
MIT Open Access Articles

Perception-aware trajectory generation for
aggressive quadrotor flight using differential flatness

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Murali, Varun et al. "Perception-aware trajectory generation for aggressive quadrotor
flight using differential flatness." 2019 American Control Conference, July 2019, Philadelphia,
PA, USA, Institute of Electrical and Electronics Engineers, August 2019. © 2019 IEEE

As Published: http://dx.doi.org/10.23919/acc.2019.8814697

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/132953

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/132953
http://creativecommons.org/licenses/by-nc-sa/4.0/

Perception-aware trajectory generation for aggressive
quadrotor flight using differential flatness

Varun Murali1, Igor Spasojevic1, Winter Guerra1, Sertac Karaman1

Abstract— Recent advances in visual-inertial state estimation
have allowed quadrotor aircraft to autonomously navigate in
unknown environments at operational speeds. In most cases,
substantially higher speeds can be achieved by actively de-
signing motion that reduces state estimation error. We are
interested in autonomous vehicles running feature-based visual-
inertial state estimation algorithms. In particular, we consider
a trajectory optimization problem in which the goal is to
maximize co-visibility of features, i.e. features are kept visible
in the camera view from one keyframe to the next, increasing
state estimation accuracy. Our algorithm is developed for
autonomous quadrotor aircraft, for which position and yaw tra-
jectories can be tracked separately. We assume that the desired
positions of the vehicle are determined a priori, for instance,
by a path planner that uses obstacles in the environment to
generate a trajectory of positions with free yaw. This paper
presents a novel algorithm that determines the yaw trajectory
that jointly optimizes aggressiveness and feature co-visibility.
The benefit of this algorithm was experimentally verified using
a custom built quadrotor which uses visual inertial odometry for
state estimation. The generated trajectories lead to better state
estimation which contributes to improved trajectory tracking
by a state-of-the-art controller under autonomous high-speed
flight. Our results show that the root-mean-square error of the
trajectory tracking is improved by almost 70%.

I. INTRODUCTION

Visual-inertial state estimation for high-speed autonomous
quadrotor flight has received a large amount of interest in
recent years. This has been fueled by the availability of
low-cost cameras, inertial measurement units (IMUs), and
powerful computational platforms available in ever smaller
form factors [1], [2]. Typical visual-inertial navigation sys-
tems such as ORB-SLAM2 [3] employ a keyframe-based
optimization technique to estimate the state of the robot
from multiple visual features tracked across keyframes, as
illustrated in Figure 1.

A robust state estimator is often critical in performing vari-
ous agile maneuvers and loss of tracked features can result in
collisions. Longer feature tracks often result in more robust
visual inertial state estimation performance. Motion planning
algorithms agnostic to the location of the visual features in
the environment potentially result in trajectories for which
the vehicle may face featureless areas of the environment
(e.g., empty walls). This leads to diminished state estima-
tion accuracy, which degrades the performance of trajectory
tracking, potentially resulting in catastrophic failure, such as

*This work was partly supported by the Office of Naval Research (ONR)
and the Army Research Lab DCIST project.

1Laboratory for Information and Decision Systems (LIDS),
Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

Emails: {mvarun,igorspas,winterg,sertac}@mit.edu

Fig. 1: Aspects of visual-inertial navigation. Observations
of landmarks are acquired at discrete time intervals over a
continuous trajectory.

Fig. 2: An environment where most of the visual features are
situated in the middle. Traditional planning approaches could
consider facing forward as the vehicle navigates through
a tight turn. Perception-aware planning algorithms, on the
other hand, consider facing towards the visual features in the
middle of the room while executing the same maneuver. This
results in improved state-estimation performance, especially
at high speeds.

a collision. Perception-aware motion planning algorithms
consider trajectories that ensure better observation of visual
features, improving state estimation accuracy and enabling
faster navigation in complex environments (as illustrated in
Figure 2).

