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Abstract

This study examines a method of measuring energy dissipation in acoustic resonators.
The method, known as the two microphone method, accounts for both internal and exter-
nal energy losses in acoustic resonators. Viscous and thermal losses within the boundary
layer of the working fluid contribute to most of the internal losses, while external loads
were modeled by empty volumes at the nondriven ends of the resonators.

The two microphone method of measuring energy losses requires the measurement of
the acoustic pressure amplitude at different points along the length of the resonator. The
quantities required to determine energy losses are the pressure magnitudes at the two
points of measurement and the phase difference between the complex pressures at these
points. As will be shown, the pressure magnitudes combine to form the auto spectra of
the acoustic wave and the magnitudes and the phase angle determines the cross spectra.
The calculation of these quantities account for viscous and thermal wall losses as well as
tube attenuation.

Energy dissipation measurements using the two microphone method were conducted
on two half wavelength standing wave acoustic resonators. The first resonator had a
diameter of 1 in. and was driven by a loudspeaker. The pressure amplitudes in the 1 in.
diameter resonator ranged from 0.01 psi to 0.9 psi. The second resonator had a diameter
of 5 in. and was driven by either a loudspeaker or a thermoacoustic driver, TAD[1].
When the TAD was used, measured energy dissipation got as high as 116.1 W with an
acoustic pressure amplitude of about 8 psi. In most cases, the two microphone method
measused the energy dissipation to within 10% of the predicted values.

Thesis Supervisor: C. Forbes Dewey
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

With the need for economical, reliable, and environmentally safe power sources, ther-
moacoustic engines may be prudent alternatives to more conventional means of power.
These engines, which use a temperature gradient to induce a standing acoustic wave,
have no moving parts and require no exotic materials, close tolerances, or critical dimen-
sions, which provide for a longer engine lifetime and minimal construction costs. The
working fluids used in the engines are low Prandtl Number fluids, which can be gaseous,
like helium, or liquids like liquid metals, or even water. Recently, thermoacoustic en-
gines have been studied using liquid sodium as a working fluid[2] in an electric generator,
as underwater sound sources for sonar detection, and as drivers for orifice pulse tube
refrigerators.

Like all thermodynamic processes, thermoacoustic engines can act as prime movers
by producing mechanical work from a temperature gradient or act as refrigerators by
using mechanical work to produce a temperature gradient. When the engines are used as
prime movers, the thermodynamic process begins by introducing a temperature gradient
across a stack of closely spaced thermally conductive plates which are held in an acoustic
resonator. The resonator is simply a narrow tube, which is designed to 1/4 or 1/2 of a
given acoustic wavelength, A (based on thermodynamic conditions of the working fluid),

shown in Figure 1.1. At a large enough temperature gradient across the stack of plates
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Figure 1-1: A thermoacoustic engine.

an acoustic standing wave will spontaneously occur in the working fluid in the resonator.
The motion of the fluid transfers the heat from the hot side of the stack of plates to the
cold side, introducing mechanical work in the form of an acoustic standing wave.

Energy can be tapped from the engine in several ways. One way involves using the
acoustic pressure swings to perform some type of reciprocating work. Another interesting
way of converting the acoustic energy involves using liquid sodium as a working fluid.
An electric generator can be made by placing the resonator so that the sodium oscillates
through a magnetic field. A refrigerator can be produced by simply reversing the process
by introducing an acoustic standing wave in a resonator holding a stack of plates and
heat exchangers.

Since the physics behind thermoacoustic engines is fairly well established, more effort
is needed in the optimization of these engines and making these engines suitable for
various applications, such as electric generators or reciprocating pressure sources. In
most cases concerning the study of the performance of these engines, a key measurement

that will be made is the measurement of energy dissipation. Energy can be dissipated



by internal loss mechanisms, such as viscous and thermal effects. Energy can also be
dissipated externally by whatever loads the user decides to put on the engine. A simple
and reliable method of measuring this dissipation in acoustic engines must be developed
to aid in future studies of thermoacoustic engines and their loads.

This thesis describes a study of the two microphone method, which is a method of
determining energy dissipation in acoustic resonators by measuring the acoustic pressure
amplitudes at two points along the resonators. By measuring the complex acoustic
pressures at two points along the resonator, the magnitudes and the phase between
the two points can be determined. The phase and magnitudes determine the auto and
cross spectra of the wave in the resonator, which describe how the intensity of the wave
diminishes due to losses at the walls of the resonator and losses incurred as the acoustic
wave reflects off of the end caps.

With the advent of digital equipment, the two microphone method became a rea-
sonable technique in measuring energy dissipation. Methods of using only the cross
spectrum to determine acoustic intensity were developed by Chung[3]. Chu[4] suggested
that the effects of attenuation should be accounted for, and he corrected the theory by
including the auto spectra at the points of measurement. Studying sound propagation in
ducts, Seybert[5] unified the calculation of sound intensity and measurement of acoustic
properties in ducts, by a general decomposition theory.

This study begins with a review of the acoustic theory needed to calculate the energy
dissipation. In Chapter 2, the relevant acoustic and thermodynamic parameters are
approximated by using linear expansions. These linear parameters are used to derive the
energy flux through a resonator. The energy flux is then reduced to a function of only
the acoustic pressure by relating the pressure to the particle velocity of the working fluid
and determining an expression for the wave number pertaining to the first harmonic of
the resonator. Viscous and thermal losses at the resonator walls are incorporated into
the reduction of the energy flux.

Chapters 4 and 5 describe two known techniques of determining energy dissipation



in acoustic resonators, which are compared to the results given by the two microphone
method. Chapter 4 describes how the quality factor, @}, and the stored energy in a
resonator, E,;, are measured. This technique of measuring energy dissipation accounts
for internal energy losses (i.e. losses due to viscous or thermal effects at the walls of the
resonator or losses caused by geometric imperfections within the resonator), and external
energy dissipation (i.e. losses caused by attaching some load that converts acoustic energy
into another form of energy). Chapter 5 describes how internal energy dissipation and
external energy dissipation are measured separately. The internal energy dissipation is
measured using the same method discussed in Chapter 4, which uses a quality factor that
assumes there is no external load on the resonator. Chapter 5 explains how modeled loads,
called ‘dummy loads’, dissipate energy. These loads are simply empty volumes connected
to the resonator by a small pipe. The resistance to the fluid flow through an orifice to
the volume causes energy dissipation by lowering the acoustic pressure amplitude in the
resonator. External energy dissipation is determined by measuring the pressure drop
between the acoustic pressure amplitude in the resonator and the pressure amplitude in
the dummy load. The internal and external energy dissipation measurements are then
added, giving the total energy dissipation.

Chapter 6 explains the two microphone method of measuring energy dissipation in
detail. An expression for determining the energy dissipation using the complex pressures
measured by the microphones is derived first, using the background theory provided
in Chapter 2. The experimental procedures for using the two microphone method are
explained next. Results from tests using the two microphone method under various
conditions are then compared to the results yielded from the techniques described in
Chapters 4 and 5.

Although the two microphone method applies to resonators or ducts in many shapes
and sizes, the resonators used in this investigation are exclusively closed, one half wave-
length resonators that support standing acoustic waves, since many thermoacoustic en-

gines use such resonators. Also, the working fluid in all these tests of the two microphone



method was helium, because of its low Prandtl Number (Pr=0.7).

Considering other methods for measuring energy dissipation, measuring the acoustic
pressure amplitude was easiest and most reliable. The method of using hot wire anemom-
etry to measure the fluid velocity was ruled out since the hot wire probe would disturb
the flow of the working fluid. Also, Laser Doppler Velocimetry was considered Lut not
used because such measurements require more instrumentation that was more expensive
than that of the two microphone method. Measuring the pressure allowed for minimal
profile defects inside of the resonator and required less instrumentation, thus keeping the

measurement process simple and inexpensive.



Chapter 2

Theoretical Background

To show how the pressures measured by the two microphone method are needed to cal-
culate the energy dissipation in acoustic resonators, an expression for the energy flux in
terms of the acoustic pressure must be derived. The energy dissipation is calculated in
this chapter using a fundamental theory for damped oscillations in tubes, developed by
Rott[6]. The derivation of the energy flux begins with an expansion of the thermodynamic
and acoustic variables of temperature, density, pressure, and velocity. The expansions
are then simplified to the first order. Also, a general expression for the energy dissipation
is derived. The energy dissipation is then manipulated to be a function of only the mea-
surable quantity of pressure, using the Navier-Stokes Equation, the continuity equation,

and the general equation of heat transfer.

2.1 The Acoustic Approximation

To begin the derivation of the energy dissipation, the parameters p, pressure; v, velocity;
T, temperature; and p, density need to be clearly defined. For a simple point source in

free space (shown in Figure 2.1) the parameters depend on time and position

P=DPo+ Pl(zsyv zst) + pz(z, Y, 2z, t) + ps(z, Y, z,t) + s (2°1)



Jx
A\

Figure 2-1: Propagation of an acoustic wave from a simple point source.

vV = v, + v1(2, Y, 2,t) + va(2, ¥, 2, t) + va(z, ¥, 2,t) + ..., (2.2)
T =T, + Ti(z,y,z,t) + To(z,y, z,t) + Ts(z,y, 2,t) + ..., (2.3)
P = po+ p1(2,y,2,t) + pa(z, v, 2, t)+ pa(z,y, 2,t) + ..., (2.4)

using cartesian coordinates (z,y, z), where ¢ is time, and the numerical subscripts denote
the order.

The three dimegsiona.l case can be simplified to a one dimensional case for the re-
mainder of this study because this thesis is only concerned with long, thin resonators.
The resulting waveform is a plane wave that oscillates along the longitudinal axis of
the resonators. Also, since this thesis deals with only cylindrically shaped resonators, a
cylindrical coordinate system (shown in Figure 2.2) will be used, simplifying the following
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Figure 2-2: The coordinate system of a cylindrical resonator.

calculations. The acoustic standing wave oscillates along the z-axis.
Using the one dimensional simplification, the thermodynamic and acoustic parameters
can be examined more closely. Using the following Fourier expansions, these parameters

become

p= § pneiln'“’teinh = Po + plei("’t‘*kz) + p_lei(wt—kz)
n=-—oo
+pze2i(wt+kz) + p_zezi(wt—kz) + ey (25)
vV = ) vnezlnlwtemkz = v, + vlet(wH-kz) + v_lez(wt—kz)
N=«-00
+vzeZi(Wt+kZ) + v_zeZi(wt—kz) + ., (2,6)



T = § Tnei|nlwteinkz =T.+T) ei(wt+kz) + T_lei(wt—kz)

n=-—0oo

+Tyetilwttks) L T e2i(we-ks) 4 2.7)
p= _f: peinlutginks = o L 5 gilutrks) 4 o gilwt-ks)
+pzezi(wt+kz) + p_zezi(wt—kz) + oy (28)

where w is the resonant frequency and k is the complex acoustic wave number, which
will be derived later. These expansions describe an acoustic wave that propagates in the
positive and negative directions along the z-axis, starting at time ¢ = 0.

When dealing with acoustic waves, several assumptions can be made to make the
calculations manageable. For all of the calculations in this thesis only the steady state
and first order terms of the expansions will be kept. The higher order terms can be
considered to be insignificant by comparison to the lower order terms[1]. The resulting

expressions for the expanded parameters are

P = po + pref“tHE) 4 p , ilt-ke) (2.9)
V = v, + v, 8@tk 4o ei(“"k‘), (2.10)
T = T, + Ty ¥tk | T gilwt-ks), (2.11)
p = po+ prtHED 4 5 ilut-ka) (2.12)

The velocity can be simplified to



v = v @tk oo gilwt-ka) (2.13)

because there is no net velocity in a closed resonator.

2.2 Acoustic Energy

The energy flux in an acoustic flow is defined as the energy contained in an acoustic wave
that flows through a given cross sectional area. As was discussed qualitaiively in Chapter
1, the two microphone method can aid in determining the energy flux in a resonator by
measuring the pressures at two points along the length of the resonator. A general energy
flux equation needs to be derived for acoustic waves in resonators. For the derivation
conducted in this section the working fluid will be treated as an ideal fluid, meaning
viscous effects will be neglected[7, pp. 9-10].

To simplify the notation a bit, the first order expansions of pressure and density will

be abbreviated as follows

p=rp.+7, (2.14)

p=po+p, (2.15)

where p’ and p’ represent the first order terms in the expansions.

The energy flux, K, can be derived by integrating the energy flux density, @, over
the area through which the acoustic wave flows. To determine the energy flux density
the energy density, e, of the wave must be combined with the continuity equation and
Euler’s Equation. The energy density is the sum of the kinetic energy per unit volume

plus the potential energy per unit volume,

1
e= Epvf + pe, (2.16)

10



where v, is the particle velocity along the longitudinal axis of the resonator and ¢ is the

internal energy per unit mass of the fluid. The continuity equation is

Op _
a +V. (pv) =0, (217)

and Euler’s Equation is

av +(v V)V=—%Vp- (2.18)

In Euler’s Equation, the density is treated as a constant since the acoustic oscillations

are small compared to the mean density, p,.
The time derivative of the energy density should be taken so equations (2.17) and
(2.18) can be used. The time derivative of the energy density is

i a1
'a'i? = 5;(3p72 + pe). (2.19)

Now the kinetic and the potential parts of the right hand side of equation (2.19) need to

be examined separately. The time derivative of the kinetic energy density is

0.1 2)___
3t 2° 2 * 0t

Substituting equations (2.17) and (2.18) into equation (2.20) for & and a", respectively,

Bp ov

+pv- = (2.20)

the expression becomes

d,1 1
E(Epvf) = —-i-va (pv) =v-Vp—pv-(v-V)v. (2.21)

The term Vp is replaced using the thermodynamic expression

dp = pdw — pTds, (2.22)

which becomes

11



Vp = pVw — pTVs, (2.23)

where w is the enthalpy per unit mass of the fluid, and s is the entropy per unit mass of

the fluid. Also, v-{v-V)v can be replaced by

v.(v-V)v= -;-v - Vo?, (2.24)

making equation (2.21)

-(%(%pvf) = L1 (ov) = pv- V(%vﬁ +w) + pTv - Vs. (2.25)

The thermodynamic relation for the potential energy part of the energy density is

de = Tds — pdV,, = Tds + (%)dp, (2.26)
where V,, is the specific volume. Performing the expansion of the term d(pe) and substi-
tuting the identity € = w — p/p, the potential energy term becomes

d(pe) = edp + pde = wdp + pTds, (2.27)

making the time derivative

g%%e_l =—-wV.(pv) — pTv.Vs. (2.28)

Combining the kinetic and the potential terins the resulting expression is

a 1 2 — 1 2 1 2
5; ‘2'Pv, + pe) - _(21): + w)V ° (Pv) —pV: V(2vz + w), (2‘29)

or

d .1 1
3 3PV; +pe) ==V pv(5ez +w)l, (2.30)
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where the energy flux density is

1
® = pv(ivf + w). (2.31)

To determine the given amount of energy flow, equation (2.30) must be integrated

over some volume

1

2 fizovt + )V = = [V [pu(z0l + wlav. (2.32)

By changing the right hand term to a surface integral, the energy flux through a given

cross section can be determined

%ﬁ%pvi + pe)dV = — fpv(%vf + w) - dA. (2.33)

Looking at equation (2.33) from an acoustic standpoint, some terms can be considered
insignificant, making the expression simpler. Considering the energy flux density, the
1pvv? term can be neglected, since it is a third order term. The fluctuating quantity
w = w, + w' should be substituted for the specific enthalpy (as was done in equations
(2.14) and (2.15) for pressure and density). For small changes in w', the relation w' =
(8w/0p)sp' = P'/p can be assumed (with the subscript s denoting constant entropy),

making the energy flux

E= }‘iwopv +p'v) - dA. (2.34)

By substituting equation (2.15) for p in the first term, some more simplifications can
be made. The first term will look like w,p,V + wop’v. The w,p,v term deals with a steady
state situation and does not relate to sound waves. The second term, w,p'v, relates to
the energy flux due to the change in mass of the fluid, and is zero in a closed volume

situation, like that in closed acoustic resonators. The resulting energy flux becomes

13



E= fp'v .dA. (2.35)

Since the energy flux over a long period of time is desired rather than the instantaneous
energy flux, the time averaged value of the energy flux must be determined for more
meaningful results. Also, by applying equation (2.35) to cylindrical resonators, a more

specific expression would be

E= / omrpv.dr, (2.36)
(]

where 7, is the radius of the resonator, and the overbar denotes the time average. Using

equation (2.36), the time averaged energy flux in the resonator can be solved.

