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ARTICLE

A validated lineage-derived somatic truth data set
enables benchmarking in cancer genome analysis
Megan Shand 1✉, Jose Soto1, Lee Lichtenstein1, David Benjamin1, Yossi Farjoun 1, Yehuda Brody1,2,

Yosef Maruvka1,3, Paul C. Blainey 1,4,5 & Eric Banks1

Existing cancer benchmark data sets for human sequencing data use germline variants,

synthetic methods, or expensive validations, none of which are satisfactory for providing a

large collection of true somatic variation across a whole genome. Here we propose a data set,

Lineage derived Somatic Truth (LinST), of short somatic mutations in the HT115 colon cancer

cell-line, that are validated using a known cell lineage that includes thousands of mutations

and a high confidence region covering 2.7 gigabases per sample.
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Detecting somatic variation from whole-genome sequen-
cing is essential to the understanding and treatment of
cancer1–3. However, discovering somatic short variants

(SNVs and Indels) with high precision and sensitivity is still a
challenge owing to tumor heterogeneity, sequencing artifacts,
mapping artifacts, and contamination from normal cells4–6.
Many data pipelines and variant calling methods still disagree in a
large number of sites, making it unclear which discrepancies are
true variants and which are false7. Even variants that are called by
multiple methods are not guaranteed to be true positives. This
demonstrates a critical need for high-quality benchmarking data
that could be used to disambiguate the discrepancies.

Many benchmarking data sets, including ICGC-TCGA
DREAM, simulate variation by modifying bases in sequenced
reads to known alternate alleles at various allele fractions8–11.
Even with sophisticated modeling, these simulated mutations do
not follow the true biological and physical pathways that generate
real somatic mutations. As such, synthetic truth data penalize
callers that model somatic variation better than the simulations.
Other benchmarking data sets often combine germline samples
(in silico or in vitro) to simulate heterogeneous tumors. However,
germline variation is inherently different than somatic variation
in nucleotide substitution frequencies, context, and genomic
location frequency1. In addition, if germline variants are used as
truth data, somatic variant calling pipelines must disable normal
germline filtering. Benchmarking methods that use actual somatic
mutations involve expensive validations of individual sites8. This
is limited to a small number of sites and therefore is not powered
to make good, unbiased estimates of the performance4. Another
technique of using deeper sequencing12 as validation, whereas
more sensitive to low allele fraction sites, is no less prone to errors
from sequencing, library preparation, or mapping artifacts.

Here, we provide a benchmarking data set of validated somatic
mutations, Lineage-derived Somatic Truth (LinST), in a human
colon cancer cell line with a DNA polymerase epsilon (POLE)
proofreading deficiency (HT115)13. A known lineage tree struc-
ture that was determined using lineage sequencing (LinSeq)13 is
used to validate somatic variation across 11 whole genome
HT115 samples, and to construct the high confidence region.
LinST will benefit developers and consumers of somatic mutation
calling software as the first truth set of its size consisting of real
somatic mutations. These truth data are generalizable beyond
understanding the mutations in the single HT115 sample in the

same way that the characterization of NA12878 by Platinum
Genomes14 is used as truth data for training and testing new
algorithms and models for germline variant calling for all sam-
ples. Although LinST is characteristic of colon cancer (as shown
by the mutational signature), it still contains a broad spectrum of
mutations which is helpful for assessing an algorithm that calls
somatic mutations for any cancer type. Beyond the true muta-
tions included in LinST, there are gigabases of region we are
confident do not have somatic mutations (including regions
enriched for artifacts). Providing this resource as a test of false-
positive rates is important for all cancer types. In addition, the
method for producing LinST could be used on any cell line that
will accumulate mutations across individual divisions and could
therefore be used to generate a breadth of truth data across many
cancer types in the future.

Results
LinSeq uses imaging technology to record a lineage structure by
observing a single cell as it divides over multiple generations.
Each of the nodes in the tree (Fig. 1) represents a single cell
dividing into two separate sublineages. Once a sufficient number
of generations have been observed, several cells are grown up
separately and Whole Genome Sequenced to 35× coverage.
Variant calling pipelines (see Methods section below) are then
run on each of these “leaf” samples and compared with each other
to validate the high confidence “branch” variant calls and con-
currently define the high confidence regions.

Because the different samples contain partially overlapping
variants (owing to the inheritance structure), the truth set (and
high confidence region) depends on the particular tumor-normal
pair of samples that are going to be benchmarked against it.
Creating the truth set would therefore make use of the inheritance
tree and also the calls that were made against all the bulk-
sequenced samples.