We focus on planning perception-aware trajectories for
quadrotor aircraft and restrict the class of admissible tra-
jectories to those which pass through a finite sequence of
predetermined waypoints. The perception objective consists

of observing a sparse set of triangulated landmarks from
multiple keyframes in order to improve both the estimate
of the position of the landmarks and the state of the aircraft
itself. The perceptual sensor yields information about the rel-
ative transformation between consecutive keyframes, which
motivates the co-visibility constraint we add to the optimal
control problem. Nevertheless, this allows for significant
freedom in specifying both the path and the orientation
of the aircraft between the waypoints in order to optimize
an objective of interest. In this paper, we propose a novel
algorithm that maximizes both the aggressiveness of the
flight and the co-visibility of the visual landmarks.

Traditional methods for generating quadrotor trajectories
exploit the differential flatness properties [4] of the dynamics
of the quadrotor. The flat outputs, the trajectories of the x,
y, z, and ψ components of the state of the quadrotor, can
be specified independently, and furthermore, they uniquely
determine the trajectories of the remaining components of
the state as well as the required control inputs. Mellinger et
al. [4] first proposed the idea of parametrizing flat outputs as
polynomials in time, selecting coefficients that minimize the
snap of the quadrotor. Richter et al. [5] proposed an extension
to this work that bounds the actuator effort and adds a time
penalty to the cost function to encourage fast flight. Other
approaches, e.g., proposed by Mueller et al. [6], make the
assumption that the yaw of the quadrotor is constant during
the execution of the trajectory and formulate the polynomial
optimization problem in terms of minimum jerk.

In addition to planning dynamically feasible trajectories,
autonomy entails accurate on-board state estimation. The
difficulty of the latter task may vary significantly based
on the choice of the trajectory. Prior work has considered
planning to minimize various measures of state-estimation
uncertainty with the goal of satisfying a chance constraint.
The problem under consideration is to plan a path in the
belief space that ensures the probability of collision with
the environment is lower than a set threshold. Bry et al. [7]
propose a sampling-based motion planning algorithm that
generates a rapidly exploring random tree where the asso-
ciated cost function accounts for both the cost of executing
the path and the uncertainty associated with the action. The
algorithm proposed by van den Berg et al. [8] accounts
for uncertainty during the planning phase through forward
propagation of the covariance matrix over paths planned
using a RRT based planner. They use this to enumerate the
paths and select the one with the lowest cost.

Bry et al. [7] and van den Berg et al. [8] solve problems
involving chance constraints and require full knowledge of
obstacle locations in the environment in addition to the
locations of informative landmarks: beacons, visual land-
marks, etc. The chance constraint can impose conditions on
the full state of the robot under consideration, and these
methods plan trajectories in the full state space of the robot.
For instance as mentioned previously, quadrotor trajectory
planning often takes place in the differentially flat space.
However, to satisfy the chance constraint, these approaches
would require either mapping the obstacles and landmarks

into this space or a projection of the differentially flat space
back into the full state space to check the chance constraint
during planning.

Approaches that specifically target visual-inertial navi-
gation have been proposed. In [9], the authors propose a
trajectory optimization method that first solves for a goal
location given a target image and then plans the trajectory
for which the reprojection error of the desired features is
minimized during execution of the trajectory. In [10], the
authors use a B-spline polynomial parameterization for the
trajectory, and solve a minimum-time trajectory optimization
problem with the objective of always keeping a certain set of
features in the field of view. These methods are motivated by
keeping a specified set of features in view. As such, they do
not provide a flexible framework for allowing the algorithm
to keep a smaller set of features in view to balance the
perceptual constraints and the desired average speed while
ensuring the actuator constraints are not violated. The set of
possible trajectories that can be achieved using this constraint
is often restrictive and not suitable to applications where
aggression of the quadrotor is preferred over target tracking.

Falanga et al. [11] present an approach that adds a percep-
tion objective into their model predictive control framework.
They model the cost as minimizing the velocity of a point
of interest in the camera frame. They consider keeping a
cluster of features within the field of view. While this holds
when the visible features in the environment are clustered
together at every position along the trajectory, there is room
for improvement when the features are more dispersed. We
address two main remaining challenges, (1) Enforcing the
constraint that a significant number of features are visible in
consecutive keyframes instead of enforcing that a certain set
of features stay in view, (2) A computationally-efficient for-
mulation to solve this problem while generating the reference
trajectory to follow.