2.3 Resonator Losses

Now that a simple equation for the energy flux in a resonator has been derived, the
energy flux equation must be reduced to an expression that is only a function of the
measured parameter, pressure, and other known quantities. The two quantities that are
related to pressure in this section are the longitudinal velocity, v., and the complex wave
number, k (which is shown in the expansions of p and v). The derivations carried out in
this section take into account the losses in the resonator.

The three equations used to simplify equation (2.36) are the Navier-Stokes Equation,
the continuity equation, and the general equation of heat transfer(7, pg. 194]. The Navier-

Stokes Equation is

9%’?‘9 +(v-V)(pv) = —Vp + V2(uv) + V (v - ((c + %)v)) . (237

where 4 is the dynamic viscosity, and ( is the second viscosity. The continuity equation

is given in equation (2.17). The general equation of heat transfer is

14



a(” 9(6T3) | . 9(pTs) = V - (KVT), (2.38)

given that K is the thermal conductivity of the fluid.

The fluid velocity will first be related to the acoustic pressure, using the Navier-Stokes
Equation. The Navier-Stokes Equation can be simplified by assuming that the density
and the temperature of the fluid are constant, since the fluctuating terms p’ and T" are
much smaller than the mean values of p, and T,, respectively. With this assumption,
the density and the viscosities can be treated as constants, making the Navier-Stokes

Equation

a—: +(v- V)v] =-Vp+pViv+ (C + g) V(V-v). (2.39)

By approximating the geometric terms in equation (2.39) a simpler expression results.
The viscous boundary layer thickness, §,, for an acoustic flow can be calculated from the

simple expression[7, pg. 306]

2v
6, = — (2.40)

where v is the kinematic viscosity, and w is the frequency of oscillation.
The boundary layer thickness can be considered much smaller than the wavelength

since the resonator is a long slender tube

A
5, < 5. (2.41)

The derivative along the z-axis is proportional to the inverse of the wavelength

8 2
=~ (2.42)

and the radial derivative is proportional to the inverse of the viscous boundary layer

thickness

15



1
=~ (2.43)

Since the waves are considered plane waves along the iongitudinal axis, any radial velocity

is considered negligible, giving

v, A
-2 . .
v,  27é, (2.44)
Using the preceding approximations, the Navier-Stokes Equation reduces to
Ov, —dp 18, 0v,
P = tE ) (249)

Finally, the time derivative of the velocity is simply iw times the velocity, reducing
equation (2.45) to

(2.46)

WU, =

—dp' 18, 0v,
& e )
Solving the differential equation for v, and using the boundary condition v.(r = r,) = 0,

the velocity, v., is

oo @[ Lol 1)r/6)]

T wp, dz B Jol(t —Dre/8.]] (2.47)

Substituting equation (2.47) into equation (2.36) and solving the integral, the resulting

energy flux is

. wrl e liz 9 (1 _ 271((i — 1)r0/8,]
E = P R [ z (1 (2 = 1)ro/8,)J0[(2 — 1)1‘,,/6,,])] ) (2.48)

where p is the coml'Jlex conjugate of p. The function, f,[6], can be defined as

f, = 2J1[(t — 1)ro/6.] .
g (2 = 1)r0/8,]J5[(3 — L)ro/6,]

(2.49)

Now the energy flux through the resonator can be written as
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E= "o p [ 2 (l—fu)] (2.50)

The complex wave number, k, in the exponential terms of the pressure given in
equation (2.9) must be found so that the energy flux can be solved in terms of pressure
only. The wave number can b: found from a second order differential equation of the

pressure, called the wave equation, which takes the form

1d2
P+ Fd_l:' = 0. (2.51)

The wave equation can be derived using the continuity equation, equation (2.17), and the
general equation of heat transfer, equation (2.38). Using the same assumptions stated in
equations (2.41) through (2.44), along with assuming that the density is constant along

the z-axis, the continuity equation reduces to

dp N
%t “;(Podz) =0. (2.52)

The time derivative of the density is simply iw times the fluctuating part of the density

expansion, giving

iwp' + %(povz) = 0. (2.53)

Solving equation (2.46) for the mean density and substituting it into equation (2.53), the

continuity equation becomes

twp' — —il-z—p- + = 9 (-ﬁ—-—a— (r%)) = 0. (2.54)

iwdz? 9z \iwrdr or

Multiplying both sides of equation (2.54) by iw, the expression becomes

dzp' a 10 ov
'2 1l | z 0
dz? Bz ( T 31‘ (7‘ 31‘ )) ) (2'55)

The first order density, p’, can be obtained through the equation of state
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p' = —p.BT" + (v/a*)p, (2.56)

where (3 is the thermal expansion coefficient (8 = —(8p,/0T),/p.), and « is the ratio of
isobaric to isochoric specific heats. By substituting equation (2.56) into equation (2.55),

the expression becomes

2, BT _ oy EP O (10 (0v:))
w'poAT P it 32 (”rar " or =0 (2.57)

Equation (2.57) involves three different fluctuating quantities: the particle velocity,
the acoustic pressure, and the temperature. The particle velocity is given in equation
(2.47). The wave equation that will be derived must be in terms of the acoustic pressure,
so an expression relating the temperature to the pressure must be found and substituted
into equation (2.57). The general equation of heat transfer (equation (2.38)) is used to
make this relation. Looking at the left side of equation (2.38), the mean values of the
density and the temperature are much larger than their fluctuating terms, allowing them

to be considered constant. The general equation of heat transfer becomes

pT (%} +v. Vs) =V.(KVT). (2.58)

The same geometric assumptions given in equations (2.41) through (2.44) are used, with
the exception of replacing the viscous boundary layer thickness with the thermal bound-

ary layer thickness, §,[7, pg. 306]. The thermal boundary layer thickness is

2a
b = \/7, (2.59)

where the thermal &iﬂ‘usivity is a = K/poc,, where ¢, is the fluids isobaric specific heat.

From thermodynamics, the entropy term in equation (2.58) is

ds = (cp/T)dT — (B/p) dp. (2.60)
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Substituting equation (2.60) into the general equation of heat transfer and applying the

geometric approximations, the expression reduces to

oT’ dT, 6p 10 ( 0T’
PoCp (—5t— + vzg) - T°ﬂ3t_ = K;g; (7'—3';') . (2.61)

Once again, the time derivatives of the fluctuating quantities 7’ and p' are iw times the

fluctuating quantity, giving

- dT, . y_ 18 (9T
PoCp (sz + v,-d—z—) —wT,Bp = K;c_'?; (r—é-r—) . (2.62)

Equation (2.62) is solved by assuming the fluctuating term of the temperature is zero
at the resonator walls because of the thermal contact with the walls, T'(r,) = 0, and
there is no temperature gradient along the length of the resonator, since the acoustic
amplitudes are low, % = 0. Using these assumptions the fluctuating temperature is

given as

T, Jli—1)r/s]
T= paco’ (1 Lol(i — l)ro/&c])' (2.63)

The wave equation including losses can now be found. First, an identity can be made

similar to equation (2.49), yielding the function[6]

2J1[(2 — 1)ro/8u)

" = T - . 2.64
I = Do 83706 — Dol (264
Also, the following thermodynamic relation was used
2 2
AT’ _, 1. (2.65)
c

The resulting wave equation is found by using equations (2.47) and (2.63) for v, and T",
respectively, and substituting into equation (2.57). Multiplying both sides of equation
(2.57) by r and then taking the integral along the radius of the resonator from 0 to r,,

the wave equation becomes
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1+ -Dfr+ 520 f) =0 (2.66)

By changing equation (2.66) to the form

d*p’ a? 1-f,
d2? w2 (1+ (v — 1)fa)

the complex wave number, k, is found, which is simply the coefficient of the second

P+ =0, (2.67)

derivative of the pressure,

_wil+(v-1fe
k2 = ;7(—-1-_—),:—) (2.68)

The energy flux through the resonator can now be solved as a function of only the
acoustic pressure. As will be seen in Chapter 6, the pressure will be solved by applying
boundary conditions to the wave equation. The pressure will be broken into real and
imaginary parts and the energy flux equation will be manipulated algebraically so that
the measuied cciuplex acoustic pressures can be substituted and a value for the energy

flux can be determined.
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Chapter 3

Experimental Equipment and

Instrumentation

The experiments conducted in this thesis required simple laboratory hardware and in-
strumentation. The resonator is simply a pipe with a driver connected to one end, and
with mounting holes cut at various positions along the resonator for pressure transduc-
ers. For the most part, the instrumentation is very common, and can be found in almost
ary modern laboratory. This chapter presents a detailed description of the experimental

hardware along with the instrumentation configuration.

3.1 The Resonator Assembly

There were two resonators used in the experiments. The first resonator, shown in Figure
3.1, was a seamless aluminum tube, five inches in diameter and 12 feet long. The driver
on this resonator was a one inch tweeter with an electrical resistance of 7.5 ohms. Three
mounting holes for pressure transducers are located on the resonator. Two holes are
located between the driver and the quarter wavelength point, and the third is on the
nondriven end plate (for the exact placements of the mounting holes, see Figure 3.1).

To simulate external loading, a 1500 cc tank was connected to the nondriven end of the
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1 in. tweeter
1500 cc volume

Figure 3-1: The five inch diameter resonator assembly.

resonator through a needle valve (Appendix A describes how the size of the tank was
chosen). A pressure transducer was attached to the 1500 cc tank also.

The second resonator was a one inch diameter, 12 foot long seamless brass tube.
The same one inch tweeter used on the five inch resonator was coupled to the one inch
resonator. This resonator had a 75 cc tank coupled to the nondriven end. The one inch
resonator is shown in Figure 3.2.

The working fluid used in all of the tests (except in some of the pressure transducer
calibrations) was helium. To insure the purity of the helium, the system was evacuated,
and then the resonator was flushed several times using helium. Since low and high
pressures were used in the tests, two different pressure gauges were needed to give accurate
mean pressure readings at low and high pressures. The entire plumbing system is shown
in Figure 3.3.

Higher amplitude acoustic pressure swings were desired to test the limits of the two
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Figure 3-2: The one inch diameter resonator assembly.
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Figure 3-3: The resonator plumbing system.
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Figure 3-4: The five inch diameter resonator with the TAD connected.

microphone method. Since the one inch tweeter could only produce peak to peak pressure
amplitudes of the order of 0.1 psi, more powerful drivers were needed. The next step
up from the tweeter was a 4.5 inch diameter speaker, similar to ones used in fog horns.
This speaker operated like a tweeter, but the diaphragm was made of hardened cloth
much more rigid than that of the diaphragm on the one inch tweeter. The magnet on the
4.5 inch speaker weighed approximately 25 lbs. The high amplitude speaker produced
pressure amplitudes as high as 0.9 psi.

The highest amplitude driver is a thermoacoustic driver (TAD), which is explained in
Chapter 1. The TAD is held in a tube the same diameter as the five inch resonator and
simply bolted onto the five inch resonator, making the total resonator length 4.39 m (173
inches). The TAD, shown in Figure 3.4, is composed of two heat exchangers, one hot (up
to 480°C) and one cold (about 20°C). In between the heat exchangers sits a stack of thin
steel plates, closely spaced (discussed by Swift[1]). The temperature gradient produced
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by the heat exchangers induces a standing wavein the resonator. The cold heat exchanger
acts like an automobile radiator, with cold water pumped through several small tubes
connected to fins. The hot heat exchanger acts similarly to the cold heat exchanger,
except that the tubes do not have water flowing through them, but rather the tubes
act as sheaths, in which cylindrical heating elements are inserted. While the engine is
operating at maximum capacity, the TAD produces peak pressure amplitudes of nearly
8 psi. Points A and B in Figure 3.4 represent pressure transducer positions for the two

microphone tests.

3.2 Instrumentation

The driving tweeter was powered by two means. For experiments requiring the mea-
surement of the quality factor, @), of the resonaior or finding the resonant frequency, a
sweep was used. By using the source of a Hewlett Packard Dynamic Signal Analyzer,
model #3562A, a sinusoidal signal at nearly any desired voltage could be swept through
a chosen frequency range. When the driver had to be run at a given frequency a Hewlett
Packard Function Generator, model #3325A, was used. Signals from both generators
were run through a Hafler 500 audio amplifier before being fed to the tweeter.

The pressure transducers, or microphones, used in all of the experiments were PCB
Piezotronics Inc. model #102A05 pressure transducers. These dynamic pressure trans-
ducers, with a rated sensitivity of 50 mV /psi, are prescribed for general purpose use.
The calibration procedure for these transducers is rather complicated and is described in
detail in Appendix B.