To create a tumor-normal pair at a desired purity, we take
three sequenced samples: a “pure tumor” sample and two sister
samples that are distant to the tumor. The two sister samples are
considered “normal” (relative to the “pure tumor”). We infor-
matically mix one of the normal samples with the “pure tumor”
to create the case tumor sample, and use the other normal as the
case normal, for somatic variant discovery pipelines that are run
with the matched normal (Fig. 1). Two sister samples are needed

Fig. 1 Lineage tree structure for HT115 and an example genomic region. a Although most of the Good Branch Variants are heterozygous owing to single
cell bottlenecks, we do observe some Good Branch Variants that are homozygous variants due to loss of heterozygosity events that occurred after the
mutation arose or large scale deletions. b A case sample and matched normal are created from mixing any two samples together. A matched normal is
taken from the closest relative to the mixed in normal. This results in a list of positive sites and excluded regions.
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to act as the normal sample because there is not enough coverage
in one sample to use as both a mixed-in normal in addition to a
matched normal. With deeper sequencing, only one sample
would be needed to act as normal tissue.

To generate the truth set for each tumor-normal pair of sam-
ples, SNVs and Indels are filtered using the lineage structure. We
define a Germline Variant as a site that is called in all 11 samples.
This is either a germline variant of HT115 or a somatic mutation
that occurred before the LinSeq process began. For the purposes
of the truth set, these sites are considered germline because they
occur in both the “tumor” and “normal” sample, and therefore
the site is not included in the truth set but remains in the high
confidence region. If a somatic variant discovery pipeline calls
these variants, they are considered false positives.

We define a Leaf Variant as a site that is called in only one of
the 11 samples. These variants could be real somatic mutations
that occurred after the single leaf cell was grown for bulk
sequencing, or they could be artifacts that only occurred in one
sample by chance. These variants can occur at arbitrary allele
fractions because the bulk sequencing process requires growing
many cells and can therefore have various subclones within the
cell population. Owing to these uncertainties, Leaf Variants are
removed from the high confidence region. If a variant discovery
pipeline makes calls at these sites, they do not count as true
positives or false positives.

We define a Branch Variant as a site that is called in more than
one but fewer than 11 samples. A Good Branch Variant is defined
as a Branch Variant for which all samples with this variant share a
single common ancestor, and none of the other samples share that
ancestor. A Good Branch Variant that is called in the tumor sample
but not the normal is included in the truth set. If a somatic variant
discovery pipeline calls these variants, they are considered true
positives. These are defined as lineage structure concordant branch
variants in the original LinSeq paper13. A Bad Branch Variant is
defined as Branch Variants that are not Good Branch Variants.
These sites are not included in the truth set, but are not excluded
from the high confidence region. If a somatic variant discovery
pipeline calls these variants, they are considered false positives.

By only removing Leaf Variants called in the tumor or the
mixed-in normal from the high confidence region, we are able to
retain sequencing and mapping artifacts in the high confidence
region of the truth set (Bad Branch Variants that we are confident
are not real somatic mutations).

The true positives generated from this technique are real
somatic mutations, so pipelines can and should be run exactly as
they would be on real samples (with germline and matched
normal filtering). These cell-lines also have copy number events

that have been validated with the tree structure or are seen in all
leaf samples. LinSeq can also be used to validate these CNVs
(although at a smaller number of sites than SNVs and Indels, see
Table 1). Using these CNV calls, we adjust our filtering strategy
for SNVs and Indels to account for the expected number of copies
in each amplified region.

To demonstrate the consistency of LinST, we made all possible
pairwise mixtures at three simulated purities, 10%, 20%, and 50%,
and ran two somatic variant discovery pipelines (Mutect215 and
VarScan216) on all mixtures. Across all of these mixed samples,
the sensitivity and false-positive rate metrics (measured using
LinST) are consistent given sequencing depth and purity (Fig. 2).
This demonstrates that LinST provides reasonable and consistent
measurements of true-positive and false-positive rates for somatic
discovery methods. By keeping Bad Branch Variants within the
high confidence region, we see an average 2% increase in the
number of false positives for each mixture. Keeping as many
difficult genomic regions within the truth set as possible gets a
more-accurate estimation of the real false-positive rate.