Passive methods for keeping features in view have also
been studied. Attention and anticipation [12] has been stud-
ied for visual feature selection where the goal is to select
features that will remain in the field of view without adding
any actuator effort to the quadrotor. The authors of [12]
use an information gain metric for a greedy algorithm to
select features that will add the most information to the
state estimate by forward simulating the dynamics of the
quadrotor. However, this method separates perception from
the planning and does not actuate the quadrotor to account
for observing features.

The main contribution of this paper is an algorithm for
the optimization of yaw trajectory to ensure the co-visibility
of the landmarks from one frame to the next while ensuring
agile navigation. Specifically, we first motivate the notion
of landmark co-visibility between keyframes in the context
of the trajectory generation problem for quadrotor aircraft.
We further present an algorithm to generate feasible by
construction trajectories that take into account the actuator
limits and the perception constraint. We then present a
differentiable relaxed constraint function that enables the
optimizer to find a solution to the problem at keyframe rate.

II. PROBLEM STATEMENT

This section formally defines a new optimal control prob-
lem that embodies co-visibility constraints. The parameters
of the camera include the following: πx and πy are the pixel
width and height in meters; w and h are the width and
height in pixels; and f is the focal length in meters. We
reference coordinate frames fixed to the body of the vehicle
and the world with subscripts b and W , respectively. The
translation and orientation of the camera with respect to the
world frame are represented by pWC and RWC , respectively.
The coordinates of the ith landmark with respect to the world
frame are represented by li.

The dynamics of the vehicle are modeled by an ordinary
differential equation of the following form:

Ẋ(t) = f(X(t),u(t)),

where X(t) is the state, and u(t) is the input. Components
of X necessarily include the pose of the vehicle. The latter is
defined by x, y, z, φ, θ, ψ, where x, y, z denote the position
of the vehicle, and φ, θ, ψ denote the roll, pitch and yaw
angles, respectively. The pose of the camera, rigidly attached
to the body of the vehicle, is represented by C(t). The latter
is a function of the pose of the vehicle:

C(t) = g(X(t)),

for some function g(·).
We are interested in maximizing co-visibility of landmarks

between consecutive frames. Let {t0, t1, . . . , tk, . . . , tK} de-
note the time instances corresponding to each keyframe when
the camera captures an image. For example, in combination
with the previous definition, C(tk) denotes the pose of the
camera at time tk.

To determine the projection of a point in the camera frame,
we use a perspective camera model. The homogeneous
coordinates, p′i, of the projection of landmark i are given
by

p′i =
(
RWC

)T [
I | − pWC

] [li
1

]
. (1)

The conditions for visibility on the sensor array read

−w
2
πx ≤ f

p′i[0]

p′i[2]
≤ w

2
πx, (2)

−h
2
πy ≤ f

p′i[1]

p′i[2]
≤ h

2
πy, (3)

p′i[2] > 0. (4)

We define the visibility function via

v(C(tk), li) =

1, if landmark i is visible

to camera at pose C(tk);

0, otherwise,
(5)

and the co-visibility measure between two consecutive
keyframes, say tk−1 and tk, as

µ =

n∑
i=1

Wiv(C(tk), li) v(C(tk−1), li), (6)

where n denotes the number of landmarks in the environ-
ment. To vary the relative importance of individual land-
marks, we assign each one a positive scalar weight Wi. The
co-visibility metric evaluates to a large value when a large
number of features are visible from one keyframe to the next.

Finally, we are ready to state the problem formulation. We
seek to maximize the co-visibility metric, while minimizing
the time of arrival at a goal state, i.e.,

max

K∑
k=1

n∑
i=1

Wiv(C(tk), li) v(C(tk−1), li)− γTT (7a)

s.t. Ẋ (t) = f(X (t) ,u (t)) ∀ t ∈ [0...T] , (7b)
C (t) = g (X (t)) ∀ t ∈ [0...T] , (7c)
umin ≤ u (t) ≤ umax ∀ t ∈ [0...T] . (7d)

T is the mission time and γT is the time penalty parameter
that quantifies the tradeoff between maximizing the co-
visibility metric and minimizing the mission time.

