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Abstract
In the last several decades, the U.S. Health care industry has undergone a massive consolidation process that has resulted
in the formation of large delivery networks. However, the integration of these networks into a unified operational system
faces several challenges. Strategic problems, such as ensuring access, allocating resources and capacity efficiently, and
defining case-mix in a multi-site network, require the correct modeling of network costs, network trade-offs, and operational
constraints. Unfortunately, traditional practices related to cost accounting, specifically the allocation of overhead and labor
cost to activities as a way to account for the consumption of resources, are not suitable for addressing these challenges; they
confound resource allocation and network building capacity decisions. We develop a general methodological optimization-
driven framework based on linear programming that allows us to better understand network costs and provide strategic
solutions to the aforementioned problems. We work in collaboration with a network of hospitals to demonstrate our
framework applicability and important insights derived from it.

Keywords Health care delivery networks · Resource allocation · Cost allocation · Optimization · Operations research

Highlights

• Industry consolidation resulted in large health networks
comprising many locations of clinics and hospitals with
distinct capabilities. However, by and large, networks
continue to operate “together but separate”.

• Lack of operational integration results in inefficient use
of capacity and potential loss of patient volume.

• A general optimization-driven framework is proposed
to understand cost in health networks in a manner that
informs strategic decisions around resource allocation
and deployment, and network building.

• A key feature is to only consider direct variable cost and
ignore ad hoc fixed cost allocations (including labor)—
we capture resource usage directly through constraints
instead.
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• Implementation at a large health network in the U.S. to
identify the best portfolio of services at each location
suggests that profitability can improve by reallocating
top AMC-profitable service lines to satellite facilities.

1 Introduction

Over the last several decades, the health industry in the
U.S. has been through an intensive trend of consolidation
that has created an increasing number of large health
care delivery systems and networks [14]. These networks
typically consist of many locations of clinics and hospitals
with distinct capabilities (e.g., academic medical centers,
community hospitals, and outpatient clinics) and often have
a rather complex management structure. Indeed, most health
systems continue to operate “together but separate” and
while they may consolidate billing, purchasing, contracting
operations most of the clinical capacity issues are addressed
on a facility-by-facility basis by the leadership teams of
each facility. This mode of operating is the result of
early consolidation efforts that were primarily driven by a
desire to create market power to negotiate better fee-for-
service prices with payers. However, the health care reform
act in 2010 has fundamentally changed the underlying
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motivation, as well as the nature of these consolidation
efforts. In particular, the ongoing shift from fee-for-service
reimbursement schemes to capitation contracts, in which
networks assume risk on managing the health of patient
populations under a fixed budget and increasing number of
quality metrics, creates an imperative to truly integrate care
delivery networks, operationally, clinically, and financially.
For instance, while under fee-for-service the network would
simply miss the revenue opportunity when a patient sought
care outside the network, under a capitation-like model
the network may be actively penalized for the cost and
corresponding outcomes associated with out-of-network
care (e.g., ACO model). Fully integrated networks are
better equipped to manage the care continuum by offering
integrative care, and more efficiently use resources (and
potentially reduce cost).

Current cost accounting practices around fixed cost
allocation obscures network integration. For instance,
teaching hospitals often emphasize seemingly high margin
procedures, but ignore the marginal value of capacity at
the network level. Wachtel et al. [30], Blake and Carter
[2], Resnick et al. [25] have reported evidence of similar
preferences in the allocation of resources and case-mix
design in different hospital contexts and the financial
measure used to inform those preferences include some
allocation of labor and other fixed costs. Furthermore,
poor network integration not only results in inefficient
use of resources but also increases the risk of patient
leakage, i.e., patients seeking care outside the network.
Fibroblast [11] reports that patient leakage costs most
healthcare facilities about 10% of revenue. Leakage can
be driven by patients’ preferences but in many cases is
due to a lack of capacity and convenience–patients are
unable to schedule appointments for some procedures at
specific locations or experience long wait times. Network
integration requires entirely new thinking on how resources
are allocated throughout the network, how to determine
network objectives and optimize for them, and how to
systematically understand cost and value. Unfortunately,
existing practices to understanding the cost and resource
allocation in health networks fall short of addressing these
challenges and there is a fundamental need for more
systematic approaches [13, 24].