The Good Branch Variants match previously published bulk
POLE mutant colon tumor sample data13 and are consistent
across each leaf sample (Fig. 3). Compared with a synthesized
truth data set, ICGC-TCGA DREAM8, the mutational signature of
the Good Branch Variants from LinST is much more realistic to a
tumor sample (Fig. 4). The mutational signature of each leaf
sample aligns with signatures observed in COSMIC, SBS10a and
SBS28 (particularly from the high levels of C/A and T/G muta-
tions, respectively). This is expected as SBS10a is associated with
POLE mutations and SBS28 commonly occurs in colorectal can-
cers with POLE mutations. SBS28 is frequently observed together
with SBS10a17,18. In addition, LinST true mutations have a lower
proportion of intergenic sites than ICGC-TCGA DREAM. When
normalized by the number of reference bases in each classification
category, LinST has a more uniform distribution of mutations
across categories than ICGC-TCGA DREAM.

Discussion
LinSeq could be repeated on other cancer types and samples to
generate other benchmarking data sets, with the potential for testing
various wet laboratory techniques as well. This could be achieved by
sequencing each leaf sample twice—once with a control wet
laboratory technique and once with an experimental wet laboratory
technique. Choosing a tumor sample for the root with a matched
normal would allow us to disentangle germline variation from
somatic mutations that occurred before the observation of the
lineage tree. Bulk sequencing the HT115 sample from which the

Table 1 Counts of verified events by type.

Verified mutations S57/S56 S38 S45/S48 S63/S49 S44/S34 S47/S54 Unique

SNV
Coding 50 32 32 70 52 45 24
Non-coding 1738 1656 2124 2825 2708 3267 1265
Intergenic 1793 1764 2574 2928 2847 3717 1398

INDEL
Coding 0 0 0 0 0 0 0
Non-coding 255 218 308 264 255 387 154
Intergenic 193 158 293 287 305 441 161

CNV
Genic 0 0 0 1 0 2 3
Intergenic 2 1 1 1 2 0 3
Mulitple 0 0 0 0 0 2 2

The unique CNVs verified by the lineage tree structure cover 27 megabases with one region at copy ratio 2, one homozygous deletion, and the other six at copy ratio 1.5. "Multiple” type CNVs refers to
an event that spans multiple genes and intergenic region. "Non-coding” refers to intronic or other non-coding regions within a gene.
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root cell was taken could also be used as a matched or mixed-in
normal. Although this was not performed in the original LinSeq
experiment, a cleaner version of LinST could be generated using this
sequencing method. This would allow the somatic variant discovery
pipelines to be run with the real matched normal or a bulk sample
taken before the root rather than using a separate leaf sample, thus
removing a complication. Even with the data presented here, more
mixtures could be made between three or more samples to simulate
tumor heterogeneity.

Deeper sequencing of the samples we have would provide the
benefit of obtaining even lower purity mixtures, along with more
realistic high coverages. It would also give us enough reads to be
able to use the same sample as the mixed-in normal and the
matched normal, removing another complication in the pipeline
and making the purity more realistic. Cross-platform sequencing

technologies could be used on the leaf samples, in addition to
Illumina sequencing, to further validate the Good Branch Var-
iants while mitigating Illumina specific sequencing artifacts.

To replicate this experiment as a truly public data set, not only as
sequencing data but as samples for sequencing, each leaf sample
could be continued as cell-lines that could be shared. This would
enable further testing of pipelines as well as wet lab techniques.
However, the difficulty in this approach would be that somatic
mutations would continue to accumulate in these samples over time,
meaning that the high confidence region of the truth set would
shrink. This might not have a large effect on the final benchmarking
data set but should be considered regardless.

We hope that LinST and the methods to produce it will be useful
for benchmarking new short somatic variant calling pipelines and
generating further truth data for the general community.

Fig. 2 False-positive rate, sensitivity, and counts of true-positive and false-positive calls from all possible mixtures run with Mutect2 and VarScan2.
a False-positive rate clusters by the mixed-in normal sample at lower purities. This is owing to variability across samples in quality and false-positive rate.
b Sensitivity mostly follows the expected model for each purity. Green horizontal line denotes overall sensitivity calculated across all mixtures. c Count of
true positives and false positives called by Mutect2. d Count of true positives and false positives called by VarScan2.
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Methods
Primary analysis. All data were obtained from the original LinSeq experiment by
Brody et al.13. Data can be downloaded from https://www.ncbi.nlm.nih.gov/sra/
SRP159787. HT115 was purchased from the Broad Cancer Cell Line Encyclopedia.
Cell identity was authenticated by the Broad Genomics Platform for HT115 using
previously stored fingerprint genotypes. The fingerprint consists of the genotype at
82 loci from the query sample, which were compared against fingerprints of all the
Cancer Cell Line Encyclopedia cell lines using the farthest neighbor graph algo-
rithm. The highest correlation (0.83) was found between our HT115 sample and
the CCLE HT115 sample. There was no Mycoplasma contamination observed in
the sequence data.