We stress that this problem augments a time-optimal
control problem with the co-visibility objective. In this paper,
we are concerned with solving an instance of this problem,
focusing on a quadrotor aerial vehicle. In the next section, we
recall the differential flatness property of quadrotor dynamics
which allows tracking position and yaw references indepen-
dently. Specifically, we consider the special case when the
translatory components of the path of the quadrotor are given
by a collision-free trajectory around the obstacles, leaving the
aircraft’s average speed and yaw angle trajectory free.

III. ALGORITHM

This section is devoted to the presentation of a novel
algorithm for the problem presented in the previous section.
We describe the dynamics model under consideration and
the bounds on the actuator limits in Section III-A. Next, we
discuss the differentiable relaxation of the objective function
that allows us to compute the trajectories in real time in
Section III-B. The geometric interpretation of the relaxed
function is defined in Section III-C. We then present the pro-
posed algorithm and implementation details in Section III-D.

A. Quadrotor dynamics and differential flatness

In particular, we consider the dynamics of a quadrotor
for the dynamics constraint (Equation (7b)), which can be
written as:

ṗ = v (8)
v̇ = −gzw + c~zb (9)

Ṙ = Rŵ (10)

ẇ = J−1 (τ − w × Jw) . (11)

Mellinger et al. [4] show that the quadrotor model written
in this form is differentially flat. The flat outputs are defined
as:

σ = [x, y, z, ψ] . (12)

This property is often exploited to plan the trajectories
involving the states x, y, z, ψ separately. We utilize a time

scaling parameter α that intuitively speeds up or slows down
time to ensure the given trajectories remain dynamically
feasible while minimizing the total execution time. Indeed,
the new trajectories, denoted by x̃, ỹ, z̃, ψ̃, are defined by
x̃(t) = x(αt), and similarly for ỹ, z̃, ψ̃. Values of α greater
than one induce more aggressive behavior; the execution
time decreases, and the total thrust and torque increases.
The level to which we can change α is constrained by the
following inequalities obtained from the constraints defined
by Equations (13) and (16).

The actuator constraints (Equation (7d)) for the quadrotor
model are as follows. The total mass normalized thrust
with respect to the world frame is given by c (t) =
[¨̃x (t) , ¨̃y (t) , ¨̃z (t) + g]T , where [x, y, z]T represents the po-
sition of the center of mass of the quadrotor as a function
of time. This can be simply modeled by∥∥∥∥∥∥α2

 ẍ (t)
ÿ (t)
z̈ (t)

+

 0
0
g

∥∥∥∥∥∥ ≤ cmax (13)

For the purpose of modeling torque, we assume the body
of the quadrotor is invariant under rotations by angle π

2 about
its body z axis. This implies its moment of inertia with
respect to the body frame takes on the form Ix 0 0

0 Ix 0
0 0 Iz

 (14)

The coordinates of the torque with respect to the world
frame, ~τW can be obtained from

~τW = ω̇3Iz~z
W
b + ω3(2Ix − Iz)~̇zWb + Ix~z

W
b × ~̈zWb . (15)

where ~zWb denotes coordinates of the body z axis with
respect to the world frame.

So, the bound on the torque can be applied using

‖τ (t)‖ ≤ τmax ∀t ∈ [0...T] (16)

In practice, the maximum mass-normalized thrust cmax
and the maximum torque τmax are set empirically.