We address the network integration problem from a
strategic/tactical perspective. According to [9, 29], our
problem of interest lies within the tactical level–1 year in
advance when most resource capacity has been committed.
The strategic decision to consolidate surgical resources
across the network has already been made, and we assume
resources are fixed and focus on deciding the best use
of the available capacity. Operational decisions, such as
staffing and scheduling, should follow the tactical allocation
recommended by our model, but how to implement that

is not the focus of this paper. Thus, we develop a general
systematic optimization-driven framework to understand
cost in a manner that informs strategic and tactical
decisions around resource allocation and deployment and
network building. The proposed framework is inspired by
network revenue management models, specifically, linear
programming optimization [27]. This approach has several
major advantages over existing practices. First, unlike
the existing industry practices that allocate overhead cost
subjectively, the optimization-driven approach captures the
notion of opportunity cost that is essential to effectively
understand various important network trade-offs. An
optimization-based approach does not consider each activity
independently but instead optimizes them collectively
given the resources that are available in the network.
Second, existing practices mix the cost of building the
network and the cost of ‘doing’ activities in a way that
makes it quite hard to understand the incremental cost of
performing an activity. In contrast, the proposed approach
separates these two type of costs that we call service
cost and network building cost, respectively. Moreover, it
considers separately decisions related to network building
and decisions related to how to best leverage the network’s
capabilities. As a result, it can be tailored to inform
various core strategic decisions, such as resource allocation,
network building and capacity placement, and the design
of location-specific and overall network portfolio of
services.

To demonstrate the potential of this framework, we
present the results of collaborative work with a care
delivery network that is centered around a major academic
medical center (AMC). We employ the model to inform,
from a tactical/strategic perspective, decisions related to
resource allocation and portfolio of surgical services across
the facilities in the network. Existing resource allocation
practices vary broadly across different hospitals and within
departments of a single hospital. At our partner institution,
as in many others, there is an ad hoc approach to allocate
resources across the different departments (e.g., OR time)
that considers profitability (e.g., net contribution margin),
cost, teaching, and research needs, but it is also influenced
by historical allocations and internal politics.

Other than the AMC, the network includes two
community hospitals. The current state, in which each
hospital manages its surgical capabilities independently, has
resulted in two undesirable situations:

(i) leaked demand, which refers to patients whose care
is managed by the network but somehow end up
receiving surgical care outside the network, causing
significant loss of revenue and/or increased costs;

(ii) imbalanced utilization of surgical capacity across the
network. Specifically, while the AMC is over-utilized
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and does not allow growth, there is unused surgical
capacity in the community hospitals.

The surgery department leadership was interested in
understanding how the deployment of surgical resources
and activities could allow growth in the network, and
create better access in the community to recapture some of
the leaked demand. As part of this effort, the leadership
had to assess the portfolio of surgical services ideally
provided in each network location. More specifically, the
decision was centered around what procedures should be
deployed to the community hospitals and what extent. These
decisions have to consider the profitability of different
procedures, the clinical appropriateness of performing
different types of surgery throughout the network, and
many other operational and clinical considerations. After
extensive data collection and modeling work, which is
described in detail in the subsequent sections of the
paper, the resulting model was used to recommend the
network how to strategically leverage the underutilized
surgical capacity in the community to improve access,
recapture leaked demand, and increase overall profitability
as measured by revenue net of variable cost (RNVC).
RNVC is defined as “average revenue—average direct
variable cost”, where direct variable cost includes expenses
that are directly attributable to the service delivered (e.g.,
supplies, materials, and lab tests), and that are otherwise
not incurred. Note that this definition is different from the
commonly used contribution margin, which includes labor
cost allocations (e.g., [9, 23]).

The results of this analysis provide meaningful business
insights and prescribe a concrete strategy. Moreover, many
of the insights contradict common beliefs in the network that
are based on both, the traditional practices of understanding
cost as well as the isolated view of each hospital’s financial
performance. One such insight is that some of the currently
perceived profitable surgical services should be sent to the
community. This stands in contrast to the belief among
the leadership of the network that the services that need
to be moved to the community are the ‘less profitable’.
However, the current practice defines profitability based
on cost allocations. This assumption does not consider the
fact that a ‘profitable’ type of surgery could be blocking
many other surgeries since it consumes more constrained
resources, something that our model captures explicitly.
Furthermore, the resulting RNVC increase from (partially)
reallocating the volume of certain surgical services to the
community can be quite significant; in our partner’s case,
the RNVC increase is close to 12% (if all leaked demand is
recovered), and we estimate that about 4% of the increase is
due to the (partial) deployment of specific surgical services
to the community. It is important to realize that an increase
of 1% in RNVC corresponds to a much larger increase in the

network’s bottom line (approx. 16%) since RNVC does not
include network building costs (e.g., overhead and labor),
which remain largely the same.

More generally, we believe that the proposed framework
could be used to support many additional decisions around
network building and resource allocation in care delivery
networks. It provides an innovative way to better and more
accurately understand cost in health care networks and the
corresponding relationship to value. To the best of our
knowledge, this is the first paper jointly modeling capacity
deployment, resource allocation, and case-mix in a network
of hospitals [15].

1.1 Summary of results and contributions

Our work contributes to the understanding of cost and
resource allocations, and to the practice of management
in health care settings in the following ways: (1) we
develop a linear programming model to capture the
interaction between capacitated resources and the services
that consume those resources in a multi-site network.
The model optimizes the network’s objectives instead
of individual departments’ goals and can be tailored to
support network strategic decisions related to case-mix,
deployment, and allocation of resources, and network
expansion.

