
MIT Open Access Articles

One-way travel-time inverted ultra-short baseline 
localization for low-cost autonomous underwater vehicles

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rypkema, Nicholas R. et al. "One-way travel-time inverted ultra-short baseline 
localization for low-cost autonomous underwater vehicles." 2017 IEEE International Conference 
on Robotics and Automation, May-June 2017, Singapore, Institute of Electrical and Electronics 
Engineers, July 2017. © 2017 IEEE

As Published: http://dx.doi.org/10.1109/icra.2017.7989570

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/132924

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/132924
http://creativecommons.org/licenses/by-nc-sa/4.0/


One-Way Travel-Time Inverted Ultra-Short Baseline Localization
for Low-Cost Autonomous Underwater Vehicles

Nicholas R. Rypkema1, Erin M. Fischell2 and Henrik Schmidt2

Abstract— This paper presents an acoustic localization sys-
tem for small and low-cost autonomous underwater vehicles
(AUVs). Accurate and robust localization for low-cost AUVs
would lower the barrier toward multi-AUV research in river
and ocean environments. However, these AUVs introduce size,
power, and cost constraints that prevent the use of conventional
AUV sensors and acoustic positioning systems, adding great
difficulty to the problem of underwater localization. Our system
uses a single acoustic transmitter placed at a reference point and
is acoustically passive on the AUV, reducing cost and power use,
and enabling multi-AUV localization. The AUV has an ultra-
short baseline (USBL) receiver array that uses one-way travel-
time (OWTT) and phased-array beamforming to calculate
range, azimuth, and inclination to the transmitter, providing an
instantaneous estimate of the vehicle location. This estimate is
fed to a particle filter and graph-based smoothing algorithm to
generate a consistent AUV trajectory. We describe the complete
processing pipeline of our system, and present results based on
experiments using a low-cost AUV. To the authors’ knowledge,
this work constitutes the first practical demonstration of the
feasibility of OWTT inverted USBL navigation for AUVs.

I. INTRODUCTION

Accurate localization for a robotic vehicle is often essen-
tial for the purposes of path planning or geo-referencing of
scientific measurements. For autonomous underwater vehi-
cles (AUVs), accurate and reliable navigation in unstruc-
tured underwater environments is a major challenge: Global
Positioning System (GPS) and radio frequency signals do
not work underwater, and communication is unreliable and
limited in bandwidth. Most commercial AUVs rely on a
Doppler velocity log (DVL)-aided inertial navigation system
[7] to navigate between periodic GPS surface fixes to limit
unbounded error growth. In this work, we are interested in
localization for small, low-cost AUVs. Size, power, and cost
constraints limit the use of typical sensors and techniques; in
particular, dead reckoning can only be performed with a low-
cost MEMS inertial measurement unit (IMU) and magnetic
compass, and without using an expensive and bulky DVL.

Besides inertial navigation, other approaches generally
fall into two categories: acoustic or geophysical positioning
[1][2]. Geophysical techniques include terrain relative [8],
visually-augmented [9], and sonar-aided navigation [10].
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Although terrain relative and visually-augmented navigation
can be performed with inexpensive, low-power sensors (al-
timeter and camera respectively), both have drawbacks; the
former requires prior maps of the seafloor, which often lacks
features and is vulnerable to environmental change, and
the latter can only be performed in clear water, or using
high-power lighting. Sonar-aided navigation requires costly
sidescan [12] or imaging [11] sonars.

On the other hand, environmental conditions have compar-
atively less effect on acoustic positioning, and localization is
possible with the use of cheap hydrophones. Existing systems
typically use two-way travel-time (TWTT) between multiple
beacons and an AUV to triangulate an estimate of vehicle
position that has an accuracy that does not degrade with
time. One limitation of these so-called long or short baseline
(LBL/SBL) systems is the time and expense associated with
setting up the network of beacons. Ultra short baseline
(USBL) systems also exist, which can provide an estimate
using a single beacon containing an acoustic transceiver
array. The relative range and bearing from the beacon to the
vehicle is determined using TWTT and phase differencing.

