 0.0332i
0.0031 + 0.0175
0.2537 + 0.25811}
0.7266 - 0.1603i
0.0044 - 0.0325i

-0.3508 + 0.16641
0.1094 + 0.1315}
0.1100 + 0.33361
0.0155 + 0.0005i

v
a

Pendular

Je + 0. 1
0.0425 - 0,0119i
0.2336 + 0.1017i
2.0029 + 0.1110i
0.3910 + 0.5074i
0.2032 + 0.0394i
2.0131 - 0.0181i

-0.1569 + 0.02621
0.0219 + 0,0875i
0.2209 + 0.47141
0.0360 + 0.04311
0.0321 - 0.3985i%

Va —

Horizontal Spring
As 4 =-(.7883 +j1.8885

0. 0. 1
0.0685 ~ 0.0630i
0.4029 + 0.06041
0.0649 + 0.1789i
0.4317 + 0.7132i
-0.0851 - 0.06411
.0.0062 + 0.0068i
0.0771 + 0.01671
0.0074 - 0.0492%
0.14682 ~- 0.11021

-0.0080 - 0.0171i
-0.0924 + 0.13241

Va

Vertical Spring
Agg=- 0.1897 + j 0.7291

0. + 0, 1
0.0452 ~ 0.0006i
0.0354 + 0.01541
40.0084+0.0330
-0.0179 + 0.0229%i
0.3727+0.03261

-0.6410 + 0.07631
-0.0907 - 0.0103i
0.0274 + 0.3288i
0,0945 + 0.2655i
0.0660 - 0.4818i
0.0247 - 0.0642i

Vo=

Anti-Symmetric Damping
Ag = - 2.0053

0,
-0.0558
0.2865
0.1119

-0.5744
~0.3120
-0.0086
0.1168

-0.1218
0.6256
0.0473

0.2342

Yiq =

Symmetric Damping
As =~ 2.227

De
0.0595

~0.3897
-0.1324

0.8679
-0.1017
-0.0032
0.0430

~0.0345
0.2264
0.0072
-0.0958

Ve
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Table 5.3.1.3: Polar Form of Unequal Tether Complex Eigenvectors

Horizontal Spring

MAG PHAS

0.0931 -42.61°

0.4074 8.53°

0.1903 70.07°

0.8337 121.2°

0.1065 - 143°

0.0092 132.4°

0.0184 65.25°

0.0498 -81.5°

0.2181 -30.4°

0.0189 -115.1°

0.1615 124.92°

MAG = magnitude

Backflapping
MAG PHAS
0.0857 40.74°

0.0377 15.84°

0.0405 124.94°

0.0178 100.1°

0.3619 45.5°

0.7441 -12.4°

0.0328 -82.3°

0.3883 154.6°

0.1709 129.7°

0.3513 71.8°

0.0155 1.85°

PHAS = phase

Vertical Spring

MAG  PHAS

0.0452 -1°

0.0386 23.5°

0.0339 103.8°

0.0291 128°

0.3741 5°

0.6455 173°

0.0913 -173.5°

0.3299 85.2°

0.2818 109.6°

0.4863 -82.2°

0.0688 -69°

Pendular

MAG PHAS

0.0441 -15.64°

0.2548 23.5°

0.111  88.5°

0.6406 127.6°

0.2069 10.97°

0.0223 -54.11°

0.1591 170.5°

0.0902 76°

0.5204 115.1°

0.0562 50.1°

0.39098 - 85.4"

Units: ft, deg, ft/sec, deg / sec
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Table 5.3.1.4: Natural Modes of Equal and Unequal Tether Configurations

a) Equal Tether Configuration

AVM: Vertical Damping Mode: A =- 0.2384; 1=4.2

SM:

ASM:

Tethered Helicopter Mode: A, = 0.7561

Horizontal Spring Mode: As 4=- 0.8122 £j 2.2228; { = 0.34; ©, = 237;t =1.23

Symmetric Damping Mode: Ag =2.2919;1 =0.44

Backflapping Mode: A.7 = 0.0402 + j 0.4785; { = 0.084; 0, = 0.48

Vertical Spring Mode: Ag 9 =-0.1976 + j 0.7364; { = 0.26; 0, = 0.76; T = 5.06

Pendular Mode: AMo,11 =-0.5314£j2.6245; {=0.2; 0, = 2.7; 7 = 1.88

Anti-Symmetric Damping Mode: A, = - 2.1187; T= 047

b) Unequal Tether Configuration

AVM: Vertical Damping Mode: A; =-0.2384; 1=4.2

SASM: Tethered Helicopter Mode: A, = 0.6604

Horizontal Spring Mode: A5 4 =- 0.7883 + j 1.8885; £{=0.39 ; 0, =2.05 ; 7 = 1.27

Symmetric Damping Mode: Ag =-2.227; 1 =045

Backflapping Mode: 6.7 = 0.0478 +£j 0.4698; { = - 0.1; 0, = 0.47

Vertical Spring Mode: Ag 9 =-0.1897+j0.7291; {=0.25 ; 0, =0.75 ; 1 = 5.27

Pendular Mode: 20,11 =-0.6119+j24381;({=0.24 ; 0, =251 ;t =1.63
Anti-Symmetric Damping Mode: Ay5 = - 2.0053; T= 0.5
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5.3.2 Discussion of AVM Modes

We have already shown that the Unequal Tether Plant contains the AVM Plant studied in

Chapter 3. It thus follows that the Unequal Tether Configuration, like the Equal tether

Configuration, possesses an Average Vertical Damping Mode. As explained in subsection 3.3.1,

this mode characterizes the effect of vertical aerodynamic drag forces on the TLHS during average

vertical climbs (Xz). This mode is similar to that experienced by a single hovering helicopter

(Appendix 3) but has a larger time constant due to the extra mass in the TLHS. For a single

helicopter the time constantis T=1/1Z,, | = 2.89 secs whereas the Average Vertical Damping Mode

has a time constant of t= (1+) /1Z, |=4.2 secs (Z, =- 0.346, un = [M; +Mg] / 2M; = 0.4516).

The Unequal Tether Plant consists of the AVM Plant and the SASM Plant. Next we study the

modes associated with the SASM Plant.

5.3.3 Discussion of SASM Modes

The eigenvalues and right eigenvectors for the SM (Ap) and the ASM (Apz) can be obtained

from Table 3.3.3. The eigenvalues and right eigenvectors for the SASM (Ap23) can be obtained

from Table 5.3.2. Upon comparison of these tables it becomes evident that increasing the slave

tether length from Hy = H to Hg = 2H has not resulted in any large changes in the nature of the

TLHS's modes.

All statements which follow in this section are based on the right eigenvectors in Tables 3.3.3

and 5.3.2, magnitude information in Tables 3.3.4 and 5.3.3, and the eigenvalues in Table 5.3.4.

The magnitude information contained in the eigenvectors is particularly important since it conveys

the extent to which Twin Lift variables are affected by the modes. This magnitude information is

summarized in Table 5.3.2.1 for both the Equal and Unequal Tether Configurations.

For the SM, the unstable Tethered Helicopter Mode had a time to double of 0.92 seconds. For

the SASM., however, the mode has a time to double of 1.1 seconds. The increase (19.5%) is

primarily due to the decrease in the contributions of Ax and Af to AX and A, rather than the new

coupling terms due to 26 and x;'.This can be seen by noting that the SM has an eigenvalue of
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Table 5.3.2.1: Comparison Between Equal and Unequal Tether Modes

Note: The variables listed below are listed ( from left to right ) in order of decreasing
magnitude as determined from the eigenvectors in Tables 3.3.1.3 and 5.3.1.2
which assume units of ft, degs, etc.

Average Vertical Damping Mode

AVM: Xz t=472

Tethered Helicopter Mode

SM: AG, AB, Ax, Ax tdouble=0.92
SASM: AB, Ax, AB, AX, xi’, X's £6, Az, Az, 20, ZX tgouple=1.05

Horizontal Spring Mode

SM: AO, AB, Ax, Ax {=034, 0 =237, 1=123

SASM: AB, A, 26, Ax, X{', 6, Ax, ZX, AZ, x{', Az {=039,0,=2057=127

Symmetric Damping Mode

SM: AB, AB, Ax, Ax T=0.44
SASM: AB, AO, Ax, £0, 20, %;', Ax, x, ZX, AZ Az 1=045

Backflapping Mode

ASM: Az, TX, AZ, 26, 26, x;', &amp;'
SASM: Az, Tk, £6, Az, I, Ax, Ak, A, x, AS, %'

tdouble = 17:2, { = -0.084, @_ = 0.48

tdouble = 14.5, {=-0.1, 0, =0.4

Vertical Spring Mode

ASM: Az, Az £6, Zk, 26, x, %' {=0.26, 0, =0.76, T="509
SASM: Az, AZ, 20, Zk, 8, x’, %;', Ax, AO, AX, AB (=025,  =0.75, ©=527

Pendular Mode

ASM: 26, %', 26, x, Ix, AZ Az {=02, 0, =2.7, 1=188
SASM: AB. 28. %', A. 26, x’, Ak, ZX, AZ Ax, Az [=024, 0=251, t= 1.63

Anti-Symmetric Damping Mode

ASM: 3x, %;', AZ 20 T=0.47
SASM: £6. AB. £6. A. %,'. Ix. x, AX, Ax, AZ, Az ©=05
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0.7561, the SASM an eigenvalue of 0.6604, and the 4 x 4 submatrix ofApo3 associated with the

SM an eigenvalue of 0.6835. This shows that the change in the Ax and A8 terms accounts for about

a 75.9% change in the eigenvalue, thus confirming our claim. We also note that for the SM this

mode is primarily associated with A and A® whereas for the SASM, the mode is primarily

associated with A@ and Ax. This change in eigenstructure, due to doubling the slave tether length,

is also primarily attributable to the decrease in the contributions of Ax and A@ to AX and A®. This

follows by noting that the angle between the SM eigenvector and that associated with the submatrix

ofAgs corresponding to the SM is 6.44°, whereas the angle between the SM and the SASM

eigenvectors is 10.2°. The change of 6.44°, due to the Ax and AO contributions, represents a 63%

change thus confirming our claim. Finally, it must be emphasized that because the above times to

double are so small, manual Twin Lift operation would place an untolerable burden on the master

and slave pilots. Automatic control (partial or full) is thus necessary.

In the above discussion we used the fact that the angle, ¢, between two real-valued vectors u

and v is defined according to the relation

cos h=ulv ( .3.4 3)

Here the concepts of orthogonality and collinearity are well defined and intuitive.

When the vectors u and v are complex-valued, however, we define ¢ as follows:

x 1foc

cos¢O=u1
J

u = [Re uT Im yTT

v=[Reyl ImvI]T

(3.57)

(5.38)

(5.39)

With this definition the concepts of orthogonality and collinearity remain well defined and intuitive.

More specifically, we say that the complex-valued vectors u and v are orthogonal if and only if the

real-valued vectors u and y are orthogonal. Collinearity is similarly defined. Of course, if u and v

are real-valued then the definition in eq. (5.37) reduces to that in eq. (5.36).

Given the definition in eq. (5.37), it can be shown that

aHy = Re (uty) (5.4. })
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boce

cos ¢ = Re (uly) (5.41)

It thus follows that if uy = (0 then cos ¢ = 0 and 1 and y are orthogonal. With this definition of

orthogonality, however, the converse is not necessarily true. The complex "vectors" u=jl and ¥

= 1, for example, are orthogonal by our definition but have uty = - j1# 0. From this example it

should be apparent that orthogonality, with our definition, is not preserved under muliplication by

a complex scalar; e.g. multiplyin u = j1 by - j1 makes it collinear with v = 1. This is intuitive since

the complex number j1 represents a pure rotation by 90°. Our definition does, of course, preserve

orthogonality under multiplication by a real scalar.

In the discussions which follow the definition in eq. (5.37) shall be used to compare the

complex eigenstructures of the Equal and Unequal Tether Configurations and to understand the

impact of coupling created by having unequal tether lengths. Tables 5.3.3.2 - 5.3.3.3 summarize

the effects of coupling on the Equal Tether modes and eigenstructures. These tables are based on

the Equal and Unequal Tether modes and eigenvectors as well as the modes and eigenvectors of the

Unequal Tether Configuration with coupling purposely neglected. The tables form the basis for

our discussion.

For the SM, the Horizontal Spring Mode ({ = 0.34, @_=2.37) had a time constant of T=

1.23 secs and a period of T = 2.65 secs. For the SASM, however, the Horizontal Spring Mode

(€ = 0.39, © = 2.05) has a time constant of T= 1.27 secs and a period of T = 3.06 secs. The

decrease in time constant (3.3%) is primarily due to the new coupling terms XO and x;'. The

increase in the period of oscillation (15.5%), however, is primarily due to the decrease in the

contributions of Ax and A8 to AX and AB. To understand why this is so we refer to Table 5.3.2.2.

