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Abstract Laboratory experiments explored the impact of vegetation patchiness on channel‐averaged
turbulence and sediment transport. Stems were clustered into 16 randomly distributed circular patches of
decreasing diameter. For the same channel velocity, the sediment transport increased with total stem
number but decreased as stems were clustered into smaller patch diameters, occupying a smaller fraction
of the bed area. The channel‐averaged turbulence, which also declined with increased clustering, was shown
to be a good predictor for sediment transport at the channel scale. Previous models for uniform
vegetation were adapted to predict both the channel‐averaged turbulence and sediment transport as a
function of the total number of stems and degree of clustering, represented by the fraction of bed covered by
patches. This provides a way for numerical modelers to represent the impact of subgrid‐scale vegetation
patchiness on sediment transport.

1. Introduction

Vegetation is often present in rivers and on floodplains, altering the velocity and turbulence intensity, which
in turn alters sediment transport and bedmorphology (e.g., Bywater‐Reyes et al., 2018; Rominger et al., 2010;
Sukhodolov & Sukhodolova, 2010; Yang & Nepf, 2019). Some channel restoration projects use vegetation to
stabilize banks and floodplains (Surian et al., 2015; Tal & Paola, 2010), but to do so effectively, it is crucial to
understand how vegetation impacts sediment transport (e.g., Larsen & Harvey, 2010; Reed et al., 1999).
While vegetation can reduce local velocity, which promotes sediment retention, recent studies have high-
lighted how vegetation‐generated turbulence may also enhance resuspension and sediment transport
(Tinoco &Coco, 2016, 2018; Yager & Schmeeckle, 2013; Yang et al., 2016; Yang &Nepf, 2018). Further, when
vegetation‐generated turbulence is present, sediment transport models based on bed shear stress, τ, do not
provide good estimates of sediment transport (Yager & Schmeeckle, 2013; Yang & Nepf, 2018). Recent stu-
dies have suggested that near‐bed turbulence, kt, may be a better predictor of sediment transport. For exam-
ple, the initiation of both bed load and suspended load transport in vegetated channels can be better
described by a threshold value of kt than of τ (Tang et al., 2019; Tinoco & Coco, 2018; Yang et al., 2016).

The turbulent kinetic energy per fluid mass, kt, includes bed‐generated turbulence, kt(bed), and
vegetation‐generated turbulence, kt(veg). Bed‐generated turbulence is correlated with the bed shear stress,
τ = ρCfU

2, with fluid density, ρ, velocity, U, and bed drag coefficient, Cf (e.g., Biron et al., 2004).
Specifically, kt(bed) = τ/ω, with scale factor ω= 0.20 ± 0.01 (Soulsby, 1981). Assuming a vegetation consisting

of circular stems, the vegetation‐generated turbulence, kt(veg), can be estimated from kt ¼ γ2

CD formð Þ
ϕ

1−ϕ
2
π

� �2=3
U2

� �
(Tanino & Nepf, 2008a), in which γ is an empirical coefficient and φ is the solid

volume fraction of the vegetation. Yang et al. (2016) and Yang and Nepf (2019) combined these two models
to predict the total turbulence, kt, in a channel with emergent vegetation:
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Because only form drag contributes to turbulence generation, equation 1 uses a form drag coefficient,
CD(form) = 2[(0.46 ± 0.11) + (3.8 ± 0.5) ϕ], described for random arrays in Equation (2.10) in Tanino and
Nepf (2008a). The second term in equation 1 is only valid when the stem wakes are turbulent, that is,
Red = Ud/ν > 120, with stem diameter d and kinematic viscosity ν (Liu & Nepf, 2016). Finally, equation 1
is valid for stem spacing greater than the stem diameter (Tanino & Nepf, 2008a).

