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Abstract We estimate the effects on the decay constants of
charmonium and on heavy meson masses due to the charm
quark in the sea. Our goal is to understand whether for these
quantities Nf = 2 + 1 lattice QCD simulations provide
results that can be compared with experiments or whether
Nf = 2 + 1 + 1 QCD including the charm quark in the sea
needs to be simulated. We consider two theories, Nf = 0
QCD and QCD with Nf = 2 charm quarks in the sea. The
charm sea effects (due to two charm quarks) are estimated
comparing the results obtained in these two theories, after
matching them and taking the continuum limit. The absence
of light quarks allows us to simulate the Nf = 2 theory at
lattice spacings down to 0.023 fm that are crucial for reli-
able continuum extrapolations. We find that sea charm quark
effects are below 1% for the decay constants of charmonium.
Our results show that decoupling of charm works well up to
energies of about 500 MeV. We also compute the derivatives
of the decay constants and meson masses with respect to the
charm mass. For these quantities we again do not see a sig-
nificant dynamical charm quark effect, albeit with a lower
precision. For mesons made of a charm quark and a heavy
antiquark, whose mass is twice that of the charm quark, sea
effects are only about 1‰ in the ratio of vector to pseu-
doscalar masses.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Decoupling in the presence of heavy valence quarks 2
3 Numerical setup . . . . . . . . . . . . . . . . . . . 3
4 Observables . . . . . . . . . . . . . . . . . . . . . 4

a e-mail: calis@mit.edu (corresponding author)

4.1 Computation of meson decay constants with
open boundary conditions . . . . . . . . . . . . 4

4.2 Heavy mesons . . . . . . . . . . . . . . . . . . 6
4.3 Tuning of the twisted mass parameter . . . . . 6
4.4 Mass dependence functions . . . . . . . . . . . 8

5 Distance preconditioning for the Dirac operator . . . 8
6 Results . . . . . . . . . . . . . . . . . . . . . . . . 9

6.1 Decay constants of charmonium . . . . . . . . 9
6.2 Heavy meson masses . . . . . . . . . . . . . . 11

7 Conclusions . . . . . . . . . . . . . . . . . . . . . 12
Appendix A: Table of decay constants . . . . . . . . . 13
Appendix B: Mass dependence of fermionic observables 13
References . . . . . . . . . . . . . . . . . . . . . . . . 14

1 Introduction

In recent years there has been a renewed interest in spectral
calculations of charmonium states, which are bound systems
made of a charm quark c and a charm antiquark c̄. The moti-
vation is due to the experimental discovery of many unex-
pected states, whose properties are still poorly understood
[1]. Different hypotheses have been put forward, that see
them identified as hybrid mesons, tetra-quarks or some other
hitherto unknown form of matter. Other systems of particular
interest are the Bc mesons, which are heavy mesons com-
posed of a bottom quark (antiquark) and a charm antiquark
(quark). Their peculiarities rely on the fact that they are the
only heavy mesons consisting of heavy quarks with differ-
ent flavors. Therefore, they cannot annihilate into gluons and
they are more stable, having decay widths less than a hundred
of keV. Only the pseudoscalar Bc has so far been seen at the
Tevatron collider at Fermilab [2,3]. The high luminosity of
the LHC collider at CERN now allows to measure the spec-
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troscopy and the decay of B�
c mesons with much better pre-

cision and therefore, comparisons of theoretical predictions
with experiments will become more and more important.

Lattice QCD may represent a powerful tool to understand
the properties of charmonium and Bc mesons directly start-
ing from the QCD Lagrangian, for recent calculations see
[4–7] (charmonium), [8] (charmonium decay constants) and
[9] (Bc mesons). Depending on the problem at hand, numeri-
cal simulations usually include the lightest two, three or four
flavors. Moreover, exact isospin symmetry is often assumed,
implying that the lightest two quarks (up and down) are mass
degenerate. The setups mentioned above are usually referred
as Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 QCD. Even
though lattice QCD simulations with Nf = 2+1+1 dynam-
ical quarks would be highly desirable to have a better under-
standing of physical phenomena governed by the strong inter-
action, the addition of a dynamical charm quark to the sea
typically complicates the generations of the gauge configu-
rations on which observables are computed. Also, if lattice
spacings are not fine enough, the results may be affected by
large cutoff effects, owing to the heavy mass of the charm
quark.

Given the present difficulties described above, in this work
we want to quantify how much quenching the charm quark
affects the results obtained through Nf = 2 + 1 QCD sim-
ulations (including mass degenerate up, down and a strange
quarks). To this aim, we consider a model of QCD, namely
QCD with two degenerate heavy quarks, whose mass is tuned
to approximately reproduce the physical value of the charm
quark mass. In order to quantify the impact of the dynami-
cal heavy quarks, the results from this model are then com-
pared to the ones found using Nf = 0 QCD (all quarks are
quenched). The advantage of our strategy is that reliable con-
tinuum extrapolations can be performed, because light quarks
are absent and we can use gauge ensembles with extremely
fine lattice spacings (a � 0.02 fm) and relatively small vol-
umes. In Refs. [10–12] we followed this approach to eval-
uate the impact of a dynamical charm quark on the masses
of charmonium states, e.g. on the pseudoscalar and vector
meson masses mP and mV . From these studies it turned out
that such effects are very small and for the hyperfine splitting
(mV − mP )/mP they are of around 2%.

Here, we want to extend our previous studies and inves-
tigate the charm quark sea effects on the hyperfine splitting
of heavy mesons Hc (bound states made of a heavy quark
and a charm antiquark, or vice versa) and on the decay con-
stants of charmonium. In particular, the focus is on the decay
constants fP and fV of pseudoscalar and vector mesons, for
which we follow the definitions of Ref. [13,14]

fPmP = 〈0|Aq1q2
0 (0)|P( �p = 0)〉, (1.1)

fV mV = 1

3

3∑

i=1

〈0|V q1q2
i (0)|Vi ( �p = 0)〉, (1.2)

where the bilinears containing quarks q1 and q2 are

Vq1q2
μ = q̄1γμq2,

Aq1q2
μ = q̄1γμγ5q2,

Pq1q2 = q̄1γ5q2, (1.3)

and |P〉 and |Vi 〉 represent the ground state of a pseudoscalar
and vector meson polarized in the direction i of the vector cur-
rent,1 respectively. The meson spatial momentum is �p = 0
and |0〉 is the QCD vacuum state.2 In the charmonium system,
the lowest-lying states lie below the DD̄ threshold, result-
ing in relatively narrow widths due to the absence of OZI
allowed [16] strong decays. This means that radiative transi-
tions, i.e. transitions from an initial state to a final state via
the emission of a photon, can have significant experimentally
accessible branching ratios. Therefore, the lattice calculation
of the decay constants addressed here provides valuable the-
oretical insight for experiment on the fully non-perturbative
level, such that we consider them as natural and representa-
tive observables to quantify charm sea quark effects in hadron
physics beyond the mass spectrum.