The problem with using the two-way travel-time is that
it requires the AUV to have an active acoustic system.
Such a system is undesirable because it uses significant
power, decreasing runtime; it adds cost; and it is impractical
for multi-AUV systems because each vehicle must transmit
signal in a different time slot or frequency band.

The advent of small, low-cost, low-power chip scale
atomic clocks has enabled the use of one-way travel-time
(OWTT) ranging through clock synchronization of the bea-
con and AUV. Previous work by Eustice et al. [4] demon-
strated range-only OWTT navigation with a single ship-
mounted beacon in which OWTT-derived range is fused
with dead reckoning via maximum likelihood estimation.
Webster et al. [5] presented similar experimental results
with range-only OWTT measurements using an extended
Kalman filter (EKF). The issue with single beacon range-
only measurements is that multiple measurements must be
made to obtain an unambiguous position estimate.

Our work overcomes this limitation with a technique for
real-time on-board navigation correction for low-power, low-
cost AUV systems that uses one-way travel-time and phased-
array beamforming to calculate vehicle location. This one-
way travel-time inverted ultra-short baseline (OWTT-iUSBL)
system uses an acoustic beacon that is time-synchronized
to a clock on the AUV. This is referred to as inverted
USBL because the acoustic array resides on the AUV instead
of the beacon. Acoustic data is collected using the array,
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Fig. 1: OWTT-iUSBL system diagram. An acoustic source beacon transmits
a signal with a known waveform every second triggered by GPS PPS; a
CSAC on the AUV triggers synchronous recording of the signal using a
hydrophone array and DAQ; processing of the recorded signal provides
instantaneous range and angle-of-arrival measurements, which are fused
with a motion model and further processed to estimate vehicle location.

and processed to find range, azimuth, and inclination to
the acoustic source from the array. If the source is at a
known location, instantaneous absolute vehicle position can
be calculated using this information and AUV compass data.

This OWTT-iUSBL technique is acoustically passive on
the AUV - the AUV outputs no acoustic signal. This de-
creases power draw and cost significantly. It also means that a
single acoustic source can be used for localization of multiple
AUVs, with no time or frequency sharing required. Jakuba
et al. [6] recently analyzed the feasibility of OWTT-iUSBL
using a simulated deep-profiling underwater glider, providing
an excellent analysis of the advantages of this approach.

To our knowledge, this work presents the first practical
demonstration of the feasibility of OWTT-iUSBL navigation
for AUVs. This paper first describes the one-way travel-
time inverted USBL system, including the required hardware
and processing. Results based on deployment of the system
on a Bluefin SandShark AUV are presented, along with
conclusions and suggestions for future work.

II. ONE-WAY TRAVEL-TIME IUSBL

This section describes the OWTT-iUSBL system, diagram-
matically illustrated in Fig. 1. An acoustic beacon emitting a
periodic signal with a known waveform is placed at a known
location. The AUV is time-synchronized with the beacon
and captures the signal using a tetrahedral hydrophone array.
OWTT is found using matched filtering and scaled by
speed of sound in water to obtain range, and phased-array
beamforming processes the captured signal to obtain azimuth
and inclination to the beacon. A particle filter fuses these
measurements with a motion model of the vehicle. Finally,
a graph-based smoothing algorithm uses the particle filter
output to generate a more consistent trajectory estimate.

A. System Hardware

The OWTT-iUSBL system hardware consists of time
synchronized acoustic source and receiver systems, both built
with commercial off-the-shelf components.

1) Acoustic Beacon: The acoustic source system includes
an Arduino Uno microcontroller with a Wave Shield for
audio. The rising edge of the pulse-per-second (PPS) signal
from a Garmin 18xLvC GPS unit is used to trigger playback
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Fig. 2: (a) Magnitude frequency response of the up-chirp signal h[n]. (b)
In-water spectrogram of up-chirp received and recorded by the AUV.
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Fig. 3: CAD model of the Bluefin SandShark AUV payload, labeling the
main components of the acoustic receiver system. (c/o Bluefin Robotics)

of a pre-recorded 20 ms, 7–9 kHz linear up-chirp signal (Fig.
2) output by the Wave Shield. Oscilloscope calibration and
a hard-coded delay cycle ensured that the onset of the audio
signal was consistent and within 5 ms of the PPS rising
edge. A Lubell UW30 underwater speaker is used to play the
audio signal into the water. The resulting beacon periodically
outputs the up-chirp signal at the start of every GPS second.