B. Modeling visibility using a relaxed differentiable function

The landmarks are projected into the camera using a
perspective camera model. A point lies within the field
of view if and only if it belongs to the viewing frustum.
A convenient representation of the viewing frustum is an
intersection of five half spaces. One half space corresponds
to the region in front of the sensor of the camera. The
remaining four half spaces are constrained by planes
defined by the optical center of the camera and edges
of the sensor. To leverage efficient nonlinear optimization
techniques, we express membership of the field of view with
a differentiable, relaxed indicator function. The indicator
function is defined as the product of five differentiable
functions, one assigned to each of the five aforementioned
spaces. Each maps R3 to the interval [0, 1]; points further
inside a given half space receive progressively higher values.

Finally, the scaling variable s determines the sharpness
of the relaxed indicator function. We comment on its
significance in Section III-C.

Let us derive the form of the differentiable indicator
function, which we also refer to as the relaxed visibility
function. A feature with position li with respect to the world
frame has coordinates

zi = RCW
(
li − pWC

)
(17)

with respect to the camera frame. The displacements from
the optical center to the vertices of the sensor are given by
the following set of vectors, specified with respect to the
camera frame:

vtr =

 (w − cx)πx
(−cy)πy

f

 , (18)

vtl =

 (−cx)πx
(−cy)πy

f

 , (19)

vlr =

 (w − cx)πx
(h− cy)πy

f

 , (20)

vll =

 (−cx)πx
(h− cy)πy

f

 . (21)

These determine normals to four of the five half planes of
the frustum: vtr × vlr, vtl × vtr, vll × vtl and vlr × vll. The
fifth normal is simply [0, 0, 1]T . Using the vector

o =

1
2

(
1 + tanh((vtr×vlr)·zis)

)
1
2

(
1 + tanh((vtl×vtr)·zis)

)
1
2

(
1 + tanh((vll×vtl)·zis)

)
1
2

(
1 + tanh((vlr×vll)·zis)

)
1
2

(
1 + tanh(zi·e3−fs)

)

, (22)

the relaxed visibility function can be defined as:

vs (C (tk) , li) =

5∏
i=1

oi (23)

C. Geometric interpretation of the relaxed function

In the limit as s tends to 0, the relaxed visibility function
converges pointwise to the indicator of the interior of the
view frustum. The lower the value of s, the closer the relaxed
function represents whether or not a given feature lies within
field of view. However, too small a value for s leads to
vanishing gradients at a significant subset of features. To
avoid this numerical problem, we set s to be the average
distance of features from the body. A graphical illustration of
the effect of s on the value of the relaxed indicator function
is shown in Figure 3. In the figure, the camera is pointed
upwards along the ~z direction.

(a) s = 0.1

(b) s = 1

(c) s = 10

Fig. 3: Differentiable relaxation of the indicator function of
the interior of the view frustum. Points at which the function
takes values close to zero are colored red and values close to
one are colored blue. We consider a family of such functions,
indexed by a non-negative parameter s. The three figures
above illustrate the effect of increasing s. Smaller values
of s represent the true indicator function more accurately,
whereas larger values of s lead to more numerically stable
algorithms.

D. Proposed Algorithm

The numerical procedure is described in Algorithm 1. We
let 〈w0, w1, ..., wk, ..., wK〉 denote the sequence of waypoints
the quadrotor must follow and represent candidate trajecto-
ries of x, y, z, and ψ using polynomials px(t), py(t), pz(t),
and pψ(t), respectively.

Data: τmax, cmax, wk
Result:

[
[px, py, pz, pψ]

1
0 , ..., [px, py, pz, pψ]

k
k−1

]
Step 1:
Find px(t), py(t), pz(t) that solve

min αγT

M∑
i=1

Ti+ (24a)

 p1...
pK

T

Q(αTi)

 p1...
pK

T

(24b)

s.t. 0 ≤ c (t) ≤ cmax ∀t, (24c)
τ(t) ≤ τmax ∀t, (24d)

A(αTi)

 p1...
pK

 =

 d1...
dK

 (24e)

Step 2:
for k = 1 to K do

find pψ(t) for t ∈ (tk−1, tk) that solves

min
pψ

∫ tk

tk−1

(p̈ψ(t))
2
dt−

∑
l∈L

µ (l) (25a)

s.t. τ(t) ≤ τmax (25b)
(25c)

s.t. A(tk)

 p1...
pK

 =

 d1...
dK

 (25d)

end
Algorithm 1: Proposed two step algorithm to solve the
optimal control problem defined in (7)