The table shows that for the SM Ayy =-0.8122 +; 2.2228, for the SM part of the SASM As 4 =

- 0.8194 £j 2.0391, and for the SASM As 4 = -0.7883 +j1.8885. From this we see that the

changes in the Ax and A6 terms are responsible for only a 30.3% change in the real part and a

54.9% change in the imaginary part. This implies, therefore, that the X0, x;' coupling terms

have their primary impact on the real part, and hence on the time constant, while the changes in



Table 5.3.3.2: Effect of Coupling on Equal Tether Modes

Tethered Helicopter

Horizontal Spring

Symmetric Damping

Backflapping

Vertical Spring |

Pendular

Anti-Symmetric
Damping

I

SM and ASM SASM Modes
Modes (Coupling Neglected)

: = Q, 0, |

A A 3050 (A 0) A_,4) coupling Ol “#AReal AL oe A; (A 23) [| AReal BT ag
0.7561 | 0.6835 75.9 0 0.6604 [0.0956 0
-0.8121+52.2226 | -0.8194+52.0391 | 30.3 | 54.9 '-0.7883+j1.8885| 0.0238 | -0.334

| I o2.2919 2.2047 134.2 0 -2.227 | 0.0649 0

0.0402+30.4785 0.0455+30.4723 68.4 | 0.0478+j0.4698 0.0076 ~0.008

-0.1976+30.,7364 0.0079 | -0.0072
-0.5313+j2.6243 0.0806 | -0.1862

um

13.4 | 69.4 ~0.1897+j0,7291

49.5 | 158.1 '-0.6119+j2.4381

50.9 | 0-2.1187 ~2 0609 0.1134 0

No
Joona
CD

A=change in
kA =percent change in
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Table 5.3.3.3: Effect of Coupling on Equal Tether Eigenstructure

Angle Between Equal and Unequal Tether Eigenvectors

SASM (coupling neglected)

AVM: Average Vertical Damping 0° (100 %) 0°
i

SM: Tethered Helicopter

Horizontal Spring

Symmetric Damping

ASM: Backflapping

Vertical Spring

Pendular

Anti-Symmetric Damping

6.44° (63 %)

7.25° (37.8 %)

1.15° (7.3 %)

10° (66.2 %)

32.3° (102.9 %)

31.5° (59.9 %)

11.5° (27.4 %)

10.2°

19.2°

15.8°

15.1°

31.4°

52.6°

472°
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the Ax, AG terms have their primary impact on the imaginary part, and hence on the period of

oscillation. Table 5.3.3.1 shows that for both the SM and SASM this mode is primarily associated

with AG and AD. The table also shows that although ¥0 and xg play no role for the SM, they

play an even more significant role than Ax for the SASM. This follows from the magnitude

information in Table 5.3.1.3. Table 5.3.3.3 shows that when the slave tether length is doubled the

directionality of the SM eigenvector is mainly affected by the new coupling terms which account for

about 62.2% of the total change in direction.

For the SM, The Symmetric Damping Mode had a time constant of T = 0.44 secs. For the

SASM, however, the mode has a time constant of T = 0.45 secs. Table 5.3.3.2 shows that this

change is largely attributable to the change in the SM part of the SASM i.e. to the decrease in the

contributions of Ax and A8 to both AX and AB. For the Equal Tether Configuration this mode was

primarily associated with A9 and AB. Table 5.3.3.1 shows that doublin g the slave tether length

does not change this. The change in eigenstructure which occurs, however, makes X6, 3} and

x even more significant than Ax. Table 5.3.3.3 shows that this change in eigenstructure is

primarily due to the new £0 and x;'coupling since it accounts for about 92.7% of the change in
direction.

For the ASM, the unstable Backflapping Mode ({ = - 0.084, ®_ = 0.48) had a time to double

of ty = 17.2 secs. For the SASM this mode ({ =- 0.1, ®_ = 0.47) has a time to double of t; = 14.5

secs. Upon inspection of Table 5.3.3.2 we see that the change in the real and imaginary parts are

mainly due to the changes in the ASM part of the SASM. Table 5.3.3.1 shows that doubling the

slave tether length has resulted in some reordering of the ASM variables in terms of relative

magnitude. More specifically, Table 5.3.3.3 shows that the change in eigenstructure which occurs

(15.1%) is predominantly due to the changes which occur in the ASM part of the SASM. This is

because these changes account for about 66.2% of the total change in eigenstructure.

For the ASM, the Vertical Spring Mode ({ = 0.26, ®_ = 0.76) had a time constant of © = 5.06

secs and a period of oscillation of T = 8.27 secs. For the SASM, however, the mode ({ = 0.25,

®_=0.75) has a time constant of T=15.27 secs andaperiod of T = 8.37 secs. Table 5.3.3.2
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shows that the changes in the time constant and perod of oscillation are both primarily due to the

changes which occur in the ASM part of the SASM. Table 5.3.3.1 shows that doubling the slave

tether length has not resulted in any reordering of the ASM variables in terms of relative magnitude.

More specifically, Table 5.3.3.3 shows that the change in eigenstructure which occurs (31.4°) is

primarily due to the changes which occur in the ASM part of the SASM rather than the new

coupling terms due to Ax and AS.

For the ASM, the PendularMode ( = 0.2, ®_ =2.7) had a time constant of t = 1.88 secs and

a period of T = 2.33 secs. For the SASM, however, the mode ({ = 0.24, © = 2.51) has time

constant t = 1.63 secs and a period of T = 2.5 secs. Upon inspection of Table 5.3.3.2 we see that

the changes in time constant and period are roughly equally attributable to the changes in the ASM

part of the SASM as well as thre new coupling due to Ax and A®. Table 5.3.3.1 shows that

doubling the slave tether length has resulted in AB playing an even more significant role than 76.

In addition, Table 5.3.3.3 shows that the changes in eigenstructure is predominantly due to the

changes which occur in the ASM part of the SASM.

Finally, for the ASM, the Anti-Symmetric Damping Mode had a time constant of T = 0.47

secs. For the SASM, however, this mode has a time constant of T=0.5 secs. Table 5.3.3.2

shows that this change in time constant is equally attributable to the changes in the ASM part of the

SASM as well as to the new coupling terms due to Ax and AO. Table 5.3.3.1 shows that the

relative impact of this mode on Xx has been reduced significantly. Table 5.3.3.3 shows that the

change in eigenstructure is predominantly associated with the new coupling terms to Ax and A®.

In summary, the above discussion indicates that doubling the slave tether length has not

resulted in any drastic changes of the SM and ASM modes. More specifically, while time

constants and periods have renmaines essentially unchanged, directions have changed somewhat.

In most cases the directional changes were attributable to changes in the SM and ASM parts of the

SASM rather than the new coupling terms due to Ax, A8, X68, and xr"

Having studied the differences between the natural modes (poles) of the Equal and Unequal

Tether Plants, we now examine their zeros.
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5.4 Input/Output Properties of the Unequal Tether Plant

5.4.1 Introduction

The previous section discussed internal properties of the Unequeal Tether Plant. This section

shall discuss some of the input/output properties of the Unequal Tether Plant. Such properties

include transmission zeros (and their directions) as well as singular valves. Since the I/O properties

of the AVM do not change when H, = 2H, = 2H, the section shall focus on the input/output

properties of the SASM Plant, Gps = Cp23(ST-A 23) 1B 3. Emphasis shall be placed on the

coupling that occurs between the Symmetric and Anti-Symmetric Motions.

5.4.2 Transmission Zeros of Unequal Tether (SASM) Plant

The Unequal Tether Plant, G(s), consists of the AVM Plant, Gp1(9), and the SASM Plant,

Gpo3(s). It was shown in section 3.4.1 that the AVM Plant has no zeros. It thus follows that the

zeros of the Unequal Tether Plant are merely the zeros of the SASM Plant. To obtain them one

solves the following right generalized eigenvalue problem:

om Ppp|[2 J== [5 8 [=]| WEY)

for all transmission zeros, z, with right zero direction, x, and zero input direction, u,. The

zeros for the Equal and Unequal Tether Plants have been tabulated in Table 5.4.2.1.

Table 5.4.2.1: Zeros of Equal and Unequal Tether Plants

Equal Tether Plant: (H = H, =H)
SM: 2) 5 =- 1.55£j9.491, { = 0.16, , = 9.62

ASM: z34=-0.1786 + j 6.413, { = 0.028, wp, = 6.42
Zc¢=- 1.3714 §9.807, {= 0.139, ©_= 9.9

Unequal Tether Plant: (Hg = 2H; Hg = H)
SASM: zy9=- 1.54 £9334, {=0.17, oO, = 9.47

Z34=- 0.01138 +j 5.874, {= 0.002, ©, = 5.874
25 6= - 1.512 10.93, { = 0.137, ow, = 11.03
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To facilitate the comparison between the Equal and Unequal Tether Plant zeros we shall refer to

the Unequal Tether Plant zeros using the same names used for the Equal Tether Plant zeros; i.e.

212 shall be referred to as SM Heli r Pitchin IOS, 234 aS ASM Load Motion Zeros, and

zs¢asASM Helicopter Pitching Zeros.

Table 5.4.2.2 shows the effect of coupling on the zeros of the Equal Tether Plant. The table

clearly shows that the effects of coupling, when the tether lengths are unequal, has a relatively

small impact on the zeros of the Equal Tether Plant. More specifically, the table shows that it is the

changes in the SM and ASM parts of the SASM, and not the new coupling due to the unequal

tether lengths, which is responsible foor most of the small differences between the Equal and

Unequal Tether Plants’ zeros.

Table 5.4.2.3 gives the zero directions for both the Equal and Unequal Tether Plants. Table

5.4.2.4 summarizes the effects of coupling on the Equal Tether zero directions. The table shows

that the SM Pitching and ASM Load Motion Zero directions are predominantly affected by the

coupling which results from having unequal tether lengths. The ASM Pitching Zero directions,

however, are also largely affected by the changes which occur in the ASM part of the SASM.



Table 5.4.2.2: Effects of Coupling on Equal Tether Zeros

SM Pitching
Zero

ASM Load
Motion Zero

ASM Pitching
Zero

SM and ASM Plants
G .(s) and G ,(s)

D2 p3

z=-1,55+j9.491

z=-0,1786+j6.413

z ==1,371+39.807

SM and ASM Part of SASM Plant
(SASM with coupling neglected)

ZAReal | #AReal

z =-1.55+39.3861 9 55.9

z'=-0.0861+35.6942 105.8 96 4

z=-1,4638+j9.55 98.8 159

SASM Plant, GC a3(s)

z=-1.5437+39.3034

2=-0,0912+35.6677

z=-1,4649+39.6454

- “AReal I” "AReal

0.0063 -0.1876

0.0874 -0.7453

-0.0939 -0.1616
a]

nN
Ped
OO
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Table 5.4.2.3: Directions for Equal and Unequal Tether Plant Zeros

Equal Tether Plant: SM Pitching Zero ASM Load Motion Zero

z=-0.1777 +j 6.4172z= -1.55 + j 9.4907

0. + 0. i
0.0000 + 0.000Ci
0.1013 + 0.00761
0.0000 - 0.00004
0.2290 + 0.2497i
0.0000 + 0.0000i
0.0000 - 0.0000i
7.0000 - 0.0000}
0.0000 + 0.0000i

-0.0000 - 0.0000i
0,0000 + 0.00001
9.0000 + 0.00001

0. +0. i
0.0000 # 0,0000i
-0.0000 4 0.0000i
-0.0000 + 0.0000i
-0.0000 - 0.0000i
-0.0026 — 0.09521
-0.0246 + 0.0776i

0.0130 - 0.0108i
0.0000 - 0.00001
0.6112 + 0.00021

-0.4938 - 0.1715i
0.0671 + 0.0857i

X=

A

0, + 9. i x 0. + 0. i
0.187¢ ¢ 0.01404  ~0.0000 + 0.0000i

-0.0000 + 0.0000i y= 0.1709 - 0.53631
-0.0000 + 0.0000i © -0,0330.-0.08701

{= |

Unequal TetherPlant  z=-1.5437+j9.3034 z=-0.0912 + j 5.6677

0. + 0. i
-0.0000 + 0.0000i
0.0366 ¢ 0.0908i

-0.0000 + 0.0000i
‘0.9014 + 0.2002i
-0.0067 - 0.0292i
-0.0006 - 0.0009i
7.0039 + 0.0158i
0.0000 - 0.0000i
0.2821 - 0.0173i
0.0026 - 0.0043i

-0.1630 + 0.0112i%

0. + 0. i
0.0000 ~ 0.0000i
0.0082 + 0.0489i
0.0000 - 0.00001
0.2778 + 0.0423i
0.0156 + 0.07971
0.0085 - 0.10471
.0.0126 + 0.0405i
0.0000 + 0.00001

0.4530 + 0.0813i
0.5928 + 0.0578i

-0.0%84 - 0.07161

X=

0. +0. i
0.0655 + 0.16211
0.0048 + 0.0159
-0.0120 - 0.08211

; 0. + 0. i
| 0.0210 + 0.0343i

U= '-0.0296 + 0.5645i
0.0358 + 0.0553i

U=

ASM Pitching Zero

z= - 1.3722 + j 9.8004

0. +0. i
0.0000 - 0.0000i
0.0000 - 0.0000i
0.0000 + 0.0000i
0.0000 ~ 0.0000}
0.0132 + 0.0908i
0.0063 4+ 0.0078i

-0.0070 - 0.03061
-0.0000 ¢ 0.0000i
-0.9079 + 0.0052i
-0.0893 + 0.095031
0.3098 - 0.0270;

0. +0. i
-0.0000 ~ 0.00001

U=-0.0691 - 0.1502i
L 0.0317 + 0.1770i

z= - 1.4649 + j 9.6454

0. +0. i
-0.0000 + 0.00001
-0.0002 - 0.0737i
-0.0000 + 0.0000i
0.7110 + 0.10641
0.0081 - 0.0581i
0.0029 ~ 0.0043i
0.0057 * 0.0326i
0.0000 + 0.0000i
0.5721 + 0.00741
0.0452 ~ 0.0214i

~0.3231 + 0.0068i

0. + 0. i
_ -0.0025 - 0.1403i

Uu= 0.0262 + 0.0776i
-0.0171 - 0.11044
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Table 5.4.2.4: Effects of Coupling on Equal and Unequal Tether Plant Zero Directions

SM Pitching Zero

ASM Load Motion

ASM Pitching Zero

Angle Between Equal and Unequal Tether Plant Zero Directions |

| Coupling Neglected With Coupling |
Zero Vector | Input Vector | Zero Vector | Input Vector

POPS

105° i 2 48 4° 45.9°

0.3° 65.5° 65°

48 5° 44.7 26.1° 154°
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5.4.3 Frequency Domain Analysis of Unequal Tether Plant

The Equal and Unequal Tether Plants have four control inputs 20, AB, A® , ZB). and

outputs Xz, Ax, Xp -2X, and Tx. Typically, the four outputs will be commanded by the master

pilot (or computer) to be constant (with Ax = x; - Xx = 0). Because of this we first compare the dc

characteristics of each configuration.

To study the dc characteristics of each configuration we assume that each has been stabilized

and that constant control inputs are applied. From the Twin Lift equations obtained in Chapter 2,

we have the following steady state relationships:

ZyTz+Zg. 20 =0 *§/

| Wy + 0.5 (Wy + Wg) -0.5(W, +Wyp) | [ae] _ [Mgxg,] AB, (5.44)
"0.5 (Wy, +Wp)h -0.5 (Wp + Wg) h| | Ax I, Mpc

Ye - -()

.4u8, Z (g/L) Az +Zg, A®_=0
(5.45)

(5.46)

Ne +05 (W + Wg) -MyX, | _ [my bd AB, (5.47)0.5 (Wy + Wp)h yM, | |= I, Mpg,

Assuming angles to be measured in degs and displacements in ft, eqs. (5.43) - (5.47) can be

used to obtain dc gains which are common to both the Equal and Unequal Tether Plants. These

gains are tabulated in Table 5.4.3.1.

