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ARTICLE INFO ABSTRACT

Keywords: The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave remote
Vegetation optical depth sensing systems, is related to the intensity of microwave extinction effects within the vegetation canopy layer.
SMOS-IC This index is only marginally impacted by effects from atmosphere, clouds and sun illumination, and thus

EPMS; MT-DCA increasingly used for ecological applications at large scales. Newly released VOD products show different abilities
LPRM in monitoring vegetation features, depending on the algorithm used and the satellite frequency. VOD is
VODCA increasingly sensitive to the upper vegetation layer as the frequency increases (from L-, C- to X-band), offering
Biomass different capacities to monitor seasonal changes of the leafy and/or woody vegetation components, vegetation
Phenology water status and aboveground biomass. This study evaluated nine recently developed/reprocessed VOD products
Height of vegetation from the AMSR2, SMOS and SMAP space-borne instruments for monitoring structural vegetation features related
Vegetation cycle to phenology, height and aboveground biomass.

For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-VOD
products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products in regions that
are not densely vegetated, where they showed higher temporal correlation values with optical vegetation indices
(VIs). However, LPDR X-VOD time series failed to detect changes in VOD after rainfall events whereas most other
VOD products could do so, and overall daily variations are less pronounced in LPDR X-VOD. Results show that
the reprocessed VODCA C- and X-VOD have almost comparable performance and VODCA C-VOD correlates
better with VIs than other C-VOD products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC,
show a higher temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as
savannas (R ~ 0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive to the
non-green vegetation components (trunks and branches) than higher frequency products, they are well-
correlated with aboveground biomass: (R ~ 0.91) across space between predicted and observed values for
both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest canopy height, results at L-band are
not systematically better than C- and X-VOD products. This revealed specific VOD retrieval issues for some
ecosystems, e.g., boreal regions. It is expected that these findings can contribute to algorithm refinements,
product enhancements and further developing the use of VOD for monitoring above-ground vegetation biomass,
vegetation dynamics and phenology.
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1. Introduction

Microwave vegetation optical depth (VOD), as a promising ecolog-
ical indicator, is directly proportional to the vegetation water content
(VWCQ) of the aboveground canopy biomass (Brandt et al., 2018; Jackson
and Schmugge, 1991; Mo et al., 1982; Wigneron et al., 2017). Different
VOD indices (referred to as VODs in the following) derived from mi-
crowave observations at relatively “high” frequencies such as Ku- (18.7
GHz), X- (10.7 GHz) or C- (6.9 GHz) band have been used to monitor
phenology (Jones et al., 2011), vegetation fractional cover (Guan et al.,
2012), the impact of El Nino events on vegetation in Australia (Liu et al.,
2007), isohydricity patterns (Konings and Gentine, 2017) and above-
ground biomass (AGB) dynamics (Liu et al., 2015). In recent years, VOD
at L-band (1.4 GHz) has been established as a useful indicator for esti-
mating the dynamics in AGB in tropical forests. This was made possible
because of the lower extinction of low frequency radiations within the
canopy layer, making L-band arguably more efficient for monitoring
biomass in dense vegetation canopies (Brandt et al., 2018; Fan et al.,
2019; Tian et al., 2018; Wigneron et al., 2020). In comparison to optical-
near infrared vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI),
currently available VODs have a coarse spatial resolution, but are largely
insensitive to effects from the atmosphere, clouds and sun illumination,
in particular at low frequencies (L-, C- and X-bands).

Several VOD datasets used in the above-mentioned studies are
derived from multiple spaceborne microwave sensors operating at
different frequencies (Fernandez-Moran et al., 2017a; Li et al., 2020a;
Liu et al., 2011). Among these sensors (satellites), the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2; Imaoka et al., 2012) is the
successor of the Advanced Microwave Scanning Radiometer for EOS
(AMSR-E; Koike et al., 2004), which enabled the fusion of the first long-
term (1987-2008) global microwave-based VOD product (Liu et al.,
2011). The ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s
Soil Moisture Active Passive (SMAP) are two L-band sensors (Entekhabi
etal., 2010; Kerr et al., 2010) which are designed for monitoring surface
soil moisture (SM) in moderately and densely vegetated areas (Wigneron
et al., 2017). While the main objective of these satellite missions was to
monitor SM at global scale, the accurate retrieval of SM using radiative
transfer models requires the consideration of the extinction effects of the
vegetation layer, which are parameterized by the VOD index (Mo et al.,
1982; Wigneron et al., 2007). In particular, the SMOS satellite has multi-
angular capabilities, allowing simultaneous retrievals of SM and VOD
(Wigneron et al., 2000), while multi-temporal VOD retrieval approaches
have been developed for SMAP (Konings et al., 2016, 2017). Thus, both
the SMOS and SMAP missions support the development of a separate
VOD product in addition to the original SM product. Note that some
specific satellite products focus only on SM, as the Japan Aerospace
Exploration Agency (JAXA) standard SM products (Njoku et al., 2003).
Recently, VOD products have been combined to long-term time series by
blending multiple microwave sensors, such as the new global land
parameter data record (LPDR) X-band VOD derived from AMSR-E and
AMSR2 (Du et al., 2017b), and the global long-term microwave VOD
Climate Archive (VODCA; Moesinger et al., 2020) produced by the
Vienna University of Technology (TU Wien) including Ku-, X- and C-
band VOD.

Assessing the performance of these remotely sensed VOD retrievals is
crucial to improve their quality and evaluate their potential applications
in many fields such as monitoring AGB, vegetation dynamics and
phenology. However, VOD, like NDVI, is a radiometric variable rather
than a well-defined and “easily validated” geophysical parameter (Liu
et al., 2011). Evaluation based on field data of different vegetation
components is rare (Brandt et al., 2019) and most evaluations of VOD
datasets are based on a side-by-side comparison with proxies of the
vegetation greenness based on optical vegetation indices (Du et al.,
2017b; Grant et al., 2016; Jones et al., 2011; Karthikeyan et al., 2019;
Lawrence et al., 2014; Li et al., 2020a; Liu et al., 2011; Moesinger et al.,
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2020; Tian et al., 2016; Tong et al., 2019), including NDVI, EVI and Leaf
Area Index (LAI). These previous comparisons revealed that VOD can
generally capture vegetation seasonal cycles and interannual variations
in a similar fashion as NDVI (Li et al., 2020a; Liu et al., 2011) and LAI
(Moesinger et al., 2020; Cui et al., 2020). However, unlike NDVI, which
is restricted to the upper green canopy layer, microwave-based VOD is
able to sense the entire vegetation deeper within the canopy, with
different layers and depths depending on the penetration capability of
the observation frequency. Hence, NDVI saturates quickly as vegetation
density increases and the green canopy closes, while VOD is sensitive to
both the leaf and woody component of vegetation and not restricted to
the upper canopy. Moreover, VOD is related to the water content of the
vegetation canopy (i.e., VWC) that cannot be observed by optical
indices. Lower frequencies (L-band) observations are sensitive to the
water content present in the whole vegetation layer including the woody
components of the vegetation, while higher frequencies (C- and X-band)
observations are more sensitive to the water content of the upper layer of
the vegetation canopy and, consequently, to the green vegetation com-
ponents (leaves and stems for herbaceous vegetation, crown and leafy
part of trees in forests). Therefore, evaluating VOD against optical
indices should be limited to relatively low-density vegetation canopies.
In particular, the optical indices are not a good reference for evaluating
the capabilities of low frequency VODs (such as L-band VOD) for
monitoring biomass, in particular over moderate to highly dense forests,
especially in tropical regions.

As VWC is determined by the quantity of vegetation (parameterized
by biomass) and the vegetation water status (parameterized by vegeta-
tion moisture content (Mg (kg/kg), the ratio between wet biomass and
total (wet + dry) biomass, i.e., Mg = VWC/(VWC + By), where B rep-
resents vegetation dry biomass)), VOD can thus provide information on
AGB and the vegetation water status and stress of the vegetation canopy
(Frappart et al., 2020; Togliatti et al., 2019). By assuming that the yearly
average of Mg is relatively constant from year to year, which can be
confirmed in intact forest regions and non-affected by severe drought/
mortality events (Frappart et al., 2020), the yearly average of VOD can
be considered as a good proxy of AGB (Liu et al., 2015; Brandt et al.,
2018). Moreover, the function relating VOD to AGB has been established
from a spatial calibration in several studies (see Frappart et al., 2020 for
a review and more details on that topic). As the yearly averaged VOD
computed at different frequencies is strongly correlated with the woody
vegetation (Brandt et al., 2018; Brandt et al., 2019; Wigneron et al.,
2017), the evaluation of VOD retrievals can be based on comparisons
with AGB products. With the ongoing development of VOD retrieval
algorithms/products at different frequencies, efforts have been made to
compare the sensitivity of different VODs to forest carbon stocks. In the
following, we will use L-VOD, C-VOD and X-VOD to denote the VOD
products at L-, C- and X-bands, and so forth. Liu et al. (2015) computed a
non-linear relationship between a reference map of AGB (Saatchi et al.,
2011) and Ku/X/C-VOD products, and used this relationship to study the
VOD-derived global biomass dynamics. Following this global analysis,
Tian et al. (2016) confirmed the good relationship between AGB and Ku/
C-VOD over the West African Sahel dryland ecosystems using temporal
in-situ biomass measurements. Rodriguez-Fernandez et al. (2018) con-
ducted an inter-comparison of the spatial patterns of SMOS L-VOD
products against four AGB benchmark maps over the African continent
and revealed a high performance of the SMOS-INRA-CESBIO or SMOS-IC
V105 L-VOD product relative to other SMOS products. More recently,
Chaparro et al. (2019) compared the sensitivity of different VOD prod-
ucts at X-, C- and L-bands to AGB over tropical forests of Peru, southern
Colombia and Panama.