The manuscript is organized as follows. In Sect. 2
we describe how decoupling works for observables which
depend explicitely on the charm quark. In Sect. 3 we present
our ensembles of gauge configurations with Nf = 2 charm
quarks in the sea and Nf = 0 (pure gauge). The observables,
from which we extract the decay constants and the heavy
meson masses, are explained in Sect. 4, together with the
tuning of the charm quark mass. The latter involves deriva-
tives with respect to the heavy quark mass and we define
suitable mass dependence functions in Sect. 4. Section 5
describes the distance preconditioning for the computation
of the heavy quark propagator. The results of our calculations
are presented in Sect. 6 and summarized in the conclusions
(Sect. 7). Appendix A tabulates the values of the decay con-
stants and their derivatives on our ensembles. Appendix B
shows a derivation of the formula for the mass derivative in
the effective theory which accounts for the dependence of the
scale of the effective theory on the mass of the heavy quarks.

2 Decoupling in the presence of heavy valence quarks

The decoupling of heavy quarks from low-energy physics
is well understood [17–20] and is known to work very well

1 A definition of fV with general vector meson polarization can be
found in Eq. (12) of [15].
2 Note that we are using the convention for which the pion decay con-
stant takes the value fπ = 130 MeV.
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already with heavy quarks as light as the charm quark [21–
23]. QCD with light and a charm quark, described by the
Euclidean action

SI = SYM[Aμ] + Slight[ψ̄u,d,s, ψu,d,s, Aμ]
+(ψ̄c, [ /D[Aμ] + mc]ψc) , (2.1)

where (. . . , . . .) denotes the standard inner product for
spinors, can be approximated by an effective theory, which
to leading order is given by QCD without the heavy quarks

Sdec
I = SYM[Aμ] + Slight[ψ̄u,d,s, ψu,d,s, Aμ]. (2.2)

When the couplings of the effective theory are correctly
“matched”, they inherit a dependence on the heavy quark
mass of the fundamental theory, and the effective theory
reproduces results of the fundamental one, as long as the
observables do not contain heavy quarks and are low-energy
quantities. The differences between the two theories are
of order O((�/mc)

2), O((mlight/mc)
2) and O((E/mc)

2)),
where E is the energy scale associated with the observable
at hand, e.g. a momentum transfer in a process involving the
light quarks, and mc,light are the running masses of light and
charm quarks. These differences could in principle be sup-
pressed further by adding additional terms to the effective
action, e.g.

c

m2
c
(ψ̄u,d,s, ψu,d,s)

2. (2.3)

It is common practice in lattice QCD, to simulate one
of the effective theories instead of full QCD. In particular,
b and t quarks are never included in the simulations while
the c quark sometimes is included and sometimes not. Even
without c quarks in the action, charm physics is studied in the
“partially quenched” approximation. Before we study how
well this approximation works numerically, we would like
to argue that it is to some extent covered by the theory of
decoupling, even though the observables now do depend on
the charm quarks. We can add two terms to SI that amount
to a factor of 1 in the path integral

SI I = SI +(ψ̄c′ , [ /D[Aμ]+mc]ψc′)+(φ
†
c′ , [ /D[Aμ]+mc]φc′).

(2.4)

While ψc′ is a Grassmann-valued fermion field, φ is a
complex-valued “pseudo-fermion” field with the same space-
time, color and spin components. After integration over the
fermion and pseudo-fermion fields, the fermionic determi-
nant is exactly cancelled by the determinant from the pseudo-
fermion Gaussian integral.3 Therefore, expectation values in

3 This argument can be made more rigorous on the lattice, e.g. with
Wilson fermions, and depends on mc being large enough for the Wilson
operator to only have eigenvalues with positive real parts.

the two theories are equal

〈O[ψ̄u,d,s, ψu,d,s, ψ̄c, ψc, Aμ]〉I
= 〈O[ψ̄u,d,s, ψu,d,s, ψ̄c, ψc, Aμ]〉I I
= 〈O[ψ̄u,d,s, ψu,d,s, ψ̄c′ , ψc′ , Aμ]〉I I . (2.5)

The decoupling mechanism can now be applied to the ψc

fields in SI I , leading to a leading-order effective theory

Sdec
I I = Sdec

I + (ψ̄c′ , [ /D[Aμ] + mc]ψc′)

+(φ
†
c′ , [ /D[Aμ] + mc]φc′). (2.6)

After matching of the parameters (gauge coupling, light
quark masses and the mass of the “partially quenched” charm
quark), one expects

〈O[ψ̄u,d,s, ψu,d,s, ψ̄c′ , ψc′ , Aμ]〉I I
= 〈O[ψ̄u,d,s, ψu,d,s, ψ̄c′ , ψc′ , Aμ]〉dec

I I + O(1/m2
c).(2.7)

With the mass of the c′ quark being the same as the one that
was integrated out, one can of course expect large O(1) cor-
rections, but in some cases the energy scale of the observable
may still be low, even if it contains heavy quarks. For exam-
ple, the binding energies in charmonia are not very high, com-
pared to the charm quark mass. In the same respect, another
case are their decay constants which turn out to be not very
large.

3 Numerical setup

Our calculations are performed on the gauge ensembles with
parameters summarized in Table 1.

The Nf = 0 ensembles are generated using the standard
Wilson plaquette gauge action [25], whilst for the Nf = 2
case a clover-improved [26] doublet of twisted mass Wilson
fermions [27,28] is added.

Since we aim at performing continuum extrapolations
using very fine lattice spacings, open boundary conditions in
the time direction are applied [29] to avoid the well known
problems related to the deficient sampling of topological sec-
tors. The spatial dimensions are kept periodic. Moreover, for
the production of our ensembles we benefit from the knowl-
edge of the critical mass mcr [30,31] and the axial current
and pseudoscalar density renormalization factors ZA [32–34]
and ZP [30,35]. For further details about the simulations we
refer to our previous works [12,22] and references therein.
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4 Observables

4.1 Computation of meson decay constants with open
boundary conditions

Meson decay constants are related to matrix elements
between the vacuum and the meson state at rest, as antic-
ipated in Eqs. (1.1) and (1.2). In the framework of the model
considered here, we denote the doublet of the heavy degen-
erate charm quarks in the physical basis as ψ = (c̃1, c̃2)

ᵀ

and its counterpart in the twisted basis as χ = (c1, c2)
ᵀ.