(2) The model provides an objective way of quantifying
cost in a network environment. We distinguish between
network building costs and the direct cost of performing
an activity or service. This is in marked contrast to
the traditional approach of (arbitrarily) allocating network
building costs to activities as a way to account for their
resource consumption. In our approach, capacity building
costs are sunk (including contracted labor), and we model
the consumption of the respective resources explicitly
through constraints. This allows for an objective allocation
of capacity that takes into account the opportunity cost of
the resources.

(3) In collaboration with a large health network, we
demonstrate how to use our framework to inform strategic
decisions related to surgical activities, such as case-
mix, resource allocation, and capacity placement. The
network’s objective is to recapture unmet demand while
maximizing its RNVC. Using real financial, inventory and
capacities, and resource consumption data, we estimate
the parameters of the optimization model. The estimation
method could guide the implementation of our framework
in different applications in health care networks. The
analyses show that the network could increase its RNVC
significantly by reallocating surgeries to the community (up
to 12%). Finally, we contrast the model recommendations
to the traditional valuation of surgical services (based
on ‘net contribution’); insights from these analyses were
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highly valued by the managers and executives at our
partner network. (4) As part of the implementation, we
develop an empirical approach for mapping between the
different coding systems: from DRG and ICD-9 codes to
internal procedure codes. We also propose a scheme to
approximately determine available resource capacity when
only a subset of services is included in the model.

2 Common practices to understand cost in
health care

Estimating the cost of service in health care settings is
challenging. The financial structure of health care networks
is characterized by large fixed and indirect costs because of
the typically large investments in infrastructure, workforce,
and equipment. These costs are incurred to support diverse
activities across the network, and cannot necessarily be
attributable to services. In an attempt to better understand
the cost of a service (e.g., a surgical procedure), health care
networks have adopted standard principles from product
cost accounting, specifically, activity-based costing (ABC).
Under this method, indirect expenses (e.g., labor and
overhead) are allocated to activities, and not to products,
based on their resource consumption, see [5–7] for a
detailed description. The use of ABC principles has brought
some clarity and accountability in the understanding of
costs in health care settings, [4, 12], and guidelines
for the implementation of such systems in health care
has been reported in [1, 28]. However, this approach to
understanding the cost of providing service is not perfect.
It relies on cost allocation rules that, although ideally
represent the consumption of capacity, are in practice rather
subjective because of the complexity in which capacity
is used by hundreds (or even thousands) of different
activities and services. In an attempt to understand service
cost for strategic decision making, [21] studied how to
allocate cost related to capital investments. Using the
case of a radiology facility, they demonstrate the value
of distinguishing between the cost of used and unused
capacity in the cost accounting process and the impact on
strategic decisions. More generally, they pinpoint the most
common mistakes in the allocation of the cost of capital
investments in a health care setting. Tackling the accuracy of
the cost allocation rules, [17, 18] propose the Time-Driven
Activity-Based Costing method (TDABC) that tailors ABC
to account (using time-based allocations) for the complex
resource interactions and consumption patterns in health
care services. Although these improvements have made
allocated costs more transparent, the following illustrative
example demonstrates why they are still not appropriate for
guiding tactical and strategic decisions, even in a simplified
setting.

Illustrative example Let us consider a common capacity
allocation decision at a surgery department. The operating
room capacity has been increased by one additional
room for the next year, and the manager has already
hired a nursing team to staff the additional room. The
corresponding incremental labor cost is $300K per year.
The historical performance suggests that the extra operating
room will effectively add 1500 operating hours per year.
Thus, the labor cost per operating room hour is $200. For
simplicity, we consider that there are only two services,
I and II, and both have the same reimbursement rate,
$1500 per case. The specific surgery duration and cost of
surgery supplies, for each service, are defined in the first
two columns of Table 1. Additionally, there is a floor-bed
capacity for 800 days, and both services have the same
length-of-stay, 1 day on average.

We further assume demand arrives uniformly over
time and ignore variability in arrivals and in resource
consumption. In addition, patients, who cannot be seen
because of scarce resources, are able to seek care
somewhere else (leaked demand). The manager is interested
in prioritizing the services, i.e., deciding how much
operating room time to allocate to each of them in order
to maximize profitability. We compare the outcome of
the traditional approach that myopically allocates capacity
based on services’ net profit margin (including fixed
cost allocations, which includes labor) versus the optimal
allocation.

Service I uses twice as much operating time as service II,
hence the labor cost allocated to the former is twice as large
(by TDABC). The cost allocation in Table 1 suggests that
service II is more profitable (1500 − 400 > 1500 − 500),
hence, a myopic manager would give higher priority to
it.