However, very few studies have inter-compared VODs retrieved from
different satellites and at different frequencies. For instance, inter-
comparisons of VODs at L-band were limited to either the SMOS
(Rodriguez-Fernandez et al., 2018) or SMAP products (Chaparro et al.,
2019), but to our knowledge the two products have rarely been inter-
compared. Moreover, most inter-comparisons were conducted over
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limited study areas for specific biomes or on a limited time scale. For
example, Rodriguez-Fernandez et al. (2018) and Chaparro et al. (2019)
mostly focused on the yearly averaged VOD without considering the
seasonal variations. For a better understanding of remotely sensed VODs
and to facilitate improvements of the retrieval algorithms for future
space-borne missions, the evaluation/inter-comparison of VOD products
from different sensors and frequencies for a variety of spatio-temporal
conditions is essential. Furthermore, new VOD algorithms and new
versions of VOD produects, such as the SMOS-IC version 2 (V2) L-VOD
recently designed by INRAE Bordeaux (Li et al., 2020b; Wigneron et al.,
Submitted), are not yet comprehensively evaluated and inter-compared.

This study fills this gap by assessing and inter-comparing globally
nine VOD products at three frequencies (X-, C- and L-bands; See
Table 1). This evaluation considered the ability of VOD products to
monitor both the seasonal vegetation cycle and the spatial distribution
of AGB. Consequently, the objectives of this study are: (1) to assess and
inter-compare the sensitivity of VODs (at L-, C- and X-bands) to AGB, as
well as to compare those products with optical vegetation indices from
Moderate Resolution Imaging Spectroradiometer (MODIS) considering
both seasonal and annual spatial variations at the global scale; and (2) to
examine the performance of the nine VODs in various biomes reflecting
different environmental conditions. The second objective provides
insight in how satellite-based VOD retrievals may be impacted by land
cover features (vegetation structure, phenology, etc.) and heterogeneity.

2. Datasets
2.1. Remotely sensed VOD products

Table 1 presents an overview of the VOD datasets included in this
study, mainly from SMOS, SMAP and AMSR2. More details about these
satellite-based VOD products are provided in Appendix A.

To get an overview of the various approaches used in the VOD re-
trievals, we summarized the main differences in the algorithms used
(Table 2). The brightness temperature (TB) measured by the passive
microwave radiometers measures the natural microwave emission from
the land surfaces. All these algorithms use a simple 0™-order Tau-Omega
(t-w) radiative transfer model as the starting point to simulate the TB
(Mo et al., 1982, Wigneron et al., 2017 for a review). As summarized in
Table 2, the main differences in the VOD retrieval algorithms can be
distributed in different categories, considering the parameterizations of
the physical temperature including the effective soil and vegetation
temperatures, surface roughness, effective scattering albedo, and
dielectric mixing models. For example, unlike the other algorithms,
where the roughness effects are estimated from a separate roughness
correction step, the LPDR algorithm assumes a constant dry soil
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emissivity to facilitate the VOD retrieval process, thus its VOD incor-
porate the soil roughness effects (Jones et al., 2010; Mladenova et al.,
2014). VODCA is a fusion of VOD retrieval results from multiple sensors
after co-calibration via cumulative distribution function matching using
AMSR-E as the scaling reference (Moesinger et al., 2020). We did not list
the VODCA retrieval algorithm separately as it is an updated version of
LPRM V5, not yet available to the public. Readers are referred to Table 2
in Scanlon et al. (2020) for more details about this algorithm.

2.2. Evaluation datasets

2.2.1. MODIS vegetation indices

Two optical vegetation indices (VIs), NDVI and EVI, were compared
with each VOD product. These two VIs were chosen as both are regarded
as proxy for green vegetation cover (Weber et al., 2020). In particular,
NDVI climatology is also used to estimate VOD in the inversion algo-
rithm of the official NASA SMAP soil moisture products (Chan et al.,
2013; Dong et al.,, 2018). Compared to NDVI, EVI is designed to
decouple the canopy background signals and reduce atmospheric in-
fluences and it is designed to be less susceptible to saturation over forest
areas (Huete et al., 2002). More information on NDVI and EVI are
summarized in Table S1. In this study, the 16-day MODIS product
(MOD13A2 Collection 6) was used to obtain the NDVI and EVI. Global
MOD13A2 data is provided as a gridded level-3 product projected on the
Sinusoidal projection with a spatial resolution of 1 km. To retain high-
quality observations, we filtered out pixels not flagged as ‘good qual-
ity’ and pixels with snow/ice, cloud cover, and non-land as done by
Grant et al. (2016). NDVI and EVI were subsequently aggregated to 25
km using nearest-neighbor interpolation.

2.2.2. Lidar tree height

The global tree height dataset from Simard et al. (2011) was used to
assess the dependency of VOD on vegetation density. This height dataset
was produced at 1 km resolution using lidar data collected in 2005 by
the Geoscience Laser Altimeter System (GLAS) sensor. In addition, es-
timates over the areas not directly covered by the lidar footprint are
made by combining relevant auxiliary data with Random Forest models.
The lidar-derived data were chosen here not only because the total
amount of vegetation is related to canopy height (Asner et al., 2012), but
GLAS is also widely used as a primary source of information for carbon
stock databases, reflecting the ability of tree height data for comparison
purposes. Further details about this product and algorithm are described
in Simard et al. (2011), and data can be freely downloaded at https://we
bmap.ornl.gov/ogc/dataset-.jsp?ds_id=10023. The dataset was aggre-
gated (using linear averaging) to the VOD resolution (i.e. 25 km).

Table 1
Overview of the VOD datasets used in this study. Our study period is 04/2015-12/2017 as this period was sufficient to analyze seasonal variations in VOD.
Variable name Dataset/Sensor Frequency Metadata Period Sampling Method/ Reference
Algorithm
SMAP L-VOD SMAP 1.4GHz 04/2015-09/ Daily, 9 km MT-DCA Konings et al. (2017)
2020
IC V105 L-VOD SMOS 1.4GHz 01/2010-09/ Daily, 25 km SMOS-IC V105 Fernandez-Moran et al.,
2020 2017a
IC V2 L-VOD SMOS-IC V2 Wigneron et al. (Submitted)
AMSRU X-VOD AMSR-E and AMSR2 10.7GHz 01/2002-12/ Daily, 25 km  LPDR V2 Du et al. (2017a)
2019
AMSR2 X-VOD AMSR2 10.7GHz 07/2012-01/ Daily, 25 km LPRM V5 Owe et al. (2008)
AMSR2 C1- 6.9 GHz 2020
VOD
AMSR2 C2- 7.3 GHz
VOD
VODCA X-VOD WindSat, AMSR-E, AMSR2 and 10.65 GHz, 10.7 GHz 12/1997-12/ Daily, 0.25° LPRM V6 Moesinger et al. (2020)
T™I 2018
VODCA C-VOD WindSat, AMSR-E and AMSR2 6.93 GHz, 7.3 GHz, 06/2002-12/
6.8GHz 2018

MT-DCA = multi-temporal dual-channel algorithm; LPRM = Land Parameter Retrieval Model.
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Table 2
Summary of key differences among the SMOS-IC, MT-DCA, LPDR V2 and LPRM V5 retrieval algorithms.
Algorithm SMOS-IC MT-DCA LPDR V2 LPRM V5
Observation Multi-angular and dual Enhanced SMAP dual polarization Tg at a fixed ~ Calibrated Ty retrieval records from both AMSR2 spatial-resolution-

Effective soil
temperature

Vegetation
temperature

Vegetation
modelling

Soil roughness
modelling

Effective
scattering
albedo

Dielectric mixing
model

polarization SMOS L3 Tg

T = f(Tsoit surfs Tsoil_depth)
Tsoit_surf> Tsoildeprn from Layer 1
& 3 of ECMWF

SM\
Cr = min (i’) 1), Wo=
Wo

0.3 m*/m> b, = 0.3
Tc = ECMWEF skin temperature

7-® model (Mo et al., 1982)

H-Q-N modelling (Wang and
Choudhury, 1981)

Hp values from Parrens et al.
(2016)

Ngrp = —1 (P =H, V) over short
vegetation

Nry = —1, Ngy = 1 over forests
Qr=0

o calibrated based on IGBP
classifications

Mironov et al. (2004)

AMSR-E and AMSR2

T = f(Tsp18.7GHz), TBP(23.8GHz) (P = H, V)
using an iterative algorithm approach (
Jones et al., 2010)

incidence angle of 40°
T = f(Tsoit_surfs Tsoit_depth)
Tsoit_surf> Tsoil_depen from Layer 1 & 2 of GEOS-5

Cr=0.246

Tec=Tg Tec=Tg

7-0 model (Mo et al., 1982) 7-0 model (Mo et al., 1982)
H-Q-N modelling (Wang and Choudhury,
1981)

Assuming a constant roughness root-mean- Hrp=—,Qr=—
square height of 0.13 (being the basis for

formulations of Hg)

Nrp=0(P =H, V)

dry bare soil emmissivity

Qr=0

o is retrieved simultaneously with SMand VOD o is prescribed as a constant value of 0.06

Mironov et al. (2004) Dobson et al. (1985)

matched Ty (LISGRTBR)
T = LST = f(Tpy(376Hz))
LST derived from the
method of Holmes et al.
(2009)

To=Tg
7-0 model (Mo et al., 1982)

H-Q-N modelling (Wang
and Choudhury, 1981)
Nrp=1 (P =H, V)

Hrio0.76Hz) = 0.18;

Hr(7.36Hz) = 0.09;
Hr(e.96Hz) = 0.09;
Qra10.76Hz) = 0.127;
Qr(7.3 gHz) = 0.115;
QRre6.9 GHz) = 0.115;
®10.76Hz = 0.06
07.360z = 0.05
W6.96Hz = 0.05
Wang and Schmugge
(1980)

Tp = brightness temperature; T = effective soil temperature; T¢ = vegetation canopy temperature; LST = land surface temperature; T, s.rf = surface soil temperature;
Tsoit_depth = deep soil temperature; Cr = parameters (Choudhury effective temperature scheme); W, b, = fitting parameters (Wigneron effective temperature scheme);
ECMWF: European Centre for Medium-Range Weather Forecasts; GEOS-5: Goddard Earth Observing System Model, Version 5; Hg = roughness parameter; Ngp =
roughness parameter accounting for polarization dependency; Qr = polarization mixing coefficient; ® = effective scattering albedo; In LPDR, the Dobson dielectric
model is only used for the retrieval of SM as the VOD retrieval considers a constant dry soil emissivity (Mladenova et al., 2014).
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Fig. 1. Distribution of the IGBP land cover types. The boxes on the map indicate the selected sites (pixels) to illustrate the main features of the nine VOD products for
a variety of vegetation conditions.
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2.2.3. Aboveground biomass

We compared VOD with AGB provided by the global map updated
from Saatchi et al. (2011) (Saatchi et al., unpublished results) to assess
the relationships of different VOD products to the spatial variations in
aboveground vegetation carbon stocks. The 1-km resolution Saatchi
AGB map is produced from a variety of datasets (e.g., in-situ inventory
plots, MODIS and Quick Scatterometer (QuikSCAT) products). The
detailed methodology for generating this dataset is described in Saatchi
etal. (2011). The map obtained in this study (referred as to Saatchi AGB)
represents AGB circa 2015 (Carreiras et al., 2017). We selected this
dataset as an AGB benchmark map because it has been widely used as a
reference map to obtain calibration coefficients for converting L-VOD to
carbon density (Tong et al., 2019; Fan et al., 2019; Wigneron et al.,
2020). In these studies, best correlation scores between VOD and AGB
were generally obtained using Saatchi AGB, confirming the accuracy of
the Saatchi et al. (2011) datasets. In our study, the static Saatchi AGB
dataset was aggregated (using averaging) to 25 km scale to match the
spatial resolution of the other datasets.

