
MIT Open Access Articles

On Policies for Single-Leg Revenue
Management with Limited Demand Information

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Will Ma, David Simchi-Levi, Chung-Piaw Teo (2020) On Policies for Single-Leg Revenue
Management with Limited Demand Information. Operations Research 69(1):207-226.

As Published: 10.1287/OPRE.2020.2048

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: https://hdl.handle.net/1721.1/133079

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133079
http://creativecommons.org/licenses/by-nc-sa/4.0/

On Policies for Single-leg Revenue Management with
Limited Demand Information

Will Ma
Graduate School of Business, Columbia University, New York, NY 10027, wm2428@gsb.columbia.edu

David Simchi-Levi
Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering, and Operations Research

Center, Massachusetts Institute of Technology, Cambridge, MA 02139, dslevi@mit.edu

Chung-Piaw Teo
NUS Business School, National University of Singapore, Singapore, bizteocp@nus.edu.sg

In this paper we study the single-item revenue management problem, with no information given about

the demand trajectory over time. When the item is sold through accepting/rejecting different fare classes,

Ball and Queyranne (2009) have established the tight competitive ratio for this problem using booking limit

policies, which raise the acceptance threshold as the remaining inventory dwindles. However, when the item

is sold through dynamic pricing instead, there is the additional challenge that offering a low price may entice

high-paying customers to substitute down. We show that despite this challenge, the same competitive ratio

can still be achieved using a randomized dynamic pricing policy. Our policy incorporates the price-skimming

technique from Eren and Maglaras (2010), but importantly we show how the randomized price distribution

should be stochastically-increased as the remaining inventory dwindles. A key technical ingredient in our

policy is a new “valuation tracking” subroutine, which tracks the possible values for the optimum, and

follows the most “inventory-conservative” control which maintains the desired competitive ratio. Finally,

we demonstrate the empirical effectiveness of our policy in simulations, where its average-case performance

surpasses all naive modifications of the existing policies.

Key words : online algorithms, competitive ratio, revenue management, dynamic pricing

1. Introduction

In the single-leg revenue management problem, a firm is selling multiple products that share a

single capacity over a finite time horizon. The prices of the products and the unreplenishable

starting capacity are all exogenously determined. The firm’s objective is to maximize its total

revenue earned, by dynamically controlling the availability of different products over time. The

tradeoff lies between “myopic” controls which maximize revenue at an immediate point in time,

and “conservative” controls which preserve capacity for the remaining time horizon.

1

ar
X

iv
:1

81
0.

10
90

0v
2

 [
cs

.D
S]

 1
7

Ja
n

20
20

2

This problem was originally motivated by airlines. Indeed, for a single flight leg, it has a limited

seat capacity, and the products correspond to different “fare classes” (e.g. economy, basic economy)

dictating prices at which seats could be sold. The flight’s seat capacity and fare classes have been

determined long in advance, through factors such as business strategy and competitor price points.

Finally, the time horizon is finite, ending upon the flight’s departure.

We study this problem in the setting where very limited information is given or can be learned

about demand. This setting was introduced by Ball and Queyranne (2009), Lan et al. (2008), who

derive heuristic controls based on only knowledge of the fare class prices. These papers consider

booking limit policies, which can be described as follows. Initially, all of the fare classes are made

available to customers. Once the fraction of total seats sold surpasses a critical threshold, the lowest

fare becomes unavailable. Progressively higher fares are made unavailable until the flight either

becomes full or takes off.

An important assumption made in these papers is that the demands for the different fare classes

are independent. That is, although the lower fares are made available until their booking thresholds

are reached, there is no risk of cannibalization in sales, where a customer who would have accepted a

higher fare substitutes down into buying a lower fare. A classical justification for this is that the fare

classes are designed to segment customers and achieve price discrimination—i.e., the drawbacks of

basic economy are supposed to dissuade price-insensitive travelers from buying down.

However, fare classes rarely achieve perfect price discrimination, and in the age of e-commerce,

increasingly many airlines are introducing overlapping fare families despite the cannibalization

(Fiig et al. 2012). Furthermore, most items (unlike seats on an airplane) are sold using a single

price and not packaged into fare classes at all. Motivated by these two facts, our goal is to derive

advanced pricing controls for the single-leg revenue management problem under limited demand

information, which do not require the assumption of no cannibalization.

1.1. Dynamic Pricing Model

In this paper, we focus on the dynamic pricing problem of a single retail item being marked at a

single price, with no fare classes at all. To connect back to airlines, we can interpret this as offering

an assortment with all fare classes greater than or equal to the posted price. In the conclusion of

the paper, we explain why this immediately implies the same results for the airline model with fare

classes and substitution, as long as substitution follow a random-utility choice model.

We let P denote the set of prices which the firm could feasibly offer at any point in time,

corresponding to the set of fare classes discussed earlier. We usually assume P to be discrete for

ease of exposition and computation. In Section 5.1, we allow for P to be any continuous price

interval, and derive comparable theoretical results to those when the interval is approximated using

3

discrete prices. Discreteness of P is further justified in industries with established price points to

charge for items, e.g. prices ending in 99 cents.

The dynamic pricing problem proceeds as follows. The item starts with k units of discrete inven-

tory. Sequentially-arriving customers t= 1, . . . , T each have a valuation Vt, denoting the maximum

price in P that the customer is willing to pay. We colloquially refer to customer t as arriving in

“time t”; however, we emphasize that t does not correspond to an actual unit of time and that the

total number of customers T is unknown. An online algorithm sequentially charges a price Pt for

each customer t, and if Vt ≥ Pt, then revenue Pt is earned and one unit of inventory is depleted.

In settings where no information is given about demand, an online algorithm is evaluated by

comparing its total revenue earned on different sequences of valuations to that of a clairvoyant

optimum. For any such sequence V1, . . . , VT , the offline optimum OPT(V1, . . . , VT) is defined as the

maximum revenue that could have been earned from deterministically knowing all the valuations

in advance, equal to the sum of the k largest values in V1, . . . , VT . For c≤ 1, if an online algorithm

can guarantee that its revenue is at least c ·OPT(V1, . . . , VT) on every sequence V1, . . . , VT , then it is

said to be c-competitive. If c is best-possible in that any (potentially randomized) online algorithm

cannot uniformly guarantee better than c ·OPT(V1, . . . , VT) revenue over all sequences V1, . . . , VT ,

then c is called the competitive ratio.

We now describe the nature of Vt and what is known about it before the online algorithm has

to decide price Pt. We consider the following variants.

1. Public vs. Personalized Pricing: In public pricing, Pt must be decided before knowing

anything about valuation Vt. The motivation for this is an e-commerce platform that posts a

public price without knowing which customer will arrive next. After customer t arrives and

makes a purchase decision based on price Pt, (the distribution of) Vt can be estimated based

on her characteristics such as IP address (and this distribution can be posterior-updated based

on her purchase decision). The platform can then update its price Pt+1 for the next customer.

By contrast, in personalized pricing, (the distribution of) Vt is given before having to decide

Pt. The motivation for this is an e-commerce platform that uses a customer’s characteristics

upon login to charge them a personalized price. Like before, customer t then makes a purchase

decision based on price Pt. However, in personalized pricing the online algorithm has more

information (namely, about Vt) before having to make each decision Pt.

2. Deterministic vs. Stochastic Valuations: To illustrate our basic technique, and to relate

to the model of Ball and Queyranne (2009), we first assume that each valuation Vt can be

deterministically estimated based on the characteristics of customer t. We then extend to the

setting where only a distribution for Vt can be estimated each time. We would like to point out

in the public pricing setting, clickstream data (the user’s navigation path after they saw the

4

price) can also be incorporated to generate these distributional estimates, which can greatly

improve the accuracy as found by Montgomery et al. (2004).

We emphasize that under all combinations of variants, when deciding price Pt, (the distributions

of) valuations V1, . . . , Vt−1 and the purchase decisions of customers 1, . . . , t− 1 are known, and any

information about valuations Vt+1, . . . , VT or the length T is unknown.

1.2. Outline of Theoretical Results

Before stating our new results for the variants above, we first observe that—if personalized pricing

is permitted on deterministic valuations, then our dynamic pricing model is equivalent to the

multi-fare-class model of Ball and Queyranne (2009). Indeed, if the platform can always charge

the maximum-willingness-to-pay of any customer it sells to, then it has achieved the same price

discrimination assumed by fare classes. Ball and Queyranne (2009) show in their model that the

competitive ratio depends on only the price set P and not the starting inventory k. Letting c∗(P)

denote this optimal competitive ratio, the booking limit policies of Ball and Queyranne (2009)

imply c∗(P)-competitive pricing policies in our model under the personalized, deterministic variant.

In light of this, our main theoretical contribution is the following results in progressively more

difficult/general variants.

1. In Section 3, we derive c∗(P)-competitive public pricing policies for deterministic valuations.

We motivate our main algorithmic idea in Section 3.1, illustrate it through geometrically

“stacking” the valuations in Sections 3.2, and formalize it in Section 3.3. We consider

variations which satisfy intuitive properties that will become useful later, in Sections 3.4–3.5.

2. In Section 4, we extend our earlier ideas for deterministic valuations into c∗(P)-competitive

public pricing policies for stochastic valuations. A unique challenge arises in Section 4.2,

where we use sampling to convert a c∗(P)-competitive algorithm with exponential runtime

into a (c∗(P)− ε)-competitive algorithm with polynomial runtime.

All of these policies are best-possible. Indeed, since Ball and Queyranne (2009) show that a per-

sonalized pricing policy on deterministic valuations cannot be better than c∗(P)-competitive, any

online policy in our more difficult/general variants cannot be better then c∗(P)-competitive.

Our policies use the price-skimming technique of Eren and Maglaras (2010), who analyze how

the price of an item should be distributed (e.g. across stores, across time) when the price set P is

known but demand is completely unknown. Their model corresponds to ours when the inventory

constraint is irrelevant (i.e. when k≥ T), in which case they show that the competitive ratio is also

c∗(P). By contrast, our work shows how the price-skimming distribution should change over time

based on remaining inventory. In fact, our policies satisfy the following structural property:

5

“At any time step, the price distribution which maximizes the competitive ratio is strictly

stochastically-decreasing in the amount of remaining inventory.”

This is analogous to a classical structural property when the demand sequence is distributionally-

known in advance and dynamic programming can be used (Gallego and Van Ryzin 1994, Zhao and

Zheng 2000):

“At any time step, the price which maximizes the expected revenue is strictly decreasing in

the amount of remaining inventory.”

This structural property turns out to be crucial for good empirical performance. In fact, in Sec-

tion 5.2 we extend the results in Eren and Maglaras (2010) to derive a c∗(P)-competitive public

pricing policy which does not require any information about the valuations; however, such a policy

is inventory-oblivious and performs poorly in computational experiments.

In Section 5.3, we discuss the final variant—personalized pricing for stochastic valuations—and

show how our public pricing policies from Section 4 can be naturally adapted to exploit personal

information, while maintaining the best-possible competitiveness of c∗(P).

1.3. Computational Experiments

In Section 6, we conduct simulations in the personalized online revenue management setting

popularized by Golrezaei et al. (2014), where the stochastic valuation distribution of each customer

is revealed before a personalized price is offered, but nothing is known about future customers. For a

fixed price set and starting inventory, we randomly generate 10000 sequences with different lengths

and valuation distributions, that capture the full range of instances from “myopic” controls (which

always maximize the immediate revenue) being optimal to “conservative” controls (which always

offer the maximum price) being optimal. We compare the average-case performance of our policy

to those of Ball and Queyranne (2009), Eren and Maglaras (2010), as well as combinations and

modifications of them designed to exploit personalized information, and the baseline “myopic” and

“conservative” controls. We repeat this experiment for different price ranges, price granularities

(discrete vs. continuous prices), and staring inventory levels. We draw the following conclusions:

1. Policies that make use of information about both the valuation distributions and the remaining

inventory perform significantly better than those that do not, with awareness of remaining

inventory being particularly important;

2. Among the two policies that do so, (the personalized form of) our policy accounts for inventory

more precisely than (the personalized form of) the booking limit policy of Ball and Queyranne

(2009), allowing it to achieve not only c∗(P)-competitiveness in theory, but improved average-

case performance in practice.

6

We should note that although we only tested policies designed for worst-case performance on an

unknown demand sequence, it is certainly plausible for a policy without such a worst-case guarantee

to have good average-case performance. However, we know of no such candidates, and have tried

to exhaustively test all variants of known algorithms which operate under our framework (where it

is not possible to forecast/learn future demand), and have found our Valuation Tracking procedure

to perform best. Developing alternative policies in this setting, not based on worst-case analysis,

would be an interesting direction for future work.

2. Literature Review

Single-leg revenue management is a cornerstone problem in revenue management and pricing,

as outlined in Talluri and Van Ryzin (2006). Many different approaches for modeling demand

have been considered over the years, as surveyed in Araman and Caldentey (2011), den Boer

(2015). When nothing is known or can be learned about demand, one often resorts to competitive

ratio analysis (Borodin and El-Yaniv 2005), and this has been done for the single-item revenue

management problem, where the decision is accept-reject, in Ball and Queyranne (2009). Our work

extends their booking limit idea to pricing (cf. Maglaras and Meissner 2006), by integrating it with

the price-skimming idea from Eren and Maglaras (2010) and its interpretation as a randomized

price (Bergemann and Schlag 2008), in what we call a “Valuation Tracking” procedure.

We now compare our algorithmic ideas and results with other streams of literature.

Valuation tracking vs. prophet inequalities. The algorithmic idea of “tracking” what a

clairvoyant would do and imitating it dates back to the “prophet inequalities” of Krengel and

Sucheston (1977). Prophet inequalities have seen a recent surge in the computer science literature

(Kleinberg and Weinberg 2012, Dütting et al. 2016, 2017, Correa et al. 2017, 2018), and like our

paper, they also establish ratio guarantees relative to a clairvoyant optimum in pricing problems.

However, the crucial difference is that in the prophet inequalities literature, it is assumed that

the universe of possible demand functions is given at the start (or can be sampled from, like in

Azar et al. (2014)). Even if the buyers can arrive in an “adversarial” order (chosen adaptively

by the “almighty” adversary from Kleinberg and Weinberg (2012)), it is guaranteed that each

demand function given at the start will appear exactly once. By contrast, our valuation tracking

technique operates with only knowledge of the universe of prices; it is not promised that there

exists a customer who is willing to pay the highest price. Our guarantees are also different in that

they are parametrized by the given universe of prices P, while the classical prophet inequality

result is a uniform 1/2-guarantee. Although our guarantee of c∗(P) is usually smaller than 1/2, it

holds under less information about demand.

7

Valuation tracking vs. water-filling/water-level algorithms. After each customer, our

valuation tracking procedure geometrically “stacks” her valuation above the k’th largest valuation

seen thus far, in effect “balancing” the heights assigned to the k units of inventory (see Section 3.2,

Figure 1). This idea is similar to many algorithms which use “water-filling” to balance the levels

of different buckets. For example, in the Adwords problem, the buckets correspond to different

advertisers’ budgets, and the algorithm prioritizes assigning ads to buckets which are the lowest

percent to being full (Kalyanasundaram and Pruhs 2000, Mehta et al. 2007, Devanur et al. 2013).

In e-commerce, a similar algorithm for personalized recommendation is used to make different

items’ inventories sell out at roughly the same time (Golrezaei et al. 2014, Chen et al. 2016, Ma

and Simchi-Levi 2017, Cheung et al. 2018). Online water-filling algorithms have also been used for

allocation in Gaussian channels (Thekumparampil et al. 2014).

Although the idea is similar, our valuation tracking procedure balances the valuations assigned

to the different units of a single item, while the above water-filling algorithms balance the allocation

rates of different items. The constant competitive ratio guarantees in the above papers generally

do not apply to our setting, because they don’t consider the pricing decision for an item—the

only exception is Ma and Simchi-Levi (2017). However, our valuation tracking is a much more

specialized procedure for a single item, and our competitive ratio guarantee c∗(P) is strictly greater

than their corresponding guarantee, for any price set P. Our valuation tracking procedure also

leads to public pricing algorithms, whereas they always assume the ability to personalize.

Valuation tracking vs. dynamic learning and pricing. Dynamic pricing (with inventory

constraints) has been extensively studied in the setting where demand is initially unknown and

must be learned over time. The learning problem with stationary demand was initiated by Besbes

and Zeevi (2009), and has been subsequently studied by Babaioff et al. (2011), Badanidiyuru et al.

(2012, 2013), Babaioff et al. (2015), den Boer and Zwart (2015), to list a few references. Inventory-

constrained dynamic learning and pricing has also been studied in various Bayesian (Araman and

Caldentey 2009, Chen and Wu 2016) and minimax (Lim and Shanthikumar 2007, Zhang et al.

