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PHYLOGENETICS OF INDO-EUROPEAN LANGUAGE FAMILIES VIA AN
ALGEBRO-GEOMETRIC ANALYSIS OF THEIR SYNTACTIC STRUCTURES

KEVIN SHU, ANDREW ORTEGARAY, ROBERT C. BERWICK AND MATILDE MARCOLLI

Abstract. Using Phylogenetic Algebraic Geometry, we analyze computationally the phyloge-
netic tree of subfamilies of the Indo-European language family, using data of syntactic structures.
The two main sources of syntactic data are the SSWL database and Longobardi’s recent data of
syntactic parameters. We compute phylogenetic invariants and estimates of the Euclidean dis-
tance functions for two sets of Germanic languages, a set of Romance languages, a set of Slavic
languages and a set of early Indo-European languages, and we compare the results with what is
known through historical linguistics.

1. Introduction

The use of commutative algebra and algebraic geometry in the study of phylogenetic trees and
networks was developed in recent years in the context of biological applications, see [35], [36]. We
argue in this paper that these methods have advantages over the other methods of phylogenetic
reconstruction, such as Hamming distance and neighbor-joining, when applied to the computa-
tional study of phylogenetic trees of world languages based on syntactic data. Computational
studies of phylogenetics in linguistics have been carried out recently in [4], [50], using lexical and
morphological data and in [27], [28] using syntactic data.

The main advantages of the algebro-geometric approach presented here can be summarized as
follows.

(1) The use of Phylogenetic Algebraic Geometry to select a best candidate tree avoids some
of the well known possible problems (see Chapter 5 of [49]) that can occur in phyloge-
netic reconstructions based on Hamming distance and neighbor-joining methods. While
such methods were used successfully in phylogenetic inference using syntactic data in [27]
and [28], we argue that the geometric methods provide additional useful information, as
explained below.

(2) Phylogenetic Algebraic Geometry associates an actual geometric object to a best candidate
phylogenetic tree T , together with a boundary probability distribution at the leaves P =
(pi1...in) derived from the data. This geometric object consists of a pair (VT , xT,P ) of an
algebraic variety VT , which depends on the tree topology, and a point xT,P ∈ VT on it,
which depends on both the tree T and the boundary distribution P . Unlike what happens
with other phylogenetic methods that only provide a best candidate tree T , the geometry
(VT , xT,P ) contains more information: the position of the point P on the variety VT encodes
information about the distribution of the binary syntactic features across the language
family. For example, one can have different language families with topologically equivalent
phylogenetic trees. In this case one obtains two different points on the same variety VT
whose relative positions encode in a quantitative geometric way the difference between how
the evolution of syntactic feature happened historically in the two families.

(3) The point xT,P is constrained to lie on the locus of real points VT (R) of the complex alge-
braic variety VT , and in particular on the sublocus VT (R+) of nonnegative real coordinates,
since it is defined by a probability distribution. In several cases, especially when analyzing
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sufficiently small trees, VT turns out to be a classical and well studied algebraic variety,
as in the case of the Secant varieties of Segre embeddings of products of projective spaces
that we encounter in this paper. In such cases, there are usually well understood and
interesting geometric subvarieties of VT and one can gain further insight by understanding
when the point xT,P lies on some of these subvarieties, in addition to being contained in
the real locus. For example, this may suggest compatibility of the boundary distribution
P with respect to certain splitting of the tree into subfamilies and subtrees, which may
provide additional information on the underlying historical linguistics.

(4) The algebro-geometric method is compatible with admixtures and with phylogenetic net-
works that are not necessarily trees. The algebraic varieties involved in this setting are
different from the phylogenetic varieties of trees VT discussed here, but they are analyzed
with a similar method. Results on topological analysis of data of syntactic structures
(see [40]) indicate the presence of nontrivial cycles (first homology generators) in certain
language families. This can be seen as supporting evidence for the use of networks that
are not trees for phylogenetic analysis. The algebro-geometric formalism necessary to the
discussion of more general phylogenetic networks is discussed in [37] and [9].

1.1. Binary variables and syntactic structure. The idea that the possible syntactic struc-
ture of human languages is governed by certain basic binary variables, or syntactic parameters,
is one of the fundamental ideas underlying the Principles and Parameters model in linguistics,
originally introduced by Chomsky [10], [12]. The notion of syntactic parameter underwent succes-
sive theoretical reformulation in the context of more recent minimalist models [11], but the main
underlying conceptual idea remains unchanged. A recent detailed overview of the state of ongoing
research in comparative generative grammar on the topic of syntactic parameters can be found in
the collection of papers in the volume [22]. An introduction to syntactic parameters aimed at a
general audience with no prior linguistics background is given in [3].

Interesting questions regarding syntactic parameters include identifying a minimal set of in-
dependent variables completely determining a language’s syntax and obtaining an explicit and
complete description of the dependencies that exist among the known parameters. A rough anal-
ogy is that the set of syntactic parameters forms a kind of “basis set” spanning the space of
possible human languages (alternatively, grammars, since we are attempting to describe language
structure). Each choice of values for the parameters in this basis set fixes a distinct possible (pre-
sumably learnable) human language. Typically, it is assumed that the parameter values can be
learned from data available from positive example sentences presented to a language learner (i.e., a
child). These binary variables describing syntactic structures can roughly be thought of as yes/no
answers to questions about whether certain constructions are possible in a given language or not.
For a more precise description of parameters as instructions for triggering syntactic operations see
[43].

From a more precise mathematical perspective one can view the question of identifying depen-
dencies between syntactic parameters as trying to identify the correct “manifold of syntax” inside
a large ambient space of binary variables, in the same sense as constraints on a physical system
determine the manifold structure of its configuration space. Any existing relation between syntac-
tic parameters determines a locus inside the space of all possible binary values of these syntactic
variables where the syntactic data of the actual human languages are constrained to lie. Since
identifying relations between syntactic parameters is an open problem, the resulting geometry
cut out by these relations is presently unknown. While the problem of the “geometry of syntax”
in itself is not the main focus of the present paper, the issue of dependencies between syntactic
variables is relevant, because the phylogenetic models we will be discussing are typically based on
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assuming that variables evolving according to a Markov process on a tree behave like independent
identically distributed (i.i.d.) random variables. While this assumption is good enough to draw
some reasonable linguistic conclusions, in a more refined analysis one would like to identify the
extent to which relations between syntactic parameters may cause deviations from this hypothesis.
This problem will be discussed elsewhere, [17].

There are two existing databases of syntactic structures of world languages that we use in this
paper: the SSWL database [52] and the data of syntactic parameters collected by Giuseppe Lon-
gobardi and the LanGeLin collaboration. The binary variables recorded in the SSWL database
should not be regarded, from the linguistics perspective as genuine syntactic parameters, although
they still provide a very useful collection of binary variables describing different features of syntac-
tic structures of world languages. The variables recorded in the SSWL database include a set of 22
binary variables describing word order properties, 01–Subject Verb,. . ., 22–Noun Pronomial Pos-
sessor, a set of 4 binary variables A01–A04 describing relations of adjectives to nouns and degree
words, a variable AuxSel01 about the selection of auxiliary verbs, variables C01–C04 still related
to word order properties on complementarizer and clause and adverbial subordinator and clause,
N201–N211 variables on properties of numerals, Neg01–Neg14 variables on negation, OrderN301–
OrderN312 on word order properties involving demostratives, adjectives, nouns, and numerals,
Q01–Q15 regarding the structure of questions, Q16Nega–Q18Nega and Q19NegQ–Q22NegQ on
answers to negative questions, V201-V202 on declarative and interrogative Verb-Second, w01a–
w01c indefinite mass nouns in object position, w02a–w02c definite mass nouns in object position,
w03a–w03d indefinite singular count nouns in object position, w04a–w04c definite singular count
nouns in object position, w05a–w05c indefinite plural count nouns in object position, w06a–w06c
definite plural count nouns in object position, w07a–w07d nouns with (intrinsically) unique refer-
ents in object position, w08a–w08d proper names in object position, w09a–w09b order of article
and proper names in object position, w10a–w10c proper names modified by an adjective in object
position, w11a–w11b order of proper names and adjectives in object position, w12a–w12f order of
definite articles and nouns in object position, w20a–w20e singular count nouns in vocative phrases,
w21a–w21e proper nouns in vocative phrases, w22a–w22e plural nouns in vocative phrases. A de-
tailed description of each of these binary variables can be found on the online site of the SSWL
database, [52]. While these are certainly not considered to be an exhaustive list of binary vari-
ables associated to syntax, they contain a considerable amount of information on the variability
of syntactic structures across languages.

The LanGeLin data of Longobardi record a different set of syntactic features, which are indepen-
dent of the SSWL data. These variables should be regarded as genuine syntactic parameters and
are based on the general Modularized Global Parameterization approach developed by Longobardi
[24], [26], that considers reasonably large sets of parameters within a single module of grammar,
and their expression across a large number of languages. The LanGeLin data presented in [24]
that we use here include 91 parameters affecting the Determiner Phrases structure. The full list
of the LanGeLin syntactic parameters used in this paper is reported in Appendix D, reproduced
from Appendix A of [21].

Unlike the SSWL data, which do not record any explicit relations between the variables, many
explicit relations between the Longobardi syntactic parameters are recorded in the LanGeLin data.
A more detailed analysis of the relations in the LanGeLin data is given in [21] and in [34]. In
our analysis here we have removed those parameters in the LanGeLin data that are explicitly
dependent upon the configuration of other parameters.

1.2. Related Work. A long-standing, familiar approach to linguistic phylogenetics is grounded
on the use of lexical (including phonemic) features; see, e.g., [50] for a survey of phylogenetic
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methods applying such features on a carefully analyzed Indo-European dataset. More recently,
other researchers have suggested alternatives to bypass issues with lexical items, such as the non-
treelike behavior of lexical diffusion, sometimes rapid and different time scales for lexical change,
and the like. For example, Murawaki [32] used linguistic typological dependencies such as word
order (OV vs. VO, in the Greenbergian sense) or grammar type (synthetic vs. analytic), in order
to build phylogenies over longer time scales and across widely different languages. Murawaki’s
approach computes latent components from linguistic typological features in the World Atlas of
Languages, (WALS) and then feeds these into phylogenetic analysis. Longobardi and colleagues
have pursued a detailed linguistically-based analysis of, e.g., Noun Phrases (so-called Determiner
structure) across many different Western European languages to develop a fine-grained explicit
parametric analysis of what distinguishes each of these languages from the others, see [27] and
subsequent work including the more recent [29]. In effect, this is a “hand-tooled” version of a
statistical, principal-components like approach. They have used Jacquard distance metrics as the
measure to feed into conventional distance-based phylogenetic programs. The approach presented
in the current work differs from either of these and from other more familiar phylogenetic methods
applied to linguistic datasets (such as maximum likelihood or Bayesian approaches) in that it
adopts a different approach to the structure of the phylogenetic space itself, rather than relying
on conventional methods, while retaining the non-lexical, typological information as the basis for
describing the differences among languages.

1.3. Comments on the data sets. The two databases used in our analysis, namely the SSWL
database [52] and the recent set of data published by Longobardi and collaborators [24], are cur-
rently the only existing extensive databases of syntactic structures of world languages. Therefore
any computational analysis of syntax necessarily has to consider these data.

In the process of evaluating phylogenetic trees via the algebro-geometric method, we also perform
a comparative analysis of the two databases of syntactic variables that we use. As the extended
version of the Longobardi dataset has only recently become available [24], a comparative analysis
of this dataset has not been previously considered, so the one reported here is novel. Other
methods of comparative analysis of these two databases of syntactic structures will be discussed
elsewhere. In the cases analyzed here we see specific examples (such as the second set of Germanic
languages we discuss) where Longobardi’s database appears to be more reliable for phylogenetic
reconstructions than the SSWL data, even though the latter dataset is larger.

1.4. Phylogenetics and syntactic data. The use of syntactic data for phylogenetic reconstruc-
tion of language families was developed in previous work of Longobardi and collaborators, [27],
[28], see also [25], [26]. Computational phylogenetic reconstructions of language family trees based
on lexical and morphological data were also obtained in [4], [50]. It is well known that the use
of lexical data, in the form of Swadesh lists, is subject to issues related to synonyms, loan words,
and false positives, that may affect the measure of proximity between languages. Morphological
information is much more robust, but its encoding into binary data is not always straightforward.
Syntactic data, on the other hand, are usually classified in terms of binary variables (syntactic
parameters), and provide a robust information about language structure. Thus, we believe that
syntactic data should be especially suitable for the use of computational methods in historical
linguistics.

In [46] it was shown that, when using syntactic data of the SSWL database [52] with Hamming
distances and neighbor-joining methods to construct linguistic phylogenetic trees, several kinds of
errors typically occur. These are mostly due to a combination of two main factors:

• the fact that at present the SSWL data are very non-uniformly mapped across languages;
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• errors propagated by the use of neighbor-joining algorithms based on the Hamming distance
between the strings of syntactic variables recorded in the SSWL data.

An additional source of problems is linguistic in nature, namely the existence of languages lying
in historically unrelated families that can have greater similarity than expected at the level of
their syntactic structures. Another possible source of problems is due to the structure of the
SSWL database itself, where the syntactic binary variable recorded are not what linguists would
consider to be actual syntactic parameter in the sense of the Principles and Parameters model
[10], [12], see also [43]: there are conflations of deep and surface structures that make certain
subsets of the syntactic variables of the SSWL data potentially problematic from the linguistic
perspective. However, it was also shown in [46] that several of these problems that occur in a naive
use of computational phylogenetic methods can be avoided by a more careful analysis. Namely,
some preliminary evidence is given in [46] that, when a naive phylogenetic reconstruction applied
simultaneously to the entire SSWL database is replaced by a more careful analysis applied to
smaller groups of languages that are more uniformly mapped in the database, the phylogenetic
invariants of Phylogenetic Algebraic Geometry can identify the correct phylogenetic tree, despite
the imperfect nature of the SSWL data. The method of Phylogenetic Algebraic Geometry that
we refer to here was developed in [35], [36] for applications to mathematical biology, see also a
short survey in [5].

In the present paper we focus on certain subfamilies of the Indo-European language family,
in particular the Germanic languages, the Romance languages, and the Slavic languages. We
apply the Phylogenetic Algebraic Geometry method, by computing the phylogenetic invariants
for candidate trees, and the Euclidean distance function. We compare the results obtained by
applying this method to the SSWL data and to a more recent set of data of syntactic parameters
collected by Longobardi [24], which are a largely extended version of the data previously available
in [27].

We list here the specific historical linguistics settings that we analyze in this paper.

1.5. The Germanic family tree. We consider the following two sets of Germanic languages:

(1) S1(G) = { Dutch, German, English, Faroese, Icelandic, Swedish }
(2) S2(G) = { Norwegian, Danish, Icelandic, German, English, Gothic, Old English }.

The first one only consists of modern languages, while in the second one we have included the
data of the two ancient languages Gothic and Old English. We analyze the first set S1(G) with
the SSWL data, and we analyze the second set first using the new Longobardi data and then
using the SSWL data. In both cases we first generate candidate trees using the software package
PHYLIP [51], then using the Phylogenetic Algebraic Geometry method we compute the phyloge-
netic invariants and an estimate of the Euclidean distance function for these candidate trees and
we select the best candidate.

For sufficiently small trees one can expect that other methods, including more conventional
Bayesian analysis, would be able to identify the correct candidate tree. However, we see here
in specific examples that the algebro-geometric method performs at least better than standard
phylogenetic packages like PHYLIP when applied to the same data.

Given the large number of alternative phylogenetic methods, why use PHYLIP as a baseline?
There are two main reasons. First of all, PHYLIP is selected here as an example of a well known
and widely used phylogenetic package, hence it is an easy baseline for comparison. Moreover, we
use PHYLIP to preselect a set of candidate trees because likewise parsimony method is a standard
starting point for Bayesian analysis, although maximum likelihood inference is generally regarded
as a more reliable method.
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The estimates we consider here are based on the evaluation of phylogenetic invariants and on
estimates of Euclidean distance. A maximum likelihood degree, which counts the critical points
of the likelihood function on determinantal varieties, can in principle also be computed, see [23],
but only in sufficiently small cases. Although there are cases (such as Gaussian models) where
the maximum likelihood degree and the Euclidean distance degree match, there are also many
examples where these solutions are different, as shown in [13].

We show that, for the set S1(G), the phylogenetic invariants suggest the correct tree among
the six candidates generated by PHYLIP, which is confirmed via the estimate of the Euclidean
distance. The topology of this tree correctly corresponds to the known historical subdivision of
the Germanic languages into West Germanic and North Germanic and the relative proximity of
the given languages within these subtrees. In this sense the algebro-geometric method applied to
a baseline dataset can be confirmed, always a key step in advancing a novel phylogenetic approach
as [50] note.

For the other set S2(G) of seven languages, which are common to both databases, we also find
that the phylogenetic invariants computed on a subset of the Longobardi syntactic data point to
the correct best candidate tree, which is confirmed by a lower bound estimate of the Euclidean
distance. With the SSWL data the phylogenetic invariants computed with respect to the `1 norm
still identify the historically correct tree as the best candidate, but not when computed with
respect to the `∞ norm. This confirms in our setting a general observation of [6] on the better
reliability of the `1 norm in the computation of phylogenetic invariants. We see here an example
where the lower bound on the Euclidean distance correctly excludes some of the candidates, but
fails to assign the smallest lower bound to the best tree. This different behavior of the Longobardi
and the SSWL data on this set of languages presumably reflects the presence of a large number
of dependencies in the SSWL variables.