2.2.4. Ancillary datasets

Several additional datasets resampled to 25 km were also used to
interpret the results. The MODIS-based global land cover climatology
map (Fig. 1) was applied to analyze the VOD inter-comparison results as
a function of land cover types. This land cover map is generated by
combining the 0.5 km MODIS product (MCD12Q1) in the International
Geosphere-Biosphere Programme (IGBP) scheme, as described in Brox-
ton et al. (2014). In addition, daily precipitation from NASA’s Global
Precipitation Measurement (GPM) IMERG Late Precipitation L3 1 day
0.1° x 0.1° (version 06) was used to identify the influence of precipi-
tation events on the temporal dynamics of VOD (Liu et al., 2011).

3. Methodology
3.1. VOD dataset pre-processing

The accuracy of the retrieved VOD data is generally highly variable
depending on topography, presence of frozen land surface conditions (e.
g., ice, snow), radio frequency interference (RFI), and pixel heteroge-
neity (e.g., water or urban fractions) (Fernandez-Moran et al., 2017a).
Filtering out potentially spurious observations was an important step for
the reliability of this study. Hence, the following data pre-processing
strategies were applied: i) to guarantee a fair inter-comparison, the
assessment of the VOD products was conducted for the same dates for all
products, which covers the period from April 2015 to December 2017.
This time period of about 2 years and a half was sufficient to analyze
seasonal variations in VOD; ii) the assessment was performed only over
pixels considering statistical error indicators (for example, the p-value to
estimate the robustness of the information provided by correlation co-
efficients), which will be introduced in the following Section 3.2; iii)
applying the following data filtering for all VOD retrievals:

- RFI. Microwaves emitted by artificial devices on the Earth’s surface
distort signals received by satellite sensors, resulting in unreliable
VOD retrievals. RFI intensity varies with frequency and location and
its impact varies with the sensor. For instance, at L-band, the SMAP
sensor, which is more recent than SMOS, is equipped with improved
RFI filtering techniques; SMOS is more affected by RFI in Asia and
Europe than elsewhere (Al-Yaari et al., 2019). Daily observations
affected by RFI are partly filtered out in this study by using corre-
sponding flags in each dataset as recommended by the data
producers.

Frozen soil. Due to the differences in the dielectric properties of
water and ice, VOD retrievals are generally unreliable when the
ground is frozen (Moesinger et al., 2020). Hence, we removed ob-
servations where the surface temperature was below 273.15 K. This
was done with the available flags for those VOD datasets, e.g., SMOS-
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IC provides a flag corresponding to frozen conditions (Fernandez-
Moran et al., 2017a).

Other potentially uncertain observations. In this study, we directly
used land classification data to eliminate static water bodies. We also
masked all pixels being “heterogeneous” or with a strong topog-
raphy. Heterogeneity was determined when the summed fraction of
urban, wetland, open water, and ice was greater than 10% (Fer-
nandez-Moran et al., 2017a). Finally, negative VOD values, which
are physically impossible, were removed.

The above filtering rules were applied independently to all daily-
scale VOD retrievals. We then adopted bilinear interpolation to resam-
ple SMAP MT-DCA, AMSR2 and VODCA VOD to the same projection
with a spatial resolution of 25 km. The same method has been utilized in
other studies involving VOD processing (Brandt et al., 2018; Chaparro
etal., 2019; Fan et al., 2019; Liu et al., 2018). Finally, the resulting daily
VOD data were averaged per pixel to 16-day mean values to match the
temporal resolution of the optical vegetation indices.

3.2. Methods for inter-comparison

A direct validation of the VODs at the global scale is not possible as
there is a lack of consensus on the reference values from in-situ mea-
surements or models to use (Li et al., 2020a). Several studies have shown
that at the global scale, VOD values not only have a high spatio-temporal
consistency with optical vegetation indices (Du et al., 2017b; Lawrence
et al., 2014), but also have a fairly consistent spatial distribution with
vegetation biomass and forest canopy height (Liu et al., 2011; Tian et al.,
2016). Hence, comparing VOD values with related variables and proxies
is an alternative method to evaluate the VOD performance which has
often been used (Fernandez-Moran et al., 2017a; Li et al.,, 2020a;
Rodriguez-Fernandez et al., 2018). In this study, the temporal and
spatial correlation between different VOD products and evaluation
(vegetation-related) datasets were assessed using the Pearson correla-
tion coefficient (R) (Grant et al., 2016; Lawrence et al., 2014; Li et al.,
2020a). We also considered the probability value (p) as a measure of
statistical significance; a level of p < 0.05 was used here.

To evaluate the ability of VOD to monitor AGB, we directly compared
the spatial correlation between VOD and aboveground carbon density.
We used a logistic function to fit the relationship between VOD and AGB
following the method used by Rodriguez-Fernandez et al. (2018):

a
AGB = g +d 6]

where AGB and VOD represent aboveground carbon density and vege-
tation optical depth at each frequency, respectively, and a, b, c and d are
best-fit parameters. The fitted curve gives AGB (Mg ha™!) as a function
of VOD (dimensionless). Thus, the units of a and d are Mg ha_l, while b
and c are dimensionless quantities. Spatial correlation computed be-
tween predicted (using the AGB - VOD fit given in Eq. (1)) and observed
AGB is also presented to evaluate the accuracy of the AGB predictions
based on different VOD products.

In addition to the above metrics, we adopted the Hovmoller diagram
to compare the spatio-temporal patterns of VOD for the nine products.
This diagram is a two-dimensional plot that shows the time-latitude
variations of a longitudinally averaged variable (Hovmoller, 1949),
highlighting consistency and differences between the nine VOD prod-
ucts. Moreover, an analysis at the pixel-scale was conducted to compare
the nine VOD datasets for a variety of biomes: seven pixels taking into
consideration relatively homogeneous land cover conditions (measured
using the Gini-Simpson index; Simpson, 1949) and contrasting vegeta-
tion types (see Fig. 1 and Table 3) were selected to compare the VOD
time series from different products. Although this comparison was
limited to seven locations that cannot cover the full range of climatic,
vegetation, and soil conditions at a global scale, the comparison at the
pixel-scale allowed us to analyze and illustrate some of the main
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Table 3

Location and type of biome of the seven sites (pixels) selected to compare the
different VOD time series.

Location Latitude Longitude Land Cover
1  Congo 2.060° N 18.545° E Evergreen broadleaf forest
2 Mexico 25.641° 106.988° Mixed forests
N w
3 Brazil 15.993°S  51.484° W Savannas
4 South 30.747° S 124.106° E Open shrublands
Australia
5  Nigeria 11.551° 7.133°E Croplands
N
6  South Africa 31.432° S 27.882° E Grasslands
7  South East US  35.173° 86.758° W Cropland/natural vegetation
N mosaic

characteristics of the nine VOD datasets (Al-Yaari et al., 2014; Karthi-
keyan et al., 2019).

All the above defined statistical indicators were only calculated on
common pixels that contained observations for all nine VOD products.
For example, to obtain the spatial R values between VOD and the
evaluation datasets, we used the time averaged values computed only
when each of the nine 16-day mean VOD data were available from the
different datasets. However, in a second step, to ensure a good overview
of all datasets in the analysis of the spatial patterns and of the Hovmoller
diagram, all available data has been kept for the different VOD products.

4. Results
4.1. Spatial patterns and temporal dynamics at global scale

At a global scale, all VODs show a similar spatial pattern, matching

(a)
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MODIS LAI and canopy height, with highest VOD values in tropical (e.g.,
Amazon and Congo basins) and boreal (e.g., Canada, Northern Russia)
forests and low VOD values in sparsely vegetated and dry areas (e.g.,
Sahara in northern Africa, desert areas in Australia and central Asia)
(Fig. 2a-1). The same patterns can be found in the AGB map (Fig. 20).
There are a few exceptions and notably the AGB values are much higher
in the tropical and eastern Russia forests than in western Russia, Canada
and Alaska forests, while VOD is about equally high in each of these
areas. In terms of absolute VOD values, it can be seen that there are large
differences even for a given frequency. For instance, considering X-band,
LPDR V2 VOD is obviously larger than LPRM V5 and VODCA VOD (by a
factor of about 2 in some densely vegetated regions). Considering C-
band, the harmonized VODCA C-VOD value is generally lower than the
value of LPRM V5 C1- and C2-VOD, while the latter two are very similar.
As for L-VOD, both versions of SMOS-IC have lower values than SMAP
MT-DCA, especially in eastern Brazil, southern China, and boreal forests.
According to the theoretical principle that propagation of the micro-
wave radiations decreases with frequency due to increasing extinction
effects, the VOD values in the high frequency band should theoretically
be larger than those in the lower frequency bands (Moesinger et al.,
2020). However, the VOD values obtained from the LPRM algorithm do
not seem to support this theory; in particular, over southern Mexico,
Amazon and Congo basins LPRM V5 X-VOD has lower values than LPRM
V5 C-VOD (Fig. 2a, e-f). A deeper analysis of this signature is discussed
in Section 5.1. Zonal VOD averages (side plots of Fig. 2) confirm the
results presented above. It can be seen that the zonal averaged distri-
bution of X-, C-, L-VOD and AGB is similar, that is, two obvious high
VOD and AGB peaks can be noted around latitudes of ~0°N and ~ 60°N
corresponding to regions of dense tropical and boreal forests. The sharp
peak presented by L-VOD for the SMOS and SMAP products correspond
better to the AGB peaks (Fig. 2p) as compared to the X- and C-VOD
products which show more gentle and flat peaks (Fig. 2d and h). These
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Fig. 2. Time averaged global maps of VOD from April 2015 to December 2017 for a) AMSR2 LPRM V5 X-VOD, b) AMSRU LPDR V2 X-VOD, c¢) VODCA LPRM X-VOD,
e) AMSR2 LPRM V5 C1-VOD, f) AMSR2 LPRM V5 C2-VOD, g) VODCA LPRM C-VOD, i) SMOS-IC V105 L-VOD, j) SMOS-IC V2 L-VOD, k) SMAP MT-DCA L-VOD and of
m) MODIS LAI (m?/m?), n) lidar vegetation height (m) and o) Saatchi AGB (Mg ha™'). Side plots show zonal averages for d) X-VOD, h) C-VOD, 1) L-VOD and p)
biomass. Note: to ensure a good overview of all datasets after quality control, no inter-mask is applied here.
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results are in line with the fact L-VOD is more sensitive to the whole
biomass, including stems, while higher frequency VODs are more sen-
sitive to the top of canopy and to leaf biomass, as found over Africa
(Brandt et al., 2018).