Let us assume that the demand at end of the year is
500 patients type I and 400 patients type II. The manager’s
priority rule would result in 400 patients for each service
accepted. The floor-bed capacity would be fully utilized
(50% by each service type), and the OR would be 80%
utilized (53.3% by service I and 26.6% by service II).
In terms of demand, 100 patients type I would seek care
somewhere else (leaked demand) because of the depletion
of floor-bed capacity. The revenue loss of leaked volume
would be $1,500 × 100. The total profit would be $780K
(400 × (1500 − 100) + 400 × (1500 − 200) − 300K).

Table 1 Traditional cost allocation

Service OR Supplies Labor Cost Total

Time [min] Cost [$] Allocation [$] Cost [$]

I 120 100 400 500

II 60 200 200 400
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Unfortunately, this is not the best the manager could do.
We note that at the time of deciding the priorities, the
cost of the nursing team (network capacity cost) has been
already committed. This cost will be incurred regardless
of the type of procedures and volume performed. Thus,
priority decisions should be only based on the relevant
costs: those that will vary with changes in the case-mix.
If instead, we define priorities to maximize the revenue
net of variable cost (revenue—service cost). Then, the
optimal priorities are reversed. Without changing the overall
volume, the optimal capacity allocation is 500 procedures
type I and 300 procedures type II, which results in a
profit increase of $10K . The optimal capacity allocation
is 1000/1500 OR-hours to type I service and 300/1500
to type II service, and the bed-capacity is 62.5% to type
I service and 37.5% to type II service. The additional
profitability in the optimal solution is not coming from
a larger volume but from prioritizing the right kind of
volume. Specifically, service type I lower service cost.
Indeed, in the optimal solution, there is still leaked demand,
100 type II services, which results in the same revenue
loss as before (this is because services generate equivalent
revenue).

Following traditional cost accounting practices, the
manager allocates the cost of labor to each service type
based on usage (nursing hours). The problem with this
approach is that the resulting ‘allocated cost’ does not
capture the true cost of providing service, in particular,
it does not include the opportunity cost of the resources
consumed in the delivery of the service. Moreover,
‘allocated cost’ can make services look arbitrary more
or less costly depending on the allocation rule used. In
Fig. 1, we show a real example of how the inclusion of
overhead and labor costs can distort the relative value of
procedures. We consider two surgical services that have
similar reimbursement rates and obtain the total ‘allocated
cost’ (derived from the hospital cost accounting system)
and the service cost, which does not include any labor and
overhead allocations. When compared based on allocated

cost (Fig. 1a), the ratio of the mean allocated cost of service
I over service II is 1.29, however, when the comparison is
based on service cost (Fig. 1b), the ratio increases to 4.45,
making service II significantly more attractive (cheaper).
This difference could influence priorities and case-mix
decisions dramatically.

In reality, capacity and resource allocation decisions
are significantly more complex; health care networks offer
multiple procedures types in several locations. Activities
and services consume several resources at different rates,
incur different costs while yielding different revenues.
Understanding the cost of service is critical for networks
to be able to use their limited resources efficiently. In the
literature, several authors have studied resource allocation in
heath care settings, in particular, using linear programming.
See for example [2, 3, 8, 22], and the general reviews by [16,
26], they all propose mathematical programming models
to improve ‘efficiency’ in the use of resources. Although
these models have proven better than ad hoc resource
allocations, they typically consider a single hospital or
department and include few resources in the analysis [15].
More importantly, previous models assume that the cost
of service is known (typically from cost accounting), and
overlook the interpretation and implications of using these
cost figures for strategic and tactical purposes. Our work
proposes a different approach to understand cost and inform
the deployment and allocation of resources and other
strategic decisions in a network environment. Specifically,
we separate the cost of network building (e.g., overhead
and labor), which is for the most part fixed, and the service
cost, which is incurred with each additional case served.
Thus, instead of allocating overhead and labor costs to
activities as a way to account for resource consumption, we
are going to directly model the corresponding capacity, and
its consumption, through constraints within an optimization
framework. In this way, our approach will capture the value
of providing service by explicitly accounting for complex
trade-offs and the opportunity cost of capacity in a network
environment.

Fig. 1 Comparison of ‘allocated
cost’ vs. our service cost. Cost
figures have been scaled for
confidentiality. Service I
corresponds to Laparoscopic
Gastroenterostomy, and service
II to Cholecystectomy
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3 Practical motivation andmodel

We present the business problem faced by our partner hos-
pital network, describe our modeling approach, present the
mathematical formulation, and discuss general applications
of the model. For confidentiality, we omit names of the hos-
pitals, set of services included in the study, and also re-scale
strategic data, such as volume, costs, and reimbursement
rates.