Samples were reverted and realigned to GRCh38 human reference using the
GATK best practice recommendations19. Reads were aligned with BWA-MEM20,
and duplicate reads were marked using Picard. Quality scores were then
recalibrated using GATK base quality score recalibrator. Data were stored in per-
sample BAM format. The mixtures were generated by combining samples that were
individually downsampled using SAMtools21.

CNV calling pipeline. GATK’s Model Segments pipeline19 was used to generate
somatic CNV calls. Each sample was run individually with a panel of normals
generated from 60 whole-genome normal samples from The Cancer Genome Atlas
(TCGA) sequenced at the Broad Institute Genomics Platform. The GATK version
4.1.2.0 pipeline was used with the penalty factor set to 5 to combat over-
segmentation owing to low coverage (samples were sequenced to 35× coverage).

Copy number events were analyzed across all samples to determine whether
they follow the tree structure. We obtained copy number amplifications and
deletions that followed the tree structure and were called in either every sample or
in one leaf sample. While we found CNVs that do not follow the tree structure, it is
unclear whether these are due to false-positive copy number calls in some samples
or false negatives in other samples.

These copy number calls that did not follow the tree structure were removed
from the high confidence region if the tumor sample was not copy neutral in those
regions. Copy number calls that only occur in the tumor sample were also
blacklisted, as their quality is ambiguous. If the tumor sample is copy neutral, we
maintained those sites in the high confidence region, as we still observe real SNVs
that follow the tree structure that are unaffected by potential copy number events
in other samples (this was confirmed by manual inspection).

We observed eight unique CNVs that occur within the known lineage tree
structure and 646 unique CNVs that occur across all 11 leaf samples. We also
observed copy neutral loss of heterozygosity in all samples in some regions. This
did not affect our short variant analysis as we could still expect somatic mutations
to occur in these regions after the loss of heterozygosity, at 50% allele fractions. We

do not suspect any genome doubling events in these cells from manual review of
the CNV calls.

SNV and indel calling pipeline. There are two steps of SNV and indel calling
pipelines—1) detecting germline or Good Branch Variants, and 2) detecting Leaf
Variants. First, the pipeline for detecting potential true variants is designed to be
precise. True variants are expected to follow the diploid assumption (in regions
without copy number events) because any mutation went through a single cell
bottleneck in the tree structure, and therefore its allele balance should be consistent
with being either a hetrozygous or homozygous variant. We only consider variants
with good allelle balance as eligible canditates for being true variants. Second, the
pipeline for detecting mutations that occurred after the observation of the tree
structure (Leaf Variants) is designed to be sensitive even to variants that do not
follow the diploid assumption. Each leaf sample was grown up by the laboratory in
order to achieve whole-genome bulk sequencing. For that reason, there could be
subclonal populations in each leaf sample, whereas the Good Branch variants will
be monoclonal. Ambiguity about the source of Leaf Variants is the rationale for
excluding these sites from the high confidence region. We use HaplotypeCaller19

with stringent filters to detect the potential true variants and Strelka2 in somatic
mode22 to detect the potential Leaf Variants. The choice to use Strelka2 is some-
what arbitrary, any sensitive somatic variant calling tool could be used to detect
potential Leaf Variants. Here we chose a pipeline that we did not use to measure
sensitivity and precision with the final LinST data set (in this case Mutect215 and
VarScan216) to reduce the chance of artificially increasing precision by testing the
same pipeline that is used to generate the truth data.