The signals from the pressure transducers could be interpretted in many ways. First,
the signals were fed to a PCB model #482A04 voltage follower. The signals were then
fed into a junction switch, and in the case of a weak signal, the signal was amplified by
an amplifier with filters to improve the signal to noise ratio. In the swept sine mode,

the signal was fed to the HP Dynamic Signal Analyzer where the power spectrum could
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Figure 3-5: The instrumentation setup.

be displayed on the screen and stored. When the resonator was driven at a constant
frequency, and numerical values of the signal were desired, the signal was fed into an
EG&G Lockin Amplifier, model #5301A. The Lockin Amplifier can filter out noise and
higher harmonics of the signal, and will only display the strength of the signal at the
driven frequency. In these tests, the Lockin Amplifier uses a trigger input from the
Function Generator to capture the signal resulting from the driven standing wave. A

diagram of the entire instrumentation setup is shown in Figure 3.5.
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Chapter 4

Internal Resonator Losses and the

Quality Factor

An accurate method of measuring energy dissipation in an acoustic resonator must be
found which can be used as a standard against which other methods can be compared.
One such standard involves measuring the quality factor, @, of the system. The quality
factor is inversely proportional to the energy dissipation rate of the modeled acoustic
system, and it determines what fraction of the stored energy of the system is dissipated
while operating on resonance. As explained later, Q can be determined from the char-
acteristics of the resonant peak of any damped harmonic system and can be used to
determine energy dissipation quite easily. This chapter presents the theory relating the
quality factor, @, to the energy dissipation of the modeled acoustic system, outlines the
procedures used in measuring (), examines the experimental accuracy of this standard,
and presents experimental energy dissipation measurements using this method. These
results will be compared in Chapters 5 and 6 to the energy dissipation measurements
made with the two microphone method and a second standard for measuring external

eneigy losses.
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4.1 Theoretical Analysis

An expression for the energy dissipation rate, Eg4.,, must be derived, which can be
compared to the two microphone results. As will be seen, E4.. is a function of the
pressure amplitude of the standing acoustic wave, the geometric characteristics of the
acoustic resonator, and known values of properties of the working fluid. The geometric
characteristics are described by the quality factor of the system.

Nielsen[8] defines the theoretical quality factor as

""Ent

et 4.1
Eds'aa ( )

cheory =

where E,; is the maximum energy stored in the system, and Eg,, is the energy lost per
unit second by the system. The theoretical quality factor identifies specific geometric
characteristics in the expression for Ej,, which contribute to energy dissipation. These
characteristics do not account for geometric imperfections, such as imperfect boundaries
caused by drivers, joints, and protrusions in the resonator. In order to take these effects
into account, Q¢heory, must be factored out of the expression for Ed;,,, and replaced by an
experimentally determined quality factor, Qmeq,. The quality factor can be measured by
determining the sharpness of the resonant peak of the power spectrum of the system/9,

pp- 24-26], a typical peak is shown in Figure 4.1. The measured quality factor is

__JL
Qmeaa - f1 _ fz’ (4'2)

where f; and f, are the frequencies on the power spectrum curve at which the magnitude
of the power is half of the peak value, and f, is the resonant frequency.

The theoretical discussion starts with some assumptions about the acoustic wave in
the resonator. The coordinate system in the resonator is also redefined. These assump-
tions are then applied to the derivations of Eg4.,, and the stored energy of the system,

E,.

29



I'i/m -2

—————— )

i

o I,

Py
oy

Figure 4-1: A typical resonance curve.

4.1.1 The Acoustic Standing Wave

The following derivations will be used to determine what fraction of the amplitudes of a
lossless acoustic standing wave will decay due to internal losses in the system. Therefore,
the acoustic wave is assumed to be wholly standing, with the peak pressure amplitude
occurring at the ends of the resonator, and the peak velocity amplitude occurring in the
center of the half wavelength resonator.

To make the mathematics in the following derivations simpler, the coordinate system
in the resonator is redefined. Along the z-axis, zerc occurs at the middle of the resonator
instead of one of the ends of the resonator. Also, since the following derivations deal
with the effects within the boundary layers at the walls of the resonator, the walls can
be assumed to be flat plates, and a cartesian coordinate system can be used. Looking at
the two dimensional picture in Figure 4.2, the r-axis will be the vertical cartesian axis
(normally the y-axis) with its zero at the center of the diameter of the resonator, and

the z-axis will be the horizontal cartesian axis (normally the x-axis), with its zero at the
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Figure 4-2: The cartesian coordinate system for the standing wave resonator.

center of the resonator.

Since the acoustic wave is assumed to be perfectly standing, the oscillating parts of

the pressure and velocity are assumed to be simple trigonometric functions

. W "
P =p% sm(ZZ) = p", (4.3)

and

v, = ivy cos(%z) = fv), (4.4)

where p% is the pressure amplitude at the ends of the resonator, v4 is the velocity
amplitude at z = 0, and the superscript s denotes the standing wave quantities. As
before, the time derivative, 533, is equivalent to iw.

Since the pressure and velocity expressions do not include losses here, Euler’s Equation
(equation (2.18)) can be used to relate the two. Assuming the acoustic wave is a plane

wave along the z-axis under lossless conditions, Euler’s Equation reduces to
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v, op'

pow = —-5;. (4.5)
By carrying out the derivatives, substituting for the standing wave values, and solving

for v?, the standing wave velocity is related to the pressure amplitude

'
s PE

v, =
z
Poa

cos(—‘:-z). (4.6)

4.1.2 Energy Dissipation

The energy dissipation rate and the stored energy of the system will now be derived.
Using the approximations and coordinate system described above, each expression will
reduce to a simple function of the pressure amplitude. The two expressions will be
combined to identify Qheory-

The energy stored in the resonator can be found from the energy density(7, pg. 9], e,

in equation (2.16)

The expressions p = p, + p' and € = ¢, + € are substituted into the energy density
equation. The term }p'v:? can be neglected since it is of third order. Using a second

order expansion for the potential energy term, the energy density becomes

B(pe) 1 Bz(pe) 1
—_ ’ 2 12. .
e_p,e°+p-—a - +--2p 307 2 +—2p¢,vz (4.7)

Since the sound wave is assumed to be adiabatic, the derivatives are taken at constant en-
tropy. Using the thermodynamic relation de = T'ds + (p2/p?)dp, the following expression

is found

(5. =eE=w 43)
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and the second derivative becomes

8%(pe ow éw\ /0 a?
(55, = (3. = ()., == «9)

Substituting these expressions back into the energy density equation, and keeping only
the terms second order or lower, the energy density becomes

2

1 1
€ = Poo + Wop' + Eaz,;— + —2-p,v;2. (4.10)

The term p,¢, is the energy per unit volume when the fluid is at rest, and therefore
does not relate to the acoustic energy density. The second term, w,p’, is the change in
energy due to the change in mass of the fluid per unit volume. When integrating over
the total volume of the fluid (the volume of tk< resonator) the second term becomes zero,
since the system is assumed to be closed, allowing no change in mass. The energy density

reduces to

1
e= a2 -l-povf. (4.11)

By taking the time average and using the thermodynamic relation a? = p'*/p', the energy

density becomes

1 puz 1 .
e = Z(;;-a-—z) + Zpovzz. (4.12)

By integrating over the volume of the resonator, the stored energy can be found

|P)5:|2
E, = /’ edV = 2 ox r2L. (4.13)

To derive the energy dissipation rate of the acoustic wave in the resonator, the energy
dissipation rate per unit area, ég4;,,, needs to be found, which can be integrated over the
surface area of the interior of the resonator. The energy dissipation rate per unit area

accounts for the acoustic energy that is absorbed by the walls of the resonator due to
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viscous and thermal effects within the boundary layers. To find é4,,, the component
of the acoustic velocity within the boundary layers, 72 (the overbar denotes a vector),
normal to the walls of the resonator is simply multiplied by the acoustic pressure, p'*. The
time average of é4,, needs to be taken, since the instantaneous value has little meaning.
The acoustic velocity within the boundary layers is found through the superpositioning

of several velocity vectors within the boundary layer[10, pp. 519-529],

Twall = .17: + Ty + Uy, (4.14)

where T4y is the velocity of the resonator wall (Tqy is zero since the wall is assumed to
be rigid and fixed to the reference frame), 7, is the fluid velocity due to vorticity effects
near the walls, and ¥, is the fluid velocity due to thermal relaxation near the walls. Using
superposition, the no-slip boundary conditions at the wall, » = r,, will be satisfied.

To solve for é4;,,, the velocities, 7,, and 7, in equation (4.14) must be put in terms of
v and p’*. The viscous velocity is given by equation (2.47). To convert this expression
to the cartesian coordinate system used in this exercise, the Bessel Functions can be

replaced by hyperbolic cosines[6] as follows

1 dp” (1 cosh((1 + ¢)r/é,) )
~ cosh((1 +2)ro/8,)/"

The thermal velocity can be identified in the derivation carried out in Appendix E as

Ty = (4.15)

T pow dz

—i(y = 1)6, dp"”

2poa? i (4.16)

Tn =

First, 3, will be put in terms of 7. By taking the horizontal divergence of equation
(4.14), the thermal term will be eliminated, since T, can be assumed to be in the direction
of the temperature gradient within the boundary layer normal to the wall. The horizontal

divergence is

VT . ﬁvT + VT . T):T =V, (4.17)
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where the subscript T denotes the component tangential to the wall. The horizontal
divergence reduces to g'- for the viscous term, using the assumptions stated in equations

(2.41) through (2.44), giving

i dp” ((1 + 1) sinh((1 + i)r/6,)
pow dz 6, cosh((1+1%)r,/é,)

Since this derivation satisfies the no-slip condition at the resonator walls (r = r,), the

) + V-9 =0. (4.18)

hyperbolic terms reduce to a hyperbolic tangent, which is approximately 1 because r,/§,

is of the order of 100. Equation (4.18) becomes

_1 d /8
(/:w6 )'sz + V-7 =0. (4.19)

Very close to the resonator walls, the viscous velocity is

1 dp!
T,-n= p,w??’ (4.20)
which gives
Vr -’6:1. = (16—1’)17,, ‘. (4.21)

The normal component of equation (4.14) is taken, giving

7 -n+7,-n+7.-n=0. (4.22)

The normal component of 7, is found from equation (4.21), and equation (4.16) is used for
the thermal velocity (which is assumed to be normal to the wall). Assuming %:-' = iwp/,

equation (4.22) becomes

7,-h+ ) 6,Vr- V,r + -Ww6np = 0. (4.23)

To determine é4;,,, equation (4.23) is multiplied by p', and p"*%? - n is moved to the other

side of the equation. Taking the real part of the expression and putting the viscous term
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in terms of 72, the energy dissipation per unit area is

o -1
€diss = Puﬁ: ‘n= pzw 6"’5;2 + (27—pa—z)w6n(pu)z' (4'24)

Equations (4.3) and (4.4) 2re substituted for 72 and p'*. The time average of equation

(4.24) is

; lw|pg|?
€diss = Z'—_;T(Jv + 6&(7 - 1))- (4.25)

(-]
An expression for the time averaged energy dissipation rate can be found by integrating

over the total internal surface area of the resonator,

. , 1 wlple|? 2r,
Eiise = ‘/; ediud = Zf,ll:'zl_ﬂ'ro-[! (61./ + 6&(7 - 1) + 6:;(7 - 1)‘—;‘). (4.26)

The term lEﬂ accounts for thermal losses at the end caps of the resonator. There is no
such term for the viscous losses because 7, is assumed to be normal to the end caps.

Using equation (4.1), the resulting theoretical quality factor is

To

oy = . 4.27
Qs = - DA+ ) (421)
Equation (4.1) can also be rearranged to give
Ediu = wE't . (4-28)
cheory

The theoretical quality factor can be replaced by Qmea, to give a more accurate calculation

of Ej;,,, which will be discussed later in this chapter.
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4.2 Experimental Procedures and Results

As can be seen from the theoretical analysis, calculating energy dissipation by measuring
the quality factor can be a simple process. By measuring the pressure at the nondriven
end of the resonator, both the Q and the pressure amplitude can be determined. As will

be seen, the resonators have geometries that make the prediction of Q more difficult than

expected.

4.2.1 Measuring Internal Losses

The Q of a resonator can be measured very simply. By measuring the acoustic pressure
amplitude at the end of the resonator, p%z, and sweeping the input signal, the HP Dynamic
Signal Analyzer can create a power spectrum from which the Q can be found by using the
output of the pressure transducer. From Q and p;, the internal losses can be calculated.
The Q’s of both resonators were measured at mean pressures of 12, 20, 40, 60, 80, and 100
psia. The driver was run with an input of 3.3 W, which produced a sinusoidal acoustic

wave in both resonators.

4.2.2 Experimental Results

Measurements of the Q’s of the five inch resonator were performed using the prescribed
mean pressures at an ambient temperature of 20°C (Appendix C gives all of the necessary
properties of helium under the various conditions). Table 4.1 displays the results from the
experiments and shows the matching theoretical quantities explained in Section 4.1. The
power spectrum curves for the tests on the five inch resonator can be seen in Figures D.1
- D.6 in Appendix D. The resulting measured and theoretical quality factors from tests
run on the one inch resonator are provided in Table 4.2, along with the measured energy
dissipation. Room temperature in this case was about 20°C. These power spectrum
curves are given in Figures D.7 - D.12.

The results from the measurements for both resonators suggest that more energy is be-
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Table 4.1: Quality Factors for the Five Inch Diameter Resonator

Mean Pressure (psia) | pk[Pa] | Qmeas | Qtheory | Ediss/mW]
12| 25.3| 56.2 59.4 0.824
20| 50.3| 73.1 76.9 1.50
40 119 | 98.5 1089 3.13
60 186 | 120.1 | 133.5 4.19
80 249 | 138.3 | 154.3 4.90 |
100 363 | 150.5 | 172.8 5.34

Table 4.2: Quality Factors for the One Inch Diameter Resonator

Mean Pressure (psia) | p5[Pa] | Qmeas | @theory Eg.,, [on]““
12| 103 | 10.4 12.0 2.83
20 145 | 12.6 15.6 3.96
40 361 | 16.3| 22.0 6.76
6C 505 | 18.4| 26.3 7.82 |
30 652 | 20.9 30.4 8.62
H 100 758 | 23.7| 34.1 8.23 ||
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ing dissipated in the resonators than theory predicts, since dissipated energy is inversely
proportional to Q. In the case of the one inch resonator, these losses are considerably
higher than the predicted quantities. One contribution to the energy dissipation is the
fact that the resonators are not perfectly smooth and rigid. Additional volume leading
to inlet valves, pressure transducer mountings, and joints connecting flanges to the tube
causes some additional losses. The largest contributor to the imperfections of the res-
onators was the driver, though. Since the tweeter had a diaphragm made of hardened
cloth, the driven end of the resonators did not act like a perfectly rigid flat plate, thus

lowering the Q’s considerably.