In the last section of the paper we discuss a possible issue of the direct application of this
algebraic phylogenetic method to syntax, which is caused by neglecting relations between syntactic
parameters and treating them, in this model, like independent random variables. We suggest
possible ways to correct for these discrepancies, which will be analyzed in future work. We expect
that such discrepancies may be resolved by a better approach taking syntactic relations into
account.

1.6. The Romance family tree. The case of the Romance languages is an interesting example
of the limitations of these methods of phylogenetic reconstructions. We considered as set of
languages Latin, Romanian, Italian, French, Spanish, and Portugues, and we used a combination
of the SSWL and the Longobardi data, which are independent sets of data. We find that PHYLIP
produces a unique candidate tree, which is however not the one that is considered historically
correct. We compute the phylogenetic invariants and the Euclidean distance for both the PHYLIP
tree and the historically correct tree. The phylogenetic invariants computed with respect to the `1

norm identify the historically correct tree as the favorite candidate, while they do not give useful
information when computed in the `∞ norm. The estimate of the Euclidean distance also favors
the historically correct tree over the PHYLIP candidate tree.

1.7. The Slavic family tree. We also analyze with the same method the phylogenetic tree of
a group of Slavic languages for which we use a combination of SSWL data and the data of [27]:
Russian, Polish, Slovenian, Serb-Croatian, Bulgarian. For this set of languages, PHYLIP applied
to the combined syntactic data produces five candidate trees with inequivalent topologies. Using
the phylogenetic invariants computed with the `1 norm we identify the historically correct tree as
the best candidate, while the computation in the `∞ norm does not select a unique best candidate.



ALGEBRAIC GEOMETRY OF INDO-EUROPEAN LANGUAGES 7

The lower bound estimate of the Euclidean distance also correctly selects the linguistically accurate
tree.

1.8. The early Indo-European branchings and the Indo-European controversy. The use
of computational methods in historical linguistics has been the focus of considerable attention, and
controversy, in recent years, due to claims made in the papers [18], [7] regarding the phylogenetic
tree of the Indo-European languages, based on a computational analysis of trees obtained from
distances between binary data based on lexical lists and cognate words. While this method of
computational analysis of language families has been considered in various contexts (see [16] for a
collection of contributions), the result announced in [18], [7] appeared to contradict several results
obtained by historical linguists by other methods, hence the ensuing controversy, see [39]. For
comparison, a different reconstruction of the Indo-European tree, carried out by computational
methods that incorporate lexical, phonological, and morphological data, was obtained by Ringe,
Warnow, and Taylor [42]. Neither of these computational analysis makes any use of syntactic data
about the Indo-European languages.

We focus here on some specific issues that occur in the phylogenetic tree of [7] compared with
that of [42]:

• The relative positions of the Greco-Armenian subtrees;
• The position of Albanian in the tree;
• The relative positions of these languages with respect to the Anatolian-Tocharian subtrees.

This means that we neglect several other branches of the Indo-European tree analyzed in [7] and
in [42] and we focus on a five-leaf binary tree with leaves corresponding to the languages: Hittite,
Tocharian, Albanian, Armenian, and Greek. We will consider the tree topologies for this subset
of languages resulting from the trees of [7] and [42] and we will select between them on the basis
of Phylogenetic Algebraic Geometry.

The set of languages considered here (Hittite, Tocharian, Albanian, Armenian, Greek) are listed
in the SSWL database [52], while not all of them are present in the Longobardi data [24]. Thus,
in this case we have to base our analysis on the SSWL data. With the exception of Armenian
and Greek, which are extensively mapped in the database, the remaining languages (especially
Tocharian and Hittite) are very poorly mapped, and the set of parameters that are completely
mapped for all of them is very small, hence the resulting analysis should not be considered very
reliable, due to this significant problem.

Nonetheless, we compute the phylogenetic invariants for the Gray-Atkins tree and for the Ringe–
Warnow–Taylor tree and we also compute the Euclidean distance function to the relevant phylo-
genetic algebraic variety. We find that, while the evaluation of the phylogenetic invariants with
the `∞ norm does not give useful information, the evaluation in the `1 norm favors the linguisti-
cally more accurate Ringe–Warnow–Taylor tree. Similarly the estimate of the Euclidean distance
selects the same Ringe–Warnow–Taylor tree.

The Gray-Atkins tree is not the one generally agreed upon by linguists, while the Ringe–
Warnow–Taylor tree is considered linguistically more reliable. A more recent discussion of the
early Indo-European tree, which is also considered linguistically very reliable, can be found in [2].
However, the part of the tree of [2] that we focus on here agrees with the one of [50] (though the
position of Albanian is not explicitly discussed in [2]), hence we refer to [50] in our analysis.

2. Phylogenetic Algebraic Varieties and Invariants

Before we proceed to the analysis of the two sets of languages listed above, we recall briefly the
notation and the results we will be using from Phylogenetic Algebraic Geometry, see [1], [35], [36].
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We also discuss the limits of the applicability of this method to syntactic data of languages and
some approaches to improve the method accordingly.

In order to apply the algebro-geometric approach, we think of each binary syntactic variable
as a dynamical variable governed by a Markov process on a binary tree. These binary Markov
processes on trees generalize the Jukes–Cantor model, in the sense that they do not necessarily
assume a uniform distribution at the root of the tree. The model parameters (π,M e) consist of a
probability distribution (π, 1 − π) at the root vertex (the frequency of expression of the 0 and 1
values of the syntactic binary variables at the root) and bistochastic transition matrices

M e =

(
1− pe pe
pe 1− pe

)
along the edges.

For a binary tree with n leaves, the boundary distribution P = (pi1,...,in) counts the frequencies
of the occurrences of binary vectors (i1, . . . , in) ∈ {0, 1}n of values of the binary syntactic vari-
ables for the languages {`1, . . . , `n} at the leaves of the tree. This boundary distribution is the
marginal distribution obtained after marginalizing over the internal nodes of the tree. If N is the
total number of syntactic binary variables available in the database (counting only those that are
completely mapped for all the n languages considered) and ni1,...,in is the number of occurrences of
the binary vector (i1, . . . , in) in the list of values of the N syntactic variables for these n languages,
then the frequencies in P are given by

pi1,...,in =
ni1,...,in
N

.

The boundary distribution is a polynomial function of the model parameters

(2.1) pi1,...,in = Φ(π,M e) =
∑

wv∈{0,1}

πwvr

∏
e

M e
ws(e),wt(e)

,

with a sum over “histories”, that is, paths in the tree. This determines a polynomial map of affine
spaces

(2.2) ΦT : A4n−5 → A2n ,

where 4n − 5 is the number of model parameters for a binary tree T with n-leaves and binary
variables. Dually, the kernel of the map of polynomial rings

(2.3) ΨT : C[zi1,...,in ]→ C[x1, . . . , x4n−5]

defines the phylogenetic ideal IT . This corresponds geometrically to the phylogenetic algebraic
variety VT .

It is proved in [1] that, for these Markov models on trees with binary variables that generalize
the Jukes–Cantor model, the phylogenetic ideal IT is generated by all the 3× 3-minors of all the
flattenings of the tensor P = (pi1,...,in). There is one such flattening for each internal edge of the
binary tree, where each internal edge corresponds to a subdivision of the leaves into a disjoint
union of two sets of cardinality r and n− r. The flattening is a 2r×2n−r matrix defined by setting

(2.4) Flate,T (P )(u, v) = P (u1, . . . , ur, v1, . . . , vn−r),

where P is the boundary distribution. The terminology corresponds to the fact that an n-tensor
P is “flattened” into a collection of 2-tensors (matrices).

These generators of the phylogenetic ideal can then be used as a test for the validity of a
candidate phylogenetic tree. If the tree is a valid phylogenetic reconstruction, then the boundary
distribution P = (pi1,...,in) should be a zero of all the polynomials in the phylogenetic ideal (or
very close to being a zero, allowing for a small error margin).
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In the case of the binary Jukes–Cantor model, where one assumes a uniform root distribution,
there are additional invariants, as shown in [48]. For the purpose of linguistic applications it is
more natural to work with the general binary Markov models described above, where the root
distribution (π, 1− π) is not assumed to be uniform, than with the more restrictive Jukes–Cantor
model. Indeed, there is no reason to assume that parameters at the root of a language phylogenetic
tree would have equal frequency of expression of 0 and 1: the overall data on all languages, ancient
and modern, contained in the available database show a clear prevalence of parameters that are
expressed (value 1) rather than not. (This point was discussed in some detail in [47].)

2.1. Phylogenetic Invariants. The Allman–Rhodes theorem [1] shows that the generators φT
of the phylogenetic ideal IT are given by the minors det(M) of all the size 3 × 3-submatrices M
of the flattening matrices Flate,T , with e ranging over the internal edges of T .

In the following, we denote by M(3)
e,T the set of all 3 × 3 submatrices of the flattening matrix

Flate,T , byM(3)
T := ∪e∈E(T )M(3)

e,T and by D(3)
T := {det(M) |M ∈M(3)

T }. We will also use the nota-

tionM(3)(A) for the set of 3× 3 submatrices of a given matrix A, and D(3)(A) := {det(M) |M ∈
M(3)(A)}.

To every candidate tree, one can also associate a computation of a discrepancy that measures
how much the polynomials φT fail to vanish at the point P . This can be done using different kinds
of norms. Generally, one can use either the `∞ norm and obtain an expression of the form

‖φT (P )‖`∞ = max
M∈M(3)

T

| det(M(P ))|,

which we write equivalently in the following shorthand notation as

‖φT (P )‖`∞ = max
φ∈D(3)

T

|φ(P )|,

where the expression |φ(P )| stands for the absolute value of the determinant of the 3 × 3-minor
evaluated at the boundary distribution P . It is also natural to use the `1 norm and compute

‖φT (P )‖`1 =
∑

M∈M(3)
T

| det(M(P ))|,

equivalently written in the rest of the paper as

‖φT (P )‖`1 =
∑
φ∈D(3)

T

|φ(P )|.

One can expect that the `∞ norm will be a very weak invariant, because taking the maximum
loses a lot of information contained in the phylogenetic invariants φT (P ). Indeed, this turns out
to be the case. As analyzed in detail in [6], the `1 norm is a more refined and reliable way to
identify best phylogenetic trees on the basis of the computation of phylogenetic invariants than
the `∞ norm. We will see several explicit examples in the following sections where the `∞ norm
does not provide useful information to identify the correct candidate tree, while the `1 norm of
the phylogenetic invariants correctly identifies the unique best candidate tree.

For the best candidate tree T , the values of ‖φT (P )‖`∞ and ‖φT (P )‖`1 will in general be small
but still non-zero. It is possible that these non-zero values may partly reflect a small deviation
from Markov evolution. Namely, the observed distribution P of the syntactic parameters of the
languages at the leaves of the tree may differ from a distribution obtained by the evolution of
i.i.d. random variables via a Markov model on the tree.
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One of the important points we wish to investigate in the longer term is how relations between
syntactic parameters affect their behavior as random variables in dynamical models of language
change and evolution. To that purpose, we can regard the values of phylogenetic invariants as a
possible numerical indicator of discrepancies from the standard i.i.d. Markov model assumption.
As mentioned in the introduction, the presence of dependencies between syntactic parameters is
expected to cause at least some small deviations from the dynamics of an actual i.i.d. Markov
model. We do not analyze in the present paper how possible models of parameter dependencies
affect the dynamics and may be reflected in the value of the phylogenetic invariants. A more
careful analysis of the Markov hypothesis will appear elsewhere, [17].

2.2. Euclidean distance. As a way to compare different candidate trees and select the best
possible candidate, one can use the Euclidean distance, in an ambient affine space, between the
point P given by the boundary distribution and the variety VT associated to the candidate tree
T . The tree realizing the smallest distance will be the favorite candidate.

It is not always possible to compute the Euclidean distance exactly, but it can sometimes
be estimated, as we will discuss more explicitly in §3.6 and §3.11. We will compute Euclidean
distances from certain Segre and secant varieties, namely determinantal varieties of rank one and
two, for which a direct computation is possible. In some particular cases, like the first set of
Germanic languages we analyze, we will show that a lower bound estimate obtained in terms of
these distances is sharp, under a conditional assumption, which we discuss more in detail in §2.3.

The Euclidean distances of the flattening matrices from the corresponding determinantal vari-
eties can be computed using the Eckart–Young theorem, as in Example 2.3 of [13] and [35].

The Eckart–Young theorem describes a low-rank approximation problem, namely minimizing
the Euclidean distance ‖M −M ′‖ between a given n × m matrix M , seen as a vector in Rnm,
and an n×m matrix M ′ with rank(M ′) ≤ k, for a given k ≤ n ≤ m. One considers the singular
value decomposition M = UΣV where Σ is an n ×m diagonal matrix Σ = diag(σ1, . . . , σn) and
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and where U and V are, respectively n × n and m × m orthogonal
matrices. Then the minimum of the distance ‖M −M ′‖ is realized by M ′ = UΣ′V where Σ′ =
diag(σ1, . . . , σk, 0, . . . , 0) with the distance given by

min
M ′
‖M −M ′‖ = (

n∑
i=k+1

σ2
i )

1/2.

This can equivalently be stated as the fact that the minimum distance between a given n × m
matrix M and the determinantal variety Dk(n,m) of n×m matrices of rank ≤ k is given by

(2.5) dist(M,Dk(n,m)) = ‖(σk+1, . . . , σn)‖,
where the σi are the singular values of M . The point M ′ realizing the minimum is unique iff
σk+1 6= σk, with k the rank, [31].

2.3. Conditional cases and distance estimates. In the specific examples we discuss below,
we usually consider a list of pre-selected candidate trees, obtained via the use of the PHYLIP
package and among them we test for the most reliable candidate using the algebro-geometric
methods discussed here. Unlike the case where the search happens over all possible interpolating
binary trees, in these cases the pre-selected tree tend to all agree on certain proximity assignments
of some of the leaves. For example, in the first set of Germanic languages that we discuss below,
all the candidate trees agree on the proximity of Dutch and German and on the proximity of
Icelandic and Faroese, though they disagree in the relative placements of these subtrees with
respect to the other languages in the set. This agreement among the candidate trees results in
two of the flattening matrices being common to all of the candidates.
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In a situation like this one it is reasonable to consider a “conditional case” where we assume
that the incidence condition that these common flattenings lie on the respective determinantal
varieties already holds. We then aim at identifying the best candidate tree among those with
these constraints already assumed.

We outline more precisely the reasoning behind the kind of estimation we are going to perform.
We have a preselected small list of candidate trees Ti, i = 1, . . . , N and we assume that one of them
is the correct phylogenetic tree. This assumption means that the point P given by the boundary
distribution of i.i.d. variables that evolved according to a Markov model on this tree will lie on
its phylogenetic variety. Thus, there is a Ttrue among the Ti for i = 1, . . . , N such that P ∈ VTtrue .
If we also assume (as will be the case in specific examples we consider) that all the phylogenetic
varieties VTi are intersections of the form VTi = W ∩ Vi, where W is common to all the Ti while
the other varieties Vi depend on the tree Ti, then this assumption together with the previous one
then gives P ∈ VTtrue = W ∩ Vtrue so necessarily P ∈ W . Thus, in this case the question about
which of the varieties VTi the point P lies on is reduced to the question of which of the Vi the point
lies on, as it will lie on W anyway. This would imply that it would suffice to check the Euclidean
distances between P and the Vi.

However, because of possible noise in the data and other effects such as possible small discrep-
ancies from the Markov hypothesis for syntactic parameters, we will in general have only a close
proximity of P to the variety VTi of the correct phylogenetic tree, rather than exact incidence.
We can account for possible small discrepancies by assuming that there is a sufficiently small
ε > 0 such that P ∈ Uε(VTtrue), where Ttrue is correct phylogenetic tree and VTtrue = Vtrue ∩W ,
and Uε(VTtrue) is an ε-tubular neighborhood of VTtrue inside the ambient Euclidean space. With
only this proximity estimate available, one can no longer necessarily relate which Ti realizes the
minimum among the distances dist(P, Vi) or the minimum among the dist(P, Vi∩W ), as one could
now have a situation where dist(P, V1 ∩W ) < dist(P, V2 ∩W ) while dist(P, V2) < dist(P, V1).

Nonetheless, if we compute the minimum Euclidean distances dist(P, Vi), instead of directly
obtaining the minimum among the distances dist(P,W ∩ Vi), this will provide a lower bound on
the Euclidean distance dist(P, VTtrue). Indeed, we can simply obtain an estimate using the fact
that the lower bound dist(P, V ∩W ) ≥ max{dist(P, V ), dist(P,W )}, for two subvarieties V,W in
the same ambient space. Since this is only a lower bound, which is in general not expected to be
sharp, one can at best hope to use this estimate to exclude candidates for which the computed
max{dist(P, V ), dist(P,W )} is large (within the set of given candidates), while a small value of this
maximum will not necessarily imply that the corresponding candidate is optimal as dist(P, V ∩W )
could easily be significantly larger. We see however that in many cases this lower bound suffices
to exclude most candidates hence it provides a useful estimate.