Boxplots of the average VOD values per land cover class show that
grasslands and shrublands as well as croplands have the lowest VOD
values, followed by savannas (Fig. 3). In contrast, forests and biomes
with more woody vegetation such as deciduous broadleaf, deciduous
needleleaf, and mixed forests show higher VOD values, which is
consistent with previous findings using in-situ biomass data and AMSR-E
VODs over Sahel drylands (Tian et al., 2016). All VODs consistently
show that evergreen broadleaf forest, mainly distributed in the wet
tropics, has the highest VOD values. Interestingly, VODs from different
algorithms/products were found to have a wide range of quantile values
over shrublands and grasslands, but a narrow range over croplands
despite the fact that planting density, crop types, and growing season
vary across regions, and despite the fact that biomass and hydraulic
behavior varies depending on crop types (Konings et al., 2017). As noted
before, for a given IGBP class, the VOD values should theoretically in-
crease with frequency. However, even if we exclude the reprocessed
VODCA VOD and only compare the VODs obtained from the same al-
gorithm and for the same mission, this theory is not fully supported. For
example, for evergreen broadleaf forest, the median X-VOD value
(~0.93) obtained from AMSR2 LPRM V5 is lower than the values of C1-
VOD and C2-VOD (both ~1.05). There are also variations for observa-
tions in the same frequency range: at L-band, VOD values derived from
SMAP MT-DCA are higher than those derived from both versions of
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SMOS-IC for all IGBP categories. As observed from the spatial patterns
shown in Fig. 2, the average VOD values of the two versions of SMOS-IC
are very similar. It can also be seen that L-VOD values generally follow
the decreasing trend in the AGB values from left to right in the plot,
which is not clear in other VOD products.

VOD varies temporally and spatially, and this variability depends
mainly on the season and latitude (Tian et al., 2018). We also evaluated
the ability of all VODs to detect the spatio-temporal variations in the
vegetation cycle, e.g., growth and senescence (Fig. 4). All nine VODs
have some common periodical features. For instance, similarly to NDVI,
a distinct seasonal pattern for all products can be seen in the Northern
Hemisphere (> 35°N) with higher VOD values during the summer
months corresponding to the period of maximum vegetation growth and
leaf production (as expected). However, the amplitude (maximum —
minimum) of the VODs in response to seasonal changes in vegetation
structure and production differs. Specifically, the order of this amplitude
is X-VOD > C-VOD > L-VOD. In the high latitudes of the Northern
Hemisphere (between 45°N and 60°N), all X-VODs show a clear sea-
sonality comparable to that of NDVI, followed by all C-VODs while all L-
VODs present weaker seasonal dynamics. This can be related to the fact
that VOD contains more information on the non-green woody compo-
nent (e.g. woody stems and branches which are vegetation components
with less seasonal changes than leaves) with decreasing frequency
(Grant et al., 2016; Tian et al., 2016). So, even during leaf development
in deciduous forests, L-VOD values are almost insensitive to leaf density,
in agreement with tower-based experiments (Guglielmetti et al., 2007).
This phenomenon is even more pronounced in tropical regions, where

Fig. 3. Boxplots of VOD at three frequencies (X-, C-
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Fig. 4. Hovmoller diagrams showing the 16-day mean values per latitude for the nine VOD products at X-, C- and L-bands and for NDVI. Note that frozen soil
conditions were removed during the data pre-processing (Section 3.1), so that there is no-data at higher latitudes in winter.

all L-VODs are almost constant. Surprisingly, since June 2015, the C1-
VOD and C2-VOD values obtained by AMSR2 LPRM V5 are globally
systematically lower than before and we did not find related literature to
point out the specific reason for this discontinuity, nor if there a reason
to think the raw AMSR2 observations changed in that time period.

4.2. Evaluating VOD against MODIS NDVI & EVI

4.2.1. Spatial correlation

The spatial correlation (R) of the nine VODs with mean NDVI and EVI
is presented in Table 4, while the corresponding density plots are shown
in Fig. 5 and Fig. S3 (with EVI). When considering the IGBP vegetation
types altogether, all VODs were found to have a slightly higher corre-
lation with NDVI (Bold items in Table 4; R=0.79-0.89) than with EVI
(R=0.73-0.84). This could be related to the fact EVI is more sensitive to

Table 4
Spatial correlation between the nine VOD products at X-, C- and L-bands and NDVI/EVI for different short vegetation IGBP types.
Frequency Product NDVI EVI
SH WS S G C CNVM R_total SH ws S G C CNVM R_total
X-VOD AMSR2 LPRM V5 0.81 0.38 0.72 0.72 0.60 0.73 0.87 0.77 0.23 0.71 0.64 0.53 0.65 0.80
AMSRU LPDR V2 0.83 0.43 0.75 0.74 0.62 0.74 0.89 0.78 0.41 0.76 0.65 0.59 0.74 0.84
VODCA LPRM 0.79 0.34 0.69 0.71 0.57 0.70 0.86 0.75 0.27 0.69 0.63 0.51 0.63 0.79
C-VOD AMSR2 LPRM V5 C1 0.81 0.36 0.68 0.73 0.59 0.71 0.87 0.77 0.26 0.68 0.64 0.53 0.65 0.80
AMSR2 LPRM V5 C2 0.82 0.33 0.63 0.71 0.48 0.65 0.84 0.78 0.15 0.62 0.63 0.49 0.56 0.76
VODCA LPRM C 0.79 0.30 0.56 0.70 0.58 0.71 0.86 0.76 0.27 0.57 0.62 0.52 0.63 0.80
L-vOD SMOS-IC V105 0.78 0.42 0.68 0.55 0.47 0.72 0.79 0.73 0.23 0.67 0.46 0.43 0.70 0.73
SMOS-IC V2 0.78 0.41 0.69 0.57 0.48 0.72 0.80 0.74 0.27 0.68 0.48 0.44 0.71 0.75
SMAP MT-DCA 0.77 0.33 0.64 0.52 0.44 0.69 0.80 0.74 0.18 0.65 0.44 0.41 0.69 0.75

Note: all the correlation coefficients are significant considering the criteria p < 0.

05.
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Fig. 5. Density scatter plots showing the spatial relationship between time averaged VOD values for the nine products at X-, C- and L-bands and NDVI at the

global scale.

forest cover than to AGB as suggested by Chaparro et al., 2019. The
highest correlation values were obtained between LPDR V2 X-VOD and
NDVI/EVI, while SMOS-IC V105 L-VOD had the lowest correlation with
NDVI/EVI, although its value is very close to the other L-VODs. We
found that the slope between VOD and NDVI varies with VODs. The
correlation between VOD and NDVI or EVI is found to be generally
higher for higher frequencies (L-VOD < C-VOD < X-VOD), which is
related to the fact that high-frequency VOD is sensitive to green vege-
tation which is not the case for low frequency VOD (Jones et al., 2013).
Moreover, both NDVI and EVI saturate at moderate L-VOD values (~
0.5) (Fig. 5 and Fig. S3). Therefore, as we mentioned in the introduction,
only comparing with optical vegetation indices is not enough to evaluate
low frequency VODs (such as L-VOD) that are relatively insensitive to
green vegetation and more sensitive to non-green vegetation
components.

Note that optical indices (i.e., NDVI or EVI) saturate when the
vegetation cover is dense, so their applicability for a proper evaluation is
limited to high frequency VOD. For a complementary comparison of
VODs considering separately sparse and dense forest areas (i.e., evalu-
ating VOD against forest canopy height), we refer to the supplementary
material.

As the optical vegetation indices saturate over densely vegetated
areas (Fig. 5) we listed only the spatial correlation between VODs and
optical indices for relatively short vegetation IGBP types (i.e., non-forest
and non-bare land types) in Table 4. The highest spatial correlation
between VOD and vegetation indices can generally be found within
shrublands, while the lowest correlation is for woody savannas followed
by croplands, regardless of frequency or product (or algorithm). For X-
VOD, the same R value ranking (AMSRU LPDR V2 > AMSR2 LPRM V5 >
VODCA LPRM) was found over all short vegetation IGBP land cover

types, except for woody savannas where VODCA LPRM has a higher
correlation value than AMSR2 LPRM V5 compared to EVI. AMSR2 C1-
band (6.9 GHz) VOD is generally found to have higher (or compara-
ble) correlations with optical indices than the C2-band (7.3 GHz) VOD
for these IGBP vegetation types. Considering low frequency L-VOD,
SMOS-IC V2 has higher or comparable spatial correlation values with
NDVI or EVI for all vegetation types than V105 and SMAP MT-DCA. The
spatial correlation (R) values between the three L-VODs and NDVI (or
EVI) were found to be lower than those of C-VOD and X-VOD over
grasslands and croplands, while the R values are comparable over the
other IGBP types. SMOS-IC V2 L-VOD presents even higher correlation
values than C-band VODs for savannas, woody savannas and cropland/
natural vegetation mosaic.

