
MIT Open Access Articles

FSMI: Fast computation of Shannon mutual
information for information-theoretic mapping

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhang, Zhengdong, Henderson, Theia, Karaman, Sertac and Sze, Vivienne. 2020.
"FSMI: Fast computation of Shannon mutual information for information-theoretic mapping."
International Journal of Robotics Research, 39 (9).

As Published: 10.1177/0278364920921941

Publisher: SAGE Publications

Persistent URL: https://hdl.handle.net/1721.1/133010

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133010
http://creativecommons.org/licenses/by-nc-sa/4.0/

FSMI: Fast computation of Shannon
Mutual Information for
information-theoretic mapping

Journal Title
XX(X):1–20
c©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Zhengdong Zhang1, Trevor Henderson1, Sertac Karaman2, Vivienne Sze1

Abstract
Exploration tasks are embedded in many robotics applications, such as search and rescue and space exploration.
Information-based exploration algorithms aim to find the most informative trajectories by maximizing an information-
theoretic metric, such as the mutual information between the map and potential future measurements. Unfortunately,
most existing information-based exploration algorithms are plagued by the computational difficulty of evaluating the
Shannon mutual information metric. In this paper, we consider the fundamental problem of evaluating Shannon
mutual information between the map and a range measurement. First, we consider 2D environments. We propose
a novel algorithm, called the Fast Shannon Mutual Information (FSMI). The key insight behind the algorithm is that a
certain integral can be computed analytically, leading to substantial computational savings. Second, we consider 3D
environments, represented by efficient data structures, e.g., an OctoMap, such that the measurements are compressed
by Run-Length Encoding (RLE). We propose a novel algorithm, called FSMI-RLE, that efficiently evaluates the Shannon
mutual information when the measurements are compressed using RLE. For both the FSMI and the FSMI-RLE, we
also propose variants that make different assumptions on the sensor noise distribution for the purpose of further
computational savings. We evaluate the proposed algorithms in extensive experiments. In particular, we show that
the proposed algorithms outperform existing algorithms that compute Shannon mutual information as well as other
algorithms that compute the Cauchy-Schwarz Quadratic mutual information (CSQMI). In addition, we demonstrate the
computation of Shannon mutual information on a 3D map for the first time.

1 Introduction

Robot exploration tasks are embedded and essential in
several applications of robotics, including disaster response
and space exploration. The problem has received a large
amount of attention over the past few decades, resulting in
a rich literature.

On the one hand, geometry-based frontier exploration
algorithms approach this problem with heuristics that
typically navigate the robot to the frontier of the well known
portion of the environment (Yamauchi 1997). Researchers
investigated various objective functions (Burgard et al.
2005; González-Banos and Latombe 2002), and Holz et al.
(2011) surveys their performance in practical scenarios.
These heuristics are very efficient from a computational
point of view. However, they lack any rigorous reasoning
about information, which makes them relatively inefficient
in terms of the path spanned by the robot while exploring the
environment (Elfes 1996; Cassandra et al. 1996; Moorehead
et al. 2001; Bourgault et al. 2002). In addition, it is hard to
extend the geometry that they rely on to three-dimensional
environments (Shen et al. 2012).

On the other hand, information-based mapping and explo-
ration techniques consider paths that aim to maximize prin-
cipled information-theoretic metrics to actively maximize
the information collected by the robot. The Shannon mutual
information between a perspective scan and the occupancy
grid is used for exploration in Bourgault et al. (2002). Visser

and Slamet (2008) introduces an objective function that bal-
ances the mutual information and the moving cost. Charrow
et al. (2014) developed an approximated mutual information
representation to efficient multi-robot control. This mutual
information metric is also widely used in many other related
applications. Kollar and Roy (2008) proposes an information
theoretic objective for SLAM. Marchant and Ramos (2014)
uses it to perform continuous path planning. Julian et al.
(2014) established a rigorous theory and algorithms for eval-
uating Shannon mutual information between a measurement
and the map. While information-based mapping algorithms
using Shannon mutual information (MI) provide guarantees
on the exploration of the environment, the evaluation of
Shannon MI, e.g., by the algorithm provided by Julian et al.
(2014), is computational demanding. The run time of the
algorithm scales quadratically with the spatial resolution of
the occupancy grid and linearly with the numerical integra-
tion resolution of the range measurement due to the absence
of an analytical solution. It has been pointed out that the
speed at which mutual information is evaluated can limit the

1Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, USA
2Department of Aeronautics and Astronautics, MIT, Cambridge, MA,
USA

Corresponding author:
Zhengdong Zhang, Massachusetts Institute of Technology, Cambridge,
MA, US
Email: zhangzd@mit.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:1

90
5.

02
23

8v
1

 [
cs

.R
O

]
 6

 M
ay

 2
01

9

2 Journal Title XX(X)

Time complexity of
proposed algorithms

No encoding of
measurement (2D)

Time
Complexity

Run-length encoding
of measurement (3D)

Time
Complexity

Exact method assuming
Gaussian sensor noise

FSMI
(Section 3.1)

O(n2)
FSMI-RLE
(Section 4.1)

O(n2
r)

Approximate method via
Gaussian truncation

Approx-FSMI
(Section 3.4)

O(n∆)
Approx-FSMI-RLE

(Section 4.2)
O(nr ∆)

Exact method assuming
uniform sensor noise

Uniform-FSMI
(Section 3.5)

O(n)
Uniform-FSMI-RLE

(Section 4.3)
O(nrH)

Table 1. The time complexity of all six algorithms proposed in this paper are presented in the table, where n is the number of cells
that the measurement intersects, ∆ is the truncation length of Gaussian truncation, nr is the number of classes of cells in a
run-length-encoding compression of the measurement, and H is the width of the uniform distribution as measured by the number of
cells that the uniform distribution intersects. The algorithms are classified depending on two factors: (i) their assumptions of sensor
noise, (ii) their encoding of measurements. The FSMI algorithm is an exact method that assumes Gaussian sensor noise, similar to
existing algorithms in the literature. The Approx-FSMI algorithm is an approximate method that approximates Guassian sensor
noise by truncating the Gaussian distribution. The Uniform-FSMI algorithm approximates by assuming uniform sensor noise.
The FSMI-RLE, Approx-FSMI-RLE, and Uniform-FSMI-RLE are their versions that represent measurements in run-length
encoding, which is essential when working with large-scale maps for three-dimensional environments. The table shows how various
approximations (going down in the table) and run-length encoding (going right in the table) reduce time complexity.

planning frequency, which in turn limits the velocity of the
robot and the exploration speed of the environment (Nelson
and Michael 2015).

Towards designing algorithms that are computationally
more efficient, Charrow et al. (2015b) proposed the use of
an alternative information metric, called Cauchy-Schwarz
Quadratic Mutual Information (CSQMI). They show that
the integrations in CSQMI can be computed analytically.
Additionally, they show a close approximation of CSQMI
can be evaluated in time that scales linearly with respect to
the spatial resolution of the occupancy grid. It is reported
by Charrow et al. (2015b) that CSQMI can be computed
substantially faster than Shannon MI, and it behaves
similarly to Shannon MI in experiments. Several other works
adopted CSQMI as the information metric for exploration.
For instance, Charrow et al. (2015a) propose a hybrid
method with global and local trajectory optimization based
on CSQMI. Nelson and Michael (2015) propose an adaptive
occupancy grid compression algorithm and uses CSQMI to
design the planner on the compressed map. Tabib et al.
(2016) combine CSQMI with trajectory optimization and
compression to build an energy-efficient cave exploration
system with a drone.

In this paper, we focus on the fundamental problem of
computing the Shannon mutual information metric between
a range measurement and the map. We propose a new class
of algorithms for efficient evaluation of this metric.

First, we propose the Fast Shannon Mutual Information
method, also called the FSMI algorithm, which evaluates
Shannon mutual information exactly for Gaussian distributed
sensor noise characteristics as commonly assumed in the
literature. The key idea behind the FSMI algorithm is
to analytically evaluate a certain integral, which leads to
substantial computational savings. Second, we propose two
variants of this algorithm, called the Approx-FSMI and
Uniform-FSMI, which approximate the evaluation of
the same metric by truncating the Gaussian distribution
(which was first introduced by Charrow et al. (2015b))
and by assuming a uniform sensor noise distribution,
respectively. Third, we propose the variants of these
algorithms, called FSMI-RLE, Approx-FSMI-RLE, and

Uniform-FSMI-RLE, that can handle measurements
represented in run-length encoding. The run-length encoding
is a certain kind of compression, which is particularly
efficient for working with three-dimensional maps. The time
complexity of the proposed algorithms are presented in
Table 1. For instance, the time complexity of the FSMI
algorithm isO(n2), where n is the number of cells in the map
that the range measurement intersects. In contrast, the time
complexity of the existing algorithm for computing Shannon
mutual information is O(n2 λz), where λz is resolution for
a certain numerical integral. The FSMI algorithm avoids
this numerical integral, and various approximations of sensor
noise characteristics and encodings of the measurement
vector provide even more efficiency.

We demonstrate this theoretical computational efficiency
in experiments. In particular, we present a comparison of
various methods for computing mutual information in a
computational study, in simulations, and in experiments
involving a ground robot equipped with a planar laser
scanner. In addition, we present mapping in a three-
dimensional environment involving a ground robot equipped
with a three-dimensional Velodyne VLP-16 laser scanner.

2 Preliminaries
This section is devoted to the introduction of preliminaries
and our notation, which we use throughout the paper.
We briefly review the occupancy grid in Section 2.1, the
Shannon mutual information metric and its computation
in Section 2.2, and the Cauchy-Schwarz quadratic mutual
information metric and its computation in Section 2.3.
Finally, in Section 2.4, we formulate the single-beam mutual-
information evaluation problem considered in this paper.

2.1 The Occupancy Grid
We use the occupancy grid to model the environment.
Following standard convention, we assume that all the
occupancy cells are independent and that a Bayesian filter
is used to update the occupancy probabilities.

The occupancy grid is denoted by the random variables
M = {M1, . . . ,MK}, where K is the number of cells and

Prepared using sagej.cls

3

𝑥𝑡

𝑍𝑡
𝑀𝑖

Figure 1. A 2D environment is represented by an occupancy
grid. Each cell in the map is associated with a binary random
variable Mi indicating the occupancy of the cell. At time t, a
vehicle can scan at location xt with perspective range
measurement being Zt.

Mi ∈ {0, 1} is the binary random variable that indicates
the occupancy of i-th cell. In this case, Mi = 0 indicates
an empty cell, Mi = 1 indicates an occupied cell. The
realization of the random variable Mi is denoted by mi.

The robot is equipped with a range measurement sensor.
Let the perspective range measurement be denoted by the
random variable Z. The realization of the random variable
Z is denoted by z. The perspective range measurement at
time t is denoted by Zt, and its realization is denoted by zt.
The measurements obtained up to time t is denoted by z1:t.
Typically, the robot acquires multiple range measurements at
the same time, e.g., measuring range in various directions.
The sequence of range measurements obtained at time t
is denoted by zt = (z1

t , . . . , z
nz
t) where nz is the number

of beams in a scan. Unless explicitly stated otherwise, we
assume that the noise distribution of the sensor is a Gaussian
with standard deviation σ regardless of the travel distance of
the beam.

The state of the robot is denoted by x. In this paper, the
state variable is the pose of the robot. We denote the state at
time t by xt. We denote the sequence of states from the initial
time through time t by x1:t. The measurements obtained by
the robot are a stochastic function of the map, the sensor
model, and the state of the robot at that time as shown in
Figure 1.

We make the the standard independence assumption
among the occupancy grid cells, i.e.,

P (M1 = m1, . . . ,MK = mk|z1:t, x1:t)

=
∏

1≤i≤K

P (Mi = mi|z1:t, x1:t),

where P (·) is the probability function. We assume that the
robot has no prior information on the environment, that is,
P (Mi = 1) = P (Mi = 0) = 0.5 for all Mi ∈M . Once a
measurement is obtained, the standard Bayesian filter can be
used to update the occupancy grid according to

P (Mi = 1|z1:t, x1:t)

P (Mi = 0|z1:t, x1:t)
=
P (Mi = 1|z1:(t−1), x1:(t−1))

P (Mi = 0|z1:(t−1), x1:(t−1))

P (Mi = 1|zt, xt)
P (Mi = 0|zt, xt)

.

(1)

We denote the probability of occupancy of the i-th cell by

oi = P (Mi = 1|z1:t, x1:t).

Additionally, we denote the odds ratio of a cell by

ri = oi/(1− oi).