4.2.3 Measurements with a Noncompliant Driver

To check if the one inch tweeter dissipates a large amount of energy, thus lowering the
Q of the system, a different driver was used on the one inch resonator. The driver,
commonly used as a speaker in headsets or earphones, is about a half an inch in diameter
and has a steel plate on its face, making it more rigid than the one inch tweeter. The
driver was glued to a brass plate (shown in Figure 4.3) and coupled to the resonator.
The dissipation was measured at mean pressures of 50 and 100 psia (7, = 20°C), and the
speaker was driven at 4.1 V.4, causing the amplitude of the acoustic pressure wave to
be about 6.3 Pa at p, = 50 psia and 9.3 Pa at p, = 100 psia. Using such a small speaker,
the pressure amplitude was hard to measure, but the signal analyzer was able to record
the power spectra (shown in Figures 4.4 and 4.5) at these mean pressures, giving Q’s of
23.5 and 33.0 at 50 and 100 psia respectively. These measured Q’s match the calculated
quantities of 24.0 and 34.1 well, and show that the geometry and construction of the one
inch tweeter played a significant role in dissipating energy in the resonator, while the
internal geometric imperfections played a minor role in dissipating energy.

The same experiment was not conducted on the five inch resonator because of the
extremely weak acoustic wave that would result, but the effect of the tweeter on the Q

of the five inch resonator could be calculated. The Q of any resonator is a combination

39



cs-2404355 8 18 24 32 40 48 58 8 18 34 32 4J 48 58
"!”1 lllll ~H AL by o s Lot

Figure 4-3: The noncompliant driver, glued to the brass coupling plate.
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Figure 4-4: The resonance curve using the noncompliant driver on the one inch diameter
resonator at 50 psia.
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Figure 4-5: The resonance curve using the noncompliant driver on the one inch diameter
resonator at 100 psia.
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of several different loss mechanisms which are additive

1 1 1 1

= + +
Q cheory eriver Qmicc ’

where @) is found to be the combination of the losses produced by the driver, Qdriver, and

(4.29)

other losses such as external loads or geometric irregularities, Q,n;,c, as well as Qtheory-

The combination of =—2— and Qv:iac can be found from the difference of the inverses

Qdriver

of Qtheory a0d Qmea,- Looking at the case when the noncompliant driver was used,

assuming erlim = 0 the term, Qmi,. can be established for the one inch resonator. So

Qdriver can be found for the one inch tweeter in the one inch resonator too. By doing
these calculations, @i, for the one inch resonator was found to be about 1000 (losses
this small were difficult to measure exactly), which makes Q4,iver =~ 80.

While the value of Q4iver changes for different resonators, the tweeter will dissipate
the same amount of energy for all resonators under the same conditions. So, Q4river for
the five inch resonator can be found through the following relation

E,,

Qdriver sinch = = . 4.30
? Eiinen (4.30)

After equation (4.30) is simplified, Q4river,sinch is found to be

2
T o,6inch
eriver,sinch = eriver,linch X '_2' K (431)

o,linch

where gﬁ'—'ﬁ'“: is the ratio of the squares of the radii of both resonators, which is 25,
o,line

making Qariver,sinch = 2000. With Qariver,sinch determined, Qmise.sinch can be found also.

The measured and extracted values for Qg,iver and Qmi,c Which resulted from the tests

described earlier are shown in Tables 4.3 and 4.4.
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Table 4.3: Tweeter and Miscellaneous Quality Factors for the One Inch Diameter -
Resonator, Using Qmi,e = 1000

Po [Pa] | g=—+ ==
12 0.012
20 0.0125
40 0.0159
60 0.0164
80 0.0149
[ 100 0.0128 | 0.0118 |

Table 4.4: Tweeter and Miscellaneous Quality Factors for the Five Inch Diameter -
Resonator, Using Q4river = 2000

" Po [Pa] | g=—+ T —

12 0.000959 | 0.000459

20 0.000859 | 0.000359

hL 40 0.000970 | 0.000469
60 0.000835 | 0.000335 H

H 80 0.000749 | 0.000249
H 100 0.000858 | 0.000358 H




4.3 Summary

The internal resonator losses can now be measured accurately with a good sense of exactly
where the energy within the resonators is going. The next step is to see how accurately
external loads can be measured with the method described in this chapter, as well as other
methods. The measured quantities found in this chapter will be used in the next chapter
to determine total energy dissipation in a loaded resonator, since the method described
in the next chapter accounts for all losses. Later, in Chapter 6, the theoretical quantities
derived in this chapter will be used in comparison to the two microphone method. These
quantities will be used because the two microphone method cannot measure losses in the

driven end of the resonators. This will be described later.

45



Chapter 5

External Energy Dissipation

With the understanding of internal resonator losses in place, and a reliable method
of measuring these losses, measurements of external acoustic energy dissipation can be
examined. In practical applications, acoustic resonators may have external loads which
perform some type of mechanical work. In these cases, internal and external energy
dissipation may need to be measured. As described in Chapter 4, the quality factor, Q,
accounts for all losses in the system, including external losses. Now, another method of
measuring energy dissipation will be discussed, which is specifically used for measuring

external energy dissipation.

5.1 Theoretical Analysis

In an acoustic resonator, a load can dissipate energy by using the pressure swings at the
end of the resonator to perform some type of reciprocating mechanical work. For the
sake of modeling such dissipation, the rigid end of a resonator should be replaced with
a mechanism which converts the pressure swings into some form of work. The best way
to picture an acoustic load on a resonator is by comparing the system to an electrical
circuit. In an electrical circuit the power is given as P = IV, where I is the current and

V4 is the voltage of the AC source. In the simple RC circuit, shown in Figure 5.1, the
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Figure 5-1: The analog electric circuit to the acoustic system.

power dissipated is

P = wCiV, V5, (5.1)

where C is the capacitance, and V3 is the voltage across the capacitor.

To make a comparison to an acoustic system, some simple analogies can be made. The
resonator acts like an oscillating voltage source, with the pressure swings analogous to the
voltage. The volume velocity is comparable to the current, and hence, since a capacitor
is a charge storage element, a large volume is its acoustic analog. The aperture of the
needle valve connecting the resonator to the volume acts )'ke a variable resistor. With

the electrical circuit analogy, the acoustic power dissipated through external loading is

W.. = pgV, (5.2)

where V is the volume velocity into the load.
Some assumptions must be made about the system. For low amplitude acoustic waves,
it is safe to assume that the walls of the volume and connecting pipe are isothermal (in

high amplitude cases temperature gradients arise because of viscous effects so heat sinks
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must be installed to maintain a constant temperature). However, the walls may not be
treated as adiabatic since compressive energy in the working fluid near the walls is dis-
sipated through thermal relaxation (see Appendix E). Remembering these assumptions,

the volume velocity can be related to the pressure inside of the volume, p),, as

.1 dp’v[ -1 ]
V—‘y—p: dt V—‘t 2 6,¢A ’ (5.3)

where V is the volume of the load, and A is the surface area of the load. Combining

equations (5.2) and (5.3), the power dissipated in the load is

i w -t 1 |- v-1 ”
= 174 LAl i
A [pEpV [z +1—5.4 (5.4)
or
o _ wVipkllpvl | . Abu(y —1)
W,z = Tpo sin ¢ + —21/.—— Ccos ¢ ’ (55)

where ¢ is the phase angle between py and pi,.
Now, losses measured in the resonator can be compared to losses measured in the
load. By letting the resonator run without an external load, the Q of the resonator, Qye,,

can be measured. Using equation (4.28), the power dissipated by the unloaded resonator

is then

Ey = wEy (5.6)

res
If an external load were connected to the resonator, Q;.: could be measured from the
resonance. The quality factor, @Q..:, accounts for the losses in the resonator as well as
the power dissipation caused by the load. So the total energy dissipated in the loaded

system is similarly

- “’Elt
B Qtot )

Eyo (5.7)
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Since E,, accounts for the energy dissipated in the resonator and the energy lost
in any external loading, a good way to check the entire method of measuring energy

dissipation is through the expression

E’tot = -m + Wez' (58)

5.2 Experimental Procedures and Results

Using the theoretical background from this chapter and Chapter 4, the external energy
dissipation in acoustic resonators can be determined in two different ways. Since the
method of measuring the Q to determine energy dissipation appears to work accurately,
the technique of measuring the losses in only the load can be checked and evaluated. To
measure W,,, the signals from pressure transducers at the end of the resonator and in
the volume need to be separated into real and imaginary parts, requiring more instru-
mentation and effort. However, the procedure for measuring Q.. is exactly the same as

was outlined in Chapter 4.

5.2.1 Measuring External Losses

To perform the external load measurements, the five inch diameter resonator was used.
Coupled to the resonator was the 1500 cc volume described in Chapter 3. Three sets of
experiments were run at mean pressures of 12, 50, and 100 psia. At 12 psia, the aperture
of the needle valve connecting the 1500 cc volume to the resonator was set to 1/3, 2/3,
and the fully opened positions. At the higher mean pressures, the aperture was set to
1/12,1/6, 1/3, and2/3 opened positions. The input to the speaker was adjusted for each
mean pressure to produce a sine wave which showed no nonlinearities. To obtain Q;.,
the input signal was swept in the same fashion as described in Section 4.2.1. To find ¢
and the complex quantities pp and p}, the system was driven at its resonant frequency

and the signals from the nondriven end and the external load were fed into the Lockin
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Amplifier, where the real and imaginary parts could be deciphered.

5.2.2 External Loss Results

The energy dissipation rate in the load, W.,, was found using equation (5.5). The
magnitudes of the signals in the volume and at the end of the resonator provided values
for |p},| and |p%;|, while the phase angle, ¢, was found by separating the real and imaginary

parts of the pressure signals as follows

¢ = tan™? (I%%-;) — tan™} (%g%) : (5.9)

The energy lost in the resonator was calculated by using the (}’s measured in Section
4.2.2 and letting them equal Q,., in equation (5.6). Since measuring E. and E,., + W.,
both account for all of the losses in the system, including Qgriver, 2ll of the measured
values of the quality factor were used in the calculations, instead of just Q:n..rp, and
Qmise-

To get a broad range of data, the aperture to the load was opened to the various
settings prescribed in Section 5.2.1. Measurements were not taken at the fully opened
setting at p, = 50 and 100 psia because the boundary layer thicknesses were supressed so
much that the aperture was larger than the boundary layer thicknesses, causing severe
nonlinear effects which distorted the measurements of the pertinent variables.

Plots of Q.,: are shown for the various mean pressures and aperture settings in Figures
D.13 through D.23. The sum of the energy dissipation rate in the resonator and in the
load matched the measurement of the total energy dissipation rate well. The measured
pressures from the tests are given in Table 5.1, and the energy dissipation values are
displayed in Table 5.2. Figure 5.2 shows a plot of the energy dissipation versus mean
pressure. The ambient temperature during these sets of tests was 22°C.

One interesting note about these tests is that the resonant frequency of the system got

higher as the aperture of the needle valve got larger. This phenomenon occurs because
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Table 5.1: Measured Pressures from the External Loss Tests

P, | aperture | Re(py) | Im(p) | Re(py) | Im(py)
(psia) | setting (Pa) (Pa) (Pa) (Pa)
[ 12 1/3] 305] 1.25| -0.150 | -1.31 |
[ 12 2/3] 2497 -0.197| 150 -3.32 |
[ 12 full | 22.8] 0.028] -3.31| -4.40 ||

50 1/12[ 69.5] 0.314 ] -0.038 | -0.310 ||
50 1/6 | 60.7] 0.470 | -0.362 | -1.21 ||
50 1/3] 43.0] 0.157] -1.66| -3.66 ||
50 2/3] 34.0| 0392] -649] -4.94
106 1/12] 49.9] 0.562 [ -0.053 | -0.579 H
[ 100 1/6] 422 0.070] -0.752 -2.35 |
| 100 1/3 345| 0.157| -1.67 -1.46H
[ 100 2/3] 3091 0351 -10.1] -4.51

in damped resonant systems, the damped resonant frequency goes as

wg x V1 - R x K, (5.10)

where K is a constant and R is the resistive term. When the aperture is open, the
resistance to the load is lowered, thus increasing the resonant frequency of the system.
To detect nonlinear effects, the pressure signals were monitored for any irregularities,
and the input to the tweeter was varied. In the case of p, = 100 psia, the input to the
tweeter was lowered to 1.27 Vj.qr because the acoustic wave showed signs of nonlinearities
at the higher amplitudes. Pressure traces of the signal from the pressure transducer in

the load show a nicely developed sine wave depicting linear behavior at the different

aperture settings.

5.3 Summary

Looking at Table 5.2, an excellent agreement between the total measured energy dissipa-

tion, Ey, and the sum of the individually measured load and resonator dissipation, W,
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Figure 5-2: Energy dissipation versus mean pressure for the various valve settings, using
the five inch diameter resonator.
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Table 5.2: Results from External Load Measurements

Po aPel'tul'e Qtot f res Em Wez Eret + Wez Etot
(psia) | setting (Hz) | (mW) | (mW) (mW) | (mW)
12 1/3| 48.7[1370| 1.23| 0.199 1.43] 1.45
12 2/3| 38.5[137.2 | 0.818 | 0.418 1.23] 1.22
12 full | 32.8[137.7] 0.690 | 0.509 .19 1.21
50 1/121108.4 | 138.7 | 0.592 | 0.0246 0.617 | 0.662
50 1/6 | 95.0 | 138.8 | 0.460 | 0.0845 0.544 | 0.587
50 1/3] 67.8[138.9 ] 0.231 | 0.182 0.413 | 0.412
50 2/3] 51.6139.8| 0.145 | 0.195 0.340 | 0.342
100 1/12 | 134.6 | 138.6 | 0.146 | 0.0167 0.163 | 0.161
100 1/6 | 96.0 | 138.6 | 0.104 | 0.0559 0.160 | 0.162
100 1/3] 69.8138.20.0617 | 0.0750 0.137 | 0.147
100 2/3 | 61.7140.1 [ 0.0567 | 0.0794 0.136 | 0.137

and E,.,, can be seen. A few conclusions can be made about this particular set of exter-
nal loading measurements. First, the losses in the resonator can be measured accurately
by measuring the sharpness of the resonance curve, Q. From these internal dissipation
measurements, losses in an external load can be determined by measuring the Q of an
externally loaded resonator and subtracting the measured internal losses, E,,, from the
total measurement, E,,,. However, the major accomplishment of this exercise lies in the
fact that losses induced by the dissipative volume attached to the resonator were also
accurately measured using pressure readings from transducers inside of the volume and
at the end of the resonator. Since the theoretical values of Q will be needed to compare
to the two microphone method, the method of measuring W,, and adding it to E,., will
prove to be a useful comparison to the two microphone method when external loading is

involved.
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Chapter 6

The Two Microphone Method

The final step in this study of experimentally measuring energy losses in an acoustic
resonator is to examine the method of detecting energy dissipation from pressure mea-
surements at two points along the half wavelength resonator. The theory behind the two
microphone method can now be discussed, using the background information provided in
Chapter 2. Chapters 4 and 5 provide reliable methods of measuring internal and external
energy dissipation to which the two microphone method can be compared. The experi-
ments conducted in this chapter will yield results which will indicate whether or not the
two microphone method is a useful tool in measuring energy dissipation in standing wave

acoustic resonators.