2016) settings.

Although these papers all consider posted-pricing decisions under limited inventory (called “bud-

gets” in some cases), their main algorithmic challenge is in when to explore new prices to learn

unknown demand rates, vs. when to exploit prices already known to generate a high revenue rate.

By contrast, for our valuation tracking algorithm, the adversarial demand cannot be learned, and

the main algorithmic challenge in how to “hedge” against the different possibilities for the valuation

that will arrive next. The theoretical guarantees are also different—in learning and pricing, the

focus is usually on how the “regret” (the difference from the optimum) scales with the number of

IID customers T ; while in competitive analysis, the focus is on ratio guarantees which hold without

any assumptions on the number of customers T or their valuations being IID.

8

3. Algorithms for Public Pricing and Deterministic Valuations

In this section we consider the variant of the model introduced in Section 1.1 with deterministic

valuations and public pricing. We assume a discrete set of prices but all of our results carry over

to having a continuous range of prices taking the form [rmin, rmax], as we discuss in Section 5.1.

For any positive integer n, let [n] denote the set {1, . . . , n}. We assume that P consists of m

discrete prices, i.e. P = {r(j) : j ∈ [m]}, sorted 0 < r(1) < . . . < r(m). We define r(0) to be 0, and

then the valuation Vt at any time t lies in {r(0), . . . , r(m)}, with Vt = r(0) representing the lack of

a customer during time t. Similarly, we define r(m+1) to be ∞, and then the price Pt at any time

t lies in {r(1), . . . , r(m+1)}, with Pt = r(∞) representing the firm shutting off demand during time t,

which is the only option if its inventory is out of stock. Let Xt be the indicator variable for making

a sale during time t, i.e. it is 1 if Vt ≥ Pt, and 0 otherwise.

Let T denote the number of time steps. None of the algorithms in this paper assume any knowl-

edge of T ; note that T can always be made arbitrarily large by inserting customers with valuation

0. We will hereafter treat T as the unknown total number of customers, and interchangeably use

the phrases “customer t” or “time t” to refer to valuation Vt (even if it is 0).

In the public pricing variant, an online algorithm must choose each Pt based on only the his-

tory of past prices and valuations, P1, V1, . . . , Pt−1, Vt−1. This history also determines the values

of X1, . . . ,Xt−1. The online algorithm does not know T , and has no information about the cur-

rent valuation Vt or the future valuations Vt+1, . . . , VT , when choosing Pt. By contrast, the offline

optimum knows the entire sequence V1, . . . , VT before having to choose any prices. Given any val-

uation sequence V1, . . . , VT , we use the Pt and Xt variables to refer to the execution of an online

algorithm on the valuation sequence. Since the online algorithm may be randomized, we treat Pt

and Xt as random variables. Let ALG(V1, . . . , VT) denote the total revenue earned by the online

algorithm, equal to
∑T

t=1PtXt. Then E[ALG(V1, . . . , VT)] is its expected revenue. Meanwhile, let

OPT(V1, . . . , VT) denote the offline optimum for sequence V1, . . . , VT , equal to the min{k,T} largest

valuations from V1, . . . , VT . Formally, an online algorithm is said to be c-competitive if

E[ALG(V1, . . . , VT)]≥ c ·OPT(V1, . . . , VT), ∀ T ≥ 1, (V1, . . . , VT)∈ (P ∪{0})T . (1)

For an initial setup given by k and P, the maximum possible value of c in (1) is called the competitive

ratio. We will omit the arguments (V1, . . . , VT) in ALG and OPT when the context is clear.

As explained in Section 1.1, since our problem captures the problems of both Ball and Queyranne

(2009) and Eren and Maglaras (2010), an upper bound for the value of c in (1) is given by c∗(P),

as defined below.

Definition 1. For any m≥ 1, 0< r(1) < . . . < r(m), and P = {r(1), . . . , r(m)}, define:

9

• q(j) = 1− r(j−1)

r(j)
for all j ∈ [m] (recall that r(0) = 0);

• q=
∑m

j=1 q
(j);

• c∗(P) = 1
q
.

The interpretation of q(j)

q
in Ball and Queyranne (2009) is the fraction of initial inventory “set

aside” for prices j and higher. The interpretation of q(j)

q
in Eren and Maglaras (2010) is the fraction

of time that price j should be charged. Both of these papers establish that the competitiveness

guarantee c in (1) cannot be greater than c∗(P), via Yao’s minimax principle (Yao 1977). In this

paper, we derive c∗(P)-competitive algorithms for our dynamic pricing problem, which shows that

the competitive ratio in fact equals c∗(P).

3.1. New Techniques, and why Existing Techniques Fail

We explain the need for our main technical ingredient—a new “valuation tracking” procedure

which incorporates both booking limits and price-skimming—by explaining why naive attempts to

derive a c∗(P)-competitive algorithm fail under our dynamic pricing model.

We consider the following example, where the price set is P = {1,2,4}, and we will refer to

customers with these valuations as being of type-L (Low), type-M (Medium), and type-H (High),

respectively. The competitive ratio for this price set derived by Ball and Queyranne (2009) and

Eren and Maglaras (2010) is c∗(P) = 1/2. We describe below their policies for this example.

• Booking Limits (Ball and Queyranne 2009): Initially charge $1; increase the price to $2 after

1/2 of the starting inventory has been sold; further increase the price to $4 after 3/4 of the

starting inventory has been sold. (This is the variant of booking limits with “theft nesting”.)

• Price-skimming (Eren and Maglaras 2010): Charge $1 for 1/2 of the time steps; charge $2 for

1/4 of the time steps; charge $4 for 1/4 of the time steps.

These policies have the benefit that they never need any information about the valuations. However,

we now see why these policies fail to be 1/2-competitive, under our dynamic pricing model.

Attempt 1: Direct implementation of booking limits. It is easy to see that this would

not be 1/2-competitive—suppose just one type-H customer arrived at the start. The algorithm

would be charging the low price of $1, while the offline optimum would be the customer’s valuation

of $4.

Any direct implementation of price-skimming would suffer similarly, since there could be a single

type-H customer who arrives during a time when the price is set to $1.

10

Attempt 2: Price-skimming as a randomized price. It appears that the problem with

Attempt 1 can be solved using the “random price” interpretation of price-skimming—instead of

deterministically partitioning the time horizon according to ratios 1
2
, 1
4
, 1
4

and offering prices 1,2,4

respectively, one could at each time step choose the prices randomly with respective probabilities

1
2
, 1
4
, 1
4
. Then, if a single type-H customer arrives, the expected revenue would be

1

2
· 1 +

1

4
· 2 +

1

4
· 4 = 2

which is 1/2 of the customer’s valuation of $4. It can be checked that 1/2 of the customer’s valuation

is also earned when it is $1 or $2; this is by construction of the price-skimming distribution.

However, having a fixed price-skimming distribution is no longer effective under inventory con-

straints. Indeed, if a long sequence of type-L customers arrive, then this would deplete the inventory

with high probability, and type-H customers who arrive last-minute would not be served, and the

ratio of optimum earned would again be 1/4.

Attempt 3: Naive incorporation of booking limits into price-skimming. It appears

that the problem with Attempt 2 can be solved by respecting the booking limits, i.e. forbidding

price-skimming from randomly choosing the price of $1 after 1/2 of the starting inventory has been

sold. However, this still fails to be 1/2-competitive, as shown by the following example. Suppose

the starting inventory is k= 4, and that 2 type-H customers arrive followed by a type-L customer,

with no customers arriving after that. The optimum would be $9. However, the algorithm’s revenue

would only equal $4: it would earn $2 in expectation from each of the type-H customers, depleting

2 units of inventory, and then earn $0 from the type-L customer due to the booking limit.

Our procedure: Valuation tracking. The problem with Attempt 3 leads to the following

observation—the optimum is guaranteed to increase from the first 4 customers (since there are

4 units of inventory), so in order to be 1/2-competitive, the algorithm must maintain the initial

price-skimming distribution for the first 4 customers. After that, the algorithm can respect booking

limits as long as customers rejected in this way would not increase the optimum, and in fact should

do so, to avoid the problem in Attempt 2 of stocking out. This motivates our procedure below.

• Valuation Tracking: At each time t, let `t denote the smallest value (possibly 0) in the 4

largest valuations to have arrived before time t. Then, randomly choose the price so that if

the unknown valuation at time t satisfies Vt > `t, then the algorithm earns in expectation

1

2
(Vt− `t). (2)

In (2), Vt−`t is the gain in the offline optimum should the valuation of customer t be Vt, and 1/2 is

the desired competitive ratio. The constraint that the algorithm’s revenue exactly equals (2) forces

11

the algorithm to use the most inventory-conservative control which maintains 1/2-competitiveness,

thereby hedging against a stockout. The price distribution used at each time t depends on the

inventory state, and in fact, the calculation for the algorithm’s expected revenue must account for

the probability of stocking out before time t. The surprising fact is that it is possible to choose

price distributions (for each inventory state) which collectively guarantee expected revenue of (2).

Remark about personalization. In this paper we also consider the setting where a cus-

tomer’s valuation is distributionally-given before her price is decided. It is possible to modify the

above examples to show that the attempts similarly fail in this setting—see E-supplement A.

3.2. Illustration of Valuation Tracking Procedure

As explained above, the goal of Valuation Tracking is to earn a constant c∗(P)-fraction of the gain

in OPT from each customer arriving. This requires tracking the current value of OPT, i.e. the sum

of the k largest valuations to have arrived before the current time step. We now illustrate how this

is done and why it is possible to be c∗(P)-competitive.

We consider the same example with P = {1,2,4} and c∗(P) = 1
2
. We consider a starting inventory

of k = 5, and suppose that 5 customers, with valuations 4,1,4,1,2, have already arrived. The

current value of OPT is then the sum of these 5 valuations, 4 + 1 + 4 + 1 + 2 = 12.

The procedure considers the possibilities for the increase in OPT from the next customer, which

we denote as ∆OPT (recall that a pricing decision must be made before knowing the valuation of

the next customer). Since the smallest valuation currently counted toward OPT is 1, if the valuation

of the next customer if 4, then ∆OPT = 3; if it is 2, then ∆OPT = 1. If the next customer has

valuation not exceeding 1, then ∆OPT = 0. The procedure wants to guarantee that its expected

revenue on the next customer is at least 1
2
·∆OPT, for all of these possible valuations. To accomplish

this, it has to consider the probability that it has stocked out at this point; on those sample paths

its revenue is 0.

Our procedure cleanly accounts for the probability of stocking out using the following approach.

Each customer is assigned to a specific unit of inventory i∈ [k] upon arrival. Each inventory unit i

maintains a variable level[i], which is the maximum valuation of a customer previously assigned

to it. The next customer is always assigned to an unit i∗ with the smallest value of level[i∗],

regardless of whether that unit i∗ has already been sold. In this way, the assignment procedure is

deterministic, and allows us to maintain an invariant: the probability a unit i has been sold is

dependent on only the (deterministic) value of level[i].

For each customer, the procedure makes an offer to her only if unit i∗ has not been sold, at a

random price exceeding level[i∗]. The higher level[i∗] is, the more likely it is that unit i∗ has been

12

1

2

4

1 2 3 4 5

level[i]
Before

inventory unit i

1

2

4

1 2 3 4 5

level[i]
After

inventory unit i

2

Revealed
Valuation

Figure 1 The configuration of valuations, before and after a customer with valuation 2 arrives.

sold, and the lower the expected revenue from that customer. However, if level[i∗] is high, then the

potential increase in OPT from that customer is also lower; if the valuation of the customer does

not exceed level[i∗], then both the procedure’s revenue and ∆OPT are 0. By properly choosing

the distributions for the random prices, our procedure is able to maintain the invariant on the

probability of each unit being sold, while earning 1
2
·∆OPT in expectation from each customer.

Returning to the example, given that the first 5 customers had valuations 4,1,4,1,2, the values

of level[i] for i= 1, . . . , k are shown in the LHS of Fig. 1. The next customer, “customer #6”, is

assigned to inventory unit 2. After her valuation is revealed to be 2, the updated configuration is

shown on the RHS of Fig. 1, regardless of whether she was offered a price.

Customer #6 would have been turned away if unit 2 was sold before her arrival, even if other

units were available. When P = {1,2,4}, the probability that a unit i has been sold equals 0, 1
2
, 3
4
,1

if level[i] is 0,1,2,4, respectively. These probabilities correspond to the values of q(j) from Defi-

nition 1. Since level[2] was 1 before customer #6 arrived, she is made an offer with probability

1
2
, at a random price exceeding 1. The price is 2 with probability proportional to 1

4
, and 4 with

probability proportional to 1
4

(again using the values of q(j)), hence each price would be offered

with probability 1
2
. The customer’s valuation is 2, so she will only buy the item if offered price 2,

which occurs with total probability 1
2
· 1
2

= 1
4
. Note that:

1. Customer #6 increases the probability of unit 2 being sold from 1
2

to 3
4
, which is consistent

with her increasing level[2] from 1 to 2;

2. Customer #6 increases the value of OPT, equal to
∑k

i=1 level[i], by 1 (from 12 to 13);

3. Customer #6 brings in expected revenue 1
4
· 2 = 1

2
.

Therefore, during time step 6, our procedure has earned expected revenue 1
2
·∆OPT. We will show

that it achieves this for a general P, and all time steps t, regardless of the valuation of customer t.

13

Algorithm 1: Valuation Tracking Procedure

Input: Customers t= 1,2, . . . arriving online, with each valuation Vt revealed after the price
Pt is chosen.

Output: For each customer t, a (possibly random) price Pt for her.
1 level[i] = 0,sold[i] = false for i= 1, . . . , k;
2 t= 1;
3 while customer t arrives do
4 i∗t = arg mini level[i];
5 set `t to the index in {0, . . . ,m} such that level[i∗t] = r(`t);
6 if sold[i∗t] = false then
7 let q tot=

∑m

j=`t+1 q
(j);

8 randomly choose a price from {r(`t+1), . . . , r(m)}, with probabilities q(`t+1)

q tot
, . . . , `t+1

q tot

respectively (note that these probabilities sum to 1);
9 else

10 reject the customer by choosing price ∞;
11 end
12 observe valuation Vt and purchase decision Xt;
13 level[i∗t] = max{level[i∗t], Vt};
14 if Xt = 1 then
15 sold[i∗t] = true;
16 end
17 t= t+ 1;
18 end

3.3. Valuation Tracking Procedure and Analysis

We now formalize our valuation tracking procedure, in Algorithm 1.

In line 8, the procedure offers exactly one of the prices r(`t+1), . . . , r(m), with the offering proba-

bilities summing to unity. Note that it cannot branch to line 8 if `t =m. This can be seen in the

following way. If `t =m, then i∗t must have been assigned to some past customer t′ with Vt′ = r(m).

At time t′, either inventory unit i∗t was already sold, or customer t′ was offered a price at most

r(m), which she would have accepted. In either case, sold[i∗t] must be true.

The analysis of Algorithm 1 is conceptually simple. Let bi,t be the index in 0, . . . ,m such that

level[i] = r(bi,t) at the end of time t, and jt be the index such that Vt = r(jt). We show that the

following claims are maintained:

1. At the end of each time step t, the probability that any inventory unit i has been sold is

(
∑bi,t

j=1 q
(j))/q;

2. During a time step t, if the valuation of the customer exceeds the level of the inventory unit

she is assigned to, i.e. jt > `t, then:

14

(a) The expected revenue earned by Algorithm 1 is 1
q
(r(jt)− r(`t));

(b) The increase in the offline optimum is r(jt)− r(`t).

If jt ≤ `t during a time step t, then both the revenue of Algorithm 1 and the gain in OPT are 0.

These claims establish the following theorem, whose full proof is deferred to E-supplement B.

Theorem 1. Algorithm 1 is c∗(P)-competitive.

3.4. Modified Algorithm based on Valuation Tracking Procedure

In this section we present a modified version of Algorithm 1 which is useful for the subsequent

developments under the stochastic-valuation model in Section 4.

First we show how to modify Algorithm 1 so that its decision at each time t depends on only

the remaining inventory, instead of the entire history of purchase decisions X1, . . . ,Xt−1.

Definition 2. For all t= 0, . . . , T , let It denote the random variable for the amount of remaining

inventory at the end of time t, which is equal to k−
∑t

t′=1Xt′ .

Our modified algorithm makes an offer to customer t according to the probability that unit i∗t

hasn’t been sold, conditioned on the realized value of It−1. In this way, its decisions depend on only

the inventory state, instead of the exact decisions of past customers.