The Bayesian filter given by Equation (1) essentially updates
ri for the cells related to the acquired range measurements.

2.2 The Shannon Mutual Information Metric
The Shannon mutual information metric between the mapM
and the measurement Z is defined as follows:

I(M ;Z) =
∑

m∈{0,1}K

∫
z≥0

P (Z = z,M = m)

log
P (Z = z,M = m)

P (Z = z)P (M = m)
dz.

(2)

In this section, we review the algorithm proposed by Julian
et al. (2014) that computes the Shannon mutual information
for single range measurement, such as a LiDAR beam.
Throughout the paper, we use the word beam and the
phrase range measurement interchangeably to describe
this measurement. For notational simplicity, we omit the
conditional probability terms x1:t and z1:t. Moreover, we
use M ′ = (M1, ...,Mn) to represent the cells that this single
range measurement intersects. Note that a beam tells no
information about the cells in M that it does not intersect.
Therefore, I(M ′;Z) = I(M ;Z). We further assume that
cells in M ′ are listed in ascending order by their distance
from the sensor. In addition, let δi(z) approximate the odds
ratio inverse sensing model (Thrun et al. 2005) for the cell
Mi:

δi(z) =

 δocc z indicates Mi is occupied
δemp z indicates Mi is empty
1 otherwise

, (3)

where δocc > 1 and δemp < 1 are hyper parameters. As
shown by Julian et al. (2014), The mutual information
between the beam and a single cell Mi is

I(Mi;Z) =

∫
z≥0

P (Z = z)f(δi(z), ri)dz, (4)

where P (Z = z) is the measurement prior

P (Z = z)

= P (e0)P (Z = z|e0) +

n∑
j=1

P (ej)P (Z = z|ej).

(5)

and f(δi(z), ri) is the following function:

f(δ, r) = log

(
r + 1

r + δ−1

)
− log δ

rδ + 1
. (6)

Here with a slight abuse of notation, we define P (ej) to
denote the probability that the j-th cell is the first occupied
cell on the beam and all the cells before the j-th cell are
empty. Similarly, we let P (e0) represent the probability that
all cells are empty:

P (e0) =

n∏
l=1

(1− ol);

P (ej) = oj
∏
l<j

(1− ol), for all j ≥ 1.
(7)

Prepared using sagej.cls

4 Journal Title XX(X)

The function P (Z = z|ej), as a function of z, denotes
the probability distribution of the range measurement, if the
beam passes through the occupancy cells before the j-th
cell and is blocked by the j-th cell. It is determined by the
distance between the j-th cell and the sensor as well as
the previously discussed sensor noise model. For notational
simplicity, we abbreviate P (Z = z|ej) as P (z|ej) in the
discussion that follows, particularly in Section 3.2 where we
prove the correctness of the main result.

Since Equation (4) does not have a known analytical
solution, Julian et al. (2014) evaluate it numerically by
discretizing z:

I(Mi;Z) =
∑
z

P (Z = z)f(δi(z), ri)λ
−1
z , (8)

where λz is the resolution for numerical integration. The
mutual information then is computed as

∑n
i=1 I(Mi;Z).

The time complexity of this algorithm is O(n2λz) (Julian
et al. 2014).

2.3 The Cauchy-Schwarz Quadratic Mutual
Information (CSQMI) Metric

Let P (Z,M) be the joint probability distribution of Z and
M , and P (Z), P (M) be the probability distribution ofZ and
M respectively. The CSQMI (Principe 2010; Charrow et al.
2015b) between M and Z is defined as

ICS(M ;Z) = DCS (P (Z,M), P (Z)P (M)) , (9)

where DCS(·, ·) is the Cauchy-Schwarz divergence between
two probability distributions P1 and P2, defined as follows:

DCS(P1(X), P2(X)) =

− 1

2
log

(∫
x
P1(X = x)P2(X = x)dx

)2(∫
x
P1(X = x)2dx

) (∫
x
P2(X = x)2dx

) . (10)

Both the Shannon mutual information and CSQMI
measure the difference between P (M,Z) and P (M)P (Z);
Charrow et al. (2015b) show that the mutual information
map and the CSQMI map of the same occupancy grid look
visually similar in practical robotics applications.

Charrow et al. (2015b) has shown that CSQMI for a beam
that intersects with n cells can be evaluated analytically in
O(n2) time. This is lower than the O(n2λz) complexity of
Shannon mutual information, because numerical integration
is avoided in CSQMI. In this paper, FSMI is compared
against CSQMI. For completeness, we reiterate the formula
to compute CSQMI by (Charrow et al. 2015b):

ICS(M ;Z) = log

C∑
l=0

wlN (0, 2σ2)

+ log
(n∏
i=1

(o2
i + (1− oi)2)

n∑
j=0

n∑
l=0

P (ej)P (el)N (µl − µj , 2σ2)
)

− 2 log

n∑
j=0

n∑
l=0

P (ej)wlN (µl − µj , 2σ2), (11)

Figure 2. Each candidate trajectory (marked by red) is
discretized into a set of states. Shannon mutual information is
evaluated between the perspective scan measurements at each
state and the map, then summed up along the trajectory.

where N (x, σ2) is the probability density function at x of a
normal distribution of zero mean and standard derivation of
σ, µl is the distance from the center of the l-th cell to the
range sensor on the robot and

wl = P (el)
2
∏
j<l

(o2
j + (1− oj)2).

Charrow et al. (2015b) proposed a close approximation to
CSQMI that truncates the tails of a Gaussian distribution.
This enables CSQMI to be computed approximately in O(n)
time. Specifically, each double sum in Equation (11) can be
approximated as follows:

n∑
j=0

j+∆∑
l=j−∆

αj,lN (µl − µj , 2σ2), (12)

where αj,l represents the corresponding coefficient in the
double sum, and ∆ is a small constant such as ∆ = 3.

2.4 Problem Formulation
A typical information-theoretic exploration strategy is to
generate a set of potential trajectories, evaluate mutual
information along each of trajectory, and choose the one with
the highest mutual information per travel cost (Nelson and
Michael 2015; Charrow et al. 2015b,a; Tabib et al. 2016).

In order to evaluate the mutual information along a
trajectory, the trajectory is typically discretized in the
state space, and mutual information is computed at each
state and then summed, as shown in Figure 2. To avoid
double counting, cells that have already contributed to
the total mutual information are marked and not used
in future computations (Charrow et al. 2015b). It has
been shown in previous research (Julian et al. 2014) that
the fundamental problem of information-based exploration
using range sensing is to efficiently evaluate the mutual
information between the map and single range measurement.
This problem is solved several times in typical mutual-
information-based exploration algorithms. We call this the
single-beam mutual-information computation problem.

Consider a range measurement sensor, e.g., using a LiDAR
beam emanating from the sensor. Again, we let M ′ =
(M1, . . . ,Mn) denote the vector of binary random variables
representing all the occupancy cells that the beam intersects.
Let the random variable Z denote the corresponding range

Prepared using sagej.cls

5

measurement. We wish to measure the dependence between
these random variables using Shannon mutual information.
The mutual information between the range measurement Z
and a single cell Mi can be computed using Equation (4).
We also follow the standard assumption that the mutual
information between the range measurement Z and all of
the cells in M is the summation of the mutual information
between the beam and each individual cell:

I(M ′;Z) =

n∑
i=1

I(Mi;Z)

=

n∑
i=1

∫
z≥0

P (Z = z)f(δi(z), ri)dz,

=

n∑
i=1

∫
z≥0

P (Z = z)
(

log

(
r + 1

r + δ−1

)
− log δ

rδ + 1

)
dz,

(13)

where P (Z = z) is the measurement prior defined in
Equation (5).

This paper focuses on efficient algorithms and efficient
approximations for computing the quantity defined in
Equation (13). We first discuss the algorithms in 2D. Then,
we propose an extension of the algorithms to the 3D mapping
problem that further reduces the computation complexity
using the structure of a 3D map.

3 The Fast Shannon Mutual Information
(FSMI) Algorithm for 2D Mapping

This section is devoted to the presentation of the FSMI
algorithm for mapping in the 2D plane. The FSMI algorithm
is presented in Section 3.1. The correctness of the algorithm
is proved in Section 3.2, and its computational complexity is
analyzed in Section 3.3. Efficient, practical implementations
of the FSMI enabled by tabulation and approximation
techniques are discussed in Section 3.4. Finally, efficient
implementations for the case when the sensor noise follows
a uniform distribution, instead of a Gaussian distribution, are
discussed in Section 3.5.

3.1 The FSMI Algorithm
In this section, we present the Fast Shannon Mutual
Information (FSMI) algorithm. The key idea behind the
FSMI algorithm is the following: Instead of performing
the summation in Equation (13) directly, FSMI computes
I(M ;Z) (same as I(M ′;Z)) holistically and analytically
evaluates one of the resulting integrals, which leads to
substantial computational savings.

Algorithm 1 summarizes this procedure with subroutines
in Algorithms 2 and 3. To describe the algorithms, let us first
present our notation. Let li be the distance from the beam’s
origin to the i-th cell where l1 = 0 and li is monotonically
increasing, as shown in the middle of Figure 3. Let us denote
the center of the i-th cell by µi = (li + li+1)/2. Just as in
Equation (7), P (ej) is used to denote the probability that the
j-th cell is the first non-empty cell in M ′, i.e.,

P (ej) = oj
∏
i<j

(1− oi).

Algorithm 1 The FSMI algorithm

Require: σ and li, oi for 1 ≤ i ≤ n.
1: I ← 0
2: Compute P (ej) for 0 ≤ j ≤ n with Algorithm 2.
3: Compute Ck for 1 ≤ k ≤ n with Algorithm 3.
4: for j = 0 to n do
5: for k = 0 to n do
6: Gk,j ← Φ((lk+1 − µj)/σj)− Φ((lk − µj)/σj)
7: I ← I + P (ej)CkGk,j

8: return I

Algorithm 2 Evaluate P (ej) for 0 ≤ j ≤ n
Require: oi for 1 ≤ i ≤ n

1: E0 ← 1
2: for j = 1 to n do
3: Ej ← Ej−1(1− oj)
4: P (ej)← Ej−1oj

5: P (e0) = En
6: return P (ej) for 0 ≤ j ≤ n

Algorithm 3 Evaluate Ck for 1 ≤ k ≤ n
Require: δemp, δocc and ri for 1 ≤ i ≤ n

1: q0 = 0
2: for k = 1 to n do
3: qk = qk−1 + f(δemp, rk)
4: Ck = qk−1 + f(δocc, rk)

5: return Ck for 1 ≤ k ≤ n

Let P (e0) be the probability that all cells are empty. Φ(·)
denotes the standard normal CDF. We also define

Ck = f(δocc, rk) +
∑
i<k

f(δemp, ri) (14)

where δocc and δemp are from the inverse sensor model
defined in Equation (3) and

Gj,k =

∫ lk+1

lk

P (z|ej)dz (15)

.
In Algorithm 1, the total mutual information is initialized

to zero (Line 1). Then, Algorithm 2 and Algorithm 3 are
used to compute P (ej) for all 0 ≤ j ≤ n (Line 2) and Ck
for all 1 ≤ k ≤ n (Line 3), respectively. Then, Algorithm 1
enumerates j, k through 0 to n, and for each pair (k, j) it
computes Gk,j and accumulates P (ej)CkGk,j into the total
mutual information (Lines 4-7).

3.2 Correctness of the FSMI algorithm
The following theorem states the correctness of the FSMI
algorithm, that is, the FSMI algorithm indeed returns
I(M ′;Z), i.e., the Shannon mutual information between
the measurement Z and M ′, the part of the map the beam
intersects with.

Theorem 1. Correctness of FSMI. The Shannon mutual
information between the range measurement of the beam and

Prepared using sagej.cls

6 Journal Title XX(X)

Figure 3. Illustration of the key idea behind the proof of
Lemma 1. The sensor beam (red) hits an obstacle (blue) in cell
Mk. The value of the odds ratio inverse sensor model is shown
at the bottom of the figure.

all of the cells in M ′ is

I(M ′;Z) =

n∑
j=0

n∑
k=1

P (ej)CkGk,j (16)

To prove this theorem, we need the following intermediate
result regarding the structure of f(δ, r).

Let F (z) =
∑n
i=1 f(δi(z), ri). The following lemma

states that F (z) is a piecewise-constant function.

Lemma 1. Piecewise Constant Summation. The function
F (z) is piecewise constant. In particular, if z lies in the
k-th cell, i.e. lk ≤ z < lk+1, then F (z) = Ck where Ck =
f(δocc, rk) +

∑
i<k f(δemp, ri).