3.1 The business problem: how to deploy surgical
capacity in a network of hospitals?

Our partner network consists of two community hospitals
and one Academic Medical Center (AMC). We worked
in collaboration with a leadership team from the AMC
surgical department to tackle two fundamental challenges
faced by this network; (i) surgical leaked demand, and (ii)
the imbalance use of surgical capacity across the hospitals
in the network.

With few exceptions, it is a common practice for
hospitals that are part of large networks to remain
operationally independent from each other; each hospital
in the network manages its own patient volumes and
capacities. This is also the case for our partner network.
The AMC offers the most advanced care and provides
various surgical services that are not typically provided in
the community setting due to limited resources, surgical
expertise, and capabilities. The AMC’s surgical volume
is highly dependent on referrals derived from affiliated
primary care physicians within the network’s geographical
area. Unfortunately, in the last few years a growing number
of cases are being referred outside the network, (i). In
2012, leaked demand reached approximately 10-20% of the
AMC’s surgical volume across three major service lines.
Intense competition in the region and lack of timely access
to care at the AMC has been conjectured as drivers of leaked
demand. Thus, convenience factors such as easiness in
scheduling appointments and offering services near where
patients live, are becoming key differential attributes for
networks to preserve their patient base. In addition, surgeons
at the AMC perpetually request additional operating room
time, however, hospital managers claim that operating
room utilization is already at maximum levels and no
additional operating room time is available. At the same
time, surgical resources in the community hospitals are
not fully utilized (ii). This raised the issue of whether
shifting the volume of certain services, from the AMC to
the community hospitals, would be an effective approach
to free up capacity at the AMC. We refer to this shift in
volume as reallocation. By doing this, the network can
potentially create better access, recover leaked demand,
and maximize network profitability. We refer to this as

demand recovery. However, addressing access issues and
the recovery of leaked demand require better coordination
and visibility of resources across the hospitals in the
network. For instance, deciding which surgical services to
perform at each location depends on several factors. Firstly,
not every surgical service can be performed in a community
setting; hospitals in the network handle different levels of
service complexity. Secondly, revenue and cost might differ
across hospitals due to fluctuations in the reimbursement
rates that depend on the kind of institution (academic
vs. community). All this requires a systematic approach
to capture complex trade-offs in order to efficiently
manage capacity and deliver services according to network
objectives.

3.2 Modeling approach

In order to address the above strategic issues, we
develop an optimization-driven approach. Specifically, we
consider a multi-site health care network that consists
of different hospitals and clinics, several resources, and
various activities and services that can be performed across
the different locations. The goal is to optimize network’s
welfare objectives (e.g., maximize revenue or minimize
cost across the entire network). In particular, we focus
on maximizing network profitability from surgical services
since this aligns with the goal of our partner network.
It is important to emphasize that, in contrast to current
cost accounting practices, our profitability definition only
includes costs that are incurred with the realization of
the service or activity, and we model the consumption of
overhead and labor resources through capacity constraints.
Previous work has used linear optimization for short-term
case-mix planning (see review by [15]); our work differs
in various dimensions. Firstly, we consider a network of
hospitals and in addition to optimizing case-mix, we also
decide capacity deployment of flexible resources (e.g.,
surgeons’ time) at each location. Secondly, our profitability
measure omits labor cost, which is typically included
in the contribution margin definition commonly used in
the literature. In contrast, we model labor as a capacity-
constrained resource. As a result, our model dissociates
from subjective cost allocations and presents an objective
and transparent way to understand the cost in a network
environment.

In what follows, we describe the different components
of our optimization-driven approach in the context of
the delivery of surgical services at our partner network.
The typical hospital path that a patient follows during a
surgical care episode is shown in Fig. 2. A surgical patient
physically moves along phases I-IV, but phase V is required
after phase II is completed. Turnover corresponds to the
room preparation/cleaning step required immediately after
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Fig. 2 Phases of surgical path

completion of phase II. Although the patient is not delayed
by this step, accounting for the operating room downtime
is important because it limits its capacity. Thus, we focus
on modeling the network of resources and their capacities
along with the phases of the surgical path at the three
hospital locations. It is important to emphasize that in this
application, and therefore in the following definitions, we
focus on a subset of surgical services that are currently
provided at the AMC, and not necessarily in the community.
Thus, demand for surgical services corresponds to the
current volume of patients served at the AMC, plus the
unmet demand, which will be inferred from the leaked
demand data. Furthermore, to consistently model network
capacity, we restrict the AMC capacity to what is available
for the set of studied procedures, plus the spare capacity that
is available in the community hospitals. Later in Section 3.4,
we discuss how the model can be extended to incorporate
more phases, and a broader set of services and resources, as
well as other applications.

