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A new type of a linear response Hall effect is predicted in time-reversal-invariant systems with a built-in
electric field at zero magnetic field. The Hall response results from a quantum Magnus effect where
a self-rotating Bloch electron wave packet moving under an electric field develops an anomalous velocity
in the transverse direction. We show that in the ballistic limit the Magnus Hall conductance measures the
distribution of the Berry curvature on the Fermi surface.
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Introduction.—Studies of various Hall effects led to
significant progress throughout the history of solid
state physics. Starting with the classical Hall effect [1],
the anomalous Hall effect [2], the spin Hall effect [3], the
thermal Hall effect [4,5], the quantum Hall effect [6], the
quantum spin Hall effect [7], and the quantum anomalous
Hall effect [8–10] have been discovered. Among these, the
classical and anomalous Hall effects appear in time-
reversal-breaking systems, where an applied electric field
induces a transverse charge current.
An intrinsic contribution to the anomalous Hall effect is

associated with the Berry curvature, a fundamental ingre-
dient of modern band theory derived from the electron’s
wave function [11]. When a Bloch electron is accelerated
under an electric field, its electron density distribution
within the unit cell changes, which gives rise to an
anomalous velocity proportional to the Berry curvature.
In time-reversal-breaking systems, the total Berry curvature
of the occupied states can be nonzero, resulting in an
intrinsic anomalous Hall effect. The impact of the Berry
curvature on the transport phenomena has attracted
tremendous interest [12–17].
On the other hand, there exists a large class of time-

reversal-invariant, inversion-breaking materials which fea-
ture a large Berry curvature ΩðkÞ in momentum space,
especially near the gap edge or the band crossing points.
Examples include two-dimensional transition metal dichal-
cogenides (TMDs) [18], graphene multilayer [19,20] and
heterostructures [21], topological insulator surface states
[22], and Weyl semimetals [23–25]. Because of time-
reversal symmetry, the distribution of the Berry curvature
satisfies ΩðkÞ ¼ −Ωð−kÞ. It is an intriguing question
whether such a distribution of the Berry curvature with a
zero total can lead to any interesting phenomena in charge
transport.
In this work, we demonstrate a new type of linear-

response Hall effect induced by the Berry curvature and the
built-in electric field in mesoscopic systems under the
time-reversal-symmetric condition. We consider electron

transport in a Hall bar device made of a 2D material, such
as bilayer graphene or a transition metal dichalcogenide. In
our setup, the source and drain regions have different
carrier densities, which can be achieved by local bottom
gates. The difference in the electrostatic potential energy
due to the bottom gates Us − Ud ≡ ΔU is accompanied by
a built-in electric field in the junction in the stationary state,
as shown in Fig. 1(a). We study the electrical current in
linear response to the applied bias voltage Vsd. Since
electrons moving from the source to the drain have nonzero
net velocity, their wave packets can carry orbital angular
momentum and nonzero net Berry curvature. The motion of

(a)

(b)

FIG. 1. (a) Geometry of the device for the Magnus Hall effect.
Source and drain regions are separated by a segment with a built-
in electric field. An electron that exits the source exhibits a
Magnus shift ΔyA. Potential energy UðxÞ profile in the central
region determines the position of the band bottom. (b) The
direction of the Hall current is preserved under inversion of both
the direction of the potential drop and the electrochemical
potential bias.
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the chiral Bloch electrons under the built-in electric field
leads to a quantum analog of the Magnus effect: as an
electron traverses the junction, its center of wave packet
acquires a transverse shift. This in turn gives rise to a
transverse current linearly proportional to the bias voltage,
i.e., a Hall effect. We term this phenomenon the “Magnus
Hall effect.” It occurs in nonmagnetic systems at zero
magnetic field, but relies on the built-in electric field. We
show that in the ballistic limit, the Hall conductance is
directly related to the Berry curvature distribution of the
underlying material.
The Magnus Hall effect is intimately related to the