Definition 3 (Algorithm 1’). Define the following algorithm for choosing the price at each

time t, based on the past valuations V1, . . . , Vt−1 and the amount of remaining inventory It−1.

1. Consider the indices i∗t and `t during iteration t of Algorithm 1, which are deterministic based

on V1, . . . , Vt−1.

2. Compute the probability that sold[i∗t] = true on a run of Algorithm 1, conditioned on It−1

units of inventory remaining after time t− 1 in that run. Let γt denote this probability.

3. With probability γt, make an offer to customer t with the same price distribution as Algo-

rithm 1 (line 8); with probability 1− γt, offer price ∞ to customer t.

Algorithm 1’ chooses the distribution for Pt by “averaging” over all runs of Algorithm 1 which

have the same value of It−1. We first remark that this can be done in polynomial time, despite there

being exponentially many sample paths for Algorithm 1. We prove the following in E-supplement C.

15

Lemma 1. The value of γt in Step 2 of Algorithm 1’ can be computed in polynomial time.

We now introduce some notation to disambiguate between random variables depicting the runs

of different algorithms.

Definition 4. For an algorithm A, let PAt , XAt , and IAt be the random variables for the price

at time t, purchase decision at time t, and inventory remaining at the end of time t, respectively.

Let ALGA be the random variable for the total revenue earned by algorithm A. We will omit the

superscripts A when the context is clear.

Let A=A1 refer to Algorithm 1 and A=A1′ refer to Algorithm 1’.

We show that Algorithms 1 and 1’ are virtually the same in that they have identical distributions

for the remaining inventory at each time step, as well as the random price at each time step

conditioned on any value of remaining inventory. This also establishes that Algorithm 1’ is feasible,

in that it does not try to make a sale with zero remaining inventory.

Lemma 2. For all t ∈ [T], k′ ∈ {0, . . . , k} such that Pr[IA1
′

t−1 = k′] > 0, and j ∈ {1, . . . ,m,m + 1},

Pr[P A1′
t = r(j)|IA1′t−1 = k′] = Pr[P A1

t = r(j)|IA1t−1 = k′].

Also, for all t= 0, . . . , T and k′ ∈ {0, . . . , k}, Pr[IA1
′

t = k′] = Pr[IA1t = k′].

Lemma 2, proven in E-supplement C, is a consequence of the design of Algorithm 1’. For all t,

the random price P A1′
t is identically distributed as P A1

t , conditional on any value for the amount of

remaining inventory at the end of time t−1. Hence if IA1
′

t−1 and IA1t−1 are identically distributed, then

so are IA1
′

t and IA1t . This allows us to inductively establish that the two algorithms have the same

aggregate behavior after combining all sample paths, even though their behavior may differ given

a specific history of purchase decisions. This also makes it easy to see that the expected revenues

of the two algorithms are the same. Lemma 2 directly implies the following theorem.

Theorem 2. Algorithm 1’ is c∗(P)-competitive.

16

3.5. Further Modified Algorithm and Structural Properties

In this section we present a further-modified version of Algorithm 1’ which satisfies two structural

properties: (i) it never offers price ∞ to a customer if it has remaining inventory, offering the

maximum price instead; (ii) the distribution of prices offered to a customer is strictly stochastically-

decreasing (see Corollary 1) in the amount of remaining inventory. Property (ii) is the stochastic

analogue of the classical structural result from Gallego and Van Ryzin (1994, Thm. 1) and its

generalization to non-homogeneous demand in Zhao and Zheng (2000, Thm. 3): at any time step,

if the firm has more inventory, then the optimal offering price is strictly lower.

Definition 5 (Algorithm 1”). Define the following modification to Algorithm 1’: in Step 3,

offer price the maximum price r(m) to customer t, instead of offering ∞, with probability 1− γt.

We prove the following general lemma, which is intuitively easy to see, in E-supplement C.

Lemma 3. Let A be any pricing algorithm. Let A′ be the modified algorithm which: whenever A

would offer price ∞ to a customer while there is remaining inventory, A′ offers price r(m) instead.

Then on any valuation sequence V1, . . . , VT , E[ALGA
′
]≥E[ALGA].

Lemma 3 shows that Algorithm 1” is c∗(P)-competitive. Now, we would like to further show

that the probability of Algorithm 1’ rejecting, or correspondingly the probability of Algorithm 1”

offering the maximum price, is smaller when conditioned on larger values of remaining inventory.

Theorem 3. Suppose that the unconditional probability of Algorithm 1’ rejecting customer t,

Pr[sold[i∗t] = true], lies in (0,1). Then for any k1 <k2 with Pr[It−1 = k1]> 0 and Pr[It−1 = k2]> 0,

Pr[sold[i∗t] = true|It−1 = k1]>Pr[sold[i∗t] = true|It−1 = k2].

This structural property is intuitive, and we defer its proof to E-supplement C. Theorem 3 allows

us to conclude with the following corollary about strict stochastic dominance.

Corollary 1. For any t, suppose k1 < k2 with Pr[It−1 = k1] > 0,Pr[It−1 = k2] > 0, and let

FPt|It−1
(x|k1),FPt|It−1

(x|k2) denote the CDF’s of the price Pt offered by Algorithm 1” at time

17

t conditional on the remaining inventory It−1 being k1, k2, respectively. Then FPt|It−1
(x|k1) ≤

FPt|It−1
(x|k2) for all x ∈ R, and moreover, the dominance is strict in that FPt|It−1

(x|k1) <

FPt|It−1
(x|k2) for some price x∈P.

This intuitive property of raising prices as inventory dwindles contributes to the strong empirical

performance of our algorithm, as we will explain in Section 6.

4. Algorithms for Public Pricing and Stochastic Valuations

In this section we extend the results from Section 3 to allow for stochastic valuations. The model

with stochastic valuations differs from the model with deterministic valuations studied in the

previous section in the following ways.

• The valuation of each arriving customer is now randomly drawn from some distribution. The

valuations of different customers are independent, but not necessarily identically distributed.

• An online public pricing algorithm is given the valuation distribution of each customer after

the price for that customer has been chosen.

• The algorithm also sees the purchase decision of the customer at the price offered, and hence

can posterior-update this valuation distribution for the customer if it wishes.

Definition 6. We use the following notation, defined for all t:

• Vt: the valuation of customer t, a random variable taking values in {r(0), r(1), . . . , r(m)};

• vt: the probability vector (v
(0)
t , v

(1)
t , . . . , v

(m)
t) for the distribution of Vt, with v

(j)
t = Pr[Vt = r(j)]

and
∑m

j=0 v
(j)
t = 1.

With stochastic valuations, we say that an online algorithm is c-competitive if

EV1∼v1,...,VT∼vT
[E[ALG(V1, . . . , VT)]]

EV1∼v1,...,VT∼vT
[OPT(V1, . . . , VT)]

≥ c, ∀ T ≥ 1, (v1, . . . ,vT). (3)

In (3), the numerator is the revenue earned in expectation over both the randomness in the val-

uations and any randomness in the algorithm, while the denominator is the clairvoyant optimum

defined as the expected sum of the k largest valuations. We note that this optimum is an upper

bound on the revenue of the optimal dynamic program knowing distributions v1, . . . ,vT in advance,

18

and hence any value of c which satisfies (3) implies the same guarantee relative to the optimal DP.

Moreover, since the guarantee c in (3) cannot be greater than c∗(P) even when V1, . . . , VT are deter-

ministic (in which case the DP value equals OPT(V1, . . . , VT)), our c∗(P)-competitive algorithms

are still optimal if one were to use the DP value in the denominator of definition (3) instead. By

using the relaxation EV1∼v1,...,VT∼vT
[OPT(V1, . . . , VT)], our denominator is much easier to analyze.

We should point out that with stochastic valuations, another commonly-studied relaxation which

could have been used in the denominator of (3) is the deterministic linear program (DLP) with dis-

tributions v1, . . . ,vT . By the same argument about V1, . . . , VT being deterministic, the competitive

ratio relative to the DLP also cannot be greater than c∗(P). However, we provide in E-supplement D

examples of P where the competitive ratio relative to the DLP is strictly smaller than c∗(P).

Therefore, we choose our relaxation because it automatically provides the tight competitive ratio

relative to the DP. Nonetheless, we believe that pinpointing the different value of competitive ratio

relative to the DLP is an interesting theoretical problem.

4.1. Optimally-Competitive Algorithm with Exponential Runtime

Having defined our clairvoyant optimum, we now derive c∗(P)-competitive algorithms in the

stochastic-valuation model. We do so by using our valuation tracking procedure as a subroutine,

in a similar way to the development in Section 3.4, which may be helpful to reference.

Conceptually, our algorithm is a generalization of Algorithm 1’ to stochastic valuations. However,

since the assignment procedure in Algorithm 1 is no longer deterministic, we describe the algorithm

the following way. At a time step t, having seem distributions v1, . . . ,vt−1 and knowing remaining

inventory k′:

1. Consider a run of Algorithm 1 to the end of time t, where V1, . . . , Vt−1 are randomly drawn

according to v1, . . . ,vt−1. For all j ∈ {1, . . . ,m,m+ 1}, compute Pr[P A1
t = r(j)|IA1t−1 = k′], where

the probability is over both the random valuations, and the random prices chosen by the

algorithm. (If Pr[IA1t−1 = k′] has measure 0, then choose price r(m+1).)

2. For each j ∈ {1, . . . ,m,m+ 1}, choose price r(j) with probability Pr[P A1
t = r(j)|IA1t−1 = k′].

19

We will call this algorithm Exp and use random variables P Exp
t , IExpt (coming from Definition 4) to

refer to its execution. It will be seen that Exp is a feasible policy when we establish that IExpt and

IA1t are identically distributed at every time step t.

We allow Exp to use Exponential running time, which is required for computing the conditional

probabilities Pr[P A1
t = r(j)|IA1t−1 = k′]. To see why, note that the geometric stacking configuration

from Algorithm 1 is no longer fixed once the valuations are stochastic. Therefore, our polynomial-

time computation trick (Lemma 1) for Algorithm 1’ (the special case of Exp under deterministic

valuations) can no longer be used. Instead, we compute Pr[P A1
t = r(j)|IA1t−1 = k′] by brute force,

enumerating all histories of prices offered P A1
1 , . . . , P A1

t−1 and valuations realized V1, . . . , Vt−1 which

would lead to IA1t−1 = k′. Each such history implies a stacking configuration based on V1, . . . , Vt−1,

from which the random price distribution of Algorithm 1 can be computed. Taking a weighted

average over these histories tells us the probability with which P A1
t would equal each price r(j).

For now, we ignore computational considerations and show that the exponential-time algorithm

Exp is c∗(P)-competitive as an online algorithm; in Section 4.2 we show how we can sample from the

conditional distribution of P A1
t given IA1t−1 = k′, to achieve polynomial runtime while only losing ε in

the competitiveness. The following lemma is analogous to Lemma 2 and proved in E-supplement E.

Lemma 4. For all t∈ [T], k′ ∈ {0, . . . , k} such that Pr[IExpt−1 = k′]> 0, and j ∈ {1, . . . ,m,m+ 1},

Pr[P Exp
t = r(j)|IExpt−1 = k′] = Pr[P A1

t = r(j)|IA1t−1 = k′]. (4)

Also, for all t= 0, . . . , T and k′ ∈ {0, . . . , k},

Pr[IExpt = k′] = Pr[IA1t = k′]. (5)

Lemma 4 establishes that Exp is a feasible policy, i.e. it does not try to make a sale with no

inventory remaining. Having established this, it remains to prove that Exp is optimally competitive.

Theorem 4 is proved in E-supplement E.

Theorem 4. E[ALGExp(V1, . . . , VT)] = E[ALGA1(V1, . . . , VT)]. By Theorem 1, ALGA1(V1, . . . , VT) =

1
q
OPT(V1, . . . , VT) for all realizations (V1, . . . , VT). Therefore, Exp is c∗(P)-competitive.

20

We should point out that although Exp does not inherit the polynomial-time property from

Algorithm 1’, it does inherit the structural property of the price at any time being stochastically-

decreasing in the amount of remaining inventory. This is immediate from Theorem 3, which holds

conditioned on any realization of V1, . . . , VT .

Also, note the following. P Exp
t and P A1

t are only guaranteed to be identically distributed when

averaged over all the sample paths up to time t− 1 such that the total remaining inventory is

k′. They may not be identically distributed when conditioned on a specific purchase sequence

X1, . . . ,Xt−1 such that
∑t−1

t′=1Xt′ = k−k′, or a specific valuation sequence V1, . . . , Vt−1. Nonetheless,

our method works in general. For example, if valuations were correlated, then we would condition

on both It−1 and V1, . . . , Vt−1. One benefit of conditioning on only It−1 in the independent case is to

limit the state space, which is necessary for our polynomial-time sampling algorithm in Section 4.2.

4.2. Emulating the Exponential-runtime Algorithm using Sampling

In this section we show how to “emulate” Exp, using sampling, to achieve a polynomial runtime.

First we provide a high-level overview of the challenges and the techniques used to overcome them.

First, suppose we are at the start of time t, with inventory k′ remaining. If we randomly sample a

run of Algorithm 1 (drawing valuations randomly) such that IA1t−1 = k′, and copy price P A1
t for time

t, then we would match the probabilities prescribed Exp. This motivates the following algorithm:

sample runs of Algorithm 1 to the end of t− 1 until hitting one where IA1t−1 = k′, and then choose

the price for time t according to lines 6–11 of Algorithm 1. Such an algorithm is equivalent to Exp,

and thus would be c∗(P)-competitive.

However, on sample paths where Pr[IA1t−1 = k′] is small, the sampling could take arbitrarily long.

We limit the number of sampling tries so that the algorithm deterministically finishes in poly-

nomial time, and show that the total measure of sample paths which fail at any point is O(ε).

Unfortunately, there could be correlation between the sampling failing, and having high revenue

on a sample path. Nonetheless, we can couple the sample paths of the sampling algorithm to those

21

Algorithm 2: Stochastic Sampling Algorithm based on Valuation Tracking Procedure

Input: Customers t= 1,2, . . . arriving online, with each valuation distribution vt revealed
after the price Pt is chosen.

Output: For each customer t, a (possibly random) price Pt for her.
1 inventory= k;
2 t= 1;
3 while customer t arrives do
4 repeat
5 run Algorithm 1 to the start of time t, with valuations V1, . . . , Vt−1 drawn according to

v1, . . . ,vt−1, and prices P A1
1 , . . . , P A1

t−1 realized according to the random prices chosen
by Algorithm 1;

6 if IA1t−1 = inventory then
7 choose each price r(1), . . . , r(m), r(m+1) according to the probability that Algorithm 1

(on this run) would choose that price for customer t;
8 observe vt;
9 observe purchase decision of customer t and update inventory accordingly;

10 t= t+ 1 and continue to next iteration of while loop;
11 end
12 until C(k+ 1)t2 runs elapse;
13 choose price ∞;
14 t= t+ 1;
15 end

of the exponential-time algorithm, mark the first point of failure on each sample path, and bound

the difference in revenue after that point.

The details of the sampling algorithm, which we will call Samp, are specified in Algorithm 2.

Note that in line 12 of the algorithm, C is a positive integer to be chosen later. The decision of

what to do when the sampling fails, i.e. defaults to line 13, is inconsequential, since in our analysis

we do not expect any revenue from a sample path after the first point of failure.

To analyze the revenue of Algorithm 2, we consider a hypothetical algorithm which behaves

identically to Algorithm 2, except even when it defaults to line 13, it is able to behave as if the

sampling succeeded and makes the same decisions as lines 7–10. Such an algorithm is equivalent

to Exp, and hereafter we will refer to it as Exp. The results of the sample runs do not affect the

outcome of the algorithm, but help with bookkeeping.

Definition 7. Let F Samp
t be the indicator random variable for the sampling in Algorithm 2 failing

at time t, defined for all t ∈ [T + 1]. Let F Samp
T+1 = 1 deterministically. Analogously, let F Exp

t be the

indicator random variable for the sampling in Exp “failing” at time t, ∀t∈ [T + 1].

22

For convenience, here we will use different random variables to denote the valuations in the runs

of Samp and Exp: V Samp
t and V Exp

t , respectively. We will also use the notation from Definition 4.

Definition 8. Define the history up to time t to consist of realizations up to and including the

sampling at time t. Formally, for all t∈ [T + 1], let ht = (f1, p1, u1, . . . , ft−1, pt−1, ut−1, ft), where:

• ft′ is a binary variable in {0,1} indicating whether the sampling failed at time t′, for all t′ ∈ [t];

• pt′ is a price in {r(1), . . . , r(m), r(m+1)}, for all t′ ∈ [t− 1];

• ut′ is a valuation in {r(0), r(1), . . . , r(m)}, for all t∈ [t− 1].