Step 1 generates trajectories of x, y, and z. Although
numerous existing trajectory generation algorithms could
be used, we choose the method given in [5]. It extends
the widely used minimum snap polynomial optimization [4]
approach using two key ideas. Firstly, it augments the min-
imum snap objective with minimizing the total completion
time of all segments between consecutive waypoints. The
block diagonal matrix Q(T) concatenates matrices formed
by taking (higher order) derivatives of polynomials px, py ,
and pz with respect to their coefficients. In this particular
case, we are interested in minimizing the snap, and so all the
elements that do not correspond to the fourth derivative are
set to 0. This matrix acts as the cost encouraging smoothness

of the fourth derivative (Equation (24b)). It has the form:

Q(T) =

Q1(T1)
. . .

QK(TK)

 (26)

The matrix A(t) represents a mapping from the coeffi-
cients of the polynomials to their (higher order) derivatives,
enforcing smoothness constraints at endpoints of adjacent
segments. Second, the method of [5] incorporates actuator
constraints during the optimization process by making sure
they are satisfied at a set of collocation points.

With the trajectory corresponding to variables x, y, and
z determined, step 2 computes trajectories of θ and φ by
formulating the optimization problem (Equation (25)) as:

min
pψ

∫ tk+1

tk

(p̈ψ)
2
dt−γc

∑
i,k

[v (Ck, li) v (Ck−1, li)], (27)

where γc is a penalization term on the perception objective.
Note we assume that all landmarks are weighted equally.

This is approximated in our problem using the relaxed
indicator function, so Equation (27) reduces to

min
pψ

∫ tk+1

tk

γψ (p̈ψ)
2
dt

− γc
∑
i,k

[vs (C (tk) , li)] [vs (C (tk−1) , li)] .
(28)

In Equation (28), the summation can be parallelized since
all the elements of the sum are independent of each other,
which leads to efficient implementation. We implement this
algorithm using C++. This can be solved efficiently using an
off the shelf nonlinear solver such as the SLQSP solver [13]
in the NLOPT package [14]. Note, the problem as defined
is non-convex in general and will only converge to a local
optimum.

IV. EXPERIMENTS

In this section, we describe the experiments performed
on a real quadrotor to validate our algorithm and present
the results of these experiments. We fly generated reference
trajectories using a custom built quadrotor platform in an
11m x 11m x 5.5m motion capture room, with 24 OptiTrack
Prime 17W cameras providing the ground truth position of
the quadrotor. For the purpose of state estimation, there is
an Xsens MTi-3 IMU onboard the quadrotor. Visual data
is generated in real-time using the FlightGoggles [2], [15]
photo-realistic image generation system. The visual inertial
odometry system fuses the information from the IMU and
camera to generate an estimate of the state of the quadrotor.

We design a trajectory to fly in the environment shown
in Figure 4. The room has been emptied to demonstrate the
effectiveness of the approach. The walls are textureless and
thus devoid of visual landmarks but the center of the room
has pillars and statues that are landmark-rich. The reference
trajectory generated by our proposed method is shown in
Figure 5.

Fig. 4: The figure shows the environment that is used for
the experiments. This environment has no landmarks on the
walls and all the objects are in the center of the room.

Fig. 5: The figure shows the optimized trajectory generated
by the proposed algorithm after taking the perceptual con-
straints into account. As can be seen in the figure, the quadro-
tor prefers facing towards the objects in the environment and
avoids facing the empty walls.

In this section, we assume locations of the landmarks
in the environment are known a priori. This is typical in
some autonomous quadrotor aircraft scenarios such as drone
racing, industrial warehouses, and more general scenarios
where the environment has been mapped beforehand and
the topological visual map of the environment is known.
In practice, the landmark locations used could be replaced
by accumulating triangulated landmarks from visual inertial
odometry over a short window. For the purpose of experi-
mentation, we relax this constraint.