4.2.2. Temporal correlation

We found that the spatial patterns of the temporal correlation (R)
values between VODs and NDVI or EVI are generally similar for all VOD
products, whether they are obtained at the same frequency or not (Fig. 6
and Fig. S4). LPDR V2 X-VOD presents the highest temporal R values
with NDVI or EVI among the nine VOD products over most of the globe,
especially in central and eastern Russia (R > 0.75, Fig. 6) where most
other products show relatively low correlations. More generally, all X-
VODs are better correlated with NDVI than C- and L-VODs over most
regions of the globe, in particular in areas where annual rainfall controls
vegetation production, e.g., over Australia, southern Africa, Sahel,
eastern Brazil, Mexico, and also in eastern Canada, and eastern Russia.
All VODs were found to have non-significant R values (p > 0.05) over
desert areas in central Asia and northern Africa and in most tropical
areas (e.g., Congo and Amazon basins) with a low inter-annual green
vegetation dynamic. The temporal R values between VOD and NDVI (or
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EVI) increase with frequency (L-VOD < C-VOD < X-VOD) over most
regions of the globe, e.g., eastern Canada, Russia, India, central and
eastern Europe; another fact is that the proportion of pixels with non-
significant correlation values is also decreasing. However, there are

(@)

some exceptions. For instance, reprocessed VODCA C- and X-VOD have
almost comparable performance and both versions of SMOS-IC L-VOD
still have higher temporal R values than AMSR2 LPRM V5 C1- and C2-
VOD over eastern Brazil, western Sahel, south Africa and Australia.
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Fig. 7. Maps of VOD products showing the strongest correlation (R) values with MODIS NDVI for a) X-VOD; b) C-VOD; c¢) L-VOD; d) All-band VOD for each pixel. The
pixels for which the difference in R is lower than 0.1 in absolute terms are indicated by a blue colour. Grey areas correspond to pixels where the correlation is not
significant (p > 0.05). White areas denote “no valid data”. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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Interestingly, all L-VODs show a negative temporal correlation with
NDVI or EVI (Fig. 6 and Fig. S4) in the dry tropical woodlands around
the rain forests in the Congo Basin, in line with previous findings of the
decoupling between seasonal changes in L-VOD (stem water content)
and leaf phenology estimated from LAI (Tian et al., 2018, regions (i) and
(ii) in their Fig. 3).

To get an easier overview of the comparison considering the obser-
vation frequency, a map showing which VOD product has the strongest
per-pixel correlation with NDVI (and by a difference in correlation R of
0.1 at least in absolute terms) is provided for each frequency separately
in Fig. 7 (and in Fig. S5 for EVI). Note that the relationship to NDVI can
be negative especially for L-VOD in dry tropical woodlands, as discussed
above (Fig. 6g-i). At X-band, the strongest correlations are generally
found for AMSRU LPDR V2 (over 36.24% of the pixels without consid-
ering non-significant relationships), while VODCA VOD shows highest R
values over the eastern US and western Russia, and has a comparable
performance with AMSR2 LPRM V5 X-VOD for other regions (Fig. 6). At
C-band, VODCA C-VOD presents the highest correlation values over
53.92% of the pixels (Fig. 7b); in the eastern US AMSR2 LPRM V5 C2
generally shows the highest correlation values. For L-VOD, SMOS-IC V2
shows generally the highest correlation values (42.44% of the pixels),
except in some Northern Siberian regions, eastern Sahel, Kenya and
Miombo woodlands in Tanzania, where stronger correlation values are
obtained with SMAP MT-DCA (32.44% of the pixels). It is worth to note
that the temporal correlation between SMOS-IC V2 and NDVI is gener-
ally better than that obtained using V105 in most regions of the globe,
especially over Mexico, eastern Brazil, southern Africa and Australia
(Fig. 6 and Fig. 7). When considering frequencies rather than products
(Fig. 7d), it is also interesting to note that, although X-VOD presents
stronger correlation values with NDVI over most of the globe, L-VOD
correlates better with NDVI than X-VOD in some regions (e.g., eastern
US, mid-west Brazil and Miombo woodlands (Fig. S5)). This may be
caused by the different time lags between NDVI and VOD at different
frequencies. So, more generally, a higher correlation value between
NDVI and VOD cannot be directly interpreted as the ability of the VOD
product to better capture the seasonal changes of vegetation. More de-
tails about the effects of time lags are discussed in 5.2. Similar plots
using MODIS EVI confirm the results presented above for NDVI (Fig. S5)
and, as for spatial correlation, lower temporal correlation values were
obtained for the VOD/EVI relationship as compared to the VOD/NDVI
relationship over most of the globe except in some eastern Europe and
Northern Siberian regions (Fig. S6).

The highest temporal correlation with NDVI or EVI per IGBP vege-
tation type (Table S4) is found for savannas regardless of frequency or
product; this case is illustrated by the time series of VOD and NDVI at the
savannas site (Fig. 8c). In general, the VODCA C-VOD has temporal
correlation values comparable (or relatively closer than the other C-
VODs) to X-VOD for the listed vegetation types (Table 4). Excluding this
reprocessed product, the temporal correlations between L- and C- VODs
and NDVI (or EVI) were found to be lower than those obtained with X-
VOD for these short vegetation types (including considering the IGBP
types altogether), while both versions of SMOS-IC L-VOD and C-VOD
have comparable correlations over most IGBP types except woody sa-
vannas and croplands. Among the three L-band VOD products, SMAP
MT-DCA L-VOD shows relatively low temporal correlations with NDVI
and EVI for these short vegetation types, which is reflected in Fig. 8
where the SMAP L-VOD time series remain relatively stable, even when
NDVI has strong dynamics. A deeper analysis of this is discussed in
Section 5.1. SMOS-IC (V2) shows higher temporal correlations than C-
band VODs (e.g., AMSR2 LPRM V5 C1- and C2-VOD) for shrublands and
savannas (Table S4), which is surprising. This may be due to the fact that
L- and C-bands can both penetrate the canopy of medium-densely
vegetated biomes well.

4.2.3. VOD time series
An analysis of the seasonal dynamics in the different VODs is here

11

Remote Sensing of Environment xxx (Xxxx) xXxx

conducted based on daily time series of the nine VOD products along
with precipitation and NDVI at seven selected sites (Fig. 8, Table 3). In
general, LPDR V2 X-VOD was found to show smoother daily variations
than the other VOD products over all sites. It is also observed that SMOS-
IC V2 VOD has a strongly reduced high frequency variability compared
to its previous version (V105), especially in dense vegetation, for
example over the evergreen broadleaf forest site in the Congo basin
(Fig. 8a) and the mixed forests site over Mexico (Fig. 8b). This is because
SMOS-IC adopted in V2 a new constraint method accounting for the fact
that L-VOD has relatively low variations over short time periods
(Wigneron et al., 2000). Consistent temporal patterns were found be-
tween most VOD products and NDVI at sites with low vegetation density,
e.g. the savannas site over Brazil (Fig. 8c), the open shrublands site over
south Australia (Fig. 8d) and the croplands site over Nigeria (Fig. 8e). An
interesting feature of the time series is that some relatively small but
distinct fluctuations in most VODs can be visually related to rainfall
events; some examples are the December 2015 rainfall event at the sa-
vannas site, the November 2015 rainfall event at the open shrublands
site, the January 2017 rainfall event for the grasslands site. These
rainfall-related VOD variations could be a result from canopy-
intercepted water and/or from changes in the vegetation water status
due to the increase in the soil moisture availability (Feldman et al.,
2018; Saleh et al., 2006).

Generally, for all sites, all VOD products and NDVI show a clear
seasonality, i.e. increases during the vegetation growing season and
decreases in the senescence period. However, this pattern is more or less
pronounced depending on the sites and products, and some interesting
features over the different sites are described below: At the evergreen
broadleaf forest site, all L-VOD products, LPRM V5 C1- and C2-VOD, and
LPDR V2 X-VOD show more dynamic variations in comparison with the
LPRM V5 X-VOD, VODCA X- and C-VOD, and NDVI time series. How-
ever, even so, it seems that the seasonal change in VOD for LPRM V5 C1-
and C2-band, and LPDR V2 X-band is less stable than that of the L-VOD
products. Such a result was also found over the mixed forests site. These
signatures may result from the saturation effects in the high frequency
VOD values (see Section 4.3) in densely vegetated regions, which in turn
lead to increased uncertainty in the retrievals. Over the savannas site in
Brazil, the seasonal dynamics in all VODs and NDVI are very consistent
and highly correlated (e.g. R values between 16-day averaged VOD of
SMOS-IC V2 and NDVI is 0.94).

At the open shrublands site, a sudden decrease of AMSR2 LPRM V5
Cl- and C2- VOD is observed at the end of February 2016, which is
abnormal (seen as well in the Hovmoller diagrams Fig. 4). Ignoring this
period, over that site, we found that most products could detect the
relatively small but distinct fluctuations of VOD due to increased pre-
cipitation, whereas the LPDR V2 X-VOD time series failed to do so; for
instance this can be noted for rainfall events that occurred in December
2016, January 2017, and March 2017. In the case of the croplands site,
all VODs were found to lag with NDVI by ~16 days for LPDR V2 X-VOD
and both versions of SMOS-IC L-VODs, and of ~30 days for the other
VODs. A similar behavior is also observed, at the grasslands site,
although less pronounced. All these results are consistent with Lawrence
et al. (2014), who found that the SMOS L-VOD values (which are more
related to the whole vegetation canopy including leaves, stems and
fruits/grains) generally peaked later than the MODIS LAI values (more
related to the vegetation green fraction) with an estimated time differ-
ence of about 19 days over crop zones of the USA.