Proof. For i < k, a measurement of z implies that the beam
has passed through Mi. Therefore Mi should be empty and
δi(z) = δemp. By definition, δk(z) = δocc. A measurement
of z also indicates that the beam stops at cell k which gives
no information about cells Mj for j > k, so f(δj(z), rj) =
f(1, rj) = 0. Therefore, each term of F (z) is constant for
lk ≤ z ≤ lk + 1 and the sum is equal to the desired Ck,
proving the lemma.

Lemma 1 shows that the function F (z) changes its value
only at the cell boundaries, as z increases. (See Figure 3
for an illustration.) If we compute the mutual information
between a range measurement and all the cells it can intersect
at once, we can take advantage of this property to turn the
integration in Equation (4) into a sum.

Using Lemma 1, we prove Theorem 1 as follows:

Proof. (Theorem 1) We begin with the total Shannon
mutual information for one range measurement as stated
in Equation (13). We substitute the definition of Shannon
mutual information provided in Equation (4), and rearrange
to reveal the sum described in Lemma 1. We arrive at the
following expression:

I(M ′;Z) =

n∑
i=1

I(Mi;Z) =

n∑
i=1

∫
z

P (z)f(δi(z), r)dz

=

n∑
i=1

∫
z

n∑
j=0

P (ej)P (z|ej)f(δi(z), r)dz

=

n∑
j=0

P (ej)

∫
z

P (z|ej)

(
n∑
i=1

f(δi(z), ri)

)
dz

=

n∑
j=0

P (ej)

∫
z

P (z|ej)F (z)dz.

(17)

Inspired by the result of Lemma 1, we divide the integration
over z into a sum of multiple integration intervals across each
cell boundary. This allows us to isolate the described term
that is constant across each cell as follows:

I(M ′;Z) =

n∑
j=0

P (ej)

n∑
k=1

∫ lk+1

lk

P (z|ej)Ckdz

=

n∑
j=0

n∑
k=1

P (ej)Ck

∫ lk+1

lk

P (z|ej)dz

=

n∑
j=0

n∑
k=1

P (ej)CkGk,j .

(18)

This completes the proof.

3.3 Computational Complexity of the FSMI
Algorithm

We study the time complexity of Algorithm 1 with respect
to, n, the number of cells that a single range measurement
intersects. The result is stated in the following theorem:

Theorem 2. The time complexity of Algorithm 1 is O(n2).

The proof of Theorem 2 is straightforward with the
following intermediate results:

Lemma 2. P (ej), 0 ≤ j ≤ n can be computed altogether
in O(n) with Algorithm 2.

Lemma 3. Ck, 1 ≤ k ≤ n can be computed altogether with
Algorithm 3.

Lemma 4. The standard normal CDF, Φ(·), can be
evaluated with a look-up table. Gk,j can be evaluated in
O(1) as follows:

Gk,j = Φ

(
lk+1 − µj

σ

)
− Φ

(
lk − µj
σ

)
(19)

Note that, unlike the algorithm proposed in (Julian et al.
2014), the FSMI algorithm does not perform any numerical
integration. As a result, the complexity of FSMI outperforms
the algorithm in (Julian et al. 2014) by a factor of λz , the
integration resolution.

Remark 1. FSMI has the same time complexity as the exact
version of CSQMI.

Furthermore, since we assume the noise distribution has
constant σ, we can directly precompute Φ(·σ) to avoid one
division operation per query.

Note that in addition to tabulating Φ(·), we also build
look-up tables for f(δocc, ri) and f(δemp, ri) for all i rather
than evaluate them based on their definition as that can
be computationally expensive. Specifically, we precompute
f(δocc, ri) and f(δemp, ri) for a discrete set of values of ri
and store the results in a look-up table. We set δempδocc =
1, following Julian et al. (2014); Since f(δemp, ri) =
f(δocc, 1/ri), a single look-up table suffices.

3.4 Efficient Implementations via Gaussian
Truncation

In (Charrow et al. 2015b), the authors propose to
approximate the CSQMI metric by setting the tail of the

Prepared using sagej.cls

7

Gaussian noise distribution to zero. We apply their technique
to FSMI. Specifically, let ∆ be the truncation width. We
approximate Equation (16) as follows:

I(M ′;Z) =

n∑
j=0

j+∆∑
k=j−∆

P (ej)CkGk,j . (20)

We refer to the variation of FSMI that applies the
approximation described above as Approx-FSMI. We refer
to the corresponding CSQMI algorithm with the same
approximation as Approx-CSQMI.

The complexity of evaluating Approx-FSMI is O(n∆)
This is the same complexity as Approx-CSQMI in (Charrow
et al. 2015b). Similar to CSQMI, the value of ∆ can be as
small as 3 in practical problem instances (Charrow et al.
2015b).

Even though both algorithms have the same asymptotic
complexity, we argue that the Approx-FSMI algorithm can
be implemented so that it requires fewer multiplications
when compared to the Approx-CSQMI algorithm. Intu-
itively, this is because our computation in Equation (20) has
only one double summation while the approximate version
of CSQMI in Equation (11) has two similarly structured
double summations of the same size. In this comparison,
we omit other operations, e.g., additions, because they are
significantly cheaper than multiplications on both general
purpose CPUs and FPGAs (Rabaey et al. 2002; Hennessy
and Patterson 2011). Other operations, such as log(·), occur
only a constant number of times in Equation (20) and the
approximate version of Equation (11).

Theorem 3. Number of Multiplications. Evaluating
Approx-FSMI and Approx-CSQMI require (∆ + 3)n and
(2∆ + 9)n multiplications, respectively.

Corrected between measurement UNTITLEDSAVED-
SAVED Type your title

3.5 Shannon Mutual Information Under
Uniform Measurement Noise Model

Recall that the asymptotic time complexity of Approx-FSMI
is O(n∆). Here, we show that when the sensor noise is
modeled by a uniform distribution rather than a Gaussian
distribution, under reasonable technical assumptions, the
Shannon mutual information can be evaluated in O(n),
independently of ∆.

Theorem 4. Uniform-FSMI. Suppose that cells have
constant width. Again, let the boundary of the i-th cell being
li and li+1 and for all i, li+1 − li = ∆L, which is a constant.
Suppose that the sensor noise model is uniform and that the
limits are quantized onto cell boundaries:

P (Z|ei) ∼ U [li −H∆L, li+1 +H∆L], (21)

for H ∈ Z+ is a constant for the beam.
Let Di =

∑
j≤i Cj for 1 ≤ i ≤ n and Di = 0 otherwise.

Then the Shannon mutual information between the beam and
all the cells it intersects is

I(M ′;Z) =

n∑
j=0

P (ej)
Dj+H −Dj−H−1

2H + 1
(22)

Proof. This proof follows the proof of
Theorem 1 until Eq. (17).
There, we plug in the PDF of the uniform distribution:

I(M ′;Z) =

n∑
j=0

n∑
k=1

P (ej)Ck

∫ lk+1

lk

P (z|ej)dz

=

n∑
j=0

P (ej)

j+H∑
k=j−H

Ck
2H + 1

=

n∑
j=0

P (ej)
Dj+H −Dj−H−1

2H + 1

(23)

This completes the proof.

Remark 2. If the sensor does not strictly follow a
uniform distribution, we can approximate it with a uniform
distribution by matching the mean and variance of the two
distributions. For example, if P (z|ei) ∼ N (µi, σ)

we can set H = round
(√

3σ − 1/2
)
.

The algorithm to compute Uniform-FSMI is summarized
in Algorithm 4. Its complexity is stated in the following
theorem:

Theorem 5. Time complexity of the Uniform-FSMI
algorithm. The time complexity of Algorithm 4 is O(n).

Proof. Line 2 computes all of P (ej) in O(n). Line 3
computes all of Ck in O(n) as well. The for-loop from
Line 5 to Line 6 finishes inO(n) time. The last for-loop from
Line 7 to Line 8 computes the Shannon mutual information
inO(n). Therefore, the total time complexity of Algorithm 4
is O(n).

The time complexity of the Uniform-FSMI algorithm
outperforms Approx-FSMI and Approx-CSQMI by a factor
of ∆. In the experiments presented in Section 5, we
demonstrate how this translates to an additional speedup of
the Shannon mutual information computation in practice.

Algorithm 4 The Uniform-FSMI algorithm

Require: H and ri for 1 ≤ i ≤ n.
1: I ← 0
2: Compute P (ej) for 0 ≤ j ≤ n with Algorithm 2.
3: Compute Ck for 1 ≤ k ≤ n with Algorithm 3.
4: Dk ← 0
5: for k = 1 to n do
6: Dk ← Dk−1 + Ck

7: for j = 0 to n do
8: I ← I + P (ej)

Dmin(n,j+H)−Dmax(0,j−H−1)

2H+1

9: return I

ALL ALERTS

4 Fast Shannon Mutual Information for 3D
Environment using Run-Length
Encoding

The algorithms and analysis provided in Section 3 focused
on two-dimensional environments. In this section, we

Prepared using sagej.cls

8 Journal Title XX(X)

are concerned with algorithms and representations that
can handle three-dimensional environments. A natural
extension of the two-dimensional occupancy map is a
three-dimensional voxel map (Roth-Tabak and Jain 1989;
Moravec 1996). Indeed, the algorithms and analysis
presented in Section 3 readily extend to three-dimensional
mapping problems using the voxel map. However, in most
applications, the memory requirements for the voxel map
exceed what is typically available on embedded computers
today, which can be mounted on robots of smaller form
factors. Hence, due to the size of the map, the algorithms
based on voxel maps will be relatively inefficient when
used as-is for three-dimensional mapping of large-scale
environments.

Fortunately, in most applications, the three-dimensional
space that a robot navigates has a special structure: the empty
spaces are typically large and continuous. The OctoMap
data structure in Hornung et al. (2013) takes advantage
of this structure. It compresses the map by using voxels
of varying sizes. See Figure 4(a) for an illustration. Large
homogeneous regions that would contain thousands of small
cells can be represented with a single cell in an OctoMap
representation. Thus, OctoMap representations have become
widely used in mapping and exploration in three-dimensional
environments (Endres et al. 2014; Whelan et al. 2015; Burri
et al. 2015).

To the best of our knowledge, there exists no prior work
that studies the computation of mutual information between
range measurements and the environment represented by an
OctoMap.

For efficient computation, we represent each measurement
using the run-length encoding (RLE) (Robinson and
Cherry 1967). Consider a measurement beam, as shown
in Figure 4(a). Suppose we project this beam onto
equally-sized “virtual cells,” as shown in Figure 4(b).
Then, the RLE encoding is a sequence of numbers that
encodes each occupancy value together with the number of
consecutive virtual cells with the same occupancy value.
This simple compression method is valuable for representing
measurements on the OctoMap structure in a way that we can
apply the analysis presented in the previous section.

This section proposes a class of algorithms to compute
the Shannon mutual information directly on this compressed
sequence. We will show that the time complexity of this
algorithm is linear with respect to the length of the
compressed vector. In practice, this translates to significant
savings in computation time.

This section is organized as follows. Section 4.1
formalizes the problem of adapting FSMI to run-length
encoding and presents an efficient tabulation-based solution,
namely the FSMI-RLE Algorithm. Section 4.2 discusses a
numerical issue with the proposed solution and resolves it
using Gaussian truncation, which we call the Approx-FSMI-
RLE algorithm. Finally, Section 4.3 introduces a Uniform-
FSMI-RLE algorithm for mapping in 3D when the sensor
noise follows a uniform distribution.

4.1 FSMI-RLE Algorithm: Shannon Mutual
Information on Occupancy Sequences
Compressed by RLE

In this section, we present the FSMI-RLE algorithm which
computes the Shannon mutual information between a sensor
beam and an array of cells whose occupancy values
are compressed by Run-Length Encoding (RLE). After
introducing our notation, Theorem 6 presents the main result.
Algorithm 7 summarizes the computation according to the
theorem.

Suppose the sequence consists of n total number of virtual
cells, divided into nr groups, each consisting of consecutive
virtual cells with the same occupancy value. The i-th group
contains cells with the same occupancy probability, oi ∈
(0, 1). We define the number of cells in the i-th group by
Li ∈ Z+. The total number of cells, n, relates to Li by∑nr

i=1 Li = n. Thus, the vector of occupancy values for the
range measurement is

{ o1, . . . , o1︸ ︷︷ ︸
repeated L1 times

, ..., onr
, . . . , onr︸ ︷︷ ︸

repeated Lnr times

}. (24)

Let su =
∑
i<u Li denote the index of the first cell in the

u-th group of cells. Let PE(u) =
∏
i<u(1− oi)Li denote the

probability that all the cells on the beam before the first cell
of the u-th group of cells are empty.