The Einstein‐Brown equation, based on measurements in a bare channel, provides an empirical description
of bed load transport as a function of bed shear stress (Brown, 1950; Einstein, 1950). Yang and Nepf (2018)
suggested that this relationship could be converted to a kt‐based model (equation 2 below) using the expres-
sion provided above (kt(bed) = τ/ω). They verified that bed load transport rate per channel width, Qs, could be
predicted from near‐bed turbulence in both vegetated and bare channels. Specifically, the nondimensional

bed load transport, Qs* (¼ Qs

ρs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρs=ρ − 1ð Þgds3

p , in which ρs is the sediment density, ds is the sediment diameter,

and g is the acceleration of gravity), can be predicted from the nondimensional turbulence, kt* (¼ kt
ρs=ρ − 1ð Þgds):

Qs* ¼
2:15eβ=kt* ;

0:27kt*
3;

(
kt* < 0:95

0:95 < kt* < 2:74
(2)

in which β = −2.06 is the original scale factor in the Einstein‐Brown equation adapted by Yang and
Nepf (2018) (see also Julien, 2010). Yang and Nepf (2018, 2019) validated the turbulence (equation 1) and
bed load transport (equation 2) models using experiments with model vegetation consisting of staggered
arrays of circular cylinders distributed uniformly across the channel width, for which the velocity averaged
over distances greater than the stem spacing was uniform over the channel width (see Figures 4 and 5 in
Yang & Nepf, 2019). However, in nature, vegetation often exists in individual patches of limited width
and length. For example, the patch size in rivers has been observed to fall between 0.5 and 5 m, smaller than
the channel width (e.g., Cornacchia et al., 2018; Sand‐Jensen & Pedersen, 2008; Schoelynck et al., 2012). The
horizontal distribution of patches is constrained by feedbacks between hydrodynamic, morphologic, and
biologic processes, which often results in patches of vegetation within which velocity is lower separated
by unvegetated regions in which the velocity is higher (e.g., Montgomery et al., 2018; Temmerman
et al., 2007). The present study sought to understand how the patchy distribution of vegetation within a
channel would influence bed load transport. A model was proposed to predict the spatial mean turbulence.
The new turbulence model was combined with equation 2 to predict bed load transport.

2. Theory: Turbulence in a Channel With Patchy Vegetation

In this study, a heterogeneous distribution of vegetation will be represented by an idealized configuration of
circular patches with bare channel between them. Consider M circular patches of vegetation, each of dia-
meter D (gray circles in Figure 1) that are randomly distributed in an L‐m‐long and B‐m‐wide section of

channel. The fraction of bed occupied by patches is ϕp ¼ π
4
MD2

LB . It is used to describe the weighted average

contribution of the patches to channel‐averaged velocity and turbulence (see equations 3, 6, and 7, below).
Within each patch, the vegetation is represented by a random distribution of cylindrical stems with diameter

d and stem density m (stems/bed area), such that the solid volume fraction within the patch is ϕ ¼ π
4md2,

which is used to describe the in‐patch turbulence generation (see equation 7 below). The

channel‐averaged solid volume fractionϕc ¼ π
4
ntotal
LB d2 describes the total amount of vegetation in the channel,

with ntotal the total number of stems in the section L × B.

A channel with patches of vegetation may have three sources of turbulence: bed shear, stemwake, and patch
wake. The generation of turbulence within individual stem wakes has been observed for both vegetation
mimics (rigid cylinders, Nepf & Vivoni, 2000; Poggi et al., 2004; Tanino & Nepf, 2008a) and real vegetation

(King et al., 2012), and it occurs when the stem Reynolds number, Red ¼ Ud
υ


 �
, >120 (Liu & Nepf, 2016).