4.3. Evaluating VOD against aboveground biomass

Density scatter plots of VOD-AGB relationships for the nine VOD
products at the global scale reveal (1) an obvious non-linear saturating
relationship between VOD and AGB, and (2) less pronounced saturation
for L-VOD (Fig. 9). The spatial correlation of the relationship between
VOD and AGB is ~0.80 for the L-VODs and between 0.61 and 0.67 for X-
VODs and C-VODs, respectively. At X-band, VOD obtained from
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Fig. 8. Time series of the nine VOD prod-
ucts (smoothed with a moving window filter
of seven days) at X-, C- and L-bands at
selected sites from April 2015 to December
2017. Each plot also includes NDVI (shown
in magenta dots; axis on the right) and daily
precipitation (mm/day, shown in black; axis
on the rightmost side) observed during the
same period. Note: for completeness, Fig. 8a
used data without quality control for LPDR
VOD. (For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Density scatter plots showing the spatial relationship between time averaged VOD at X-, C- and L-bands with AGB values. The mean AGB distribution in bins
of VOD are displayed as blue circles, while solid blue lines are the fits obtained using a logistic function (Eq. 1). R; represents the spatial correlation between VOD and
AGB, while R, represents the relationship between predicted AGB and reference AGB. All regressions are significant (p-value <0.001, the best-fit parameters are
shown in Table S5). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

reprocessed VODCA and AMSR2 LPRM V5 showed a similar dispersion
and distribution shape, and the correlation values with AGB are lower
than that obtained with LPDR V2 (Fig. 9a—c). At C-band, unlike LPRM V5
Cl-band and C2-band which have a gradually smooth slope transition,
the reprocessed VODCA VOD has a steep increase near AGB ~ 50 Mg
ha~! (VOD ~ 0.3) (Fig. 9d-f). At L-band, the shape of the density dis-
tribution obtained with SMOS-IC V2 has less distortion around VOD ~
0.3 and AGB ~ 120 Mg ha™! compared to V105, similar as SMAP MT-
DCA (Fig. 9g-i). Notably, low-frequency L-VODs exhibit a high sensi-
tivity to AGB, with a smooth relationship and without strong signs of
saturation, which is not the case for high-frequency X-VODs and C-
VODs.

Using the logistic function fitting (Section 3.2), both SMOS-IC V2 and
SMAP MT-DCA L-VODs predict surface AGB very well, with a correlation

(R) of ~0.85 computed between predicted and observed AGB (Fig. 9).
Best results were obtained from L-VODs followed by X-band LPDR V2
(R=0.76), which performed better than the other X-band products (i.e.,
AMSR2 LPRM V5 and VODCA LPRM X-VOD) and the C-band products.
To achieve a fair comparison, we used identical pixels for the nine
products at X-, C- and L-bands, filtering out many pixels corresponding
to evergreen broadleaf forest (EBF) in tropical regions. This filtering was
particularly due to the LPDR V2 X-VOD product, which includes many
regions with no data in the tropical area after quality control (Fig. 2b)
(such data gaps do not appear in the other VODs). This filtering leads to
an underestimation in the ability of the other products (e.g., L-VOD) to
estimate AGB. So, in a second step, we removed LPDR V2 from the
comparison (the number of pixels increased by 8446 (6.02%) for the
remaining comparisons), and the spatial correlation and prediction

Table 5
Spatial correlation of the nine VOD products at X-, C- and L-bands with AGB for different IGBP land cover classes.
Frequency Product ENF EBF DNF DBF MF SH WS S G C CNVM B R_total R_estimate
X-VOD AMSR2 LPRM V5 0.28 0.22 0.36 0.26 0.38 0.66 0.34 0.48 0.56 0.49 0.57 0.34 0.63(0.66) 0.69(0.75)
AMSRU LPDR V2 0.14 0.19 0.40 0.25 0.41 0.68 0.44 0.52 0.54 0.51 0.63 0.37 0.67 (x) 0.76 (x)
VODCA LPRM 0.24 0.16 0.38 - 0.38 0.66 0.33 0.46 0.55 0.45 0.54 0.36 0.61(0.64) 0.68(0.73)
C-VOD AMSR2 LPRM V5 C1 0.31 0.32 0.42 0.28 0.40 0.68 0.40 0.51 0.58 0.51 0.58 0.28 0.66(0.73) 0.73(0.84)
AMSR2 LPRM V5 C2 0.34 0.36 0.42 0.42 0.44 0.67 0.34 0.46 0.58 0.44 0.52 0.26 0.63(0.71) 0.69(0.81)
VODCA LPRM C 0.32 0.28 0.34 - 0.35 0.64 0.34 0.39 0.56 0.47 0.54 0.35 0.63(0.68) 0.71(0.78)
L-vOD SMOS-IC V105 0.37 0.59 0.66 0.54 0.18 0.73 0.53 0.63 0.63 0.61 0.73 0.39 0.79(0.86) 0.83(0.90)
SMOS-IC V2 0.41 0.61 0.63 0.57 0.34 0.72 0.59 0.63 0.64 0.67 0.74 0.39 0.81(0.88) 0.86(0.92)
SMAP MT-DCA 0.47 0.61 0.66 0.55 0.50 0.73 0.59 0.59 0.65 0.68 0.69 0.41 0.79(0.85) 0.85(0.91)

Note: [—] indicates that correlation is not significant (p-value>0.05). The number in brackets indicates the comparison result after removing LPDR V2 (the number of

pixels increased from 140,302 to 148,748 (6.02%)).
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ability of the reprocessed VODCA was found to be slightly lower than
LPRM V5 at both X-band and C-band when compared with AGB (results
in parentheses in Table 5 and in Fig. S7). In summary, the sensitivity of
all the VODs to AGB follows the order L-VOD > C-VOD > X-VOD and the
correlation between predicted AGB and observed AGB decreases from R
~ 0.92 to ~0.73 as the frequency increases.

All nine VOD products were found to have the highest spatial R
values with AGB for shrublands (Table 5). However, after removing
LPDR V2 which has more data gaps, a comparably high R value for
evergreen broadleaf forest was obtained for L-VODs (Table S6). Lower R
values for X-VODs and C-VODs were generally found over forest biomes.
At X-band, both LPRM V5 and VODCA showed a higher R value with
AGB than LPDR V2 for evergreen needleleaf forest and grasslands, while
it was the opposite for the other IGBP types. At C-band, LPRM V5 C1-
VOD (or VODCA C-VOD) was found to have the lowest (or non-
significant) R value over deciduous broadleaf forest. Interestingly, the
correlation obtained by LPRM V5 C2-band (7.3 GHz) was higher than
that obtained by C1-band (6.9 GHz) over most forest types, while the
opposite result was found over the short vegetation types (Table 5).
More generally, for most vegetation types, VODCA VOD shows slightly
lower R values than LPRM V5. For low frequency L-VOD, higher R values
were obtained for SMOS-IC V2 vs. V105 over most vegetation types,
while the R values obtained by both versions of SMOS-IC were lower
than those of SMAP MT-DCA over mixed forests. As expected, due to the
improved propagation capabilities of the microwave radiations as the
frequency decreases, the spatial correlation between VOD and AGB
increased with decreasing frequency, and this feature is more obvious in
dense forests, even from X-band to C-band (except VODCA VOD).
However, for short vegetation, although the L-band still has the leading
edge, results obtained at X-bands are very good and almost comparable
to those obtained with C-VODs, in particular over woody savannas, sa-
vannas and cropland/natural vegetation mosaic.

5. Discussion

The results presented in this study have implications in two main
fields. First, we revealed specific features and deficiencies in the VOD
products that may provide useful hints for the remote sensing commu-
nity dedicated to VOD retrieval improvements. Second, our results may
be useful for the research community more dedicated to the use of the
VOD products for vegetation monitoring. These two main types of im-
plications are discussed in the following sections.

5.1. Possible ways to improve the VOD retrievals

The analysis of the different results obtained in this study revealed
specific features or deficiencies of some products:

(i) For LPRM V5 products, the magnitude of X-VOD < C-VOD over
some dense forests (Fig. 2 and Fig. 3) does not meet the theo-
retical principle that the penetration of microwave radiations
within the vegetation canopy should decrease with frequency due
to increasing extinction effects;

(ii) LPDR V2 X-VOD time series failed to detect changes in VOD after
rainfall events (Fig. 8) whereas most VOD products could do so,
and overall LPDR V2 X-VOD has smoother daily variations;

(iii) The MT-DCA approach for SMAP has lower correlation with op-
tical datasets (NDVI, EVI) than SMOS-based L-band products
(Fig. 8 and Table S4);

(iv) The spatial correlations between L-VODs and MODIS VIs were
found to be lower than those of C- and X-VODs particularly over
grasslands and croplands (Table 4), while all VODs have com-
parable performances over the other relatively short vegetation
IGBP types.

(v) C- and X-VODs have a comparable or even higher spatial corre-
lation with respect to canopy height than L-VODs over evergreen
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needleleaf forest and mixed forests (Table S2). This relative
deficiency of the L-VODs was noted particularly in boreal regions.

All these findings indicate that there is some margin to improve the
current VOD products or algorithms, but also keeping in mind their field
of application. Concerning deficiencies (i), the evaluation/calibration of
the model parameters (e.g., roughness (Hg) and effective scattering al-
bedo (»)) may need to be reconsidered to develop improved products.
Considering the calibration of o, divergences could be noted in different
studies. For instance, Baur et al. (2019) found that @ decreased slightly
with frequency or showed highest values at C-band when retrieving
simultaneously VOD and o at X-, C-, and L-bands. However, the setting
of ® in the LPRM V5 algorithm is reversed (the calibrated value of o is
increasing with frequency) (Table 2). Uncertainties associated with the
roughness and o parameters affect all VOD products, not just those from
LPRM - there is still no consensus on how the roughness parameters
change with frequency (even though Wigneron et al. (2017) found these
changes are relatively low), and how these changes affect the VOD re-
trievals at different frequencies. Indeed, differing assumptions for the
values of these ancillary parameters may also explain the very different
magnitudes of the X-VOD values between the LPDR and LPRM datasets
(although these could also be caused by differing corrections for the
effects of open water bodies and land surface temperature between the
datasets). In addition, the Hr roughness parameter may also have a
considerable effect on the retrieved values of VOD, SM and o (Fernan-
dez-Moran et al., 2017a, 2017b; Karthikeyan et al., 2019). For instance,
at L-band, changes in roughness can be partially accounted for by
changes in L-VOD, leading to a low impact on the SM retrievals but a
strong impact on L-VOD (Hornbuckle et al., 2017; Parrens et al., 2016).