Also define DE(u) =
∑
i<u Lif(δemp, ri).

In addition, define the following:

α[x, Lu, Lv] =

Lu−1∑
j=0

Lv−1∑
k=0

xj exp

(
− (j − k)2

2σ′2

)
, (25)

β[x, Lu, Lv] =

Lu−1∑
j=0

Lv−1∑
k=0

k · xj exp

(
− (j − k)2

2σ′2

)
, (26)

𝑄0

𝑄1
𝑄2

𝑄3

𝑄4

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑜1 𝑜2 𝑜3 𝑜4

(a) Ray-tracing on OctoMap

𝑄0

𝑄1
𝑄2

𝑄3

𝑄4

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑜1 𝑜1 𝑜1 𝑜1 𝑜2 𝑜2 𝑜2 𝑜3 𝑜3 𝑜4

𝐿1 𝐿2 𝐿3 𝐿4

(b) Ray-tracing result represented by run-length encoding (RLE)

Figure 4. An illustrative example of how an OctoMap
representation adaptively represent an environment, and how
ray-tracing on the OctoMap representation results in an
occupancy sequence represented by run-length encoding
(RLE) format.

Prepared using sagej.cls

9

… 𝑜𝑢 𝑜𝑢 … 𝑜𝑢 𝑜𝑢 … … … 𝑜𝑣 𝑜𝑣 … 𝑜𝑣 …

𝑠𝑢 𝑠𝑢 + 𝐿𝑢 − 1𝑗 𝑠𝑣 𝑠𝑣 + 𝐿𝑣 − 1𝑘

𝐿𝑣𝐿𝑢

𝑍

Figure 5. Notation for FSMI computation on an occupancy
sequence compressed by RLE.

where the variable x ∈ [0, 1] is an occupancy probability,
and the variables Lu, Lv represent the block sizes of the u-
th and v-th groups of cells. α, β are auxiliary terms used
for calculating the mutual information for sensor beams that
are occluded by a cell in the u-th group of cells but the
measurements suggest that the beams fall in the v-th group
of cells due to the sensor noise.

Figure 5 illustrates this notation. Define ōu = 1− ou. Let
w denote the width of a virtual cell, and define σ′ = σ/w,
where σ is the standard deviation of the noise distribution.

Theorem 6. Shannon mutual information in RLE. The
Shannon mutual information I(M ′;Z) of a measurement
represented in RLE can be expressed as follows:

I(M ′;Z) =

nr∑
u=1

nr∑
v=1

PE(u)ou√
2πσ′

(
(DE(v) + f(δocc, rv))A[ōu, Lu, Lv, su − sv]+

f(δemp, rv)B[ōu, Lu, Lv, su − sv]
)
,

(27)

where

A[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

xj exp

(
− (j + t− k)2

2σ′2

)
,

B[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

k · xj exp

(
− (j + t− k)2

2σ′2

)
.

(28)
In addition, A[x, Lu, Lv, t] and B[x, Lu, Lv, t] can be

computed as

A[x, Lu, Lv, t]

=

x−t (α[x, Lu + t, Lv]− α[x, t, Lv]) , if t ≥ 1;

α[x, Lu, Lv], if t = 0;

(α[x, Lu, Lv − t]− α[x, Lu,−t]) , if t ≤ −1

(29)

and

B[x, Lu, Lv, t]

=

x−t (β[x, Lu + t, Lv]− β[x, t, Lv]) if t ≥ 1;

β[x, Lu, Lv] if t = 0;

β[x, Lu, Lv − t]− β[x, Lu,−t]
+t ·A[x, Lu, Lv, t] if t ≤ −1.

(30)

Proof. First we prove the statement in Equation (27). We
reorganize Equation (16) into double sum over groups of

cells defined in Equation (24):

I(M ′;Z) =

nr∑
u=1

nr∑
v=1

Lu−1∑
j=0

Lv−1∑
k=0

P (esu+j)Csv+kGsu+j,sv+k,

(31)
where

P (ej) = oj
∏
l<j

(1− ol),

Ck =
∑
l<k

f(δemp, rl) + f(δocc, rk),

Gk,j =
1√

2πσ′
exp

(
− (k − j)2

2σ′2

)
.

For a fixed u, for all j, we have

P (esu+j) = PE(u)(1− ou)jou. (32)

Similarly,

Csv+k = DE(v) + k · f(δemp, rv) + f(δocc, rv). (33)

Substituting Equation (32) and Equation (33) into Equa-
tion (31) proves the statement in Equation (27).

Second, we prove the statement in Equation (29). When
t ≥ 1,

A[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

xj exp

(
− (j + t− k)2

2σ′2

)

=

Lu−1∑
j=0

Lv−1∑
k=0

x−txj+t exp

(
− (j + t− k)2

2σ′2

)

=x−t
Lu−1∑
j=0

Lv−1∑
k=0

xj+t exp

(
− (j + t− k)2

2σ′2

)

=x−t
Lu+t−1∑
j=t

Lv−1∑
k=0

xj exp

(
− (j − k)2

2σ′2

)
=x−t (α[x, Lu + t, Lv]− α[x, t, Lv]) .

Similarly, when t ≤ −1,

A[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

xj exp

(
− (j + t− k)2

2σ′2

)

=

Lu−1∑
j=0

Lv−t−1∑
k=−t

xj exp

(
− (j − k)2

2σ′2

)
=α[x, Lu, Lv − t]− α[x, Lu,−t].

Third, we prove the statement in Equation (30). The case
for t = 0 is trivial. The case for t ≥ 1 is similar to the case

Prepared using sagej.cls

10 Journal Title XX(X)

of A, above. When t ≤ −1, we have

B[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

k · xj exp

(
− (j + t− k)2

2σ′2

)

=

Lu−1∑
j=0

Lv−1∑
k=0

(k − t+ t) · xj exp

(
− (j + t− k)2

2σ′2

)

=

Lu−1∑
j=0

Lv−1∑
k=0

(k − t) · xj exp

(
− (j − (k − t))2

2σ′2

)
+

Lu−1∑
j=0

Lv−1∑
k=0

t · xj exp

(
− (j + t− k)2

2σ′2

)

=

Lu−1∑
j=0

Lv−t−1∑
k=−t

k · xj exp

(
− (j − k)2

2σ′2

)
+

Lu−1∑
j=0

Lv−1∑
k=0

t · xj exp

(
− (j + t− k)2

2σ′2

)
=β[x, Lu, Lv − t]− β[x, Lu,−t] + t ·A[x, Lu, Lv, t].

Theorem 6 motivates an efficient algorithm that balances
time complexity and space complexity. Specifically, it
is realized by the FSMI-RLE algorithm, presented in
Algorithms 5, 6, and 7, which can rapidly evaluate
Shannon mutual information with a time complexity that
is independent of the number of virtual cells, n, and
without requiring a large amount of memory. In summary,
the algorithm pre-computes and stores the functions
α(x, Lu, Lv) and β(x, Lu, Lv) in look-up tables, and uses
Equation 27 to combine these values to produce the
Shannon mutual information. When tabulating the functions
α(x, Lu, Lv) and β(x, Lu, Lv) into look-up tables, the
algorithm quantizes the occupancy probability variable x ∈
[0, 1] into a finite set of values∗, which we denote by X .

It is easy to see that the functions α(x, Lu, Lv) and
β(x, Lu, Lv) are polynomials in x, hence continuous in x;
thus, they can be approximated arbitrarily well by taking the
resolution of X fine enough. Hence, the algorithm is still an
exact algorithm for computing Shannon mutual information,
as it can approximate the result with arbitrary accuracy.

The correctness of Algorithm 7 is provided below.

Theorem 7. Correctness of FSMI-RLE. Algorithm 7
computes I(M ′;Z) in Equation (27).

Proof. Algorithm 5 and Algorithm 6 correctly computes
PE(u) and DE(v); they are called in Lines 5 and 6 in
Algorithm 7 to calculate PE(u) and DE(v) for all of
u, v, 1 ≤ u, v ≤ nr. Then in Algorithm 7, Line 7 and 9
enumerate u, v from 1 to nr; inside the loop, the computation
follows Equation (27) except for the normalization, which
happens outside the loop in Line 13. This completes the
proof.

The time and space complexity of the algorithm are
provided below.

Theorem 8. Time complexity of FSMI-RLE. The time
complexity of the FSMI-RLE algorithm is O(n2

r).

Proof. Algorithm 5 and Algorithm 6 only loops through 1
to nr once; both have a complexity of O(nr). Although
we put the tabulation of α and β inside Algorithm 7 for
completeness, in the actual implementation the table is
precomputed once outside Algorithm 7. The rest of the
algorithm is a double for-loop to compute Equation (27),
resulting in a time complexity of O(n2

r). Therefore, the
overall time complexity is O(n2

r).

Theorem 9. Space complexity of FSMI-RLE. The space
complexity of the FSMI-RLE algorithm is O(|X |n2).

Proof. Except for the two tables α and β, all the other
variables in Algorithm 7 store at most nr real numbers.
Each of α and β tabulates against x, Lu, Lv . Note that x
is quantized into |X | entries and 1 ≤ Lu, Lv ≤ nr; hence,
α and β each stores exactly |X |n2

r real values. Therefore,
the space complexity of Algorithm 7 is O(|X |n2

r). This
completes the proof.

First, note that the time complexity depends only on the
number of groups of cells nr, i.e., the size of the run-
length encoding, but not on the number of virtual cells
n. Note that nr is significantly smaller than n because
of the run-length encoding compression. Hence, reducing
the time complexity from O(n2) to O(n2

r) translates to
substantial savings in mutual information computation when
the OctoMap achieves reasonable compression of the three-
dimensional environment.

Second, let us note that closed-form solutions to A and
B in Equation (6) and (28) may reduce space complexity
of the algorithm. However, the authors were unable to
find closed-form solutions without any approximations.
With approximation, we are able to derive closed-form
solutions. Unfortunately, despite their constant time and
space complexity the closed form solutions are so complex
that its runtime exceeds that of the tabulated algorithms in
all practical scenarios that we considered. See Appendix A
for our closed-form solutions. Finding closed-form solutions
that can be evaluated more efficiently remains an open
problem.

Third, unfortunately, the FSMI-RLE algorithm suffers
from numerical issues in some problem instances. Consider
a case when there are two groups each with a very
large number of virtual cells, say Lu and Lv are very
large numbers for some u and v, u > v. Recall that
A[ōu, Lu, Lv, t] is the product of (ōu)

−t and α[ōu, Lu +
t, Lv]− α[ōu, t, Lv]. Since t = su − sv ≥ Lv , the variable
t also becomes large. Hence, when ōu is close to zero,
ō−tu becomes a very large number. At the same time,
(α[ōu, Lu + t, Lv]− α[ōu, t, Lv]) becomes a very small
number. As a result, in some cases, the multiplication of these
numbers cannot be completed correctly due to the precision
limitations of multiplication on computing hardware. The
authors believe that the numerical issues can be avoided by
tabulating the functions A and B into look-up tables, instead
of the functions α and β. However, unfortunately, tabulating
A and B requires orders of magnitude more memory, due to

∗Let us note that, in many practical implementations of mapping algorithms,
the occupancy values ou is quantized into a finite set of values from [0, 1]
for computational efficiency (see, e.g., (Hess et al. 2016)).

Prepared using sagej.cls

11

Algorithm 5 Evaluate PE(u) for 1 ≤ u ≤ nr
Require: ou, Lu for 1 ≤ u ≤ nr

1: PE(1)← 1
2: for u = 2 to nr do
3: PE(u)← PE(u− 1)(1− ou−1)Lu−1

4: return PE(u) for 1 ≤ u ≤ nr

Algorithm 6 Evaluate DE(v) for 1 ≤ v ≤ nr
Require: rv , Lv for 1 ≤ v ≤ nr

1: DE(1)← 0
2: for v = 2 to nr do
3: DE(v)← DE(v − 1) + Lv−1f(δemp, rv−1)

4: return DE(v) for 1 ≤ v ≤ nr

Algorithm 7 The FSMI-RLE algorithm

Require: Noise standard derivation σ, cell width w and
si, Li, oi, ri for 1 ≤ i ≤ nr.