Furthermore, define the following vectors of random variables for all t∈ [T + 1]:

• HSamp
t = (F Samp

1 , P Samp
1 , V Samp

1 , . . . ,F Samp
t−1 , P

Samp
t−1 , V

Samp
t−1 ,F Samp

t);

• HExp
t = (F Exp

1 , P Exp
1 , V Exp

1 , . . . ,F Exp
t−1, P

Exp
t−1, V

Exp
t−1,F

Exp
t).

Now, we would like to partition the sample paths by the history up to the first point of failure,

and prove that the two algorithms behave identically up to this point.

Definition 9. Let Ft denote the histories up to time t such that the first failure in the sampling

occurs at time t. Formally, for all t∈ [T + 1], Ft is the set of ht = (f1, p1, u1, . . . , ft−1, pt−1, ut−1, ft)

such that f1 = . . . = ft−1 = 0 and ft = 1. (p1, . . . , pt−1 and u1, . . . , ut−1 are arbitrary, and thus

|Ft|= (m+ 1)2(t−1).)

Lemma 5. For a run of Algorithm 2,
⋃T+1

t=1

⋃
ht∈Ft{H

Samp
t = ht} is a set of mutually exclusive and

collectively exhaustive events. Analogously, for a run of Exp,
⋃T+1

t=1

⋃
ht∈Ft{H

Exp
t = ht} is a set of

mutually exclusive and collectively exhaustive events.

Furthermore, Pr[HSamp
t = ht] = Pr[HExp

t = ht], for all t∈ [T + 1] and ht ∈Ft.

Lemma 5 is straight-forward, so we defer its proof to E-supplement E. Having proved it, we can

write:

E[ALGSamp] =
T+1∑
t=1

∑
ht∈Ft

E[ALGSamp|HSamp
t = ht]Pr[HSamp

t = ht] (6)

E[ALGExp] =
T+1∑
t=1

∑
ht∈Ft

E[ALGExp|HExp
t = ht]Pr[HExp

t = ht]. (7)

23

Since we also know that Pr[HSamp
t = ht] = Pr[HExp

t = ht], our goal is to compare the expected

revenues of the two algorithms conditional on each history ht ∈Ft.

When t= T + 1, i.e. the sampling never fails, it is easy to see that the two revenues are equal.

Indeed, for any hT+1 ∈FT+1:

E[ALGSamp|HSamp
T+1 = hT+1] = E

[T∑
t=1

P Samp
t ·1(V Samp

t ≥ P Samp
t)

∣∣∣HSamp
T+1 = hT+1

]
=

T∑
t=1

pt ·1(ut ≥ pt)

= E[ALGExp|HExp
T+1 = hT+1]. (8)

Lemma 6. Recall that E[OPT(V1, . . . , VT)] is the expected value of the offline optimum with

V1, . . . , VT drawn independently according to v1, . . . ,vT . For t≤ T and ht ∈Ft,

E[ALGExp|HExp
t = ht]−E[ALGSamp|HSamp

t = ht]≤E[OPT(V1, . . . , VT)], (9)

Substituting (8), for hT+1 ∈ FT+1, and (9), for h1, . . . ,hT ∈ F1, . . . ,FT , into (6) and (7), we

conclude that

E[ALGExp]−E[ALGSamp]≤E[OPT] ·
(T∑
t=1

∑
ht∈Ft

Pr[HSamp
t = ht]

)
. (10)

By Definition 9, the expression in parentheses is the total probability of the sampling failing at

any point, before choosing the final price P Samp
T . We bound the term for each t∈ [T] separately. As

t increases, the number of samples increases, so the probability of failure decreases:

Lemma 7. For all t∈ [T],
∑

ht∈Ft Pr[HSamp
t = ht]≤ 1

eCt2
.

It now follows easily that the sampling algorithm is within ε of being optimally competitive.

Theorem 5. For all ε > 0, if we set C = d 6
eπ2ε
e in line 12 of Algorithm 2, then it is (1

q
− ε)-

competitive, and has runtime polynomial in 1
ε
, k, T , and m.

Theorem 5 is straight-forward and proved in E-supplement E.

5. Extensions

All proofs from this section are deferred to E-supplement F.

24

Algorithm 3: Valuation Tracking Procedure for a Continuous Interval of Feasible Prices

Input: Customers t= 1,2, . . . arriving online, with each valuation Vt revealed after the price
Pt is chosen.

Output: For each customer t, a (possibly random) price Pt for her.
1 val[i] = 0,sold[i] = false for i= 1, . . . , k;
2 t= 1;
3 while customer t arrives do
4 v= mini′{val[i′]};
5 i= min{i′ : val[i′] = v};
6 if sold[i] = false then
7 if v=0 then
8 offer price 1 w.p. 1

1+lnR
, and price r w.p. 1

r(1+lnR)
for all r ∈ (1,R];

9 else
10 offer price r w.p. 1

r(lnR−lnv) for all r ∈ (v,R];

11 end
12 else
13 reject the customer by choosing price ∞;
14 end
15 observe valuation Vt and purchase decision Xt;
16 if Vt > v then
17 val[i] = Vt;
18 if Xt = 1 then
19 sold[i] = true;
20 end
21 end
22 t= t+ 1;
23 end

5.1. A Continuum of Prices

In this section we show how to modify Algorithm 1 for the setting where valuations lie in {0} ∪

[rmin, rmax]. We let R= rmax/rmin and rescale the price interval to be [1,R]. The competitive ratio

obtained will be 1
1+lnR

, recovering the competitive ratio from Ball and Queyranne (2009).

Consider Algorithm 3. Now val[i] keeps track of the highest valuation assigned to inventory unit

i thus far, starting at 0. It is easy to see that the distributions specified in lines 8 and 10 are proper.

To analyze the competitiveness of Algorithm 3, we prove lemmas analogous to Lemmas EC.1–

EC.2. We use the same notation as in Definition EC.1, except instead of `i,t and jt, we use wi,t to

denote the value of val[i] at the end of time t, taking a value in {0}∪ [1,R].

25

Lemma 8. At the end of each time step t, the probability that any inventory unit i has been sold

is 0 if wi,t = 0, and
1+lnwi,t

1+lnR
if wi,t ≥ 1. Formally, for all t= 0, . . . , T ,

E[Si,t] = 1(wi,t > 0) · 1 + lnwi,t
1 + lnR

, for i∈ [k]. (11)

Lemma 9. Suppose Vt =wit,t >wit,t−1 in a time step t∈ [T]. Then the expected revenue earned by

the algorithm during time step t is 1
1+lnR

(wit,t−wit,t−1).

With these two lemmas, the rest of the proof follows E-supplement B. Indeed, Lemma EC.3 says

that E[ALG] = 1
1+lnR

∑k

i=1wi,T . Meanwhile, Lemma EC.4 says that OPT =
∑k

i=1wi,T . Therefore,

E[ALG]
OPT
≥ 1

1+lnR
, and since V1, . . . , VT was arbitrary, Algorithm 3 is 1

1+lnR
-competitive.

5.2. No Information on Valuations

In this section we discuss whether it is possible for an online algorithm to be c∗(P)-competitive

without any information (before or after, deterministic or distributional) on the valuations.

First we show that this is impossible for any online algorithm which price-skims independently,

i.e. realizes its random price at each time step using an independent source of random bits.

Proposition 1. Suppose that either: (i) m≥ 2 and valuations can be 0 (as usual); or (ii) m≥ 3

and valuations cannot be 0. (Recall that m is the number of prices.) Then for any online algorithm

where each Pt chosen independently based on the sales history X1, . . . ,Xt−1, there exists a sequence

V1, . . . , VT such that

E[ALG(V1, . . . , VT)]

OPT(V1, . . . , VT)
< c∗(P).

However, we show that it is possible to be c∗(P)-competitive if the online algorithm can price-

skim in a “coordinated” fashion, with the same probabilities as in Eren and Maglaras (2010).

Proposition 2. Consider the following random-fixed-price policy:

1. Initially, choose a random price P which is equal to each r(j) with probability q(j)/q;

2. Offer price P as long as there is remaining inventory.

26

This policy is c∗(P)-competitive.

It is known that correlated randomness is very powerful in the design of online algorithms (see,

e.g., Karp et al. (1990), who derive an extremely elegant solution to the online matching problem

using correlated randomness). Indeed, we can use our policy from Proposition 2 under our previous

models with more information on the valuations and still have a c∗(P)-competitive algorithm.

However, this is impractical for several reasons. First, the fact that a single random price is fixed

makes the algorithm have large variance in its performance. Second, the random-fixed-price policy

does not show how the price should evolve as inventory is depleted; namely, it does not satisfy the

intuitive structural property in dynamic pricing that the price is greater if the remaining inventory

is less as we showed in Section 3.5. In Section 6, we will test the performance of the random-fixed-

price policy, and see that in fact it performs worse than booking limits (which does not have a

theoretical guarantee).

5.3. Personalized Revenue Management Model

In this section we consider the personalized online revenue management setup introduced by Gol-

rezaei et al. (2014), where:

• the stochastic decision of each customer can be modeled accurately upon her arrival to the

e-commerce platform (by using her characteristics);

• however, the overall intensity and characteristics of customers to arrive over time is difficult

to model (and treated as unknown/arbitrary).

This corresponds to the stochastic-valuation model in Section 4, with the change that during

each time step t, the distribution of each Vt is first given, and then the algorithm can offer a

personalized price. The public pricing algorithms from Section 4 can still be applied, and will be

c∗(P)-competitive. Furthermore, it is not possible to be better than c∗(P)-competitive even with

this personalized information, as discussed in Section 1.1.

27

Nonetheless, in this section we specify how our online algorithms can exploit personalized infor-

mation to strictly improve their decisions, while remaining c∗(P)-competitive. Take any c∗(P)-

competitive algorithm A for the stochastic-valuation model (e.g. the algorithm Exp from Sec-

tion 4.1). For each time step t and inventory level k′ > 0 such that Pr[IAt−1 = k′]> 0, consider the

distribution for the price Pt chosen by algorithm A conditioned on IAt−1 = k′ (this depends on the

previously-observed valuation distributions v1, . . . ,vt−1). Since now we also know the distribution

vt of valuation Vt, we can compute the probability of algorithm A making a sale during time t,

m∑
j=1

Pr[PAt = r(j)|IAt−1 = k′]Pr[Vt ≥ r(j)], (12)

as well as its expected revenue,

m∑
j=1

r(j) Pr[PAt = r(j)|IAt−1 = k′]Pr[Vt ≥ r(j)]. (13)

We can interpret (13) as the reward given to the algorithm during time t in exchange for the

probability (12) of consuming inventory. The price distribution used by the algorithm to obtain

such an exchange was chosen without knowing the distribution of Vt. However, since now we do

know the distribution of Vt, we can potentially make a decision which achieves more expected

reward under the same consumption probability. Specifically, we solve the following LP:

max
m∑
j=1

r(j) Pr[Vt ≥ r(j)]pj(t, k′) (14)

s.t.
m∑
j=1

Pr[Vt ≥ r(j)]pj(t, k′) =
m∑
j=1

Pr[PAt = r(j)|IAt−1 = k′]Pr[Vt ≥ r(j)] (15)

m∑
j=1

pj(t, k
′)≤ 1 (16)

pj(t, k
′)≥ 0 ∀ j = 1, . . . ,m (17)

pj(t, k
′) represents the probability that we should offer price j at time t, conditioned on the remain-

ing inventory being k′. We know that setting each pj(t, k
′) = Pr[PAt = r(j)|IAt−1 = k′] is a feasible

solution, and hence the optimal objective value of the optimization problem is at least (13). Let

{p∗j (t, k′) : j = 1, . . . ,m} denote an optimal solution to the optimization problem, for all t and k′.

28

Proposition 3. Consider the online algorithm which, at each time step t, sets the price randomly

according to probabilities {p∗j (t, k′) : j = 1, . . . ,m}, where k′ is the remaining inventory at the start

of time t. Then for any sequence of valuation distributions v1, . . . ,vT , the total expected revenue of

this algorithm is at least EV1∼v1,...,VT ,∼vT
[ALGA(V1, . . . , VT)].

Proposition 3 is established in the same way as Theorems 2 and 4—for t = 1, . . . , T , we can

inductively ensure from constraint (15) that the distribution for the inventory level time t is

identical for both algorithms. Since the modified algorithm has the same distribution for inventory

state at each time t and earns at least as much revenue as A in expectation on every possible state,

its total revenue can only be greater. In fact, as we will see in Section 6, the modification with

personalization often earns much greater revenue, since through solving the LP formed by (14)–

(17), it often finds a higher-revenue way to maintain the same inventory consumption probability.

Finally, we remark that if P is a continuum [rmin, rmax] (following the extension from Section 5.1),

then the LP (14)–(17) would have infinitely many variables, but because it has only two constraints,

an optimal solution would need support size at most two. In fact, most parametric forms commonly

used to describe a demand function over [rmin, rmax], including linear, log-linear, and logit, are

regular, in which case an optimal solution has support of size one and the LP can be tractably

solved (cf. Talluri and Van Ryzin 2006, Sec. 7.3).

6. Computational Experiments

In this section we test the performance of our algorithm in simulations, following the personalized

online revenue management setup (with stochastic valuations) discussed in Section 5.3.

6.1. Experimental Setup and Algorithms Compared

The only information given initially is the starting inventory k and the price set P = {r(1), . . . , r(m)},

where we let 0 = r(0) < . . . < r(m) < r(m+1) =∞. Based on k and P, we generate different arrival

sequences (v1, . . . ,vT) of varying lengths T . The valuation distribution vt = (v
(0)
t , . . . , v

(m)
t) for any

29

particular customer t = 1, . . . , T is log-linear (exponential). That is, there is a price sensitivity

parameter bt > 0 such that the probability of her valuation Vt exceeding any price P ≥ 0 satisfies

Pr[Vt ≥ P] = e−btP . (18)

This then induces a discrete distribution over the maximum-willingness-to-pay values of

r(0), . . . , r(m) by setting v
(j)
t = Pr[Vt ≥ r(j)] − Pr[Vt ≥ r(j+1)] for all j = 0, . . . ,m; note that these

probabilities v
(0)
t , . . . , v

(m)
t indeed sum to 1, by equation (18).

We choose this family of distributions due to the convenience of equation (18) and the property

that the immediate revenue Pe−btP is decreasing in P whenever P ≥ 1/bt (cf. Talluri and Van Ryzin

2006, Sec. 7.3). This property is important for creating a non-trivial tradeoff between offering lower

prices which maximize immediate revenue, vs. offering higher prices which maximize revenue per

inventory. We do not believe our results to be sensitive to the exact family of demand used as long

as this property is satisfied.

For each arrival sequence we generate, we draw the parameters b1, . . . , bT independently from the

same distribution, i.e. fluctuations in price sensitivity are stationary over time. Therefore, arrival

sequences are mainly distinguished by their total number of customers T , where under small T it

is optimal to offer lower prices, while under large T it is optimal to offer higher prices. Of course, T

is initially unknown, and online algorithms must immediately decide a personalized price for each

customer t upon seeing her valuation distribution vt (equivalently, price sensitivity bt).

We now describe the algorithms and benchmarks we test. First we describe algorithms which

are oblivious to both valuation distributions and remaining inventory.

• PS (Price-Skimming): choose a random price, according to Eren and Maglaras (2010), and

fix that to be the price for all customers. This policy is described in Section 5.2.

• IPS (Independent Price-Skimming): same as PS, but independently reset the random price

for each customer. This policy is described in Section 3.1 (see “Attempt 2”).

• Conservative: always charge the maximum price of r(m).

Now we describe algorithms which are valuation-oblivious but react to remaining inventory.

30

• BL (Booking Limits): gradually raise the prices as inventory is sold, according to Ball and

Queyranne (2009). This policy is described in Section 3.1 (see “Attempt 1”).

• BL-PS (Booking Limits with Price-Skimming): same as BL, but instead of deterministically

charging the base price, use PS to randomly choose a price above the base price. This policy

is described in Section 3.1 (see “Attempt 3”).

Now we modify the previous algorithms to offer personalized prices based on knowledge of valu-

ation distributions. Whenever the previous algorithm would have offered a base price, the modified

algorithm looks for an opportunity to offer a higher price which also has a higher immediate rev-

enue, for each customer t (as discussed earlier, this could only be possible if the base price P

satisfies P < 1/bt). In this way, we get the personalized modifications PS-P, IPS-P, BL-P of

the earlier price-skimming, independent price-skimming, and booking limits methods for setting

base prices, respectively. BL-P reacts to remaining inventory but PS-P and IPS-P are inventory-

oblivious. Another similar inventory-oblivious algorithm we will test is the Myopic algorithm,

which greedily offers to each customer t the price P among all prices which maximizes immediate

revenue Pe−btP , essentially doing personalization with a fixed base price of 1.