Issues (ii) and (iii) are both related to assumptions made in the al-
gorithm development. For instance, the LPDR algorithm assumes a
constant dry bare soil emissivity in the VOD retrievals (Table 2), which
may balance/ignore the impact of rainfall on the simulated TB in the
original T-o equation (Du et al., 2017a, 2017b). Another possible reason
is that a 30-day moving median filter is applied to its daily VOD values
(Jones et al., 2011), which also makes its time series smoother than for
the other products in Fig. 8. As for SMAP, to solve the under-determined
retrieval problem of the dual-channel algorithm (DCA) from its single-
angle TB, MT-DCA was developed assuming that VOD is constant over
a time window. However, this assumption is likely to be violated espe-
cially over grasslands and croplands where vegetation growth can be
very fast, e.g., the VOD value can increase by ~0.2 [—] per 10 days in a
cornfield (Jackson et al., 2004), or right after a rain storm, when the
relative vegetation water content increases quickly. Besides, the tem-
poral changes of emissivity are not evenly distributed across the globe,
which may also affect the performance of MT-DCA (Gao et al., 2020b).
One possible way to improve the weak assumption in MT-DCA is to take
into account the slow changes of VOD using a smooth-regularization
technique (Gao et al., 2020a).

Issues (iv) and (v) could be partly related to the fact the IGBP clas-
sification used here does not match the study period, and pure biomes
are also very rare in the 25 km land classification: in reality all pixels are
more or less heterogeneous and include a variety of IGBP land vegeta-
tion types. On the other hand, it is likely issues (iv) and (v) revealed
specific retrieval issues for some ecosystems, e.g., grasslands, croplands
and boreal regions. Possible reasons are briefly discussed in the
following. Grasslands exhibit complex microwave signatures at L-band,
due to the presence of a thatched litter layer of dead grass under the
green vegetation in non-plowed areas (Grant et al., 2016; Saleh et al.,
2007). Such a thatched litter layer, particularly when it is wet, can have
a large effect on the L-band emission and/or may lead to complex
coherent scattering effects within the vegetation layer, for specific
moisture status of the vegetation, litter and soil layers (Grant et al.,
2009). These effects may be lower for high-frequency observations as
the latter are more sensitive to the top-of-the-canopy layer. For crop-
lands, changes in surface roughness due to farming practices may impact



X. Lietal

the VOD retrievals (Fernandez-Moran et al., 2015; Patton and Horn-
buckle, 2012) and this impact may be more pronounced at L-band than
at X- and C-bands for some specific soil/vegetation conditions (Mont-
petit et al., 2015).

In boreal regions, the VOD retrievals may be intricate due to specific
features (e.g., open water bodies and frozen conditions) of the ecosys-
tems in the northern regions. In the latter regions, large climatic varia-
tions support the existence of diverse conifer forests types, with very
different tree densities with specific phenological behaviors, in partic-
ular for deciduous needleleaf forest (DNF) which are prevalent in east
Siberia (Crowther et al., 2015). Moreover, both broadleaf and needleleaf
species coexist in most boreal forests, making VOD temporal averaging
delicate and temporal averaging can be only calculated over a limited
period, since the data in winter are often affected by frozen/snow con-
ditions. Furthermore, soils in the boreal regions are characterized by a
high content of organic matter leading to distinct dielectric behaviors, as
organic materials differ from the mineral ones by their complex struc-
ture, large specific surface area, high porosity and small bulk density
(Wigneron et al., 2017). Such an effect is not considered in VOD retrieval
algorithms (Table 2) and particularly in the two L-VOD retrieval algo-
rithms (SMOS-IC and SMAP MT-DCA) which currently use the Mironov
dielectric mixing model (Mironov et al., 2004) based only on the clay
fraction. Thus, adopting a new dielectric model applicable to organic
soils in boreal regions may be considered in future generations of the
VOD retrieval algorithms (Mironov et al., 2019). Finally, the RFI impact
is also very important in the boreal regions, especially at L-band (Al-
Yaari et al., 2019).

5.2. Limitations of the evaluation approach

It should be noted that there are some limitations in the VOD eval-
uation made here that should be considered for a better interpretation of
the results in VOD application studies. First, temporal correlation be-
tween VOD and optical VIs (Fig. 6 and Fig. 7) cannot be used as an
“absolute” criterion for judging the quality of the different products as
low or even negative temporal R values can be explained by a temporal
lag between different climate and vegetation variables (SM, X/C/L-VOD,
LAI, EVI) in some ecosystems (Jones et al., 2011). For instance, Jones
et al. (2014) found that the period of canopy biomass growth (indicated
by X-VOD), maximum water availability and net leaf flush in the
Amazon forests are asynchronous and follow a gradient from west to
east, which reveals the adaptability of the Amazon forests to water and
light availability. Similarly, Tian et al. (2018) found that SMOS L-VOD
lags the leaf development by up to ~180 days in dry tropical woodlands,
explaining that L-VOD vs. optical VIs showed a negative correlation in
some regions such as the large Miombo woodlands south of the Congo
basin (Fig. 6g-i). A time lag of ~19 days between L-VOD and LAI was
also found for crops in the USA (Lawrence et al., 2014), similarly to the
site analysis presented in this study (Fig. 8e) (a time lag was found here
for all the X-, C- and L-band VODs).

Additionally, the proxies we chose, MODIS VIs, Lidar tree height and
AGB, although widely used in VOD evaluation studies (Fan et al., 2019;
Liuetal., 2011; Rodriguez-Fernandez et al., 2018), cannot be considered
as “truth” (Li et al., 2020a). Moreover, the impact of daily or seasonal
changes in the vegetation water status as considered in other fields of
research by Konings et al. (2019) and Tian et al. (2018), were not
evaluated/removed here when evaluating VOD against annual AGB
maps. Similarly, averaging VOD retrievals to 16-day to analyze its
ability to monitor the vegetation dynamics may also ignore some in-
formation observed by daily-scale VOD, e.g., pulse-reserve paradigm
(Feldman et al., 2018). This latter topic would require a specific analysis
based on other proxies of the vegetation water status and water stress
(Konings et al., 2019) and will be considered in more focused future
studies. Nevertheless, in spite of their limitations, we think the chosen
proxies are relatively complementary in this study to evaluate VOD re-
trievals as (i) correlation with MODIS VIs could be regarded as a
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criterion more pertinent for short vegetation canopies. We noted too that
higher correlation values in both temporal and spatial terms and for
most vegetation types were generally found between VOD and NDVI as
compared to VOD and EVI; (ii) correlations with global tree height and
biomass is considered relevant for woody vegetation types. In the future,
triple collocation (TC) or TC-related methods may also be used to esti-
mate the correlation metric of satellite vegetation optical products
relative to unknown ground truth (Dong et al., 2019; Gruber et al.,
2016), once an independent vegetation optical product is available (e.g.,
ASCAT active VOD; Liu et al., 2020).

6. Concluding remarks and outlook

In this study, the performance of nine recently developed/reproc-
essed microwave satellite VOD products at L-, C- and X- bands for
monitoring vegetation features, were assessed and inter-compared in
relation to seasonal change and of sensitivity to biomass at the global
scale. The nine VODs were evaluated against MODIS VIs (i.e., NDVI and
EVI), tree height, and AGB across different IGBP vegetation types. We
found that:

(i) X-VODs, particularly in the LPDR version, have a stronger ability

than C- and L- VODs to monitor seasonal changes in the green

vegetation components in regions which are not densely vege-
tated, and they show higher temporal correlation values (R) with

MODIS VIs (median R values of 0.74 at the global scale). More

surprisingly, low frequency L-VOD, particularly the new SMOS-IC

V2 version also shows high temporal correlation values with VIs

similar to C-VODs in some biomes such as savannas (R ~ 0.70).

L-VODs which have stronger penetration capabilities within the

vegetation canopies than high-frequency products, show a high

spatial correlation with canopy height, with SMOS-IC V2 and

SMAP MT-DCA showing similar scores at global scale (R ~ 0.90).

Moreover, we reveal a good linear relationship with a low

dispersion with respect to tree height, even in tall forests.

(iii) L-VODs are more sensitive to the non-green vegetation compo-
nents (trunks and branches) than the higher frequency (i.e., X-
and C-VOD) products, thus showing a high correlation with
aboveground biomass. Logistic fitting function provided a cor-
relation between predicted AGB and observed AGB of R ~ 0.91
for SMOS-IC V2 and SMAP MT-DCA L-VOD at a global scale.

(i)

Our results suggest that it may be very interesting to analyze the time
lags of VODs computed at different frequencies and vegetation or
climate variables, as it may help us to better understand the adaptability
of the vegetation ecosystems to water and light availability and tem-
perature conditions, as done by Jones et al. (2014) in the Amazon for-
ests. Further studies can now be made, considering the availability of
long-term and improved sequences of L-VODs, that can provide infor-
mation on forest dynamics for deeper layers of the canopy, e.g., SMOS-IC
L-VOD is now available for 10 years (Table 1). Moreover, VODs can be
particularly useful in regions where the optical observations are affected
by atmospheric and aerosol effects and by cloud cover, as VODs are
retrieved independently of the optical-near infrared remote sensing-
based VIs and are relatively insensitive to signal perturbation from
sun-sensor illumination conditions and atmospheric effects. Conversely,
optical VIs have a relatively higher spatial resolution and VOD and
optical VIs may thus be used complementary. Their synergistic use could
provide a more comprehensive assessment of dynamic vegetation fea-
tures such as phenology (Jones et al., 2011) and carbon stocks (Chaparro
et al., 2019).