Since we would like to optimize the polynomials over
segments defined by keyframes, we want the optimization
to be performed at keyframe rate at the very least. In

Fig. 6: The Figure above shows the qualitative comparison between the quadrotor following the reference trajectory at
2.7ms−1 closed by visual inertial odometry. On the left, the trajectory flown with optimized yaw is shown. On the right,
the trajectory flown with a forward facing yaw is shown.

practice, we use a keyframe rate of 10Hz and indeed our
implementation computes the polynomials in less that 0.1s.
Our timing experiments were run on a 10 core Intel® i9-
7900X CPU with 32GB of RAM. As mentioned previously,
it is possible to write an efficient implementation that uses a
GPU which would fit on the Tegra TX2 which is currently
onboard our quadrotor aircraft platform.

In the rest of this section, we present two experiments. In
the first experiment, the state estimate for closing the control
loop is provided by the motion capture system, whereas
in the second experiment, the state estimation is provided
by visual inertial odometry. We compare the effect on the
performance of the visual front-end and the tracking error
of the controller with respect to the reference trajectory and
our optimized trajectory. The reference trajectory follows a
forward facing objective for the yaw. The parameters for the
system are kept constant across both of the experiments.

A. Experiment 1

For the first experiment the quadrotor is commanded
to perform the trajectory at various top speeds
(1.7ms−1, 2.7ms−1, 3.4ms−1) with the state estimation
from the motion capture system being used to close the
control loop. The reference trajectory that is generated by
applying our approach is shown in Figure 5. This trajectory
is controlled using a nonlinear dynamics inversion based
controller as described in [16]. In the figure, the arrows
represent the heading angle of the quadrotor. As can be
seen in the figure, the quadrotor tries to keep the yaw angle
pointed towards the feature rich part of the environment
which is the expected behavior.

In this experiment, the average number of tracked land-
marks between consecutive keyframes is measured and com-
pared between a forward facing trajectory and the optimized
yaw trajectory. The parameters for both the state estimation

Forward Facing Optimized Yaw

1.7ms−1 134.1836 180.0496
2.7ms−1 126.7671 179.1885
3.4ms−1 122.4460 179.1367

TABLE I: The average number of tracked features between
keyframes in Experiment 1 is shown above.

and the controller are kept the same across all speeds. The
results of this experiment is shown in Table I. As can be
seen in the table, a significantly larger number of landmarks
is tracked across different speeds, which shows that the per-
ception objectives are maximized by our proposed method.
Since the number of landmarks tracked across keyframes is
significantly larger, this directly validates that our approach
is able to generate trajectories that can maintain co-visibility
of a large number of landmarks between keyframes.

B. Experiment 2

In this experiment, the quadrotor is commanded to fly the
same trajectory three times with top speeds of 1.7ms−1 and
2.7ms−1 with the state estimate to close the control loop
provided by visual inertial odometry for both the forward
facing yaw and the optimized yaw. The parameters are again
kept the same for every trial. The qualitative comparison
is shown in Figure 6. As can be seen from the figure, the
quadrotor fails to follow the trajectory while attempting to
face forward, but is successful when the optimized reference
trajectory is used. It is important to note here that the state
estimation error drifts because the walls are featureless and
the poor state estimation results in unsuccessful tracking.

The quantitative results for this evaluation are shown
in Table II. The metric we use to measure the tracking
performance of the controller with the reference trajectories
is the absolute trajectory error statistics. These are the

Forward Facing Optimized Yaw

Mean 0.3675m 0.1854m
1.7ms−1 Median 0.3234m 0.1987m

RMSE 0.4838m 0.2246m

Mean 0.5152m 0.1549m
2.7ms−1 Median 0.5185m 0.1625m

RMSE 0.5958m 0.1802m

TABLE II: The average absolute trajectory error statistics
over 3 trials of the trajectory are shown in the above table.

average root-mean-square error (RMSE), mean, and median
of the trajectory errors over the three separate trials for
each instance of the forward facing and the optimized yaw
trajectory. As can be seen in the table, there is a significant
improvement in the absolute trajectory error statistics for the
optimized yaw trajectory over the forward facing behavior.
As noted in the qualitative comparison, this can be attributed
to having a better state estimate due to a larger number of
constraints between keyframes.