6.1 Theoretical Analysis

With the basis of resonator theory with losses discussed, methods for measuring losses
from within the resonator can be developed theoretically. The two microphone method
involves measuring the pressure at different points along the length of the resonator
and comparing the pressure amplitude drop and change of phase between those points
due to energy dissipation. The energy dissipated from the midpoint of the locations

of measurement in the resonator to the nondriven end of the resonator (including any
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external loads) can be determined in this fashion.
To solve equation (2.48), the pressure amplitudes at the two points, A and B, shown
in Figure 6.1, must be determined. The coordinates need to be redefined so z = 0 at the

midpoint of A and B. Solving for p'(z) at the two points, the amplitude can be found

P(TEZ) = g, = demkos 4 pokarss (6.1)
p’(%) = plg = Ae'kA#/? | Be-ikAs/2 (6.2)

where Az is the distance between the points of measurement. The constants A and B
can be found by solving for the acoustic pressure amplitude, p'(z), and its first derivative,

4 (z) at the midpoint, z = 0, giving

z

sin(kAz/2)

/ —_— — _— (A / N
p(Z—O) _A+B_ (pA+pB) Sin(kAZ) ] (6'3)
and
dp'(z=0) . _ k(pp — ply) cos(kAz/2)
—& k4B === (6.4)

Substituting equations (6.3) and (6.4) into equation (2.48), the energy dissipation

becomes
. _ =7yt o . \sin(kAz/2). , \cos(kAz/2)
Ezpen = Sop, Im [(PA + pB)—;in(l'c—Az)k(pB - PA)WU -f)|-  (6.5)

When the pressure amplitudes are multiplied out in equation (6.5), the resulting factor is
P12 — [P4|?* + 2:Im(5,plg), where [p/y|? and |p)y|? are called the auto spectra of the total
pressure at points A and B, and Im(#),p}y) is the imaginary part of the cross spectrum
between the total acoustic pressure at these points(5].

The expression derived in equation (2.68) can be approximated as follows

k:%(1+(l-_51—)‘-fﬁ+%), (6.6)
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Figure 6-1: Measurement of the intensity of the standing wave from two points within
the resonator.

which reduces to
(1-19) -1\ 4,
k ~ = [1 + — 5 1+ —\/.P?r ;: , (6.7)
where Pr is the Prandtl Number and Pr = v/a. By substituting equation (6.7) into

equation (6.5) and doing a considerable amount of math, the dissipated power reduces

to a function of the pressures and known constants

Brien =  sraitiomrey [Im(B4ps) — 2 (Im(7,pp) (1 - T+ (1+ Lgh)ele cop(w4z))
3P4 — 117 (1 = Zgk + (1 + Zgh )2l cse(as)))]. (6.8)

In most cases the terms 242 cot(£42) ~ ] and 282 csc(#42) ~ 1, 50 equation (6.8) reduces

to

. o2 s, ,
Brver = prain( 2y 1)1 - )+ (sl = uM].  (69)

Through some mathematical manipulations, the term Im(5,pl5) can be shown to be equal
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to |p)4||P’s| sin ¢, where ¢ is the phase angle between p/; and pjy. This relation shows the
dependence on the phase angle and will prove to be helpful later on. This method of
determining the energy dissipation of the system accounts for losses incurred by external
loading and internal dissipative losses for z > 0 in the resonator itself, if the load occurs
at 2 > 0.

To check the accuracy of the two microphore method, the method of calculating in-
ternal energy dissipation, E,.,, with some Q and pressure amplitude, pg, will be used,
similar to what is described in Chapter 4. Since the energy measured by the two micro-
phone method does not account for the entire length of the resonator, as described earlier,
E,., can only account for the same length of the resonator. So the integration carried out
in equations (4.13) and (4.26) becomes more complicated since the trigonometric terms

are not zero. The energy, E.,.,, is thus

_ (Pg)?wnriL 6, sin2kl r,, 6, sin 2k L
E,.e, = —45&3———[;(7 - 1)(1 + _ZI:L— + f) + :o'(l - —2',;?,_)]’ (6'10)

where L is the length from z = 0 to the nondriven end of the resonator.

6.2 Experimental Procedures

The two microphone method was tested in several ways. Information concerning the
placement of the pressure sensors was needed to insure accurate readings, and these
procedures are described in this section. The two microphone method measured only
the internal losses in one set of tests and a combination of internal and external losses
in a separate set of tests. This section also explains some of the problems and trade-offs

encountered while conducting the two microphone tests.
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6.2.1 Resonator Sizing

In the following set of experiments, the two microphone method will be used in both the
five inch and one inch diameter resonators. The one inch resonator was used because
higher internal losses were desired so measurements with the two microphone method
would be easy to make and more reliable. Since the energy dissipated in a resonator is
inversely proportional to ¢}, the @ of the resonance had to be lowered, and by looking at
equation (4.27), Q < 7,

To

Qheor = —
ST+ -1+ B

(4.27)

Situations resulting in low @’s were desired for this study because the pressure sensing
equipment was not very sensitive and lowered the accuracy of the measurements. To

remedy the problem the one inch diameter resonator was used.

6.2.2 Predicting the Quality Factor

Since the two microphone method only accounts for losses incurred from the midpoint
of the microphones to the nondriven end of the resonator, measuring the effective Q of
the resonance could not be conducted as described in Section 4.2.1 since the driven end
contained a tweeter which lowered the quality factor because the tweeter did not act
like a perfectly rigid end plate. The two microphone method could not detect losses
caused by the driver, since the driver was positioned before the midpoint of the pressure
transducers, so the quality factor had to be predicted through the method of calculating
an effective quality factor, Q.ss, and measuring Qmi,., as described and performed in
Section 4.2.3. The quality factor used for calculating energy dissipation as a comparison
to the two microphone method is a combination of Q.ss and Qmisc-

The term Q.ss can be extracted from the term in parentheses in equation (6.10)

sin 2k L

1 b sin 2k L )
2kL

o = 2y -+ LT 4 2

Qs 7 ShL (6.11)
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The effective Q only accounts for losses for z > 0. Now the quality factor resulting from
geometric imperfections in the resonator can be added in to describe the total effect of

the resonator on internal losses,

LI S (6.12)

Q Qe Qmisc’
which can be incorporated into equation (6.10). The assumption that the geometric
imperfections are distributed evenly along the length of the resonator was made, since

Q@misc does not play a major role in internal energy dissipation.

6.2.3 Measurement of Phase and Magnitude

By looking at equation (6.9), it can be seen that the two terms which determine the energy
dissipation are Im(7,pp) and |pj|? — |p/|?. Im(5),p) will always be dominant, since it
is always multiplied by a larger constant, but |pj|?> — |p/;|? can be important depending
on where along the acoustic standing wave the pressure measurements are made. When
measurements are taken straddling the quarter wavelength mark, |pj|? — |p/,|* will be
small since the amplitudes at those points are about the same. The phase angles at points
straddling the quarter wavelength mark will add together, making Im(5/,pg) large. On
the other hand, |pj|? — |p/|? can be made more significant by taking measurements on
one end of the quarter wavelength point at points which are a large distance apart.

To demonstrate the significance of Im(p,p5) and |pg|? — |p;|?, tests were run on
the one inch diameter resonator using three different sets of microphone coordinates,
D, E, and M, at a mean pressure of 100 psia. The resonator configuration can be seen
in Figure 6.2, and Table 6.1 tells which pressure transducers were used at the different
points. To check the reliability of the two microphone method, the dissipated energy in
the resonator was calculated and measured in the same fashion as described in Section
4.2.3. As explained earlier, the combination of Q.;s and Qmi,c was used in equation
(6.10) because of the undetectable effects of the tweeter. Readings from the pressure

transducers used in the two microphone setup were separated into real and imaginary
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Figure 6-2: Placement of the pressure transducers for the phase angle measurements.

parts by the Lockin Amplifier. For consistency, the imaginary cemponent of the reading
from the pressure transducer closest to the nondriven end of the resonator in the two
microphone tests will always be set as close as possible to zero. After this measurement
was complete, the real and imaginary parts of the reading from the other transducer were
recorded, and then the readings from the first were repeated, not setting the imaginary
part to zero th. “‘me. By setting the imaginary part as close as possible to zero, the phase
angle can be known more accurately since the Lockin Amplifier can multiply Im(p'(z))
by 10 or 100 if Im(p'(z)) is small. Two readings from the first pressure transducer were
taken because the components from the first transducer could be averaged to gain a
more accurate reading with respect to the second transducer, since the phase may have a
tendency to drift as the temperature fluctuates. By finding the real and imaginary parts
of each signal the phase angle, o, between the two points, the magnitudes at the points,

and [pp|* — |p}4|? and Im(§,pj5) can be determined.
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Table 6.1: Pressure Transducer Placement

[ Position | Pressure Transducer | Set
1 #6754 | D
2 #6754 | E |
3 #6755 | D |
4 #6755 | E, M
5 #7044 | M

6.2.4 Internal Loss Measurements

The amount of energy dissipated in an acoustic resonator can be affected by the mean
pressure of the working fluid. Much in the same way as changing the radius of the
resonator, the @ can be affected because 6, and §, vary inversely with mean pressure.
So a higher mean pressure results in lower boundary layer thicknesses, higher Q’s, and
lower ¢’s, making energy dissipation more difficult to measure accurately. On the other
hand, when the losses get too high at the lower pressures, the signal to noise ratio will
be rather low, also making measurements difficult.

The procedure for these tests was quite simple. Both resonators were used. The one
inch resonator was tested at mean pressures of 12, 20, 40, 60, 80, 100, 200, and 300 psia,
while the five inch resonator was filled to 12, 20, 40, 60, 80, and 100 psia. Measurements
from the two microphones were taken in the same fashion as described in the last section.
Once again, the combination of Q.ss and Qmi,c Was used to check the energy dissipation

measured by the two microphone method.

6.2.5 External Loss Measurements

Measurements of external dissipation were used as a second check of the reliability of
the two microphone method. The object of these tests was to insure the accuracy of
the measurements of the two microphone method against the measurements described

in Chapter 5, and to see if there are any differences between measuring external and
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internal energy dissipation.

The procedures for these tests have already been used in the preceding experiments,
so there is no need for a detailed description. Again, both resonators were used. Tests
using the one inch resonator used mean pressures of 12, 50, and 100 psia, and the tests
using the five inch resonator used mean pressures of 12 and 50 psia. Due to differences in
the types of needle valves leading to the external loading volume, tests on the one inch
resonator were made at valve settings of 1/4, 1/2, and the full open position, while on
the five inch resonator the settings were 1/12, 1/6, 1/3, 2/3, and full open. The driver

was run so a strong sinusoidal standing wave was produced.

6.3 Experimental Results

The most difficult measurements made in these exercises are the two microphone mea-
surements. The signals at the two points of measurement were difficult to decipher
because they were extremely similar and the phase angles between the two points were
small. This section states the results of the two microphone tests for measuring internal
and external energy dissipation and compares these results to the results yielded from
the methods discussed in Chapters 4 and 5. The first topic, however, concerns questions

about the phase angles and proper microphone placement.

6.3.1 Phase Angle Measurement Results

The phase angles depend heavily on the placement of the two microphones. The phase
angles can be predicted from the formula giving E,.,, equation (6.9). A high phase
angle is desired because large phase angles are easier to measure than small phase differ-
ences between points. It becomes obvious after looking at equation (5.9) that the larger
phase angles occur when the measurements are made on opposing sides of one quarter
wavelength, since the individual angles at each point add due to the change in sign of

the angle past the quarter wavelength spot.
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Table 6.2: Results from the Phase Angle Measurement Experiment

Position ¢meaa ¢theory RC(P:‘) Im(pii) Re(pIB) Im(p'B) {Plsl Ehen E,.
(Pa) (Pa) (Pa) (Pa) | (Pa) | (mW) | (mW)

f D 2.51° | 2.94° 213 8.84 122 | -0.285 | 227 | 0.416 | 0.449

M 13.4° | 14.4° 41.2 -10.0 -57.3 0.288 | 251 | 0.327 | 0.320

H E 6.85° | 6.99° 203 22.9 42.7 | -0.309 | 252 | 0.409 | 0.466

To determine the best locations from which to measure in the following tests, the phase
angles from three sets of pressure transducers, D, E, and M, were measured following the
procedure outlined earlier. The resulting experimental and theoretical phase angles and
power dissipation are shown in Table 6.2, and Figure 6.3 illustrates how the different
parts of equation (6.9) were significant (7, = 22°C). Although agreement between the
experimental data and the theoretical data is not perfect, the measurements from the
middle set of pressure transducers gave the highest phase angle from both calculations
and the most accurate measurement of energy dissipation, and thus were used for the

remainder of the study.

6.3.2 Internal Loss Results

The next step in testing the reliability of the two microphone method was to measure
internal energy dissipation of both the one inch and five inch diameter resonators. As
explained in Section 6.2, a wide range of mean pressures was used to see when the
method breaks down. For reference, the dissipated energy was calculated using equation
(6.10). The combination of the quality factors, Q.ss and Q i, Was used since the losses
detected by the two microphone method do not account for losses caused by the driver.
The results from the tests are given in Table 6.3, and Figures 6.4 and 6.5 show the plots of
the dissipated energy vs. mean pressure for both sets of tests (7, = 20°C). The measured
complex pressures from these tests are displayed in Appendix F, Table F.1.