nonlinear Hall effect. This recently theoretically predicted
phenomenon occurs in time-reversal-invariant materials in
which the dipole moment of Berry curvature, i.e., the Berry
curvature dipole, can induce a Hall effect, where the
transverse current depends quadratically on the applied
electric field [26]. This phenomenon has been subsequently
observed in bilayer WTe2 [27,28]. In the case of the
nonlinear Hall effect, reversing the electric field does not
change the transverse current. In the Magnus Hall effect,
the transverse current is preserved under reversing both the
source-drain voltage and the direction of the built-in
electric field as presented in Fig. 1(b). In an alternative
scenario where the electric field arises from the source-
drain voltage Vsd itself instead of the bottom gates, the
transverse current becomes second order in Vsd, resulting in
the nonlinear Hall effect. Our work thus opens a pathway to
“Hall diodes” for high-frequency nonlinear transport based
on the quantummaterials that have a significant distribution
of Berry curvature.
Electronic Magnus effect.—First we shall consider an

electron wave packet that travels inside a sample. The
sample has a short segment (between x ¼ 0 and x ¼ L)
within which there is spatially varying potential energy
UðxÞ arising from different gate voltages on the opposite
sides [this corresponds to the built-in electric field
E ¼ ð1=eÞð∂U=∂xÞx̂ ¼ ExðxÞx̂]. We assume that UðxÞ is
slowly varying (small built-in electric field) so that wave
packets still have well-defined momentum k. This means
that the length of the device should be larger than few tens
of nanometers. Inside this region, motion of the wave
packet is described by the semiclassical equations of
motion [12]

_r ¼ 1

ℏ
∂ϵk
∂k −

1

ℏ
Ω ×

∂U
∂r ; _k ¼ −

1

ℏ
∂U
∂r : ð1Þ

Since the built-in electric field is small, wave packet
momentum k does not change substantially under accel-
eration and remains approximately constant at its initial
value k0. Therefore, the transit time through the electric
field region of an incident electron with velocity (vx, vy) is
simply t ¼ L=vx. During this time, the electron with vy ≠ 0

will also travel in the y direction. Importantly, between

x ¼ 0 and x ¼ L there will be an additional displacement of
the wave packet along y due to the anomalous velocity as
for 2D systems Berry curvature has only the z component
ΩðkÞ ¼ ΩzðkÞẑ. This displacement is given by

ΔyA ¼ −
Z

t

0

ΩzðkÞ
ℏ

∂U
∂x dt0 ≈ −

1

ℏvx
Ωzðk0Þ

Z
L

0

∂U
∂x dx

¼ 1

ℏvx
Ωzðk0ÞΔU; ð2Þ

with ΔU ¼ −
R
L
0 ð∂U=∂xÞdx being the difference in the

potential energy. Therefore, an electron wave packet with a
nonzero Berry curvature moving through the region of
electric field will acquire an additional shift in the direction
perpendicular to the electric field as schematically shown in
Fig. 1(a). This in turn leads to a current density in the y
direction by integrating single wave packet contribution
−eΔyA=t ¼ −e=ðℏLÞΩðk0ÞΔU over the occupied states.
This transverse current vanishes in equilibrium. However,
in the current carrying steady state, the modes with positive
and negative velocity are not equally occupied. Since in
systems with time-reversal symmetry Berry curvature is
opposite for k and −k states (which also have opposite
velocities), this effect can lead to a Hall current even in
nonmagnetic materials. To see more clearly how the Hall
current arises here, we employ the Boltzmann transport
equation.
Boltzmann transport equation solution.—To describe the

mesoscopic electron transport in a 2D system we use a
collisionless Boltzmann equation (BE),