To understand the differences between the dc characteristics of each configuration we recall the

following relationships:

Ax=-[hA6+Hye-Hel
20Hy] -+ Hg €,€nHy50= (.XL =

 -Zx=(h+H)Z0+ZAz+x;'

(5.48)

(5.49)

Ww 0)



- 223-

Table 5.4.3.1: DC Gains Common to Both the Equal and Unequal Tether Plants

¥2/30, = - Zg, | Z,, = 17.195 ft sec! /deg

A® / AB, = [Xp / g] - Mpc I, / gMyg h] = 6.194 deg / deg

ac = [Xpic/gl- [Mp +05Mp +Mp)I,Mpc] = 18.03 deg / deg
AR.. 0.5 Wy (M; + Mp) h

Ye =0deg

Az/A®, = 0.5 MyL?Zg, / Wy Z = 14.873 ft / deg

20 = — [N/gIXXMp-MXpdl~~—_(0.7936deg/deg
ZB. [0.5 (Mp +Mp) hX,- (My +0.5M + Mp) I, M,]

ZX = (Mp +0.5 My +Mp) I,Mp; 0.5 (My + Mg)hMyXpc=1876fisec/deg
Bi, 0.5(Mp +Mg)h My X, - (My +05 (M, +Mp) I, M,

Using egs. (5.48) - (5.50) we obtain the following relationships:

Ax =- [0.0628 AS + 0.2312 Ae]

x;'=02312[Ze- 29]

Ky rx = 0.294120 + 0.5 Az + Xr

(5.51)

(3.52)

(5.53)

for the Equal tether Configuration and

Ax = - [0.0628 AB + 0.2312 ¢_ - 0.4625 gl

x, = 0.1156 ¢_ + 0.2312 ¢, - 0.4625 X80

&lt;r -Xx = 05253120 + 0.5 Az + Xp

5.54)

(5.55)

(5.56)

for the Unequal Tether Configuration. Using eqs. (5.51) - (5.56) we obtain the dc gains in Table

54.3 2
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The relationships in Table 5.4.3.2 show that whether the tether lengths are equal or not, the

steady state Ax depends only on AB,.. Moreover, when the slave tether length is doubled the dc

gain associated with Ax increases by approximately 46%. This implies that a smaller differential

cyclic, AB, is needed to sustain a fixed horizontal separation, Ax, when the tether lengths are

unequal. The table also shows that the steady state x; - Xx for the Unequal Tether Configuration

Table 5.4.3.2: Differences Between Equal and Unequal Tether Plant
DC Characteristics

Equal Tether Plant: Ax / AB. =- 4.558 ft / deg

x'/ ZB, = 0.1835 ft / deg

x; - Ix = 7.4365 AG_ - 0.0499 IB,

Unequal Tether Plant: Ax / AB, = - 6.643 ft / deg

x'= - 1.042 AB, + 0.0367ZB,,

Xr-Tx = - 1.042 AB, + 7.4365 A®_ - 0.0499 =B,,

depends on AB, as well as on A® . and ZB;.. Finally, it is worth noting that Tables 5.4.3.1 and

5.4.3.2 indicate that whether the tether lengths are equal or unequal, Xz will be controlled with

ZO,, Ax with AB, x; - Zx with A@,and Zx with ZB,_.

Having compared the dc characteristics of each configuration we now compare their

characteristics at other frequencies. Since each configuration is a MIMO system this is best done

by examining the singular values of the Equal and Unequal Tether Plants. These singular values

have been plotted in Fig. 5.4.3.1.

Fig. 5.4.3.1a shows the singular values for the combined SM and ASM Plants. These consist

simply of the Bode magnitude plot for the SISO SM Plant and the singular values for the TITO
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ASM Plant. Fig. 5.4.3.1b shows the singular values for the three-input three-output SASM Plant.

Upon comparing the figures one sees that there is little difference between the basic shapes of the

Equal and Unequal Tether Plant singular values. For both configurations the maximum singular

value is associated primarily with Xx and XB,.. At low frequencies (below 1.5 rad/sec) the

minimum singular value is associated primarily with Ax and AB;.. At high frequencies (above 1.5

rad/sec) the minimum singular value is associated primarily with x; - Zx and AG.
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5.5 TLHS Unequal Tether Control Problem Formulation

It has been shown tht the Unequal Tether Plant, G(s), consists of two plants:

. The AVM Plant, G(s) = Cpy(sI- A) By,

2. The SASM Plant, Gpp3(s) = Cpp3(I - A3)'B ps.

It thus follows that the final "Unequal Tether AFCS", to be designed in the next chapter, will

consist of two AFCS's; i.e. one for each of the above plants.

In this section the structure of the final Unequal Tether AFCS. To help meet the performance

specifications, the Unequal Tether Plant shall be augmented.

The purpose of this section is to formulate the Unequal Tether Control Problem and to

qualitatively discuss the feasibility of a high performance Unequal Tether AFCS vis-a-vis a high

performance Equal Tether AFCS..

5.5.1 Structure of Unequal Tether AFCS

Fig. 5.5.1.1 shows the structure of the final Unequal Tether AFCS to be developed in the next

chapter. The AFCS is seen, simply, to possess a negative feedback MIMO structure. The AFCS

consists of the 12 order Unequal Tether Plant (UTP), G(s), a 41 order dynamic augmentation, a

dynamic LQG/LTR compensator, Kroc 1.Tr(S), and a pre-filter. When properly designed, the

AFCS "minimizes" the effects of the disturbances, d, and sensor noises, n, so that the system

outputs, vy, "approximate" the pilot reference commands. r.

Unequal Tether Design Plant, G(s)
d

- +
+ ~8&amp; [ +

| Le

LQG/LTR Dynamic Unequal Tether
Compensator Augmentation Plant (UTP) ty + .

gli

Fig. 5.5.1.1: Structure of Unequal Tether AFCS.
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As noted earlier, the Unequal Tether Plant, G(s), consists of the (always decoupled) AVM

and SASM Plants; i.e. G(s) =diag(Gp; (5), Gp23(8))-
The dynamic augmentation consists of four integrators (one per input channel). As in the

Equal Tether Problem, their primary function is to guarantee zero steady state errors to step

commands for Xz, Ax, x1 -2X, and x. It should be emphasized that, in general, the dynamic

augmentation can be any linear time invariant continuous system which is realizable and helps the

designer meet the specifications.

The Unequal Tether Plant plus the dynamic augmentation (four integrators) shall be referred to

as the Unequal Tether Design Plant. The Unequal Tether Design Plant consists of an AVM Design

Plant and a SASM Design Plant. The AVM Design Plant, as in Chapters 3 and 4, shall be denoted
noe
J
i
Fu

G,(s) = Cy(sI - Ay) 1B,

= G(s) /s

The SASM Design Plant shall be denoted by:

Gy3(s) = Cp3(sI- Ap) Bog
= Go3(8) / S

[he state space representation for the Unequal Tether Design Plant is as follows:

x € R16, ue R4x=Ax+Bu

y=Cx+d ve R%:R4. de RY

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
Wiel &amp;

u = [u, Uy Ug uy]”

=[ZO, AB, A8_ ZB,IT

x= [x,Txp! uTIT

x,= [Zz Ax AD Ak AB 30 Az x;'Zx 30 Az XT

u,=[Z6, IAB, A®, ZB]
y=[Z2 ll Ax x;-Zx ZX]T +d

(5.32)

(5.33)

(5.34)

(5.35)

(£ 56)

-g 2x 7)
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andd is a four dimensional signal vector which contains output disturbances on Zz, Ax, x;-Zx,

and Xx, respectively. The relationship between (A, B, C) and (Apps Bs Cop) and (Apo3s Bs»
Cp23) 1s as follows:

A= 0» 3]
B=[0 IIT
c= [c, ol.

(5.39)

(5.40)

(5.41)

The Unequal Tether Design Plant tfm is given by:

G(s) = C(sI - A)1B (. 12)
.

ay

The Unequal Tether LQG/LTR compensator consists of two compensators (one for each of the

Unequal Tether Design Plants). It can be denoted as follows:

K ooLoGLTR®) = diag {KLoc 1r(), KPLoGLTRE)] \~“8. 3)

where Ki g/LTR(S) and K23}ogTr(S)denotetheAVMandSASMLQG/LTRcompensators,
respectively. The order of the Unequal Tether LQG/LTR compensator is 16; the order of the

Unequal Tether Design Plant (Unequal Tether Plant plus dynamic augmentation).

Since the total compensation consists of the dynamic augmentation plus the LQG/LTR

compensator, it makes sense to define the compensator, K(s), as follows:

K(s) = Kyogr(S) / S

= diag {K;(s), Ky1(s)}

(5.44)

(£.45)

where K,(s) and K,3(s) denote the AVM and SASM compensators, respectively.

The pre-filter consists of three Butterworth filters; one for each reference command input to the

SASM AFCS. As in the Equal Tether Problem, their introduction is essential in order to bandlimit

reference commands so that the pitch rates, control rates, and other internal variable rates are
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tolerable. It should be emphasized though that typically Ax and x; - Zx will be commanded to zero.

As for the Equal Tether Problem, we define the Unequal Tether Loop, Sensitivity, and Closed

Loop tfm's as follows:

Loop: G(s) = G(s) K(3) (5.46)

(5.47)= diag( Gy (5), Gp 2308) )

Gp23(8) = Gppp3(s) Kp3(s)

(5.48)

(5.49)

Sensitivity: S(s) =[I+ G(s) 1!

=diag( S,(s) S,3(s))
(5.50)

(5.51)

S,(8) =[ 1+ Gp 6s) 1!
S73(8) =[ 1+ Gp p3(s) 1?

(5.52)

(5.53)

Closed Loop:T(s) = [ I+ Gy(5) I'L G(s)

= diag( T(s) T3(s))

(5.54)

(5.55)

Ty(s) =[ 1+ Gp (5) I'L G4(5)
Tp3(s) = [ 1+ Gy53(s) I'L Gy3(9)

(5.56)

(5.57)

where the subscript "1" refers to the AVM AFCS and the subscript "23" refers to the SASM

AFCS

As in the Equal Tether Control Problem, the prime objectives of the Unequal Tether AFCS, in

addition to guaranteeing nominal stability, can be listed as follows:

1. Low frequency command following;

2. Low frequency disturbance rejection;

3. Insensitivity to low frequency modeling errors;

4. High frequency sensor noise attenuation;

5. Robustness to high frequency unmodeled dynamics.
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To assure the first three, we require that the Unequal Tether Sensitivity tfm, S(s), be "small" at

"low" frequencies where reference commands, disturbaces, and "unintentional" modeling errors

have their greatest spectral content. To assure the last two, we require that the Unequal Tether

Closed Loop tfm, T(s), be "small" at high frequencies where sensor noises and "intentionally"

unmodeled dynamics have their greatest spectral content.

In addition to the above five desirable feedback properties, the Unequal Tether AFCS must be

designed so that the closed loop system exhibits "good" internal performance. This means that the

pitch rates of the helicopters, as well as their vertical and horizontal acceleration characteristics,

must be "passenger friendly". It also implies that the amplitude and/or spectral content of

references, as well as the closed loop bandwidth must be resticted so that the control transients do

not exceed the control limits. This saturation issue is particularly important to Twin Lift engineers

because of the inherent open loop instabilities associated with the Unequal Tether Configuration.

The presence of these instabilities imply that the closed loop system will have a finite "downward

gain margin". Consequently, if the controls are permitted to saturate an effective loop gain

reduction will occur and the system may become highly oscillatory and possibly go unstable.

The sections which follow shall present performance and stability robustness specifications for

the final Unequal Tether AFCS. These design specifications shall be pesented in terms of the final

AVM and SASM loop, sensitivity, and closed loop functions. These specifications will primarily

be based on TLHS capabilities, as reflected in the linear model. Before presenting the

specifications it is important to put our goals into proper perspective.

In chapter 4 we showed that a trade-off must be made between performance and stability

robustness when designing an Equal Tether AFCS. It was also shown that this trade-off is

particularly pronounced when a high performance (high bandwidth) design is sought. In the

remaining sections of this chapter we present design specifications which are comparable to those

presented for the Equal Tether AFCS. In the next chapter we apply the LQG/LTR procedure to the

Unequal Tether Design Plant in order to meet the specifications and ascertain whether the

performance/robustness trade-off is less pronounced when the tether lengths are unequal.
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5.5.2 Design Specifications for Unequal Tether (SASM) AFCS

For simplicity, the AVM AFCS used for the Equal Tether AFCS shall also be used for the

Unequal Tether AFCS. It thus suffices to give specifications for the SASM AFCS.

The structure of the final SASM AFCS is shown in Fig. 5.5.2.1.

SASM Design Plant d
~ 23

Jos

SASM Plant

n.,

~~

e u u
r 23 K 23 (s) =23 p23—23 (+ - "LQG/LTR | E

vs wr’
SASM Compensator

os

1

Fig. 5.5.2.1: Structure of SASM AFCS.

Since the SASM Plant, G30), does not contain any natural integrators, it has been

augmented with three (one per input channel) so that we are guaranteed zero steady state error to

step reference commands, Iq, for Ax, Xr -2x, and 2x. The integrators will also guarantee zero

steady state error to step output disturbances, d,2. The combined SASM Plant and integrators, as

stated earlier, shall be referred to as the SASM Design Plant and shall be denoted by the tfm

Gyz(8) » where

Gy3(s) = Gp3(s) /s

= Cy3(sI- App)1Bog

5.58)

(5.59)

In Chapter 6, the SASM LQG/LTR compensator, KK QG/LTR(S), and the SASM pre-filter

shall be developed. Since a high performance design is desired, the specifications for the final

SASM AFCS were selected as follows:
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SASM AFCS Design Specifications
Performance:

1. Zero steady state error to step commands and step output disturbances in all directions. To

guarantee this the SASM Plant was augmented with three integrators (one per channel) at the
plant input.