1: I ← 0
2: σ′ = σ/w
3: Compute PE(u) for 1 ≤ u ≤ nr with Algorithm 5.
4: Compute DE(v) for 1 ≤ v ≤ nr with Algorithm 6.
5: Tabulate α[x, Lu, Lv].
6: Tabulate β[x, Lu, Lv].
7: for u = 1 to nr do
8: x← floor((1− ou)/ores)ores
9: for v = 1 to nr do

10: ComputeA[x, Lu, Lv, t] based on Equation (29).
11: ComputeB[x, Lu, Lv, t] based on Equation (30).
12: I ← I + PE(u)ou((DE(v) + f(δocc, rv))A+

f(δemp, rv))B)

13: I ← I/(
√

2πσ′)
14: return I

the additional integer variable t that they encompass. Instead,
in the next section, we propose an approximate algorithm for
computing Shannon mutual information, based on truncating
of the Gaussian distribution, which avoids the numerical
issues while maintaining computational efficiency. The key
insight behind the numerical stability of the approximation
is that the variable t never becomes too large as a result of
the truncation.

4.2 Approx-FSMI-RLE Algorithm:
Approximating Shannon Mutual
Information in RLE via Truncation

In this section, we present an approximate version of
the algorithm presented in the previous section. The
approximation is achieved by truncating the Gaussian
distribution, similar to the approximation presented in
Section 3.4. In brief, we wish to obtain an efficient
algorithm that evaluates Shannon mutual information as in
Equation (20), which was obtained from Equation (16) by
setting Gk,j = 0 for all k, j with |k − j| > ∆.

In the rest of this section, we first state the truncated
parallel of Theorem 6. Then, we present the Approx-
FSMI-RLE algorithm, which approximates the FSMI-RLE
algorithm via Gaussian truncation. Next, we prove the

correctness of the Approx-FSMI-RLE algorithm and then
analyze its computational complexity.

Recall that, for every two groups of virtual cells, say u and
v, the variables su, sv denote the index for the first virtual cell
of its group and the variables Lu, Lv denote the number of
virtual cells in that group. When we evaluate Shannon mutual
information using Equation (27), most terms inA andB will
be equal to zero due to Gaussian truncation. There are three
cases to consider. First, two groups u and v might be further
than ∆ away, in which case all terms in A and B evaluate to
zero. See Figure 6 for an illustration. Second, two groups are
close to each other and long enough, so that only a subset of
the terms are zero. See Figure 7(a) for an illustration. In this
case, we consider their sub-groups with non-zero elements.
We denote the starting index of the sub-groups by s′u, s′v , and
we denote the length of these subgroups by L′u, L′v . Third,
the two groups closer and shorter than ∆. See Figure 7(b)
for an illustration. In this case, all terms are non-zero.

The theorem below presents the main result of this
section. This result establishes a concise formula to
compute the Shannon mutual information after the truncation
of the Gaussian distribution. Most importantly, it saves
computation by eliminating terms that evaluate to zero. In
particular, it provides the formulae to compute the variables
s′u, s′v , L′u and L′v , which we referenced above.

Theorem 10. Approx-FSMI-RLE algorithm. If Gk,j = 0
when |k − j| > ∆, the Shannon mutual information can be
evaluated as

I(M ′;Z) =
Iu<v + Iu>v + Iu=v√

2πσ′
, (34)

where

Iu<v =

nr∑
u=1

∑
v>u

sv<su+Lu+∆

PE(u)(1− ou)s
′
u(u,v)−suou

(
(DE(v)f(δemp, rv)+

f(δocc, rv))A[x, L′u(u, v), L′v(u, v), su − sv]+

f(δemp, rv)B[x, L′u(u, v), L′v(u, v), su − sv]
)
,

(35)

Iu>v =

nr∑
u=1

∑
v<u

su<sv+Lv+∆

PE(u)ou

(
(DE(v) + (s′v(u, v)− sv)f(δemp, rv)+

f(δocc, rv))A[x, L′u(u, v), L′v(u, v), su − sv]+

f(δemp, rv)B[x, L′u(u, v), L′v(u, v), su − sv]
)
,

(36)

and

Iu=v =

nr∑
u=1

PE(u)ou(DE(u)+

f(δocc, ru))θ[x, Lu] + f(δemp, ru))γ[x, Lu]
)
,

(37)

where

θ[x, L] = α[x, L, L],

γ[x, L] = β[x, L, L].

Prepared using sagej.cls

12 Journal Title XX(X)

The L′u(u, v), L′v(u, v), s′u(u, v), s′v(u, v) that appeared in
the above equations are defined as:

s′u(u, v) =

{
max(su, sv −∆) u < v
su u > v

, (38)

L′u(u, v) =

{
su + Lu − s′u(u, v) u < v
min(Lu, sv + Lv + ∆− su) u > v

(39)

s′v(u, v) =

{
sv u < v
max(sv, su −∆) u > v

, (40)

L′v(u, v) =

{
min(Lv, su + Lu + ∆− sv) u < v
sv + Lv − s′v(u, v) u > v

(41)

To prove this theorem, we first establish a neces-
sary and sufficient condition for A[x, Lu, Lv, t] 6= 0 and
B[x, Lu, Lv, t] 6= 0 to hold after the truncation.

Lemma 5. Nonzero Mutual Information Block Pair after
Gaussian Truncation. Let t = su − sv 6= 0. If Gk,j = 0

… 𝑜𝑢 𝑜𝑢 … 𝑜𝑢 𝑜𝑢 𝑜𝑣 𝑜𝑣 … 𝑜𝑣 …

𝑠𝑢 𝑠𝑢 + 𝐿𝑢 − 1𝑗 𝑠𝑣 𝑠𝑣 + 𝐿𝑣 − 1𝑘

𝐿𝑣𝐿𝑢

𝑍

Δ

Figure 6. When the condition in Lemma 5 is violated, Gaussian
truncation sets the Shannon mutual information contribution
between these two blocks to zero; otherwise the Shannon
mutual information contribution is non-zero.

… 𝑜𝑢 𝑜𝑢 … 𝑜𝑢 𝑜𝑢 𝑜𝑣 𝑜𝑣 … 𝑜𝑣 …

𝑠𝑢 𝑠𝑢 + 𝐿𝑢 − 1𝑗 𝑠𝑣 𝑠𝑣 + 𝐿𝑣 − 1𝑘

𝐿𝑣𝐿𝑢

𝑍

𝑠𝑢′
Δ

Δ

𝐿𝑢
′ 𝐿𝑣

′

(a) Start location and length of the blocks changed by Gaussian
truncation

… … … 𝑜𝑢 … 𝑜𝑢 𝑜𝑣 … 𝑜𝑣 … … … …

𝑠𝑢 𝑠𝑢 + 𝐿𝑢 − 1 𝑠𝑣 𝑠𝑣 + 𝐿𝑣 − 1

𝐿𝑣𝐿𝑢

Δ

Δ

𝑠𝑢 + 𝐿𝑢 + Δ − 1𝑠𝑣 − Δ

(b) Start location and length of the blocks unaffected by Gaussian
truncation

Figure 7. Gaussian truncation may change the start and the
length of a pair of blocks of cell, depending on their relative
distance and group length.

when |k − j| > ∆, then A[x, Lu, Lv, t] 6= 0 if and only if
u = v, or u < v, sv < su + Lu + ∆ or v < u, su < sv +
Lv + ∆. The same holds for B[x, Lu, Lv, t].

Proof. Figure 6 illustrates the case when u < v. The case
of u > v is symmetric. When u = v Gaussian truncation
cannot set all terms in A and B to zero. This completes the
proof.

This lemma enables us to skip computations for any pair
of (u, v) that does not satisfy the above condition. Based on
this lemma, now we prove Theorem 10.

Proof. (Theorem 10) We first prove the statement in
Equations (38)-(41). Since u and v are symmetric, we only
discuss the case of u < v. See Figure 7 for an illustration.

The formula for s′u(u, v), the new start position of the
left block, is different depending on whether the two blocks
belong to the case of Figure 7(a) or Figure 7(b). In the former
case, s′u(u, v) = sv −∆ while in the latter case s′u(u, v) =
su > sv −∆. Combining them into one formula, we have
s′u(u, v) = max(su, sv −∆).

With s′u(u, v), to get L′u(u, v) we simply subtract the
number of truncated cells, s′u(u, v)− su(u, v), from Lu, i.e.,
L′u(u, v) = Lu − (s′u(u, v)− su) = su + Lu − s′u(u, v).

Gaussian truncation does not affect the start position of the
group of cells further away from the scanning position. Since
in this case u < v, the start position of the v-th group stays
the same, i.e., s′v(u, v) = sv .

The derivation for L′v(u, v) is similar to the derivation for
s′u(u, v). If it is the case of Figure 7(a), we have L′v(u, v) =
su + Lu + ∆− sv . Otherwise L′v(u, v) = Lv < su + Lu +
∆− sv . Combining the two cases, we get L′v(u, v) =
min(Lv, su + Lu + ∆− sv).

The same proof applies to the case of u > v. Hence we
have proven Equations (38)-(41).

The proof for the top part of this theorem follows
Theorem 6. After the Gaussian truncation, su, sv, Lu, Lv
becomes s′u(u, v), s′v(u, v), L′u(u, v), L′v(u, v). As a result,
PE(u) will change when s′u 6= su; let us denote the updated
value by P ′E(u). Similarly, the value of DE(v) also changes
when s′v 6= sv and we denote it by D′E(v).

For P ′E(u), we note that s′u(u, v) = su when u > v
according to Equation (38); hence, we have

P ′E(u) =

{
PE(u)(1− ou)s

′
u(u,v)−su u < v

PE(u) u ≥ v . (42)

Similarly, for D′E(v), we derive the following equation
based on Equation (40) and Equation (41):

D′E(v) =

{
DE(v) u ≤ v
DE(v) + (s′v(u, v)− sv)f(δemp, rv) u > v

.

(43)
Substituting Equation (42) and (43) into Equation (27) and
separate the cases for u < v, u = v and u > v, we prove the
theorem.

Theorem 10 motivates the Approx-FSMI-RLE algorithm,
which we present in Algorithm 8. The algorithm creates
look-up tables for the functions α, β, θ, and γ using
Algorithms 9 and 10 in Lines 5 and 6. Then, the algorithm

Prepared using sagej.cls

13

proceeds with computing Shannon mutual information based
on Equation (34) in Lines 7-27. Line 8 handles the case when
u = v by applying the formula in Equation (37). Lines 9-
17 handle the case when u < v by applying the formula in
Equation (35). Finally, Lines 18-26 handle the case when
u > v by applying the formula in Equation (36).

The following theorem establishes the correctness of the
Approx-FSMI-RLE algorithm. The proof of the algorithm is
evident from the description above.

Theorem 11. Correctness of Approx-FSMI-RLE. Algo-
rithm 8 computes I(M’;Z) in Equations (34)-(36).

The following two theorems establish the computational
complexity of the Approx-FSMI-RLE algorithm.

Theorem 12. Time complexity of the Approx-FSMI-RLE
algorithm. The time complexity of the Approx-FSMI-RLE
algorithm is O(∆nr).

Proof. First of all, the computation of PE(u) in Line 3
and DE(v) in Line 4 of Algorithm 8 takes O(nr) in total
to complete. Then we note that the tabulation of α, β, θ, γ
in Line 5 and Line 6 in practice takes place outside the
algorithm for a single beam; these tables are filled only
once at the start of an exploration task so that they will not
be computed again for the evaluation of Shannon mutual
information on any single beam once the exploration starts.

The for-loop over u from Line 7 to Line 26 enumerates
u from 1 to nr. The computation consists of three parts,
corresponding to Iu=v , Iu<v and Iu>v in Theorem 10. Line 8
handles the case of v = u and it costs O(1). Lines 9-17
handle the case of u < v and loop through all v ∈ {v | v >
uandsv < su + Lu + ∆}. Note that su + Lu is the index of
the start of the next group of cells right of the u-th group of
cells. So we have sv ≥ su + Lu. Since sv < su + lu + ∆,
the number of valid v is bounded by (su + Lu + ∆)− (su +
L) = ∆. The computation inside the for-loop in Lines 9-
17 is O(1), hence the complexity of this for-loop is O(∆).
Similarly the complexity for the for-loop in Lines 18-26
that handle the case of u > v is also O(∆). So the overall
complexity for the for-loop in Lines 7-27 is O(∆nr).

Therefore, the overall complexity of the whole algorithm
is O(nr + ∆nr) = O(∆nr).