A more general theoretical discussion of these estimation methods and their range of validity,
compared to other phylogenetic invariants and tree reconstruction algorithms (such as discussed
in [6], [14], [44]) will be discussed elsewhere, separately from the present application, since they
are not restricted to the specific linguistic setting considered here.

2.4. Limits of applicability to Syntax. One of the purposes of this paper is also to better
understand the limits of the applicability of these phylogenetic models to syntactic data. One of
the main assumptions that need to be more carefully questioned is treating syntactic parameters
as i.i.d. random variables evolving under the same Markov model on the tree. We know that
there are relations between syntactic parameters. While the complete structure of the relations is
not known, and is in fact one of the crucial questions in the field, one can detect the presence of
relations through various computational methods applied to the available syntactic data.
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In [30] and [45], a quantitative test was devised, aimed at measuring how the distribution of
syntactic parameters over a group of languages differs from the result of i.i.d. random variables.
Using coding theory, one associates a binary code to the set of syntactic parameters of a given
group of languages and computes the position of the resulting code in the space of code param-
eters (the relative rate of the code and its relative minimum distance). If the distribution of the
syntactic features across languages were the effect of an evolution of identically distributed inde-
pendent random variables, one would expect to find the code points in the region of the space of
code parameters populated by random codes in the Shannon random code ensembles, that is, in
the region below the Gilbert–Varshamov curve. However, what one finds (see [45]) is the pres-
ence of many outliers that are not only above the Gilbert–Varshamov curve, but even above the
symptotic bound and the Plotkin bound. This provides quantitative evidence for the fact that
the evolutionary process that leads to the boundary distribution P of code parameters may differ
significantly from the hypothesis of the phylogenetic model.

In [38] it was shown, using Kanerva networks, that different syntactic parameters in the SSWL
database have different degrees of recoverability, which can be seen as another numerical indicator
of the presence of relations, with parameters with lower recoverability counting as closer to being
truly independent variables and those with higher recoverability seen as dependent variables. One
possible modification of the evolutionary model on the phylogenetic tree may then be obtained
by computing the observed distribution P at the leaves, by introducing different weights for the
different parameters, which depend on the recoverability factor, so that parameters that are more
likely to be independent variables would weight more in determining the boundary distribution
and parameters that have higher recoverability, and are therefore considered dependent variables,
would contribute less to determining P .

A further issue worth mentioning, though we will not discuss it in this paper, is whether the
hypothesis that the evolutionary dynamics happens on a tree is the best model. There are more
general phylogenetic reconstruction techniques based on graphs that are not trees, see [19] and the
algebro-geometric models in [9]. It was shown in [40] that the persistent topology of the SSWL
data of some language families (the Indo-European) contain non-trivial persistent generators of the
H1 homology group. While the persistent generators of H0 appear to be related to the structure of
a candidate phylogenetic tree, the presence of a persistent H1 points to the presence of loops, hence
to graphs that are not trees. Persistent generators of the H1 are also visible in the Longobardi
data. This is further discussed in [41].

We discuss some possible modifications of the evolutionary Markov model on the tree in the
last section of the paper.

3. Phylogenetic Algebraic Varieties of the Germanic language family

As discussed in the Introduction, we first analyze the phylogenetic tree for the set of Germanic
languages S1(G): Dutch, German, English, Faroese, Icelandic, and Swedish.

These six languages are mapped with different levels of accuracy in the SSWL database: we have
Dutch (100%), German (75%), English (75%), Faroese (62%), Icelandic (62%), Swedish (75%).
There are 90 syntactic variables that are completely mapped for all of these six languages: the list
is reported in Appendix A. We will use only these 90 variables for the analysis carried out here.

We then consider the set S2(G) consisting of seven Germanic languages: Norwegian, Danish,
Icelandic, German, English, Gothic, Old English. These are chosen so that they are covered by
both the SSWL database [52] and the new data of Longobardi [24], and so that they contain some
ancient languages, in addition to modern languages situated on both the West and the North
Germanic branches. In this way we can test both the effect of using different syntactic data and
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the effect of including ancient languages and their relation to problem of the location of the root
vertex mentioned above.

The Germanic languages in the set S2(G) have a total of 68 SSWL variables that are completely
mapped for all the seven languages in the set. This is significantly smaller than the 90 variables
used for the set S1(G). This does not depend on the languages being poorly mapped: the levels
of accuracy are comparable with the previous set with Danish (76%), Norwegian (75%), German
(75%), English (75%), Old English (75%) Icelandic (62%), Gothic (62%). However, the regions
of the overall 115 SSWL variables that are mapped is less uniform across this set of languages
creating a smaller overlap. The set of completely mapped SSWL variables for this set of languages
is reported in Appendix B.

3.1. Candidate PHYLIP trees. When using the full but incomplete data for the six Germanic
languages in S1(G), we obtain with PHYLIP a list of six candidate phylogenetic trees, respectively
given (in bracket notation) by

pars1 = ((`1, `2), (`3, (`4, `5)), `6)

pars2 = ((`3, (`1, `2)), (`4, `5), `6)

pars3 = (`3, ((`1, `2), (`4, `5)), `6)

bnb1 = (`6, ((`5, `4), (`3, (`2, `1))))

bnb2 = (`6, (((`5, `4), `3), (`1, `2)))

bnb3 = (`6, (((`5, `4), (`1, `2)), `3))

where `1 =Dutch, `2 =German, `3 =English, `4 =Faroese, `5 =Icelandic, `6 =Swedish. The
Newick representation of binary trees used by PHYLIP lists the leaves in the order specified by
the choice of a planar embedding of the tree, with brackets and commas indicating the joining
together of branches. In the rest of the paper, for convenience, we will spell out explicitly the form
of the tree graphically, rather than writing them in the Newick bracket notation. In the case of
the trees listed here we obtain the following.

The trees pars1, pars2, and pars3 given above in the Newick representation have the form

`1 `2
`3 `4 `5

`6 `3 `1 `2
`4 `5

`6 `3
`1 `2 `4 `5

`6

Note that pars1 is a binary tree, while pars2 and pars3 are not binary trees. We will discuss
how to resolve the non-binary structure. The remaining trees bnb1, bnb2, and bnb3 are binary
trees of the form

`6
`5 `4 `3 `2 `1

`6

`5 `4
`3 `1 `2

`6

`5 `4 `1 `2

`3

Note how all of these candidate trees agree on the proximity of Dutch and German (`1 and `2)
and of Faroese and Icelandic (`4 and `5), while they differ in the relative placement of these two
pairs with respect to one another and with respect to the two remaining languages, English and
Swedish.

In phylogenetic linguistics the presence of a non-binary tree denotes an ambiguity, which should
eventually be resolved into one of its possible binary splits. As shown in [15], the phylogenetic
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algebraic variety of a non-binary tree can be seen as the intersection of the phylogenetic algebraic
varieties of all of its possible binary splits. Thus, the phylogenetic ideal (for the binary Jukes-
Cantor model) is generated by all the 3× 3 minors of all the flattening matrices of all the binary
splits of the given non-binary tree. Being the intersection of the varieties defined by each of the
binary splits corresponds exactly to the notion of ambiguity mentioned above.

The resolution of a non-binary structure of the type shown in pars2 and pars3 is obtained by
replacing the first tree below with the different possibilities given by its three possible binary splits
that follow:

A B C A B C A B C A C B

Thus, for the tree pars2 we obtain the three binary trees

`3 `1 `2 `4 `5
`6

`3 `1 `2
`4 `5

`6

`3 `1 `2
`6

`4 `5

Note, however, that these three binary trees are equivalent up to a shift in the position of the
root, which however does not affect the phylogenetic invariants, see [1] and Proposition 2.16 in
[5]. Thus, we need only consider one of them for the purpose of computing the generators of the
phylogenetic ideal. For the tree pars3 we obtain the three binary trees

`3

`1 `2 `4 `5

`6 `3
`1 `2 `4 `5

`6 `3 `6
`1 `2 `4 `5

Again these three binary trees only differ by a shift of the position of the root, which does not
affect the computation of the phylogenetic invariants, hence we need only consider one of them
for that purpose. Notice, moreover, that the binary tree bnb1 is the same as the second binary
tree for pars2. Also the tree bnb2 has the same topology as the tree pars1, up to a shift in the
position of the root, which does not affect the phylogenetic invariants. Similarly, the tree bnb3 is
the same as the second binary tree of pars3.

All of the binary trees considered here have three internal edges, hence all of them have three
flattenings Flate,T (P ) of the boundary distribution P = (pi1,...,i6).

• The flattenings for pars1 are given by a 4 × 16 matrix Flate1,pars1(P ), an 8 × 8 matrix
Flate2,pars1(P ) and a 16× 4 matrix Flate3,pars1(P ). These correspond to the separating the
leaves into two components when deleting the internal edge ei according to

e1 : {`1, `2} ∪ {`3, `4, `5, `6}

e2 : {`1, `2, `6} ∪ {`3, `4, `5}
e3 : {`1, `2, `3, `6} ∪ {`4, `5}.

• The flattenings for any of the three binary trees for pars2 are also given by a 4×16 matrix
Flate1,pars2(P ), an 8 × 8 matrix Flate2,pars2(P ) and a 16 × 4 matrix Flate3,pars2(P ), which
in this case correspond to the subdivisions

e1 : {`1, `2} ∪ {`3, `4, `5, `6}

e2 : {`1, `2, `3} ∪ {`4, `5, `6}
e3 : {`1, `2, `3, `6} ∪ {`4, `5},

which only differ from the previous case in the e2 flattening.



ALGEBRAIC GEOMETRY OF INDO-EUROPEAN LANGUAGES 15

• The flattenings for any of the three binary trees for pars3 are given by a 4 × 16 matrix
Flate1,pars3(P ), a 16 × 4 matrix Flate2,pars3(P ) and a 16 × 4 matrix Flate3,pars3(P ), which
correspond to the subdivisions

e1 : {`1, `2} ∪ {`3, `4, `5, `6}

e2 : {`1, `2, `3, `6} ∪ {`4, `5}

e3 : {`1, `2, `4, `5} ∪ {`3, `6}.

• The bnb1 tree is the same as one of binary trees for pars2, hence their flattenings are also
the same.
• The flattenings for bnb2 are the same as the flattening of pars1, since the two tree differ

only by a shift in the position of the root vertex.
• The bnb3 tree is the same as one of binary trees for pars3, hence their flattenings are also

the same.

Thus, in order to compare the phylogenetic invariants of these various trees, we need to compute the
3×3 minors of the matrices Flate,T (P ) for the splits {`1, `2}∪{`3, `4, `5, `6}, {`1, `2, `6}∪{`3, `4, `5},
{`1, `2, `3, `6} ∪ {`4, `5}, {`1, `2, `3} ∪ {`4, `5, `6}, {`1, `2, `4, `5} ∪ {`3, `6}. We will compute these in
the next subsection.

3.2. Flattenings. As discussed above, there are five matrices Flate,T (P ) that occur in the com-
putation of the phylogenetic ideals of the candidate phylogenetic trees listed above. In fact, we
do not need to compute all of them, as some occur in all the trees, hence do not contribute to
distinguishing between them. This corresponds to the observation we already made above, that
all the candidate trees agree on the proximity of `1 and `2 and of `4 and `5.

To simplify keeping track visually of which flattening is being considered, we replace here the
edge notation e of the flattening matrices Flate,T (P ) with the explicit splitting of the leaves of
T that corresponds to the edge e. Thus, for example, instead of writing Flate1,pars1(P ) we write
Flat{`1,`2}∪{`3,`4,`5,`6}(P ). This notation has the advantage that, when the same flattening matrix
(with the same subdivision of leaves) occurs in different trees, this will be immediately evident
from the notation. We will continue to use the more concise notation Flate,T (P ) when more
convenient.

• The 4× 16 matrix Flat{`1,`2}∪{`3,`4,`5,`6}(P ), contributes to the phylogenetic ideals of all the
trees, hence it will not help discriminate between them.
• The same is true about the 16× 4 matrix Flat{`1,`2,`3,`6}∪{`4,`5}(P ).
• The 8×8 matrix Flat{`1,`2,`6}∪{`3,`4,`5}(P ) contributes to the phylogenetic invariants of pars1

and bnb2. It is given by

p000000 p000100 p001000 p001100 p000010 p000110 p001010 p001110
p010000 p010100 p011000 p011100 p010010 p010110 p011010 p011110
p100000 p100100 p101000 p101100 p100010 p100110 p101010 p101110
p110000 p110100 p111000 p111100 p110010 p110110 p111010 p111110
p000001 p000101 p001001 p001101 p000011 p000111 p001011 p001111
p010001 p010101 p011001 p011101 p010011 p010111 p011011 p011111
p100001 p100101 p101001 p101101 p100011 p100111 p101011 p101111
p110001 p110101 p111001 p111101 p110011 p110111 p111011 p111111
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• The 8×8 matrix Flat{`1,`2,`3}∪{`4,`5,`6}(P ) contributes to the phylogenetic invariants of pars2
and bnb1 and it is given by



p000000 p000010 p000100 p000110 p000001 p000011 p000101 p000111
p010000 p010010 p010100 p010110 p010001 p010011 p010101 p010111
p100000 p100010 p100100 p100110 p100001 p100011 p100101 p100111
p110000 p110010 p110100 p110110 p110001 p110011 p110101 p110111
p001000 p001010 p001100 p001110 p001001 p001011 p001101 p001111
p011000 p011010 p011100 p011110 p011001 p011011 p011101 p011111
p101000 p101010 p101100 p101110 p101001 p101011 p101101 p101111
p111000 p111010 p111100 p111110 p111001 p111011 p111101 p111111


• The 16 × 4 matrix Flat{`1,`2,`4,`5}∪{`3,`6}(P ) contributes to the phylogenetic invariants of
pars3 and bnb3 and is given by



p000000 p000001 p001000 p001001
p010000 p010001 p011000 p011001
p100000 p100001 p101000 p101001
p110000 p110001 p111000 p111001
p000010 p000011 p001010 p001011
p010010 p010011 p011010 p011011
p100010 p100011 p101010 p101011
p110010 p110011 p111010 p111011
p000100 p000101 p001100 p001101
p010100 p010101 p011100 p011101
p100100 p100101 p101100 p101101
p110100 p110101 p111100 p111101
p000110 p000111 p001110 p001111
p010110 p010111 p011110 p011111
p100110 p100111 p101110 p101111
p110110 p110111 p111110 p111111



3.3. Boundary distribution and phylogenetic invariants. Next we compute the boundary
distribution P = (pi1,...,i6) of the syntactic variables. We use only the 90 completely mapped
syntactic variables, for which we find occurrences

n110111 = 3 n000011 = 1 n000010 = 4 n000000 = 40
n110000 = 2 n001110 = 1 n000100 = 2 n111111 = 22
n111110 = 1 n000110 = 1 n111101 = 3 n100000 = 2
n010000 = 1 n111001 = 2 n110110 = 1 n010111 = 1
n001000 = 2 n000111 = 1

while all the remaining cases do not occur, ni1,...,i6 = 0 for (i1, . . . , in) not in the above list.
With the boundary distribution determined by the occurrences above the three matrices of

F1 = Flat{`1,`2,`6}∪{`3,`4,`5}(P ), F2 = Flat{`1,`2,`3}∪{`4,`5,`6}(P ), and F3 = Flat{`1,`2,`4,`5}∪{`3,`6}(P )
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are, respectively, given by

F1 =



4
9

1
45

1
45 0 2

45
1
90 0 1

90
1
90 0 0 0 0 0 0 0
1
45 0 0 0 0 0 0 0
1
45 0 0 0 0 1

90 0 1
90

0 0 0 0 1
90

1
90 0 0

0 0 0 0 0 1
90 0 0

0 0 0 0 0 0 0 0
0 0 1

45
1
30 0 1

30 0 11
45



F2 =



4
9

2
45

1
45

1
90 0 1

90 0 1
90

1
90 0 0 0 0 0 0 1

90
1
45 0 0 0 0 0 0 0
1
45 0 0 1

90 0 0 0 1
30

1
45 0 0 1

90 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

90
1
45 0 1

30
11
45



F3 =



4
9 0 1

45 0
1
90 0 0 0
1
45 0 0 0
1
45 0 0 1

45
2
45

1
90 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1
45 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

30
1
90

1
90

1
90 0

0 1
90 0 0

0 0 0 0
1
90

1
30

1
90

11
45



3.4. Phylogenetic invariants. As we discussed above, the splits

{`1, `2} ∪ {`3, `4, `5, `6} and {`1, `2, `3, `6} ∪ {`4, `5}

occur in all the candidate trees, hence the minors coming from the flattening matrices

Flat{`1,`2}∪{`3,`4,`5,`6}(P ) and Flat{`1,`2,`3,`6}∪{`4,`5}(P )

do not discriminate between the given candidates (preselected by PHYLIP). Thus it is reasonable
to proceed by assuming that the condition that these two flattenings lie on the corresponding
determinantal varieties is satisfied and only discriminate between the candidate trees on the basis
of the position of the remaining flattenings. There is only one additional flattening involved in
each tree, once these common ones are excluded. Thus, we estimate the phylogenetic invariants
by evaluating the 3× 3 minors of the remaining flattening matrix for each of the trees, using both
the `∞ and the `1 norm. We obtain the following:
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(1) For the tree T1 =pars1 (and equivalently bnb2) we have

‖φT1(P )‖`∞ = max
φ∈D(3)

T1

|φ(P )| = 22

18225

‖φT1(P )‖`1 =
∑
φ∈D(3)

T1

|φ(P )| = 3707

364500

(2) For the tree T2 =pars2 (equivalently bnb1) we have

‖φT2(P )‖`∞ = max
φ∈D(3)

T2

|φ(P )| = 419

364500

‖φT2(P )‖`1 =
∑
φ∈D(3)

T2

|φ(P )| = 2719

364500

(3) For the tree T3 =pars3 (and equivalently bnb3) we have

‖φT3(P )‖`∞ = max
φ∈D(3)

T3

|φ(P )| = 22

18225

‖φT3(P )‖`1 =
∑
φ∈D(3)

T3

|φ(P )| = 949

91125

Thus, in terms of the evaluation of the phylogenetic invariants, the binary trees of pars2 and the
binary tree bnb1 are favored over the other possibilities. (We discuss the position of the root vertex
below.) Note that the `∞ norm does not distinguish between the other two remaining candidates
and only singles out the preferred candidate pars2. We compute the Euclidean distance function
in §3.7.