At maximal twist, the relation between physical and twisted
basis is

ψ = 1 + iγ5τ
3

√
2

χ, ψ̄ = χ̄
1 + iγ5τ

3

√
2

. (4.1)

Therefore, the decay constants of pseudoscalar (P) and vec-
tor (V ) mesons in twisted mass QCD are given by

fPm
2
P = 2μ 〈0|c̄1γ5c2|P〉, (4.2)

fV mV = 1

3

3∑

i=1

〈0|c̄1γiγ5c2|Vi 〉, (4.3)

where μ is the twisted mass parameter. To derive Eq. (4.2),
PCVC relations in the twisted basis have been used, as
described in Refs. [36,37]. Since both our quarks, c1 and
c2, have the mass of a charm quark, fP,V and mP,V are com-
parable to the decay constants and masses of the charmonia
states ηc and J/ψ . The main differences are related to the
fact that in our calculations we neglect the contribution of dis-
connected diagrams and we are assuming a model of QCD
without light quarks and with two charm quarks instead of
one.

The twisted mass formulation of QCD provides a particu-
larly convenient setup for the calculation of the pseudoscalar
decay constant fP , because it simplifies the renormalization
properties of our operators. In fact, the renormalization fac-
tors ZP and Zμ obey the relation ZP Zμ = 1. Thus, the
lattice calculation of fP does not need any renormalization
factors, as already discussed in Refs. [27,36]. As concerns
the twisted mass expression for fV , the matrix element in
Eq. (4.3) must be multiplied by the renormalization factor
ZA of the axial current, which is known from Refs. [32–34]
for the ensembles considered here.

To extract the decay constants fP and fV given in
Eqs. (4.2) and (4.3), we first need to know the values of
the masses mP and mV (already computed in Ref. [12]) and
of the matrix elements 〈0|c̄1γ5c2|P〉 and 〈0|c̄1γiγ5c2|Vi 〉.
All these quantities can be determined from the lattice cal-
culation of zero-momentum correlation functions of the
form

a3 fP P (x0, y0) = − a3

L3

×
∑

�x,�y
a6〈Pc1c2(x0, x)Pc2c1(y0, y)〉, (4.4)

a3 f Ai Ai (x0, y0) = − a3

L3

×
∑

�x,�y
a6〈Ac1c2

i (x0, x)A
c2c1
i (y0, y)〉, (4.5)

where (y0, y) and (x0, x) denote the coordinates at which
a particle state is created (source) and annihilated (sink),
respectively. Integrating over the fermion fields, one obtains

a8
∑

�x,�y
〈c̄1(x)�c2(x)c̄2(y)�c1(y)〉F

= −
∑

�x,�y
Tr

[
�D−1

c2
(x, y)�D−1

c1
(y, x)

]
,

� = {γ5, γiγ5},

(4.6)

where 〈. . .〉F is the expectation value over the fermion fields
and D−1

c1 , D−1
c2

are the fermion propagators of the quark c1

and c2, respectively. The trace in Eq. (4.6) can be efficiently
estimated stochastically. In particular, we use time-dilution
with 16 U (1) noise sources per time-slice, which amounts to
16 inversions per y0 value and Dirac structure �. In principle,
the projection to zero-momentum can be realized performing
a sum either over �x or �y. However, here we prefer to keep
the two sums, as indicated in Eqs. (4.4) and (4.5), because
that typically leads to highly improved signals for the meson
correlators.

The pseudoscalar and vector meson masses are extracted
from the exponential decay of the correlators (4.4) and (4.5),
respectively. For this purpose, we first compute the effective
mass

amef f (x0 + a/2, y0) ≡ ln

(
f (x0, y0)

f (x0 + a, y0)

)
(4.7)

and then perform a weighted average in the plateau region as

am =

t f∑
x0/a=ti

w(x0 + a/2, y0)amef f (x0 + a/2, y0)

t f∑
x0/a=ti

w(x0 + a/2, y0)

, (4.8)

where x0/a = ti, f are the initial and final time-slices of the
plateau, chosen such that the results do not depend on source
position y0 and excited state contributions are sufficiently
suppressed. The weights w are given by the inverse squared
errors of the corresponding effective masses.

In principle, even the matrix elements 〈0|c̄1γ5c2|P〉 and
〈0|c̄1γiγ5c2|V 〉 can be extracted through an exponential fit
to the meson correlators (4.4) and (4.5). However, since we
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use open boundary conditions in the time direction, such an
approach may lead to unreliable results, because of bound-
ary effects. For this reason, we proceed along the method
described in Refs. [38,39], whose advantage is to remove
the unwanted boundary effects by forming a suitable ratio of
two-point correlation functions.

Following the procedure of Ref. [39], when x0 is far
enough from the boundaries (0 � x0 � T ) and x0 − y0

is sufficiently large, it is possible to show that the correlators
fP P and f Ai Ai have a leading asymptotic behavior according
to4

√
2mPL3 fP P (x0, y0) 	 〈0|c̄1γ5c2|P〉e−mP (x0−y0)A(y0),

(4.9)√
2mPL3 fP P (T − x0, y0)

	 〈0|c̄1γ5c2|P〉e−mP (T−x0−y0)A(y0), (4.10)

L3 fP P (T − y0, y0) 	 e−mP (T−2y0)A2(y0), (4.11)√
2mV L3 f Ai Ai (x0, y0)

	 〈0|c̄1γiγ5c2|Vi 〉e−mV (x0−y0)B(y0), (4.12)√
2mV L3 f Ai Ai (T − x0, y0)

	 〈0|c̄1γiγ5c2|Vi 〉e−mV (T−x0−y0)B(y0), (4.13)

L3 f Ai Ai (T − y0, y0) 	 e−mV (T−2y0)B2(y0), (4.14)

where A, B are dimensionless factors depending on the
source position y0 and related to the matrix elements between
the vacuum and the boundary state. From the relations (4.9)–
(4.14) one reads off that the relevant amplitudes can be deter-
mined through the following ratios of correlators

RP (x0, y0) ≡
√
a3| fP P (x0, y0) fP P (T − x0, y0)|

fP P (T − y0, y0)

= a2〈0|c̄1γ5c2|P〉√
2amP

, (4.15)

RAi (x0, y0) ≡
√
a3| f Ai Ai (x0, y0) f Ai Ai (T − x0, y0)|

f Ai Ai (T − y0, y0)

= a2〈0|c̄1γiγ5c2|Vi 〉√
2amV

. (4.16)

Employing such ratios, the matrix elements of operators close
to the boundary drop out, so there are no restrictions in the
choice of the source position y0. Equations (4.15) and (4.16)
are satisfied for a large range of sink positions 0 � x0 � T ,
where boundary effects and excited state contributions can
be neglected. Thus, to improve the estimate of the matrix

4 The usual relativistic normalization of states in a finite volume is used,
i.e. 〈0|0〉 = 1, 〈P|P〉 = 2mP L3 and 〈Vi |Vi 〉 = 2mV L3.