Patch‐scale vortices can form in the wake of a porous patch when φ> 0.05. Because the porosity of the patch
allows bleed flow into the wake, the patch‐scale vortices appear 5 to 10 diameters downstream from the
patch (Nicolle & Eames, 2011; Zong & Nepf, 2012). The present study considered a distribution of patches
spaced at distances of no more than six diameters, in which case the flow was redirected by neighboring
patches before the patch wake developed vortices, so that patch‐scale turbulence was not generated. This
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was confirmed by flow visualization, which is described and illustrated in Figure S1 in the supporting
information (SI). For this reason, patch‐scale turbulence will not be considered here. The
channel‐averaged turbulent kinetic energy, 〈kt〉, is defined as the area‐weighted average of the turbulence
generated in the bare channel and within the patches. The bracket denotes the spatial average.

Because the vegetation contributes to flow resistance, the average velocity within a patch,Up, is smaller than
the spatially averaged velocity in the bare channel, Ub. These velocities are related to the channel‐averaged
velocity, Uo, by the conservation of mass:

Uo ¼ Ub 1 − ϕp

� �
þ Upϕp (3)

Up is defined as the average of the velocity entering, assumed to be Ub, and exiting, Ue, each patch; that is,

Up ¼ Ub þ Ueð Þ=2 (4)

The velocity exiting the patch, Ue, is estimated from the equation (5) in Chen et al. (2012), which describes
the velocity exiting an individual patch:

Ue

Ub
¼ 1 − μ

D
Lp

; (5)

in which μ = 0.42 ± 0.03. Lp ¼ 2 1−ϕð Þ
CDa

� �2 þ D
2


 �2� �1=2
is the flow adjustment length‐scale within the patch

(Rominger & Nepf, 2011), and a (=md) is the frontal area per volume inside the patch, and CD is the drag
coefficient, which is a function of φ and Red(p) = Upd/υ, as described for random cylinder distributions in
Tanino and Nepf (2008b). Since Up is required for Red(p), an iterative solution of equations 3–5 is needed.
Starting from CD = 1, Lp was estimated and used to obtain Ue from equation 5, which in turn was used in
equation 4 to estimate Up. Next, Red(p) (=Upd/υ) and φ were used to estimate a new CD (Tanino &
Nepf, 2008b). The iteration was repeated until consecutive estimates of CD differed by less than 5%.

Figure 1. (a) Randomly distributed model vegetation patches in an L‐m‐long and B‐m‐wide channel section. Gray circles
indicate patches within which cylinders were randomly distributed. The white area indicates bare sand bed. The
individual cylinders were inserted into predrilled holes in the baseboard. The staggered array of holes was labeled with a
coordinate system (cx,cy), a portion of which is shown in the inset above. Within the test section, cx = 1 to 190 and cy = 1
to 80. (b) Patch Case 2.4 (Table 1), in which each patch had a diameter D = 20 cm and contained 25 dowels. The photo
shows the area denoted by a red dashed box in subplot (a), in which full and half patches were included.
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The bed‐generated turbulence in equation 1 is modified to be a weighted average of the bare and patch
regions, with φp defining the area occupied by vegetation. The channel‐averaged bed‐generated turbulence
is then

kt bedð Þ ¼
Cf

ω
Ub

2 1 − ϕp

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

bare channel

þ Cf

ω
Up

2ϕp|fflfflfflfflffl{zfflfflfflfflffl}
inside patches

(6)

The stem turbulence is described by the second term in equation 1 using the patch velocity, Up. The stem
contribution to the channel average is then

〈kt vegð Þ〉 ¼ γ2 CD formð Þ
ϕ

1−ϕ
2
π

� �2=3

Up
2

" #
ϕp (7)

Finally, the channel‐averaged turbulent kinetic energy, 〈kt〉, is the sum of equations 6 and 7.