3.5. The problem with the root vertex. As we have seen above, the computation of the
phylogenetic invariants helps selecting between different candidate tree topologies. However, the
phylogenetic invariants by themselves are insensitive to changing the position of the root in binary
trees with the same topology. In terms of phylogenetic inference about linguistics, however, it
is important to locate more precisely where the root vertex should be. In the case of languages
belonging to a subfamily of the Indo-European languages this can be done, as in the example we
discussed in [46], by introducing the data of some of the ancient languages in the same subfamily
as a new leaf of the tree, that will help locating more precisely the root vertex of the original
tree based on the modern languages. For language families for which there are no data of ancient
languages available, however, this kind of phylogenetic analysis will only identify a tree topology
as an unrooted binary tree. We will return to this point in the following section, where we analyze
the set S2(G) which includes two ancient languages.

Note that when one or more ancient languages are included in the data (as in the second case
of the Germanic languages, or the Romance languages discussed here) that suffices to constrain
the position of the root vertex, while in other cases like the example discussed here, additional
independent information is needed.
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3.6. Varieties. In the discussion above we reduced the question of distinguishing between the can-
didate trees to an evaluation of the phylogenetic invariants coming from the 3×3 minors of one of
the three matrices Flat{`1,`2,`6}∪{`3,`4,`5}(P ), Flat{`1,`2,`3}∪{`4,`5,`6}(P ), and Flat{`1,`2,`4,`5}∪{`3,`6}(P ).
In the first two cases, the phylogenetic ideal defines the 28-dimensional determinantal variety of
all 8 × 8 matrices of rank at most two, while in the third case the phylogenetic ideal defines the
36-dimensional determinantal variety of all 16×4 matrices of rank at most two, [8]. These are not
the actual phylogenetic varieties associated to the candidate trees, which are further cut out by the
remaining equations coming from the 3×3 minors of the other flattenings Flat{`1,`2}∪{`3,`4,`5,`6}(P ),
and Flat{`1,`2,`3,`6}∪{`4,`5}(P ). The varieties associated to each individual tree are intersections of

three different determinantal varieties inside a common ambient space A26 . Since all the polyno-
mials defining the phylogenetic ideals are homogeneous, they can also be considered as projective
varieties in the ambient projective space P26−1.

In the case of the trees considered here, two of the three determinantal varieties stay the same,
since the flattenings Flat{`1,`2}∪{`3,`4,`5,`6}(P ), and Flat{`1,`2,`3,`6}∪{`4,`5}(P ) are common to all candi-
date trees, while the third component varies among the three choices determined by the flattenings
Flat{`1,`2,`6}∪{`3,`4,`5}(P ), Flat{`1,`2,`3}∪{`4,`5,`6}(P ), and Flat{`1,`2,`4,`5}∪{`3,`6}(P ).

In general, let Dr(n,m) denote the determinantal variety of n×m matrices of rank ≤ r. As an
affine subvariety in Anm it has dimension r(n+m− r). It will be convenient to consider Dr(n,m)
as a projective subvariety of Pnm−1, though we will maintain the same notation. In the case
r = 1, the determinantal variety D1(n,m) is the Segre variety S(n,m) given by the embedding
Pn−1 × Pm−1 ↪→ Pnm−1 realized by the Segre map (xi, yj) 7→ (uij = xiyj). In the case r = 2 the
determinantal variety D2(n,m) is the secant variety of lines (chord variety) Sec(S(n,m)) of the
Segre variety S(n,m), see §9 of [20].

Thus, we obtain the following simple geometric description of the three cases considered above:

• Flat{`1,`2,`6}∪{`3,`4,`5}(P ) (tree topology of pars1 and bnb2): the relevant variety is the secant
variety Sec(S(8, 8)) of the Segre variety S(8, 8) = P7 × P7, embedded in P63 via the Segre
embedding ui1,...,i6 = xi1,i2,i6yi3,i4,i5 .
• Flat{`1,`2,`3}∪{`4,`5,`6}(P ) (tree topology of pars2 and bnb1): the relevant variety is again

Sec(S(8, 8)), where S(8, 8) is embedded in P63 via ui1,...,i6 = xi1,i2,i3yi4,i5,i6 .
• Flat{`1,`2,`4,`5}∪{`3,`6}(P ) (tree topology of pars3 and bnb3): the relevant variety is the

secant variety Sec(S(16, 4)) of the Segre variety S(16, 4) = P15 × P3, embedded in P63 via
the Segre embedding ui1,...,i6 = xi1,i2,i4,i5yi3,i6 .

The evaluation of the phylogenetic invariants at the boundary distribution determined by the
SSWL data selects the second choice, Sec(S(8, 8)) with the Segre embedding ui1,...,i6 = xi1,i2,i3yi4,i5,i6 .

As a general procedure, given a subfamily of languages, {`1, . . . , `n} and a set of candidate
phylogenetic trees T1, . . . , Tm produced by computational methods from the syntactic variables of
these n languages, one can construct with the method above a collection Y1, . . . , Ym of algebraic
varieties, where each Yk associated to the tree Tk is obtained by considering the determinantal
varieties associated to all those flattenings Flate,Tk(P ) of Tk that are not common to all the other
trees Tj.

The test for selecting one of the candidate trees, given the boundary distribution P = (pi1,...,in)
of the syntactic variables, is then to estimate which of the varieties Yk the point P is closest to,
where a suitable test of closeness is used, for instance through the Euclidean distance function.
Assuming that this procedure does not result in ambiguities (that is, that there is a unique closest
Yk to the given distribution P ), then this method selects a best candidate T among the m trees Tk.
It also selects an associated algebraic variety Y = Y (T ), which is larger than the usual phylogenetic
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algebraic variety XT of T , since we have neglected flattenings that occur simultaneously in all the
m candidate trees Tk.

3.7. The Euclidean distance. According to the discussion of the previous subsection, on the
geometry of the varieties involved in distinguishing between the candidate trees, we compute here

• the Euclidean distance of the point Flat{`1,`2,`6}∪{`3,`4,`5}(P ) and the determinantal variety
D2(8, 8) = Sec(S(8, 8)),
• the Euclidean distance of the point Flat{`1,`2,`3}∪{`4,`5,`6}(P ) from the same determinantal

variety D2(8, 8) = Sec(S(8, 8)),
• the Euclidean distance of the point Flat{`1,`2,`4,`5}∪{`3,`6}(P ) from the determinantal variety
D2(16, 4) = Sec(S(16, 4)).

Using the Eckart-Young theorem, we compute these distances using the singular values of these
three matrices. These are given by

Σ(Flat{`1,`2,`6}∪{`3,`4,`5}(P )) ∼

diag(0.44940, 0.25001, 0.19237×10−1, 0.96007×10−2, 0.21595×10−2, 0.88079×10−3, 4.6239×10−19, 0)

Σ(Flat{`1,`2,`3}∪{`4,`5,`6}(P )) ∼
diag(0.44956, 0.25018, 0.14729× 10−1, 0.44229× 10−2, 0.27802× 10−2, 0.24881× 10−17, 0)

Σ(Flat{`1,`2,`4,`5}∪{`3,`6}(P )) ∼
diag(0.44939, 0.24994, 0.20625× 10−1, 0.94442× 10−2).

Using (2.5) we then obtain

dist(Flat{`1,`2,`6}∪{`3,`4,`5}(P ), Sec(S(8, 8)))2 = σ2
3 + · · ·+ σ2

8 = 0.46768× 10−3

dist(Flat{`1,`2,`3}∪{`4,`5,`6}(P ), Sec(S(8, 8)))2 = σ2
3 + · · ·+ σ2

8 = 0.24424× 10−3

dist(Flat{`1,`2,`4,`5}∪{`3,`6}(P ), Sec(S(16, 4)))2 = σ2
3 + σ2

4 = 0.51457× 10−3

The second Euclidean distance is the smallest, hence this more reliable distance test again favors
the binary trees of pars2 and the binary tree bnb1.

The computation of these Euclidean distances provides a selection between the candidate trees
in the following way. The first distance measures how far the point determined by the data (in the
form of the boundary distribution P and the flattening matrix F1(P )) is from the determinantal
variety D2(8, 8) determined by the tree pars1. The second distance measures how far the point
determined by the data, through the flattening F2(P ), is from the determinantal variety determined
by the tree pars2, and the third distance measures how far the point, through the flattening F3(P )
is from the determinantal variety D2(16, 4) determined by the tree pars3. Since as observed above
the remaining flattenings of P occur in all trees and do not help distinguishing between them, it
suffices to find the best matching condition between the three possibilities listed here, for which
we select the one realizing the smallest Euclidean distance.

The Euclidean distances computed above provide lower bound estimates for the distances
dist(P, VTi). Even though these are just lower bounds, they do agree with the phylogenetic invari-
ants test in the selection of the candidate trees. Heuristically, we can think of this as reflecting
the fact that the determinantal varieties associated to the flattening matrices

Flat{`1,`2}∪{`3,`4,`5,`6}(P ) and Flat{`1,`2,`3,`6}∪{`4,`5}(P )

that are common to all the tree candidates are not contributing in discriminating among the
different Ti (though see the more precise discussion in §2.3 above).
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3.8. The West/North Germanic split from SSWL data. Note that the tree topology se-
lected in this way, which (up to the position of the root vertex) is equivalent to the tree

Swedish
Icelandic Faroese

English
Dutch German

is also the generally acknowledged correct subdivision of the Germanic languages into the North
Germanic and the West Germanic sub-branches. The North Germanic in turn splits into a sub-
brach that contains Swedish (but also Danish which we have not included here) and another that
contains Icelandic and Faroese (and also Norwegian, which we have not included, in order to keep
the number of leaves more manageable). The West Germanic branch is split into the Anglo-
Frisian sub-branch (of which here we are only considering English, but which should also contain
Frisian) and the Netherlandic-Germanic branch that contains Dutch and German. Thus, the
analysis through phylogenetic invariants and the estimate of the Euclidean distance have selected
the correct tree topology among the candidates produced by the computational analysis of the
SSWL data obtained with PHYLIP.

3.9. Longobardi data and phylogenetic invariants of Germanic Languages. Now we an-
alyze the set S2(G) consisting of Norwegian, Danish, Icelandic, German, English, Gothic, and Old
English, using the syntactic parameters collected in the new data of Longobardi [24].

The DNA parsimony algorithm of PHYLIP based solely on the new Longobardi data produces
a single candidate phylogenetic tree for the set S2(G) of Germanic languages, of the form

Danish Norwegian
Icelandic

Gothic Old-English

English German

In fact, because of the presence of a vertex of higher valence in this tree, one should resolve
it into the possible binary trees and compare the resulting candidates. Moreover, the placement
of the ancient languages as “leaves” of the tree is an artifact, and needs to be resolved into the
appropriate placement of the root of the binary trees.

We see here that the fact that ancient languages are treated as leaves in the tree although they
really are intermediate nodes creates some problems in the reconstruction provided by PHYLIP.
In the PHYLIP tree above Gothic and Old English are grouped as nearby leaves in the tree,
since the reconstruction correctly identifies the closer proximity of the two ancient languages with
respect to the modern ones. However, this causes an error in the proposed tree topology when
these are placed as two nearby leaves. The standard way of resolving the higher valence vertex, as
discussed in the previous section, would maintain this problem. We propose here a simple method
for avoiding this problem, via a simple topological move in the resulting trees that restores the
role of these two languages as intermediate nodes of the tree (and suggests a position of the root
vertex) while maintaining their relation to the rest of the tree.



22 K.SHU, A.ORTEGARAY, R.C.BERWICK, M.MARCOLLI

In particular, this means that we are going to consider possible candidate trees of the following
form, where we set `1 = Norwegian, `2 = Danish, `3 = Gothic, `4 = Old English, `5 = Icelandic,
`6 = English, `7 = German.

We first visualize the trees obtained by resolving the triple vertex. To simplify the picture, let
us write A = {`1, `2} for the end of the tree containing this pair of adjacent leaves, and similarly
for B = {`3, `4}, C = {`5}, D = {`6, `7}, so that we can visualize the the three possible binary
splits of the vertex in the PHYLIP tree as the trees

B

A C D

B

A C D

B

A D C

We then want to input the extra piece of information concerning the fact that the leaves in the
set B = {`3, `4} are not really leaves but inner vertices of the tree, whose proximity is describing
the fact that they are in closer proximity to the root of the tree than the other leaves, rather
than their proximity as leaves. We argue that this can be done effectively by introducing a simple
topological move on these trees that achieves exactly this effect, while preserving the relation to
the rest of the tree, namely the following operation:

More explicitly, this means the following. Suppose that a configuration as in the left-hand-side
appears in a candidate tree, where the two bottom leaves are ancient languages placed as nearby
leaves of the tree, and the two top directions continue to other branches of the tree. One replaces
it, without changing the rest of the tree, with the configuration on the right-hand-side. In this
configuration, the two bottom leaves are still labelled by the same two ancient languages and the
two top directions are still attached to the same other branches of the tree to which they were
connected in the left-hand-side. The configuration obtained in this way represents more correctly
the role of the ancient languages, by assigning to each of them an internal vertex of the tree,
the vertex to which the leaf is now attached. Note that on the right-hand-side there are two
choices of how to place the labels in the two lower leaves: permuting the two lower leaves in the
left-hand-side has no effect, but permuting them on the right-hand-side gives rise to two different
tree candidates, both of which need to be taken into consideration. In a case like the present one,
where these are the only two ancient languages in the tree, this also suggests that the root vertex
should be placed in between these two points. Applying this operation produces the following list
of candidate trees, with (1) and (2) derived from the first binary tree above, (3) and (4) from
the second binary tree above and (5) and (6) from the third one. Note that each of these pairs
corresponds to the two possible choices of labels in the right-hand-side, as mentioned above.

(1) The first candidate tree T1(G) has Icelandic (incorrectly) grouped together with the West
Germanic (German, English) instead of the North Germanic (Norwegian, Danish) lan-
guages. The labels `3 and `4 should be thought of not as leaves but as intermediate
vertices placed, respectively, above the {`1, `2} subtree and above the {`5, `6, `7} subtree.

`1 `2
`3 `4 `5 `6 `7
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(2) The second candidate tree T2(G) has the same structure as the previous list (with the
incorrect placement of Icelandic), but with the reversed placement of the two ancient
languages `3 and `4, this time with Old English placed at the top of the North Germanic
instead of the West Germanic subtree:

`4 `1 `2 `3 `5 `6 `7

(3) The third candidate tree T3(G) has the correct placement of Icelandic in the North Ger-
manic subtree, with Gothic above the North Germanic and Old English above the West
Germanic subtrees:

`3 `5 `1 `2

`4 `6 `7

(4) The fourth candidate tree T4(G) also has the correct placement of Icelandic in the North
Germanic subtree, now with Old English above the North Germanic and Gothic above the
West Germanic subtrees:

`4 `5 `1 `2

`3 `6 `7

(5) The fifth candidate incorrectly places the sets {`1, `2} and {`6, `7} in closer proximity and
`5 in a separate branch away from the ancient languages {`3, `4}, placing `4 as the ancient
language in closer proximity to `5:

`5 `4 `3
`6 `7 `1 `2

(6) The sixth candidate tree also incorrectly places `5 as a separate branch and {`1, `2} and
{`6, `7} in the same branch, while placing `3 as the ancient language in closer proximity to
`5:

`5 `3 `4
`6 `7 `1 `2

We first discuss the candidate trees (1)–(4) as these have a lot of common structure that sim-
plifies a common analysis. We then show what changes for the last two cases.