2. Less than 10% steady state error (legally £0.1 1idy5ll,) to sinusoidal commands and output

disturbances with spectral content at or below 0.06 rad/sec. This requires that the final
SASM sensitivity tfm satisfy

6, [Sy3()]&lt;-20db forall © &lt; 0.96 -ad/ ~~

3. Low frequency errors on the unit circle are of equal importance. This implies that the final
SASM sensitivity tfm should satisfy:

3 axlS73(G0)] = 0. |S,3(jw)] (at each @)

at low frequencies: i.e. the loop singular values should be matched at low frequencies.

4. Gain crossover frequencies: 0.5 rad/sec &lt; W;03 &lt; 2 rad/sec.

5. Noise attenuation: OC, .[T23(®)] &lt;-20 db for all &gt; 20 rad/sec.

Robustness

I. Robustness to low frequency uncertainty and high frequency unmodeled rotor dynamics (0,
= 27 rad/sec).

To ensure this we require that the final SASM sensitivity tfm satisfy:

Cmax [S23(GW)] &lt; Bsa = 1.93 (5.72 db) for all ® = 0.

It can be shown that this translates into the following MIMO stability margins:

Gain Margins: {GMy3 2 By / (By + 1) = 0.66 (-3.6 db)

TGMy3 2 Bs / (By - 1) = 2.08 (6.3 db)

Phase Margins: | PM, | 2 2sin"}(1/28,,) = 30°

2. Closed loop gain crossover frequencies (bandwidth): Oy93&lt;3rad/sec.
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The SASM pre-filters shall be selected so that references are appropriately bandlimited.

Butterworth filters shall be used since they are maximally flat in the pass band. The order of the

filters, as well as their cut-off frequencies, will be selected from the final reference to control

singular values since these show clearly what reference frequencies are amplified by the AFCS.

We point out, once again, the similarity between the above method of posing specifications

and the classical Bode method. It should also be noted that the specifications have been expressed

in terrms of the loop, sensitivity, and closed loop tfm's associated with the plant output (or error

signal); i.e. the specifications have been presented at the plant output. We make this point

because, in general, a designer may also want to satisfy design specifications "at the plant input".

Such specifications would be presented in terms of the singular values of the loop tfm obtained by

breaking the loop at the plant input.

In order to assess the ease/difficulty in meeting the design specifications we refer to Fig.

5.5.2.2 which shows the singular values of the Equal and Unequal Tether Design Plants (AVM

Design Plant omitted). Upon comparison of these singular values we see relatively little difference.

It thus follows that the trade-off between performance and robustness exhibited in Chapter 4 for the

Equal Tether Design Problem is not only expected to be present for the Unequal Tether Design

Plant, but it is expected to be just as pronounced. This also follows from the fact that Equal and

Unequal Tether Design Plants have very similar pole-zero structures.

5.6 Summary

In this chapter the TLHS Unequal Tether Configuration (Hg = 2H; H, = H) was analyzed

and compared with the Equal Tether Configuration. The primary reason fior studying the Unequal

Tether Configuration in this thesis was to see whether or not having unequal tether lengths lessons

the trade-off between performance and stability robustness when a high performance (high

bandwidth) design is desired. Because of the great similarities between the Equal and Unequal

Tether Plants, it was concluded that the above trade-off would not only be present for the Unequal
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Tether Problem, but would be just as pronounced as for the Equal Tether Problem. This shall be

confirmed in Chapter 6.

In this chapter it was shown that when the tether lengths are unequal the Symmetric and

Anti-Symmetric Motions (SM and ASM) becomes coupled. The combined SM and ASM was

named "the SASM".

The natural modes of the Unequal Tether Configuration were identified, discussed, and

compared to those ofthe Equal Tether Configuration. The Unequal Tether Plant was then defined

in terms of an AVM Plant and a SASM Plant. The transmission zeros and frequency responses of

the Equal and Unequal Tether Plants were discussed and compared. The comparisons indicated

only small differences between the designs.

Finally, the chapter concluded with a description of the Unequal Tether AFCS and design

specifications to be met. To help meet the performance specifications the Unequal Tether Plant was

augmented giving us the Unequal Tether Design Plant.

In the next chapter we shall use the LQG/LTR design methodology and simple filtering

techniques to develop an AFCS for the Unequal Tether Configuration. The AFCS shall satisfy the

specifications presented in subsection 5.5.2.
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CHAPTER 6: AFCS DESIGN FOR UNEQUAL TETHER CONFIGURATION

6.1 Introduction

In Chapter 4 a high bandwidth AFCS, with modest robustness properties, was developed for

the Equal Tether Configuration. It was shown that in designing an Equal Tether AFCS, a designer

must trade-off performance versus stability robustness. It was also shown that this trade-off

becomes particularly pronounced when a high performance (high bandwidth) design is the

objective.
In this chapter the LQG/LTR design methodology is applied to the Unequal Tether Design

Plant, discussed in Chapter 5. The chapter shows how the methodology, coupled with singular

value ideas, can be used to systematically develop and AFCS for the Unequal Tether

Configuration. A design satisfying the specifications presented in Chapter 5 is obtained and

evaluated. Comparisons are made between the Equal and Unequal Tether AFCS's. From the

comparison several conclusions are drawn. First, having unequal tether lengths does not lessen

the performance-robustness trade-off encountered in the design of the Equal Tether AFCS.

Secondly, a high bandwidth AFCS design for either configuration is feasible only when model

ancertainty is sufficiently low. If model uncertainty is high then the designs become unfeasible.

This is because, in such a case, the large robustness requirement forces the helicopters to undergo

substantial pitching and oscillations in the vertical plane in order to regulate the horizontal

separation and load motion when horizontal and vertical velocities are commanded. More

specifically, if model uncertainty is high then only low bandwidth Equal and Unequal Tether

AFCS designs become feasible. Finally, it is also concluded that there are no major dynamic

advantages or disadvantages between Equal and Unequal Tethered flight. The latter, of course, is

preferred because it offers greater tip-to-tip main rotor clearance.

6.2 Design and Evaluation of Unequal Tether AFCS

6.2.1 Introduction

In this section the LQG/LTR design methodology, described in section 4.2, shall be applied

to the Unequal Tether Design Plant, G(s) = G(s) / s = C(sI - A)IB discussed in Chapter 5. A

compensator satisfying the performance and robustness specifications presented in Chapter 5 is
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obtained. The Unequal Tether Design Plant consists of the Unequal Tether Plant, G(s) = CG s -

A, J: preceded by four integrators. We recall that the Unequal Tether Plant has four controls:

ZO,AB, AG, XB, which are assumed to be measured in degs, and four outputs: Yz, Ax, XL

Tx. Ix which are assumed to be measured in ft/sec, ft, ft, and ft/sec, respectuvely

5.2.2 Design of Unequal Tether Ars.RE

To obtain the target loop dynamics, Ggp(s) = C(sI - AylH, we solved the following FARE:

0=A%+XA+LLT-ZCT(1/pC2
THy, =% CT(1/p.

L=B [C,(-A)'B1}

(6.1)

(6.2)

(6.3)
and

 lL = 1. (6.4)

Eq. (6.3) guarantees that the target loop singular values will be matched at low frequencies. To

"recover" the target loop dynamics we solved the following CARE:

5.0.
B

= T T -1RT0=-K.A-ATK,-CTC + K BR'IBTK ,
= R-1RTG,=RIB  ~~

R = diag(p;, Py Pg» Pa)

r 5. 3)

(6.6)

w.7)

where

py =p, =0.1p;=100 ‘G.%\ Y)

The recovered Unequal Tether LQG/LTR compensator is then given by:

Kioartr®) =G, (I-A +BG, +H C1 H, 6.9)

where the filter and control gain matrices, H,and Gp are given in Table 6.2.2.1. The filter and

control matrices for the Equal Tether AFCS are also given in the table.
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Table 6.2.2.1: Filter and Control Gain Matrices For Equal and Unequal Tether AFCS's

Equal Tether AFCS:

H

G,=

0.0582  -0.0000
0.0000 0.2194
7.0000  -0.0000
7.0000 -0.0000
0.492% -0.0000
0.0000 2.2063
N.0000 -4.9246
1.0000 2.4319
0.0000 4.5237
n.0000 0.0000
0.0000 -0.0000
7.0000 -0.0000
0.0000 -0.0000
9.0000 -0.0000
0.0000 0.0000
0.0000 0.0000

0.0000 -0.0000
0.0000 -0.0000
0.1201 0.0605

0.0239 0.0477
-0.0000 -0.0000
0.0000 -0.0000
-0.0000 0.0000
0.0000 -0.0000

-0.0000 0.0000
Dn. 3605 -1.0979
1.6237 0.3124
0.0017 0.0117

-0.1552 1.0734
0.2494 0.0244
0.6729 -0.2014
0.0250 -0.0129

COLUMNS { THRU 8
90.2992 -0.0000 0. 0. 994.7484 0.0000 -0.0000 0.0000
-0.0000 22.7950 0. 0. -0.0000 955.4616 -36.4496 282.7296
-0.0000 0.0000 13.0342 -1.1653 -0,0000 -0,0000 0.0000 -0.0000
0.0000 0.0000 -~1.1653 23.5920 0.0000 0.0000 -0.0000 0.0000

COLUMNS 9 THRU 16
0.0000 0. 0. 0. 0. 0. 0. 0.”

2.6378 0. 0. 0. 0. 0. 0. 0. :
“0.0000 43.7344 138.3322 136.3898 149.8413 49.3383 87.6480 193.4730
-0.0000 -63.2715 -74.8953 -79.9454 275.6631 -17.1355 -27.2046 -49,3773

Unequal Tether AFCS:

H,

G, =

0.0582 -0.0000
0.0000 0.1504
0.0000 0.0139
0.0000 0.0004
0.4221 0.0000
0.0000 1.9954
0.0000 -3.4602
0.0000 2.00135

-0.0000 -2.7217
0.0000 -0.3205
0.0000 ~-0.0313
0.0000 0.2932
0.0000 0.1195
0.0000 0.1433
0.0000 -0.0983
.0000 0.3056

0.0000 -0.0000
0.0060 0.0019
0.1186 0.0649

-0.0255% 0.0468
-0.0000 0.0000
0.1059 0.11725

~0.0580 -0.5435
0.1097 0.2149
0.0032  -0.3350
0.3523 -1.00080
1.6057 0.4537

~0.0384 0.1879
-0.14530 1.0522
0.2579 -0.0022
0.6341 -0.2005
0.045% 0.0095

-0.0000 934.7484 -0.0000 0.0000 -0.0000
0.3255 0.0000 966.7645 -35.8927 284.2341

~1.0652 0. 15.0265 0.1072 4.2872
23.5113 | 0.0000 -12.4205 -0.3739 -2.0392

COLUMNS 9 THRU 16 i
0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

-2.5897 6.5393 -1.7077 16.4405 11.1940 2.7003 1.9344 5.3352
0.0354 95.8334 137.3841 176.2613 153.5288 85.8231 90.3329 162.7604

~0.0363 -91.356% ~-76.7285 -99.81i25 273.6375 -30.7654 -2B.6615 -53.7143

COLUMNS {1 THRU 8
90.2992 - -0.0000 0.0000
0.0000 ' 22.7266 0.0186
0.0000 . 0.0019 12.2572
0.0000 0.0326. -£.0652

Note: It is assumed here that the Equal Tether Design Plant states are arranged in the
same order as the Unequal Tether Design Plant states (Chapter 5);

Le. xp =[ Zz Il Ax AB Ax AQ IIZO Az x{' Zx 20 Az x'17T
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6.2.3 Frequency Domain Evaluation of Unequal Tether (SASM) AFCS

In this section we evaluate the loop, sensitivity, closed loop, LQG/LTR compensator,

and reference to control singular values for the Equal and Unequal Tether AFCS's. Since the AVM

AFCS is common to both, we shall focus on the singular values associated with the combined SM

and ASM AFCS's and those associated with the SASM AFCS. The combined SM and ASM

AFCS's form a three-input three-output system. The SASM AFCS is also a three-input

three-output system.

Fig. 6.2.3.1 shows the target and recovered loop singular values for the Equal and

Unequal Tether AFCS's. The target loop singular values for each configuration look almost

identical. The recovered loop singular values differ a little.

Fig. 6.2.3.2 shows the sensitivity and closed loop singular values for the Equal and

Unequal Tether AFCS's. The sensitivities for each configuration are seen to be nearly identical.

The same is true for the closed loop singular values for each configuration.

Fig. 6.2.3.3 shows the LQG/LTR compensator and reference to control singular values

for the Equal and Unequal Tether AFCS's. In this figure we see the biggest differences, but even

they are small.

Based on the Unequal Tether reference to control singular values we shall use 37 order

Butterworth filters:

H(s) = 03 / [$3 + 2,52 + 20,2 5 + 03] (6.10)

with ®, = 4 rad/sec to pre-filter Ax, xi - x. and Xx reference commands. This is what we used

for the Equal Tether AFCS.

6.2.4 Unequal Tether AFCS Poles and Zeros

Table 6.2.4.1 contains the target open loop poles and zeros for the Equal and Unequal Tether

AFCS's. Table 6.2.4.2 contains the recovered open loop poles and zeros.