3. Experimental Methods

Experiments were designed to explore how vegetation patchiness impacts bed load transport and to test the
models for channel‐averaged turbulence (equations 6 and 7) and bed load transport (equation 2). Vegetation
clustering was increased by distributing the same number of stems into patches of smaller diameter, D,
which resulted in a smaller value of φp, the fraction of bed covered by vegetation patches. That is, a higher
clustering corresponded to smaller patch diameter. The experiments were performed in a 10‐m‐long and
1‐m‐wide flume with a horizontal bed, which recirculated water and sediment through separate pipes.
The flow depth was H = 12.0 ± 0.4 cm, and the channel‐averaged velocity was Uo = 30.0 ± 0.5 cm/s. The
Reynolds number Re (=UoR/υ, with the hydraulic radius R) was 29,000, and the Froude number, Fr (=Uo=ffiffiffiffiffiffiffi
gH

p
), = 0.3 < 1, indicating that the flow was turbulent and subcritical.

The model vegetation consisted of circular cylinders arranged in randomly distributed patches (Figure 1) or
in a uniform random distribution that covered the entire test section (Figure S2 in SI). The cylinders do not
represent a specific macrophyte but resemble themorphology of a reed, the base of a tree, or a mangrove root
(e.g., Lightbody & Nepf, 2006; Liu et al., 2018; Shan et al., 2019; Tinoco & Coco, 2016; Zhang et al., 2018). The
cylinder diameter, d = 0.6 cm, was chosen based on the range of scales found in reeds and young plants on
floodplains, d = 0.2 to 1.2 cm (e.g., Lightbody & Nepf, 2006; Manners et al., 2015). The cylinders extended
through the water depth, modeling emergent vegetation. The channel‐averaged solid volume fractions
φc = 0.005, 0.015, and 0.02, were chosen based on the observed range in a reed bed, φc = 0.001 to 0.04
(Coon et al., 2000; Grace & Harrison, 1986). The Control Case 1.1 was with a bare bed, that is, no cylinders.

In each case with patches, M = 16 circular patches were randomly distributed within the test section
(2.4 m × 1 m, Figure 1a). The patch diameter, D, was varied from 6.5 to 30 cm, resulting in patch area frac-
tions φp = 0.01 to 0.24. The length of the test section was limited by the position of the sediment return.
Because the flow adjusts to (deflects around) each patch, a fully developed flow was not present in the test
section. Predrilled holes in the baseboards were used to determine the patch positions. The streamwise, lat-
eral, and vertical directions were denoted as x, y, and z, respectively, with the origin at the right sidewall at
the leading edge of the test section. The test section had cx = 1 to 190 holes in the x direction and cy = 1 to 80
holes in the y direction. The hole closest to the origin was (cx, cy) = (1,1), as shown in Figure 1a. The center
position (hole) of each patch was determined using the MATLAB random number generator. To avoid over-
lapping patches, a minimum distance ofDwas allowed between the centers of any two patches. Half patches
were constructed if the distance between the patch center and the side wall was less than D/2. Patch distri-
butions for Cases 2.1 to 4.3 (Table 1) are shown in Figures S3–S5 in SI. For the uniform random array, the
position of each cylinder was randomly selected.

A 5‐cm‐thick layer of sand was placed on top of the baseboards andmanually flattened. Themean sand grain
diameter was ds= 0.5 mm, and the sand density was ρs = 2.65 g/cm3. The sediment transport rate was mea-
sured by using a T‐valve to divert sediment from the recirculation pipe into a mesh bag for a measured col-
lection time. The mesh bag was hung to drain and shook to remove excess water. The sand was then placed
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into a container with 5 L of water, and the displacement of water provided ameasure of the sediment volume
(V) andmass (ρsV). The transport rate per unit channel width,Qs (g·m

−1·s−1), was calculated as the collected
sand mass divided by the collection time and the width of the channel. Four replicate measurements were

used to estimate the mean Qs and standard error, σQs
. This was repeated every 3 hr until the measured Qs

±σQs


 �
was the same as the previous, indicating that the bed load transport had reached equilibrium,

which required 14 to 30 hr of running time.