Fig. 1 Effective quantity RP , defined in (4.15), from which the decay
constants are extracted. The results shown in the figure are obtained on
the Nf = 2 ensemble W at β = 6.0. The horizontal error band indicates
the plateau average R̄P with its statistical uncertainty

elements, we take the plateau averages

R̄P ≡ 1

t f − ti + 1

t f∑

x0/a=ti

RP (x0, y0),

R̄Ai ≡ 1

t f − ti + 1

t f∑

x0/a=ti

RAi (x0, y0), (4.17)

where ti and t f are the start and the end of the plateau. In
Fig. 1 we report the measurement of the effective quantity
RP in Eq. (4.15) obtained on the Nf = 2 ensemble W , with
parameters reported in Table 1. As can be seen, the use of lat-
tices with large temporal extent and very fine lattice spacings
allows us to take the plateau average R̄P for a large range of
temporal slices. Similar conclusions also hold for the other
ensembles and the ratios RAi .

Finally, combining the formulae above, the pseudoscalar
and vector decay constants fP and fV in lattice units can be
determined as

a fP = 2aμR̄P

√
2

(amP )3 , (4.18)

a fV = ZA

(
1

3

3∑

i=1

R̄Ai

) √
2

amV
. (4.19)

The crucial point is to obtain a reliable estimate of the corre-
lators fP P (T − y0, y0) and f Ai Ai (T − y0, y0) in Eqs. (4.15)
and (4.16), as when dealing with heavy quarks the relative
precision of the solution of the Dirac equation deteriorates
at large distances. A detailed discussion of this issue will
be given in Sect. 5. To improve the quality of the signal, we
average over forward and backward correlator. Therefore, we
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Table 1 Simulation parameters of our ensembles. The columns show
the lattice sizes, the gauge coupling β = 6/g2

0 , the critical hopping
parameter, the twisted mass parameter μ, the pseudoscalar mass in t0
units, the hadronic scale t0/a2 defined in [24], the lattice spacing in fm
from the scale t0 [12] and the total statistics in molecular dynamics units.

For the Nf = 0 ensembles, we report the values of
√
t0mP measured at

three different valence quark masses aμ. The temporal extent T is an
odd multiple of a because open boundary conditions are applied in the
temporal directions and the links pointing out of the lattice volume are
absent

Nf ID T
a × ( L

a

)3
β κ aμ

√
t0mP t0/a2 a [fm] MDUs

2 E 95 × 243 5.300 0.135943 0.36151 1.79303(55) 1.23907(82) 0.104 8000

N 119 × 323 5.500 0.136638 0.165997 1.8048(15) 4.4730(93) 0.054 8000

P 119 × 323 5.700 0.136698 0.113200 1.7931(28) 9.105(35) 0.038 17184

S 191 × 483 5.880 0.136509 0.087626 1.8130(29) 15.621(60) 0.029 23088

W 191 × 483 6.000 0.136335 0.072557 1.8075(43) 22.39(12) 0.024 22400

0 qN 119 × 323 6.100 – 0.16 1.69807(67) 4.4329(38) 0.054 64000

0.17 1.76547(70)

0.18 1.83195(72)

qP 119 × 323 6.340 – 0.11 1.6856(22) 9.037(30) 0.038 20080

0.12 1.7848(24)

0.13 1.8824(25)

qW 191 × 483 6.672 – 0.07 1.6830(28) 21.925(83) 0.024 73920

0.08 1.8399(30)

0.09 1.9934(33)

qX 191 × 643 6.900 – 0.056 1.7714(28) 39.41(14) 0.018 160200

0.058 1.8137(29)

0.060 1.8558(30)

consider the symmetrized correlators

f̄ P P (x0, y0) = 1

2
[ fP P (x0, y0)

+ fP P (T − x0, T − y0)] , (4.20)

f̄ Ai Ai (x0, y0) = 1

2

[
f Ai Ai (x0, y0)

+ f Ai Ai (T − x0, T − y0)
]
. (4.21)

As it was demonstrated in Appendix A of Ref. [12], taking
the average with the time-reflected correlators prohibites the
mixing with states of opposite parity.5

4.2 Heavy mesons

To study the charm loop effects at even higher energies, we
measure the masses of heavy mesons Hc made of a heavy
quark, h, with mass mh = {mc, 2mc}. In particular, we focus
on the ground state of the pseudoscalar and vector channels.
The masses are extracted according to Eqs. (4.7), (4.8). The
main ingredient of the calculation is the propagator D−1

h ,
which is evaluated using the twisted mass parameter μh = μ

or μh = 2μ, depending on the value of the mass mh we want

5 Parity is not a symmetry in the twisted mass formulation of QCD for
twisted mass parameter μ 
= 0.

to impose. Let us recall that μ is the twisted mass parameter
of the simulations tuned to reproduce the charm quark mass.

From now on, we refer to the masses of these heavy
mesons using the notation

mX,Hc , X = {P, V }, (4.22)

where X denotes the vector or pseudoscalar state and the
heavy quark, h, can have a mass equal to mc or 2mc. The
masses are extracted through the plateau average (4.8) of
the effective mass (4.7). For the mh = mc case, we refer to
our previous work [12]. An example of this procedure for
mh = 2mc is shown in Fig. 2 for the Nf = 2 ensemble W .

4.3 Tuning of the twisted mass parameter

To match Nf = 0 and Nf = 2 QCD, we use the low-
energy observable mhad = 1/

√
t0. For such observables

decoupling applies [17,40] and we can assume
√
t0|Nf=0 =√

t0(Mc)|Nf=2. In order to compare the two theories, the
value of the renormalization group invariant (RGI) mass Mc

of the charm quark needs to be fixed and, following the pro-
cedure of our previous work [12], we choose Mc such that√
t0mP is approximately equal to the physical value for the

ηc meson and is the same in Nf = 0 and Nf = 2 QCD, for
each lattice spacing employed (see Table 1).
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Fig. 2 The effective masses for heavy mesons made of a heavy quark
h (mh = 2mc) and a charm quark c on the W ensemble are displayed,
together with the plateau average and its error band. We show the pseu-
doscalar (violet circles) and vector (green squares) channels

To set Mc we proceed as described below. On our finest
Nf = 2 lattice (β = 6.0), the RGI mass Mc of the charm
quark is fixed by the relation

Mc/�MS = 4.87, (4.23)

where we use the value Mc = 1510 MeV of Ref. [41] (which
agrees with Ref. [42], see also Ref. [43]) and the two-flavor
Lambda parameter �MS = 310(20) MeV known from [30].
Since on our Nf = 2 ensembles the hopping parameter κ is
set to its critical value, the renormalized physical quark mass
is simply given by mR = Z−1

P μ and the condition (4.23) is
equivalent to fix the twisted mass parameter through

aμ = Mc

�MS
× ZP (L−1

1 ) × mR(L1)

Mc
× �MSL1 × a

L1
.(4.24)

In the equation above, the value of the pseudoscalar renor-
malization factor ZP at the renormalization scale L−1