When considering the new Longobardi data for the purpose of computing phylogenetic invari-
ants, we need to eliminate from the list all those parameters that have value either 0 (undefined
in the terminology of Longobardi’s data table) or ? (unknown). The reason for eliminating not
just the unknown parameters but also those rendered undefined by entailment relations lies in the
fact that the result of [1] that we use for the computation of the phylogenetic invariants holds for
a binary Jukes-Cantor model but not for a ternary one. Thus, we stick to only those parameters
that are defined with binary values ±1 in Longobardi’s table, for all the languages `1, . . . , `7 in our
list of Germanic languages. After the change of notation to binary form, obtained by replacing
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1 7→ 1 and −1 7→ 0, we obtain the following list of parameters

`1 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

`2 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

`3 = [1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

`4 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

`5 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]

`6 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

`7 = [1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

Notice how one is left with a shorter list of only 42 parameters, where most of them have the
same value for all the languages in this group. The only non-zero frequencies for binary vectors
(a1, . . . , a7) ∈ F7

2 that arise in the boundary distribution at the leaves of the trees are

n1111111 = 12 n0000000 = 24 n1101111 = 1 n1111101 = 1
n1111100 = 1 n1111011 = 1 n1100111 = 1 n0011111 = 1

with probabilities

p1111111 = 2
7

p0000000 = 4
7

p1101111 = 1
42

p1111101 = 1
42

p1111100 = 1
42

p1111011 = 1
42

p1100111 = 1
42

p0011111 = 1
42

and all other pa1···a7 = 0.
We need to consider Flattenings of the boundary tensor P = (pa1···a7) of the form

(1) Flat{`5,`6,`7}∪{`1,`2,`3,`4}
(2) Flat{`1,`2,`3}∪{`4,`5,`6,`7}
(3) Flat{`1,`2,`4}∪{`3,`5,`6,`7}
(4) Flat{`1,`2,`5}∪{`3,`4,`6,`7}
(5) Flat{`4,`6,`7}∪{`1,`2,`3,`5}
(6) Flat{`3,`6,`7}∪{`1,`2,`4,`5}

Note that we do not need to consider the flattenings Flat{`6,`7}∪{`1,`2,`3,`4,`5} and Flat{`1,`2}∪{`3,`4,`5,`6,`6},
as these are common to all the candidate trees and would not help discriminating between them.

All the flattenings above correspond to 8×16 matrices as in Figure 1, where in each of the cases
listed above the matrix indices (abcdefg) correspond, respectively, to

(1) (abcdefg) = (a5a6a7a1a2a3a4)
(2) (abcdefg) = (a1a2a3a4a5a6a7)
(3) (abcdefg) = (a1a2a4a3a5a6a7)
(4) (abcdefg) = (a1a2a5a3a4a6a7)
(5) (abcdefg) = (a4a6a7a1a2a3a5)
(6) (abcdefg) = (a3a6a7a1a2a4a5)

Figure 1. Flattenings 8× 16 matrices.
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The probability distributions corresponding to the permutations listed above are respectively
given by

(1) n1111101 = 1, n1011111 = 1, n1001111 = 1, n0111111 = 1, n1111100 = 1, n1110011 = 1
(2) n1101111 = 1, n1111101 = 1, n1111100 = 1, n1111011 = 1, n1100111 = 1, n0011111 = 1
(3) n1110111 = 1, n1111101 = 1, n1111100 = 1, n1111011 = 1, n1100111 = 1, n0011111 = 1
(4) n1110111 = 1, n1111101 = 1, n1111100 = 1, n1101111 = 1, n1110011 = 1, n0011111 = 1
(5) n1111101 = 1, n1011111 = 1, n1001111 = 1, n1111110 = 1, n0111101 = 1, n1110011 = 1
(6) n0111111 = 1, n1011111 = 1, n1001111 = 1, n1111110 = 1, n0111101 = 1, n1110011 = 1

while all six cases have the common values n1111111 = 12 and n0000000 = 24.
The corresponding flattening matrices are given by

Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

42
0 0 0 0 1

42
0 1

42
0 0 2

7



Flat{`1,`2,`3}∪{`4,`5,`6,`7}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
1
42

0 0 0 0 0 1
42

0 0 0 0 0 0 1
42

1
42

0 2
7



Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0

0 0 0 0 0 1
42

0 0 0 0 0 0 1
42

1
42

1
42

2
7



Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 1

42
0 0 0 0 1

42
0 1

42
0 1

42
2
7
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Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

42
0 0 0 0 1

42
1
42

1
42

0 0 2
7



Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

42
1
42

0 0 0 2
7


The trees T5(G) and T6(G) have a slightly different structure, since in addition to placing in

closest proximity the pairs {`1, `2} and {`6, `7} like all other trees they also identify pairs {`4, `5}
in the case of T5(G) and {`3, `5} in the case of T6(G). Thus, while these two trees also have the
flattenings Flat{`6,`7}∪{`1,`2,`3,`4,`5} and Flat{`1,`2}∪{`3,`4,`5,`6,`6} common to all the other trees, they
also have a flattening

Flat{`3,`4,`5}∪{`1,`2,`6,`7}

common to both trees T5(G) and T6(G) and

(3.1)
F5 := Flat{`4,`5}∪{`1,`2,`3,`6,`7} for T5(G)

F6 := Flat{`3,`5}∪{`1,`2,`4,`6,`7} for T6(G).

We have as corresponding matrices

Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ) =



4
7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

42
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

42
0 1

42
0 0 0 0 0 0 0 0 1

42
2
7


while the matrices (written in transpose form) for F5 and F6 are given in Appendix C.

3.10. Computation of the phylogenetic invariants. We compute the phylogenetic invariants
using the `∞ and the `1 norm.

(1) The tree T1(G) with flatteningsM1 = Flat{`5,`6,`7}∪{`1,`2,`3,`4} andM2 = Flat{`1,`2,`3}∪{`4,`5,`6,`7}
gives

‖φT1(P )‖`∞ = max{ max
φ∈D(3)(M1)

|φ(P )| , max
φ∈D(3)(M2)

|φ(P )|} =
4

1029
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‖φT1(P )‖`1 =
∑

φ∈D(3)(M1)

|φ(P )|+
∑

φ∈D(3)(M2)

|φ(P )| = 83

8232

(2) The tree T2(G) with flatteningsM1 = Flat{`5,`6,`7}∪{`1,`2,`3,`4} andM3 = Flat{`1,`2,`4}∪{`3,`5,`6,`7}
gives

‖φT2(P )‖`∞ = max{ max
φ∈D(3)(M1)

|φ(P )| , max
φ∈D(3)(M3)

|φ(P )|} =
4

1029

‖φT2(P )‖`1 =
∑

φ∈D(3)(M1)

|φ(P )|+
∑

φ∈D(3)(M3)

|φ(P )| = 233

24696

(3) The tree T3(G) with flatteningsM4 = Flat{`1,`2,`5}∪{`3,`4,`6,`7} andM5 = Flat{`4,`6,`7}∪{`1,`2,`3,`5}
gives

‖φT3(P )‖`∞ = max{ max
φ∈D(3)(M4)

|φ(P )| , max
φ∈D(3)(M5)

|φ(P )|} =
1

3087

‖φT3(P )‖`1 =
∑

φ∈D(3)(M4)

|φ(P )|+
∑

φ∈D(3)(M5)

|φ(P )| = 16

3087

(4) The tree T4(G) with flatteningsM4 = Flat{`1,`2,`5}∪{`3,`4,`6,`7} andM6 = Flat{`3,`6,`7}∪{`1,`2,`4,`5}
gives

‖φT4(P )‖`∞ = max{ max
φ∈D(3)(M4)

|φ(P )| , max
φ∈D(3)(M6)

|φ(P )|} =
4

1029

‖φT4(P )‖`1 =
∑

φ∈D(3)(M4)

|φ(P )|+
∑

φ∈D(3)(M6)

|φ(P )| = 181

18522

(5) The tree T5(G) with flattenings F5 of Appendix C and M7 = Flat{`3,`4,`5}∪{`1,`2,`6,`7} gives

‖φT5(P )‖`∞ = max{ max
φ∈D(3)(F5)

|φ(P )| , max
φ∈D(3)(M7)

|φ(P )|} =
4

1029

‖φT5(P )‖`1 =
∑

φ∈D(3)(F5)

|φ(P )|+
∑

φ∈D(3)(M7)

|φ(P )| = 233

24696

(6) The tree T6(G) with flattenings F6 of Appendix C and M7 = Flat{`3,`4,`5}∪{`1,`2,`6,`7} gives

‖φT6(P )‖`∞ = max{ max
φ∈D(3)(F6)

|φ(P )| , max
φ∈D(3)(M7)

|φ(P )|} =
4

1029

‖φT6(P )‖`1 =
∑

φ∈D(3)(F6)

|φ(P )|+
∑

φ∈D(3)(M7)

|φ(P )| = 83

8232

In this case we see that both the `∞ and the `1 norm provide a good test that selects the
historically correct tree T3(G). Note that the `∞ has the same value 4/1029 on all the other
candidates and the lower value 1/3087 only for the correct tree T3(G).
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3.11. Estimates of Euclidean distance for the S2(G) Germanic languages. We obtain an
evaluation of the candidate trees based on computing a lower bound for the Euclidean distance in
terms of distances between the flattening matrices Flate,T (P ) of the boundary distribution P and
the determinantal varieties they are expected to lie on. As before, we use the notation with the
explicit split of the leaves for the flattening matrices. More concretely, we have the following:

(1) The Euclidean distance estimate for the tree T1(G) is given by dist(P, VT1) ≥ L1 with

L1 = max{d(Flat{`1,`2,`3}∪{`4,`5,`6,`7}(P ),D2(8, 16)), d(Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ),D2(8, 16))}
(2) The Euclidean distance estimate of T2(G) is given by dist(P, VT2) ≥ L2 with

L2 = max{d(Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P ),D2(8, 16)), d(Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ),D2(8, 16))}
(3) The Euclidean distance estimate of T3(G) is given by dist(P, VT3) ≥ L3 with

L3 = max{d(Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ),D2(8, 16)), d(Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P ),D2(8, 16))}
(4) The Euclidean distance estimate of T4(G) is given by dist(P, VT4) ≥ L4 with

L4 = max{d(Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ),D2(8, 16)), d(Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P ),D2(8, 16))}
(5) The Euclidean distance estimate of T5(G) is given by dist(P, VT5) ≥ L5 with

L5 = max{d(Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ),D2(8, 16))2, d(F5(P ),D2(4, 32))2}
(6) The Euclidean distance estimate of T6(G) is given by dist(P, VT6) ≥ L6 with

L6 = max{d(Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ),D2(8, 16))2, d(F6(P ),D2(4, 32))2}.
The singular value decomposition of the flattening matrices gives Σ = diag(σ1, . . . , σ8) with

Σ(Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P )) ∼
diag(0.57143, 0.291548, 0.58333×10−2, 0.12240×10−17, 0.10572×10−34, 0.16149×10−51, 0.63652×10−68, 0)

Σ(Flat{`1,`2,`3}∪{`4,`5,`6,`7})(P )) ∼
diag(0.57143, 0.29059, 0.23973× 10−1, 0.33558× 10−2, 0.64145× 10−19, 0.60260× 10−31, 0, 0)

Σ(Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P )) ∼
diag(0.57143, 0.29061, 0.23809× 10−1, 0.33787× 10−2, 0, 0, 0, 0)

Σ(Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P )) ∼
diag(0.57143, 0.29155, 0.54996× 10−2, 0, 0, 0, 0, 0)

Σ(Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P )) ∼
diag(0.57143, 0.29155, 0.54996× 10−2, 0, 0, 0, 0, 0)

Σ(Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P )) ∼
diag(0.57143, 0.29059, 0.23892×10−1, 0.38881×10−2, 0.12435×10−17, 0.73417×10−19, 0.32257×10−34, 0).

Σ(Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P )) ∼
diag(0.57143, 0.29155, 0.58333× 10−2, 0.18608× 10−17, 0.32093× 10−33, 0, 0, 0)

Σ(F5(P )) = (0.57143, 0.29061, 0.23809× 10−1, 0.33787× 10−2)

Σ(F6(P )) = (0.57143, 0.29060, 0.23973× 10−1, 0.33558× 10−2)

By the Eckart-Young theorem we then have

d(Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.34027× 10−4

d(Flat{`1,`2,`3}∪{`4,`5,`6,`7})(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.58597× 10−3

d(Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.57831× 10−3

d(Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.30245× 10−4
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d(Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.30245× 10−4

d(Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.58595× 10−3

d(Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ),D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.34027× 10−4

d(F5(P ),D2(4, 32))2 = σ2
3 + σ2

4 = 0.57831× 10−3

d(F6(P ),D2(4, 32))2 = σ2
3 + σ2

4 = 0.58597× 10−3.

Thus, we obtain

L1 = 0.58597× 10−3, L2 = 0.57831× 10−3, L3 = 0.30245× 10−4, L4 = 0.58595× 10−3,

L5 = 0.57831× 10−3, L6 = 0.58597× 10−3.

Thus, the computation of the phylogenetic invariants selects the tree T3(G) as the preferred
candidate phylogenetic tree. The estimate of the Euclidean distance shows that the lower bounds
obtained for the trees T1(G), T2(G), T4(G), T5(G), T6(G) are comparable and only T3(G) has a
significantly smaller estimate. Thus, this criterion, even if it is only based on lower bounds, also
suggests T3(G) as the most favorable candidate. The tree T3(G) is indeed the closest to what is
regarded as the correct linguistic phylogenetic tree.

3.12. Comparison with SSWL data. The DNA parsimony algorithm of PHYLIP produced
the following two candidate phylogenetic trees for the set S2(G) of Germanic languages based on
the combination of the Longobardi data and the SSWL data.

English German

Old-English Gothic Icelandic
Danish Norwegian

English German

Old-English Gothic
Icelandic Danish Norwegian

In this case, the inclusion of the additional SSWL data resolves the ambiguity of the PHYLIP
tree discussed in §3.9. In terms of our treatment of the positioning of the ancient languages, the
two trees shown here should be regarded as corresponding to the possible trees in cases (3) and
(4) discussed above in §3.9, for the first tree and cases (5) and (6) for the second one.

Thus, the set of possible binary trees we should consider for a comparison between the phyloge-
netic invariants evaluated on the Longobardi and on the SSWL data, consists of the trees T3(G)
and T4(G) and T5(G) and T6(G) of the previous section. We will evaluate here the phylogenetic
invariants and estimate the Euclidean distance function of these candidate trees (including for
completeness also T1(G) and T2(G) of the previous section) using the boundary distribution based
on the SSWL data.
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3.13. Boundary distribution for S2(G) based on SSWL data. The Germanic languages in
the set S2(G) have a total of 68 SSWL variables that are completely mapped for all the seven
languages in the set. This is significantly smaller than the 90 variables used for the set S1(G). This
does not depend on the languages being poorly mapped: the levels of accuracy are comparable
with the previous set with Danish (76%), Norwegian (75%), German (75%), English (75%), Old
English (75%) Icelandic (62%), Gothic (62%). However, the regions of the overall 115 SSWL
variables that are mapped is less uniform across this set of languages creating a smaller overlap.
The set of completely mapped SSWL variables for this set of languages is reported in Appendix B.

The occurrences of binary vectors at the leaves is given by

n0,0,0,0,0,0,0 = 26 n1,1,1,1,1,1,1 = 16 n0,0,1,1,0,0,1 = 2
n0,0,1,0,0,0,0 = 3 n1,1,0,1,0,0,0 = 1 n0,0,1,1,1,1,0 = 1
n0,0,1,1,1,0,0 = 1 n0,0,1,0,1,0,0 = 1 n1,1,0,1,0,1,1 = 2
n1,0,1,1,1,0,0 = 1 n1,1,1,1,1,0,1 = 1 n1,1,1,1,1,0,0 = 1
n1,1,1,1,0,1,1 = 3 n1,1,0,1,1,0,1 = 1 n0,0,0,0,1,0,0 = 1
n1,1,0,0,1,1,1 = 1 n0,0,0,0,0,1,0 = 1 n0,0,0,1,0,0,0 = 2
n0,0,0,0,0,0,1 = 1 n0,0,1,1,0,0,0 = 1 n1,1,0,1,1,1,1 = 1

Thus, the boundary probability distribution for the SSWL data for these seven Germanic languages
is given by

p0,0,0,0,0,0,0 = 13
34

p1,1,1,1,1,1,1 = 4
17

p0,0,1,1,0,0,1 = 1
34

p0,0,1,0,0,0,0 = 3
68

p1,1,0,1,0,0,0 = 1
68

p0,0,1,1,1,1,0 = 1
68

p0,0,1,1,1,0,0 = 1
68

p0,0,1,0,1,0,0 = 1
68

p1,1,0,1,0,1,1 = 1
34

p1,0,1,1,1,0,0 = 1
68

p1,1,1,1,1,0,1 = 1
68

p1,1,1,1,1,0,0 = 1
68

p1,1,1,1,0,1,1 = 3
68

p1,1,0,1,1,0,1 = 1
68

p0,0,0,0,1,0,0 = 1
68

p1,1,0,0,1,1,1 = 1
68

p0,0,0,0,0,1,0 = 1
68

p0,0,0,1,0,0,0 = 1
34

p0,0,0,0,0,0,1 = 1
68

p0,0,1,1,0,0,0 = 1
68

p1,1,0,1,1,1,1 = 1
68

The six flattening matrices corresponding to the different trees of the previous section are in
this case of the following form.

Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ) =



13
34

0 0 3
68

1
34

0 0 0 0 0 1
68

0 1
68

0 0 0

1
68

0 0 1
68

0 0 0 0 0 0 1
68

0 0 1
68

0 1
68

1
68

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
68

0 0 0 0 0 0 0 0 0 1
34

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
34

0 0 3
68

0 0 0 0 0 0 0 0 0 0 0 0 1
68

0 0 1
68

0 0 0 0 0 0 0 0 0 0 1
68

0 0 0 0 0

0 0 0 0 0 1
68

0 0 0 0 0 0 1
68

0 0 4
17
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Flat{`1,`2,`3}∪{`4,`5,`6,`7}(P ) =



13
34

1
34

1
68

1
68

1
68

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3
68

1
68

1
68

0 0 1
68

0 1
34

0 0 0 1
68

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68

0 0 0 0 0 0 0 0 0 0

0 1
68

0 0 0 0 0 0 0 0 0 0 1
68

1
34

1
68

1
68

0 0 0 0 0 1
68

0 0 0 0 0 0 1
68

3
68

0 4
17



Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P ) =



13
34

3
68

1
68

1
68

1
68

1
68

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
34

1
68

0 0 0 1
68

0 1
34

0 0 0 1
68

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
68

0

1
68

0 0 0 0 1
68

0 0 0 1
68

1
34

0 1
68

3
68

1
68

4
17



Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ) =



13
34

3
68

1
34

1
68

1
68

1
68

0 0 0 0 0 0 1
34

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
68

1
68

0 0 0 1
68

0 0 0 0 0 1
68

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
68

0 0 0 0 0 0 0 0 0 0

0 0 1
68

0 0 0 0 0 0 0 0 0 0 0 1
34

3
68

0 0 0 0 0 1
68

0 0 0 1
68

1
68

0 1
68

0 1
68

4
17



Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P ) =



13
34

0 0 3
68

1
68

0 0 0 0 0 1
68

0 0 0 0 0

1
34

0 0 1
68

0 1
68

0 0 0 0 1
68

0 0 1
68

0 1
68

1
68

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
68

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
68

0 0 0

0 0 0 1
34

0 0 0 0 0 0 0 0 1
68

0 0 1
68

0 0 0 0 0 0 0 0 0 0 1
68

0 0 0 0 0

0 0 0 0 0 1
34

0 0 0 0 0 3
68

1
68

0 0 4
17
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Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P ) =



13
34

0 0 1
34

1
68

0 0 0 0 0 0 1
68

0 0 0 0

3
68

0 0 1
68

1
68

0 0 0 0 0 1
68

0 0 1
68

0 1
68

1
68

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
68

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
68

0 0 0 0 0 0 0 0 0 0 0 1
34

1
68

0 0 1
68

0 0 0 1
34

0 0 0 0 0 0 0 0 0 0 0 1
68

0 0 0 0 0 0 0 0 0 0 1
68

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3
68

0 0 0 4
17


3.13.1. The trees T5 and T6. For the two remaining trees we have the flattening matrix

Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ) =



13
34

0 0 0 1
68

1
68

0 0
1
34

0 0 1
68

0 0 0 0
3
68

0 0 0 0 0 0 0
1
68

0 0 0 0 1
34

0 0
1
68

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
68

0 0 0 0 0 0 0
1
68

1
68

0 1
68

1
68

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

34
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3

68
0 0 0 0 0 0 0 1

68
0 0 0 0 0 0 1

68
1
68

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

68
4
17


and the matrices for the flattenings F5 and F6 given in the Appendix C.

3.14. Phylogenetic invariants. We compute the phylogenetic invariants, using either the `∞ or
the `1 norm. This case shows, as observed already in [6], that the `1 norm gives more reliable
results than the `∞ norm.

• For the first tree T1(G) we consider all 3× 3 minors of the flattenings

M1 = Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ) and M2 = Flat{`1,`2,`3}∪{`4,`5,`6,`7}(P )

and we obtain

‖φT1(P )‖`∞ = max
D(3)(M1)∪D(3)(M2)

|φ(P )| = 13

4913

‖φT1(P )‖`1 =
∑

D(3)(M1)∪D(3)(M2)

|φ(P )| = 8811

157216

• For the second tree T2(G) we consider all 3× 3 minors of the flattenings

M1 = Flat{`5,`6,`7}∪{`1,`2,`3,`4}(P ) and M3 = Flat{`1,`2,`4}∪{`3,`5,`6,`7}(P )
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and we obtain

‖φT2(P )‖`∞ = max
D(3)(M1)∪D(3)(M3)

|φ(P )| = 13

4913

‖φT2(P )‖`1 =
∑

D(3)(M1)∪D(3)(M3)

|φ(P )| = 7103

157216

• For the third tree T3(G) we consider all 3× 3 minors of the flattenings

M4 = Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ) and M5 = Flat{`4,`6,`7}∪{`1,`2,`3,`5}(P )

and we obtain

‖φT3(P )‖`∞ = max
D(3)(M4)∪D(3)(M5)

|φ(P )| = 13

4913

‖φT3(P )‖`1 =
∑

D(3)(M4)∪D(3)(M5)

|φ(P )| = 5439

157216

• For the fourth tree T4(G) we consider all 3× 3 minors of the flattenings

M4 = Flat{`1,`2,`5}∪{`3,`4,`6,`7}(P ) and M6 = Flat{`3,`6,`7}∪{`1,`2,`4,`5}(P )

and we obtain

‖φT4(P )‖`∞ = max
D(3)(M4)∪D(3)(M6)

|φ(P )| = 13

4913

‖φT4(P )‖`1 =
∑

D(3)(M4)∪D(3)(M6)

|φ(P )| = 5739

157216

• For the fifth tree T5(G) we consider all 3× 3 minors of the flattenings

M7 = Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ) and F5 (as in Appendix C)

and we obtain

‖φT5(P )‖`∞ = max
D(3)(M7)∪D(3)(F5)

|φ(P )| = 13

4913

‖φT5(P )‖`1 =
∑

D(3)(M7)∪D(3)(F5)

|φ(P )| = 25

578

• For the sixth tree T6(G) we consider all 3× 3 minors of the flattenings

M7 = Flat{`3,`4,`5}∪{`1,`2,`6,`7}(P ) and F6 (as in Appendix C)

and we obtain

‖φT6(P )‖`∞ = max
D(3)(M7)∪D(3)(F6)

|φ(P )| = 207

78608

‖φT6(P )‖`1 =
∑

D(3)(M7)∪D(3)(F6)

|φ(P )| = 11795

314432

When we evaluate the minimum among these candidate trees we see that using the `∞ norm in
this case would incorrectly select the tree T6(G) as the best candidate, while using the `1 norm
correctly selects T3(G)

min
T
‖φT (P )‖`∞ =

207

78608
= ‖φT6(P )‖`∞

min
T
‖φT (P )‖`1 =

5439

157216
= ‖φT3(P )‖`1 .

The `∞ norm also does not distinguish at all between the trees T1(G), . . . , T5(G).
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3.15. Euclidean distance function estimates. The Euclidean distance lower bound estimate
can be obtained as in §3.11 by replacing the boundary probability based on the Longobardi data
with the one based on SSWL data. We obtain the following.

The singular value decompositions Σ = diag(σk) are now of the form

Σ(M1) = (0.38754, 0.24162, 0.36255× 10−1, 0.29457× 10−1,

0.17913× 10−1, 0.18822× 10−2, 0.44554× 10−3, 0.81454× 10−18)

Σ(M2) = (0.38705, 0.24121, 0.40755× 10−1, 0.35206× 10−1,

0.13458× 10−1, 0.25922× 10−17, 0.30537× 10−18, 0.12727× 10−32)

Σ(M3) = (0.38779, 0.24265, 0.37646× 10−1, 0.14679× 10−1,

0.13520× 10−1, 0.72298× 10−17, 0.10019× 10−18, 0.15015× 10−30)

Σ(M4) = (0.38833, 0.23760, 0.54943× 10−1, 0.25989× 10−1,

0.11091× 10−1, 0.37355× 10−17, 0.11876× 10−18, 0.41814× 10−32)

Σ(M5) = (0.38730, 0.24267, 0.35401× 10−1, 0.25107× 10−1,

0.13409× 10−1, 0.10671× 10−1, 0.83305× 10−3, 0.63417× 10−18)

Σ(M6) = (0.38735, 0.24147, 0.34918× 10−1, 0.29212× 10−1,

0.23098× 10−1, 0.10765× 10−1, 0.17668× 10−2, 0.31311× 10−3)

Σ(M7) = (0.38775, 0.24257, 0.29048× 10−1, 0.26515× 10−1,

0.14181× 10−1, 0.11708× 10−1, 0.13047× 10−2, 0.60234× 10−18)

Σ(F5) = (0.38710, 0.24296, 0.44347× 10−1, 0.15179× 10−1)

Σ(F6) = (0.39170, 0.23723, 0.30854× 10−1, 0.20237× 10−1)

One obtains from these the Euclidean distances

d(M1,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.25068× 10−2

d(M2,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.30816× 10−2

d(M3,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.18155× 10−2

d(M4,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.38172× 10−2

d(M5,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.21780× 10−2

d(M6,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.27252× 10−2

d(M7,D2(8, 16))2 = σ2
3 + · · ·+ σ2

8 = 0.18867× 10−2

d(F5,D2(4, 32))2 = σ2
3 + σ2

4 = 0.21971× 10−2

d(F6,D2(4, 32))2 = σ2
3 + σ2

4 = 0.13615× 10−2.

From these distances, computed using the Eckart–Young theorem, one derives then estimates for
the Euclidean distance of the form dist(P, VTi) ≥ Li where the Li are computed as maxima of the
distances in the list above that occur in the case of the tree Ti, in the same way as shown in §3.11.

We find that, in the case of the SSWL data for these Germanic languages, the lower bound
on the Euclidean distance gives a less reliable answer. While it correctly excludes the candidates
T1(G), T2(G), T4(G), T5(G), it assigns the lowest value to the tree T6(G) rather than to the correct
tree T3(G) selected by the phylogenetic invariants (computed with the `1-norm). Thus, we see here
an example where the lower bound is an unreliable predictor of the actual Euclidean distance. This
example confirms the expectation that Longobardi’s LanGeLin data behave better for phylogenetic
reconstruction than the SSWL data.
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A possible explanation for this phenomenon lies in the fact that, although the list of SSWL
variables for this set of languages is longer than the list of variables in the Longobardi data, there
is a high degree of dependency between the SSWL data. This was also observed in [38] where the
dependencies between SSWL variables were studied using Kanerva networks. Thus, the actual
number of independent variables that contribute to the boundary distribution may be smaller in
the use of the SSWL data. The fact that the languages in the set S2(G) have a smaller overlap in
the regions of the SSWL variables that are uniformly mapped for all languages, compared to those
in the set S1(G) further explains why the `∞-phylogenetic invariants and the Euclidean distance
evaluated on the boundary distribution of SSWL data correctly identify the best tree in the S1(G)
case but not in the S2(G) case and the `1-phylogenetic invariant identifies the correct tree in the
case of S2(G) only by a small margin. We will return to discuss this point in §8 below.

4. Phylogenetic Algebraic Varieties of the Romance Languages

We consider here the case of the Romance subfamily of the Indo-European language family. In
particular, we focus of the relative position of the languages `1 = Latin, `2 = Romanian, `3 =
French, `4 = Italian, `5 = Spanish, and `6 = Portuguese. We use the combined data of the SSWL
and the Longobardi databases for this phylogenetic analysis, where we retain only those features
of the SSWL database that are completely mapped for all of these languages.

When run on this set of syntactic data, the PHYLIP phylogenetic program produces a unique
most parsimonious tree candidate, which is given by the tree T1

`1
`2

`5 `6 `3 `4

with the additional linguistic information that `1 (Latin) should be considered as the root vertex,
since the tree produced by PHYLIP is unrooted. There is clearly a problem with this tree, since
the topology one expects based on historical linguistics is instead given by the tree T2

`1
`2

`4 `3 `5 `6

4.1. Flattening matrices of the PHYLIP tree. There are three flattening matrices associated
to the tree T1, given by the three possible splits e1 = {`1, `2} ∪ {`3, `4, `5, `6}, e2 = {`1, `2, `5} ∪
{`3, `4, `6} and e3 = {`1, `2, `5, `6} ∪ {`3, `4}. With the boundary probability distribution given by
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the combined SSWL and Longobardi data, these are given by

Flate1,T1 =



0.2 0.0121 0.0606 0.0121
0 0 0 0.0061
0 0 0.0061 0
0 0 0.0061 0
0 0 0 0.0061
0 0 0 0
0 0 0 0
0 0 0 0.0182

0.0242 0 0.0182 0
0 0.0061 0 0
0 0 0 0
0 0 0.0061 0

0.0061 0 0 0.0061
0 0 0 0

0.0061 0 0 0.0061
0.0364 0.1091 0.0364 0.4121



Flate2,T1 =



0.2 0 0.0121 0 0.0606 0 0.0121 0.0061
0 0 0 0 0.0061 0.0061 0 0
0 0 0 0 0 0 0.0061 0
0 0 0 0 0 0 0 0.0182

0.0242 0 0 0.0061 0.0182 0 0 0
0 0 0 0 0 0.0061 0 0

0.0061 0 0 0 0 0 0.0061 0
0.0061 0.0364 0 0.1091 0 0.0364 0.0061 0.4121



while the third flattening Flate3,T1 is given by


0.2 0 0.0121 0 0 0 0 0 0.0606 0 0.0121 0.0061 0.0061 0.0061 0 0
0 0 0 0 0 0 0 0 0 0 0.0061 0 0 0 0 0.0182

0.0242 0 0 0.0061 0 0 0 0 0.0182 0 0 0 0 0.0061 0 0

0.0061 0 0 0 0.0061 0.0364 0 0.1091 0 0 0.0061 0 0 0.0364 0.0061 0.4121



4.2. Flattening matrices of the historically correct tree. When we consider the linguisti-
cally correct tree T2, instead of the tree T1 computed by PHYLIP, using the same syntactic data
for the boundary distribution, we find the flattening matrices which correspond to the splittings
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e′1 = {`1, `2} ∪ {`3, `4, `5, `6}, e′2 = {`1, `2, `4} ∪ {`3, `5, `6} and e′3 = {`1, `2, `3, `4} ∪ {`5, `6}.

Flate′1,T2 =



0.2 0 0 0
0.0121 0 0 0
0.0606 0 0.0061 0.0061
0.0121 0.0061 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0.0061 0 0 0.0182
0.0242 0 0 0

0 0.0061 0 0
0.0182 0 0 0.0061

0 0 0 0
0.0061 0 0.0061 0.0364

0 0 0 0.1091
0 0 0 0.0364

0.0061 0 0.0061 0.4121



Flate′2,T2 =



0.2 0 0 0 0.0242 0 0 0
0.0121 0 0 0 0 0.0061 0 0
0.0606 0 0.0061 0.0061 0.0182 0 0 0.0061
0.0121 0.0061 0 0 0 0 0 0

0 0 0 0 0.0061 0 0.0061 0.0364
0 0 0 0 0 0 0 0.1091
0 0 0 0 0 0 0 0.0364

0.0061 0 0 0.0182 0.0061 0 0.0061 0.4121


and with the third flattening matrix Flate′3,T2 given by

0.2 0 0 0 0 0 0 0 0.0242 0 0 0 0.0061 0 0.0061 0.0364
0.0121 0 0 0 0 0 0 0 0 0.0061 0 0 0 0 0 0.1091

0.0606 0 0.0061 0.0061 0 0 0 0 0.0182 0 0 0.0061 0 0 0 0.0364

0.0121 0.0061 0 0 0.0061 0 0 0.0182 0 0 0 0 0.0061 0 0.0061 0.4121



4.3. Phylogenetic invariants. We compare the phylogenetic invariants of these two trees com-
puted with respect to the `∞ and the `1 norm.

(1) from the PHYLIP tree T1 we obtain:

‖ΦT1(P )‖`∞ = max{ max
φ∈D(3)

e1,T1

|φ(P )|, max
φ∈D(3)

e2,T1

|φ(P )|, max
φ∈D(3)

e3,T1

|φ(P )|} = 0.89579× 10−3

‖ΦT1(P )‖`1 =
∑

φ∈D(3)
e1,T1

|φ(P )| +
∑

φ∈D(3)
e2,T1

|φ(P )| +
∑

φ∈D(3)
e3,T1

|φ(P )| = 0.24790× 10−1

(2) for the historically correct tree T2 we find:

‖ΦT2(P )‖`∞ = max{ max
φ∈D(3)

e′1,T2

|φ(P )|, max
φ∈D(3)

e′2,T2

|φ(P )|, max
φ∈D(3)

e′3,T2

|φ(P )|} = 0.89579× 10−3

‖ΦT2(P )‖`1 =
∑

φ∈D(3)

e′1,T2

|φ(P )| +
∑

φ∈D(3)

e′2,T2

|φ(P )| +
∑

φ∈D(3)

e′3,T2

|φ(P )| = 0.22681× 10−1
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Once again we see that the `1 norm reliably distinguishes the historically correct tree T2 over
the incorrect PHYLIP candidate, while the `∞ norm gives the same result for both candidate trees
and does not help distinguishing them.

4.4. Estimate of the Euclidean distance. We also compute a lower bound estimate on the
Euclidean distance. In the case of the first tree T1 The Euclidean distances of the flattening
matrices from the respective determinantal varieties are given by

D1,1 = dist(Flate1,T1 ,D2(4, 16)), D1,2 = dist(Flate2,T1 ,D2(8, 8)), D1,3 = dist(Flate3,T1 ,D2(16, 4)).