After transport equilibrium was achieved, a Nortek Vectrino with a side‐looking probe was used to measure
the instantaneous velocities u(t), v(t), and w(t), corresponding to the (x,y,z) directions, respectively, along lat-
eral transects with a 5‐cm interval between measurements. The velocity was measured at mid‐depth
(z = 6 cm). Vertical profiles confirmed that measurements at mid‐depth provided representative values of
depth‐averaged velocity (see Figure S6a in SI). Further, the mid‐depth turbulence was similar to the
near‐bed turbulence (see Figure S6b). Specifically, the ratio of near‐bed to mid‐depth turbulence was
1.1 ± 0.3, indicating bedforms did not contribute significantly to turbulence. MATLAB code was used to

extract time‐averaged (u, v; and w) and fluctuating (u′, v′ , and w′) velocities. The turbulent kinetic energy

was defined as kt ¼ 0:5 u′2 þ v′2 þ w′
2

� �
. The noise in the velocity and turbulence measurements was

0.1 cm/s and 0.15 cm2/s2, respectively, determined from measurements in still water. For each condition,
a lateral profile of velocities was measured at two streamwise positions. The channel‐averaged turbulent
kinetic energy was determined as the average over both transects, which was denoted as 〈kt〉. A
channel‐averaged 〈kt〉 based on eight transects differed by only 6% from one based on two transects, confirm-
ing that two transects was sufficient (Figure S7b in SI). The maximum value of turbulent kinetic energy
within the two transects was denoted kt(max). For patchy cases, transects of time mean velocity and turbulent
kinetic energy are summarized in Table S1 in SI.

4. Results and Discussion

The channel‐averaged turbulent kinetic energy predicted from equations 6 and 7 was compared to the mea-
sured values (Figure S8a in SI). The bed drag coefficient was Cf = 0.004 ± 0.001, based on Cf = [5.75 log(2H/

Table 1
Summary of Experimental Parameters

Case pattern Case D (m) m (m−2) ntotal npatch φc φp φ Ub (cm/s) Up (cm/s)

Qs ± σQs

(g/m/s)

kt ± σkt
(cm2/s2)

kt(max)
(cm2/s2)

Bare channel 1.1 — — 0 0 0 — — 30.0 30.0 0.20 ± 0.04 14 ± 1 —

Patches 2.1a 0.065 7,538 400 25 0.005 0.02 0.24 30.3 17.9 1.0 ± 0.3 23 ± 3 54
2.2a 0.1 3,185 400 25 0.005 0.05 0.10 30.5 21.3 1.2 ± 0.3 21 ± 2 35
2.3 0.15 1,415 400 25 0.005 0.12 0.05 30.7 24.8 1.9 ± 0.5 23 ± 3 97
2.4a 0.2 796 400 25 0.005 0.21 0.03 31.0 26.5 1.6 ± 0.3 26 ± 4 92
2.5a 0.3 354 400 25 0.005 0.47 0.01 32.1 27.9 2.5 ± 0.3 39 ± 5 96
3.1 0.15 4,246 1,200 75 0.015 0.12 0.14 31.6 18.4 3.7 ± 1.0 25 ± 3 92
3.2 0.2 2,389 1,200 75 0.015 0.21 0.08 32.7 20.2 5.2 ± 0.5 25 ± 3 81
3.3 0.3 1,061 1,200 75 0.015 0.47 0.03 36.2 23.3 6.5 ± 0.4 32 ± 3 61
4.1 0.2 3,185 1,600 100 0.02 0.21 0.10 33.0 18.8 4.6 ± 0.8 26 ± 3 85
4.2 0.25 2,038 1,600 100 0.02 0.33 0.07 34.9 20.2 7.0 ± 0.6 30 ± 5 160
4.3 0.3 1,415 1,600 100 0.02 0.47 0.05 37.8 21.6 9.8 ± 1.0 32 ± 3 86

Uniform random distribution 5.1 — — 400 — 0.005 1 — 30.2 30.2 2.8 ± 0.6 25 ± 5 126
5.2 — — 1,200 — 0.015 1 — 30.5 30.5 8.4 ± 0.5 43 ± 3 62
5.3 — — 1,600 — 0.02 1 — 30.6 30.6 13 ± 1 48 ± 4 126