2) Autonomous Underwater Vehicle: Our acoustic re-
ceiver system is implemented as a payload on a Bluefin
SandShark AUV. The SandShark platform is equipped with a
MEMS IMU with magnetometer, depth pressure sensor, GPS
unit, propeller, and control fins. Navigation data, including
vehicle attitude and speed, is pre-filtered by the vehicle from
IMU and prop RPM information. The payload uses this
filtered data to command vehicle depth, heading, and speed.

The payload (Fig. 3) consists of a nose-mounted tetrahe-
dral hydrophone array with 4.5 cm spacing, a data acquisition
module (DAQ), a Raspberry Pi 3 computer, and a SA.45 chip
scale atomic clock (CSAC). The CSAC is synchronized to
the GPS PPS signal before deployment, and maintains time-
synchronization while the vehicle is submerged. The CSAC
signal rising edge is used to trigger DAQ recordings of the
hydrophone array. 8000 samples are collected each second
starting at the clock’s rising edge at a rate of 37.5 kS/s,
effectively recording in sync with the firing of the beacon.

Systemic delay in the source/receiver system was charac-
terized by observing the delay in reception of the transmitted
up-chirp with the hydrophone array placed next to the
acoustic source. This delay is subsequently accounted for
during the calculation of estimated range.

B. Matched Filtering

Matched filtering is performed with measurements from
each of the four hydrophones to get a range estimate signal.
This is in essence a convolution between hydrophone i’s
received signal, xi[n], and a replica of the up-chirp h[n]:

yi[n] =

N−1∑
k=0

h[n− k]xi[k] (1)

The output yi[n] reaches a maximum at the sample number
at which xi[n] most closely resembles the replica h[n]. The
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Fig. 4: Three sequential matched filtering outputs. In each case the true
range is approximately 75 m, but at t = 452 the maximum response is
false and at 265 m. Particle filtering is able to track the true range.

standard deviation of this sample number across the four
elements can be used as a measure of the validity of the
array measurement:

σ =

√√√√1

3

4∑
i=1

(argmax
n

(yi[n])− 1

4

4∑
i=1

argmax
n

(yi[n])) (2)

When σ < 5 we deem the measurement valid. Invalid
measurements occur when the beacon signal is not received
by all elements, which occurs primarily due to self-occlusion
- the body of the AUV obstructs the transmitted up-chirp. To
get the range estimate signal we combine the matched filter
output from all elements and smooth using moving average:

y′[n] =

4∑
i,j=1

yi[n]yj [n] i 6= j (3)

y[n] =
1

N + 1

N/2∑
i=−N/2

y′[n+ i] N even (4)

Finally, sample numbers (n) are converted to ranges by
subtracting the characterized systemic delay and scaling by
the ratio of approximate sound velocity in freshwater over
sampling rate (r = c

Fs
n = 1480

37500n). This range estimate
signal y[n] is normalized and passed on to the particle filter.
Fig. 4 shows typical outputs of our matched filtering process.

C. Phased-Array Beamforming

Phased-array beamforming [3] is also performed using the
raw measurements, giving an azimuth-inclination heatmap
estimating the angle-of-arrival. Assuming a planar incident
sound wave and isotropic hydrophone response, beamform-
ing is done by iterating through various azimuth-inclination
combinations (look-angles), using the array geometry to
apply time delays (phase shifts) to the received signals, and
summing these time-delayed signals. The look-angle with
the maximum response is the likeliest angle-of-arrival of the
incident wave, which occurs when the hydrophone signals
are in phase and add constructively.