1 in the
Schrödinger Functional scheme

ZP (L1) = 0.5184(33), valid for 5.2 ≤ β ≤ 6, (4.25)

and the relation between the running mass mR(L1) and the
RGI mass

M

mR(L1)
= 1.308(16) (4.26)

are available from Refs. [30,44]. As a value of the � param-
eter of the two-flavor theory in L1 units we take [45]

�MSL1 = 0.649(45), (4.27)

whilst the ratio L1/a is known from [21]. Plugging the values
of Eqs. (4.25)–(4.27) into Eq. (4.24), the charm quark mass
can be fixed at a precision of around 10%. Such accuracy is
acceptable for us if we devise a method to keep the relative
mass differences between the different ensembles under bet-
ter control. In practice, instead of using Eq. (4.24), we tune
the twisted mass parameter to a point μ� such that the renor-
malized quantity

√
t0mηc is equal to its value on our finest

Nf = 2 ensemble W at β = 6.0 (see Table 1) and satisfies
√
t0mP (μ�) ≡ 1.807463. (4.28)

This value is obtained on the ensemble W by setting the
twisted mass parameter through Eq. (4.24). The tuning point
Eq. (4.28) is independent of the overall scale �MS (known
with a 7% accuracy and which limits the overall accuracy).

In the Nf = 2 theory, we apply a correction to all observ-
ables, which is based on the computation of twisted mass
derivatives [12]. First, we determine the target tuning point
μ� through the Taylor expansion

μ� = μ + (
√
t0mP − 1.807463)

(
d
√
t0mηc

dμ

)−1

, (4.29)

where μ and
√
t0mP are the values from the simulations

obtained using Eq. (4.24), see Table 1. Subsequently all quan-
tities, denoted by A below, are corrected by

A(μ�) = A(μ) + (μ� − μ)
d A

dμ
. (4.30)

For a generic primary observable A, its twisted mass deriva-
tive is simply given by

d〈A〉
dμ

= −
〈
dS

dμ
A

〉
+

〈
dS

dμ

〉
〈A〉 +

〈
d A

dμ

〉
, (4.31)

where S is the lattice QCD action. However, most quantities
we are interested in are non-linear functions f of various
primary observables, for which we apply the chain rule

d f (〈A1〉, . . . , 〈AN 〉, μ)

dμ
= ∂ f

∂μ
+

N∑

i=1

∂ f

∂〈Ai 〉
d〈Ai 〉
dμ

. (4.32)

After integrating over the fermion fields, Eq. (4.31) becomes

d〈 Ã〉gauge

dμ
= −

〈
dSeff

dμ
Ã

〉gauge

+
〈
dSeff

dμ

〉gauge

〈 Ã〉gauge +
〈
d Ã

dμ

〉gauge

, (4.33)

where 〈·〉gauge are expectation values taken on the ensemble
of gauge fields and Seff is the effective lattice QCD gauge
action which includes the effect of the fermion determinants.
The observable Ã contains in general the fermion propagator
D−1. The sea quark effects originate from dSeff

dμ
. They affect

the mass derivative of an observable through the covariance
of dSeff

dμ
and Ã.

In the simplest case of Nf = 0 QCD, the action does not
depend on the quark masses and the twisted mass parameter
μ only enters the inversions of the Dirac operator. The mass
derivative of an observable in the Nf = 0 theory therefore
only receives a contribution from the last term on the right
hand side of Eq. (4.33). Thus, to reproduce the tuning point
μ�, Eq. (4.28), for our Nf = 0 ensembles, we measure the
quantities of interest at three different values of the twisted
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mass parameter μ such that μ� is eventually obtained through
a linear interpolation of the measurements.

4.4 Mass dependence functions

The mass dependence of a multiplicatively renormalizable
quantity X is captured by the renormalized combination

ηX ≡ M

X

dX

dM
. (4.34)

Interesting quantities X are for instance the vector or pseu-
doscalar meson masses as studied in [12], or their decay
constants, as determined in this work. In the twisted mass
formulation at maximal twist, the RGI quark mass is con-
nected multiplicatively to the twisted mass parameter μ,
which implies that M can be replaced by μ in Eq. (4.34).
When computed in the effective theory, the mass dependence
stems from an explicit mass dependence of the quantity in
question, but also from the mass dependence that the scale
inherits through the matching condition between the effective
and full theory. In this context it is useful to also define

η̃X ≡ M

X

dX

dM

∣∣∣∣
�=const.

. (4.35)

In the fundamental theory, � is constant and η̃X = ηX , but
in the effective theory η̃X captures only the explicit mass
dependence of the quantity in question and vanishes e.g.
for purely gluonic quantities. It has been computed in [12]
for the masses6 and found to deviate significantly from the
corresponding two-flavor values. Most of this deviation is
explained by the neglected mass dependence associated with
the scale. If the mass parameter in the Nf = 0 theory is fixed
by demanding that mP has the same value as in the Nf = 2
theory, the full mass dependence is given by

η
(0)
X = ηM + η̃

(0)
X

η̃
(0)
mP

(
η(2)
mP

− ηM
)

+ O(M−2). (4.36)

In this equation, ηM denotes the universal mass scaling func-
tion introduced in [46], which encodes the complete mass
dependence of purely gluonic quantities. Its definition is

ηM = M

P2,0

∂P2,0

∂M

∣∣∣∣
�(2)

, (4.37)

where P2,0 is defined in Eq. (B.3) and M ≡ M (2). A deriva-
tion of Eq. (4.36) is relegated to Appendix B.

6 The quantities ηP,V in [12] for Nf = 2 correspond to ηmP ,mV here,
and for Nf = 0 correspond to η̃mP ,mV .

5 Distance preconditioning for the Dirac operator

The computation of RP and RAi in Eqs. (4.15) and (4.16)
requires the evaluation of the two-point correlation functions
f̄ P P (T−y0, y0) and f̄ Ai Ai (T−y0, y0). These are constructed
in the standard way in terms of quark propagators that result
from solving the Dirac equation

∑
x D(y, x)ψ(x) = η(y),

where D(y, x) is the lattice Dirac operator, while ψ(x) and
η(y) denote the solution vector and the source field (the lat-
ter being non-zero only on a single time-slice y0), respec-
tively. Whereas the increase of computational demand for
the numerical inversion of the Dirac operator to solve this
linear system towards small quark masses is a consequence
of the spectral properties of D(x, y), a difficulty of entirely
different nature arises in the region of heavy quark masses.

To understand the origin of this potentially serious prob-
lem, we recall that the exponential decay with time of
two-point functions at zero spatial momentum is governed
by the ground state energy in its spectral decomposition,
which equivalently reflects in the exponential time depen-
dence of the entering quark propagators proportional to
exp{−mq(x0 − y0)}, wheremq is the quark mass in the corre-
sponding Dirac operator. However, the exponential decay of
the quark propagator is particularly pronounced in the case
of heavy quarks, mq = mh , when the time distance between
source and sink grows. This entails that an accurate determi-
nation of heavy meson correlators over the relevant time span
is very difficult to achieve, because, depending on the size
of the heavy quark mass in lattice units, the relative preci-
sion of the solution of the Dirac equation could actually start
to deteriorate at already moderately large time separations
x0 − y0. Moreover, this problem is amplified for correlation
functions in the vector channel, in which the ground state is
even heavier.