Table 6.2.4.3 contains the target closed loop poles and zeros for the Equal and Unequal Tether

AFCS's. Table 6.2.4.4 contains the recovered closed loop poles and zeros.



i. TargetLoop

] I] CTILi LL
a . |

Fal
—— -—

}  1]
1
rT

50 ®

5,

5 w—]2
SYSU h |
: wo hl LLL

&amp; Hi |a -30 BN lL :
 TT

 mn

b
|

| |
_ 1

| | HE

1] naltroHH Ti,

S|
4

120

frequency (rad/sec)

10) Recovered Loop }

 gr Hh= TL| Th
iil ]T | NA |

CLI ETH NY
ol &gt; I

10 oi
frequency (rad/sec)

kid

“Tt1
 T171

0
=
rn

'Y

bd
~

- ]

Ea
= ~~on

-e(

-20

D0

-120

a) Equal Tether (SM and ASM) AFCS

Tv t 1 4 TP iral 1 . 1 t Ltt t 3 1 Tt 1 : 3 3 1 1s

= tiiiii PG i ofgiii Poff tii FE

SY eR gb bo nr foie
» . s I Xl. - Ss 2m Tas: . . : Yr azas . . “es2oes

PoP bia ee NU Pooh iii Poi iii
: PoE EE : TN i PT 3 BEET-_ 0 Pbpb pri PP TT pee ne, TE Tid Poo oii

0 ee AT Ww —————————
oo : Polo ried : EE z for br
= r Poli priin EA I I EE : EI I

L Poor pian ¥ 1p iiiid i . ! 3 111:” Es * iI 4 I 3Nrzc: : fF 2 2 amr : } J ry , ] yy XI N35 -20 rrr rire rr STARTTSPoo bbb } 1 111318 EI cea PE3 i 3 1 i3ii4 : $01 7 of ota : [I malo
: ? 4 13d : EEESLLL dP 3 3, De
! i 1: 1113] i iBREIL] i! PI 3 Ii . } LO a-40 ecsenscsafoveradancrfocsohastetndods beossareerntontonchicnfenetunte dd dienes ecccebennnntenactonshediebe tog lesesevvensfonss cobevefoccheepeTraey .

r ! HERERE 3 Poop iis Poor pet i Poor
E 3 3 PI 2 rss : Ps phan, : . PS rr! : 3 s $2:

-&amp;0 h srreseschesn fons fon bebefede hse ness fener fen foaled ob frends es he feb fod Brees sesanfesenn as frenhenhedep

on : Poop pai i Soro tira i Pood ting : ] {33%20 reese ttre def beeen SL mf presente tenth L
. 3 1 ft 111d i Politi i 1 iii : Proto

~100 Forced br LLL eesesnencisannachanndurshehodeh oy
EE Poo bb PoE Po bi

-120 —-

J a opr »

frequency (rad / sec)

—— ;

ix 3 &gt; Er frig : P01 3g } i.
i { "tmp. Poon SEE AEEEEE fob

travennrebernnedennetsPhuly SL Tm etme ea deh dann cern seabe a deep ged obese canadien enh nee face bee bes
3 3 Aoe Co Sha : * § wiscd i 3 YF 1%
: . wv 2 dn ee? Neal : . Pr Eri : [EE LAE

CoD Ear Eee Le Poppi 14g
~~ ¢ = * ¥ ¥ . Tem . * : i 3 7 L x z a NE

oO T TET : rdCivertTTI : TTT es hE
+ : i Fria; 3 : HEEEE hate REET : i filo be 3 P 3 4 21rd 1 Yo 3 rads Fn te ee OEEE : } fq iii;

~~ - : I 3 pti 7 I 3 1 1d1°s TT : } 3 aud
vn =2C mr eet tents e f ll RAT LE
¢ } I 315i } i] 18217 i i id 0a : Poolop ii

erred oh DEH ATHENS FEED
Tne reteset renee b eae de fede hh dr settee he sean fesse ben Ve dee} pede b sean Steeler resdecctespednapa

! Tl $1 Eti : FF 3 igs : Id phages AM bY Pw
&lt; : Pdi : . : &gt; REE] : : : TY, IW HY he

Pooh pia Poo rahi EE EE BERN ENNTree fe he tee fenestrae she te eo Season
: 3 Sooo. . « 1 7 i Liiz : : TF yak. ~N HE
: . iy isis : : : woL r,t : + ° Pixs : .,
7 Po 1. 4 i FE : i 241731 - \
: 2 Lf 3% iid : ERIE : EEL iN

Poop bbe REELEE TERE TALL)
rss teeters freephone cbse basen snsg ent ede Pop ede 4

: : Aid ; Poop bie : Por Dri ; Door IN
I si iY I I 111, PF Fi: Tob.
P22 1%” 2 iz ER Torr N

frequency (rad / second)
100

b) Unequal Tether (SASM) AFCS

Fig. 6.2.3.1: Recovery of Open Loop Singular Values For Equal and Unequal

Tether AFCS's (excluding AVM AFCS).



Sensitivity

TIT  ClosedLoop
THI TT | im

RAT

 A aA

t,
wl

| ad.CT
3 1ClAH

o
Oo 1
= 1

2-10 Bn | | g -20
wr’

o
2-40
x

-&amp;0

r NE
1] WAH NyLL a

Phra
CLE Tn

{0

| |~

g
5

c
-20 —

+
‘

i ay
i

| a
x

|
i
¥

~-80di
-
 Nn

0\{)

oo
7 I

 Th
— i

|i:— |

|~ | |
t 4
Cd7 Rn

1.

Ne

n
47 ~42C

1 ta iLl

frequency (rad / sec) frequency (rad/sec)
a) Equal Tether (SM and ASM) AFCS

Sensitivity
i 1 1311348 i fF Eiiiig Poor ai
Poor pide iF 111i Po 2
: $1 1ii:b i FF 11g: ri
Poor iii Demet :

&amp; : : 3 2 po " Jo i.

: . oy os ey le TTT 0 eee Sees
: 1 §£ii1d3133 { t 1 gikiid ER. TT

: se oe 4 Lod . . CT esas » . 2 LI

oJ 20 boeeeeeenebenmen dines dante ede dL eee fees bE Lee ede
- 3 1 J 331444 I danny y § 3413k Pool PEE Pool bE iEEE ELE
™ &lt; : 1 Tr Yost 1 2 t 4 trl % 1 : 1

PoE ripe 1 I 1 33%:ii} i 3}

-40fomrofmirntiebd fbb Erbe
P04 1 didi: 1" Rab a 3

F Poop ob iii poop i EiiiE HEH
r 1 T4311: } } $3231 : TE os,~-o0 ereesseniosssadesniioccmenneiodiditacsvrcsaveloncrantonsdenclecloi ll dncorensornnnnsacstassateni md

: EERE : BE EEIL : i 2 $s,
} 3 1 3iiid i 3 F id4ipis f 1 1 1:8,
I 1 fF ofiaig ? 1 iii : 1 3 113s
 3: FP 341343 i 7 | Ean i fii

BO Lermescicionmartontioholed Elemmamusfonsumtoonior dips ensncassenserbususbmmombntis
. IY iin PF i 41th I 1 11%

1 1 Po 1 ite 1 3 4 3 4 3118 : : : FEA
- i 2 §2iifdsi PZ 1 gEivil (EE AE
L i 3 P3iiiyd i I 2Rinid : 1 4 11%,

TER EEL I 3 § 11:i:i2 I 3 &amp; 131%;froseesschesnnndenenfunchacbafededehonansaronsisssranhuncdunsinafonh hab dos ane senses ansnsfesent asked baie
be ff F4 jii4g Poop oF tii EE AEEEE

i PF Pied 3: 0&amp;2} 3a} IF 1 iid
- 2 PFE igty : t tl ’ } 111%

. «Dee.
: &gt; ToL

. oe soe oe: ET4

. coseae
3 Toy vt
. eo + vote
. ee4ue
. FEES TPR
. ose

«ee

I :

Pr.
© eee To

. os.

s «ev.

. «vo.
’ oe

v HE
v .

. . [a
: ar.
: soe

tor ror
. fe ae
' 2 2 3 bl

' . i IEEEEEE
: e 21!
; IO

: s Tose
. . [A

“seamsesssaicescammsraarsosensemn TF
. : Lou

i : EERIEEEE
z ee ee.

~~ 3 Por ttt:es + sos ei
 rs ros

Swit ptt
craved aoe. ated eed

ANN ; ®E BGPosies
h NN. Prise

=

Di
(v3

. dr

— .

0 y 3
- y of
- | NE

Pod
-{0 Ford oir

po
=20 berredeenednanniel

1 3 3

:P 2, ud i } £232
 Fr TY 3115 3 i $413

3 4 § tits i I 1111
sememesuas eae tot LRPrA

HE : PoodoE ri

ATE. : TOT OP iatg i # 3 Lui
‘drvojecdaspebo aaconvencen: ss’ ineheacpedeepeded ,orecarrscclesnts imsnq cn ean

we. rEEm: ? 13": : 3 Las

EE i Pod bbe . Poor
: : 3 Cex : i bP i3t . PF

rt Boa , Li Tt +1 3 1 §8%3i3s io: 11,
yb, al FE EA i i 1 3 1Eiid ’ tit

Fa Pola if iii 3 i} Pitisl 2 2 3 5 dy

edb coasrens’ somsspeansgeste be © russsomessepsesshonsriontpsbigefribessesvsveheesesiessieasbeoteion
oe ee &gt; + 87h 3 i fi Ei3:qd 1 + 431

. ; §] = 71™ P01 iad : : 2 pil

. - 2 3 re 3 t it

. 3 i JE $: EF =3
i ¥ 3 &gt;

Wu
r
-

a

aN

CONN
. Poe NEY
Poscccsessalnvosendonnde yoohe der de

FP 1 INT

' ' ror, ‘ nie

»
-

~~
~~
tN

20
-oe]

¢ -

As

MM " h
1 Wd

frequency (rad/sec) frequency (rad/second)
b) Unequal Tether (SASM) AFCS

Fig. 6.2.3.2: Sensitivity and Closed Loop Singular Values For Equal and Unequal

Tether AFCS's (excluding AVM AFCS).



LQG/LTR Compensator
Td

= 1A
30 &lt;

SLE De TYMk
gE| CLL ARIs C0 Lb

5 FT 11 ZF5 -10 Ff — . + _— =

Sr Ln TE es TT=F | =r Tr
qo

4
Reference to Control

| . Lg | 1 |

| ni NEG
CT ATNCNT

LIN DN
ARN

~~
A

' !
{ )

we em

=
T

20 |
nan
il
HET
iyi 15)i

10
»

Sp
20

5 _ap

|
Cl |

aif| 1
I]

wn
 OLi)
=

JM/ ML
Bailli

.

18
{

-40
A

frequency (rad/sec)
10 100

a) Equal Tether (SM and ASM) AFCS
LQG/LTR Compensator

F111 Ti. TT] tom 2,"
ssmalrsguiensia fo fmm spinners goo hse

b+ piiiis Poi pid Pom ith DT

S| PoP Fp fae
- Poo bia Poor iii : Miri Tey

yoo bopiire op acRbian PAE RRei

: Poo EERE HS SE
« _ : : fl : Doors ryt JLo tro
= 2 F 2 120 i 1 1141111 24 si 111 DoT

2 oll pian, FR REMA TINE 1 OfLIiH

Ee PORTETIPRL e: Tes SRAM Foye} J resessnsashorerchoncuuiopagiohs bosafos-susnentoensasunsiront eo) funk +

dob lin LH HE

frequency (rad/sec)

Reference to Control
P3301I$1316Pf114104EEEFiwr Ie PoE ob iii Pooh pied SEEIEL Poop oE bia20 brossconeshuseedicon en dertogededpucennneninetinepenedotedontoor shop dasens ani nabunns fe soshesshe deo iTBGsb cass annnnsfrnnssch ane darahenhe dosh de

: Poor iii Poor iri ody sen rT Tia
“ Poor iii Pood ob iii } 15% Pool brit20 Fendi bE ELE EEE GE Ti ON LEE

VE EE PREY : FLAN No  fiian
te i Pf OL 23a : ] 3 tari . ty Tt Bo 3 PolitEk : : + 2 v3: : . 3 Yrs fy Plt NU I YF

SUTTER ORC TTTTRIET
6 : 1 11:21:13: : i. . and PING iE,

i Try tri : EEE . NN, PT,
Pood oiorirt Poor En : ~N PONa i 2 3igid }] 4 133 wr So SNL N

-10 TTT ass poe fe fermen genie oy i--1-e ~ ¥ * Shepton reesnnengene eg Beas
- Poor iii Tobby, Fw mi Hd : Polos

_— . i : od tne Te. 3 i 3 : :

“EQ rere SSE Sederee]Llihedeteffessence bn S =
rbd, : 1 rr: $F zg mae. 1 ! 0% Iv

- Poop op boon TTmell bE EA poor PE ibiiE Pod Iii
Sree ee Parte fob prassesesieteanaschacadocopuepadead oof

. PoP Pid ob oRT Poli Pooh obi
———— rr— —————tnnhwl ——— sit tn — Tons nt ts onmtn. Apo Tm

frequency (rad/sec)
a boo

“« S/%

frequency (rad/second)
b) Unequal Tether (SASM) AFCS
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Table 6.2.4.1: Target Open Loop Poles and Zeros For Equal and Unequal
Tether AFCS's (excluding AVM AFCS)

sM

ASM:

2) Equal Tether AFCS

Poles: A.(A,)

s=0
s = 0.7561

s=-0.8122 +j2.2228
 §s=-2.2919

Poles: A.(A3)

s=0, 0
s = 0.0402 + 0.4785

s=-0.1976 +j0.7364
s=-2.119
s=-0.5313+32.624

Zeros: Cy(sI - A)H),

s =-0.34183
s=-0.8175 £j 2.2269
s=-22286

-1Zeros: C3(sI- Az) Hs

s=-0.3754 £j 0.71707
s=-0.2724 + j 0.735
s=-2.127
s=-0.5349 + j 2.622

vy) Unequal Tether AFCS

SASM: Poles: A.(Ayq)

s=0
s = 0.6604

s=-0.7883 +j1.8885
Ss =-2.227

s=0,0
s = 0.0478 + j 0.4698
s=-0.1897 +j0.7291
s=-0.6119 +j2.4381
s = - 2.0053

Zeros: Cys(sI - Ap)Hps

s=-0.329
s=-0.7949 +j 1.8927
Ss = -2.22490

s =-0.3551 +j0.7081
s=-0.277 £j 0.3639
s=-2.013
s=-0.6167 +j 2.4366
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Table 6.2.4.2: Recovered Open Loop Poles and Zeros For Equal and Unequal
Tether AFCS's (excluding AVM AFCS)

SM:

: LN

A

SM:

2
,JM:LAL

1 Fuual Tether ASCS

Design Plant Poles
s= 0
s = 0.7561

s =-0.8122 +j 2.2228
s=-2.2919

s=0,0
s = 0.0422 + j 0.4785
s=-1976 £j 0.7364
s=-2.119
s=-0.5313+j2.624

LQG/LTR Compensator Poles
s=- 14266 j 7.6892
s=-6.6325 + j 7.7966
s=-12.043

s=-1.8871j8.578
s=-0.8031+%j4.311
s=-3.6351j3.942
s=-5974
s=-11.75%j 8.402

Design Plant Zeros
s =- 1.55% 9.4906

LQG/LTR Compensator Zeros
s =- 0.2525

s=-0.816+j2.2228
s =-2.2898

s=-0.2272 + 0.344
s =-0.3391 + j 0.6977
s=-2.124
s=-0.5319+j2.621

s=- 0.1786 + j 6.413
s = - 1.3371 +j9.807

b) Unequal Tether ArCS

SASM:
Design Plant Poles
s= 0
s = 0.6604

s = - 0.7883 + j 1.8885
s=-2227

s=0, 0
s = 0.0478 + j 0.4698
s = - (0.1896 +j0.7291
s =-0.6119 +j 2.4381
Ss = - 2.0053

Design Plant Zeros
s =- 1.5437 + j 9.3034
s=-0.0912 +j5.6677
s=-1.4649 + 9.6454

LQG/LTR Compensator Poles
s=-14413+£j 7.591
s=-6.5793 +] 7.6486
s =- 11.8387

s=- 1.8707 + j 8.4977

s=-0.7128 + j 4.0387
s= -3.4453 + j 3.8351
s= -58125
s=- 11.6993 + j 8.3816

LQG/LTR Compensator Zeros
s = - 0.2499

s=-0.7931 +j1.8883
s=-2.2264
s =-0.3217 £j0.6964
s =-0.2267 + j 0.3334
s=-2.011
s=-0.6138+j24352
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Table 6.2.4.3: Target Closed Loop Poles and Zeros For Equal and Unequal
Tether AFCS's (excluding AVM AFCS)

1) Equal Tether AFCS

SM:

ASM:

Poles: A(A - HC)

s=-0.7245 + j 0.47483
s=- 0.8084 + j 2.2288
s = - 2.3006

s = - 0.5423

s=-0.5748
s =- 0.2907 + j 0.6241
s =- 0.3062 + j 0.9024
s=-2.113
s=-0.5323 + 2.626

Zeros: C(sI - Ay1H,

$= - 0.3412 |
s =- 0.8175 + j 2.2269
Ss =--22864

s=-0.2724 + j 0.375
s=-0.3754 +; 0.7107
s=-2.127
s=-0.5349 + j 2.676

b) Unequal Tether AFCS

Poles: AA -H,,C)
SASM: s = - 0.6625 + j 0.461

s =- 0.7824 +j1.8954
Ss =-29300

s = - 0.556 + j 0.0297

s=-0.3041%j 0.6153
s =-0.2924 + j 0.8876
s = - 2.0019

s =-0.6127 +j2.4401

Zeros: C(slI - A)'H,

s=-0.329
s=-0.7949 + j 1.8927
Ss =-2.2249

s = - 0.3551 + 0.7081

s=-0.277 0.3639
s=-2.013
s=-0.6167 + 2.4366
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Table 6.2.4.4: Recovered Closed Loop Poles and Zeros For Equal and Unequal
Tether AFCS's (excluding AVM AFCS)

a) Equal Tether AFCS

SM:

ASM:

Poles:

(A, - HigCys = - 0.72449 + j 0.47483
s = - 0.80839 + j 2.2288
s = - 2.3006

%(A - BoC)
s=- 160087 j 7.3321
$= - 6.4223 + j 6.2478
Ss =-977784

A{(A3 - H 3C3)
s= 0.5423
s=-0.5748
s=- 0.2907 + j 0.6241
s=- 0.3062 + j 0.9024
s=-2.113
s = - 0.5323 + j 2.626

A(Ag -BoGop)
s=- 1.005%j4.177
s=-3463 1% 3.199
s =-4.907
s=- 1.891 + j 8.47
s=-11.25%73 7.797

Zeros:

SM LQG/LTR Compensator
s =- 0.25254

s =- 0.81602 +j2.2228
s=-2.2898

SM Design Plant
s =- 1.55% 9.4906

ASM LQG/LTR Compensator

s=-0.22721j0.344
s =-0.3391 + j 0.6977
s=-2.124
s=-0.5319+72.621

ASM Design Plant
s=-0.1786 +j6.413
s=- 1.371 +j9.807

b) Unequal Tether AFCS

SASM: A(Apg -H 23C23)s=- 0.6625 + ; 0.461
s=- 0.7824 + j 1.8954
3=-2.2309

s =-0.556 + j 0.0297
s=- 0.3041 + j 0.6153
s =-0.2924 + j 0.8876
s =- 2.0019

s=-0.6127 +1 2.4401

A(Ag3 - By3Gioa)
s=-1.6798 +] 7.2744
s = - 6.4006 £ j 6.2306
s=-97147

s =-0.9036 £ j 3.8984
s=-3.2745 + j 3.0896
s=-4.7358
s=- 1.8764 + j 8.3887
s=- 11.2155 + j 7.7916

SASM LQG/LTR Compensator
s =- 0.2499

s=-0.7931 +j1.8883
Ss=-22264

s =-0.3217 +j0.6964
s =-0.2267 +£j 0.3334
s=-2.011
s=-0.6138 +j 2.4352

SASM Design Plant
s=-1.5437 + 9.3034

s=-0.0912 + j 5.6677
s=-14649 +79.6454
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Upon comparing table 6.2.4.1 with 6.2.4.2, and table 6.2.4.3 with 6.2.4.4, we see that the

strategies of the Equal and Unequal Tether Compensators are quite similar. Zeros have been placed

at appropriate locations to stabilize the configurations and provide damping (derivative action).

The recovery process has placed poles at "high" frequencies to make the compensators realizable and

limit the reference to control bandwidth.

6.2.5 Time Domain Evaluation of Unequal Tether AFCS

Figs. 6.2.5.1 - 6.2.5.5 show the response of the Equal and Unequal Tethered AFCS's to

filtered Tx = 1 ft/sec step commands. A third order Butterworth filter with cut-off frequency at w,

= 4 rad/sec was used to generate the commands.

The figures show that the Equal and Unequal Tether AFCS's respond quite similarly. The

main difference between the responses are seen in Fig. 6.2.5.3 which shows the degree of

coupling due to the unequal tether lengths. The figure shows that this effect is quite small.

Moreover, we see that besides providing a greater tip-to-tip clearance, unequal tethered flight

offers no major advantages over equal tethered flight.

Figs. 6.2.5.6 - 6.2.5.7 show the response of the Equal and Unequal Tether AFCS's for the

following command/initial condition scenario:

¥z = 5 ft/sec unfiltered step response,

Ax = 1 ft initial condition,

Xy - 2x = - 1 ft initial condition.

Xx = 5 ft/sec filtered step command.

Again, 3™ order Butterworth filter with cut-off at 0, = 4 rad/sec was used to generate the commands.

The figures show clearly that even for the modest robustness specifications presented in

Chapters 3 and 5, the helicopters have to pitch and oscillate substantially in the vertical plane in

order to regulate the horizontal separation and load motion when horizontal and vertical velocities are

commanded. Moreover, we see that this is true whether the tether lengths are equal or unequal. If

more stringent robustness specifications were given we would be forced to improveour recovery.

This, however, would result in even more pitching and oscillations in the vertical plane.
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If less stringent robustness specifications were given we would recover less. This would reduce

the pitching and oscillations in the vertical plane. Consequently, we conclude that high

performance (high bandwidth) Equal and Unequal Tether AFCS's are feasible only if model

uncertainty is sufficiently low. Moreover, if model uncertainty is high then only low bandwidth

designs become feasible.

The figures, combined with the singular values in sub-section 6.2.3, also indicates that

having unequal tether lengths does not reduce the extent to which we must trade-off performance

and stability robustness when a high bandwidth design is the objective. Physically, this is

associated with the high bandwidth specification and the fact that the payload is very heavy. To

reduce the trade-off it is thus necessary to lower the bandwidth or restrict Twin Lift transport

operations to lighter payloads. The latter option is not acceptable since it defeats the fundamental

purpose of Twin Lift; i.e. to transport payloads which existing heavy lift helicopters cannot. It

thus follows that to lower the performance-robustness trade-off, the desired AFCS bandwidth

must be reduced. To further help reduce the trade-off one could replace the integrators with first

order lags with appropriate dc gains. Doing so would reduce the amount of lead needed to have

nice stability margins. It should also be recalled that attaching the tethers directly to the helicopter

c.g.'s (i.e. making h = 0) would result in the unstable Tethered Helicopter Mode moving toward

the origin thus giving us a natural integrator in the Ax channel. This would allow us to remove the

augmentation in the Ax channel all together.

6.3 Summary of Unequal Tether AFCS Design

In this chapter the LQG/LTR design methodology was applied to the Unequal Tether Design

Plant discussed in Chapter 5. The method was used to systematically develop an Unequal Tether

AFCS satisfying the performance and robustness specifications presented in Chapter 5. The

Unequal Tether AFCS, consisting of an AVM AFCS and a SASM AFCS was evaluated in the

frequency and time domains. The Equal and Unequal Tether AFCS designs were compared. The

comparison showed little differences between the designs. In summary, the chapter showed that

besides providing a larger tip-to-tip rotor clearance, Unequal Tethered flight does not offer any

significant dynamic advantages over Equal Tethered flight.
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CHAPTER 7: SUMMARY, CONCLUSIONS, AND DIRECTIONS FOR FURTHER
RESEARCH

7.1 Summary and Conclusions

Because of the inherent coupling in TLHS's, SISO design techniques can not easily be used

to systematically develop a MIMO AFCS for TLHS's. In this thesis systematic guidelines for

designing a MIMO AFCS were presented. These guidelines combine state space methods and

singular value ideas with the well established LQG/LTR design methodology.

Two configurations were considered. One with equal tether lengths (Equal Tether

Configuration) and the other with unequal tether lengths (Unequal Tether Configuration). The

configurations were analyzed and design specifications were presented for each in the frequency

domain using singular value concepts. The specifications called for high performance (high

bandwidth) AFCS designs with modest robustness properties. The designs were obtained,

evaluated, and compared.

It was concluded that high performance AFCS designs for either configuration are feasibile

only if model uncertainty is sufficiently low. If model uncertainty is high then the designs become

unfeasible. This is because, in such a case, the large robustness requirement forces the

helicopters to undergo substantial pitching and oscillations in the vertical plane in order to regulate

the horizontal separation and load motion when horizontal and vertical velocities are commanded.

Moreover, if model uncertainty is high then only low bandwidth designs become feasible. This is

due to the fact that a trade-off must be made between performance and stability robustness and that

this trade-off is exacerbated by the high bandwidth objective.

It was also concluded that besides providing a larger tip-to-tip rotor clearance, unequal

tethered flight offers no significant dynamic advantages over equal tethered flight.

7.2 Directions for Further Research

It was shown in the thesis that whether the tether lengths are equal or unequal, Twin Lift

controlengineers must trade-off performance versus stability robustness. Moreover, this trade-off

is exacerbated when the objective is high performance (high bandwidth) designs. To reduce this

trade-off several options should be considered.

One option is to lower the desired bandwidth. This would certainly reduce the amount of
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pitching and oscillations that the helicopters must undergo in order to regulate the horizontal

separation and load motion when horizontal and vertical velocities are commanded. Before

pursuing this option, however, several alternatives should be considered.

One alternative to consider is to completely drop the integrators augmented at the plant input

or to replace them with first order lags with appropriate dc gains. Doing so would reduce the

amount of lead needed to obtain nice stability margins thus lowering the performance-robustness

trade-off. Attaching the tethers to the helicopter c.g.'s (h = 0) should also be considered since it

would result in a natural integrator in the Ax channel. Doing so should significantly reduce

helicopter pitching.
To reduce the oscillations in the vertival plane the parameters Z and L should be appropriately

selected. Z represents the distance that the load hangs below the spreader bar c.g. and L is the

spreader bar length. More specifically, Z and L should be selected so that the Vertical Spring

Mode has desirable characteristics. Decreasing the ratio Z=27] L, for example, results in a larger

damping ratio. Another option which may help is to employ a control strategy which varies the

tether legngths in real time. By doing so we introduce another degree of freedom in the controls.

This new control could be used to further dampen the vertical oscillations and load motion.

After pursuing the above geometric considerations with the 7 degree of freedom TLHS

model used throughout the thesis, designs based on a 16 degree of freedom model (incorporating 6

degrees of freedom for each helicopter and 4 for the load-bar assembly) should be conducted. In

addition, actuator, sensor, and unmodeled rotor dynamics as well as disturbance, noise, and

pilot models should also be considered. Full nonlinear simulations should also be conducted.

Finally, realistic design specifications should be formulated in terms of singular value and

singular vector information at both natural loop breaking points: i.e. i.e. at the plant input and at the

plant output (error signal). To help formulate the specifications, the results of Freudenberg and

Looze [20] should prove helpful. Given specifications at each loop breaking point which are

"dynamically consistent", the ideas of LQG/LTR [5-9], formal loop shaping [5-9], H*

optimization [22], and structured singular values [10] should be integrated to obtain a methodology

to meet both sets of specifications. Such a methodology does not currently exist.



~-259-

APPENDIX 1:

Notes: 1.

Glossary for TLHS Variables and Parameters; Contains Nominal
Parameter Values

Whether a variable in this thesis is an'incremental’' (small signal)

quantity or a true quantity should be determined by the context in

which it appears.

Dd Equilibrium (large signal) quantities are always denoted by using

zero subscripts.

Ex: or

true

quantity

4
1

equilibrium
quantity

incremental
quantity

(Al.1)

Throughout the thesis, the symbol v is often used although &amp;v is

the quantity actually being addressed. In this example v can be,

for example, the actual separation between the helicopters:

Ax = Ax + Ax = L + §Ax where L = spreader bar length.

Throughout the thesis, the symbol Ax is often used although 8Ax is

the quantity being addressed.

Basic Motion Variables

X sXo  - Horizontal displacement of master and slave helicopter c.g.s.

2.0% Vertical displacement of master and slave helicopter c.g.s.

CAL - Pitch attitude of master and slave helicopters.

XpsZy = Horizontal and vertical displacement of load c.g.

XpsZp = Horizontal and vertical displacement of spreader bar c.g.