∂f
∂t þ _r ·

∂f
∂r þ _k ·

∂f
∂k ¼ 0; ð3Þ

where fðk; rÞ is the occupation distribution function.
We are looking for a stationary state distribution, so
∂f=∂t ¼ 0. We solve the Boltzmann equation in a geom-
etry of a stripe of infinite width in the y direction and finite
length L in the x direction. At x < 0 and x > L we have a
source and a drain. Since the system is translationally
invariant in the y direction, the stationary distribution
function will be independent of y.
The wave packets evolve according to the semiclassical

equations (1). The energy of the electrons in the segment is

ϵðk; rÞ ¼ ϵk þ UðxÞ; ð4Þ

where ϵk is the band energy. In equilibrium, the solution is
given by the Fermi-Dirac distribution with constant electro-
chemical potential μ̄, but with spatially changing energy (4)
and can be expressed as

f0ðk; rÞ ¼ ðeβ½ϵðk;rÞ−μ̄� þ 1Þ−1; ð5Þ

f0ðk; rÞ is a solution of Boltzmann equation (3) as can be
verified using Eq. (1). This solution guarantees that no
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current is flowing in the system as at each energy and
position the number of states with k and −k is equal.
To obtain a solution that corresponds to a steady current

flow, we apply a small bias Vsd in a form of imbalance of
electrochemical potentials between the source and the
drain, so that μ̄D ¼ μ̄ and μ̄S ¼ μ̄ − eVsd ¼ μ̄þ Δμ̄. We
have to solve BE with boundary conditions that take into
account the presence of source and drain at x ¼ 0 and
x ¼ L. Taking into consideration the device geometry of
our system, we now look for a solution in the lowest order
of the perturbation in the electrochemical potential imbal-
ance. To achieve this, we write f ¼ f0 þ f1, where f1 is
the nonequilibrium part first order in the perturbation Δμ̄.
This gives an equation for f1:

1

ℏ
∂f1
∂x

∂ϵk
∂kx −

1

ℏ
∂U
∂x

∂f1
∂kx ¼ 0: ð6Þ

Since we assumed that UðxÞ is slowly varying, the
second term on the left-hand side is small, so we drop it and
we arrive at ∂f1=∂x ¼ 0. Therefore, f1ðk; rÞ only depends
on k. We can now determine its form from the boundary
condition. The larger electrochemical potential of the
source region results in a surplus of electrons entering
the system at the x ¼ 0 interface with positive vx velocity
and propagating across the device without any scattering in
the ballistic limit. This boundary condition gives us

f1ðk; rÞ ¼
(�

− ∂f0∂ϵk
�
Δμ̄ vxðkÞ > 0

0 vxðkÞ < 0;
ð7Þ

where vxðkÞ ¼ ð1=ℏÞð∂ϵk=∂kxÞ. Equipped with this sol-
ution, we are able to calculate the longitudinal and the Hall
response of our system. We have then

jx ¼−e
Z

d2k
ð2πÞ2vxf1¼−

e
h
Δμ̄
2π

Z
vxðkÞ>0

d2k
∂ϵk
∂kx

�
−
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�
;

ð8Þ

jy ¼ −e
Z

d2k
ð2πÞ2 vyf1 ¼ j0y þ jH;
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e
h
Δμ̄
2π

Z
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d2k
∂ϵk
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�
−
∂f0
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; ð9Þ

jH ¼ e
h
Δμ̄
2π

Z
vxðkÞ>0

d2kΩzðkÞ
∂U
∂x

�
−
∂f0
∂ϵk

�
: ð10Þ

Here the j0y term arises from the Fermi surface anisotropy
and depends on its orientation relative to the direction of
applied bias x̂. Note that j0y is independent of ΔU, which
can be used to distinguish it from the Magnus Hall
component jH. However, as we shall show later, the j0y
term can also vanish due to symmetry.

To obtain the Hall current due to the Berry curvature, we
integrate the anomalous velocity contribution over the
whole length of the device Iy ¼

R
L
0 dxjH and then we

can define Hall conductance as GH ¼ −eIy=Δμ̄ and obtain
at T ¼ 0,

GH ¼ e2

h
ΔU
2π

Z
vxðkÞ>0

d2kΩzðkÞδðϵk − μÞ; ð11Þ

where the electrostatic potential energy difference across
the junction ΔU ¼ Us −Ud is assumed to be small.
This equation is the main result of this work. First of all,

in the limit of small ΔU the Hall response does not depend
on the detailed spatial dependence of the potential energy.
Second, the dependence on ΔU is linear and the Hall
current is independent of the system size in the ballistic
limit. The effect is reduced by inclusion of disorder as we
show in the Supplemental Material [29].
Crucially, the Magnus Hall current is determined by the