The time delay τi of a plane wave arriving from a specific
look-angle at each element can be calculated as:

τi = −~u
T ~pi
c

~u =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 (5)

where ~pi is the position of hydrophone i, φ and θ are the
look-angle azimuth and inclination, and c is the speed of
sound in water. This time delay is constant for a given
look-angle, but corresponds to phase shifts in the frequency
domain that increase with frequency:

fi[n− τi]
DFT/IDFT

⇀↽ Fi[ω] · e−j~ωτi (6)

where fi is the plane wave signal incident on hydrophone
i, and ~ω contains the range of frequencies output by the n-
point DFT. Therefore, to reconstruct the plane wave signal
and nullify the geometrically-induced time delays, we simply
apply opposite phase shifts to the received signals and
average over all elements. In addition, before averaging, our
beamformer applies a matched filter with the up-chirp replica
h[n] to enhance signal detection. The resulting output is:

Yi[ω] = DFT (

N−1∑
k=0

h[n− k]xi[k]) (7)

g[n] =
1

4

4∑
i=1

IDFT (Yi[ω] · ej~ωτi) (8)

where xi[n] is the signal received by hydrophone i and g[n]
is the beamformer output for the specific look-angle. Equa-
tion 7 performs matched filtering and equation 8 performs
phase shifting and averaging. These equations will produce
a maximal response when the look-angle is equal to the
true angle-of-arrival of the incident wave. We search for this
angle-of-arrival by iterating through a number of look-angles,
producing an azimuth-inclination heatmap, g[φ, θ]:

g[φ, θ] = max
n

(g[n; τi(φ, θ)]) (9)

The most likely angle-of-arrival is then:
(φ∗, θ∗) = argmax

φ,θ
(g[φ, θ]) (10)

This heatmap is passed on to the particle filter when
265◦ ≤ φ∗ ≤ 95◦ and 45◦ ≤ θ∗ ≤ 135◦ to prevent error
caused by self-occlusion. Fig. 5 illustrates a typical heatmap.

Real-time on-board beamforming is achieved despite its
computational complexity by using two techniques: firstly,
the phase shifts associated with each look-angle are precom-
puted and stored; secondly, instead of the full DFT we use the
Chirp Z-transform [13] to limit frequency domain operations
to a range of interest (6–10 kHz) - this reduces the number
of frequency domain points without loss of resolution.

D. Particle Filter Localization

Matched filtering and beamforming only provide instan-
taneous and noisy estimates of range and angle-of-arrival
respectively. In addition, underwater acoustic propagation
frequently exhibits undesirable properties such as multi-
path and reflections, resulting in outliers and measurement
distributions that are non-Gaussian. Consider the three valid
matched filtering outputs in Fig. 4 - in this sequence the true
range between the beacon and AUV is approximately 75 m;
however, the middle measurement has a false maximum at
265 m. This suggests that simply using argmax on range
and angle-of-arrival measurements could result in significant
error in localization. The non-Gaussian nature of these mea-
surements, and the desire to fuse measurements with AUV
attitude information and motion model, motivate the use of
a particle filter for localization rather than a regular EKF.

Our particle filter makes use of three main coordinate
frames: the Forward-Port-Above body-fixed frame (bff ), in
which acoustic angle-of-arrival measurements are made; the
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vehicle-carried East-North-Up frame (vcf ), whose origin is
fixed to the center of gravity of the AUV; and the local-level
East-North-Up frame (llf ), whose origin we define to be the
beacon position and within which the vehicle navigates. At
time instant t, our filter models the azimuth-inclination to the
beacon using a set of N particles and associated weights wxi
which reside on the unit ball in the vehicle-carried frame.
A second set of N particles and weights wri residing on a
0–300 m range-line (rl) are maintained to estimate range to
the beacon. Two particle sets are used due to the independent
nature of range and azimuth-inclination measurements. The
state vectors of the particles in each set are given by:

~Sxi (t) =
[
xvcfi (t)yvcfi (t)zvcfi (t)

]T ~Sri (t) =
[
rrli (t)

]
(11)