Finally, we test our Valuation Tracking procedure with stochastic valuations and personal-

ization, as described in Section 5.3. To be precise, we consider our public pricing algorithm Exp

for stochastic valuations, sample 1000 times (see Section 4.2) to estimate the price it would offer

(replacing ∞-prices with r(m) as in Section 3.5), and then look for an opportunity to offer a per-

sonalized price, repeating this process at each time step. Our algorithm is similar to BL-P in that

it is both valuation-aware and inventory-aware, but reacts to inventory in a different way.

For reference, we will also compare with the optimal DP (dynamic programming) benchmark

which knows the entire arrival sequence (v1, . . . ,vT) in advance (but still does not know the real-

izations of the valuations like OPT does), for a total of 11 algorithms tested.

6.2. Parameter Values and Results

We fix the price set to be P = {1,2,3,4} for now, and vary its granularity and range later in

Section 6.3. We consider two scenarios for starting inventory: small (k = 10) and large (k = 100).

31

Table 1 Average performance of each algorithm and benchmark over the instances, under both scenarios of starting inventory k.

The algorithms are sorted by whether they are valuation-aware and/or inventory-aware. The performance of our algorithm is bolded.

Valuation-oblivious Valuation-aware
Benchmarks

Inventory-obl. Inventory-aware Inventory-obl. Inventory-aware

PS IPS BL BL-PS PS-P IPS-P BL-P Val. Tracking Myopic Conservative DP

k= 10 48.0% 45.8% 55.5% 57.9% 54.3% 54.5% 61.3% 62.6% 49.3% 49.3% 73.7%
k= 100 47.9% 45.6% 56.6% 59.2% 54.3% 54.5% 62.4% 64.5% 49.1% 48.7% 76.1%

Under both values of k, we generate arrival sequences for 10 different lengths: T = k,2k, . . . ,10k.

We independently generate 1000 sequences for each value of T , resulting in a total of 10000 arrival

sequence instances for each inventory scenario.

Recall from Section 6.1 that valuation distributions are log-linear. We independently draw the

price sensitivity parameter bt of each customer t uniformly from the range [1/3,4/3], which ensures

that even under the smallest value of bt = 1/3, the maximum price of 4 does not also maximize the

immediate revenue function (since the immediate revenue Pe−btP decreases over prices P ≥ 1/bt).

Meanwhile, the upper bound of bt = 4/3 was calibrated so that at the maximum length of T = 10k,

the Conservative algorithm can expect to sell most of the k units of inventory at the maximum

price (and hence is best-performing at the largest values of T , as will be evidenced).

For each instance, and each of the 11 algorithms from Section 6.1 as well as OPT, we run

1000 simulations to empirically estimate the revenue earned (with the exception of DP, for which

we can exactly calculate the expected revenue). We divide the revenue earned by OPT, to get a

performance ratio for each algorithm on each instance. We display the average performance of each

algorithm over the 10000 instances, for both inventory scenarios k= 10 and k= 100, in Table 1.

We observe that there is noticeable separation in performance between the four categories

of algorithms (valuation-oblivious vs. -aware, inventory-oblivious vs. -aware). Among the algo-

rithms aware of neither valuations nor inventory, PS attains exactly the theoretically guarantee of

c∗({1,2,3,4}) = 0.48, while IPS performs worse. Among the algorithms aware of both, Valuation

Tracking outperforms BL-P. All in all, awareness of inventory appears to be more important than

awareness of valuations, especially at the larger starting inventory of k = 100, and the three best

32

Figure 2 Average performances of algorithms as the length T varies over 10,20, . . . ,100, with the starting inven-

tory k fixed at 10. The performance of our Valuation Tracking algorithm is bolded.

algorithms—Valuation Tracking, BL-P, and BL-PS (which performs well relative to its category)—

all raise their prices as the remaining inventory dwindles. The intuition for why this yields good

average-case performance over all the instances is that:

• When T turns out to be small, the algorithms would have set low prices and maximized sales;

• When T turns out to be large, the algorithms would have raised their prices to get more out

of their inventories.

We now delve into why Valuation Tracking is better for reacting to inventory than booking

limits. We dis-aggregate the results from Table 1 and plot the performances of each algorithm

as a function of T , averaging over the 1000 instances with that length. We plot the results in

Figures 2–3.

We observe the following trends in both Figure 2 (for k= 10) and Figure 3 (for k= 100).

33

Figure 3 Average performances of algorithms as the length T varies over 100,200, . . . ,1000, with the starting

inventory k fixed at 100. The performance of our Valuation Tracking algorithm is bolded.

• At the smallest and largest values of T , the Myopic and Conservative algorithms, which

maximize revenue-per-customer and revenue-per-inventory respectively, are best-performing

(aside from the future-knowing DP algorithm). This further corroborates the legitimacy of our

range of T tested—not only are the aggregate performances of the Myopic and Conservative

benchmarks comparable in Table 1, we have covered the full spectrum of lengths from Myopic

being best to Conservative being best.

• The improvement of Valuation Tracking over BL-P can be attributed to noticeably better

performance at large T , at the expense of slightly worse performance at small T .

The second bullet suggests that our algorithm is more conservative with inventory than booking

limits. To understand why, we have to look at the definitions of the algorithms. Both algorithms

essentially set aside the same fractions of inventory, given by q(1), . . . , q(m) from Definition 1, “to be

sold at each price”. However, booking limits are based on sales, and offers low prices (assuming low

34

prices maximize revenue-per-customer) at the start until a fixed amount (specifically, q(1)k units) of

inventory is sold. By contrast, our algorithm is based on the possible realizations of the valuation,

and starts considering higher prices from the start based on the exact valuation distribution.

We also emphasize that Valuation Tracking cannot be matched by simply taking BL-P and

making it more inventory-conservative by combining it with a more conservative algorithm. Indeed,

as evidenced in Figures 2–3, the performance curve of Valuation Tracking lies well above any convex

combination formed by the other curves. We believe that Valuation Tracking is fundamentally

the more precise way to react to inventory under the stochastic nature of our pricing problem,

while booking limits were invented for the revenue management problem where the decision is to

deterministically accept/reject.

6.3. Varying the Price Set

We verify the robustness of our results from Section 6.2 by varying the price set P to be different

from {1,2,3,4}. We consider two ways to vary P:

• Increase the granularity of P by allowing feasible prices to come in increments of 0.5 (i.e. P =

{1.0,1.5,2.0,2.5,3.0,3.5,4.0}), 0.25, 0.125, etc., all the way down to increments of 0.015625.

• Consider a maximum price of 2 or 8 instead, while maintaining granularity at the integer level

(i.e. P = {1,2} or P = {1,2,3,4,5,6,7,8}).

We repeat the experiments from Section 6.2 for the small-inventory scenario of k= 10, and plot

the average performances of the algorithms over the instances in Figure 4. For brevity, we only

display the performances of PS (which always equals the competitive ratio guarantee of c∗(P)),

the three best algorithms from Section 6.2 (BL-PS, BL-P, and Valuation Tracking), and DP.

The relative performances of the algorithms in Figure 4 does not differ from those originally

observed in Table 1. In fact, a higher granularity of prices increases the advantage of our Valuation

Tracking algorithm over BL-P, since with more possible pricing decisions there is more room for

improvement. Similarly, a larger range of prices makes valuation-awareness more important, and

hence we see the drop in the performance of BL-PS when P = {1,2, . . . ,8}.

35

Figure 4 Average performances of algorithms with k fixed at 10 but P allowed to vary. Note that the performance

of PS indicates the value of the competitive ratio guarantee c∗(P).

7. Conclusion

In this paper we have studied the fundamental single-item dynamic pricing problem with no

knowledge of future valuations, and derived the best-possible competitive ratio. Our policies unify

the inventory-dependent booking policies in Ball and Queyranne (2009) with the random price-

skimming policies in Eren and Maglaras (2010). An important feature of our policies is that they

show at each time step how the price distribution should depend on inventory when the future

is unknown, complementing classical results which show how the optimal price should depend on

inventory when the future is known. Our policies were derived using a new “valuation tracking”

technique, which geometrically tracks the optimum and hedges against the arrival sequence imme-

diately ending in the most inventory-conservative fashion.

Finally, we explain why our analysis of single-leg revenue management for dynamic pricing, where

each customer has a valuation and chooses the lowest fare not exceeding it, captures substitution

under any form of random-utility choice model. Suppose instead that the firm could offer an

assortment of fare classes, and that each customer has a ranked list (in order of decreasing utility)

36

of fare classes she is willing to purchase, and chooses the highest-ranked fare class that is offered to

her. We can define Vt to be the maximum fare in the list that customer t is willing to purchase, and

then the offline optimum would still be the sum of the k largest values from V1, . . . , VT . Meanwhile,

we can modify the online algorithm so that whenever it would have offered price Pt, it now shows

all fares greater than or equal to Pt. This algorithm would still make a sale whenever Vt ≥ Pt,

except now it has the opportunity to earn revenue greater than Pt, if customer t does not choose

the lowest offered fare. As a result, our c∗(P)-competitive algorithms under the pricing model imply

corresponding c∗(P)-competitive algorithms under the assortment model.

Nevertheless, we would like to end on two open questions related to the assortment generalization.

First, our argument above assumes random-utility choice models; however in practice certain fare

classes could be designed as “decoys” for other fare classes. It is not known whether this effect can

be accommodated by our dynamic pricing algorithm. Second, our algorithms imply an “assortment-

skimming” distribution over revenue-ordered assortments, but this assumes there is no limit on the

number of fare classes offered. We believe that assortment skimming under cardinality constraints

is an interesting problem.

Acknowledgments

The authors would like to thank He Wang for insightful discussions.

References

Araman VF, Caldentey R (2009) Dynamic pricing for nonperishable products with demand learning. Oper-

ations research 57(5):1169–1188.

Araman VF, Caldentey R (2011) Revenue management with incomplete demand information. Wiley Ency-

clopedia of Operations Research and Management Science .

Azar PD, Kleinberg R, Weinberg SM (2014) Prophet inequalities with limited information. Proceedings of the

twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, 1358–1377 (Society for Industrial

and Applied Mathematics).

Babaioff M, Blumrosen L, Dughmi S, Singer Y (2011) Posting prices with unknown distributions. In ICS

(Citeseer).

37

Babaioff M, Dughmi S, Kleinberg R, Slivkins A (2015) Dynamic pricing with limited supply. ACM Trans-

actions on Economics and Computation (TEAC) 3(1):4.

Badanidiyuru A, Kleinberg R, Singer Y (2012) Learning on a budget: posted price mechanisms for online

procurement. Proceedings of the 13th ACM Conference on Electronic Commerce, 128–145 (ACM).

Badanidiyuru A, Kleinberg R, Slivkins A (2013) Bandits with knapsacks. 2013 IEEE 54th Annual Symposium

on Foundations of Computer Science, 207–216 (IEEE).

Ball MO, Queyranne M (2009) Toward robust revenue management: Competitive analysis of online booking.

Operations Research 57(4):950–963.

Bergemann D, Schlag KH (2008) Pricing without priors. Journal of the European Economic Association

6(2-3):560–569.

Besbes O, Zeevi A (2009) Dynamic pricing without knowing the demand function: Risk bounds and near-

optimal algorithms. Operations Research 57(6):1407–1420.

Borodin A, El-Yaniv R (2005) Online computation and competitive analysis (cambridge university press).

Chen L, Wu C (2016) Bayesian dynamic pricing with unknown customer willingness-to-pay and limited

inventory. Working Paper .

Chen X, Ma W, Simchi-Levi D, Xin L (2016) Dynamic recommendation at checkout under inventory con-

straint. manuscript on SSRN .

Cheung WC, Ma W, Simchi-Levi D, Wang X (2018) Inventory balancing with online learning. arXiv preprint

arXiv:1810.05640 .

Correa J, Foncea P, Hoeksma R, Oosterwijk T, Vredeveld T (2017) Posted price mechanisms for a random

stream of customers. Proceedings of the 2017 ACM Conference on Economics and Computation, 169–

186 (ACM).

Correa J, Foncea P, Pizarro D, Verdugo V (2018) From pricing to prophets, and back! Operations Research

Letters .

den Boer AV (2015) Dynamic pricing and learning: historical origins, current research, and new directions.

Surveys in operations research and management science 20(1):1–18.

38

den Boer AV, Zwart B (2015) Dynamic pricing and learning with finite inventories. Operations research

63(4):965–978.

Devanur NR, Jain K, Kleinberg RD (2013) Randomized primal-dual analysis of ranking for online bipartite

matching. Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,

101–107 (SIAM).

Dütting P, Feldman M, Kesselheim T, Lucier B (2017) Prophet inequalities made easy: Stochastic optimiza-

tion by pricing non-stochastic inputs. 2017 IEEE 58th Annual Symposium on Foundations of Computer

Science (FOCS), 540–551 (IEEE).

Dütting P, Fischer FA, Klimm M (2016) Revenue gaps for discriminatory and anonymous sequential posted

pricing. CoRR, abs/1607.07105 .

Eren SS, Maglaras C (2010) Monopoly pricing with limited demand information. Journal of revenue and

pricing management 9(1-2):23–48.

Fiig T, Isler K, Hopperstad C, Olsen SS (2012) Forecasting and optimization of fare families. Journal of

Revenue and Pricing Management 11(3):322–342.

Gallego G, Van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand over finite

horizons. Management science 40(8):999–1020.

Golrezaei N, Nazerzadeh H, Rusmevichientong P (2014) Real-time optimization of personalized assortments.

Management Science 60(6):1532–1551.

Kalyanasundaram B, Pruhs KR (2000) An optimal deterministic algorithm for online b-matching. Theoretical

Computer Science 233(1):319–325.

Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Proceedings

of the twenty-second annual ACM symposium on Theory of computing, 352–358 (ACM).

Kleinberg R, Weinberg SM (2012) Matroid prophet inequalities. Proceedings of the forty-fourth annual ACM

symposium on Theory of computing, 123–136 (ACM).

Krengel U, Sucheston L (1977) Semiamarts and finite values. Bulletin of the American Mathematical Society

83(4):745–747.

39

Lan Y, Gao H, Ball MO, Karaesmen I (2008) Revenue management with limited demand information.

Management Science 54(9):1594–1609.

Lim AE, Shanthikumar JG (2007) Relative entropy, exponential utility, and robust dynamic pricing. Oper-

ations Research 55(2):198–214.

Ma W, Simchi-Levi D (2017) Online resource allocation under arbitrary arrivals: Optimal algorithms and

tight competitive ratios. manuscript on SSRN .

Maglaras C, Meissner J (2006) Dynamic pricing strategies for multiproduct revenue management problems.

Manufacturing & Service Operations Management 8(2):136–148.

Mehta A, Saberi A, Vazirani U, Vazirani V (2007) Adwords and generalized online matching. Journal of the

ACM (JACM) 54(5):22.

Montgomery AL, Li S, Srinivasan K, Liechty JC (2004) Modeling online browsing and path analysis using

clickstream data. Marketing science 23(4):579–595.

Talluri KT, Van Ryzin GJ (2006) The theory and practice of revenue management, volume 68 (Springer

Science & Business Media).

Thekumparampil KK, Thangaraj A, Vaze R (2014) Sub-modularity of waterfilling with applications to online

basestation allocation. arXiv preprint arXiv:1402.4892 .

Yao ACC (1977) Probabilistic computations: Toward a unified measure of complexity. Foundations of Com-

puter Science, 1977., 18th Annual Symposium on, 222–227 (IEEE).

Zhang H, Shi C, Qin C, Hua C (2016) Stochastic regret minimization for revenue management problems

with nonstationary demands. Naval Research Logistics (NRL) 63(6):433–448.

Zhao W, Zheng YS (2000) Optimal dynamic pricing for perishable assets with nonhomogeneous demand.

Management science 46(3):375–388.

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec1

E-Companion

Appendix A: Why Attempts using Existing Techniques Fail even with Personalization

We modify the example from Attempt 3 of Section 3.1 to show that a personalized adaptation of

booking limits would still fail to be c∗(P)-competitive under stochastic valuations. Recall that we

are using price set P = {1,2,4} and starting inventory k= 4. Suppose that the first two customers

have a valuation which is 4 w.p. 1/4− ε, 2 w.p. 1/4− ε, and 1 w.p. 1/2 + 2ε, for some small ε > 0.