Theorem 13. Space complexity of Approx-FSMI-RLE
algorithm. The space complexity of the Approx-FSMI-RLE
algorithm is O

(
|X |(n+ ∆2)

)
.

Proof. The main memory of Algorithm 8 is used to store
the tables α[x, Lu, Lv], β[x, Lu, Lv] and θ[x, Lu], γ[x, lu].
Compared with it, the memory for all other variables
has at most O(nr) space complexity, which is negligible.
For both α and β, we have 1 ≤ Lu, Lv ≤ ∆ because of
Gaussian truncation. For θ, γ, we have 1 ≤ Lu ≤ n. Since
x ∈ X , the overall space complexity of Algorithm 8 is
O
(
|X |(n+ ∆2)

)
.

4.3 Uniform-FSMI-RLE Algorithm: Shannon
Mutual Information in RLE Assuming
Uniform Distribution for Sensor Noise

In this section, we discuss an algorithm that computes
Shannon mutual information on measurements in RLE

Algorithm 8 The Approx FSMI-RLE algorithm

Require: Noise standard derivation σ, cell width w and
si, Li, oi, ri for 1 ≤ i ≤ nr, quantization resolution
ores, Gaussian truncation width ∆, maximal length of
a group of cell LM .

1: I ← 0
2: σ′ = σ/w
3: Compute PE(u) for 1 ≤ j ≤ nr with Algorithm 5.
4: Compute DE(v) for 1 ≤ k ≤ nr with Algorithm 6.
5: Tabulate α[x, Lu, Lv] and θ[x, Lu] with Algorithm 9

where Lbound = ∆ and Lmax = LM .
6: Tabulate β[x, Lu, Lv] and γ[x, Lu] with Algorithm 10

where Lbound = ∆ and Lmax = LM .
7: for u = 1 to nr do
8: I ← I + PE(u)ouZ(DE(u) +
f(δocc, rv))θ[x, Lu] + f(δemp, ru))γ[x, Lu]

9: for v ∈ {v | v > u and sv < su + Lu + ∆} do
10: s′u ← max(su, sv −∆)
11: L′u ← su + Lu − su(u, v)′

12: s′v ← sv
13: L′v ← min(Lv, su + Lu + ∆− sv)
14: t← s′u − s′v
15: A = x−t (α[x, L′u + t, L′v]− α[x, t, L′v])
16: B = x−t (β[x, L′u + t, L′v]− β[x, t, L′v])
17: I ← I + PE(u)(1− ou)s

′
u−suou((DE(v) +

f(δocc, rv))A+ f(δemp, rv)B)

18: for v ∈ {v | v < u and su < sv + Lv + ∆} do
19: s′u ← su
20: L′u ← min(Lu, sv + Lv + ∆− su)
21: s′v ← max (sv, su −∆)
22: L′v ← sv + Lv − s′v
23: t← s′u − s′v
24: A = x−t (α[x, L′u + t, L′v]− α[x, t, L′v])
25: B = x−t (β[x, L′u + t, L′v]− β[x, t, L′v])
26: I ← I + PE(u)ou((DE(v) + (s′v −

sv)f(δemp, rv) + f(δocc, rv))A+ f(δemp, rv))B)

27: I ← I/(
√

2πσ′)
28: return I

assuming uniform distribution for the sensor noise.
Unfortunately, the resulting algorithm is not substantially
better than the Approx-FSMI-RLE algorithm. However, we
still describe the key ideas behind the algorithm for the
purposes of completeness.

Let 1(·) be the indicator function. We also employ the
notations defined in Theorem 4. The following theorem
presents the main result:

Theorem 14. Uniform FSMI-RLE. If the sensor measure-
ment noise follows uniform distribution, i.e.,

P (Z|ei) ∼ U [li −Hw, li+1 +Hw], (44)

for H ∈ Z+ and the width of the virtual cell w, then the
Shannon mutual information between Z and M ′ can be
evaluated as

Prepared using sagej.cls

14 Journal Title XX(X)

Algorithm 9 Tabulating α[x, Lu, Lv] and θ[x, Lu]

Require: xres, σ′, Lbound, Lmax
1: Nx ← floor(1/xres)
2: for i = 0 to Nx do
3: x← i · xres
4: α[x, 1, 1]← 1
5: for Lu = 2 to Lbound do
6: α[x, Lu, 1] = α[x, Lu − 1, 1] +

exp (− (Lu−1)2

2σ′2)

7: for Lv = 2 to Lbound do
8: α[x, 1, Lv] = α[x, 1, Lv − 1] +

xLv−1 exp (− (1−Lv)2

2σ′2)

9: for Lu = 2 to Lbound do
10: for Lv = 2 to Lbound do
11: α[x, Lu, Lv] = α[x, Lu, Lv − 1] +

α[x, Lu − 1, Lv]− α[x, Lu − 1, Lv − 1] +

xLv−1 exp (− (Lu−Lv)2

2σ′2)

12: for L = 1 to Lbound do
13: θ[x, L] = α[x, L, L]

14: for L = Lbound + 1 to Lmax do
15: θ[x, L]← θ[x, L− 1]
16: for i = 1 to L− 1 do
17: θ[x, L]← θ[x, L] + xL−1 exp (− (i−L)2

2σ′2)

18: θ[x, L]← θ[x, L] + xi−1 exp (− (i−L)2

2σ′2)

19: θ[x, L]← θ[x, L] + xL−1

20: return α and θ

I(M ′;Z) =

nr∑
u=1

nr∑
v=1

PE(u)ou
2H + 1

(
(DE(v) + f(δocc, rv))

Lu−1∑
j=0

Lv−1∑
k=0

k · ōju1(|j + t− k)| ≤ H)

+ f(δemp, rv))

Lu−1∑
j=0

Lv−1∑
k=0

ōju1(|j + t− k| ≤ H)
)
.

(45)

This motivates us to focus on the computation of the
following two terms:

F [x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

xj1(|j + t− k)| ≤ H),

G[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

k · xj1(|j + t− k)| ≤ H).

(46)

We apply the same tabulation techniques and algorithms
presented in Section 4.1, except we tabulate F and G
and we use the Equation (45) to compute Shannon mutual
information. We call the resulting algorithm Uniform-FSMI-
RLE.

The following theorem states the time complexity of the
Uniform-FSMI-RLE algorithm:

Algorithm 10 Tabulating β[x, Lu, Lv] and γ[x, Lu]

Require: xres, σ′, Lbound, Lmax
1: Nx ← floor(1/xres)
2: for i = 0 to Nx do
3: x← i · xres
4: β[x, 1, 1]← 0
5: for Lu = 2 to Lbound do
6: β[x, Lu, 1]← 0

7: for Lv = 2 to Lbound do
8: β[x, 1, Lv] = β[x, 1, Lv − 1] + (Lv −

1) exp (− (1−Lv)2

2σ′2)

9: for Lu = 2 to Lbound do
10: for Lv = 2 to Lbound do
11: β[x, Lu, Lv] = β[x, Lu, Lv − 1] +

β[x, Lu − 1, Lv]− β[x, Lu − 1, Lv − 1] + (Lv −
1)xLu−1 exp (− (Lu−Lv)2

2σ′2)

12: for L = 1 to Lbound do
13: γ[x, L] = β[x, L, L]

14: for L = Lbound + 1 to Lmax do
15: γ[x, L]← γ[x, L− 1]
16: for i = 1 to L− 1 do
17: γ[x, L]← γ[x, L] + (i−

1)xL−1 exp (− (i−L)2

2σ′2)
18: γ[x, L]← γ[x, L] + (L−

1)xi−1 exp (− (i−L)2

2σ′2)

19: γ[x, L]← γ[x, L] + (L− 1)xL−1

20: return β and γ

Theorem 15. Time complexity of Uniform-FSMI-RLE. If
F [x, Lu, Lv, t] andG[x, Lu, Lv, t] can be evaluated inO(1),
the time complexity of the Uniform-FSMI-RLE algorithm is
O(nrH).

Note that the support of the uniform distribution itself
only spans 2H w in length; therefore, its impact on the
Shannon mutual information computation is similar to that
of the Gaussian truncation, and H is similar to ∆ despite
their definitions being different (H is the radius of the
uniform distribution, while ∆ is the truncation of the
Gaussian distribution). Therefore, the proof of Theorem 15 is
trivial given the time complexity of the Approx-FSMI-RLE
algorithm, so we skip it in this paper.

In practice, the magnitude of the value of H is also
comparable to ∆; hence, the time complexity of the
Uniform-FSMI-RLE algorithm, O(nrH) is not lower than
the time complexity of the Approx-FSMI-RLE algorithm,
which is O(nr ∆).

5 Experimental Results
This section is devoted to our experiments. In Section 5.1,
we demonstrate the FSMI and Approx-FSMI algorithms
in computational experiments with randomly generated
occupancy values. Then, in Section 5.2, we demonstrate
the effectiveness of these algorithms for two-dimensional
mapping in a synthetic environment. In Section 5.3, we
demonstrate the same algorithms in an experiment involving
a 1/10-scale car-like robot. In all cases, we compare

Prepared using sagej.cls

15

188046

132
17

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Original

MI

FSMI Approx

FSMI

96 100 97

0

20

40

60

80

100

120

Original
MI

Exact Fast
MI

Approx
Fast MI

Relative error (%)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

Fast MI (approx) CSQMI (approx)

25

13

70 70

0

10

20

30

40

50

60

70

80

Same delta Same precision

Fast MI (approx) CSQMI (approx)

6.E-04

7.E-06 7.E-06
0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

Original

MI

FSMI Approx

FSMI

29

17

10

0

5

10

15

20

25

30

35

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

107.2 105.3 106.9

131.4

0

20

40

60

80

100

120

140

160

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

Nearest

Frontier

(a) Mean time (µs)

188046

132
17

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Original

MI

FSMI Approx

FSMI

96 100 97

0

20

40

60

80

100

120

Original
MI

Exact Fast
MI

Approx
Fast MI

Relative error (%)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

Fast MI (approx) CSQMI (approx)

25

13

70 70

0

10

20

30

40

50

60

70

80

Same delta Same precision

Fast MI (approx) CSQMI (approx)

6.E-04

7.E-06 7.E-06
0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

Original

MI

FSMI Approx

FSMI

29

17

10

0

5

10

15

20

25

30

35

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

107.2 105.3 106.9

131.4

0

20

40

60

80

100

120

140

160

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

Nearest

Frontier

(b) Mean relative error

188046

132
17

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Original

MI

FSMI Approx

FSMI

96 100 97

0

20

40

60

80

100

120

Original
MI

Exact Fast
MI

Approx
Fast MI

Relative error (%)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

Fast MI (approx) CSQMI (approx)

25

13

70 70

0

10

20

30

40

50

60

70

80

Same delta Same precision

Fast MI (approx) CSQMI (approx)

6.E-04

7.E-06 7.E-06
0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

Original

MI

FSMI Approx

FSMI

29

17

10

0

5

10

15

20

25

30

35

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

107.2 105.3 106.9

131.4

0

20

40

60

80

100

120

140

160

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

Nearest

Frontier

(c) Mean time (µs)

Figure 8. Speed & relative error of different mutual information
algorithms on a single beam.

the proposed algorithms with the existing algorithms for
computing the Shannon mutual information metric and
existing algorithms for computing the CSQMI metric.

Then, we turn our attention to the proposed algorithms
for run-length encoded occupancy sequences. In Section 5.4,
we demonstrate the Approx-FSMI-RLE algorithm in
computational experiments and show the speedup compared
to the FSMI algorithm which does not support run length
encoding. Following, in Section 5.5, we showcase the
Approx-FSMI-RLE algorithm in a scenario involving a 1/10-
scale car-like robot equipped with a Velodyne 16-channel
laser range finder. All computational experiments use one
core of an Intel Xeon E5-2695 CPU. All experiments
involving the 1/10-scale car use a single core of the ARM
Cortex-A57 CPU on the NVIDIA Tegra X2 platform.

5.1 Computational Experiments for 2D Mutual
Information Algorithms

The first experiment studies the accuracy and the throughput
of evaluating mutual information in computational exper-
iments. We consider a scenario where the length of the
beam is 10 m and the resolution of the occupancy grid is
0.1 m. The occupancy values are generated at random. We
set δocc = 1/δemp = 1.5. We set the sensor’s noise to be a
normal distribution with a constant σ = 0.05 m regardless of
the travel distance of the beam.