Typically, the particle filter is initialized using GPS mea-
surements when the AUV is on the surface awaiting de-
ployment. AUV GPS position is transformed into the local-
level frame by subtracting beacon location, and particles are
initialized in this frame centered around GPS position. These
particles are then transformed to the vehicle-carried frame
and range-line for state vector storage:

ni ∼ N (0, σ2
GPS) wxi (0) = wri (0) = 1/N (12)

rrli (0) =
√

(xGPS(0) + ni)2 + (yGPS(0) + ni)2 + (ni)2 (13)xvcfi (0)

yvcfi (0)

zvcfi (0)

 =

(−xGPS(0) + ni)/r
rl
i (0)

(−yGPS(0) + ni)/r
rl
i (0)

ni/r
rl
i (0)

 (14)

where (xGPS, yGPS) is the local-level frame GPS position and
σGPS is the standard deviation of GPS measurement noise.
The transform from the local-level to the vehicle-carried
frame and range-line is denoted by Rvcfllf . This transform
is performed by negating and normalizing the local-level
particles to get vehicle-carried particles (Eq. 14), and calcu-
lating particle magnitudes to get range-line particles (Eq. 13).
Particles are re-initialized whenever a GPS fix is received.

1) Prediction: In the prediction step the two particle sets
are sorted in ascending order according to their weights. The
particles are then transformed to the local-level frame by
combining both sets (essentially by element-wise multiplica-
tion) - a transform denoted by Rllfvcf (Eq. 16). Vehicle pitch
(θvcf ) and yaw (φvcf ) as well as speed (v) are then used to
propagate the combined particles using our motion model:

let ~T xi (t) =
[
xllfi (t) yllfi (t) zllfi (t)

]T
(15)

~T xi (t−∆t) = −~Sxi (t−∆t) · ~Sri (t−∆t) (16)

~T xi (t) = ~T xi (t−∆t) +

∆tv sin(θvcf ) cos(φvcf )
∆tv sin(θvcf ) sin(φvcf )

∆tv cos(θvcf )

 (17)

Finally, the particles are transformed and separated back
into the vehicle-carried frame and range-line, and Guassian
noise added to each particle:

(~Sri (t), ~Sxi (t)) = Rvcfllf (~T xi (t)) + ~n ∼ N (0, σ2
r,x) (18)

Storing the particles in the vehicle-carried rather than the
body-fixed frame allows us to exclude attitude propagation
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Fig. 5: Top Left: typical heatmap resulting from phased-array beamforming,
as well as azimuth-inclination particles in the body-fixed frame with
spherical coordinates (blue). Bottom Left: typical range estimate signal (red)
resulting from matched filtering, as well as histogram of range particles on
the range-line (blue). Top Right: azimuth-inclination particles in the vehicle-
carried frame (blue), and current vehicle attitude. Bottom Right: combined
azimuth-inclination and range particles in the local-level frame (blue), as
well as particle filter estimated AUV trajectory (red).

in the update step. This reduces computation, since attitude
updates occur much faster than acoustic measurements.

2) Update: Whenever a valid acoustic azimuth-inclination
heatmap or range estimate signal is received, weights are
updated and the particles resampled. For the range particle
set, the update step is simple: particle weights are multiplied
by the value of the range estimate signal corresponding to
their associated ranges, and resampling and weight normal-
ization is done using systematic resampling. For the azimuth-
inclination particle set we first transform the particles into the
body-fixed frame using vehicle pitch (θvcf ), roll (ψvcf ) and
yaw (φvcf ) - a transformation denoted as Rbffvcf :

let ~UΦ
i (t) =

[
φbffi (t) θbffi (t)

]T
(19)

~UΦ
i (t) = RΦ((Rz(φ

vcf )Ry(θvcf )Rx(ψvcf ))T ~Sxi (t)) (20)

where RΦ is the standard Cartesian to spherical transform,
and Rz , Ry , and Rx are the standard rotation matrices.
In the body-fixed frame the azimuth-inclination particles
are represented using spherical coordinates; their weights
are multiplied with the corresponding azimuth-inclination
heatmap values, and resampling and weight normalization is
performed using systematic resampling. Finally the particles
are transformed back into the vehicle-carried frame using
the inverse rotation matrices and the standard spherical to
Cartesion transform - we denote this process as Rvcfbff .