Note:D is the patch diameter;m is the cylinder density in the patch; ntotal is the total number of cylinders in the test section; npatch is the number of cylinders per
patch; φc (¼ π

4
ntotal
LB d2) is the channel‐averaged solid volume fraction, with bed area LB and cylinder diameter d; φp (¼ π

4 nD
2) is the patch area fraction, with

n = 6.67 m−2 the number of patches per unit bed area; φ (¼ π
4md2) is the solid volume fraction inside the patch; Ub and Up are the spatial mean velocities in

the bare channel and in a patch, respectively, using equations 3–5. Qs is the sediment transport rate per channel width. 〈kt〉 and kt(max) are the mean and max-
imum turbulent kinetic energy measured over two transects, respectively.
aCases for which two realizations were performed with different patch distributions. For each patch case, sixteen circular patches were constructed in the
test section.
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ds)]
−2 from Julien (2010). The scale coefficient ω = 0.22 ± 0.01 was determined from the bare bed condition

(green dot in Figure S8a), which was consistent with previous estimates (0.20 ± 0.01 in Soulsby, 1981). The
scale constant γ = 0.8 ± 0.4 (95% CI) was determined using a least squares fit of predicted 〈kt〉 to measured
values from all cases in Table 1. This value was consistent with previous measurements in uniform random
arrays (γ= 1.1, Tanino & Nepf, 2008a). Note that Yang and Nepf (2019) fit a slightly smaller value (γ= 0.6) to
measurements of turbulence in uniform staggered arrays, suggesting that staggered arrays produce slightly
less turbulence, possibly due to the influence of upstream, in‐line wakes.

The predicted turbulent kinetic energy was used to predict the sediment transport rate, equation 2, which
was then fit to themeasured sediment transport rate (Table 1) with β=−1.6 ± 0.3 (Figure S8 in SI). The com-
bined prediction of 〈kt〉 (equations 6 and 7) and Qs (equation 2) worked across all cases with randomly
arranged cylinders (this study, Figure S8b) and for most cases with staggered cylinders from Yang and
Nepf (2019, diamonds in Figure S8b) with similar flow depth h (=10 to 12 cm), channel velocity Uo (=21
to 43 cm/s), and sediment size (0.5 mm) to this study. An overprediction in staggered arrays was noted at
low values of sediment transport. This is likely due to the fact that the turbulence model used here (with
γ = 0.8) over predicted the turbulence in the staggered array (with γ = 0.6), and the overprediction of 〈kt〉
contributed to an overprediction of Qs.

For each channel‐averaged stem density (φc), the bed load transport was highest for the uniform, random
distribution (blue dots in Figure 2) and decreased as patches formed and decreased in size (Figures 2a, 2c,
and 2e). The sediment transport rate was highest and the impact of clustering (decreasing patch size) was
greatest for the highest channel‐averaged stem density (φc= 0.02, Figure 2e). The trends inQswere generally
consistent with the trends in measured turbulence. Specifically, for φc = 0.015 and 0.02, the peak turbulence
was associated with the uniform random distribution and turbulence level decreased as patches formed and
decreased in size. The smallest bed load transport rate and turbulence level were observed in the bare chan-
nel (green points in Figures 2a and 2b).