Berry curvature of the electrons with a positive velocity
along the direction of the applied bias. While the Hall
current depends on the integral of the Berry curvature over
the Fermi surface, it nevertheless offers two tuning knobs
that make it a perfect tool to characterize the Berry
curvature distribution. First of all, by applying an overall
gate voltage potential, one can tune the chemical potential
in the whole device and scan different Fermi surfaces.
Second, by varying the direction of the applied bias
(rotating the Hall bar geometry) with respect to the
crystalline axis, the angular distribution of Berry curvature
within a given Fermi surface can be established.
Model.—To demonstrate this effect explicitly, we turn to

a concrete model, which breaks inversion symmetry, but
preserves time-reversal symmetry. We have chosen a
simple two band model with the Hamiltonian

HðkÞ ¼ Ak2 þ ðBk2 þ δÞσz þ vykyσy þDσx: ð12Þ

It contains two massive Dirac cones which are tilted when
A ≠ 0. This model captures the essential features of the
tilted Dirac cones of topological crystalline insulator sur-
face states [26] and low-energy band structure of 2D WTe2
[18]. More details of the model are presented in the
Supplemental Material [29].
We can now compute the Berry curvature ΩðkÞ distri-

bution in the Brillouin zone for parameters A ¼ 0, B ¼ 1,
δ ¼ −0.25, vy ¼ 1.0, D ¼ 0.1, which is shown in the inset
of Fig. 2 for the valence band. While the total Berry
curvature integrated over the Brillouin zone is equal to 0,
the distribution consists of two peaks of opposite signs,
located at the Dirac points.
Furthermore, this model possesses mirror symmetry

Mx∶ Hðkx; kyÞ → Hð−kx; kyÞ, which guarantees that
ϵðkx; kyÞ ¼ ϵð−kx; kyÞ. For D ¼ 0, this model has an addi-
tional mirror symmetry My∶ Hðkx; kyÞ ¼ σzHðkx;−kyÞσz.
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This symmetry is broken for D ≠ 0. However, because
the model is also time-reversal invariant, we have
ϵð−kx; kyÞ ¼ ϵðkx;−kyÞ, which causes the current density
j0y of Eq. (9) to vanish. Therefore, the Hall current will be
determined solely by the Magnus Hall contribution jH of
Eq. (10) and GH can be calculated according to Eq. (11).
Result of such a calculation is presented as the dashed curve
in Fig. 2 as a function of the chemical potential. Even though
the total integral ofΩðkÞ vanishes, because our result forGH
only relies on the Berry curvature of Bloch states with
vx > 0, it is nonzero. For the set of parameters used in the
calculation, both bands are symmetric with respect to the
E ¼ 0 line and so the result for the conduction band is a
mirror image of the curve for the valence band. We note that
the direction of the Hall current is the same for both bands,
because while the Berry curvature switches sign to opposite
between the two bands, the velocities for givenk also change
to opposite and as a result the integration occurs over the
regions with the same values of ΩðkÞ.
These approximate results derived from the semiclassical

Boltzmann transport approach can be compared with a
numerical tight-binding simulation using the Landauer-
Buttiker method. Details of the calculation are in the
Supplemental Material [29]. All the numerical simulations
have been performed using the Kwant package [30].
We consider the chemical potential dependence of GLB