In practice, for heavy quarks, the stopping criterion com-
monly imposed on the relative global residuum

∣∣∑
y

[Dψ(y) − η(y)]∣∣
∣∣∑
y

η(y)
∣∣ < rgl (5.1)

may therefore no longer appear as a reliable quantitative mea-
sure to indicate the convergence of the iterative routine used
to numerically solve the Dirac equation to desired accuracy.
In fact, for large time separations x0 − y0, contributions to
the norm on the l.h.s. suffer from a severe exponential sup-
pression ∝ exp{−mh(x0 − y0)} and thus become negligible.
Even a “brute force” approach of reducing the global residual
rgl further to catch this may then not be feasible anymore for
lattices with very large time extents, regardless of the related
increase in computational cost.

To overcome this unwanted exponential suppression prob-
lem induced by the heavy quark propagator, we employ the
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distance preconditioning (DP) technique for the Dirac oper-
ator, originally proposed in Ref. [47], in its implementation
outlined in [48]. The basic idea is to rewrite the original lin-
ear system in such a way that the solution of the new system
at time-slices x0 far away from the source gets exponentially
enhanced and thereby compensates the rapid decay of the
(heavy) quark propagator. While in [47] the associated re-
definition of the propagator and source field was introduced
on the level of the covariant derivatives in the lattice Dirac
operator, the DP implementation of Ref. [48] directly works
with the matrix-vector equation to be solved, since this has
proven to be most straightforward for, e.g., the SAP-GCR
solver routine [49] in use. Schematically written, DP then
amounts to replace

Dψ = η → D′ψ ′ = η′,
D′ = MDM−1, ψ ′ = Mψ, η′ = Mη, (5.2)

where in our setup the preconditioning matrix is defined as

M = M(x0 − y0) = diag
(
p0, p1, . . . , pT/a

)
with

pi = exp
{
α0

(
x (i)

0 − y0)
}

. (5.3)

Here, y0 and x (i)
0 refer to the time-slices of the source and

sink insertion, and apart from this, M is unity in spatial coor-
dinates as well as in spin and color spaces. The solution of
the original system is then simply obtained by ψ = M−1ψ ′
from the solution of the preconditioned one. In Eq. (5.3), α0 is
a tunable parameter that needs to be adjusted for each gauge
field configuration ensemble in dependence of the respective
temporal lattice extent and heavy quark mass in lattice units.

Rather than the global residual, Eq. (5.1), a more suitable
measure for the numerical quality of the solution over the
whole time range is now provided by inspecting the local
residuum,

rloc(x0 − y0) =

∣∣∑
�y
[Dψ(y) − η(y)]∣∣

∣∣∑
�y

ψ(y)
∣∣ , (5.4)

at the time separation of interest (T −2y0 in our case). Since
rloc is sensitive to the numerical accuracy of the solution on
each time-slice, imposing the stopping criterion of the rou-
tine involved to solve the preconditioned system ensures to
extract heavy meson correlation functions to sufficient preci-
sion also for large time separations. Note that the exponential
factor eα0(x0−y0) in the construction of the preconditioned lin-
ear system, Eq. (5.2) above, effectively turns the heavy quark
propagator into a propagator corresponding to a “ficticious”
light quark. Therefore, the price to pay when adopting this
method is an increase of the number of solver iterations such
that in practical applications the growth in computational

costs has to be reasonably balanced with the gain in accu-
racy of the heavy meson correlator in question by a proper
tuning of α0.

As can be seen from monitoring rloc for a representative
ensemble and various choices of α0 in Fig. 3, the solution
becomes more and more accurate as α0 increases. However,
in this example we observe that for the solution to have a local
residual < 10−4 for all time-slices (which is enough given
the desired statistical accuracy of the meson correlator) the
number of solver iterations increases of around a factor 3
compared to the case α0 = 0 (no distance preconditioning
applied).
Such a small value of the residual is crucial to extract the
meson correlator (and as a consequence the meson decay
constants) reliably. Ideally one would choose y0 = a, but
to keep the computational effort as small as possible, we
explored different source positions (with y0 > a) to ensure
the ground state dominance over a large range of time-slices
and a reasonable number of iterations for the solver to con-
verge.

Both RP and RAi have been determined for all the ensem-
bles under study and the parameters used in the solver setup
are collected in Table 2.

6 Results

6.1 Decay constants of charmonium

Combining the measurements of the ratios RP and RAi ,
defined in Eqs. (4.15) and (4.16), with the charmonium
masses that we previously obtained in Ref. [12], through
Eqs. (4.18) and (4.19), we determine the dimensionless quan-
tities

√
t0 fP and

√
t0 fV . They are listed in Appendix A.

Similarly to what we observed for the meson masses in
Ref. [12], we find that linear fits in a2 do not work well in
the range of lattice spacings 0.02 fm � a � 0.07 fm, if
one aims at results with sub-percent precision. Therefore,
we compare the continuum limits of pseudoscalar and vector
decay constants in Nf = 0 and Nf = 2 QCD, perform-
ing extrapolations to zero lattice spacing only in the range
0.02 fm � a � 0.05 fm. The results for the Nf = 0 (empty
markers) and Nf = 2 (full markers) ensembles are shown in
Fig. 4. The continuum limit values are slightly displaced for
clarity.

Comparing the values obtained in the continuum of the
two theories, one can observe that dynamical charm effects
on the decay constants are barely resolvable, despite the great
accuracy of our continuum extrapolations. In Table 3 we
summarize our findings. The relative difference of

√
t0 fP is

([√t0 fP ]Nf=2−[√t0 fP ]Nf=0)/[√t0 fP ]Nf=2 = 0.48(34)%,
which corresponds to an effect of around 1.4σ .
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Fig. 3 Tuning of the parameter
α0 of the distance
preconditioning method for our
coarsest lattice (Nf = 2,
β = 5.3, see Table 1). We show
the relative local residual of the
solution ψ as a function of the
sink position x0 with respect to
the source set at y0/a = 16. On
the right, the number of
iterations for the solver to
converge is reported for the
values of α0 plotted in the
Figure

Table 2 The table lists the values of the parameter α0 for the distance
preconditioning of the Dirac operator and the time-slice of the source
position used to determine RP and RAi . Distance preconditioning is not
used for the ensemble qX