We expect that our findings can contribute to improve the satellite
vegetation optical depth retrieval algorithms by reporting on strengths
and weaknesses of current VODs depending on the vegetation features
(leaf development, structure, height and biomass). Our findings could
also help selecting best suited VOD product depending on the
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applications and contribute to promote the use of VODs for vegetation
monitoring on the subjects of carbon stocks, vegetation dynamics and
phenology.
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Appendix A. Remotely sensed VOD products
A.1. SMOS-IC (V105&V2)

The ESA’s SMOS mission, which was launched on November 2, 2009,
was the first L-band space-borne mission dedicated to monitoring global
land soil moisture (Kerr et al., 2010). It is equipped with a microwave
synthetic aperture radiometer (1.4 GHz) which can provide multi-angle
and dual-polarized brightness temperature (TB) observations over a
range of incidence angles (~ 0-60°). This observational feature allows to
robustly infer properties of the soil and vegetation (i.e., retrieving SM
and VOD) simultaneously from the SMOS data (Wigneron et al., 2017).
In this context, to make efficient use of the TB observations (that is, to be
as much as possible independent from auxiliary datasets), an alternative
SMOS SM and VOD product (initially called SMOS-INRA-CESBIO or
SMOS-IC) was developed and the first publicly released version was
V105 (Fernandez-Moran et al., 2017a, 2017b). SMOS-IC has the main
following features:

i) independent of auxiliary data: contrary to the official algorithms
no ECMWF modelled SM data or MODIS LAI products are used in
SMOS-IC; only ECMWF temperature is used currently (Fernan-
dez-Moran et al., 2017a; Li et al., 2020a);

relative to the baseline SMOS algorithms, it is simpler and avoids
uncertainties and errors associated with inconsistent auxiliary
datasets and decision trees which are adopted to characterize the
pixel heterogeneity in the other SMOS algorithms (Wigneron
et al., 2018);

it is based on new maps of model parameters for soil roughness
and vegetation scattering effects (Fernandez-Moran et al., 2017a;
Parrens et al., 2016).

ii

=

iii)

All the above features make SMOS-IC products very performant
compared to other products for both SM (Al-Yaari et al., 2019; Dong
et al., 2020; Ma et al., 2019; Sadeghi et al., 2020) and VOD (Rodriguez-
Fernandez et al., 2018). For instance, in terms of SM, recent inter-
comparison studies have shown that the SMOS-IC SM product is very
accurate and close to the performances of SMAP (Al-Yaari et al., 2019),
and possibly reaching best performances over dense vegetation canopies
(Ma et al., 2019). In terms of VOD, the SMOS-IC VOD products have
been found to provide more accurate relationships than the CATDS
(Centre Aval de Traitements des Données SMOS) official SMOS products
to estimate above ground biomass (Rodriguez-Fernandez et al., 2018).
The SMOS-IC VOD products have been increasingly used over the very
recent years in a number of applications, such as monitoring vegetation
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seasonality (Tian et al., 2018), crop modelling (Chaparro et al., 2018),
and carbon cycle (Bastos et al., 2020; Brandt et al., 2018; Fan et al.,
2019; Wigneron et al., 2020), etc.

Since the release of the first version V105, several improvements
have been applied to the SMOS-IC algorithm, leading to the production
of the version 2 (V2), based on a collaboration between INRAE and
China Scholarship Council. A major improvement concept is that VOD
has low time variations over short time periods (Tian et al., 2018;
Wigneron et al., 2007), which was not properly considered in V105. To
implement this concept, the optimization processing of the a priori in-
formation on VOD to constrain the retrievals has been modified in
SMOS-IC V2: to retrieve VOD at a date t, previously retrieved VOD
values (over a period of 10 days before date t) are used to initialize the
first guess value of VOD (VODi"i) in the cost function. Readers are
referred to Wigneron et al. (Submitted) for more detailed description of
the SMOS-IC V2 retrieval algorithm. It should be noted that the im-
provements in SMOS-IC V2 are obvious for both SM and VOD. As the
focus of this study is VOD, the assessment of SM is not presented here (Li
et al.,, 2020b; Wigneron et al., Submitted).

Both versions of SMOS-IC products are projected on a global Equal
Area Scalable Earth Grid version 2 (EASE-Grid 2.0), and the SM datasets
of V105 are available in the Network Common Data Form (NetCDF)
format through CATDS for both ascending (6:00 am) and descending
(6:00 pm) orbits with a spatial resolution of 25 km. In this study, we used
both versions of SMOS-IC VOD retrieved using observations acquired
from the ascending orbits, at early morning, which are less sensitive to
the vegetation water status than observations acquired in the afternoon
from the descending orbits.

A.2. SMAP MT-DCA

The NASA’s SMAP mission, which was launched on January 31,
2015, is the most recent L-band space-borne satellite for global soil
moisture and landscape freeze/thaw state mapping (Entekhabi et al.,
2010). Since the radar instrument (1.26 GHz) failed after about 11
weeks of operation, SMAP has only relied on the passive radiometer
(1.41 GHz) to collect fully-polarized TB operating at a single incidence
angle of 40°. This single-angle configuration limits the robustness of
retrievals of both SM and VOD from a dual-channel algorithm (DCA) as
the Horizontal (H-) and Vertical (V-) polarized TB observations contain
some shared information (O’Neill et al., 2015; Konings et al., 2016).
After comparing several algorithms, the driving SM inversion algorithm
of the SMAP mission is a single-channel algorithm (Jackson, 1993)
based on V polarization (SCA-V), which NDVI data is used as ancillary
information to estimate VOD in the retrieval process (Chan et al., 2013).
In contrast, by considering multi-temporal (MT-) observation informa-
tion in the DCA approach, a new algorithm called MT-DCA was devel-
oped for simultaneously retrievals of SM, VOD and effective scattering
albedo without using ancillary datasets on vegetation (Konings et al.,
2016, 2017). One of the main assumptions of MT-DCA is that the tem-
poral variations of VOD is slower than that of SM and the values of VOD
are assumed to be almost constant for two consecutive overpasses.
Readers are referred to Konings et al. (2016, 2017) for more information
about this algorithm.

The latest SMAP MT-DCA (V4) L-VOD including 9 km and 36 km is
available in a binary format (.mat) on a global EASE-Grid 2.0 through htt
p://afeldman.mit.edu/mt-dca-data. In this study, we used the 9 km
SMAP MT-DCA L-VOD covering about 2 years and a half (see Section
3.1). This dataset was retrieved from the SMAP Level 1C Enhanced
Brightness Temperature Product (L1C_TB_E) with the descending orbit
(6:00 AM) as input.

A.3. AMSR2 (LPRM&LPDR)

The AMSR2, which was launched by JAXA on May 17, 2012, is an
improved successor of AMSR-E onboard GCOM-W1. AMSR2 has similar
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orbits, bands and local overpass times (1:30 am for descending orbit and
1:30 pm for ascending orbit) as AMSR-E (Imaoka et al., 2012). In
addition, it also includes a second C-band channel (C2-band, 7.3 GHz),
which can be applied to cover areas where RFI exists in the main C1-
band channel (6.9 GHz). In this study we used AMSR2 VOD products
for the descending orbits computed from two reference algorithms (i)
LPRM (Land Parameter Retrieval Model; Owe et al., 2008) and (ii) LPDR
(Land Parameter Data Record; Du et al., 2017b). These AMSR2 VOD
products have the same sample resolution of 25 km and are briefly
described in the following.

In the LPRM algorithm, based on the 0™-order Tau-Omega emission
model (Mo et al., 1982), both SM and VOD are obtained simultaneously
from the Microwave Polarization Difference Index (MPDI) with the use
of an analytical retrieval methodology (Meesters et al., 2005). In the
present study, we used the AMSR2 VOD product retrieved from LPRM
V5 (Owe et al., 2008), as the latest version (V6) is not publicly available
(van der Schalie et al., 2017). The LPRM V5 retrieval process used
AMSR2 spatial-resolution-matched TB (L1SGRTBR) as input TB data,
and the input land surface temperature was retrieved separately from
the AMSR2 Ka-band (36.5 GHz; Holmes et al., 2009). Here, we used the
descending VOD products from AMSR2 C1-, C2-, X-band (Vrije Uni-
versiteit Amsterdam and NASA GSFC, 2014).

The LPDR version 2 (V2) is an enhanced data record over prior (V1)
LPDR, in which X-band VOD is obtained by inverting the land-water
microwave emissivity slope index (Du et al., 2017b). In comparison to
the previous version (Jones et al., 2010), V2 has advantages in both
temporal coverage and retrieval accuracy, and the main refinements and
updates include: i) extended time period from AMSR-E (June 19, 2002)
to AMSR2 (December 31, 2018) by empirically calibrating the AMSR2
multi-frequency TB retrieval algorithm on the same channel as AMSR-E;
ii) refined AMSR2 estimation of the daily maximum and minimum
surface air temperature by considering terrain and latitude effects (Du
et al., 2015); iii) improved SM retrieval by using a dynamic selection of
vegetation-scattering albedos (Du et al., 2016). We refer readers to Du
et al. (2017b) for further detailed information on this algorithm. The
LPDR V2 X-VOD is projected on global EASE-Grid (V1) with a GeoTIFF
format and is freely available via (https://nsidc.org/data/nsidc-0451).

A.4. VOD Climate Archive (VODCA)

The TU Wien’s VODCA product, which combined multiple single-
sensor VOD retrievals derived using LPRM algorithm, is a global daily
VOD product with a sampling resolution of 0.25 degrees (Moesinger
et al., 2020). This product was inspired by Liu’s long-term (1987-2008)
harmonized multi-sensor VOD dataset (Liu et al., 2011) and ESA’s first
long-term satellite-based climate data record of soil moisture within the
Climate Change Initiative (ESA CCI SM; Gruber et al., 2019). It is based
on a similar core methodology as Liu et al. (2011) but incorporates new
insights into VOD and the strategies in the production of ESA CCI SM
climate data records in recent years (Moesinger et al., 2020). Specif-
ically, unlike Liu et al. (2011), which harmonized all observations to
AMSR-E’s high-quality C-VOD, this product is a frequency-specific VOD
dataset as different frequencies carry valuable specific information
suitable for various applications (Teubner et al., 2019). VODCA com-
bined VOD observations from AMSR2, WindSat, AMSR-E, Tropical
Rainfall Measuring Mission (TMI), and Special Sensor Microwave/
Imager (SSM/I) into long-term VOD datasets at C-band (period
2002-2018), X-band (1997-2018), and Ku-band (1987-2017). The
biases between the VOD values retrieved from different sensors were
eliminated by scaling them to AMSR-E VOD using a new implementation
of the cumulative distribution function matching technique; further
detailed information about the retrieval algorithm are given in Moe-
singer et al. (2020). In this study, we only used VODCA X- and C-VOD, as
the Ku-VOD products were incomplete in 2017 (no data from August to
December).
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2020.112208.
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