– Services. Our partner network is interested in studying
surgical services from three surgical departments
(general, colorectal, and surgical oncology). To select
the surgical services, we consider two criteria: (1)
yearly volume is above a minimum volume threshold,
and (2) the service is provided at least once a
month. Although this selection rule is optional, it
ensures that we have sufficient data to compute
statistics on the usage of resources, and revenue, and
cost. Infrequent services tend to have highly variable
resource consumption patterns, moreover, the benefit
of including them, from a managerial perspective, is
unclear since they are rarely performed. Hence, we
exclude them to avoid introducing noise and potentially
skewing results. Using the AMC’s surgical volumes in
2012, the criteria resulted in the selection of 57 surgical
services (defined based on the AMC’s internal coding
system), which account for about 90% of volume across
the three surgical departments.

– Locations. As previously described, our partner net-
work consists of one AMC and two distinct community
hospitals (COM). More generally, locations can include
hospitals, clinics, and laboratories, that are part of the
network where services can be provided.

– Resources. There are different types of resources in
the network: equipment and supplies (type A), physical
infrastructure (e.g., operating room, ward beds.) (type
B), and staff (type C). The IT systems record exactly
which equipment and supplies were used by each
surgical service. Using data from AMC in 2012, we can
determine a preliminary list of resources to be included
in the model; Type A resources are chosen based on
a minimum usage rule. Specifically, items that are not
critical, and used in less than 5% of the cases of each
surgical service are excluded. The list is reduced further
by eliminating low-cost items that are included within
the physical infrastructure (e.g., the surgical table is
part of the operating room resource). This selection
process results in a final list of 197 type A resources
which were reviewed and approved by the AMC
nursing team. Type B resources correspond to operating
rooms, preoperative and post-anesthesia bays, and
ward beds. Type C resources broadly include nurses,
anesthesiologists, and surgeons. Type C resources are
assumed to be staffed on an aggregate per operating
room basis: a common practice in many hospitals.
Preoperative and post-anesthesia bays also follow a
similar staffing model for nurses. Thus, having an
operating room available in our application means that
the surgical team (except for the surgeon) is guaranteed
for that room. Hence, the only type C resource that is
explicitly included in the model is the AMC surgeons.

In the model, we also distinguish between fixed
and flexible resources. Fixed resources are tied to a
particular location and can only be used to deliver
service at that location (e.g., surgical supplies, operating
room, etc.). Flexible resources, on the other hand,
are shared across the network, and can potentially be
mobilized from one location to another (e.g., AMC
surgeons who spend two days in the community
hospital and three days in the AMC). Furthermore,
we also identify a subgroup of substitutable resources
that can be safely exchanged for each other (e.g.,
two orthopedic surgeons with overlapping surgical
capabilities). In this application, we assume that
resource types A and B are fixed to a specific location,
while AMC surgeons (resource type C) are flexible
and substitutable (based on technical skills). Indeed,
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a distinctive feature of the model is to decide how
to deploy surgeons operating time across the different
hospitals in the network.

The idea of modeling surgeons as a substitutable
resource derives from the observation that surgeons
have overlapping skills, moreover, each surgeon can
provide several surgical services. To identify ‘who can
provide what’, we create a classification of services and
surgeons based on historical data. With the assistance of
the surgeons from our partner network, we classify each
surgical service as one of seven specialties (bariatric,
breast, colorectal, endocrine, esophageal, general, and
Hepato-Pancreato-Biliary (HPB)), and develop the
concept of surgeon classes. A class is a set of specialties
so that each surgeon belongs to exactly one class, and
two surgeons are in the same class if they can perform
surgeries from the same set of specialties. Thus, each
surgeon class is treated as a different resource in the
model, which facilitates tracking surgeons’ capacity
and the consumption of it. For the set of studied surgical
services, we have 20 surgeons, 7 specialties, and 10
surgeon classes.

– Capacity of resources. The capacity of resources is
determined by location and measured in time equivalent
units. That is, capacity depends on the total number
of units of resource available at each location, and
the typical number of hours per day that the resource
is available. Thus, the daily capacity of a resource
at a specific location corresponds to the availability
(hours/day) × the quantity of resource (units). In
general, resources are assumed to be available during
the normal operating hours of the respective hospital.
For example, preoperative bays and operating rooms are
usually available between 9-10 hours a day, while post-
anesthesia beds are usually available for 10-12 hours a
day. Ward-beds are available 24/7. Supplies, equipment,
and staff generally follow the daily availability of the
operating room. The daily estimate can be adjusted
to obtain monthly or yearly estimates of capacity by
simply multiplying by the number of days in the model
horizon. A potential issue with this approach, however,
is that it assumes that the entire resource capacity is
available for the set of studied services. In reality,
resources are also used by several other services that are
not part of our model. Limiting the analysis to a subset
of surgical services introduces a unique challenge in
capacity modeling. To reconcile the discrepancy, we
approximately segment the capacity into the portion
that is available for the studied procedures by looking
at historical utilization. The details of this approach are
described in Appendix B.1.