By describing the relative contributions of bed‐ and vegetation‐generated turbulence, equations 6 and 7 pro-
vided insight into the changes in bed load transport associated with changes in the total number of stems and
patch size. Specifically, the trends in turbulence, and by association in sediment transport, were due mostly
to changes in vegetation‐generated turbulence. As the stem distribution changed, the bed‐generated turbu-
lence (〈kt(bed)〉, orange dashed lines in Figure 2) had almost no change (<5%), whereas the
vegetation‐generated turbulence (〈kt(veg)〉, blue dashed lines) approximately tripled between the smallest
patch size (smallest φp) and the uniform random distribution. The relative contributions of bed‐ and
vegetation‐generated turbulence also depended on the total amount of vegetation present. For example,
for the randomly distributed stems at the smallest channel‐averaged stem density (φc = 0.005), the
vegetation‐generated turbulence was smaller than the bed‐generated turbulence (Figure 2b). Because of this,
clustering the vegetation into patches did not have a significant impact on channel‐averaged turbulence
(Figure 2b) or bed load transport (Figure 2a). In contrast, for the higher stem densities (φc = 0.015 and
0.02), vegetation‐generated turbulence exceeded bed‐generated turbulence in the random distribution, so
that when clustering was introduced, the drop in vegetation‐generated turbulence had a significant impact
on channel‐averaged turbulence (Figures 2d and 2f) and bed load transport (Figures 2c and 2e). The cluster-
ing of vegetation into patches decreased the velocity impacting individual stems, which decreased the
stem‐generated turbulence (equation 7). Specifically, as the patches became more clustered (smaller D
and higher φ), the velocity within the patch, Up, declined (Table 1). The decrease in Up could be more pro-
nounced if the patch was placed directly in the wake of the upstream patch (e.g., Ghani et al., 2019). In addi-
tion, as clustering increased (decreasing D), a smaller fraction of bed area contained patches (smaller φp).
These two trends led to a decline in 〈kt(veg)〉.

The variation in measured bed load transport, Qs, exhibited a dependence on channel‐averaged turbulence,
but no dependence on channel‐averaged bed shear stress, which was estimated as 〈τ〉 = CfUb

2(1 − φp)
+CfUp

2φp (Figure 3). The bed load transport increased with increasing 〈kt〉, but had no clear dependence
on 〈τ〉. Specifically, across the range of patch conditions, the bed shear stress was unchanged within uncer-
tainty, yet the bed load transport exhibited a more than tenfold change (Figure 3b and Table 1). Further, the
bed load transport had little dependence on peak turbulence, kt(max), because kt(max) did not vary
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consistently with the spatial average 〈kt〉. Specifically, kt(max)/〈kt〉 exhibited a wide range of value (between
1.4 and 5.4) that did not vary systematically with either the channel‐scale vegetation density, φc, or the
fraction of channel occupied by vegetation patches, φp (see Figure S9 in SI). In order to impact the
channel‐averaged sediment transport directly, kt(max) would need to occur over a spacing smaller than or
equal to the individual sediment excursions. It appears that this condition was not met in our study.

In modeling applications, it is convenient to assume a uniform distribution of vegetation within each grid

cell (Δx), assigning a single grid‐scale vegetation density,ϕc ¼ π
4
Nd2

Δx2, withN the number of stems per grid cell.

However, this study showed that heterogeneous distributions of vegetation, specifically the clustering of
vegetation into discrete patches, can decrease turbulence and sediment transport, relative to a uniform stem
distribution. To provide guidance to modelers, equations 2, 6, and 7 were used to explore the impact of