H ,
which we present as the solid curve in Fig. 2 for L ¼ 200,
W ¼ 2400 lattice sites and ΔU ¼ 0.05. The curve is
obtained by temperature broadening with T ¼ 0.01. The
qualitative behavior of the semiclassical result is repro-
duced with an asymmetric peak positioned away from the
band bottom. The difference can be attributed to the
differences in the geometry of the setups for numerical
simulation (finite width leads injecting current into the

system) and semiclassical calculation (infinite width of
the setup).
Candidate materials.—To observe the Magnus Hall

effect under time-reversal symmetry, several conditions
must be satisfied. First of all, the underlying material must
break the inversion symmetry in order to have a nonzero
Berry curvature in the Brillouin zone. Furthermore, Berry
curvature of the right and left moving modes must be
asymmetric. For example, under time-reversal symmetry
massive Dirac fermions have to appear in pairs with an
opposite sign of the Berry curvature. If they are isotropic,
there will be an equal number of right movers with both
signs of ΩðkÞ in each Dirac valley and their contributions
will cancel each other. However, in general the Dirac cones
are not perfectly isotropic and perfect cancellation will not
occur. Two examples of materials that satisfy this condition
are monolayer graphene on hBN (sublattice symmetry
is broken due to formation of the moiré superlattice)
[21,31–33] and bilayer graphene with perpendicular elec-
tric field applied [19,20,34]. In both cases trigonal warping
introduces asymmetry between the right and left movers in
each valley. Moreover, these platforms support devices of
high quality, which enable ballistic motion of electrons
[35–37], beneficial for observation of the predicted effect.
As an example we use a model of bilayer graphene with

trigonal warping and perpendicular electric field that opens
up a gap. Calculations are performed using a low-energy
Hamiltonian that describes both the K and K0 valleys of
bilayer graphene (labeled by s ¼ �1) [34]:

Hs ¼
�

Δ svk−s − λk2s
svks − λk2−s −Δ

�
; ð13Þ

FIG. 2. Magnus Hall conductance GH as a function of the
chemical potential μ at T ¼ 0.01 and ΔU ¼ 0.05 from Eq. (11)
(dashed) and Landauer-Buttiker simulation (solid). The inset
shows the distribution of Berry curvature of the valence bands in
the Brillouin zone. The green line shows the Fermi surface for
E ¼ −0.35 (solid for vx > 0 and dashed for vx < 0).

FIG. 3. Hall conductance for the bilayer graphene model for
ΔU ¼ 10 meV. Inset: Berry curvature distribution around the K
and K0 valley of the valence band of bilayer graphene. The green
line shows the Fermi surface at μ ¼ −60 meV (solid for vx > 0
and dashed for vx < 0).
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where k� ¼ kx � iky. Berry curvature distribution near
both valleys is presented in the inset of Fig. 3. The
parameters used in the calculations are Δ ¼ 50 meV,
v ¼ 105 m=s, and λ ¼ 1=ð2m�Þ with effective mass
m� ¼ 0.033me, me being the electron mass [19,38]. The
Fermi surface at μ ¼ −60 meV is indicated by the green
line, solid for vx ¼ ð1=ℏÞð∂ϵk=∂kxÞ > 0, and dashed for
vx < 0. We can now use this to compute the Hall
conductance as a function of chemical potential in the
vicinity of the band edge using the analytical formula (11),
which is shown in Fig. 3 forΔU ¼ 10 meV and taking spin
degeneracy into account. Our result demonstrates explicitly
that the Magnus Hall effect does not rely on the Berry
curvature dipole [26,39–44] (which is absent in bilayer
graphene with trigonal warping) or the presence of skew
scattering [45–48] that are necessary conditions for the
nonlinear Hall effect.
Summary.—In this Letter we have demonstrated the

existence of the Magnus Hall effect in inversion symmetry
breaking, but time-reversal-invariant systems that have
nonzero Berry curvature. The effect relies on a built-in
electric field in the device and should be most pronounced
in ballistic systems. Therefore, the device should be shorter
than the mean free path, while also being long enough in
order to allow for the slow variation of the potential energy.
For bilayer graphene this translates to the length of the
junction between 100 nm and 1 μm. Since both the bottom
gate separation and the applied voltage can be controlled
experimentally, we believe that it should be possible to tune
the device into the most optimal regime for sufficiently
clean samples.
The significance of the Magnus Hall effect is twofold.

First, it opens a pathway to a new generation of current
rectification devices. Furthermore, it also provides a much
needed tool to map Berry curvature distribution of quantum
materials in momentum space.
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