HaplotypeCaller was run in joint-calling mode, meaning all reads shared local
assembly, with all 11 leaf samples as input in order to increase sensitivity. Standard
GATK best practices19 using Variant Quality Score Recalibration was run as an
initial filtering strategy. We then filter out any site where any sample has a
Genotype Quality <25. Although the majority of sites are expected to have
heterozygous genotypes owing to single cell bottlenecks, we did not filter out non-
heterozygous sites explicitly. Regions with deletions still have homozygous variant
genotypes and regions with amplifications were filtered based on the number of
copies. Given the copy number call at any site (taken from the CNV calling
pipeline described above), any heterozygous site whose Allele Depth is <1%
percentile from Binomial ðn ¼ depth; p ¼ 1

ploidy Þ in more than half of the samples

is filtered out. This filter is not applied to homozygous variant genotypes, however
all other filters are applied. Any site that is "no-called” for any sample is also filtered
out. Finally, all of these passing variants that do not follow the expected lineage tree
are removed from the list of true variants (but remain in the high confidence
region). The known tree structure gives the ability to validate each of the sites
across multiple samples separately from individual filters based on read signatures.
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Mutational Signature for each Leaf Sample

Fig. 3 Mutational signature across each leaf sample is consistent. Samples are shown with their sister sample since the lineage tree is used to validate
the mutations there are no differences in validated sites between sister samples.
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Genotype information is not taken into account when comparing alleles across the
tree structure, so heterozygous and homozygous variant genotypes are all included.
The list of passing variants at this point are considered the true somatic variants for
each sample (Table 1).

The Strelka2 somatic pipeline is run with each possible pair of leaf samples, one
acting as the tumor and the other acting as the matched normal. Thus each of the
11 leaf samples is run through the pipeline as a tumor 10 times, once with each
other leaf sample acting as the matched normal, generating up to 10 calls at each
site, some of which may be filtered (by Strelka2). If more than half of the calls at

any site pass Strelka2’s filters, then the site is included in the potential leaf calls.
This is in order to balance the risks of incorrectly calling an artifact a Leaf Variant.
If half or more of the calls for one sample at any given site are passing, overall the
Strelka2 pipeline believes that call, so we include it as a potential Leaf Variant. The
one exception is if all 10 runs are called (filtered or not), the site is included in the
potential leaf calls. This is because for many sites called by Strelka2 in all 10 runs,
even though they looked like sites with borderline evidence in each “tumor-
normal” pair, overall they looked like they could be real somatic variation. Finally,
when looking at these consolidated filtered calls across all 11 leaf samples, if the call

Fig. 4 Mutational signature and variant classification by chromosome of Good Branch Variants compared with ICGC-TCGA DREAM true sites.
a Mutational Signature of the Good Branch Variants shows a distinct signature with high levels of C/A and T/G mutations. ICGC-TCGA DREAM true sites
are uniform across various contexts. b Variant classifications by chromosome, normalized by the number of bases in the reference in each category, show
higher than expected proportion of intergenic sites in ICGC-TCGA DREAM than LinST. If each base in the genome was equally likely to be a true site in this
plot, all bars would be the same height.
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is only found in one sample it is kept as a Leaf Variant and removed from the high
confidence region.

Comparison of SNVs and indels. In order to assess the quality of LinST, the
Mutect215 and VarScan216 pipelines were run on each possible pairing of samples
at various mixture rates (to simulate various purities). We then checked that
sensitivity and FPR for these mixtures run with each variant discovery pipeline are
consistent and reasonable. The pipelines were run with a matched normal taken as
the sister sample to the mixed-in “normal” sample. This ensures that a similar
sample is used as the matched normal to the diluting normal sample, but not the
same reads. The VarScan2 pipeline was run with default parameters first running
the somatic tool for variant discovery, followed by the processSomatic tool to filter
to high-quality sites. The Mutect2 pipeline was run with defaults for variant dis-
covery and filtering as well as with a panel of normals made from 1000 Genomes
Project samples23 (https://storage.googleapis.com/gatk-best-practices/somatic-
hg38/1000g_pon.hg38.vcf.gz), and gnomAD common germline variant filtering24.

The resulting VCFs were compared within the high confidence region to the
truth set using rtgtools VariantEval25 for both SNVs and indels to determine each
pipeline’s sensitivity and FPR for each mixture.

We take all possible mixtures that will provide true sites at simulated purities of
10%, 20%, and 50%. Simulated tumor purity does not mean a single expected allele
fraction of all sites in a given mixture. We expect the majority of sites to have an
allele fraction that is half of the simulated purity, but due to CNVs and copy
neutral loss of heterozygosity events, some sites will be at much lower allele

fraction, and others will be at the purity fraction itself. We have
� 11

2

�
� 5 ¼ 50

possible pairings as we are picking pairs of samples from the 11 sequenced
samples, but we cannot use the five pairings of sister samples since there are no
variants different between them that we can use the lineage tree to validate ([S57/
S56], [S45/S48], [S63/S49], [S44/S34], and [S47/S54]). In addition because S38 has
no sister sample, there are no Good Branch mutations that are not also present in
the [S45/S48] branch, which removes another pairing (50–1= 49). Within each
pairing there are two possible mixtures (sample 1 as the tumor and sample 2 as the
normal or vice versa). This results in 49 × 2= 98 pairings, each at three purities or
98 × 3= 294 mixtures.