Ensemble α0 y0/a

E 0.40 24

N 0.10 30

P 0.05 20

S 0.01 48

W 0.02 32

qN 0.10 30

qP 0.05 20

qW 0.02 32

qX 0.00 32

Fig. 4 Continuum extrapolations of the meson decay constants fP and
fV on our Nf = 2 (full markers) and Nf = 0 (empty markers) ensem-
bles. The continuum limit values are slightly displaced horizontally. To
set the scale in physical units, we use

√
t0 = 0.1131(38) fm [21]

Table 3 Results for
√
t0 fP and

√
t0 fV in the continuum limit for both

the Nf = 2 and the Nf = 0 theory

Quantity Nf = 2 Nf = 0 Sea effects [%]

√
t0 fP 0.25604(65) 0.25481(59) 0.48(34)√
t0 fV 0.2806(17) 0.2810(13) 0.12(77)

Moreover, employing
√
t0 = 0.1131(38) fm [21] for our

model of QCD, we obtain7

fP = 445.9(1.1) MeV,

fV = 488.7(3.0) MeV (Nf = 2), (6.1)

fP = 443.8(1.0) MeV,

fV = 489.4(2.2) MeV (Nf = 0). (6.2)

Note that the decay constant of the meson ηc has not been
determined experimentally, whilst for the vector meson J/ψ
the value f J/ψ = 407(4) MeV is obtained from the par-
tial decay width of J/ψ into an electron-positron pair, see
[8]. f J/ψ can be compared to our lattice results for fV in
Eqs. (6.1) and (6.2). The discrepancy is probably due to
effects of light sea quarks, disconnected contributions and
electromagnetism, which are neglected in this work, and also
to the unphysical values of the meson masses.

The mass dependence functions for meson masses and
decay constants have been computed as well. Figure 5
shows how η

(2)
X compares to both η

(0)
X and η̃

(0)
X for vari-

ous quantities. In η
(2)
X and η̃

(0)
X , the derivatives are computed

using Eqs. (4.32) and (4.31). The missing pieces to evalu-
ate Eq. (4.36) are the continuum value η

(2)
mP = 0.6996(81)

from [12], and the value ηM (Mc) = 0.1276(2) determined
as in [21] for the Nf = 2 → Nf = 0 case, using four-
and five-loop perturbation theory results for the decoupling
relations [19,20], the QCD β-function and the QCD anoma-
lous dimension [50–54]. Table 4 summarizes the findings on

7 The Nf = 2 result (6.1) is obtained in QCD with two dynamical
charm quarks but no light quarks. The Nf = 0 result (6.2) relies on
decoupling to set the scale through the value of t0 determined in the
Nf = 2 theory.
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Fig. 5 Logarithmic derivative of the pseudoscalar and vector masses
and decay constants with respect to the quark mass. Comparison
between Nf = 2 and Nf = 0 theories. For the Nf = 0 case, the
values of η̃X , where the mass dependence of the scale is neglected, are
shown in pink. When the scale dependence is taken into account, the
errors increase due to a dependence on η

(2)
mP

the mass dependence. Note that agreement is only observed
when the mass dependence is consistently taken into account.

The charm sea quarks effects in the mass derivatives of
an observable originate from the covariance of the mass
derivative of the effective action with the observables, see
Eq. (4.33). This covariance is absent in the Nf = 0 theory
and explains the much larger statistical errors of the Nf = 2
theory. The derivatives computed on each ensemble are used
to shift the decay constants to the tuning point, see Eq. (4.30).
Still, they are physical quantities on their own.

6.2 Heavy meson masses

In this section we present our results for heavy mesons made
up of a heavy quark h (Mh = 2Mc) and a charm quark c, as

Fig. 6 Continuum limits of the ratio mV,Hc/mP,Hc for Nf = 2 (blue
circles) and Nf = 0 (red squares) QCD. The mass of the heavy quark
is Mh = 2Mc

described in Sect. 4.2. To guarantee that the cutoff effects in
the continuum extrapolations are under control, we only con-
sider the ensembles of Table 1 for which the meson masses
satisfy the relation am < 1.

In Fig. 6 we compare the continuum limits of the mass
ratiomV,Hc/mP,Hc in Nf = 0 and Nf = 2 QCD. The numer-
ical results of the continuum extrapolations are summarized
in the first row of Table 5. As it can be seen, the effect of
dynamical charm quarks on the ratio mV,Hc/mP,Hc is found
to be 0.092(50)% (around 1.8σ ), which is of similar size to
the one obtained in our previous work [12] for Mh = Mc.

In Fig. 7 we show the hyperfine splitting (mV,Hc −
mP,Hc )/�MS as a function of �MS/Mh , where Mh is the
RGI mass of the heavy quark h. The blue circles correspond
to the Nf = 2 theory and the red squares to the pure gauge
theory, Nf = 0. We take the � parameters in units of the
scale

√
t0 [24] from [21,30] for Nf = 2 QCD and from [55]

for Nf = 0 QCD. The RGI quark mass values Mh = Mc at
our tuning point Eq. (4.28) have been determined in [12] for
both theories. The data of Fig. 7 are listed in Table 6.

The limit Mh → ∞ is expected to be described by heavy
quark effective theory (HQET). For Nf = 0 QCD we show
in Fig. 7 a linear function (dashed line) going through the
points at Mh = ∞, where the vector and the pseudoscalar
are degenerate by virtue of the heavy quarks spin symmetry
[56–58], and Mh = 2Mc. Contact with HQET in the spirit
of [59], including the HQET-QCD matching factor Cspin that

Table 4 The mass dependence functions for various quantities in the continuum limit, at the charm quark mass. The results for the meson masses
rely on data published in [12]. Note that in the first row η

(2)
mP = η

(0)
mP because of the matching condition (B.2)

X η
(2)
X η

(0)
X η̃

(0)
X

mP 0.6996(81) 0.6996(81) 0.67553(42)

mV 0.665(31) 0.6406(73) 0.6060(13)

fP 0.547(99) 0.4003(43) 0.3233(19)

fV 0.66(26) 0.3010(74) 0.2058(81)
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Table 5 Results for mV,Hc/mP,Hc in the continuum limit for both the Nf = 0 and the Nf = 2 theory. The values for the Mh = Mc case are taken
from Ref. [12]

Quantity Nf = 2 Nf = 0 Sea effects [%]

mV,Hc/mP,Hc , Mh = 2Mc 1.03048(41) 1.02953(31) 0.092(50)

mV,Hc/mP,Hc , Mh = Mc 1.05405(60) 1.05274(46) 0.124(71)

Fig. 7 The hyperfine splitting of heavy-charm mesons as a function of
the inverse RGI heavy quark mass for Nf = 2 (blue circles) and Nf = 0
(red squares) QCD. The dashed line is a linear function which passes
through the Nf = 0 points at infinite quark mass and Mh = 2Mc, and
it has been extended to smaller quark masses

accounts for the correct mass dependence of the Mh → ∞
asymptotics, would require larger heavy quark masses than
we have simulated in this work.