€s€ Angle of master and slave tethers with respect to vertical.

tn - Angle of spreader bar with respect to horizontal.
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Equilibrium values:

i.e

x =x _=0
mo SO

z = gz = 0
mo So

5 =06 =6 _=6_=0
mo SO mo So

“Lo = “Lo alk

XBo - Bo =0

mo SO mo

“Bo = €Bo = 0

(Al.2)

(Al.3)
(Al.4)

(A1.5)

(A1.6)

(AL.7)0

(Al.8)

At equilibrium the helicopters are motionless with the tethers

vertical and the spreader bar horizontal.

Average Motion Variables

Ix = &gt; [x +x] - Average horizontal velocity of helicopters.

Tz = z [2 +z] - Average vertical velocity of helicopters.

ne = 3 [6 +6] - Average pitch attitude of helicopters.

Ze = &gt; [e+e] - Average tether angle with respect to vertical.

Difference Motion Variables

Ax 2 X“Xo o- Horizontal separation between helicopters.

Az = z “2, - Vertical separation between helicopters.

Ae = € -€ - Difference in tether angles.

Generalized Load Coordinate

"= IX h+H )Z6 zX, =X, - - &lt;) TL Nz

1 1

2 JH, (2,-8,040,(2,-0.0) i) IY i 18,
For equal tether problem H =H =H and x; =#H[Ze-18].

(A1.9)

(Al.10)

(Al.11)

(Al.12)

(Al.13)

(Al.14)

(A1.15)

(Al.16)

(Al.17)
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Helicopter Controls

0.6 - Collective pitch control on master and slave helicopters.

Controls vertical (up/down) translation of helicopters.
Positive values of collective cause upward motion.

lem? Bics

0 s QO =
cmo- ¢Cso

By emo, Bleso

- Cyclic pitch control on master and slave helicopters.

- Controls horizontal (fore/aft) translation and pitching

of helicopters.
Positive values of cyclic cause downward pitching and
forward motion.

Equilibrium (large signal) components of collective for
master and slave helicopters. These provide the vertical

aerodynamic forces, Zo and Zoo (to be defined subsequently),
which maintain vertical equilibrium. |

Equilibrium (large signal) components of cyclic for master and

slave helicopters. These generate the aerodynamic forces and

moments, Xo? Xoo? Ms and M_ (to be defined subsequently).

Both Bl emo and Bicso are zero since X00 ™Mno™Meo=0-

Incremental Control limitations:

It is assumed throughout the thesis that the incremental control limitations are

as follows:

lo |&lt; 10 degrees for the collectives

By |&lt; 15 degrees for the cyclics.

(A1.18)

(Al.19)

Average Controls

 1
20, - 2 [0 +0] - Average collective pitch control.

 | Co

2: 2 5 [B, n*Bics] - Average cyclic pitch control.

(A1.20)

(Al1.21)
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Differential Controls

AO 20 -0 - Differential collective pitch control.Cc cm CS

AB. = Bem Blcs - Differential cyclic pitch control

(Al1.22)

(Al.23)

UH-60A Blackhawk Helicopter Characteristics

Wy = 14000 pounds

Mp = 434.78 slugs

L, = 5700 slugfes

- Helicopter weight.

- Helicopter mass.

- Helicopter moment of inertia about pitch axis.

w, = 27 rad/sec(258RPM) - First harmonic of main rotor.

h = 3.6 feet - Distance from helicopter c.g. to helicopter-tether
attachment point.

UH-60A-ControlDerivativesNearHover

Xoc =0 ft/rad soc - Horizontal acceleration per radian of collective pitch.

Kppc=27-4 ft/rad Seo - Horizontal acceleration per radian of cyclic pitch.

2o.=340.9 ft/rad son -- Vertical acceleration per radian of collective pitch.

Zp1c0 ft/rad secs - Vertical acceleration per radian of cyclic pitch.

Mo =0 rad/rad sect - Angular acceleration per radian of collective pitch.

My, 5-47.24 rad/rad sae” - Angular acceleration per radian of cyclic pitch.

UH-60A Aerodynamic Derivatives Near Hover

ft/sec i . : i

£, = -0.06 Tt/sec— Used to characterize horizontal drag forces due to horizontal
motion.

Used to characterize horizontal drag forces due to vertical
motion.

0 fu/s00&gt;
rad/sec

- Used to characterize horizontal drag forces due to pitching.
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L=0

Z_ = -U
 Ww

 246

 Zz =20
q

M = 0.041
u

M ~
1’

0

M = -3.1
“a

£1 [secs _
ft/sec Used to characterize vertical drag forces due to horizontal

motion; results in decoupling of helicopter vertical and
longitudinal dynamics.

Used to characterize vertical drag forces due to vertical
motion.

ft/sec?
rad/sec
rad/sec? . i } .

Te" Used to characterize pitching moments due to forward motion.

Used to characterize pitching moments due to vertical motion.

2
rad/sec }
fad/sec - Used to characterize rotational damping due to pitching.

Aerodynamic Forces and Moments Acting on Helicopters

KX - Horizontal aerodynamic forces acting on master and slave helicopter c.g.s.

22g - Vertical aerodynamic forces acting on master and slave helicopter c.g.s.

MM - Aerodynamic moments about master and slave helicopter pitch axes.

Equilibrium values: X =X = 0
mo so

Zo Zoo wy + &gt; (WoW,] 20322 1bs.
M =M =20

mo SO

(A1.24)

(Al. 25)
(Al. 26)

Tether Parameters

Ho,H_ - Master and slave tether lengths

2H H_
Hy = gE

S m

GoA
[

LW
S = TnTh

sm

N =

A 3 B-
A

(AL.27)

(AL. 28)

(Al.29)

(Al.30)



-264~

For Equal Tether Problem: H_=H =H=13.25ft.

H,=H=13. 25ft.

H,=0.19
S=0

W,=1.559 rad/sec

For Unequal Tether Problem: H =H=13.25ft.

H_ =2H =26.5ft.
sm

H,= 2 H=17 67ft
AT 3 . .

H,=0.256
S

Wy™ L.35rad/sec

Spreader Bar, Load, and Load-Bar Assembly Parameters

L = 69ft. Spreader bar length.

Wo = 6441bs.

Mp = 20slugs

1 weight.
it macs

 1 2 2
Ly = 12 MiL = 7935slug ft

e = “Ig = Mg
b M12 6M,

1? moment of inertia about its cg. (Al.31)

(Al.32)

Z = 34.5ft. Distance that load is suspended below spreader (Al.33)
bar c.g. during unperturbed hover.

sr ZLZ=+=0.5 (Al. 34)

W, =120001bs. Weight of load.

M, = 372.67slugs

M_+M
 = Sr = 0.4516

Mass

Load-bar to helicopter mass ratio. (Al.35)
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Mp
S. = = 0.9491

L M +My

Mh
nN = 0.2746ft

Ny

g = 32.2 fu) sen’

= wy =
t= 1l+e, + 4UZ 6, (1-6,) 1.0295

2 418,2
D = Wy [1+u+(h+H_ Jue + —2 ]

E = -[X +M_(h+H)]

_ 2 2 a

F = (h+H,) eww, SH_ - w,He - ATS, ZH _

qo 2.-1
J E [us Zw}]

— gy

TS us, zw, /Y
272

i 46,2

Load to load-bar mass ratio.

Acceleration due to gravity

(Al. 36)

(A1.37)

(Al.38)

(Al.39)

(Al.40)

(A1.41)

(Al.42)

(Al.43)

(Al.44)
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APPENDIX 2: Derivation of Linear Model for Longitudinal Dynamics
of TLHS Near Hover

in this appendix a seven degree of freedom linear model is derived for the

longitudinal dynamics of the TLHS near hover. Fig. A2.1 shows the initial seven

degrees of freedom chosen, the aerodynamic forces and moments acting on the

helicopters, and the key Twin Lift parameters.

M1 Zm "\ Mim
 SR 4 ig h Xm

gs =&lt; Nh ~ Xe G 16m
184 y

3 €m m
J L_

i

SAH _— spreader° bar

helicopter- tether z W 1
attachment point ~~ \7 B

Ty

slave c.g.’
Wh, Iy

/

dyloa"oa
u

LS

TLHS; Longitudinal Configuration Initial Seven Degrees
of Freedom; Aerodynamics Forces and Moments.

The initial seven degrees of freedom chosen were

X22 ~ Horizontal and vertical coordinates of slave helicopter c.g.'s.

9.,0 - Pitch attitude of slave and master helicopters.

Fo - Angle that slave and master tethers make with respect to vertical.

7p - Angle that spreader bar makes with respect to horizontal.



-267-

The aerodynamic forces and moments acting on the helicopters are as follows:

Horizontal aerodynamic forces acting on master and slave
helicopter c.g.'s.
Vertical aerodynamic forces acting on master and slave
helicopter c.g.'s.

MoM - Aerodynamic moments about master and slave helicopter pitch axes.

The Twin Lift parameters which appear in Fig. A2.1 are defined in Appendix 1.

Using the aforementioned seven degrees of freedom, aerodynamic forces and

moments, and the Twin Lift parameters shown in Fig. A2.1, a linear model can be

developed using the Lagrangian method [1]. An outline of this procedure shall now

be given.

Derivation of Linear Model

(1) Use X.12.,0.,0 ,€_,€ ,€4 as your initial 7 degrees of freedom.

(2) Compute (xg&gt;25) &gt; (X;,2;), and (x ,z J and the corresponding velocities and
accelerations in terms of the above 7 degrees of freedom.

(3) Compute the kinetic energy of the system, Ey. The master, slave, and bar have
rotational as well as translational kinetic energy. The load, however, only

has translational kinetic energy since it's being modelled as a point mass.

(4) Compute the potential energy of the system, E,

(5) Form the Lagrangian energy function E, 2 BE

(6) The 7 nonlinear ordinary differential equations describing the longitudinal
planar dynamics of the TLHS are then given by

d |%L C9 = Q _
dt 94, 99; qi da, (A2.1)

where q.={x ,z ,0 ,6 ,e ,e ,e.} and the Q . are generalized forces to be
1 ss” sm” sm” B gl

computed (Appendix 2.1).
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(7) The generalized forces are found by using the XZ 05 Xe52.0, eqs. of (2)
and the following virtual work function:

IW - [X 8x +Z &amp;z +M 86 ]+[X_,8x +Z 8z +M 66]
m m m m mm &lt; s ss se 22.2)

The aerodynamic forces and moments acting on the spreader bar and load have

been assumed negligible in comparison to those acting on the master and slave

helicopters (Appendix 2.2).

(8) Assume that the TLHS is nominally at rest with the tethers parallel and the

spreader bar horizontal:

X = X = X = X = 0
SO mo Bo Lo

z = Z = 2 = % = 0
SO mo Bo Lo

£ = £ =e =¢€ = 0
So mo SO mo

0 =0 = (
SO mo

(A2.3)

(A2.4)

(A2.5)

(A2.6)
*

Also assume that the helicopter c.g.'s lie on the helicopter shafts so that

6 =06__=20
mo sO

(9) Obtain the equilibrium values of the aerodynamic forces and moments:

X "
m

C

¥ 0

7 = = dem Zs "hy v2 [We +W,|

(master and slave swashplates
horizontal)

(A2.7)

(A2.8)

M =M =20
m S

a oO

(10) Use the equilibrium values of [8] and [9] with the equations found in [6] and

[7]. Each variable should be expressed as a sum of a large signal component

(equilibrium value) and a small signal (incremental) component (deviation of

true value from the equilibrium value)

* The c.g. position, which is of great importance in the stability of fixed-wing
aircraft. has no effect on the stability of the hovering helicopter.
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Ex: X =X _ +AX (for forces)
m my, m

X =X +OX (for position and angular variables)
0

(A2.10)

(A2.11)

i.e. True value = Equilibrium value + incremental value

11) Assume that the variable perturbations Sv are small. Neglecting products

and squares of variables gives us a set of 7 linear ordinary differential

equations in terms of the small signal (incremental) aerodynamic forces

and moments acting on the system; namely (AX AZ ,AM) and (AX ,AZ_, 0M).

For notational economy drop the §'s on the motion variables (Appendix 2.3).

(12) Introduce I cot $ a
2M, I, L MM

(A2.12)

SR
21

B _ 1 2 A
—em JE = M_L (Appendix 2.4)2 B™ 12 B
M,L

(A2.13)

(13) Next we introduce variables which expioit the symmetry of the TLHS

3 Average Variables

[1].

_ 1 _ 1 _ 1

Ix EB 5 [x +x] Jz = 5 [z +z] z6 = 5 [6 +6]

3 Difference Variables

(A2.14)

Ax = x -X Az = z -z AB=8-6m’'s m Ss mSs (42.15)

Generalized Load Coordinate
— Z ; : .

x, = X; -IX -(h+H)) Z6 - ge Az (Discussed in Appendix 2.5) (A2.16)

where all variables above represent small perturbations of true quantities

from the equilibrium quantities.
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2H H_ H-H_ 9
(14) Introduce Hy = Tan? 8 = HH’ YA = £- (Appendix 2.6)

Ss m S m A
(A2.17)

(15) After the equations are manipulated a little, we develop the aerodynamic

forces and moments on the helicopters in terms of control and aerodynamic

derivatives which shall be briefly discussed (Appendix 2.7).

(15a)

(15D)

What are control derivatives?

They are constants of proportionality that allow us to introduce the four

controls 6 ,6 ,B ,B into the linear differential equations.cm” cs’ lcm’ lcs a

What are aerodynamic derivatives?

They are constants of proportionality that allow us to characterize the drag

forces which act on the system as it moves

Ex: AX +AX .
— — = -g(1+1)I6 + X 50 + X IX + X Tz

Xp1cEBie * Xo 20
(A2.18)

(16) Conventionally, helicopter aerodynamic forces are expressed in terms of

body axis forces and body axis motion variables. To use the control and

aerodynamic derivatives one must be careful to use the appropriate rotation

to get the needed space fixed axis quantities from the body fixed axis

quantities.

(17) Substituting in the aerodynamic forces and moments developed in 15-16 gives

us the final seven linear ordinary differential equations describing the

longitudinal (planar) dynamics of the TLHS near hovering trim (Appendix 2.8).

Note: For hovering flight the following control and aerodynamic derivaties
can be neglected:

X X, /  R iv] (A2.19)
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(18) The final seven linear ordinary differential equations may then be written

in matrix form as

(19)

Mz + Nz+Pz QU

-1y 1E

z = [Zz |Ax AB] Ix Z6 Az x1’
= T

u = [29 |aB, | £0 ZB,]
For details contact Professor Curtiss of Princeton Universtiy [1].