Results from the set of tests on the one inch resonator were excellent, yielding results
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Figure 6-4: Energy dissipation versus mean pressure for two microphone tests on the one
inch diameter resonator.
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Figure 6-5: Energy dissipation versus mean pressure for two microphone tests on the five
inch diameter resonator.
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Table 6.3: Results from the Two Microphone Tests at Different Mean Pressures

| 1 in. resonator 5 in. resonator
| 2o (psia) || Eruen (mW) | Eve (mW) [ [p5] (P2) [| Essen (mW) [ Eroe (mW) | [pg] (Pa)
I 12 0.0728 0.0718 24.6 0.0707 0.0680 7.95
( 20 0.210 0.218 63.0 0.135 0.131 16.3
I 40 0.470 0.506 150 0.286 0.272 39.2
f 60 0.591 0.645 243 0.439 0.417 63.3
f 80 0.671 0.710 315 0.399 0.479 86.4
l 100 0.668 0.709 379 0.372 0.533 108
200 0.725 0.796 667 — — —
H 300 0.715 0.801 903 — — —

within 10% of E,.. The measurements made on the five inch resonator were not as
good. Reasonably accurate measurements were made up to a mean pressure of 60 psia.
The cause for the break down of the two microphone method on the five inch diameter
resonator can be attributed to the inability to measure the phase angle, ¢, accurately
due to a high quality factor. The phase angle was difficult to measure because the
phase calibrations of the pressure transducers were not constant through a wide range of
frequencies due to electrical and mechanical noise in the calibration system. In general,
though, the two microphone method performed well in measuring the internal resonator

losses.

6.3.3 External Loss Results

For a second test of the two microphone method, measurements were made of energy
dissipation caused by a “dummy load” at the nondriven end of the resonator, as well as
dissipation caused by internal losses. The values of E"z,,,‘ were compared to the measured
values of E,,, + W.,. The quality factors Q.s; and Qni,. Were used to determine E,.,.
Tests were run on both resonators at a variety of aperture settings to the external

load and mean pressures, as described in Section 6.2.5. The results from these tosts are
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Table 6.4: External Loading Results on Five Inch Resonator (in W)

I valve setting 1/12 1/6 1/3 2/3 full |l
12 | Ezpen — — [ 1.10 x 10-3 [ 8.37 x 104 | 8.27 x 10~*
psia | W,. + E,., —_ — [ 1.62 x 10-2 [ 9.06 x 10-4 | 8.55 x 10-4
E... —_ — [ 7.89 x 10-% | 5.21 x 10-* | 4.26 x 10~*

Wes — — [2.22 x 10~% [ 3.86 x 10~ [ 4.29 x 107 ||

50 | Ezpen 5.62 x 10~* | 5.66 x 10-* [ 3.99 x 10~* | 1.26 x 10-* — IJ
psia | W + E,., |6.22x 104 [ 5.57 x 10~% | 4.19 x 10-% [ 3.42 x 10-* —
E.eo 5.98 x 10~% [ 4.73 x 10-* | 2.37 x 10~% | 1.47 x 10-% —

W.. 2.46 x 10-% [ 8.44 x 10-5 [ 1.82 x 10-* [ 1.95 x 10-* —1

shown in Tables 6.4 and 6.5, and the plots of these results are shown in Figures 6.6 and
6.7 (T, = 21°C). Appendix F shows the measured complex pressures from these tests in
Tables F.2 and F.3. Similar to the tests run with no external load in the previous section,
tests on the one inch resonator went well, giving agreement between both methods of
measurement to within 10% of each other. The two microphone method performed well
at low pressures on the five inch resonator, but once again the higher quality factor and
the smaller phase angles at the higher pressures made the measurements difficult and

inaccurate.

6.4 High Amplitude Tests

The final step in the evaluation of the two microphone method aims to expose the method
to conditions identical to those in thermoacoustic engines. The only factor lacking from
the previous tests is that the acoustic amplitudes measured are not as large as those
found in thermoacoustic engines. This section describes two sets of tests which provide
high pressure amplitudes. The first experiment discussed uses a larger speaker as a driver
coupled to the one inch diameter resonator, and the second experiment uses an actual

thermoacoustic engine.
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Table 6.5: External Loading Results from the One Inch Resonator (in W)

valve setting 1/4 1/2 “Full

l’ 12 Ez,,u4 1.41 x 1072 | 1.56 x 10~3 | 1.59 x 103
psia | W, + E,., 1.41 x 103 | 1.60 x 103 [ 1.72 x 10-3
Wee 6.93 x 107 [ 6.99 x 10~® | 1.34 x 10~*

E... 141 x 10~ | 1.59 = 10-° | 1.50 x 10-2

50 Ejyen 4.82 x 1073 | 4.91 x 10~3 | 4.46 x 103
psia | W,.. + E,, 5.30 x 10~3 | 5.21 x 10~3 | 4.45 x 103
W 1.94 x 10-% | 1.38 x 103 | 2.69 x 103

E,., 5.11 x 10~3 | 3.82 x 10~3 [ 1.76 x 103

100 | Fzpen 4.41 x 1073 [ 4.23 x 103 | 2.99 x 10-3
psia | W, + E,., 4.54 x 103 | 4.01 x 10-3 | 2.87 x 10-3
W, 1.05 x 1072 | 2.24 x 10~3 | 2.24 x 10-3

E,., 349 x 10~3 [ 1.77 x 1073 | 6.34 x 10-*

6.4.1 Measurements with the High Amplitude Speaker

The 4.5 inch diameter speaker, described in Section 3.1, was used to produce an acoustic
wave in the one inch diameter resonator. To simulate actual thermoacoustic engine
conditions, the mean pressure was kept at 100 psia (7, = 18°C). One set of tests measured
only internal energy dissipation, with the valve to the dummy load closed. A second set
of tests measured energy dissipation with the needle valve to the load opened half way.
For both sets of tests, the speaker was driven by peak inputs of 2.5 V, 4.8 V, and 12.3
V. The pressure amplitudes and phase angles were measured using the Lockin Detector,
as described earlier.

The two sets of tests yielded results similar to the results produced by the one inch
tweeter. The geometry of the large speaker lowered the quality factor of the resonance,
Qtot, to about 7. One by-product of the losses induced by the driver was a lowering of
the resonant frequency to 105 Hz. For both sets of tests, E,,., matched the quantities
predicted by E,., and E,., + W.. well, using equation (6.10) and Q.5 and Qni,c. With
the maximum input of 12.3 V, the speaker was able to drive the acoustic wave to an

amplitude of 5.93 kPa. Table 6.6 shows the results from the high amplitude tests on
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Table 6.6: Energy Dissipation Measurements Using the High Amplitude Speaker (in W)

input | valve setting closed 1/2
25V | fo 104.53 Hz 104.28 Hz
E,., 9.04 x 103 | 6.93 x 10-3
W.. — | 5.89 x 10-3
Wez + Ees 9.04 x 103 | 1.28 x 102
Espen 8.78 x 10~ | 1.36 x 10~2
48V | f, 104.78 Hz 104.78 Hz
E.., 3.17x10"% | 2.59 x 102
W, — | 1.86 x 102
W.. + E,., 3.17 x 1072 | 4.45 x 102
Ezeen 3.28 x 10-2 | 4.72 x 102
123V | f, 105.78 Hz | 105.78 Hz
E,., 1.48 x 10~ | 1.28 x 10!
Wez — | 7.04 x 10-2
W.. + E,, 1.48 x 10-1 | 1.99 x 10!
Ezpen 1.55 x 10~ | 2.19 x 10-!

the one inch resonator, and Figure 6.8 plots the energy dissipation vs. acoustic pressure

amplitude. Table F.4 has the measured complex pressures from the tests.

6.4.2 Measuring Losses in a Thermoacoustic Engine

The final test of the two microphone method involved using a thermoacoustic driver
(TAD) on the five inch resonator. Using the TAD required some different experimentation
techniques. First, two different pressure transducer mounting holes were made to produce
a larger phase angle which could be measured more easily. The coordinates of these holes
are shown in Figure 3.4 along with a layout of the entire apparatus. The effects from the
heat exchangers in the TAD caused uncontrollable temperature swings in the helium,
making phase measurements with the Lockin Detector impossible. As an alternative
method of measuring the phase, the Dynamic Signal Analyzer was used. The analyzer
could simultaneously measure the amplitudes of two pressure signals and calculate the

phase between the two pressure transducers. To get the most accurate readings, the
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analyzer was set to average the signals over a period of 50 seconds.

Since only two pressure signals could be processed simultaneously, amplitude and
phase drift needed to be accounted for. To compensate, the amplitudes and phases of p};
and p}, were read first (or in the case of a closed needle valve, just pl; was read), then
the amplitudes and phases of p/, and pjz were read, and once again readings from the
end and load were made. Using this method, the dummy load and end readings could
be averaged to improve agreement with p/, and pj.

Six sets of tests were run. Three sets measured energy dissipation at p, = 100 psia,
while the other three were run at p, = 150 psia. For each mean pressure, measurements
were made with the needle valve closed and opened to 1/3 and 2/3 settings. The TAD
was driven with several temperature gradients corresponding to heater input voltages of
75 V,90 V,100 V, 116 V, 120 V, 130 V, 140 V, and 150 V.

The energy measured by the two microphone method matched E.., and E,., + W..
well in all cases. All of the methods of measurement were within 10% agreement of
each other. The maximum peak pressure amplitude got as high as 8 psi with a 130 V
heater input and a mean pressure of 150 psia. The results from these tests are shown in
Tables 6.7 through 6.9, and Figures 6.9 and 6.10 show the energy dissipation vs. acoustic
pressure amplitude (T, = 23°C). Appendix F shows the measured pressures and phase
angles from these tests in Tables F.5 - F.7.

An interesting note about these sets of data is that turbulent conditions existed during
all of the tests. According to Merkli and Thomann[11], the Reynold’s Number for the

flow in resonant tubes can be defined as

ne = (,,27”)1/? (6.13)
Merkli and Thomann state that a transition to turbulence occurs at about Ar. = 300.
In these tests Ar. got as high as 670. So, the energy dissipation measured by each of the
methods stayed consistent with each other under the turbulent conditions.

To get the ratio of measured external dissipation to measured internal losses higher,
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Table 6.7: Energy Dissipation Measurements Using the TAD (in W), p, = 100 psia

Heater Input | valve setting closed 1/3 2/3

75 V fo 118.4 Hz | 118.9 Hz | 119.2 ﬁ?‘H
E,., 18.3 19.0 21.9
W — 6.1 10.9
Wee + Eyes 18.3 25.0 32.8
Espen 16.8 25.2 30.3

90 V 1, 118.8 Hz | 119.1 Hz | 119.4 Hz
E.es 32.4 27.4 32.5
We: — 8.1 14.8

Wes + Eres 324 355 473
Ezyen 30.9 374 444
100 V fo 119.0 Hz | 119.3 Hz | 1.9.6 Hz

E.., 37.2 34.8
W.. — 9.7
W.. + E,., 372 44.5
Eapen 35.7 45.9

110 V f. 119.3 Hz | 119.6 Hz
E.., 43.2 40.7
W.. — 11.1 26.4
Wee + Ere, 43.2 51.8 70.2
Ezpen 42.8 53.7 67.5
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Table 6.8: Energy Dissipation Measurements Using the TAD (in W), p, = 100 psia,

cont’d

(| Heater Input | valve setting closed 1/3 2/3
(120 V fa 119.6 Hz | 119.9 Hz | 120.0 Hz
E... 49.3 49.0 56.8

W.. — 12.9 22.5 ]
W.. + E.., 49.3 61.9 79.3
Eaven 51.1 64.0 75.9

L 130 V f. 120.1 Hz | 120.4 Hz | 120.3 Hz |
H E... 60.3 58.3 65.3
W.. — 14.8 25.5
W.. + E.., 60.3 73.1 91.8
E‘hen 62.9 76.0 88.0
[140V £ 120.3 Hz | 120.7 Hz | 120.6 Hz
E,., 68.7 66.4 75.9
W.. — 15.8 28.3

W.. + E,., 68.7 82.2 104.2 ||
Eapen 72.9 87.8 100.9

150 V f. 120.6 Hz | 121.0 Hz | 120.9 Hz |
E,., 77.8 76.2 86.1
W — 174 30.9

Wes + Eres 7.8 93.6 | 117.0 |

Eapen 84.5 99.7 116.1 ||
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Table 6.9: Energy Dissipation Measurements Using the TAD (in W), p, = 150 psia

[| Heater Input | valve setting closed 1/3 2/3
BV fo 117.9 Hz | 118.0 Hz | 118.1 Hz
E.., 22.2 21.0 19.2

W.. — 7.8 13.1

W.. + E,., 22.2 28.8 32.3

Ezpen 20.5 26.7 31.5

90 V A 118.3 Hz | 118.4 Hz | 118.5 Hz
E,., 33.6 31.0 29.8

Wee — 10.6 18.5

I We. + E,., 33.6 41.6 48.3
T Ezpen 31.5 39.0 44.8
100 V fo 118.7 Hz | 118.8 Hz | 118.9 Hz
E... 41.9 38.0 38.2

W.. — 124 22.8

Wee + E.., 41.9 50.4 61.0

Ezpen 39.2 45.7 56.7

110 V fo 119.0 Hz | 119.1 Hz | 119.3 Hz
E.., 50.3 47.1 44.8

Wee — 14.7 25.1

W, + E,., 50.3 61.7 69.9

Eipen 46.4 57.4 66.9

120 V IA 119.4 Hz | 119.5 Hz | 119.7 Hz
E.., 59.4 55.2 54.2

Weo — 17.0 29.3

W.. + E.., 59.4 72.2 83.5

Ezpen 55.2 71.6 78.8

130 V fo 119.7 Hz | 119.8 Hz | 119.9 Hz
E.., 71.3 66.5 64.7

We= — 19.9 34.7

W.. + E... 71.3 86.4 99.4

Ezpen 67.5 82.6 94.1
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Figure 6-11: The two microphone configuration for external load enhancement.

another set of data was taken at a mean pressure of 150 psia (T, = 22°C). This time the
needle valve to the dummy load was fully opened, and points A and B used in the two
microphone method were changed, as shown in F igure 6.11. As shown, point B occurs
at the same spot where p}; is measured, so measurements for pg were used to calculate
Ezeen, W.e, and E..,. The data was recorded using the Dynamic Signal Analyzer, as
before, and the inputs to the heaters were 90 V, 100 V, 116 V, 120 V, 130 V, and 140 V.