First, we compare the run time and accuracy of
following three algorithms: (i) the existing Shannon Mutual
Information computation algorithm by Julian et al. (2014)
with integration resolution parameter set to λz = 0.01 m,
which we call the SMI algorithm, (ii) the FSMI algorithm,
and (iii) the Approx-FSMI algorithm with truncation
parameter set to ∆ = 3. To measure the accuracy of the
algorithms, we compute the ground truth using the algorithm
by Julian et al. (2014) with integration resolution parameter
set to λz = 10 µm. The results are summarized in Figure 8(a)
and Figure 8(b). We observe that the FSMI algorithm
computes Shannon mutual information more accurately than
the SMI algorithm (with integration parameter set to λz =
0.01 m) while running more than three orders of magnitude
faster. This can be explained by the low numerical integration
resolution when λz = 0.01 m. The run time of Approx-FSMI
is an additional 7 times faster than FSMI at a small cost of
accuracy. Still, the Approx-FSMI algorithm is more accurate
than the SMI algorithm with λz = 0.01 m.

Second, we compare the run time of the following three
algorithms: (i) the Approx-CSQMI algorithm with truncation
parameter set to ∆ = 3, (ii) the Approx-FSMI algorithm

with truncation parameter set to ∆ = 3, (iii) the Uniform-
FSMI algorithm. The results are shown in Figure 8(c). We
find that Approx-FSMI is 1.7 times faster than Approx-
CSQMI, and Uniform-FSMI is 3 times faster than Approx-
CSQMI. The acceleration is not as large as predicted in
Theorem 3 due to compiler optimizations applied to Approx-
CSQMI.

5.2 Simulated Scenario for 2D Mapping
Algorithms

In this section, we consider mapping in a synthetic
environment, shown in Figure 9(a). The environment is
18 m× 18 m, and it is represented by an occupancy grid
with resolution 0.1 m. The virtual robot that can measure
range in all directions with 2◦ resolution, thus emulating
a laser range finder with 180 beams. We compare the
following four algorithms: (i) the Approx-FSMI algorithm
with truncation parameter set to ∆ = 3, (ii) the Approx-
CSQMI algorithm with truncation parameter set to ∆ =
3, (iii) the Uniform-FSMI Algorithm, and (iv) the nearest
frontier exploration method. In the first three cases, the
robot chooses to follow paths, computed using Dijkstra’s
algorithm (Cormen et al. 2009), that maximize the ratio
between the mutual information gain along the path and
the travel distance. In the fourth case, we use the nearest
frontier algorithm discussed in Charrow et al. (2015b), where
the robot travels to the closest cluster of frontier cells. In
all cases, the exploration terminates when the reduction of
the entropy of the map representation falls below a constant
threshold. All algorithms are run three times and the results
are averaged.

The results are shown in Figure 9. An example map
generated by the Approx-FSMI algorithm as well as the path
spanned by the robot are shown in Figure 9(a). The average
path lengths spanned by the four exploration strategies
are shown in Figure 9(b). We find that the first three
exploration algorithms, all based on information-theoretic
metrics, execute paths with approximately the same length.
The frontier exploration method executes paths that are on
average at 22% longer than the information-based methods.

Throughout the experiments, the average time spent
computing mutual information was recorded. The Approx-
CSQMI algorithm takes 12.4 µs per beam, the Approx-
FSMI algorithm takes 8.3 µs per beam, and the Uniform-
FSMI takes 4.9 µs per beam, on average. The ranking of
the algorithms is consistent with our results reported in the

(a) Map and trajectory

188046

132
17

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Original

MI

FSMI Approx

FSMI

96 100 97

0

20

40

60

80

100

120

Original
MI

Exact Fast
MI

Approx
Fast MI

Relative error (%)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

Fast MI (approx) CSQMI (approx)

25

13

70 70

0

10

20

30

40

50

60

70

80

Same delta Same precision

Fast MI (approx) CSQMI (approx)

6.E-04

7.E-06 7.E-06
0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

Original

MI

FSMI Approx

FSMI

29

17

10

0

5

10

15

20

25

30

35

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

107.2 105.3 106.9

131.4

0

20

40

60

80

100

120

140

160

Approx

CSQMI

Approx

FSMI

Uniform

FSMI

Nearest

Frontier

(b) Trajectory length

Figure 9. Synthetic 2D environment exploration experiment
results.

Prepared using sagej.cls

16 Journal Title XX(X)

Section 5.1. In these experiments, the average beam length is
roughly half of what was used in the Section 5.1, hence these
evaluation times are roughly half as well.

5.3 Real-world Scenario for 2D Mapping
Algorithms

In this section, we consider a mapping scenario involving
a 1/10th-scale car-like robot equipped with a Hokoyo UST-
10LX LiDAR. In our experiments, we limited the field
of view of the LiDAR to 230◦ and its range to 3 m.
The sensor provides 920 range measurements within this
field of view. The robot is placed in the 8 m-by-8 m
environment shown in Figure 11(h). The location of the robot
is obtained in real time using an OptiTrack motion capture
system. Path planning is accomplished using the RRT∗

algorithm (Karaman and Frazzoli 2011), with Reeds-Shepp
curves (Reeds and Shepp 1990) as the steering function. In
our experiments, we evaluate mutual information along each
path in the RRT∗ tree at 0.2 m intervals with 50 equally-
spaced beams. We find the path that maximizes the ratio
between the mutual information along the path and the total
path length. A visualization of these potential paths and their
rankings is shown in Figure 10(a). Once the car reaches the
end of the selected trajectory, it computes a new trajectory
using the same algorithm. This procedure is repeated until
the entropy of the map drops below a constant threshold. In
all of these experiments, the resolution of the occupancy grid
map is set to 0.05 m, and the sensor parameters are set to
σ = 0.05 m and δocc = 1/δemp = 1.5.

In this setting, we compare the following three algorithms:
(i) the Approx-CSQMI Algorithm with truncation parameter
set to ∆ = 3, (ii) the Approx-FSMI Algorithm with
truncation parameter set to ∆ = 3, (iii) the Uniform-FSMI
algorithm. We found that all three algorithms perform
similarly in terms of how quickly they reduce the entropy
of the map as shown in Figure 10(b). We measured Approx-
CSQMI to take 422.7 µs, Approx-FSMI to take 148.7 µs,
and Uniform-FSMI to take 111.4 µs per beam, on average.
The ranking of these timings is consistent with Sections 5.1
and 5.2. Differences in scaling may be due to the differences
in compiler optimizations on the ARM Cortex-A57 CPU
present in the NVIDIA Tegra X2 platform. We also provide
a timelapse of the exploration with the Approx-FSMI
algorithm in Figure 11.

5.4 Computational Experiments for the
Approx-FSMI-RLE Algorithm

In this section, we evaluate the Approx-FSMI-RLE
algorithm which calculates the Shannon mutual information
of occupancy sequences represented using the run-length
encoding. We compare the following two algorithms in
terms of run time: (i) the Approx-FSMI-RLE algorithm
with truncation parameter set to ∆ = 3 executing on the
compressed measurement using run-length-encoding, (ii) the
Approx-FSMI algorithm with truncation parameter set to
∆ = 3 executing on the uncompressed measurement.

We consider a synthetic beam passing through n = 256
occupancy cells divided into groups of L cells. Within each
group, the cells are given the same occupancy values. Run-
length encoding compresses this sequence by a factor of L,

(a) Paths computed with the RRT* based planner are colored
based on their potential information gain. Paths that obtain a
the most mutual information per distance are colored green.

(b) Representative samples of the map’s entropy over the course of
exploration.

Figure 10. Real experiments with a car in a 2D environment.

Table 2. The run time of the Approx-FSMI-RLE algorithm vs
that of the FSMI-RLE algorithm (µs). The baseline algorithm, the
Approx-FSMI algorithm that operates on the uncompressed
occupancy vector, takes 56.1µs to complete.

L = 1 L = 2 L = 4 L = 8 L = 16 L = 32 L = 64 L = 128
Run time of

Approx-FSMI-RLE 240.9 79.4 31.5 12.3 7.6 4.9 3.4 2.3

Run time ratio of
the two algorithms 0.2 0.7 1.8 4.6 7.4 11.2 16.5 24.4

so L can be interpreted as the compression ratio. We run each
algorithm 1000 times with randomly-generated occupancy
values.

The results are presented in Table 2. We find that the
Approx-FSMI-RLE algorithm is slower than the Approx-
FSMI algorithm when L < 4. However, it achieves an
order of magnitude speedup for L ≥ 32. To avoid the
overhead of the Approx-FSMI-RLE algorithm when L < 4,
we can adaptively switch between using the Approx-FSMI
algorithm on the decompressed sequence and using Approx-
FSMI-RLE algorithm on compressed sequence depending on
whether L < 4 or not.

5.5 Real-world Scenario for the
Approx-FSMI-RLE Algorithm

In this section, we evaluate the Approx-FSMI-RLE
algorithm using the same 1/10-scale car-like robot described
in Section 5.3. In these experiments, the car is now equipped
with a Velodyne Puck LiDAR with 16 channels with a

Prepared using sagej.cls

17

(a) The car begins exploration, revealing explorable areas on either
side of the map.

(b) The car moves towards the larger of the two frontiers.

(c) The car reaches the end of this branch with two small frontiers
occluded by its field of view.

(d) The car turns around to see an occluded corner, completing the
right side of the map.

(e) The car turns around to reveal the small inlet and the other side of
the map.

(f) The car reaches the end of the branch, again revealing all but two
frontiers.

(g) The car maneuvers to explore the last two corners, competing the
map.

(h) The real world environment and the car in its starting position.

Figure 11. A timelapse of a 2D exploration experiment. On the left, the black and white figures are occupancy maps where the
dark pixels are the most likely to be occupied. The blue line shows the path taken by the car. On the right the heat map figures are
the corresponding mutual information surfaces with bright colors representing scanning locations with high mutual information.
Accompanying video: https://youtu.be/6Ia0conjKMQ

vertical field of view of ±15◦. The horizontal field of view
is limited to 270◦ due to occlusions on the frame of the car.
Although the robot travels on the 2D plane, this range sensor
allows it to measure the environment in three dimensions.

We use the Approx-FSMI-RLE algorithm to evaluate
mutual information in a three-dimensional mapping task.
We use the OctoMap software package (Hornung et al.

2013) to represent the map, which naturally returns run-
length encoded occupancy sequences. Once again we obtain
location information from the OptiTrack motion capture
system. We utilize the RRT∗ algorithm as described in
Section 5.3 to generate a set of possible trajectories and
then choose to travel along the one that maximizes the
ratio between the mutual information along the path and the
length of the path. We evaluate the mutual information along

Prepared using sagej.cls

https://youtu.be/6Ia0conjKMQ

18 Journal Title XX(X)

(a) The car begins exploration, revealing areas with high MI in the top
and bottom of the map.

(b) The car moves to the top left revealing a large amount of free space
(not visible in the 3D map) as well as the top of the tree in the bottom
right. The regions in the lower half of the map now have the highest
MI.

(c) The car moves to the bottom of the map revealing the top of the
arch in the top left and the backs of the box in the bottom left and tree
in the bottom right.

(d) The car moves to a point in the far top left with, perhaps because
it will reveal the top of the cat in the top right. In doing so, the arch
occludes it from the motion capture cameras, distorting the map. The
break in the trajectory is visible in the next frame.

(e) The car moves to the bottom right and recovers from most of the
distortion.

(f) The car moves to the top left and recovers some information about
the back of the arch and cat (not visible in these figures).

(g) The car moves to the bottom left, improving the top of the cat as
well as the box.

(h) The environment featuring an arch, a giant cat, a
box and a tree shown from the same perspective.

Figure 12. A timelapse of a 3D exploration experiment in the environment pictured in (h). The tallest obstacle, the cat, is 4 m tall,
20× taller than the car. On the left of each figure is a 3D OctoMap where color indicates the height of a voxel. On the right, is a 2D
projection of the corresponding mutual information surface. For each point in the image, we compute the mutual information from a
scan consisting of beams are randomly sampled from the LiDAR’s 360◦ horizontal field of view and ±15◦ vertical field of view.
Localization is done using motion capture cameras as in the 2D experiments; however, this is occasionally lost in the case where
the 3D obstacles occlude the camera view.

each path at 0.2 m intervals using the Approx-FSMI-RLE
algorithm. For this purpose, we randomly sample 100 beams
within the LiDAR’s 270◦ horizontal field of view and ±15◦

vertical field of view.

An example experiment including the resulting map, the
mutual information surface, and path are shown in Figure 12
at various intervals. As compared to Section 5.3, where
the mutual information gain tended to be highest near

Prepared using sagej.cls

19

boundaries, we observe that mutual information in these
three-dimensional experiments is higher in the center of
unknown regions. We conclude that due to the car’s limited
vertical vision this phenomenon exists to enforce the car to
“take a step back” in order to get a better view.