7 Conclusions

In this work we present a study of the effects of sea charm
quarks in the charmonium decay constants. It is a follow-up
of Ref. [12] where we did a similar study for the charmonium
spectrum and the RGI charm quark mass. We compute the
charm-quark sea effects through a comparison of the decay
constants determined in a model of QCD with only Nf = 2
charm quarks and no light quarks with those computed in the
Yang–Mills theory (Nf = 0 QCD). The charm quark mass
is fixed in both theories by the tuning condition Eq. (4.28),
which approximately corresponds to a physical charm quark.

We find that the effects of two charm sea quarks are below
1% for the decay constant of the pseudoscalar (ηc) and of the

vector (J/ψ) ground state particles. We also extracted the
derivatives of the decay constants and meson masses with
respect to the charm quark mass, because they are required to
shift our simulation results to the tuning point Eq. (4.28). The
quantities ηX = M

X
dX
dM (X = mP ,mV , fP , fV ) are renor-

malized and easily computable in the twisted mass formula-
tion at maximal twist, because the twisted mass parameter μ

is multiplicatively renormalizable. In the continuum limit we
do not see significant effects of the dynamical charm quark
on these quantities.

A computation of the charm sea effects for “Bc” mesons
made of a charm quark and an antiquark of twice larger mass
reveals that they are only about 1‰ for the ratio of the vector
to the pseudoscalar mass.

Our results are relevant for the scale setting [38] of the
Nf = 2 + 1 simulations by the CLS consortium [60,61].
There, a combination of the pseudoscalar decay constants of
the pion and kaon is used. They are lower in energy than
the decay constants of charmonium. Hence our results indi-
cate that charm sea effects are below the precision of the
scale determination in [38]. Finally, the analysis of the “Bc”
mesons also demonstrates that charm sea effects are very
small for splittings of heavy mesons. For instance, the ϒ−ϒ ′
splitting has been used in [62] for scale setting.
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Table 6 Hyperfine splitting of heavy-charm mesons (mV,Hc −mP,Hc )/�MS as a function of �/Mh , where Mh is the RGI mass of the heavy quark
h

Mh Nf = 2 Nf = 0
�MS/Mh (mV,Hc − mP,Hc )/�MS �MS/Mh (mV,Hc − mP,Hc )/�MS

2Mc 0.1033 0.2995(40) 0.1346 0.3217(34)

Mc 0.2066 0.4005(45) 0.2691 0.4330(38)
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Table 7 Meson decay constants in t0 units. For Nf = 2 simulations,
the first line contains the values extrapolated to the tuning point μ� and
the second line the values at the simulated parameters. For Nf = 0
ensembles, the first line gives the values interpolated to μ�, and the

following three lines contain the values measured at different valence
quark masses. The last two columns are the values of the logarithmic
derivatives of the decay constants with respect to the logarithm of the
quark mass. For the ensemble W they have not been computed

Ensemble aμ
√
t0 fP

√
t0 fV

μ
fP

d fP
dμ

μ
fV

d fV
dμ

N 0.16647(28) 0.27582(38) 0.2922(13)

0.166 0.27553(41) 0.2923(13) 0.456(65) 0.09(26)

P 0.11482(32) 0.2656(15) 0.2847(32)

0.1132 0.2637(16) 0.2840(36) 0.602(82) 0.29(17)

S 0.08717(25) 0.26229(87) 0.2852(21)

0.087626 0.26291(84) 0.2860(18) 0.464(80) 0.54(19)

W 0.072557 0.25972(62) 0.2824(17) – –

qN 0.17632(11) 0.27390(42) 0.2909(15) 0.4109(18) 0.254(15)

0.16 0.26314(47) 0.2838(17)

0.17 0.26967(47) 0.2881(16)

0.18 0.27618(47) 0.2924(14)

qP 0.12235(26) 0.26392(75) 0.2869(22) 0.3663(28) 0.235(22)

0.11 0.25394(78) 0.2799(27)

0.12 0.26208(77) 0.2857(23)

0.13 0.26994(76) 0.2911(20)

qW 0.07798(19) 0.25790(97) 0.2838(37) 0.3393(34) 0.216(24)

0.07 0.2494(11) 0.2779(40)

0.08 0.2607(11) 0.2857(35)

0.09 0.2715(11) 0.2933(30)

qX 0.05771(13) 0.25735(66) 0.2819(12) 0.3336(20) 0.2110(73)

0.056 0.25480(69) 0.2801(13)

0.058 0.25780(68) 0.2822(12)

0.06 0.26073(68) 0.2842(12)
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Appendix A: Table of decay constants

All the results obtained on our ensembles are listed in Table 7.

Appendix B: Mass dependence of fermionic observables

Equation (4.36) describes how quantities with an explicit
valence quark mass dependence depend on the quark mass,
if decoupling is in place. The parameters of the leading order
effective theory, here Nf = 0 QCD, are fixed by demanding
non-perturbatively

√
t (2)
0 =

√
t (0)
0 , (B.1)

√
t (2)
0 m(2)

P =
√
t (0)
0 m(0)

P . (B.2)

The first condition fixes the scale

�(0) = P2,0(M
(2)/�(2)) �(2), (B.3)

where P2,0 is a matching function that can also be computed
perturbatively, and which is unique up to O(M−2) power cor-
rections [46]. The second condition fixes the valence quark
mass M (0) in the quenched theory. With just two dimension-
ful parameters in the game, M and �, every quantity of mass
dimension one can be factorized into
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X (Nf )(M (Nf ), �(Nf )) = f (Nf )
X (M (Nf )/�(Nf )) �(Nf ), (B.4)

with some dimensionless function fX . In the fundamen-
tal Nf = 2 theory, � is constant, in the effective theory
it depends on M (2) ≡ M through the decoupling relation
Eq. (B.3). Moreover, fX is constant in the effective theory for
all quantities that do not depend on the valence quark mass
M (0), e.g. all gluonic observables. Using the pseudoscalar
meson mass to fix the Nf = 0 valence quark mass means
that it is given by

M (0) = f (0)
mP

−1

(
f (2)
mP (M/�(2))

P2,0(M/�(2))

)
P2,0(M/�(2)) �(2). (B.5)

With this we can now evaluate

η
(0)
X = M

X (0)

dX (0)

dM
(B.6)

= M

X (0)

d f (0)
X (M (0)/�(0))�(0)

dM
. (B.7)

Both �(0) and M (0) depend on M , as outlined above. Insert-
ing this dependence into the equation and carrying out the
derivatives using the usual rules for derivatives of inverse
functions, one finds

η
(0)
X = ηM + η̃

(0)
X

η̃
(0)
mP

(
η(2)
mP

− ηM
)

+ O(M−2), (B.8)

where η̃
(0)
X = M(0)

X
dX

dM(0)

∣∣
�=const. The latter captures the

valence quark mass dependence, but ignores the mass depen-
dence of the scale in the effective theory.
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