Since the booking limit would always be 1 for the first two customers, a personalized adaptation of

the policy from Ball and Queyranne (2009) would still offer them the price of 1, which maximizes

immediate revenue. Afterward, the booking limit would be raised to 2, in which case a third

customer whose valuation is deterministically 1 would be rejected. The total revenue earned is 2.

However, for this example, the expected value of the optimum is ≈ 2 + 2 + 1 = 5. Therefore, the

desired competitiveness of c∗({1,2,4}) = 1/2 is not achieved.

Appendix B: Full Proof of Theorem 1

Definition EC.1. Define the following:

• Si,t: the indicator random variable for whether inventory unit i is sold by the end of time t,

i.e. the value of sold[i] at the end of time t, defined for all i∈ [k] and t= 0, . . . , T ;

• it: the inventory unit assigned to customer t, taking a value in [k] for all t∈ [T];

• `i,t: the value such that level[i] = r(`i,t) at the end of time t, taking a value in {0,1, . . . ,m}
for all i∈ [k] and t= 0, . . . , T ;

• jt: the value in {0,1, . . . ,m} such that Vt = r(jt), defined for all t∈ [T].

Fix the deterministic sequence of valuations V1, . . . , VT chosen by the adversary. it, `i,t, and jt

are not random variables; they are determined by V1, . . . , VT .

We would like to write the random variables Si,t in terms of the other random variables. By

definition, Si,0 = 0 for all i∈ [k]. For t > 0, the following equations hold:

Sit,t = Sit,t−1 +Xt; (EC.1)

Si,t = Si,t−1, for i 6= it. (EC.2)

(EC.1)–(EC.2) are easy to see. In the algorithm, the only inventory unit that could potentially

be sold during time t is it. This explains why (EC.2) holds for all i 6= it. It also explains why

Sit,t = 1 if and only if Sit,t−1 = 1 or Xt = 1. Furthermore, Sit,t−1 and Xt cannot both be 1, since

the algorithm does not try to sell inventory unit it again at time t if it has already been sold. This

completes the explanation for (EC.1).

We now analyze the state of the sold array during the execution of the algorithm.

ec2 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Lemma EC.1. At the end of each time step t, the probability that any inventory unit i has been

sold is 1
q

∑`i,t
j=1 q

(j). Formally, for all t= 0, . . . , T ,

E[Si,t] =
1

q

`i,t∑
j=1

q(j), for i∈ [k]. (EC.3)

Proof. We proceed by induction on t. (EC.3) is true at time t= 0, where E[Si,0] = 0 and `i,0 = 0

for all i∈ [k].

Now suppose we are at the end of some time t > 0 and (EC.3) was true at the end of time t− 1.

We need to prove that (EC.3) is still true at the end of time t. For i 6= it, Si,t = Si,t−1, by (EC.2).

The value of level[i] is unchanged by the algorithm during time t, so `i,t = `i,t−1 as well. The

inductive hypothesis from time t− 1 then establishes that E[Si,t] = 1
q

∑`i,t
j=1 q

(j).

It remains prove E[Sit,t] = 1
q

∑`it,t
j=1 q

(j). This is immediate if jt is no greater than `it,t−1 (the value

of the ` variable during iteration t of the algorithm), since both Si,t and `i,t would be unchanged.

If jt > `it,t−1, the following can be derived (let `= `it,t−1 for brevity):

E[Sit,t] = E[Sit,t−1] +E[Xt]

= E[Sit,t−1] +E[Xt|Sit,t−1 = 0] ·Pr[Sit,t−1 = 0]

=
1

q

∑̀
j=1

q(j) + Pr[Xt = 1|Sit,t−1 = 0]
(

1− 1

q

∑̀
j=1

q(j)
)

=
1

q

∑̀
j=1

q(j) +
(jt∑
j=`+1

q(j)∑m

j′=`+1 q
(j′)

)(∑m

j=`+1 q
(j)

q

)
=

1

q

jt∑
j=1

q(j).

The first equality follows from (EC.1) and the linearity of expectation. The second equality condi-

tions on Sit,t−1 being 0, since the value of Xt is 0 if Sit,t−1 = 1. The third equality uses the value of

E[Sit,t−1] guaranteed by the inductive hypothesis. In the fourth equality, the probability of getting

a sale, conditioned on Algorithm 1 reaching line 8, is equal to the probability of choosing a price

at most r(jt), the valuation of customer t. The final equality achieves the desired result because

jt = `it,t, the new value for level[i] after line 13 of iteration t of the algorithm.

This completes the induction and the proof of the lemma. �

Now we analyze the expected revenue of the algorithm, which is E[ALG], or
∑T

t=1E[PtXt]. As

argued earlier, there cannot be a sale in a time step t where jt ≤ `it,t−1, so for these time steps

Xt = 0 and E[PtXt] = 0. The following lemma derives the value of E[PtXt] when jt > `it,t−1.

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec3

Lemma EC.2. Suppose jt > `it,t−1 in a time step t∈ [T]. Then the expected revenue earned by the

algorithm during time step t is 1
q
(r(jt)− r(`it,t−1)).

Proof. Let t ∈ [T] be any time step for which jt > `it,t−1. For brevity, let ` denote `it,t−1. The

following can be derived:

E[PtXt] = E[PtXt|Sit,t−1 = 0]Pr[Sit,t−1 = 0]

=
(m∑
j=`+1

r(j)E[Xt|Pt = r(j)]Pr[Pt = r(j)|Sit,t−1 = 0]
)(

1−Pr[Sit,t−1 = 1]
)

=
(m∑
j=`+1

r(j)1[jt ≥ j]Pr[Pt = r(j)|Sit,t−1 = 0]
)(

1− 1

q

∑̀
j′=1

q(j
′)
)

=
(jt∑
j=`+1

r(j)
q(j)∑m

j′=`+1 q
(j′)

)(∑m

j′=`+1 q
(j′)

q

)
=

1

q

jt∑
j=`+1

r(j)(1− r
(j−1)

r(j)
)

The first equality conditions on Sit,t−1 being 0; note that Xt = 0 if Sit,t−1 = 1. The second equality

conditions on the value of Pt, where we drop the conditioning on Sit,t−1 in the term E[Xt|Pt = r(j)]

since Pt 6=∞ already implies Sit,t−1 = 0. This term becomes 1[jt ≥ j] in the third equality, since

it is deterministically 1 or 0 depending on whether Vt ≥ r(j), or equivalently jt ≥ j. The third

equality also uses Lemma EC.1, for the value of Pr[Sit,t−1 = 1]. The fourth equality uses the offering

probabilities from line 8 of Algorithm 1. The fifth equality uses the explicit definition of q(j) from

Definition 1, and it is easy to see that the final expression is equal to 1
q
(r(jt)− r(`)). �

Lemma EC.2 in turn implies the following lemma.

Lemma EC.3. The expected revenue earned by the algorithm up to time t,
∑t

t′=1E[Pt′Xt′], is

1
q

∑k

i=1 r
(`i,t).

Proof. The customers up to time t can be partitioned according to the inventory unit they were

assigned, so
t∑

t′=1

E[Pt′Xt′] =
k∑
i=1

∑
t′≤t:it′=i

E[Pt′Xt′]. (EC.4)

Consider any i. For each t′ assigned to i, E[Pt′Xt′] is 0 if jt′ ≤ `i,t′−1. Denote the remaining t′ such

that jt′ > `i,t′−1 by t′1, . . . , t
′
N , where N ≥ 0 and t′1 < . . . < t

′
N . Using Lemma EC.2,

∑
t′≤t:it′=i

E[Pt′Xt′] =
N∑
n=1

1

q
(r

(jt′n
)− r(`i,t′n−1)).

ec4 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Before time t′n, level[i] was last updated at time t′n−1, so `i,t′n−1 = jt′n−1
. Therefore, the sum

telescopes and the remaining term is 1
q
r
(jt′

N
)

(note that r
(`i,t′1−1) = r(0) = 0). Now, jt′

N
= `i,t′

N
,

and level[i] is not updated again in time steps t′N + 1, . . . , t, so `i,t′
N

= `i,t. Substituting∑
t′≤t:it′=i

E[Pt′Xt′] = 1
q
r(`i,t) into (EC.4) completes the proof. �

Having established the revenue of our online algorithm, we compare it to the offline optimum.

Knowing the sequence of valuations V1, . . . , VT in advance, it is clear that the following algorithm

is optimal:

1. Find the min{k,T} customers with the largest valuations;

2. Charge each of these customers t her maximum willingness-to-pay Vt;

3. Do not sell to any other customer.

The revenue OPT would be the the sum of the min{k,T} largest valuations.

Definition EC.2. For all t∈ [T], let Mk(t) be a vector consisting of the k largest elements from

(V1, . . . , Vt), in any order. If t < k, fill in the remaining entries of Mk(t) with zeros.

Then OPT=
∑k

i=1M
k
i (T), where Mk

i (T) denotes the i’th entry of Mk(T). It turns out that Mk(t)

is closely tracked by the level array from Algorithm 1, as t progresses from 1 to T . Both `i,t (the

value of level[i] at the end of time t) and Mk(t) are deterministic functions of V1, . . . , Vt.

Lemma EC.4. For all t= 0, . . . , T , the entries of the vector (r(`1,t), . . . , r(`k,t)) is a permutation of

the entries of the vector Mk(t).

Proof. We proceed by induction on t. At time t = 0, both Mk(0) and (r(`1,0), . . . , r(`k,0)) is a

vector of k zeros, so the statement is true.

Now consider t > 0, and suppose that Mk(t−1) is a permutation of (r(`1,t−1), . . . , r(`k,t−1)). There-

fore, a minimum entry in Mk(t− 1) is equal to a minimum entry in (r(`1,t−1), . . . , r(`k,t−1)), which

in turn is equal to r(`it,t−1), by Definition EC.1.

If jt > `it,t−1, or equivalently Vt = r(jt) > r(`it,t−1), then by the definition of Mk(t), Vt must be

added to Mk(t− 1) and replace any minimum entry equal to r(`it,t−1). Meanwhile, `it,t = jt, and

`i,t = `i,t−1 for all i 6= it, thus the only change from (r(`1,t−1), . . . , r(`k,t−1)) to (r(`1,t), . . . , r(`k,t)) is

that the entry at index it has been replaced by r(jt). Since Mk(t− 1) and (r(`1,t−1), . . . , r(`k,t−1)) go

through the same change at time t, Mk(t) is still a permutation of (r(`1,t), . . . , r(`k,t)).

If instead jt ≤ `it,t−1, then every entry of Mk(t− 1) is already at least r(jt) = Vt, so Mk(t− 1)

incurs no change at time t. Similarly, `i,t = `i,t−1 for all i ∈ [k], so (r(`1,t−1), . . . , r(`k,t−1)) incurs no

change as well. In both cases, we have established that Mk(t) is a permutation of (r(`1,t), . . . , r(`k,t)),

completing the induction and the proof. �

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec5

With Lemma EC.3 and Lemma EC.4, it is easy to establish the competitiveness of Algorithm 1.

Our online algorithm is designed so that during each time step t, it earns exactly 1
q

of the amount

that the offline optimum would increase by with the addition of Vt, and it does not need to observe

Vt beforehand to accomplish this.

Proof of Theorem 1. Fix any sequence of valuations (V1, . . . , VT). E[ALG] is equal to∑T

t=1E[PtXt], which in turn is equal to 1
q

∑k

i=1 r
(`i,T), by Lemma EC.3. Meanwhile, OPT =∑k

i=1M
k
i (T), and the entries of Mk(T) is a permutation of the entries of (r(`1,T), . . . , r(`k,T)), by

Lemma EC.4. Therefore, OPT=
∑k

i=1 r
(`i,T) = q ·E[ALG], completing the proof of Theorem 1. �

Appendix C: Proofs from Sections 3.4–3.5

Proof of Lemma 1. Let i= i∗t , for brevity. Let Si,t be the indicator random variable for inventory

unit i being sold by the end of time t. For all k′ ∈ {0, . . . , k},

Pr[Si,t−1 = 0|It−1 = k′] =
Pr[It−1 = k′|Si,t−1 = 0]Pr[Si,t−1 = 0]

Pr[It−1 = k′|Si,t−1 = 0]Pr[Si,t−1 = 0] + Pr[It−1 = k′|Si,t−1 = 1]Pr[Si,t−1 = 1]
(EC.5)

by Bayes’ law. For all t ∈ [T], i ∈ [k], and k′ ∈ {0, . . . , k}, we explain how to compute Pr[It−1 =

k′|Si,t−1 = 0] in polynomial time; Pr[It−1 = k′|Si,t−1 = 1] can be computed analogously.

First we argue that the Bernoulli random variables {Si′,t−1 : i′ ∈ [k]} are independent. To see this,

note that the assignment procedure in Algorithm 1 is deterministic. Therefore, each Si′,t−1 is only

dependent on the prices chosen for the customers assigned to i′, and while these prices could be

dependent on each other, they are independent from the prices chosen for customers not assigned

to i′.

Furthermore, It−1 = k −
∑k

i′=1Si′,t−1. By independence, Pr[It−1 = k′|Si,t−1 = 0] =

Pr[
∑

i′ 6=iSi′,t−1 = k − k′].
∑

i′ 6=iSi′,t−1 is simply the sum of k − 1 independent Bernoulli random

variables with known mean (from Lemma EC.1), hence the probability that it equals a specific

value can be computed using dynamic programming.

We elaborate on the dynamic programming. For notational convenience, without loss of general-

ity assume i= k. We will inductively for a= 0, . . . , k− 1 maintain the value of Pr[
∑a

i′=1Si′,t−1 = b]

for all b ∈ {0, . . . , k}. It is easy to initialize this for a = 0. Given Pr[
∑a

i′=1Si′,t−1 = b] for all b ∈
{0, . . . , k}, note that

Pr[
a+1∑
i′=1

Si′,t−1 = b] = Pr[
a∑

i′=1

Si′,t−1 = b− 1]Pr[Sa+1,t−1 = 1] + Pr[
a∑

i′=1

Si′,t−1 = b]Pr[Sa+1,t−1 = 0]

for all b ∈ {0, . . . , k}. Each iteration of a can be computed in time linear in k, and there are less

than k iterations.

Pr[It−1 = k′|Si,t−1 = 1] can be computed analogously. It is clear that both procedures can be

done in time O(k2) (ignoring the O(t) time it may take to compute the assignment procedure),

completing the proof of Lemma 1. �

ec6 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Proof of Lemma 2 and Theorem 2. We argue that Lemma 2 and Theorem 2 are the special

cases of Lemma 4 and Theorem 4 from the stochastic-valuation model. It is easy to check that the

statements are analogous, so it suffices to show that Exp (as defined in Section 4.1) executed on

deterministic valuations is identical to Algorithm 1’ (as defined in Section 3.4).

We show that the decision rule for a single time period t, and any amount of inventory remaining

k′, is the same. Let i= i∗t and `= `t, for brevity. Consider the values of i and ` during iteration t

of Algorithm 1 (with the deterministic valuations V1, . . . , VT). First consider any j = `+ 1, . . . ,m.

Pr[P A1′

t = r(j)|IA1
′

t−1 = k′] = Pr[Si,t−1 = 0|IA1t−1 = k′] · q(j)∑m

j′=`+1 q
(j′)

= Pr[Si,t−1 = 0|IA1t−1 = k′]Pr[P A1
t = r(j)|Si,t−1 = 0, IA1t−1 = k′]

= Pr[P A1
t = r(j) ∩Si,t−1 = 0|IA1t−1 = k′]

= Pr[P A1
t = r(j)|IA1t−1 = k′]

The first equality holds by the specification of algorithm Algorithm 1’. The second equality holds

by the specification of Algorithm 1, where we can add the conditioning on IA1t−1 = k′ in the second

probability due to independence. The final equality follows because P A1
t = r(j) 6=∞ implies Si,t−1 =

0.

If j =m+ 1, then

Pr[P A1′

t =∞|IA1
′

t−1 = k′] = Pr[Si,t−1 = 1|IA1t−1 = k′]

= Pr[P A1
t =∞|IA1t−1 = k′]

since the event Si,t−1 = 1 occurs if and only if the event P A1
t =∞ occurs.

Finally, clearly if j ≤ `, then both Pr[P A1′
t = r(j)|IA1′t−1 = k′] and Pr[P A1

t = r(j)|IA1t−1 = k′] are 0.

We have shown that Pr[P A1′
t = r(j)|IA1′t−1 = k′] = Pr[P A1

t = r(j)|IA1t−1 = k′] for all j ∈ {1, . . . ,m,m+1},

so it is the same decision rule as Exp, completing the proof. �

Proof of Lemma 3. Fix a valuation sequence V1, . . . , VT and consider any sample path in the

execution of A; let the sample path be depicted by the sequence of random prices PA1 , . . . , P
A
T . The

revenue ALGA on that sample path is given by
∑

t:Vt≥PAt
PAt ; note that the cardinality of the set

{t : Vt ≥ PAt } is at most k.