The results from this set of tests showed agreement between E,,, + W.. and Ezpen
to within 9%. With the new microphone placements and the valve to the volume fully
opened, W,. constituted about 72% of the total measured losses, demonstrating that
Esyen agrees as well with W,, as with E,.,. The results from this set of data are given in
Table 6.10, and Figure 6.12 plots the energy dissipation vs. pressure amplitude. Table

F.8 contains the measured pressures and phases.
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Figure 6-12: Energy dissipation versus acoustic pressure amplitude for the TAD, with
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Table 6.10: Energy Dissipation Measur>ments with External Load Enhancement (in W)

Heater Input Heater Input
90 V 7 118.90 Hz | 120 V f 119.5 Hz |
E,., 9.0 E,e, 15.5
W.e 25.4 Wee 40.0
Wez + Ere, 34.4 Wee + E,e. 55.5
—Eznn 37.3 Ez.m 57.9
100 V 7. 119.1 Hz | 130 V A 119.7 Hz
E,e, 10.7 E.., 17.9
W.. 39.1 W.. 446 |
Wz + E., 39.8 Wez + Eres 62.5
Eeen 427 Ezeen 66.0
110 V f. 119.2 Hz | 110 V f 119.9 Hz |
E.., 13.3 Ere, 20.4
Wee 35.4 Wee 49.4
W.. + E.., 48.7 W.. + E.., 69.8
Ezun 50.9 Ez:en 73.5
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Chapter 7
Conclusions and Suggestions

The progression of the experiments in this study began with the examination of the
sources of internal energy dissipation, expanded into simulating and measuring external
loading, and culminated in the testing of the two microphone method of measuring both
internal and external energy losses. Predicting the proper internal losses through the
calculation of the quality factor proved essential in knowing what losses were relevant
to the two microphone method. The two microphone method was also subjected to
different loading situations, a variety of mean pressures, and a wide range of peak pressure

amplitudes.

7.1 Summary

Clapter 4 described the major factors involved in internal energy dissipation. As ex-
pected, viscous and thermal effects played a major role in energy dissipation, depending
on mean pressure and resonator size. The most important discoveries in Chapter 4 which
pertain to the two microphone method dealt with substantial losses caused by the drivers
and geometric irregularities in the resonators. The losses caused by the drivers were quite
substantial, and these effects must be omitted from any energy dissipation comparison to

the two microphone method since the effects of the drivers were not detectable with the
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two microphone method. On the other hand, the energy dissipation caused by geometric
irregularities can be responsible for up to 5% of the internal resonator losses, so they
must be considered.

Modeling external loads was discussed in Chapter 5. The method of measuring losses
in the dummy load proved to be easy and quite reliable, through comparison to measuvring
Q:ot and E, ;. While the empty volumes provided losses which were easy to measure, the
only drawback to the simulations was that the external loads only got as high as 40%
larger than the internal losses, and even appeared to be insignificant compared to E,.,
in some instances. The simulated load did, however, provide significant losses in most
cases, which aided in the tests of the two microphone method.

Chapter 6 combined the methods of measurement and simulation developed in Chap-
ters 4 and 5, and compared them to measurements produced by the two microphone
method. While a large majority of the comparisons fell within 10% of each other, the
two microphone method appeared to have some limitations at the low pressure ampli-
tudes. At high Q resonances, as losses diminished, the measurement procedures and the
instrumentation hampered measurements because of a lack of resolution and the time
required to make a pressure measurement on the Lockin Detector at point A and switch
to the signal at point B to make a measurement there. The phase angle was particularly
difficult to capture, especially in the five inch resonator. Drifting phase angles due to
temperature fluctuations over the time period required for the measurements (averaging
about five minutes each) and small phase angles caused these difficulties. In most of the
low amplitude cases, though, relatively large phase angles were obtained, through design.

Conditions similar to actual thermoacoustic engines were reached, and the measure-
ments made by the two microphone method under these conditions appeared to be reli-
able. One reason why the higher amplitude tests were successful was because the phase
angle between the points, A and B, was increased by changing the pressure transducer
placement. Also, a more accurate method of measuring the phase was discovered through

the use of the Dynamic Signal Analyzer. Since the analyzer measured the two complex
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signals simultaneously, the phase angles could be pinpointed since there was no time
lapse in between the measurement of the two signals. The results from Section 6.4
demonstrate that the two microphone method can accurately measure internal and total

energy dissipation in thermoacoustic engines.

7.2 Suggestions

Further testing of the two microphone method in standing wave resonators still needs to
be conducted, especially in the areas of loading and larger amounts of energy dissipation.
Larger external to internal load ratios need to be tested to simulate actual operating
conditions. External loading measurements must move into actual loading situations,
such as refrigerators or generators, where the two microphone method can be compared
to some measured or predicted dissipation of the load. The magnitude of the total
energy dissipation must be increased also. A study of the method should be made in
the kilowatt and possibly the megawatt range. Questions to be addressed when dealing
with such large amounts of dissipation deal with the method’s accuracy when extreme
nonlinearities and turbulent conditions in the boundary layers are present.

As far as optimizing the two microphone method, a few things should be done. Mea-
suring the phase difference between measurement points poses the biggest problem. The
problem can be treated in a few ways. Proper pressure transducer placement helps to
increase the angle, as was done in Section 6.3.1. More sensitive pressure transducers
could help, especially if the transducers have tuned phase agreement with each other,
and their internal phase shift remains small and constant through a broad range of fre-
quencies. Since mechanical and electrical noise is a problem in the phase calibrations of
the pressure transducers, a better way of calibrating the phase is needed, which reduces
system noise. Simultaneous readings of the complex pressure amplitudes also improve
the accuracy of the measurements, as was done in Section 6.4. Since the magnitudes of

an are relatively easy to capture, an accurate phase measurement should make
p), and pp lativel y to capt te ph t should mak
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the method extremely reliable.
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Appendix A

Calculation of Dissipative Volume

Size

The volume of the external load, or “dummy load”, can be determined with accuracy
by using order of magnitude, thermodynamic relations. The ob ject is to pick a volume
that is not too large, where external losses will dominate, while being sure the pressure
variations in the voluine are large enough to read accurately.

To start with, a thermodynamic relation for the oscillating pressure is used,

PoYAV

V=
Py

. (A.1)

where AV is the volume of the gas that enters the dummy load in a cycle, and p}, is the
pressure amplitude in the volume. By setting the pressure in the volume, p}, = 0.1pf
(where pl is the pressure amplitude of the acoustic wave at the nondriven end of the
resonator), the signal in the volume can be easily measured, while keeping the dissipated
energy in a reasonable range. The volume of the gas entering the bottle can be determined

by knowing the work required to move it,

W = wpp AV, (A.2)

87



The energy dissipation rate, W, can be estimated by equating the work required to move
AV in and out of the load to be about the same as the energy dissipated by the resonator.

The resulting volume of the dummy le:- & turns out to be

_ 10yp, W

V= .
w(pk)?

(A.3)

For the five inch diameter resonator, the following estimations were made: Po = 50
psia, v = 1.67, W = 10-3 W, and plz = 150 Pa. The estimated volume was 1860 cc, so a
1500 cc volume was deemed close enough to yield the desired results from the tests.

The following estimations were made for the one inch diameter resonator: Po = 50
psia, v = 1.67, W = 10~* W, and pr = 200 Pa. The resulting volume estimated was
104 cc, so a 75 cc volume was used, due to a limited selection, but it was close enough

to give reasonable results.
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Appendix B

Pressure Transducer Calibration

B.1 Pressure Transducers

To assure accurate pressure readings, the pressure transducers must be calibrated. Rela-
tive differences in magnitude and phase need to be included in all calculations. Described
in this appendix is the method used to determine any difference in sensitivity and phase,
and the results from the calibration procedure.

The transducers used in all of the experiments were PCB Piezotronics, Inc. model
#102A05, serial #6599, #6600, #6754, #6755, and #7044. This particular model is
a general purpose, high frequency pressure trausducer. The specifications are given in

Table B.1.

B.2 Sensitivity Calibrations

To measure the relative sensitivities of the transducers, two types of measurements were
made. First, a qualitative measurement was made by exposing a set of pressure trans-
ducers to the same acoustic wave at the same location. Using the five inch resonator, an
acoustic wave was produced in atmospheric air. A coupling block coupled four transduc-

ers and was located at the end of the resonator. The magnitudes generated by each of
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Table B.1: Specifications for PCB Mcdel #102A05 Pressure Transducers

RANGE ( 5V OUTPUT) psi 100
USEFUL OVERRANGE psi 200
MAXIMUM PRESSURE psi 1000
RESOLUTION psi .002
SENSITIVITY mv/psi 50 110
RESONANT FREQUENCY kHz 250

RISE TIME pSec 2
DISCHARGE TIME CONST A2\ Sec >1

LOW FREQ RESPONSE -5% Hz .50
LINEARITY /1N % Fs 1

POLARITY POSITIVE
OUTPUT IMPEDANCE ohm <100

OUTPUT BIAS -volt 8to 14
OVERLOAD RECOVERY LSec 10
ACCELERATION SENS psi/G 032

TEMP COEFFICIENT %/ OF <.03
TEMPERATURE RANGE OF -100 to +275
MAXIMUM FLASH TEMP OF 3000
VIBRATION/SHOCK G's peak 2000/20000
SEALING EPOXY
CASE/DIAPHRAGM MAT'L 17-4/INVAR
WE IGHT gm 11
CONNECTOR (m1cro) coaxial 10-32
EXCITATION - VDC/mA 24-27/2-20

/2\ AT ROOM TENPERATURE
/1 ZERO BASED BEST STRAIGHT LINE.
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Figure B-1: Quantitative calibration configuration.

the transducers were then recorded by the Lockin Amplifier for acoustic waves driven at
several amplitudes.

The pressure transducer exhibiting a high sensitivity with a reasonable amount of
consistency was chosen for reference, to be used in the quantitative calibration. This
transducer was #6755. The quantitative calibration involved pressurizing a tube cou-
pling the transducer to a mercury manometer (shown in Figure B.1). After pressurization,
the system was vented rapidly to atmospheric pressure, and the voltage drop from the
transducer was compared to the pressure drop measured by the manometer. The re-
sults from the quantitative calibration are shown in Table B.2. The resulting sensitivity

for #6755 was 49.1 mV/psi. The data from the qualitative calibration and resulting
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Table B.2:

Quantitative Calibration Results
PCB #6755
Ah (cm Hg) 60.0
Ap (psi) 11.6
AV (mV) 568
S (Z) 49.1

Table B.3: Qualitative Calibration Results and Sensitivities

Calculated Sensitivity (mV/psi)

Trial # | p' (PSi) re: #6755 Suersa See00 Sieso0 Su7044
1 0.0097 48.5 45.7 43.9 49.1

2 0.0224 48.4 45.8 44.0 49.3

3 0.0375 48.6 45.9 44.0 49.2

4 0.0529 48.4 46.0 44.1 49.1

avg. 48.5 45.9 44.0 49.2

scnsitivities are shown in Table B.3.

B.3 Phase Calibrations

Calibrating the phases of the pressure transducers is crucial to the measurements of
resonator losses, since a discrepancy of one tenth of a degree in phase can offset the
experimental results considerably. To check the relative phase angles in the pressure
transducers, the same multiple transducer coupler used in the qualitative sensitivity
calibration was used. Performing the phase calibration using the five inch diameter

resonator posed a problem because of uncontrollable temperature shifts in the gas in the

resonator.

To imitate actual testing conditions, helium was used, and the system was driven

at 138 Hz. In the following calculations the change in phase angle with respect to the
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change in temperature is found. The speed of sound in the helium is
a’? = —— (B.1)

where R is the gas constant and M is the molecular weight, which can be related to the

fx ‘/73% (B.2)

Now a differential relation can be made,

resonant frequency of the resonator

df  1dT
?f = %—1-,-. (B.3)

Through the chain rule %; can be found,

db _dgdf _180°Q (1Y f, _ 90°Q
ﬁ"&?ﬁ‘_f;_(z)n— T (B.4)

Since @ can get as high as 150 and T, ~ 300K, the phase dependence on temperature,
%, can be as high as 45° per Kelvin. Not only did the temperature dependence ruin the
phase calibrations in the five inch resonator, but the fluctuating temperature made the
two microphone measurements difficult too.

To solve the temperature problem, the driver was bolted directly to the end plate,
serving the purpose of making the pkase calibration. Once again the driver was rur at
several amplitudes, at 138 Hz (which is the resonant frequency under normal conditions).
To measure the phase, the signals from the transducers were separated into real and
imaginary parts using the Lockin Amplifier. A phase angle measured by each transducer
could be found by

Im(p')

b = tan~? (W) . (B.5)

The phase angles were then compared, and relative phase differences between the pressure
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Table B.4: Phase Calibration Results

Phase Relation P12

P#6599 = P12 + Pugeoo | 0.52°
Pu7084 = P12 + Puerss | 0.08°
Ppe754 = P12 + Puerss | 0.11°

transducers could be found. The results of the phase calibrations are given in Table
B.4. System noise (electrical and mechanical) in the manufacturer’s calibrations and the

calibrations discussed here limited the phase calibrations to only two digits.
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Appendix C

Helium Properties

The values for p were obtained from the ideal gas law, and the values for a were derived
from a combination of the ideal gas law and thermodynamic relations. The dynamic
viscosity, x, and the thermal conductivity, K, were calculated from the following expres-
sions,

p=(5.131 x 1077) x T°441kg /ms (C.1)

and

K = (4.4 x107%) x T***W /mK. (C.2)

The remaining quantities are either constant in the relevant ranges or can be calculated
from the other quantities. The constant quantities through the relevant temperature and

pressure ranges are: ¥ = 1.67, Pr = 0.703, and ¢, = 52007;;%?.
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Table C.1: T, = 290 K (17°C), f = 138 Hz

Polpsi] 12 20 40 50 60 80 100 200 300
p[_—’:&] 0.137 | 0.229 | 0.458 | 0.572 | 0.686 | 0.915 | 1.144 2.288 | 3.432
é,/mm] | 0.576 | 0.447 | 0.311 [ 0.282 | 0.258 0.223 | 0.200 | 0.141 | 0.115
éx[mm] | 0.687 | 0.533 | 0.377 | 0.337 | 0.307 0.266 | 0.238 | 0.168 | 0.137
Table C.2: T, = 295 K (22°C), f = 138 Hz
po[psi] 12 20 49 50 60 80 100 200 300
p[fﬁ-] 0.135 | 0.225 | 0.450 | 0.562 | 0.675 | 0.800 | 1.125 | 2.249 3.374
6,[mm] | 0.585 | 0.453 | 0.320 | 0.286 0.261 | 0.226 | 0.203 | 0.143 | 0.117
b.lmm] | 0.697 | 0.540 | 0.382 [ 0.341 | 0.312 0.270 | 0.241 | 0.171 | 0.139
Table C.3: T, = 300 K (27°C), f = 138 Hz
po[p.si] 12 20 40 50 60 80 100 200 306
p[E‘H 0.133 | 0.221 | 0.442 | 0.553 | 0.664 | 0.885 1.106 | 2.212 | 3.318
8, (mmj 0.593 | 0.459 | 0.325 | 0.290 | 0.265 | 0.230 0.205 | 0.145 | 0.119
d.[mm] | 0.707 | 0.547 | 0.387 [ 0.346 | 0.316 | 0.274 0.245 | 0.173 | 0.141