In all, 95% confidence intervals were derived for each mixture’s sensitivity using
the exact Clopper–Pearson method, as the number of true positives and false
negatives is small enough to use an exact method. 95% confidence intervals for FPR
use the asymptotic normal approximation for the binomial distribution, as the
larger number of false positives and true negative megabases meets the
assumptions for using an asymptotic approximation (Fig. 2).

Mutational signatures of the Good Branch Variants and ICGC-TCGA DREAM
were calculated with MuSiCa26. Variant classification was annotated using GATK’s
Funcotator pipeline19 (Fig. 4). Classifications were derived from GENCODE 28
reference annotations27.

Number of sites per branch. Another way to demonstrate the validity of using
the LinSeq lineage tree is to blind ourselves to the tree structure and assess the
variants before using the tree as a filter. After applying all filters except the
lineage tree we have a list of high-quality variants. We can compare the number
of these high-quality variants that are Good Branch Variants to those that are
Bad Branch Variants as another way to check the validity of the lineage tree
itself. After removing chromosome 4 owing to a large loss of heterozygosity
event that occurred in the [S49/S63] branch, and all sites with allele frequency
>1% in gnomAD v2.124 to remove common germline variation, a Wilcoxon
rank-sum test with continuity correction was performed by ranking each subset
of samples based on the number of variants called within that subset (two-sided
p value= 9.0e-8). The alternative hypothesis is that the true location shift
between the ranks of those subsets that are consistent with the tree and the ranks
of those subsets that are inconsistent is not equal to zero. The test statistic is
W= 1270, sample size for consistent sets is n= 9, sample size for inconsistent
sets (with at least one variant call) is n= 142, estimated difference in location is
301 with a 95% confidence interval of [170, 316]. (Fig. 5). Those subsets that are
inconsistent with the tree with the most variants have a subset size of 10 samples
and are owing to Germline Variants being missed in a single sample (note that
the number of Germline Variants is around 5 million). Both Germline Variants
called in all 11 samples and Bad Branch Variants, are excluded from the truth set
but remain in the high confidence region (as neither artifacts nor true germline
variation are true somatic variation).

Fig. 5 Number of variants called by HaplotypeCaller within each subset. There is a clear separation of subsets that are consistent with the tree structure.
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Alternative lineage methods. Another similar approach to LinSeq to determine a
cell lineage could be to introduce bottlenecks in the cell lineage without using the
imaging technology LinSeq uses to determine the lineage tree, but use other
methods to discover the lineage tree28. This might be a simpler approach in the wet
laboratory, but warrants further investigation if used to generate benchmarking
data sets. The hierarchical clustering using distances based on allele fraction in
mitochondrial variants from Ludwig et al.29 was not able to rediscover the full
known lineage tree on this data set. Although this technique was designed for single
cell sequencing, here we used the bulk sequencing from each leaf sample. From
manual review we see that the signal from the low allele fraction mitochondrial
variants was overwhelmed by noise. This is because the allele fraction of discovered
sites is low enough that calls in some of the 11 samples are low quality and could be
false positives or false negatives due to being filtered out incorrectly.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Illumina reads aligned to hg19[GRCh37] are available in SRA under accession number
SRP159787. Each of the mixed bams, along with their matched normal bam is available
for public use along with the matching VCF of true-positive sites and interval list of high
confidence regions (a free account is required: https://app.terra.bio/#workspaces/broad-
dsp-spec-ops-fc/somatic_truth_data_from_cell_lineage).

Code availability
Code to generate truth data sets and mixtures, run VarScan2, and benchmark results is
available at https://doi.org/10.5281/zenodo.4289043. Code for CNV pipeline is available
at https://github.com/gatk-workflows/gatk4-somatic-cnvs/tree/1.3.0, the Mutect2
pipeline at https://github.com/gatk-workflows/gatk4-somatic-snvs-indels/tree/2.5.0, and
the Mitochondria pipeline at https://github.com/gatk-workflows/gatk4-mitochondria-
pipeline/tree/1.1.0.
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