On that same sample path, the modified algorithm A′ would sell to the k customers with the

smallest indices in {t : Vt ≥min{PAt , r(m)}} (or all the customers in that set if its cardinality is less

than k). Let S denote the set of customers served by the modified algorithm. Let b= |{t∈ S : PAt =

∞}|, the number of customers with valuation r(j) served by the modified algorithm that were not

served by the original algorithm.

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec7

It is easy to see that

ALGA
′
−ALGA =

∑
t∈S

min{PAt , r(m)}−
∑

t:Vt≥PAt

PAt

≥ br(m)−
∑
t∈S′

PAt (EC.6)

where S ′ is the set of customers that are no longer served by A′ because it used up b extra units

of inventory. Since |S ′| ≤ b, and PAt ≤ r(m) for all t such that PAt ≤ Vt, it is immediate that (EC.6)

is non-negative. Since this holds on every sample path for A, we have completed the proof that

E[ALGA
′
]≥E[ALGA]. �

Proof of Theorem 3. The inventory level It−1 is equal to k −
∑k

i=1(1− Si,t−1), where Si,t−1 is

the indicator random variable for inventory unit i being sold by the end of time t− 1. We will

hereafter omit the subscript t− 1.

Each term (1−Si) is independent and equal to 1 with probability (
∑m

j=bi+1)q
(j)/q, which is the

probability that inventory unit i has not been sold. We will denote it using pi and let Yi = 1−Si,

for brevity. As long as bi (the index in 0, . . . ,m of the highest valuation assigned to inventory unit

i) is not 0 or m, pi ∈ (0,1). We will without loss of generality assume that pi ∈ (0,1) for all i,

redefining k and re-indexing as necessary (if pi = 0 or pi = 1 then Yi is deterministic and we can

remove it from analysis of the random sum). By the assumptions in the statement of the theorem,

this re-indexing does not cause i∗t to fall outside of 1, . . . , k; in fact we can without loss of generality

assume i∗t = 1. Furthermore, k1, k2 are at least 0 at at most the re-defined k, since they correspond

to inventory levels that are realized with non-zero probability.

After all of these transformations, the statement reduces to

Pr[Y1 = 1|
k∑
i=1

Yi = k1]<Pr[Y1 = 1|
k∑
i=1

Yi = k2] (EC.7)

where each Yi is an independent Bernoulli random variable of probability pi ∈ (0,1) and 0≤ k1 <

k2 ≤ k. Furthermore, we can without loss of generality assume that k2 = k1 + 1.

If k1 = 0, then (EC.7) is clearly true, since the LHS is 0 while the RHS is non-zero. So assume

that k1 > 0 and we can rewrite (EC.7) as follows:

Pr[Y1 = 1∩
∑k

i=1 Yi = k1]

Pr[
∑k

i=1 Yi = k1]
<

Pr[Y1 = 1∩
∑k

i=1 Yi = k1 + 1]

Pr[
∑k

i=1 Yi = k1 + 1]

p1 Pr[
∑k

i=2 Yi = k1− 1]

p1 Pr[
∑k

i=2 Yi = k1− 1] + (1− p1) Pr[
∑k

i=2 Yi = k1]
<

p1 Pr[
∑k

i=2 Yi = k1]

p1 Pr[
∑k

i=2 Yi = k1] + (1− p1) Pr[
∑k

i=2 Yi = k1 + 1](
1 +

(1− p1)

p1
·

Pr[
∑k

i=2 Yi = k1]

Pr[
∑k

i=2 Yi = k1− 1]

)−1
<

(
1 +

(1− p1)

p1
·

Pr[
∑k

i=2 Yi = k1 + 1]

Pr[
∑k

i=2 Yi = k1]

)−1

ec8 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Therefore, it suffices to prove that:

Pr[
∑k

i=2 Yi = k1]

Pr[
∑k

i=2 Yi = k1− 1]
>

Pr[
∑k

i=2 Yi = k1 + 1]

Pr[
∑k

i=2 Yi = k1]

Pr[
k∑
i=2

Yi = k1]
2 >Pr[

k∑
i=2

Yi = k1 + 1]Pr[
k∑
i=2

Yi = k1− 1] ∑
S⊆{2,...,k}:|S|=k1

∏
i∈S

pi
∏
i/∈S

(1− pi)

2

>

 ∑
S:|S|=k1+1

∏
i∈S

pi
∏
i/∈S

(1− pi)

 ∑
S:|S|=k1−1

∏
i∈S

pi
∏
i/∈S

(1− pi)


(EC.8)

After expanding, both sides are a sum of terms of the form

k∏
i=2

paii (1− pi)2−ai (EC.9)

where each ai is 0, 1, or 2 and the sum
∑k

i=2 ai equals 2k1, the total number of times that a

“positive” term pi (as opposed to a “negative” term (1−pi)) appears in the product. Let b denote

the total number of i= 2, . . . , k such that ai = 1, which must be even.

Now, observe that the total number of times the term (EC.9) appears in the LHS of the expansion

of (EC.8) is
(
b
b/2

)
(because we choose b/2 of the b indices that are “positive” to come from the

first bracket; the remaining b/2 must come from the second bracket) while the total number of

times this term appears in the RHS is
(

b
b/2+1

)
(because we choose b/2 + 1 of the b indices that are

“positive” to come from the first bracket), with the latter being strictly less. Furthermore, none of

these terms are 0, since all of the values of pi lie strictly between 0 and 1. Therefore, the inequality

is strict, completing the proof of the theorem. �

Appendix D: Alternate Clairvoyant Benchmark: the Deterministic Linear Program

The deterministic linear program (DLP) relaxation (Gallego and Van Ryzin 1994, Talluri and

Van Ryzin 2006), given valuation distributions v1, . . . ,vT , is defined as follows:

max
m∑
j=1

r(j)
T∑
t=1

x
(j)
t Pr

Vt∼vt

[Vt ≥ r(j)]

m∑
j=1

T∑
t=1

x
(j)
t Pr

Vt∼vt

[Vt ≥ r(j)]≤ k (EC.10)

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec9

m∑
j=1

x
(j)
t ≤ 1 t∈ [T]

x
(j)
t ≥ 0 j ∈ [m], t∈ [T]

Let OPTLP(v1, . . . ,vT) denote the optimal objective value of the preceding LP. It can be shown

that OPTLP(v1, . . . ,vT) is also an upper bound on the expected revenue of the optimal dynamic

programming policy knowing v1, . . . ,vT , since x
(j)
t encapsulates the unconditional probability of the

policy offering price j to customer t. Therefore, the competitive ratio relative to OPTLP(v1, . . . ,vT)

also cannot be greater than c∗(P).

In general, the value of OPTLP(v1, . . . ,vT) is incomparable to the value of our clairvoyant

benchmark EV1∼v1,...,VT∼vT
[OPT(V1, . . . , VT)] from Section 4 (i.e. depending on the distributions

v1, . . . ,vT , either could be strictly greater). In Section 4, we showed that the competitive ratio

relative to EV1∼v1,...,VT∼vT
[OPT(V1, . . . , VT)] was still equal to c∗(P), the same as the competitive

ratio when the valuations were deterministic. By contrast, we now show an example of a price set

P where the competitive ratio relative to OPTLP(v1, . . . ,vT) is strictly worse than c∗(P).

Our example is based on the intuition that the DLP can exploit the fact that inventory con-

straint (EC.10) only needs to hold in expectation. That is, it is well-known that the DLP overesti-

mates the optimum by a factor of 1− 1
e

even when the feasible price set P consists of a singleton.

The example requires the starting inventory k to be 1. Without loss of generality assume P = {1}.

Consider T customers, each of whom have a valuation exceeding 1 with probability 1
T

, and a val-

uation of 0 otherwise. It is easy to check that OPTLP = 1 in this case, by setting x
(1)
t = 1 for all

t∈ [T]. Meanwhile, any algorithm cannot have expected revenue exceeding 1− (1− 1
T

)T , where we

have subtracted from 1 the probability of all customers having valuation 0. As T →∞,
E[ALG]

OPTLP

approaches 1− 1

e
.

We now provide our example and result.

ec10 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Lemma EC.5. Consider the model with independent, non-identical stochastic valuations, and let

P = {1, r}, k= 1. For all r≥ 1, there exists a distribution over sequences (v1, . . . ,vT) such that for

any online algorithm,

E[ALG(v1, . . . ,vT)]

E[OPTLP(v1, . . . ,vT)]
≤min{1− 1

e
,

r− r/e
2r− 1− r/e

}. (EC.11)

By Yao’s minimax theorem, this shows that the competitive ratio relative to OPTLP(v1, . . . ,vT)

cannot be greater than the RHS of (EC.11).

If r≤ 1
1−1/e , then the RHS of (EC.11) is equal to 1− 1

e
≈ .632. However, if r > 1

1−1/e , then we show

that the upper bound is r−r/e
2r−1−r/e , which decreases to e−1

2e−1 ≈ .387 as r→∞. Note that r−r/e
2r−1−r/e is

strictly less than r
2r−1 over r ≥ 1, which was our competitive ratio c∗(P) established in Section 4

with P = {1, r}.

Proof. Suppose that r > 1
1−1/e , and let p = 1

r(1−1/e) , which is in (0,1). Consider the following

distribution over v1, . . . ,vT :

• The first valuation distribution is deterministically v1 = (v
(0)
1 , v

(1)
1 , v

(2)
1) = (0,1,0), i.e. the first

customer deterministically has valuation 1.

• With probability p, valuation distributions v2, . . . ,vT are all equal to (1− 1
T−1 ,0,

1
T−1). When

this occurs, each of the T − 1 customers 2, . . . , T are willing to pay r with probability 1
T−1 ,

and 0 otherwise.

• With probability 1− p, valuation distributions v2, . . . ,vT are all equal to (1,0,0). When this

occurs, all customers 2, . . . , T will never make a purchase.

We first compute the expected value of OPTLP(v1, . . . ,vT). With probability 1 − p,

OPTLP(v1, . . . ,vT) = 1, setting x
(1)
1 = 1. With probability p, OPTLP(v1, . . . ,vT) = r, setting x

(1)
1 =

x
(2)
1 = 0 and x

(2)
2 = . . .= x

(2)
T = 1. Therefore, E[OPTLP(v1, . . . ,vT)] = 1− p+ pr.

We now consider the optimal strategy for the online algorithm. It has to decide, at time 1,

whether to sell the only unit of inventory at price 1, without knowing whether v2, . . . ,vT are equal to

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec11

(1− 1
T−1 ,0,

1
T−1) or (1,0,0). Conditioned on it deciding to sell, ALG(v1, . . . ,vT) is deterministically

1. Conditioned on it deciding to wait, ALG(v1, . . . ,vT) is r with probability

1

r(1− 1/e)
· (1− (1− 1

T − 1
)T−1), (EC.12)

and 0 otherwise.

We explain (EC.12). If the online algorithm decides to wait, then it will offer price r to all

customers beyond the first. It gets a sale if v2 = . . . = vT = (1− 1
T−1 ,0,

1
T−1), which occurs with

probability p = 1
r(1−1/e) , and further if at least 1 of the valuations V2, . . . , VT realizes to r, which

yields the second term in (EC.12).

Thus the expected revenue from deciding to wait is (EC.12) multiplied by r, or

1

(1− 1/e)
· (1− (1− 1

T − 1
)T−1), (EC.13)

which is always greater than 1. Therefore, the online algorithm is better off waiting, in which case

its expected revenue is (EC.13). Taking T →∞, (EC.13) approaches 1.

As T →∞, the distribution we constructed over v1, . . . ,vT is such that for the best online

algorithm,

E[ALG(v1, . . . ,vT)]

E[OPTLP(v1, . . . ,vT)]
=

1

1− p+ pr

=
r(1− 1/e)

r(1− 1/e)− 1 + r

=
r− r/e

2r− 1− r/e
,

as desired. �

Appendix E: Proofs from Section 4

Proof of Lemma 4. We proceed by induction on t. (5) is true for t = 0, since Pr[IExp0 = k] =

Pr[IA10 = k] = 1.

Now suppose t > 0 and that (5) has been established for time t− 1. Then for every k′ such that

Pr[IExpt−1 = k′]> 0, (4) holds by definition. Indeed, since Pr[IA1t−1 = k′] = Pr[IExpt−1 = k′] by the inductive

hypothesis, Pr[IA1t−1 = k′]> 0 for such k′.

ec12 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

We now consider (5) for time t. Note that IExpt = IExpt−1−1(Vt ≥ P Exp
t). Therefore,

Pr[IExpt = k′] = Pr[IExpt−1 = k′+ 1∩Vt ≥ P Exp
t] + Pr[IExpt−1 = k′ ∩Vt <P Exp

t] (EC.14)

for k′ ∈ {0, . . . , k− 1}, while

Pr[IExpt = k] = Pr[IExpt−1 = k∩Vt <P Exp
t]. (EC.15)

Now, for any k′ ∈ {0, . . . , k}, if Pr[IExpt−1 = k′]> 0, then the following can be derived:

Pr[Vt ≥ P Exp
t |IExpt−1 = k′]

=
m+1∑
j=1

Pr[Vt ≥ P Exp
t |P Exp

t = r(j), IExpt−1 = k′]Pr[P Exp
t = r(j)|IExpt−1 = k′]

=
m+1∑
j=1

Pr[Vt ≥ r(j)]Pr[P Exp
t = r(j)|IExpt−1 = k′]

=
m+1∑
j=1

Pr[Vt ≥ r(j)]Pr[P A1
t = r(j)|IA1t−1 = k′]

= Pr[Vt ≥ P A1
t |IA1t−1 = k′]. (EC.16)

In the second equality, we remove the conditioning on IExpt−1 = k′, since the valuation Vt is an

independent random variable unaffected by any history. The third equality follows because we have

already established (4) for time t. The final equality also requires independence.

By the inductive hypothesis that (5) holds for time t−1, Pr[IExpt−1 = k′] = Pr[IA1t−1 = k′]. If Pr[IExpt−1 =

k′] is also non-zero, then the following can be derived using (EC.16):

Pr[Vt ≥ P Exp
t |IExpt−1 = k′]Pr[IExpt−1 = k′] = Pr[Vt ≥ P A1

t |IA1t−1 = k′]Pr[IA1t−1 = k′]

Pr[Vt ≥ P Exp
t ∩ IExpt−1 = k′] = Pr[Vt ≥ P A1

t ∩ IA1t−1 = k′]. (EC.17)

If instead Pr[IExpt−1 = k′] = Pr[IA1t−1 = k′] = 0, then Pr[Vt ≥ P Exp
t ∩ IExpt−1 = k′]≤ Pr[IExpt−1 = k′] = 0. Simi-

larly, Pr[Vt ≥ P A1
t ∩ IA1t−1 = k′] = 0, and therefore, (EC.17) still holds.

We can analogously to (EC.16) and (EC.17) derive for all k′ ∈ {0, . . . , k} that

Pr[Vt <P
Exp
t ∩ IExpt−1 = k′] = Pr[Vt <P

A1
t ∩ IA1t−1 = k′]. (EC.18)

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec13

We can substitute (EC.17) and (EC.18) into (EC.14) to see that

Pr[IExpt = k′] = Pr[IA1t−1 = k′+ 1∩Vt ≥ P A1
t] + Pr[IA1t−1 = k′ ∩Vt <P A1

t]

= Pr[
t−1∑
t′=1

XA1
t′ = k− k′− 1∩XA1

t = 1] + Pr[
t−1∑
t′=1

XA1
t′ = k− k′ ∩XA1

t = 0]

= Pr[IA1t = k′]

for all k′ ∈ {0, . . . , k− 1}. We can similarly substitute (EC.18) into (EC.15) to see that Pr[IExpt =

k] = Pr[IA1t = k]. This completes the induction and the proof of Lemma 4. �

Proof of Theorem 4. The following is straight-forward to derive:

E[ALGExp] =
T∑
t=1

E[P Exp
t ·1(Vt ≥ P Exp

t)]

=
T∑
t=1

m+1∑
j=1

r(j) Pr[Vt ≥ r(j)]Pr[P Exp
t = r(j)]

=
T∑
t=1

m+1∑
j=1

r(j) Pr[Vt ≥ r(j)]
k∑

k′=0

Pr[P Exp
t = r(j)|IExpt−1 = k′]Pr[IExpt−1 = k′]

=
T∑
t=1

m+1∑
j=1

r(j) Pr[Vt ≥ r(j)]
k∑

k′=0

Pr[P A1
T = r(j)|IA1t−1 = k′]Pr[IA1t−1 = k′]

=
T∑
t=1

m+1∑
j=1

r(j) Pr[Vt ≥ r(j)]Pr[P A1
t = r(j)]

=
T∑
t=1

E[P A1
t ·1(Vt ≥ P A1

t)].