Table C.4: Quantities Constant in the Given Pressure Ranges (f = 138 Hz)

T,[K] 290 295] 300
px 1075221 1.98] 2.00] 202
R[] 0.1463 | 0.1478 | 0.1494
a[™ 1002.3 [ 1011.0 | 1019.5
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Appendix D

Power Spectrum Curves
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resonator at a mean pressure of 12 psia.
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Figure D-2: Power spectrum of the 5” resonator at a mean pressure of 20 psi.
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Appendix E

Derivation of Compressive Energy

Losses in an Acoustic Load

In a system where the volume flow oscillates, as in the case of the load described in

Section 5.1, compressive energy at the walls of the volume is dissipated through thermal

relaxation into the walls. This thermal relaxation in the volume all occurs within the

thermal boundary layer, which is shown in Figure E.1. The temperature of the fluid

changes with the pressure swings, and with respect to the distance from the walls. To

begin the derivation of the oscillating temperature, the general equation of heat transfer,

equation (2.38), must be used. Simplifying equation (2.38) to first order, and neglecting

the velocity term because the velocity of the fluid at the walls of the volume ijs quite

small, the equation becomes

pol,(iws') = K ——

where the first order entropy per unit mass, ¢, is

s = 2T _ —ﬂ-p'v
Po

T,

Substituting equation (E.2) into equation (E.1), the resulting expression is
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T’
pocoT' — py = K—— R (E.3)
for an ideal gas. By solving the differential equation, the first order temperature expres-

sion becomes

T - PV
PoCp

To arrive at the volume velocity of the gas entering and leaving the tank, the oscillat-

[1 - e—(1+i)v/5.] . (E.4)

ing velocity must be found. Using the conservation of mass, equation (2.17), the velocity
can be derived, but an expression for the oscillating density must be obtained. By using

equation (2.56), and substituting in equation (E.4) for 7", the oscillating density is

!

= Z_‘z’ [14 (v = 1)emCriwrsa] (E.5)

Considering the conservation of mass, the reciprocating velocity can be derived by

integrating from 0 to y, giving

= TWPy — — e~ (1+u/6a
‘U(y) poa [ + (7 1)(1 + )(1 e )J ’ (E'ﬁ)
and assuming y is large compared to §,,
L —1 dpy [ -1 ]
v(y) ~ oa? dt Y- 1—2—6,‘ . (E.7)

Using the thermodynamic relation, %Po = -1+, the velocity becomes

v(y) = pomarrl L 6| - (E.8)

To get the correct volume velocity, v(y) must be multiplied by an area, but tke terms
in the velocity equation must be multiplied by different areas. The first term, 'pl d:t Y,

accounts for the one-dimensional gas flow in and out of the volume, so it is multiplied by
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the cross-sectional area of the tank (which is a cylinder). By letting y equal the height of
the tank, the volume of the tank, V, results. The second term, ;f-%—;% %6,‘, accounts for
the compressive losses at the walls of the volume. The second term should be multiplied
by the entire internal surface area of the tank, A, instead of the cross-sectional area so
the losses at the walls can be determined. Also, the expression derived for v(y) accounts
for the velocity of the fluid leaving the tank, but the volume velocity required in Chapter
5 refers to the fluid entering the tank, so the equation must be multiplied by —1 to be

correct. The resulting volume velocity is

1 dp’V[ -1 ]
= 7po—dt— V—l‘———2 6,¢A ’ (E'g)

shown in equation (5.3).
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Appendix F

Measured Pressures from the Two

Microphone Method Tests

Table F.1: Two Microphone Pressures Using the Low Amplitude Driver at Different
Me ssures

1 in. resonator L 5 in. resonator
Re(py) | Im(p,) | Re(p) [ Im(p) || Re(p) [ Im(7,) | Re(#p) | Im(rp)
(Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)
419 -294| -587[ -0.018 7.53 | 0.133 4.78 | -0.0541
10.2 | -549 | -144] 0.080 || -15.5| -0.288 | -9.74 | 0.0641
263 | -970] -36.3] 0.002| -37.5]| -2.52 -23.8| -0.897
419 -12.2 -546| 0.134 # -60.3 [ -0.607 | -37.7| 0.010

53.1 -13.8| -71.3| 0.336 82.4 1.25 51.5 | 0.342
625 -149| -86.5| 0.754 -103 | -0.117 | -64.1| 0.073 |
200 111 18.8 151 | -0.967 || - — - -

H -150 20.9 204 | 152 | — — — -
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Table F.2: External Loading Pressures for the Five Inch Resonator (in Pa)

valve setting | 1/12 1/6 1 1/3 2/3

12 | Re(7)) — — | 36.7| 274
psia | Im(p},) — — | 1.19| 1.14
Re(pp) — — | 227 169
Im(pp) — — | 0.128 ] 0.0567 |
Re(p})_ — | — 0257 191
) — — | 1.76 | 4.09

IPE — — | 384 287

50 | Re(p),) 659 | 57.8| 409 34.6

1.15] 0.815 | 0.96 | 0.365
416 | 36.4| 260 214
0.016 | 0.070
0.0375 | 0.362 | 1.66| 9.97
Im(7),) 0310 | 1.21| 3.66 | 4.65
[Pl 6881 60.7| 430 36.2

psia

?%ﬁg
R
=
[ &]

2
S
>
gi
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Table F.3: External Loading Pressures for the One Inch Resonator (in Pa)

valve setting 1/4 1/2 Full
12 | Re(7),) 208 | 211 -19.0
psia | Im(p,) 12.8 13.4 13.6
Re(pp) 248 264 268
Im(p} -0.0313 | -0.0285 | -0.120
“Re(p}) -0.0301 [ -0.0459 | 0.246
Im(p}, -0.0286 | -0.271 -5.21
“ A 108 115 116
50 | Re(p, -97.4 | -81.1| -46.0
psia | Im(p,) 33.2 38.7 50.6
’ Re(p) 139 121 [ 82.2
Im(pl -0.270 | -0.249 | -0.0370
Re(7), 0.355 | 3.86| 33.6
ﬁ Im(p}, -5.98 | -49.0 -141
A 601 520 353
100 | Re(p), -135 | -89.3| -33.5
ﬁpsia Im(p,) 42.3 55.5 66.1
Re(p}) 191 137 | 3805
M "Tm(p}) -0.7127| -0.369 | -0.145
Re(p), 302 21.1 106
Im{p}, -46.7 -139 -240
sl 826 588 354 ||
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Table F.4: Measured Pressures Using the High Amplitude Speaker (in Pa)

input | valve setting | closed | 1/2
2.5V | Re(py) 266 | 236
To(p,) B 372
Re(pp) 698 | 616

Tm(p) 0.327 | 0.996
g Re(p}) — | 21.1
Im(p),) — | 212
A 1480 | 1290
4.8 V | Re(p,) 493 | 445
Tm(p),) 455 69.3

Re(p)) 1308 | 1160

Im(p%) 3.17| 3.33
Re(p},) — | 39.2
Im(p},) — | -34T |
o] 3760 | 2490
12.3 V | Re(p)) 984 | 927

Im(p,) 105 | 145
Re(py) 2750 | 2590

Im(p}p) 343 | 3.78
Re(p},) — | 55.7
Im(p},) — | -587]]
IFAl 5930 | 5520
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Table F.5: Measured Pressures Using the TAD (in Pa), p, = 100 psia

[ Heater Input | valve setting | closed 1/3 2/3

75 V TA 16600 | 17410 | 17320
P 3860 | 4050 | 4080
uB 2.06° | 2.94° | 3.66° |
e 21940 | 22730 | 22350
A — 1 545 990
eV — | 85.1° | 85.0°

90V A 22330 | 21390 | 21100
A 5090 | 4830
PaB 2.14° | 2.97° |
PE 29640 | 27240
1P} — | 600 | 1100
dEv — | 86.1°| 85.4° ||

100 V I 24000 | 23570 | 23400
TP 5420 | 5350 | —5m‘"
PAB 2.23° | 2.99° [ 3.64°
g 31790 | 30700 | 30200
1o} — | 640 | 1150
Pev — | 84.0° | 84.5° |

110 V A 25730 | 25480 | 26200
P 5730 | 5700 | 6000
4B 2.30° | 3.04° | 3.64°
g 34240 | 33180 | 33600
s — | 680 1220
PEV — | 83.8° | 85.7°
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Table F.6: Measured Pressures Using the TAD (in Pa), p, = 100 psia, cont’d

[ Heater Input | valve setting | closed | 1/3 | 2/3 f
120 V P’ 27500 | 27550 | 27900
i €050 | 6090 | 6270
Pas 2.45° | 3.14° | 3.68°
Pk 36490 | 36300 | 35870 |
1 1Py — | 715 1260
dEv — | 86.3° | 85.8°
130 V I 30150 | 30160 | 29900
A 6500 | 6540 | 6640
PaB 2.57° | 3.17° | 3.74°
P 40300 | 39540 | 38700 |
Pl — | 750 | 1320
dEv — | 83.9° | 85.9°
140 V A 32080 | 31980 | 32050
VA 6840 | 6830 | 7020 |
PaB 2.67° | 3.32° | 3.80°
P 42930 | 42160 | 41370 |
1P} — | 780 | 1370 |
PEV — | 86.0° | 85.9°
150 V T2 34200 | 33770 | 34020
s 7200 | 7100 | 7350
PaB 2.80° | 2.44° | 3.94°
I 45600 | 45070 | 44000
7' o}, — 810 | 1400
PEV — | 86.0°| 85.9° "
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Table F.7: Measured Pressures Using the TAD (in Pa), p, = 150 psia

Heater Input | valve setting [ closed 1/3 2/3
5V A 23500 | 22900 22000“
ol 5800 | 5600 | 5370
PaB 1.84° | 2.67° | 3.50°
Pk 30820 | 29900 | 28550
TPy — | 800 | 1400 ||
dEv — | 85.6°| 84.3° "
90 V I 29000 | 27700 | 27000 ||
A 7060 | 6720 | 6530
PaB 1.89° [ 2.68° | 3.33°
g 37800 | 36260 | 35600
1ol — | 890 | 1580
PEv — | 85.8° | 84.7° |
100 V I 32100 | 30100 | 30600
A 7740 | 7230 | 7320
PaB 1.94° | 2.69° | 3.30°
i 42100 | 40300 | 40160
ol — | 940 | 1670
dev — | 85.9° | 85.0°
110 V A 34840 | 33840 | 33410
P’ 8320 | 8060 | 7920
PaB 1.98° | 2.76° | 3.30°
PE 46070 | 44580 | 43460
Pl — | 1000 | 1750
. dev — | 85.9° | 85.1°
120 V A 37560 | 37400 | 36200
A 8890 | 8800 | 8510
PaB 2.04° | 2.79° | 3.34°
7% 50000 | 50200 | 47700 |
i [y — | 1070 | 1850
PEV — | 85.8°| 85.2°
130 V I 41110 [ 40100 | 39500
1P 9700 | 9440 | 9300
baB 2.10° | 2.80° | 3.34°
I 54700 | 52800 | 52100
e — | 1100 | 1940
PEV — | 86.2° | 85.4°
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Table F.8: Measured Pressures with External Load Enhancement (in Pa)

Heater Input

Heater Input

90 V [P, ] | 36420 | 120 V [P, ] | 47720
Tpg] | 6740 [pk] | 8600
bap | 2.74° | Pap | 2.50°
Pl | 36420 ] | 47720
Tp] | 2120 o, | | 2455
dpv | 84.3° ¢pv | 84.8°
100 V |P,] | 39730 [ 130 V P,| | 51120
e[ | 7330 P | 9160
PaB | 2.66° | daB | 2.58°
[pE] | 39730 P | 51120
(1o, T [ 2220 Pl | 2550
dpv | 84.5° dpv | 84.9° h
110 V lps| | 44180 [ 140 V 7] | 54540
lPp| | 8030 5| 9619_”
dap | 2.62° dap | 2.57°
[pE] | 44180 Pl | 54540 ||
iL oy [ | 2350 7, || 2640 "
épv | 84.7° épv | 85.0°
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Appendix G

Nomenclature

English Letters M - molecular weight
P - electric power

A - area Pr - Prandtl Number

ARg. - Reynold’s Number in resonant tubes p - pressure

a - speed of sound Q - quality factor

C - electrical capacitance Re - real part of

¢ - specific heat r - radius or radial coordinate
d - diameter S - sensitivity

E - energy s - entropy per unit mass

E - power T - temperature

e - energy density t - time

é - energy dissipation rate per unit area V - volume or voltage

f - frequency or Rott function V - volume velocity

h - height Vin - specific volume

I - electrical current Vv - complex velocity

Im - imaginary pa-r? of v - velocity

Joy J1 - Bessel functions W - work

K - thermal conductivity W - work flux or acoustic power
k - complex wavenumber w - enthalpy per unit mass

k - wavenumber 2 - z-axis coordinate

L - length
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Greek Letters

a - thermal diffusivity

B - thermal expansion coefficient
€ - internal energy per unit mass
v - ratio of specific heats

6 - boundary layer thickness

A - wavelength

4 - dynamic viscosity

v - kinematic viscosity

¢ - second viscosity

p - density

® - energy flux density

¢ - phase angle

w - angular frequency

Subscripts and Superscripts

A, B - amplitude or two microphone

placements

AB - between points A and B
d - damped

diss - dissipated

driver - from driver

E - end of resonator

EV - between the end of the resonator and

the dummy load
ef f - effective

exr - external

meas - measured quantity

P - constant pressure

peak - peak to peak amplitude

r - radial direction

res - from resonator

s - standing wave or constant entropy
st - stored

T - tangential

theory - theoretical quantity

tot - total

V - in “dummy load”

z - longitudinal direction

K - thermal

v - viscous

0 - mean, resonant, or at resonator walil
2sen - two microphone

! - first order amplitude
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