3) Estimation: Estimation is performed by calculating the
weighted means of both the range and azimuth-elevation
particle sets in the body-fixed frame. Transformation of the
range and azimuth-elevation means into the local-level frame
provides an estimate of the AUV position in the local-
level frame. In addition, the means transformed into vehicle-
carried frame are used during factor graph smoothing.

The output of the particle filter with 500 particles, along
with visualizations of the particles in each coordinate frame
can be seen in Fig. 5. This figure also illustrates typical
outputs of the matched filtering and beamforming processes.
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Fig. 6: Illustration of the factor graph - ~xi are vehicle poses connected by
motion model odometry (odo), and~b is the beacon pose connected to vehicle
poses by either azimuth-range (φ, r) or range-only (r) measurements; the
initial vehicle pose has a prior factor from GPS measurements (gps), and
the beacon has a prior factor of [0, 0]T placing it at the origin.

E. Factor Graph Smoothing

Although the particle filter provides an estimate of the
vehicle’s location, it does so by recursively marginalizing
out all previous measurements, resulting in a trajectory that
often contains discontinuities. A factor graph smoothing
algorithm can improve this by utilizing all particle filter
measurements to optimize over the full AUV trajectory.
This approach results in a smoother and more consistent
trajectory, while still retaining the robustness against acoustic
outliers provided by the particle filter.

In our approach we estimate the vehicle pose, ~xi =
[xi, yi, φi]

T , in the local-level frame using a factor graph
smoothing framework to represent the collection of poses
over the entire trajectory. Each node ~xi in the graph cor-
responds to the pose estimate at time i, and is linked to
preceding and subsequent pose nodes by odometry con-
straints calculated using our motion model, as depicted in
Fig. 6. When a valid acoustic measurement appears, the pose
node is linked to a beacon node ~b = [xb, yb]

T by either
an azimuth-range or range-only constraint outputted by our
particle filter. In addition, the initial pose is constrained by
a prior, which represents surface GPS measurements in the
local-level frame. The beacon node is also constrained by
a prior, [0, 0]T , as it represents the origin of the local-level
frame. We use the GTSAM library [14], and specifically the
iSAM2 algorithm [15] to incrementally perform maximum a-
posteriori inference over the factor graph as it is constructed.
Motion and measurement noise are independent and assumed
to be Gaussian, with the standard deviation of measurement
noise estimated directly using the particles from our filter.

III. EXPERIMENTS AND RESULTS

Experiments were performed using our SandShark AUV
with acoustic payload (section II-A.2) on a portion of the
Charles River by the MIT Sailing Pavilion. Our acoustic
beacon (section II-A.1) was submerged to about 0.5 m depth
and fastened to the pavilion dock, at a known GPS position.
The AUV was pre-programmed with a mission where it was
instructed to travel back-and-forth along the dock for 170 m
at 2 m depth and a speed of 1.4 m/s. The mission duration
was set to 1200 s, and the AUV was instructed to surface
for a 120 s GPS fix whenever it was at the end of a 170 m
run and the time since the last fix was greater than 150 s.

Both matched filtering and phased-array beamforming
were performed on the Raspberry Pi 3 in real-time at approx-
imately 1.25 Hz with 4050 look-angles (15 inclination and
270 azimuth equally-spaced angles). This data was recorded
by the payload along with pre-filtered navigation data from

the vehicle, which was received by the payload at a rate
of about 10 Hz. The payload and AUV system clocks were
synchronized using an NTP server running on the payload.

Particle filtering and factor graph smoothing were per-
formed offline. 500 particles were used for both the azimuth-
inclination and range set. iSAM2 was used to build and solve
the factor graph with vehicle poses added at a rate of 5 Hz
and using ranges and azimuths output by the particle filter.
A new graph was initialized each time the AUV received a
GPS fix, allowing us to monitor the difference in estimated
and true position during the underwater to surface transition.