The second and sixth equalities use the independence of Vt, while the fourth equality uses both

statements of Lemma 4. The final expression is equal to E[ALGA1], completing the proof of Theo-

rem 4. �

Proof of Lemma 5. The first statement is easy to see. Since every sample path fails at time

T + 1 by definition, for any sample path HSamp
T , it must have a unique first point of failure in

[T +1], say t′. HSamp
T then falls under exactly one of the events, namely the one with t= t′ and ht =

(0, P Samp
1 , V Samp

1 , . . . ,0, P Samp
t−1 , V

Samp
t−1 ,1). Therefore, the events are mutually exclusive and collectively

exhaustive. The case for Exp is argued analogously.

ec14 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

The final statement is argued inductively. For all t ∈ {0, . . . , T}, let gt = (f1, p1, u1, . . . , ft, pt, ut)

be a vector of realizations to the end of time t, and let Gt denote the set of such vectors containing

no failures. Let GSamp
t = (F Samp

1 , P Samp
1 , V Samp

1 , . . . ,F Samp
t , P Samp

t , V Samp
t), and

GExp
t = (F Exp

1 , P Exp
1 , V Exp

1 , . . . ,F Exp
t , P Exp

t , V Exp
t).

We would like to inductively establish that Pr[GSamp
t = gt] = Pr[GExp

t = gt] for all t ∈ {0, . . . , T}

and gt ∈ Gt. This is clearly true for t= 0. For t > 0, take any gt ∈ Gt, and we can write

Pr[GSamp
t = gt] = Pr[GSamp

t−1 = gt−1] ·Pr[F Samp
t = 0|GSamp

t−1 = gt=1] ·Pr[P Samp
t = pt|GSamp

t−1 = gt=1,F
Samp
t = 0]

·Pr[V Samp
t = ut|GSamp

t−1 = gt=1,F
Samp
t = 0, P Samp

t = pt];

Pr[Gexp
t = gt] = Pr[Gexp

t−1 = gt−1] ·Pr[F Exp
t = 0|Gexp

t−1 = gt=1] ·Pr[P Exp
t = pt|Gexp

t−1 = gt=1,F
Exp
t = 0]

·Pr[V Exp
t = ut|Gexp

t−1 = gt=1,F
Exp
t = 0, P Exp

t = pt].

We will prove that Pr[GSamp
t = gt] = Pr[GExp

t = gt] by arguing that each term in the expression for

Pr[GSamp
t = gt] equals the corresponding term in the expression for Pr[GExp

t = gt]. The first terms

are equal because of the inductive hypothesis. The second terms are equal because both algorithms

are sampling runs of Algorithm 1 and trying to hit a run with IA1t−1 = k−
∑t−1

t′=1 1(ut′ ≥ pt′). The

third terms are identical because because we have conditioned on F Samp
t = 0. The fourth terms are

equal because V Samp
t and V Exp

t are IID and none of the conditioning has any effect.

Having established this, note that for every t∈ [T+1] and ht ∈Ft there exists a unique gt−1 ∈ Gt−1

such that gt−1 is a prefix of ht. We know that for this gt−1, Pr[GSamp
t−1 = gt−1] = Pr[GExp

t−1 = gt−1].

Therefore, it suffices to prove that Pr[F Samp
t = 0|GSamp

t−1 = gt−1] = Pr[F Exp
t = 0|GExp

t−1 = gt−1]. By the

same argument as the previous paragraph, these two probabilities are equal. Therefore, Pr[HSamp =

ht] = Pr[HExp = ht], completing the proof of Lemma 5. �

Proof of Theorem 5. Applying Lemma 7 to (10), we see that

E[ALGSamp] ≥ E[ALGExp]−E[OPT]
(T∑
t=1

1

eCt2

)
≥ E[ALGExp]−E[OPT]

1

ed 6
eπ2ε
e

(π2

6

)
≥ E[ALGExp]− ε ·E[OPT]

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec15

Furthermore, we know from Theorem 4 that E[ALGExp] =E[ALGA1] = 1
q
E[OPT]. This establishes the

competitiveness.

The statement about runtime also follows easily from the specification of Algorithm 2 since the

number of sample runs during each time period t, d 6
eπ2ε
e(k+ 1)t2, is polynomial in 1

ε
. �

Proof. Consider any t∈ [T] and ht ∈Ft. We have

E[ALGSamp|HSamp
t = ht] ≥ E

[t−1∑
t′=1

P Samp
t′ ·1(V Samp

t′ ≥ P Samp
t′)

∣∣∣HSamp
t = ht

]
=

t−1∑
t′=1

pt′ ·1(ut′ ≥ pt′). (EC.19)

Meanwhile, E[ALGExp|HExp
t = ht] can be decomposed into

t−1∑
t′=1

pt′ ·1(ut′ ≥ pt′) +E
[T∑
t′=t

P Exp
t′ ·1(V Exp

t′ ≥ P
Exp
t′)
∣∣∣HExp

t = ht

]
. (EC.20)

We elaborate on the second term in (EC.20). Clearly,
∑T

t′=tP
Exp
t · 1(V Exp

t ≥ P Exp
t) cannot exceed

the sum of the min{k,T − t+ 1} largest valuations to appear during t, . . . , T , which we denote

by OPT(V Exp
t , . . . , V Exp

T). Furthermore, the random valuations V Exp
t , . . . , V Exp

T are independent of the

history HExp
t up to time t, so we can remove the conditioning and upper-bound (EC.20) with

t−1∑
t′=1

pt′ ·1(ut′ ≥ pt′) +E[OPT(V Exp
t , . . . , V Exp

T)]. (EC.21)

The expectation in (EC.21) is with respect to V Exp
t , . . . , V Exp

T being drawn independently according

to vt, . . . ,vT . (EC.21) in turn is no greater than
∑t−1

t′=1 pt′ · 1(ut′ ≥ pt′) + E[OPT(V Exp
1 , . . . , V Exp

T)],

where the random variables V Exp
1 , . . . , V Exp

t−1 are not conditioned on the event HExp
t = ht. The proof

of the lemma concludes by comparing this expression with (EC.19). �

Proof. Consider any t∈ [T]. For all ht ∈Ft, let G(ht) = (f1, p1, u1, . . . , ft−1, pt−1, ut−1), which is

the vector of the first 3(t−1) entries in ht. Let GExp
t−1 = (F Exp

1 , P Exp
1 , V Exp

1 , . . . ,F Exp
t−1, P

Exp
t−1, V

Exp
t−1), which

is a vector of 3(t− 1) random variables.

We can write
∑

ht∈Ft Pr[HExp
t = ht] as

∑
ht∈Ft

Pr[F Exp
t = 1|GExp

t−1 =G(ht)]Pr[GExp
t−1 =G(ht)]. (EC.22)

ec16 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Now, for each ht ∈Ft, Pr[F Exp
t = 1|GExp

t−1 =G(ht)] is the probability that all C(k+ 1)t2 indepen-

dent runs of Algorithm 1 fail to match the inventory remaining at the start of time t according to

ht. For convenience, define I(ht) = k−
∑t−1

t′=1 1(ut′ ≥ pt′). Then

Pr[F Exp
t = 1|GExp

t−1 =G(ht)] = (1−Pr[IA1t−1 = I(ht)])
C(k+1)t2 , (EC.23)

where IA1t−1 is the total inventory remaining at the start of time t in a run of Algorithm 1.

Therefore, we can partition the ht in Ft by I(ht). For all k′ ∈ {0, . . . , k}, define ρt,k′ = Pr[IA1t−1 = k′].

The following can be derived by substituting (EC.23) into (EC.22):

∑
ht∈Ft

Pr[HExp
t = ht] =

k∑
k′=0

(1− ρt,k′)C(k+1)t2
∑

ht∈Ft:I(ht)=k′

Pr[GExp
t−1 =G(ht)]

≤
k∑

k′=0

exp(−ρt,k′C(k+ 1)t2)
∑

ht∈Ft:I(ht)=k′

Pr[GExp
t−1 =G(ht)]. (EC.24)

At this point, we would like to argue that
∑

ht∈Ft:I(ht)=k′
Pr[GExp

t−1 = G(ht)] ≤ Pr[IExpt−1 = k′]. To

see this, note that
∑

ht∈Ft:I(ht)=k′
Pr[GExp

t−1 =G(ht)] = Pr[IExpt−1 = k′ ∩ (F Exp
1 = . . .= F Exp

t−1 = 0)].

Applying the second statement of Lemma 4, we see that Pr[IExpt−1 = k′] = ρt,k′ . Substituting into

(EC.24), the following can be derived:

∑
ht∈Ft

Pr[HExp
t = ht] ≤

k∑
k′=0

ρt,k′ exp(−ρt,k′C(k+ 1)t2)

≤
k∑

k′=0

1

C(k+ 1)t2
exp(−1)

=
1

eCt2
.

The second inequality holds because for a single ρt,k′ ∈ [0,1], the function ρt,k′e
−ρt,k′C(k+1)t2 is

maximized at ρt,k′ =
1

C(k+1)t2
. The proof of the lemma is now complete. �

Appendix F: Proofs from Section 5

Proof of Lemma 8. We proceed by induction on t. (11) is true at time t= 0, where E[Si,0] = 0

and wi,0 = 0 for all i∈ [k].

Now suppose we are at the end of some time t > 0 and (11) was true at the end of time t− 1.

It suffices to prove that E[Sit,t] = 1(wit,t > 0) · 1+lnwit,t

1+lnR
. This is immediate if Vt ≤ wit,t−1, by the

induction hypothesis. Otherwise, if Vt >wit,t−1, we consider two cases. Let v=wit,t−1 for brevity.

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec17

We know that E[Sit,t] =E[Sit,t−1] +E[Xt|Sit,t−1 = 0] ·Pr[Sit,t−1 = 0].

If v= 0, then this equals

Pr[Xt = 1|Sit,t−1 = 0] =
1

1 + lnR
(1 +

∫ wi,t

1

1

r
dr)

=
1 + lnwi,t
1 + lnR

as desired. On the other hand, if v > 0, then

E[Sit,t] =
1 + lnv

1 + lnR
+

1

lnR− lnv

∫ wi,t

v

1

r
dr
(

1− 1 + lnv

1 + lnR

)
=

1 + lnv

1 + lnR
+

lnwi,t− lnv

lnR− lnv

(lnR− lnv

1 + lnR

)
=

1 + lnwi,t
1 + lnR

.

This completes the induction and the proof of the lemma. �

Proof of Lemma 9. Let t ∈ [T] be any time step for which Vt > wit,t−1. Again, let v denote

`it,t−1, and we consider the two cases v= 0 and v > 0. If v= 0, then

E[PtXt] =
1

1 + lnR

(
1 +

∫ R

1

rE[Xt|Pt = r]
1

r
dr
)

=
1

1 + lnR

(
1 +

∫ R

1

1[wit,t ≥ r]dr
)

=
1

1 + lnR
(1 +wit,t− 1).

In the first equality, a sale is guaranteed if Pt = 1, earning revenue 1. The final term is the desired

expression.

If v > 0, then

E[PtXt] =
1

lnR− lnv

(∫ R

v

rE[Xt|Pt = r]
1

r
dr
)(lnR− lnv

1 + lnR

)
=

1

1 + lnR

(∫ R

v

1[wit,t ≥ r]dr
)

=
1

1 + lnR
(wit,t− v)

as desired. �

ec18 e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information

Proof of Proposition 1. Let the starting inventory k= 1.

First, it is easy to see that if the distribution of P1 is not such that Pr[P1 = r(j)] = q(j)

q
for all

j ∈ [m], then for some deterministic instance consisting of a single valuation in {r(1), . . . , r(m)},

E[ALG]
OPT

will be strictly less than 1
q
. Therefore we can without loss of generality assume that Pr[P1 =

r(j)] = q(j)

q
for all j ∈ [m] (regardless of whether valuations can be 0).

Now suppose m≥ 3. Consider the distribution of P2 conditioned on X1 = 0. If Pr[P2 ≥ r(m)|X1 =

0] = 1, then consider the instance T = 2, V1 = 1, V2 = r(m−1). OPT = r(m−1), which exceeds 1, since

m ≥ 3. Meanwhile, qE[ALG] = q 1
q
< OPT. On the other hand, if Pr[P2 ≥ r(m)|X1 = 0] < 1, then

consider the instance T = 3, V1 = V2 = r(m−1), V3 = r(m). OPT = r(m). qE[P1X1] = r(m−1), while

E[X1] = 1 − q(m)

q
. The best case for the algorithm, given that V2 = r(m−1), is P2 = r(m−1) when

P2 < r(m). Let Pr[P2 = r(m−1)|X1 = 0] = α, which we know is positive. In this case, qE[P2X2] =

r(m−1)αq(m) and E[X2] = α q
(m)

q
. Hence qE[P3X3] is at most qr(m)(1−E[X1 +X2]) = r(m)(1−α)q(m).

All in all, qE[ALG] is at most

r(m−1) + r(m−1)α(1− r
(m−1)

r(m)
) + r(m)(1−α)(1− r

(m−1)

r(m)
) = r(m) +α(2r(m−1)− (r(m−1))2

r(m)
− r(m))

= r(m)− α

r(m)
(r(m)− r(m−1))2

The term getting subtracted is non-zero since α> 0 and r(m) > r(m−1). Therefore, qE[ALG]<OPT.

This completes the proof when m≥ 3, since c∗(P) = 1/q.

The case where m= 2 and valuations can be 0 is argued analogously. If Pr[P2 ≥ r(2)] = 1, then

consider the instance T = 2, V1 = 0, V2 = r(1). If Pr[P2 < r(2)] = 1, then consider the instance T =

3, V1 = V2 = r(1), V3 = r(2). In both cases, it can be seen that qE[ALG]<OPT, completing the proof

of Proposition 1. �

Proof of Proposition 2. Consider any realization of the valuations, V1, . . . , VT . Iteratively define

the following quantities, for j from m down to 1:

n(j) = min
{ T∑
t=1

1(Vt = r(j)), k−
m∑

j′=j+1

n(j′)
}
. (EC.25)

e-companion to Ma, Simchi-Levi, and Teo: Single-leg RM with Limited Demand Information ec19

Essentially, for each j, n(j) denotes the number of valuations equal to r(j) that should be picked

out when picking out the min{k,T} largest valuations. OPT is then equal to
∑m

j=1 r
(j)n(j).

Now consider the execution of the policy on this instance. For all j ∈ [m], if the random fixed

price P is equal to r(j), then the number of sales will be equal to min{
∑T

t=1 1(Vt ≥ r(j)), k}, which

by definition is equal to
∑m

j′=j n
(j′). Therefore,

E[ALG] =
1

q

m∑
j=1

q(j)r(j)
m∑
j′=j

n(j′)

=
1

q

m∑
j′=1

n(j′)
j′∑
j=1

(
1− r

(j−1)

r(j)
)
r(j)

=
1

q

m∑
j′=1

n(j′)r(j
′)

which equals 1
q
OPT, completing the proof that the random fixed price is c∗(P)-competitive. �

	1 Introduction
	1.1 Dynamic Pricing Model
	1.2 Outline of Theoretical Results
	1.3 Computational Experiments

	2 Literature Review
	3 Algorithms for Public Pricing and Deterministic Valuations
	3.1 New Techniques, and why Existing Techniques Fail
	3.2 Illustration of Valuation Tracking Procedure
	3.3 Valuation Tracking Procedure and Analysis
	3.4 Modified Algorithm based on Valuation Tracking Procedure
	3.5 Further Modified Algorithm and Structural Properties

	4 Algorithms for Public Pricing and Stochastic Valuations
	4.1 Optimally-Competitive Algorithm with Exponential Runtime
	4.2 Emulating the Exponential-runtime Algorithm using Sampling

	5 Extensions
	5.1 A Continuum of Prices
	5.2 No Information on Valuations
	5.3 Personalized Revenue Management Model

	6 Computational Experiments
	6.1 Experimental Setup and Algorithms Compared
	6.2 Parameter Values and Results
	6.3 Varying the Price Set

	7 Conclusion
	A Why Attempts using Existing Techniques Fail even with Personalization
	B Full Proof of Theorem 1
	C Proofs from Sections 3.4–3.5
	D Alternate Clairvoyant Benchmark: the Deterministic Linear Program
	E Proofs from Section 4
	F Proofs from Section 5