Figure 2. (a, c, and e) Measured (red symbols) and predicted (solid curve, equations 2, 6, and 7) bed load transport, Qs, as a function of patch diameter, D. (b, d,
and f) Measured (red symbols) and predicted (equations 6 and 7) channel‐averaged turbulent kinetic energy, 〈kt〉.〈kt(bed)〉is predicted from equation 6 using
Cf = 0.004, Ub, Up, and φp (orange dashed line), and〈kt(veg)〉is predicted from equation 7 using γ = 0.8, φ, Up, and φp (blue dashed lines). All parameters are
summarized in Table 1. The blue symbols above the axis label “R” indicate uniform random distributions (φp = 1). The red symbols indicate randomly distributed
patches. The green symbols in (a) and (b) indicate the bare channel case. Channel‐averaged solid volume fraction are (a, b) ϕc = 0.005, (c, d) ϕc = 0.015, and (e, f)
ϕc = 0.02.
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vegetation patchiness over a larger parameter space. The values of 〈kt〉 and Qs predicted with randomly
distributed patches (φp < 1) were normalized by the values predicted with uniform random distribution,
φp = 1, which were labeled UR, that is, 〈kt〉UR and Qs‐UR. The normalized values were plotted against the
patch area fraction φp in a channel with randomly distributed patches (Figure 4). The magnitude of φp
(<0.56) was restricted by the condition that overlapping patches were not allowed. The uniform random
distribution produced the highest level of turbulence and bed load transport, so that 〈kt〉/〈kt〉UR and Qs/
Qs‐RU were always smaller than one. Both turbulence and bed load transport decreased as patch area
became smaller (decreasing φp). Further, the impact of patch clustering became more important with
increasing channel‐averaged stem density (φc). This reinforces the point that when bed load sediment is
simulated in vegetated channels, both vegetation clustering and density should be considered.

In natural systems, patches of vegetation are often shaped by feedbacks between flow, bed forms, and vege-
tation, which can result in vegetation distributions that tend toward highly channelized flows between
patches (e.g., Kondziolka & Nepf, 2014; Larsen & Harvey, 2010; Montgomery et al., 2018; Yamasaki
et al., 2019). Despite having an idealized circular patch geometry, a key result of this study can be transferred
to more natural distributions of vegetation. The organization of vegetation into patches of sufficient density
to deflect flow away from the vegetation leads to a decrease in vegetation‐generated turbulence, which in
turn leads to a decrease in channel‐averaged sediment transport. This process is also relevant to vegetation
organized into distributions of elongated vegetation patches separated by channelized flow, and the trends
displayed in Figure 4 will also apply for this spatial distribution of vegetation, and it is similarly relevant
to modeling if it occurs at the subgrid scale.

Figure 3. Measured sediment transport rate, Qs* ¼ Qs

ρs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρs=ρ − 1ð Þgdg3

p , versus (a) channel‐averaged turbulent kinetic
energy, 〈kt

*
〉 ¼ kt

ρs=ρ − 1ð Þgdg, from equations 6 and 7; and versus (b) channel‐averaged bed shear stress, 〈τ*〉 ¼ τ
ρs=ρ − 1ð Þgdg,

with 〈τ〉=CfUb
2(1 − φp)+CfUp

2φp. The vertical gray bar denotes 〈τ〉 = CfU0
2 with bar width indicating the uncertainty

due to the propagated uncertainty of Cf and Uo. Patch cases are shown with red circles, and uniform random
distributions are shown with blue circles.

Figure 4. (a) Channel‐averaged turbulence with randomly distributed patches, 〈kt〉, normalized by the value for a
uniform random distribution 〈kt〉UR, based on equations 6 and 7. (b) Channel‐averaged bed load transport with
randomly distributed patches, Qs, normalized by the value for a uniform random distribution, Qs‐UR, based on
equations 2, 6, and 7.
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5. Summary

This study measured sediment transport in a channel with model vegetation and considered both uniform
random distributions of individual stems and heterogeneous distributions with stems clustered into patches
separated by bare bed. For the same channel velocity, the highest turbulence and bed load transport was
observed with the uniform random distribution, and both turbulence and bed load transport decreased as
stems were clustered into progressively smaller patch diameters, associated with a smaller fraction of bed
area occupied by stems (smaller φp). For both uniform and clustered distributions of model vegetation the
channel‐averaged turbulence was shown to be a better predictor for sediment transport than
channel‐averaged bed shear stress. A model was developed to predict the channel‐averaged turbulence
and sediment transport as a function of channel‐averaged vegetation density (φc) and degree of clustering,
represented by vegetation patch area fraction (φp). This provides a way for numerical modelers to represent
the impact of subgrid‐scale heterogensity in vegetation distribution on sediment transport.
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