The AUV was deployed for two runs, with the vehicle
surfacing for three GPS fixes during the first and four
GPS fixes during the second. For the two runs we perform
a qualitative comparison between the trajectories resulting
from vehicle dead reckoning, particle filtering, and factor
graph smoothing. We also use a simple metric to assess the
inter-GPS-fix navigation performance of the three methods
over both runs: during the underwater to surface transition a
discontinuity in position occurs when the AUV gets a GPS
fix, which is caused by localization error during underwater
navigation; smaller jumps would indicate better performance.
Unfortunately, this metric is subject to GPS positional error.

The top row of fig. 7 shows plots of azimuth and range
from the AUV to the beacon, as estimated from dead reckon-
ing (blue) and our particle filter (red), along with argmax
measurements from matched filtering and beamforming in
green. We see that the particle filter successfully fuses the
observed acoustic measurements with the dead reckoned
motion model, pulling the estimate towards observations.
Our validity checks are apparent when looking at the mea-
surements - no azimuth measurements exist between 95◦

(1.66 rad) and 265◦ (4.62 rad), which are invalid due
to self-occlusion. Even though outliers exist in the range
measurements, these are filtered out by the particle filter.

The lower plots of Fig. 7 display the resulting trajectories
for the three methods for both runs, with dead reckoning
in black, particle filtering in red, and iSAM2 factor graph
smoothing in yellow. The three GPS fixes for the first
run occur at (−26,−61) (294 s), (−50,−88) (686 s), and
(45,−10) (967 s). For the second run, the four fixes occur
at (−27,−65) (280 s), (62,−28) (559 s), (104,−11) (945
s), and (63,−88) (1236 s). The positional jumps that occur
during these fixes are listed in table I, along with the average
jump distance and standard deviation for the three methods.
Qualitative examination of the trajectories indicate that the
dead reckoned estimates are the least self-consistent, with
large discontinuities when the vehicle surfaces for a fix. The
particle filter trajectories are better in this respect, but they
suffer from non-continuity caused by incorporation of latest
observations in the filter’s recursive estimate. The trajectories
resulting from iSAM2 on the other hand are both the most
self-consistent, and maintain a smooth, continuous trajectory
between GPS fixes; this is a result of optimizing over the en-
tire vehicle history, incorporating all acoustic measurements.
These observations are supported by the jump distances in
table I - the iSAM2 approach has both the smallest average
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Fig. 7: Run 1 (left) and Run 2 (right) results. Top: azimuth and range estimate to beacon in body-fixed frame - dead reckoned (blue), particle filter output
(red), and raw acoustic measurement maxima (green), with vertical lines indicating GPS fix times. Bottom: AUV trajectory estimates in local-level frame
- dead reckoned (black), particle filter output (red), and iSAM2 factor graph smoothing (yellow), with dashed white circles indicating GPS fix locations.

Run 1 GPS Jumps (m) Run 2 GPS Jumps (m) Mean (m) Std. Dev. (m)
Dead Reckoning 8.6 4.8 33.0 8.3 8.0 6.4 12.7 11.7 9.7

Particle Filter 2.4 11.8 9.4 6.0 8.9 6.1 4.3 7.0 3.2
Factor Graph 2.9 5.4 5.3 10.4 5.8 6.4 8.6 6.4 2.4

TABLE I: Sizes of discontinuity in position for the three methods when AUV receives a GPS fix during the underwater to surface transition, along with
mean and standard deviation - smaller jumps indicate better underwater navigation performance.

discontinuity, and the lowest standard deviation.

IV. CONCLUSION AND FUTURE WORK

This work has presented a system to localize a small, low-
cost AUV using a single acoustic source. It uses OWTT of
a known signal emitted by the source to estimate range, and
an AUV mounted array to estimate angle to the source using
matched filtering and beamforming. These measurements are
fused with an AUV motion model using a particle filter, then
smoothed with a factor graph-based algorithm to provide a
good-performance AUV localization estimate, without the
use of conventional sensors such as a DVL or high-grade
INS. It is acoustically passive on the AUV, reducing power
use and cost, and enabling multiple AUVs to localize using
a single beacon. Future work includes installing a second
commercial LBL acoustic localization system for ground-
truth verification, as well as implementing online versions
of particle filtering and factor graph smoothing to perform
closed loop navigation with our factor graph estimate.
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