The singular values of the flattening matrices are given, respectively, by

Σ(Flate1,T1) = (0.4320, 0.2075, 0.14766× 10−1, 0.8211× 10−2)

while the singular values of Flate2,T1 are given by

(0.4299, 0.2115, 0.1390×10−1, 0.8586×10−2, 0.7806×10−2, 0.4896×10−2, 0.8464×10−3, 0.1867×10−3)

and

Σ(Flate3,T1) = (0.4299, 0.2118, 0.1332× 10−1, 0.7593× 10−2).

Thus, the Euclidean distances are given, respectively, by

D2
1,1 = 0.2854× 10−3

D2
1,2 = 0.3525× 10−3

D2
1,3 = 0.2351× 10−3

For the second tree T2 the Euclidean distances of the flattening matrices to the corresponding
determinantal varieties are given by

D2
2,1 = 0.1390× 10−3,

which is computed using the singular values

Σ(Flate1,T2) = (0.4300, 0.2119, 0.8567× 10−2, 0.8102× 10−2),

D2
2,2 = 0.3390× 10−3

computed using the singular values Σ(Flate2,T2) given by

(0.4299, 0.2115, 0.14218×10−1, 0.6889×10−2, 0.6061×10−2, 0.6007×10−2, 0.4070×10−2, 0.7823×10−19)

and

D2
2,3 = 0.2854× 10−3

with singular values

Σ(Flate3,T2) = (0.4320, 0.2075, 0.1477× 10−1, 0.8211× 10−2).

Thus if we compare the two models T1 and T2 using the maximum between the distances as a
lower bound for the Euclidean distance to the phylogenetic variety we find

L1 = max{D2
1,1, D

2
1,2, D

2
1,3} = 0.3525× 10−3

L2 = max{D2
2,1, D

2
2,2, D

2
2,3} = 0.3390× 10−3,

hence L2 < L1, which also favors the historically correct tree T2:
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Latin

Romanian

Italian

French
Spanish Portuguese

5. Phylogenetic Algebraic Varieties of the Slavic Languages

We then consider a set of Slavic languages: `1 = Russian, `2 = Polish, `3 = Bulgarian, `4 =
Serb-Croatian, `5 = Slovenian, for which we again use a combination of SSWL and Longobardi
data. The PHYLIP most parsimonious trees algorithm produces in this case five candidate trees
when run on this combination of syntactic data. We use additional linguistic information on where
the root vertex should be placed, separating the West-Slavic branch where Polish resides from the
part of the tree that contains both the East-Slavic branch and the South-Slavic branch.

We see then that the candidate trees are respectively given by

T1 =
`2

`1 `5 `4 `3

T2 =
`2

`1 `4 `5 `3

T3 =
`2

`1 `3 `4 `5

T4 =

`2 `3 `1 `4 `5

T5 =
`2

`1 `3 `4 `5

(1) The first tree T1 incorrectly places Bulgarian in closer proximity to Serb-Croatian than
Slovenian.

(2) The second tree T2 has a similar misplacement, with Bulgarian appearing to be in greater
proximity to Slovenian than Serb-Croatian.

(3) The third tree T3 correctly places Slovenian and Serb-Croatian in closest proximity, and
it also correctly places Bulgarian in the same South-Slavic subbranch with the pair of
Slovenian and Serb-Croatian, so it corresponds to the correct tree topology that matches
what is known from historical linguistics.

(4) The fourth tree T4 misplaces Bulgarian in the West-Slavic branch with Polish instead of
placing it in the South-Slavic branch.

(5) The fifth tree T5 misplaces Bulgarian in the East-Slavic branch with Russian instead of
placing it in the South-Slavic branch.

5.1. Flattening matrices. We write here the flattening matrices using either the edge and tree
subscript of the split notation as in §3, according to how it is more convenient: the following list
makes it clear how these two notations match. The splits for the trees above are given by

(5.1)

T1 : e1 = {`1, `2} ∪ {`3, `4, `5}, e2 = {`1, `2, `5} ∪ {`3, `4}

T2 : e1 = {`1, `2} ∪ {`3, `4, `5}, e2 = {`1, `2, `4} ∪ {`3, `5}

T3 : e1 = {`1, `2} ∪ {`3, `4, `5}, e2 = {`1, `2, `3} ∪ {`4, `5}

T4 : e1 = {`2, `3} ∪ {`1, `4, `5}, e2 = {`1, `2, `3} ∪ {`4, `5}

T5 : e1 = {`1, `3} ∪ {`2, `4, `5}, e2 = {`1, `2, `3} ∪ {`4, `5}.
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The flattening matrices for these trees are given by the following

(1) For the tree T1 the flattening matrices are

Flate1,T1 = Flat{`1,`2}∪{`3,`4,`5} =



0.5122 0.0 0.0122 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0610
0.0854 0.0 0.0 0.0

0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3049



Flate2,T1 = Flat{`1,`2,`5}∪{`3,`4} =


0.5122 0.0 0.0 0.0 0.0122 0.0 0.0 0.0

0.0 0.0122 0.0 0.0 0.0 0.0 0.0 0.0610
0.0854 0.0 0.0 0.0 0.0 0.0 0.0 0.0122

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3049


(2) For the tree T2 the flattening matrices are Flate1,T2 = Flat{`1,`2}∪{`3,`4,`5} as above and

Flate2,T2 = Flat{`1,`2,`4}∪{`3,`5} =



0.5122 0.0 0.0854 0.0
0.0 0.0122 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0610 0.0 0.3049


(3) For the tree T3 the flattening matrices are Flate1,T3 = Flat{`1,`2}∪{`3,`4,`5} as above and

Flate2,T3 = Flat{`1,`2,`3}∪{`4,`5} =


0.5122 0.0 0.0122 0.0 0.0854 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0610 0.0 0.0 0.0 0.3049


(4) For the tree T4 the flattening matrices are Flate2,T4 = Flat{`1,`2,`3}∪{`4,`5} as above and

Flate1,T4 = Flat{`2,`3}∪{`1,`4,`5} =



0.5122 0.0122 0.0854 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049


(5) For the tree T5 the flattening matrices are Flate2,T5 = Flat{`1,`2,`3}∪{`4,`5} as above and

Flate1,T5 = Flat{`1,`3}∪{`2,`4,`5} =



0.5122 0.0 0.0854 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

0.0122 0.0 0.0 0.0
0.0122 0.0 0.0 0.0

0.0 0.0 0.0 0.0122
0.0 0.0 0.0 0.0
0.0 0.0610 0.0 0.3049
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5.2. Phylogenetic invariants. When evaluating the phylogenetic invariant for the boundary
probability distribution given by the combination of the SSWL and Longobardi data we have the
following result

(1) For the tree T1:

‖ΦT1(P )‖`∞ = max{ max
φ∈D(3)

e1,T1

|φ(P )|, max
φ∈D(3)

e2.T1

|φ(P )|} = 0.19043× 10−2

‖ΦT1(P )‖`1 =
∑

φ∈D(3)
e1,T1

|φ(P )| +
∑

φ∈D(3)
e2,T1

|φ(P )| = 0.31794× 10−2

(2) For the tree T2:

‖ΦT2(P )‖`∞ = max{ max
φ∈D(3)

e1,T2

|φ(P )|, max
φ∈D(3)

e2,T2

|φ(P )|} = 0.19043× 10−2

‖ΦT2(P )‖`1 =
∑

φ∈D(3)
e1,T2

|φ(P )| +
∑

φ∈D(3)
e2,T2

|φ(P )| = 0.36582× 10−2

(3) For the tree T3:

‖ΦT3(P )‖`∞ = max{ max
φ∈D(3)

e1,T3

|φ(P )|, max
φ∈D(3)

e2,T3

|φ(P )|} = 0.38087× 10−3

‖ΦT3(P )‖`1 =
∑

φ∈D(3)
e1,T3

|φ(P )| +
∑

φ∈D(3)
e2,T3

|φ(P )| = 0.90864× 10−3

(4) For the tree T4:

‖ΦT4(P )‖`∞ = max{ max
φ∈D(3)

e1,T4

|φ(P )|, max
φ∈D(3)

e2,T4

|φ(P )|} = 0.38087× 10−3

‖ΦT4(P )‖`1 =
∑

φ∈D(3)
e1,T4

|φ(P )| +
∑

φ∈D(3)
e2,T4

|φ(P )| = 0.13621× 10−2

(5) For the tree T5:

‖ΦT5(P )‖`∞ = max{ max
φ∈D(3)

e1,T5

|φ(P )|, max
φ∈D(3)

e2,T5

|φ(P )|} = 0.38087× 10−3

‖ΦT5(P )‖`1 =
∑

φ∈D(3)
e1,T5

|φ(P )| +
∑

φ∈D(3)
e2,T5

|φ(P )| = 0.17175× 10−2

For this set of languages we see again, as observed in [6], that the `1 norm is a better test than the
`∞ norm for the evaluation of the phylogenetic invariants. While the `∞ norm does not distinguish
between the trees T3, T4, T5, the `1 norm correctly singles out T3 as the preferred candidate.
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5.3. Estimates of Euclidean distance. The matrix Flat{`1,`2}∪{`3,`4,`5} has singular values

Σ(Flat{`1,`2}∪{`3,`4,`5}) = (0.5195, 0.3111, 0.2023× 10−2, 0.2577× 10−17, 0, 0, 0, 0).

The matrix Flat{`1,`2,`3}∪{`4,`5} has singular values

Σ(Flat{`1,`2,`3}∪{`4,`5}) = (0.5196, 0.3110, 0.2391× 10−2, 0).

The remaining matrices have

Σ(Flate2,T1) = (0.5194, 0.3112, 0.1196× 10−1, 0.2003× 10−2),
Σ(Flate2,T2) = (0.5194, 0.3112, 0.1220× 10−1, 0.2004× 10−2, 0, 0, 0, 0),
Σ(Flate1,T4) = (0.5195, 0.3111, 0.2438× 10−2, 0.1964× 10−2, 0, 0, 0, 0),
Σ(Flate1,T5) = (0.5195, 0.3111, 0.2834× 10−2, 0.2390× 10−2, 0, 0, 0, 0).

The computation of the Euclidean distances then gives

(1) For the tree T1

dist(Flate1,T1 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.4094× 10−5

dist(Flate2,T1 ,D2(8, 4))2 = σ2
3 + σ2

4 = 0.1470× 10−3

(2) For the tree T2

dist(Flate1,T2 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.4094× 10−5

dist(Flate2,T2 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.1527× 10−3

(3) For the tree T3

dist(Flate1,T3 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.4094× 10−5

dist(Flate2,T3 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.5718× 10−5

(4) For the tree T4

dist(Flate1,T4 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.9803× 10−5

dist(Flate2,T4 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.5718× 10−5

(5) For the tree T5

dist(Flate1,T5 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.1374× 10−4

dist(Flate2,T5 ,D2(4, 8))2 = σ2
3 + · · ·σ2

8 = 0.5718× 10−5

The lower bounds on the Euclidean distance function obtained above indicate as preferred
candidate the tree T3, which is the correct linguistic tree:

Polish

Russian

Bulgarian

Serb-Croatian Slovenian

6. Phylogenetic Algebraic Varieties of the early Indo-European tree

We now discuss the last phylogenetic problem listed in the Introduction, namely the early
branchings of the Indo-European tree involving the set of languages Hittite, Tocharian, Albanian,
Armenian, and Greek. We analyze here the difference between the trees of [7] and [42], when seen
from the point of view of Phylogenetic Algebraic Geometry.
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6.1. Trees and phylogenetic invariants. Once we restrict our attention to the five languages
listed above, the trees of [7] and [42] that we wish to compare result in the smaller five-leaf trees

Hittite

Tocharian Armenian Albanian Greek

for the case computed by [7], and the tree

Hittite

Tocharian

Albanian
Armenian Greek

for the case computed by [42].

Forgetting momentarily the position of the root vertex (which is in both trees adjacent to the
Anatolian branch), we are comparing two trees of the form

`3
`1 `2 `4 `5

`3
`1 `4 `2 `5

where we have `1 = Tocharian, `2 = Armenian, `3 = Hittite, `4 = Albanian, `5 = Greek. The
splits correspond to

T1 : e1 = {`1, `2} ∪ {`3, `4, `5} e2 = {`1, `2, `3} ∪ {`4, `5}
T2 : e1 = {`1, `3} ∪ {`4, `2, `5} e2 = {`1, `3, `4} ∪ {`2, `5}.

In order to compare the two possibilities then, we evaluate the phylogenetic invariants on the
boundary distribution obtained from the data of SSWL variables for the five languages, distributed
in the leaves of the tree in one of the two ways described above, and we compute estimates of the
Euclidean distance function.

6.2. Syntactic structures and boundary distributions. One of the main problems with the
SSWL database is that the binary variables of syntactic structures are very non-uniformly mapped
across languages. In order to use the data for phylogenetic reconstruction, it is necessary to
restrict to only those variables that are completely mapped for all the languages considered. In
our present case, some of the languages are very poorly mapped in the SSWL database: Tocharian
A is only 19% mapped, Tocharian B 18%, Hittite is 32% mapped, Albanian 69%, Armenian 89%
and (Ancient) Greek is also 89% mapped. Moreover, not all the 29 binary syntactic variables that
are mapped for Tocharian A are also among the variables mapped for Hittite. This reduces the list
of syntactic variables that are completely mapped for all five of these languages to a total of only
22 variables. The variables (listed with the name used in the SSWL database) and the resulting
values are given in the table in Figure 2. Based on these data, the boundary distribution for the
two cases considered above is given by the following. In the first case the frequencies are given by

p00000 = 4/11, p11111 = 3/11, p11101 = 2/11,
p11011 = 1/22, p10111 = 1/11, p01000 = 1/22
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P [Tocharian A, Hittite, Albanian, Armenian, A.Greek]
01 [1,1,1,1,1]
06 [1,1,0,1,1]
11 [1,0,1,1,1]
12 [1,1,1,1,1]
13 [1,1,0,1,1]
15 [1,1,1,1,1]
17 [1,1,1,1,1]
19 [1,1,0,1,1]
21 [1,1,0,1,1]
A01 [1,1,1,0,1]
A02 [1,1,1,0,1]
Neg 01 [1,1,1,1,1]
Neg 03 [0,0,0,1,0]
Neg 04 [0,0,0,0,0]
Neg 07 [0,0,0,0,0]
Neg 08 [0,0,0,0,0]
Neg 09 [0,0,0,0,0]
Neg 10 [0,0,0,0,0]
Neg 12 [0,0,0,0,0]
Neg 13 [0,0,0,0,0]
Neg 14 [0,0,0,0,0]
Order N3 01 [1,1,1,1,1]

Figure 2. The SSWL syntactic parameters P that are completely mapped for the
set languages Tocharian A, Hittite, Albanian, Armenian, Ancient Greek, and their
values on each language.

with pi1,...,i5 = 0 for all the remaining binary vectors in {0, 1}5. In the second case we have
frequencies

p00000 = 4/11, p11111 = 3/11, p11011 = 2/11,
p10111 = 1/22, p11101 = 1/11, p00010 = 1/22

with pi1,...,i5 = 0 for all the remaining binary vectors in {0, 1}5.

For the first case, the flattening matrices evaluated at the boundary distribution P give the
matrices

Flate1,T1 =


4
11

0 0 0 0 0 0 0

1
22

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
11

0 0 0 1
22

0 2
11

0 3
11
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Flate2,T1 =



4
11

0 0 0

0 0 0 0

1
22

0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
11

0 0 0 1
22

0 2
11

0 3
11


For the second case, on the other hand, we obtain the matrices

Flate1,T2 =


4
11

0 1
22

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
22

0 0 0 2
11

0 1
11

0 3
11



Flate2,T2 =



4
11

0 1
22

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
22

0 0 0 2
11

0 1
11

0 3
11


6.3. Phylogenetic invariants. The evaluation of the phylogenetic invariants on these two bound-
ary distributions by evaluating the 3× 3 minors of the matrices above gives

(1) For the Gray-Atkins tree T1:

‖ΦT1(P )‖`∞ = max
φ∈D(3)

e1,T1
∪D(3)

e2,T1

|φ(P )| = 8

1331

‖ΦT1(P )‖`1 =
∑

φ∈D(3)
e1,T1

∪D(3)
e2,T1

|φ(P )| = 61

2662

(2) For the Ringe–Warnow–Taylor tree T2:

‖ΦT1(P )‖`∞ = max
φ∈D(3)

e1,T2
∪D(3)

e2,T2

|φ(P )| = 8

1331

‖ΦT1(P )‖`1 =
∑

φ∈D(3)
e1,T2

∪D(3)
e2,T2

|φ(P )| = 18

1331
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On the basis of this naive test of evaluation of the phylogenetic invariants, the `∞ norm does
not distinguish the two trees while the `1 norm prefers the Ringe–Warnow–Taylor tree T2. We
show below that this preference is also confirmed by an estimation of the Euclidean distance.