We repeated the same experiments using the Approx-
FSMI algorithm. We observed that, on average, the
run-length encoding compresses occupancy sequences by
roughly 18 times. We found that this compression enables the
Approx-FSMI-RLE algorithm to be 8 times faster than the
Approx-FSMI in terms of run time, even when we exclude
the time to decompress the RLE representation coming from
the OctoMap to the uncompressed representation used by the
Approx-FSMI algorithm.

6 Conclusion

In this paper, we introduced Fast Shannon Mutual
Information (FSMI), an algorithm for computing the
Shannon mutual information between future measurements
and an occupancy grid map. For 2D information theoretic
mapping scenarios, we introduced three algorithms: FSMI,
Approx-FSMI which approximates FSMI with arbitrary
precision, and Uniform-FSMI which computes exact
Shannon mutual information under the assumption that the
measurement noise is uniformly distributed. We also extend
the algorithms to 3D mapping tasks when an OctoMap data
structure is used to represent the map. We introduced the
FSMI-RLE algorithm that accelerates the FSMI algorithm
with a run-length encoding (RLE) compression technique.
To address numerical issues inherent to the FSMI-RLE
algorithm, we proposed the Approx-FSMI-RLE algorithm
which utilizes Gaussian truncation. We also discussed the
Uniform-FSMI-RLE algorithm which parallels the Uniform-
FSMI algorithm.

We have rigorously proved guarantees on the correct-
ness and the computational complexity of the proposed
algorithms. In our computational experiments, we showed
that the FSMI algorithm achieved more than three orders
of magnitude computational savings when compared to
the original Shannon mutual information computation algo-
rithm described in (Julian et al. 2014), while maintaining
higher accuracy. We showed that the Approx-FSMI runs
7 times faster than FSMI with negligible precision loss.
We then showed that the Approx-FSMI algorithm has the
same asymptotic computational complexity as the Approx-
CSQMI algorithm. We also showed that the Approx-FSMI
algorithm has a smaller constant factor than the Approx-
CSQMI algorithm, which is measured by the number of
multiplication operations, In our computational experiments,
we observed that indeed the FSMI algorithm runs twice as
fast as the Approx-CSQMI algorithm. Moreover, we showed
that if the measurement noise follows a uniform distribution,
the Shannon mutual information can be computed exactly
in linear time with respect to occupancy resolution by the
Uniform-FSMI algorithm. We also conducted synthetic and
real-world experiments to demonstrate the performance of
the Approx-FSMI-RLE algorithm over the Approx-FSMI.
Our experiments show 8 times of acceleration in practice.

References

Bourgault F, Makarenko AA, Williams SB, Grocholsky B and
Durrant-Whyte HF (2002) Information based adaptive robotic
exploration. In: Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 1. IEEE, pp.
540–545.

Burgard W, Moors M, Stachniss C and Schneider FE (2005)
Coordinated multi-robot exploration. IEEE Transactions on
robotics 21(3): 376–386.

Burri M, Oleynikova H, Achtelik MW and Siegwart R (2015)
Real-time visual-inertial mapping, re-localization and planning
onboard mavs in unknown environments. In: Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, pp. 1872–1878.

Cassandra AR, Kaelbling LP and Kurien JA (1996) Acting
under uncertainty: Discrete bayesian models for mobile-
robot navigation. In: Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems. IROS’96,
volume 2. IEEE, pp. 963–972.

Charrow B, Kahn G, Patil S, Liu S, Goldberg K, Abbeel P, Michael
N and Kumar V (2015a) Information-theoretic planning with
trajectory optimization for dense 3d mapping. In: Robotics:
Science and Systems, volume 6.

Charrow B, Kumar V and Michael N (2014) Approximate
representations for multi-robot control policies that maximize
mutual information. Autonomous Robots 37(4): 383–400.

Charrow B, Liu S, Kumar V and Michael N (2015b) Information-
theoretic mapping using cauchy-schwarz quadratic mutual
information. In: Proceedings - IEEE International Conference
on Robotics and Automation.

Cormen TH, Leiserson CE, Rivest RL and Stein C (2009)
Introduction to algorithms. MIT press.

Elfes A (1996) Robot navigation: Integrating perception, environ-
mental constraints and task execution within a probabilistic
framework. In: Reasoning with Uncertainty in Robotics.
Springer, pp. 91–130.

Endres F, Hess J, Sturm J, Cremers D and Burgard W (2014) 3-d
mapping with an rgb-d camera. IEEE Transactions on Robotics
30(1): 177–187.

González-Banos HH and Latombe JC (2002) Navigation strategies
for exploring indoor environments. The International Journal
of Robotics Research 21(10-11): 829–848.

Hennessy JL and Patterson DA (2011) Computer architecture: a
quantitative approach. Elsevier.

Hess W, Kohler D, Rapp H and Andor D (2016) Real-time
loop closure in 2d lidar slam. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). pp. 1271–
1278.

Holz D, Basilico N, Amigoni F, Behnke S et al. (2011) A
comparative evaluation of exploration strategies and heuristics
to improve them. In: ECMR. pp. 25–30.

Hornung A, Wurm KM, Bennewitz M, Stachniss C and Burgard
W (2013) OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots DOI:
10.1007/s10514-012-9321-0. URL http://octomap.

github.com. Software available at http://octomap.
github.com.

Julian BJ, Karaman S and Rus D (2014) On mutual information-
based control of range sensing robots for mapping applications.

Prepared using sagej.cls

http://octomap.github.com
http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

20 Journal Title XX(X)

The International Journal of Robotics Research 33(10): 1375–
1392.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The international journal of robotics
research 30(7): 846–894.

Kollar T and Roy N (2008) Efficient optimization of information-
theoretic exploration in slam. In: AAAI, volume 8. pp. 1369–
1375.

Marchant R and Ramos F (2014) Bayesian optimisation for
informative continuous path planning. In: Robotics and
Automation (ICRA), 2014 IEEE International Conference on.
IEEE, pp. 6136–6143.

Moorehead SJ, Simmons R and Whittaker WL (2001) Autonomous
exploration using multiple sources of information. In:
Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 3. IEEE, pp. 3098–
3103.

Moravec H (1996) Robot spatial perceptionby stereoscopic vision
and 3d evidence grids. Perception .

Nelson E and Michael N (2015) Information-theoretic occupancy
grid compression for high-speed information-based explo-
ration. In: Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, pp. 4976–4982.

Principe JC (2010) Information theoretic learning: Renyi’s entropy
and kernel perspectives. Springer Science & Business Media.

Rabaey JM, Chandrakasan AP and Nikolic B (2002) Digital
integrated circuits, volume 2. Prentice hall Englewood Cliffs.

Reeds J and Shepp L (1990) Optimal paths for a car that goes
both forwards and backwards. Pacific journal of mathematics
145(2): 367–393.

Robinson A and Cherry C (1967) Results of a prototype television
bandwidth compression scheme. Proceedings of the IEEE
55(3): 356–364.

Roth-Tabak Y and Jain R (1989) Building an environment model
using depth information. Computer 22(6): 85–90.

Shen S, Michael N and Kumar V (2012) Stochastic differential
equation-based expl oration algorithm for autonomous indoor
3d exploration with a micro-aerial vehicle. The International
Journal of Robotics Research 31(12): 1431–1444.

Tabib W, Corah M, Michael N and Whittaker R (2016)
Computationally efficient information-theoretic exploration of
pits and caves. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

Thrun S, Burgard W and Fox D (2005) Probabilistic robotics. MIT
press.

Visser A and Slamet BA (2008) Balancing the information gain
against the movement cost for multi-robot frontier exploration.
In: European Robotics Symposium 2008. Springer, pp. 43–52.

Whelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ and
McDonald J (2015) Real-time large-scale dense rgb-d slam
with volumetric fusion. The International Journal of Robotics
Research 34(4-5): 598–626.

Yamauchi B (1997) A frontier-based approach for autonomous
exploration. In: Computational Intelligence in Robotics
and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE
International Symposium on. IEEE, pp. 146–151.

A Analytical Solution to the Summation
This section derives the closed-form solution to the following
two terms

A[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

xj exp

(
− (j − k + t)2

2σ2

)

B[x, Lu, Lv, t] =

Lu−1∑
j=0

Lv−1∑
k=0

k · xj exp

(
−−(j − k + t)2

2σ2

)
.

(47)

As stated before, we have not found an analytic
way to evaluate A[x, Lu, Lv, t] and B[x, Lu, Lv, t]. For-
tunately, if we allow for slight approximation, the
closed-form solutions to both terms show up. Specifi-
cally, we approximate the summation A[x, Lu, Lv, t] =∑Lu−1
j=0

∑Lv−1
k=0 xj exp

(
− (j−k+t)2

2σ2

)
by integration:∫ Lu− 1

2

− 1
2

∫ Lv− 1
2

− 1
2

xj exp

(
− (j − k + t)

2

2σ2

)
djdk. (48)

To derive the closed-form solution to this integration, we
need the following lemma:

Lemma 6. Let erfc(·) be the complementary error function.
Let 0 < x < 1. We have

θσ,x(a1, a2, t) =

∫ ∞
a1

∫ ∞
a2

xj exp

(
− (j − k + t)

2

2σ2

)
djdk =

1

log x

(√
π

2
x−tσ′

(
xa1+t

(
−2 + erfc

(
a1 − a2 + t√

2σ

))
−

e
1
2σ

2·log2 xxa2 erfc

(
a1 − a2 + t− σ2 log2 ōu√

2σ

))))
.

(49)

In addition, θσ,x(a1, a2, t) can be evaluated in O(1).

Based on the lemma, the analytic solution is:

Theorem 16. Closed-form solution to the approximation.
Eqn. (48) can be evaluated in O(1) as follows:∫ Lu− 1

2

− 1
2

∫ Lv− 1
2

− 1
2

xj exp

(
− (j + t− k)2

2σ2

)
djdk =

θσ,x(−1

2
,−1

2
, t)− θσ,x(Lu −

1

2
,−1

2
, su − sv)−

θσ,x(−1

2
, Lv −

1

2
, t) + θσ,x(Lu −

1

2
, Lv −

1

2
, t)

(50)

Although this solution is closed-form and has O(1) time
complexity, evaluating it on the fly requires eight evaluation
of the complementary error function and tens of expensive
operations including exponential and square-root.

Similarly, we approximate B[x, Lu, Lv, t] =∑Lu−1
j=0

∑Lv−1
k=0 k · xj exp

(
− (j−k+t)2

2σ2

)
by∫ Lu− 1

2

− 1
2

∫ Lv− 1
2

− 1
2

k · xj exp

(
− (j − k + t)

2

2σ2

)
djdk. (51)

We can also show that Equation (51) has a closed-form
solution which can be evaluated in O(1). However, the
solution is much more complicated than the solution for
Equation (48) and we skip it in this paper.

Prepared using sagej.cls

	1 Introduction
	2 Preliminaries
	2.1 The Occupancy Grid
	2.2 The Shannon Mutual Information Metric
	2.3 The Cauchy-Schwarz Quadratic Mutual Information (CSQMI) Metric
	2.4 Problem Formulation

	3 The Fast Shannon Mutual Information (FSMI) Algorithm for 2D Mapping
	3.1 The FSMI Algorithm
	3.2 Correctness of the FSMI algorithm
	3.3 Computational Complexity of the FSMI Algorithm
	3.4 Efficient Implementations via Gaussian Truncation
	3.5 Shannon Mutual Information Under Uniform Measurement Noise Model

	4 Fast Shannon Mutual Information for 3D Environment using Run-Length Encoding
	4.1 FSMI-RLE Algorithm: Shannon Mutual Information on Occupancy Sequences Compressed by RLE
	4.2 Approx-FSMI-RLE Algorithm: Approximating Shannon Mutual Information in RLE via Truncation
	4.3 Uniform-FSMI-RLE Algorithm: Shannon Mutual Information in RLE Assuming Uniform Distribution for Sensor Noise

	5 Experimental Results
	5.1 Computational Experiments for 2D Mutual Information Algorithms
	5.2 Simulated Scenario for 2D Mapping Algorithms
	5.3 Real-world Scenario for 2D Mapping Algorithms
	5.4 Computational Experiments for the Approx-FSMI-RLE Algorithm
	5.5 Real-world Scenario for the Approx-FSMI-RLE Algorithm

	6 Conclusion
	A Analytical Solution to the Summation