– Activities. To model the consumption of resources,
we introduce the concept of activities. These are

specific actions required for the completion of the
service. In general, services, resources, and activities
are connected in the following manner: each service
requires the execution of various activities in order to
be completed, and each activity consumes a certain
bundle of resources in order to be executed. Figure 3
illustrates the interaction between services, activities,
and resources.

We consider activities as the phases of the surgical
path. For example, to provide a breast cancer surgery
(service), the activity of delivering pre-operative care
(Phase I) requires a bed, equipment, nurse time, etc.
for the duration of the phase. The next activity is
the surgery itself (Phase II) and requires an operating
room, a surgeon who can provide the breast surgery,
and equipment for the duration of the phase. Note
that some activities are demanded by various services
(e.g., pre-operative care activity), however, the resource
consumption may vary depending on the service (e.g.,
the typical operating room time needed for a transplant
is much longer than for an appendectomy surgery).

– Resource usage. The amount of resources used by
a specific service is determined by the activities
required for the completion of that service and their
corresponding resource consumption. Similarly to the
modeling of capacity, we define resource usage in
time equivalent units. Different patients may require
a different amount of resources; we consider typical
resource usage. This corresponds to the typical quantity
of resource used × the typical duration of the activity
that uses that resource, and we assume that resources
are used during the entire duration of the activity.
Specifically, the typical activity duration is modeled
as the median of the duration of the phase I–IV. The
hospital standard turnover time is used for phase V.
The typical resource quantity is modeled as the average
amount of resource used in each phase. Details available
in Appendix B.2.

– Demand for services. Modeling demand requires us
to quantify current volumes, as well as the ability
to grow demand for specific surgical services. The
leakage phenomenon can be used to obtain a reasonable
estimation of the network’s opportunities to grow. Thus,
we consider two sources of demand; existing demand
and unmet demand. Existing demand corresponds to
the AMC volumes for the set of studied services. This
is considered as the baseline demand. Unmet demand
is estimated by analyzing claims data of in-network
patients that received surgical care outside the network.
To the best of our knowledge, we are the first work
informing unmet demand based on leakage data. One
of the challenges that we faced in estimating unmet
demand, is that the leakage data is indexed using
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Fig. 3 Diagram of the
interaction among services,
activities, and resources

a different coding system, Diagnosis-Related Groups
(DRGs). The challenge is that multiple DRGs are
assigned to a single surgical service and vice versa. To
resolve this, we create a data-driven mapping based on
the empirical frequency of DRGs on existing demand
and use this to obtain an estimate of unmet demand
per service type. The mapping approach is described in
Appendix B.3.

– Revenue and cost. For each surgical service performed,
the network collects some revenue and incurs some
cost. These quantities may vary across patients due
to insurance differences, intensity of care delivered,
and payment delinquency. The model considers typical
revenue and cost figures as the average payment
collected and the average cost incurred with the
realization of the service per location. One of the
challenges we encountered in estimating average
revenue per surgical service was that financial data is,
as it is in many hospitals, recorded by patient encounter
(i.e., entire episode of care), and not by surgical service.
Moreover, within each encounter, single charges are
listed using ICD-9 procedure codes. Thus, figuring out
the revenue generated by each surgical service is not
straightforward. The problem is that ICD-9 codes do
not map to the internally used surgical service codes
uniquely. To overcome this, we create a mapping based
on the empirical occurrence of ICD-9 codes on surgical
service codes, and used this to determine the average
revenue per surgical service at each location. Details
available in Appendix B.4.

From the cost side, we distinguish between two
sources of cost; the network building capacity cost
and the service cost. The former includes the costs
attributable to infrastructure, equipment, and labor,
which determine the operational capacity of the
network. The second source of cost corresponds to
expenses incurred with each extra unit of demand

served (e.g., supplies, medications, and disposable kits).
In economic terms, the first group of costs includes
fixed and indirect costs, while the second one only
encompasses direct variable costs. We notice that, given
a fixed level of capacity, the first group of costs is
committed (sunk), and will be incurred regardless of
the actual combination of services performed. Hence,
we will not include them in the model. Similar to the
revenue data, cost data is also indexed by the encounter
and ICD-9 codes, but further broken down into specific
cost departments. This level of detail allows us to
distinguish surgical service cost from (discretionary)
allocations of network overhead costs; we only consider
the former one in the computation of average service
cost. The estimates are based on the AMC cost records
in 2012, and we assume that the cost in the community
hospitals is the same.

These components are the building blocks of the
mathematical formulation presented in the next section.