V. CONCLUSIONS

We present an addition to the optimal control problem for
a quadrotor aircraft in the form of co-visibility constraints
and an algorithm that generates reference trajectories aware
of the perception constraints of the aircraft. From our results,
Table I shows that the reference trajectory generated by our
approach leads to a higher number of tracked landmarks,
which in turn results in a better state estimate. This also
serves as a good indicator that there are a large number of
co-visible landmarks between keyframes generated by our
method.

Our experiments demonstrate that with this approach, the
performance of a state-of-the-art control system (using state
estimates provided by visual-inertial odometry) is improved
significantly. For example, the RMSE error decreases by
53.57% in 1.7ms−1 trajectories and 69.75% for 2.7ms−1

trajectories. The parameter α sets the aggressiveness of the
quadrotor, which in turn partially constrains the orientations
of the camera along the trajectory being followed. For
applications where a known subset of landmarks must always
be kept in view, optimizing only the yaw trajectory of the
quadrotor might not be sufficient for the required objective.
In such cases, the aggressiveness variable can be adjusted
to accommodate the orientation targets of the drone since
the viewpoint is defined geometrically. This can be achieved
by specifying the roll and pitch as endpoint constraints
(Equation (25d)) in the optimization problem using the
described framework.

As mentioned in Section III, the problem definition is non-
convex in general and the proposed solution only converges
to a local minimum. As such, it is purely exploitive in
nature and tries to maintain the visibility of already observed
features in the environment. In future work, we propose to
use this to our advantage to generate trajectories that make
small variations on a pre-defined behavior for applications
where the forward facing or exploratory behavior of the

quadrotor aircraft is important. This can be used to balance
the exploitive behavior in cases where we also want to
discover new landmarks in the environment. This method
can also be easily extended to accumulate landmarks over
short time windows from onboard visual inertial odometry
for online trajectory planning. This could be achieved by
first initializing landmarks with a fixed yaw angle and
then adjusting the yaw trajectory as a sufficient number
of landmarks have been accumulated. Occlusion detection
and handling could also be included into the optimization
process. This could allow the optimizer to weight features
that could be in occlusion in the future lower. The indicator
function is only designed to handle static landmarks and can
be extended to include dynamic objects in the environment.

REFERENCES

[1] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, 2017.

[2] T. Sayre-McCord, W. Guerra, A. Antonini, J. Arneberg, A. Brown,
G. Cavalheiro, Y. Fang, A. Gorodetsky, D. McCoy, S. Quilter, F. Ri-
ether, E. Tal, Y. Terzioglu, L. Carlone, and S. Karaman, “Visual-
inertial navigation algorithm development using photorealistic camera
simulation in the loop,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[3] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[4] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 2520–2525.

[5] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[6] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[7] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 723–730.

[8] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[9] M. Sheckells, G. Garimella, and M. Kobilarov, “Optimal visual
servoing for differentially flat underactuated systems,” in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
on. IEEE, 2016, pp. 5541–5548.

[10] B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, “Vision-based
minimum-time trajectory generation for a quadrotor uav,” in Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on. IEEE, 2017, pp. 6199–6206.

[11] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), 2018.

[12] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-
inertial navigation,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 3886–3893.

[13] D. Kraft, “A software package for sequential quadratic programming,”
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur
Luft- und Raumfahrt, 1988.

[14] S. G. Johnson, “The nlopt nonlinear-optimization package,” 2014.
[15] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgog-

gles: Photorealistic sensor simulation for perception-driven robotics
using photogrammetry and virtual reality,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), 2019.

[16] E. Tal and S. Karaman, “Precision tracking of aggressive quadrotor
trajectories using incremental nonlinear dynamic inversion and dif-
ferential flatness,” in Decision and Control (CDC), 2018 IEEE 57th
Conference on. IEEE, 2018.