6.4. Estimate of the Euclidean distance function. In this case, in order to obtain a lower
bound estimate of the Euclidean distance for the two trees T1 and T2, we compute the distances

D1,1 = dist(Flate1,T1(P ),D2(4, 8)), D1,2 = dist(Flate2,T2(P ),D2(8, 4))

with the Euclidean distance estimate of T1 given by L1 = max{D1,1, D1,2} and

D2,1 = dist(Flate1,T2(P ),D2(4, 8)), D2,1 = dist(Flate2,T2(P ),D2(8, 4))

with the Euclidean distance estimate of T2 given by L2 = max{D2,1, D2,2}.
The computation of the singular values Σ = (σ1, . . . , σ4) of the flattening matrices Flatei,Tj(P )

gives
Σ(Flate1,T1(P )) = diag(0.3664662612, 0.3394847389, 0.5018672314× 10−1, 0)

Σ(Flate2,T1(P )) = diag(0.3664662612, 0.3388120907, 0.5454321492× 10−1, 0)

Σ(Flate1,T2(P )) = diag(0.3664662613, 0.3421098124, 0.2700872640× 10−1, 0)

Σ(Flate2,T2(P )) = diag(0.3664662613, 0.3394847388, 0.5018672301× 10−1, 0).

Since the last singular value is always zero, the Euclidean distances are given by the σ3 value

D1,1 = 0.5018672314× 10−1, D1,2 = 0.5454321492× 10−1,

D2,1 = 0.2700872640× 10−1, D2,1 = 0.5018672301× 10−1

This gives L1 = 0.5454321492× 10−1 and L2 = 0.5018672301× 10−1.

Thus, the Euclidean distance estimate also favors the Ringe–Warnow–Taylor tree T2 over the
Gray-Atkins tree T1. The fact that there are very few parameters that are mapped (at present time)
for all of these languages in the SSWL database, and that these parameters largely agree on this
set of languages, however make this analysis not fully reliable. A more extensive set of syntactic
data for these languages would be needed to confirm whether the phylogenetic reconstruction
based on syntactic data and the algebro-geometric method is reliable.

7. Towards larger phylogenetic trees: grafting

As we have seen in the previous sections, Phylogenetic Algebraic Geometry is a procedure
that associates to a given language family L = {`1, . . . , `n} an algebraic variety Y = Y (L, P )
constructed on the basis of the syntactic variables (listed in the distribution P ).

A possible geometric viewpoint on comparative historical linguistics can then be developed, by
considering the geometry of the varieties Y (L, P ) for different language families. This contains
more information than the topology of the tree by itself, in the sense that one can, for example,
look more specifically for the position of the point P on the variety. The point P contains precise
information on how the binary syntactic variables change across the languages in the family. For
example, in the case of the six Germanic languages in the set S1(G), we see from our table of
occurrences that only very few possibilities for the binary vector (i1, . . . , i6) occur for these six
languages. We also see that, apart from the cases where the value of a syntactic variable agrees
in all six languages (40 occurrences where the feature is not expressed, and 22 where it is), we
find that it is more likely for Icelandic to have a feature that differs from the other languages in
the group (4 occurrences of (0, 0, 0, 0, 1, 0) of lacking a features the others have and 3 occurrences
of (1, 1, 1, 1, 0, 1) for having a feature that the others lack). Thus, the location of the point P on
the variety contains information that is related to the spreading of syntactic features across the



ALGEBRAIC GEOMETRY OF INDO-EUROPEAN LANGUAGES 47

language family considered. This geometric way of thinking may be compared with the coding
theory approach of [30], [45] to measuring the spread of syntactic features across a language family.

As we have seen in the example discussed above of a small set of Germanic languages, as
well as in the examples with Romance and Slavic languages, the use of SSWL data is suitable for
phylogenetic reconstruction, provided only the subset of the completely mapped syntactic variables
(for the given set of languages) is used and the candidate phylogenetic trees are selected through
the computation of phylogenetic invariants, and their evaluation at the boundary distribution
determined by the syntactic variables.

This method works very well for small trees and for a set of languages that is well mapped
in the available databases (with enough binary syntactic variables that are mapped for all the
languages in the given set). However, one then needs a way to combine phylogenetic trees of
smaller subfamilies into those of larger families.

We give a very brief sketch of how this procedure can be articulated in terms of Phylogenetic
Algebraic Geometry, and we refer the readers to §5–8 of [1] for more details. Although we do not
need to use this method directly in the present paper, we mention this for completeness, since
it is a natural question how to proceed towards larger trees. Given two binary trees T ′ and T ′′,
respectively with n and m leaves, the grafting T = T ′ ?` T

′′ at a leaf ` is the binary tree obtained
by gluing together a leaf of T ′ with marking ` to a leaf of T ′′ with the same marking. The resulting
tree T has n + m − 2 leaves. It is shown in [1] how the phylogenetic invariants of T depend on
the invariants of T ′ and T ′′. Consider the maps ΦT ′ and ΦT ′′ , defined as in (2.2) using (2.1),

with values in C2n and C2m , respectively. We identify C2n = C2n−1 ⊗ C2, where the last binary

variable corresponds to the leaf `. We then identify the affine space C2n−1⊗C2 ' Hom(C2n−1∨
,C2)

with the space of matrices M2n−1×2(C), and similarly with C2m ' M2×2m−1(C). One then defines
ΦT = ΦT ′ ? ΦT ′′ as the matrix product of the elements in the range of ΦT ′ , seen as matrices in
M2n−1×2(C) with the elements in the range of ΦT ′′ , seen as matrices in M2×2m−1(C). This results in
a matrix in M2n−1×2m−1(C)), which gives a map ΨT with values in Cn+m−2. The domain variables
of ΨT are obtained as follows. For those edges of T not involved in the grafting operation, we
define the 2 × 2 matrices M e to be the same as those originally associated to the edges of T ′ or
T ′′, respectively. For the edge of T ′ and the edge of T ′′ that are glued together in the grafting,
we replace the respective matrices M e′ and M e′′ by their product M e = M e′M e′′ . Dually, as in
(2.3), this determines the map ΨT of polynomial rings, whose kernel is the phylogenetic ideal of
T . The closure in Cn+m−2 of the image of ΨT is the phylogenetic algebraic variety of the grafted
tree T = T ′ ?` T

′′.

Suppose we are interested in the phylogenetic tree of a language family L, for which we assume
that we already know (from other linguistic input) a subdivision into several subfamilies L =
L1 ∪ · · · ∪ LN . Suppose also that for the language families taken into consideration there are
sufficient data available about the ancient languages. (This requirement will limit the applicability
of the algorithm discussed here to families like the Indo-European, where significant amount of
data about ancient languages is available.) We can then follow the following procedure to graft
phylogenetic trees of the subfamilies Lk into a larger phylogenetic tree for the family L. For
the procedure described here we need to assume that one knows a priori (via historical linguistic
information) that the members of the subfamilies Lk should remain together in a clade of the
grafted tree.

(1) For each subfamily Lk = {`k,1, . . . , `k,nk
}, consider the list of SSWL data that are com-

pletely mapped for all the languages `k,j in the subfamily Lk.
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(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic
tree Tk is constructed based on the method illustrated above in the example of the Germanic
languages.

(3) Use the procedure discussed in §3.5 above to identify the best location of the root vertex
for each tree Tk, and regard each tree Tk as a tree with nk + 1 leaves, including one leaf
attached to the root vertex.

(4) Let {λ1, . . . , λN} be the ancient languages located at the root vertex of each tree T1, . . . , TN .
Consider the list of SSWL parameters that are completely mapped for all the ancient
languages λk.

(5) On the basis of that set of binary syntactic variables, select preferred candidate phylogenetic
tree T with N leaves, by evaluating the phylogenetic invariants of these trees on the
boundary distribution given by this set of binary syntactic variables.

(6) Graft the best candidate tree T to the trees Tk by gluing the leaf λk of T to the root of Tk.
(7) The phylogenetic invariants of the resulting grafted tree T ′ = T ?Nk=1 Tk can be computed

with the grafting procedure of [1] described above and evaluation at the boundary dis-
tribution given by the leaves {`k,j | j = 1, . . . , nk, k = 1, . . . , N} of T ′ (coming from the
smaller set of syntactic variables that are completely mapped for all the `k,j) can confirm
the selected tree topology T ′.

The advantage of this procedure is that it is going to work even in the absence of a sufficient
number of binary syntactic variables in the SSWL database that are completely mapped for all
of the languages `k,j at the same time, provided there are enough for each subset Lk and for
the λk. In cases where the number of variables that are completely mapped for all the `k,j is
significantly smaller compared to those that are mapped within each group, the last test on the
tree T ′ becomes less significant. This method also has the advantage that one works with the
smaller subtrees Tk and T , rather than with the bigger tree given by their grafting, so that the
computations of phylogenetic invariants is more tractable.

In the case of language families where one does not have syntactic data of ancient languages
available, one can still adapt the procedure described above, provided there is a reasonable number
of SSWL variables that are completely mapped for all the languages `k,j in L. One can proceed
as follows.

(1) For each subfamily Lk = {`k,1, . . . , `k,nk
}, consider the list of data that are completely

mapped for all the languages `k,j in the subfamily Lk.
(2) On the basis of that set of binary syntactic variables, a preferred candidate phylogenetic

tree Tk is constructed based on the method illustrated above in the example of the Germanic
languages.

(3) Consider all possible choices of a root vertex for each Tk (there are as many choices as the
number of internal edges of Tk).

(4) Consider all the possible candidate tree topologies T with N leaves.
(5) For each choice of a root vertex in each Tk graft a choice of T to the give roots of the trees

Tk to obtain a candidate tree T ′ = T ?Nk=1 Tk.
(6) Compute the phylogenetic invariants of T ′ = T ?Nk=1 Tk using the procedure of [1] recalled

above.
(7) Evaluate the phylogenetic invariants of each candidate T ′ on the boundary distribution de-

termined by the binary syntactic variables that are completely mapped for all the languages
{`k,j | j = 1, . . . , nk, k = 1, . . . , N}, to select the best candidate among the T ′.

There are serious computational limitations to this procedure, however, because of how fast
the number of trees on N leaves grows. While the grafting procedure discussed above makes it



ALGEBRAIC GEOMETRY OF INDO-EUROPEAN LANGUAGES 49

possible to work with smaller trees and then consider the problem of grafting them into a larger
tree, this would still only work computationally for small size trees, and cannot be expected to
handle, for example, the entire set of languages recorded in the SSWL database.

8. Modifying the setting to account for syntactic relations

In a followup to this paper, based on the ongoing analysis of [34], we will discuss how to
adjust these phylogenetic models to incorporate deviations from the assumption that the syntactic
parameters are i.i.d. random variables evolving according to the same Markov model on a tree.

Indeed, we know from various data analysis of the syntactic variables, including topological data
analysis [40], [41], methods of coding theory [45], and recoverability in Kanerva networks [38], that
the syntactic parameters are certainly not i.i.d. variables. Thus, it is likely that some discrepancies
we observed in this paper, in the application of the Phylogenetic Algebraic Geometry method (for
example in the case of the Romance languages or the early Indo-European languages where the
tree selected by the Euclidean distance is not the same as the tree favored by the phylogenetic
invariants) may be an effect of the use of this overly simplified assumption.

The approach we plan to follow to at least partially correct for this problem, is to modify the
boundary distribution on the tree by attaching to the different syntactic parameters a weight that
comes from some measure of its dependence from other parameters, in such a way that parameters
that are more likely to be dependent variables according to one of these tests will weight less in the
boundary distribution than parameters that are more likely to be truly statistically independent
variables.

The main idea on how to achieve this goal is to modify the boundary distribution P by counting
occurrences ni1,...,in of parameter values (i1, . . . , in) at the n leaves of the tree by introducing
weights for different parameters that measure their degree of independence. An example of such
a weight would be the degree of recoverability in a Kanerva network, as in [38], or a computation
of clustering coefficients as in [34].

This means that, instead of assigning to a given binary vector (i1, . . . , in) the frequency

pi1,...,in =
ni1,...,in
N

with N total number of parameters and ni1,...,in number of parameters that have values (i1, . . . , in)
on the n languages at the leaves of the tree, we replace this by a new distribution

p′i1,...,in = Z−1
ni1,...,in∑
r=1

w(πr)

where for a syntactic parameter π the weight w(π) measures the degree of independence of π, for
example with w(π) close to 1 the more π can be regarded as an independent variable and close to
0 the more π is recoverable from the other variables, with Z a normalization factor so that p′i1,...,in
is again a probability distribution.

With this new boundary distribution P ′ we will recompute the Euclidean distances of the flat-
tening matrices Flate,T (P ′) from the varietiesD2(a, b) by computing the singular values (σ1, . . . , σa)
of Flate,T (P ′) and computing the square-distance as σ2

3 + · · ·+σ2
a, and compare the new distances

obtained in this way with those of the original boundary distribution P .

Results on this approach will be presented in forthcoming work.
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Appendix A: SSWL syntactic variables of the set S1(G) of Germanic languages

We list here the 90 binary syntactic variables of the SSWL database that are completely mapped
for the six Germanic languages `1 =Dutch, `2 =German, `3 =English, `4 =Faroese, `5 =Icelandic,
`6 =Swedish. The column on the left in the tables lists the SSWL parameters P as labeled in the
database.
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Appendix B: SSWL syntactic variables of the set S2(G) of Germanic languages

We list here the 90 binary syntactic variables of the SSWL database that are completely mapped
for the seven Germanic languages `1 =Norwegian, `2 =Danish, `3 =Gothic, `4 =Old English,
`5 =Icelandic, `6 =English, `7 =German. The column on the left in the tables lists the SSWL
parameters P as labeled in the database.



52 K.SHU, A.ORTEGARAY, R.C.BERWICK, M.MARCOLLI

Appendix C: Flattening matrices F5 and F6

The flattening matrices of (3.1) (written in transpose form for convenience) for the T5 and T6
trees, in the case of the Longobardi data are given by the following:

F t
5 =



4
7

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

42
0 1

42
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 1

42
2
7



F t
6 =



4
7

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

42
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

42
0 0

0 0 0 1
42

0 0 0 0
0 0 0 0
0 1

42
1
42

2
7
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The same flattening matrices of (3.1) for the SSWL data are given by the following.

F t
5 =



13
34

1
68

1
34

0
0 0 0 0
0 0 0 0
0 0 1

68
0

3
68

1
68

1
68

1
68

0 0 0 0
0 0 0 1

68
0 0 0 1

68
1
68

0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 1

34
0

0 0 0 0
0 0 0 0
0 0 0 1

68
1
68

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

68
1
34

1
68

0 0 0 0
0 0 0 0
0 0 0 0
0 0 3

68
4
17



F t
6 =



13
34

1
68

3
68

1
68

0 0 0 0
0 0 0 0
0 0 0 0
1
34

0 1
68

1
68

0 0 0 0
0 0 0 1

68
1
68

0 0 1
68

1
68

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1

34
0

0 0 0 0
0 0 0 0
0 1

68
0 1

68
1
68

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

68
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

68
0 0

0 0 0 0
0 0 0 0
0 0 0 0
1
34

1
68

3
68

4
17
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Appendix D: list of LanGeLin syntactic parameters

FGP gramm. person GSI grammaticalised inalienability
FGM gramm. Case ALP alienable possession
FPC gramm. perception GST grammaticalised Genitive
FGT gramm. temporality GEI Genitive inversion
FGN gramm. number GNR non-referential head marking
GCO gramm. collective number STC structured cardinals
PLS plurality spreading GPC gender polarity cardinals
FND number in D PMN personal marking on numerals
FSN feature spread on N CQU cardinal quantifiers
FNN number in N PCA number spread through cardinal adjectives
SGE semantic gender PSC number spread from cardinal quantifiers
FGG gramm. gender RHM Head-markong on Rel
CGB unbounded sg N FRC verbal relative clauses
DGR gramm. amount NRC nominalized relative clause
DGP gramm. text anaphora NOR NP over verbal rel clauses/adpos gen
CGR strong amount AER relative extrap.
NSD strong person ARR free reduced rel
FVP variable person DOR def on relatives
DGD gramm. distality NOD NP over D
DPQ free null partitive Q NOP NP over non-genitive arguments
DCN article-checking N PNP P over complement
DNN null-N-licensing art NPP N-raising with obl. pied-piping
DIN D-controlled infl. on N NGO N over GenO
FGC gramm. classifier NOA N over As
DBC strong classifier NM2 N over M2 As
XCN conjugated nouns NM1 N over M1 As
GSC c-selection EAF fronted high As
NOE N over ext. arg. NON N over numerals
HMP NP-heading modifier FPO feature spread to genitive postpositions
AST structured APs ACM class MOD
FFS feature spread to struct. APs DOA def on all +N
ADI D-controlled infl. on A NEX gramm. expletive article
DMP def matching pron. poss. NCL clitic poss.
DMG def matching genitives PDC article-checking poss.
GCN Posso-checking N ACL enclitic poss. on As
GFN Gen-feature spread to Posso APO adjectival poss.
GAL Dependent Case in NP WAP wackernagel adjectival poss.
GUN uniform Gen AGE adjectival Gen
EZ1 generalized linker OPK obligatory possessive with kinship noun
EZ2 non-clausal linker TSP split deictic demonstratives
EZ3 non-genitive linker TSD split demonstratives
GAD adpositional Gen TAD adjectival demonstratives
GFO GenO TDC article-checking demonstratives
PGO partial GenO TLC Loc-checking demonstratives
GFS GenS TNL NP over Loc
GIT Genitive-licensing iterator
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