The above model in (18) can be expressed in state space form as

~y
r=

0
A A + Bu A =

MIN mrp [
|. 4

FE
B =

MIR

!A

(A2.20)

(A2.21)

(A2.22)

(A2.23)

(A2.24)

(20) The model to be used throughout the thesis (Table 2.4.1) does not include

zz and Ix.

Xx =AX + Bu x ERYZ, u_ er?
&gt; pp pop =p

x_ = [Zz |Ax AB Ak AB] £6 Az x! Tk £6 Az x']T

u, = [zo |B. | AO ZB 1

(A2.25)

(A2.26)

(A2.27)
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APPENDIX 2.1: Seven Nonlinear Ordinary Differential Equations for Longitudinal
Dynamics of TLHS Near Hover; Written in terms of True Variables
and Generalized Forces.

ks TEL tH tty &lt;Q, (A2.1.1)

2

MZ, + MZ, + Mpzp + M2, + [2W Wo ] = 2, (A2.1.2)

X hcos®_ [MXpg * MX MX] + hsinf_ Mp2, tMZo+ MZ]
1,0, + hsing [WW +W, ] = %_

(A2.1.3)

1 H _COSE_ MX, + MpXp + MX] + H sine [MZ + MpZy + MZ]

H sine [WWW] = %

(A2.1.4)
i

cose [M; 2% + Mp &gt; Zp + M : Zp MLZ] + IpEp

+ sine, [M 72 - M = % SMR - M &gt; %, ]

pth :

Lcose, [Wy % omg ] + W Zsiney = %,

(A2.1.5)

r
D -M, H cose +Z sine - WH sine =m wm ol Hm m CeI) (A2.1.6)

7 Mi 1 xX C086 +Z sind_|] + 1.8, - Whsin®_ = %_ (A2.1.7)

The generalized forces are Q.. where a = [x ,z ,8 ,£ ,e_,e ,6 ].[x_, =? c’? s’ B’ m’ oJ
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APPENDIX 2.2: Seven Generalized Forces; Written in terms of True Aerodynamic
Forces and Moments Acting on Helicopters

SW = [X6x+Z 8z +MGEB J+[X 8x + Z 6z + MSO]
mm mm mm ss ss ss

[X +X ]6x + [Z +Z ]8z + [M +X hcos® + Z hsinf ]6&amp;6
s ‘ms m s° 's sm s m s” s

[X_H_cosey+ z H sing] Se + [-X Lsine, + z Leose Jey
[-X H cose - Z H sine ]8e + [M -x hcos6_ - Z hsinf ]é6 (A2.2.1)

mm m mm mm mm nm m- om
1

Note: The aerodynamic forces and moments on the load and bar have been as assumed

to be neglible in comparison with the aerodynamic forces and moments on the

master and slave.

From this virtual work function we get the seven generalized

. Xx =X +XL xg ms

forces:

(A2.2.2)

(A2.2.3)} Qz, = Z_ +L,

3 Q0 = M +hcos®_ + Z hsin8
3 Ss Ss m Ss

4. Qe = X H cose + Z H sine
Ss ms S ms Ss

(A2.2.4)

(A2.2.5)

5 Qe = -X Lsineg + 2 Leoseg

6 Qe = -X H cose - Z H sine
m m m m m m m

7. Q6 =M -X hcos6 - Z hsin$
m m m m m m

(A2.2.6)

(A2.2.7)

(A2.2.8)

where X , Z , M and X_, Z , M are the aerodynamic forces and moments acting
m m m S S S

on the helicopters (Figure AZ2.1.)
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APPENDIX 2.3: Seven Linear Ordinary Differential Equations for the Longitudinal
Dynamics of TLHS Near Hover; Written in terms of Incremental
Variables and Incremental Aerodynamic Forces and Moments
Acting on Helicopters

Inserting the equilibrium relationships into the equations of motion and assuming

that the angular perturbations are small and neglecting products and squares of the

motion variables, the following linearized equations of motion are obtained:

{ MX + MX + [M; +M IX, -M_ZE = DX, + AX

z Mes * M [2g * 7 &amp; * Mp zg * 7 €p] * Myl2 LE] - A * a,

3 8 - h[MX +f MIR - MIZE + £ (M, +M)01 = AM_ + hAX_

4 HMR (MMR - MZEL + = (MM Je ] = HAX

IE +MZ[X +h6 + HE + Z8] +M Lz NEN
B™B L Ss Ss S'S B B 2 Ss 2 B

+ M, LIZ +LE] + M, s [Z, + » €gl + M gZey = AZ _L

6. -H[MX - 2 (MMe 1 = -H AX

Io, - h[M&amp;  - 3 (Mg *M)6 1 = AM - hAX_

(A2.3.1)

(A2.3.2)

(A2.3.3)

(A2.3.4)

(A2.3.5)

(A2.3.6)

(A2.3.7)

where all the variables now represent small perturbations from the equilibrium

values. These equations of motion can now be combined in various ways to obtain

a more convenient set of equations.
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APPENDIX 2.4: Seven Linear Ordinary Differential Equations After Rearranging
Terms and Introducing Parameters

2 Horizontal Force Equations:
AX

X_ - uge_=o&gt;&lt; gt M,
M; +My

&gt; M,, (A2.4.1)

“1

AX
_ 7 'm

HEE, - My, (A2.4.2)

2 Pitching Moment Equations:
} AM
Og + eug(05-e) = y= E

Mh
Se = h_ (A2.4.3)

ov K
\’

AM

+ eug(6 -e J) = 1,J
 Mm (A2.4.4)

% . oe _ _ .e 8g -

1 Load Equation: Xp (1 § )zZe, +5 (e +e) 0
Mp

§. = ———  (A2.4.5)
L = MM

2 Vertical Force Equations of Helicopters, coupled by the tethers, spreader bar,
and load:

Notes:

AZ
wr L w Zoom _ om

(Ivwyz + (ey-W) 5 ep + 2u6,2(X +geg) = Mo
L 2 AZ

© Ep - 2m,Z(X +gep) = Tl

-
"

21g
ML

i,
1 2

12 MpL
~

7 2
7

1. The forces AX , AX , AZ , AZ and the moments AM , AM denote
Ss m Ss m [S m

incremental aerodynamic forces and moments.

(A2.4.6)

(A2.4.7)

he variableThe v les Xs es X € 6, 0. Xs Eps Zoo and zg denote
incremental (small signal) quantities, i.e. small perturbations about
their equilibrium (large signal) counterparts.
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APPENDIX 2.5: AGeneralized LoadCoordinate

The absolute position of the load can be approximated by

7 xX + ho_ + H e_ + 5 + Zeg

Xx + h6 + He Lz
mT m m m 2 B

(A2.5.1)

(A2.5.2)

Taking the average of these gives us

_ 1

«= Ix + hi + 5 Hse + He) + Zey

Jsing the fact that €g = pL gives us the following

_ 1 Z
Xx. = LX + hIb + 5 (He, + Hoe) * 1 Az

sT
X.

Z 1
2X - hIf - T Az = 5 (He, + HE J

(A2.5.3)

(A2.5.4)

(A2.5.5)

Subtracting H_Z8 from both sides gives us the desired generalized load coordinate:

YX - Ix - (h + H)Z6
deh Az

i
F 5 (H eg + He) - H XE

1 1
5 [H (e-6) + H (e -6 )] += [H -H_]6_

(A2.5.6)

(A2.5.7)

(A2.5.8)

If Ho=H then Xp = s [(e,-6,) +(e, 0 J] = H[Ze-Z6] is exactly the average displace-

ment of the spreader bar end points from the helicopter-tether attachment points

measured parallel to the helicopters.

It should also be noted that using egs. (A2.5.1-A2.5.2) one gets

Ax = x - x = -[hAB + H&amp; - He] - L
m S m m SSs

To get the incremental (small signal) form of this eq. all we need to do is set L=0.
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APPENDIX 2.6: Seven Linear Ordinary Differential Equations for Longitudinal Dynamics
of TLHS Near Hover; Written in Terms of Incremental Variables and
Incremental Aerodynamic Forces and Moments Acting on Helicopters

2 Horizontal Force Equations

VX 4 1

ug [gm x + HO) +
i BX_+DXS
2— (Ax + hAG)] = —B =7H, 2M; (A2.6.1)

/ AX  ug [- 22 (x! + H_I6) - + (A hag] =He L7H YLT Fs H, °F Tom,
(A2.6.2)

2 Pitching Moment Equations

2

1

"0

AB

+

+

: 5 AM_+AM
cug® - eng [ f- (x - HIZO) + 55— (Ax + hA8)] = ——5—

A A y

. AM_-AM_
= (Ax - hA®)] = LP..25 (x! + H 56)eugAd - eug [- H (x; + H

(A2.6.3)

(A2.6.4)

1 Load Equation

3, + bx + (h+H_) £6 + wiH 6 + = washx + 2 washae + 8 ZA% (A2.6.5)

2 Vertical Force Equations

35

vholre

. AZ +AZ
1+u)lz = Sn

[1+e
a2 . a 2A. an 2 1

~4us. (1-6.)z ] Az + aus,Zw,H, Az - Aus, Zw, (x +H 8)
 2 AZ -AZ_
WS (Ax+hAB) = HT

pooh ET TgAAT" H +H °? - H +H °° AT L°? A TH&lt; mm &lt;&lt; m 2

(A2.6.6)

(A2.6.7)

(A2.6.8)

Ve

|
IN
AH .
“+S Yn "1s -

Hats
i
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APPENDIX 2.7: Incremental Aerodynamic Forces and Moments Written in Terms
of Final Incremental Variables

AX +AX_
aM, = -g(1+u) x6 + X Ix +X Lz

‘AT
+ X 19 + Xs1c5B1c * Xoc LO

Cc (A2.7.1)

AX_-AX_
——— = -g(14)A8 + X 4% LY A :Az+X AO + Xp, AB Xoc AQ, (A2.7.2)

AM +AM_ .
21. MIX * M28 + M28 + Mp1c2Bc * LW (A2.7.3)

AM _-AM 2 v
_M_S _MAx +MAzZ + MAG +M._. SB. + M. AO

u W Blc™ "1c Oc ¢ (A2.7.4)

AZ +AZ .
——— = v

M Z, Ix + Z.. Zz +
/ 3 t Zo LB

1 C
t 20c0. (A2.7.5)

AZ_-AZ
TW, = Z hx + Z Az + Z AB + Zp1cPBy + ZochO, (A2.7.6)

Note: For flight conditions near hover X = X = Xq = 2 = 4 “pC Me, = Ma = 0.
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APPENDIX 2.8: Linear Model for Longitudinal Dynamics of TLHS Near Hover (Symbolic)

2 Horizontal Force Equations

L

’
r

H
IX-X Ix+g [1+US =&gt; ]I6 -% LSw hA®

9 Hy 2 A

L uSwaAx - wax! = Xp1c2B1

AX-X ALAR + [g(1+n) awh] A0 + 2H SZo
u A A A's

(A2.8.1)

(A2.8.2)20.1_+ 2uwySx; = Xp, AB
2 Pitching Moment Equations

3 £6 -M £8+epw SH 6 - M Ix - i owsax - L cuw?shae
: a A's u 2 A 2 A

-epwx! = MIBHWAXL = MR1c*Pic
AB -M Ab+epw? (H,+h)A8 + 2 enw SH $0 - M AX

q A A As u
2 21 _

euw, Ax + 2euw , Sx = My, 8B.

1 Load Equation
se t 2 1 or se 2 1 2

Xo HW Xp + 2X + (h+H_) 26 + w,H 26 + 5 W,SAX

Lr 2 A
5 w, ShA + 6, ZAz=0

(A2.8.3)

(A2.8.4)

(A2.8.5)

2 Vertical Force Equation

6. (1+) Zz - Zz = RACH
~2 oe . a 20 A 2

[1+e, +4ud, (1-6 )Z 1Az - Zz Az + Aud, Zw H,Az - 4nd,Zw, x
nn 2 ~ 2 as2

- 4us, Zw,H_16 - 2ud, Zw, SAx - 2u8, Zw, ShAB = 20 2%
All variables above represent small perturbations from the equilibrium values.

The above seven linear ordinary differential equations may be concisely written
*

in state space form (Table 2.4.1) to obtain the 12th order model (ZZ and IX not included |

to be used throughout the thesis.

*%.2 and Lx are neededonly if "exact load positioning" 1s critical.
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APPENDIX 3: Linear Model for a Single Helicopter Near Hover*

) Vertical Dynamics
vo 2 ov - + zz ? Gc ©

” Z
z _ Oc

0 s-2
~ Ww

pole: Ss Z = -0.346
 Ww

Z
. Oc

dc gain = ——
-Z

= 17.2 ft/deg sec

Horizontal/Pitching Dynamics
0

6 = Bi MM} 8s qd yu
| - 0 X.i g u

5 |

{ x
[0

ss

1 M
Blc

 X
L Blc|

B
ie

r- X M
Blc u ]
M = 3

— Ble

s”-(X +M ys? + M Xs +gM -
u ¢ gu u

Le = Mic
ic

!
L

poles: s = 0.034] + j0.6366; 7 = -0.053; w = 0.64
—_ n

Ss = -3.229

ZexXos: Ss = -0.03622

1
dc gain = —

g q

. gM

x - Biel _ 3 a0 deg/deg
Ble X

Blc- yo
2 ric

Ss _ Ms - x
a Blc

3 (X 4M )s° + MX s + M
= 8 u’ gq gu Cet

X
a— = X
B1c Blc

-

pa

zeros: s = -1.55+37.288; [=0.21; w_=7.29

dc gain = ~ “Ble = 20.11 ft/deg
u

g=3.2283 ft sec 2/deg

¥, 3-1 deg sec” /aeg sec”
M =2.3493 deg sec /ft sec ,

X ="0.06 ft I Fl
-2

Xp1c=0-478 Lt sac sig
Mo, =—47.24 deg sec /deg

(A3.1)

(A3.2)

(A3.3)

(R3.4)

(A3.5)

(13.6)

(A3.7)

(A3.8)

(3.9)

(3.10)

(A3.11)

(A3.12)

* Parameter values are given in Appendix 1.
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