3.3 Mathematical formulation

The model considers a fixed time horizon over which it
decides on the volume of each service to be offered at each
location to maximize the average revenue net of variable
cost (RNVC), subject to specific business and operational
constraints that ensure that a particular combination of
services can be performed in practice. Notice that the
RNVC metric includes the sum of average revenue—
average service cost (πpl) for all services, which does not
include any of the (discretionary) cost allocations related
to overhead and labor (network building capacity costs).
Instead, the capacity and consumption of these resources
are modeled through constraints. It is important to note
that an increase in RNVC corresponds to a much larger
increase in the network’s bottom line (total revenues—total
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costs); a first-order estimation suggests that 1% increase in
RNVC corresponds to approximately 16% increase in the
network’s bottom line (this assumes network margin is 4%,
and overhead and labor are 60% of total cost).

We consider two sets of decision variables; xpl : number
of cases of service p to be performed at location l, and yral :
amount of substitute resource r allocated to activity a at
location l. The second set of variables allows us to model
the deployment of capacity for resources with substitutes
that are also flexible, i.e., that can be allocated to various
sites and to avoid double allocation. Observe that since we
are addressing the network optimization from a strategic
perspective, the decision variables are assumed continuous
without affecting the interpretation of the optimal solution.
The formulation of the network optimization problem is as
follows

max
x,y≥0

RNV C =
∑

l∈L

∑

p∈P

πplxpl

s. t.
∑

p∈P

∑

a∈A

uparlxpl ≤ crl ∀ r ∈ RFix, l ∈ L (1)

∑

l∈L

∑

p∈P

∑

a∈A

uparlxpl ≤ c̃r ∀ r ∈ RFlex (2)

∑

p∈P

uparlxpl ≤
∑

s∈S(r)

ysal ∀ r ∈ RSubs,

a ∈ A, l ∈ L (3)∑

a∈A

∑

l∈L

yral ≤ ĉr ∀ r ∈ RSubs (4)

Δ−
p ≤

∑

l∈L

xpl ≤ Δ+
p ∀ p ∈ P (5)

δ−
pl ≤ xpl ≤ δ+

pl ∀ p ∈ P, l ∈ L (6)

The model notation is summarized in Tables 3 and 4 in
Appendix A. The constraints Eqs. 1 and 2 ensure that the
amount of required resources does not exceed the available
capacity at each location (fixed resources) and across the
network (flexible resources). The left-hand-side (lhs) adds
up the total amount of resource across services, activities,
and locations (only for Eq. 2) required to serve the optimal
volumes. The right-hand-side (rhs) accounts for the total
capacity of resources available at each location in Eq. 1, and
across the network in Eq. 2. The third constraint guarantees
the correct allocation of substitute resources across activities
and locations. For each substitute resource, the lhs adds
up the total amount of resources required to execute a
specific activity across services at a specific location. The
rhs corresponds to the total capacity that the model will
assign, from the pool of substitute resources to the specific
activity and location. Since substitute resources are modeled
as flexible resources, constraint Eq. 4 guarantees that the
allocated capacity across activities and locations does not
surpass the network resource capacity for each substitute

resource. We note that constraints Eqs. 2–4 serve to model
the deployment of the capacity of surgeon’s time across
locations while taking into account surgeons’ capabilities
to perform a surgical service through substitution among
them. Finally, constraints Eqs. 5 and 6 are demand related.
We consider that the volume that the network, and each
hospital, serves is within some minimum and maximum
limits. Constraint Eq. 5 captures the extent up to which
the network can decide on the combination of services to
offer. For instance, the network cannot just focus on the
most profitable services, it must offer a wide variety, even
less profitable ones, to cover the needs of its population.
Krishnan et al. [20] shows empirical evidence on how
merging hospitals tend to redeploy resources to focus on
high-profit services, but they still maintain a share of non-
profitable service lines. Similarly, constraint Eq. 6 is used
to ensure diversity in the portfolio of services offered at
each location, and to control for the reallocation of demand
among hospitals. In practice, we impose these limits to
avoid recommendations that suggest converting hospitals to
uniform services (this has been observed in practice, see
[10]).

In Section 4, we apply this model to our partner
network on a subset of surgical services that are currently
performed at the AMC. The leadership team wishes to
understand how to efficiently use spare surgical capacity
in the community hospitals to recover some of the unmet
demand. Specifically, they need to inform the deployment
of surgeons’ capacity across the network and case-mix at
each location. The parameters of the model are estimated
to represent the current resource usage, the current AMC
capacity available for the set of studied services, and
the community hospitals’ spare surgical capacity. Demand
is determined using estimates of existing volumes and
unmet demand, which is estimated based on leakage
data.

3.4 General applications

The formulation of the network problem is quite general
and can be tailored to study a wide range of network
strategic decisions. For instance, optimal volumes can
be used to determine capacity budgets to prospectively
allocate capacity among services across the network. The
modular structure of the model is so that its scope can
be easily extended by, for example, incorporating more
resources, activities, services, and locations. Moreover,
the model objective can be adapted to other network’s
welfare objectives, e.g., maximizing profit, throughput,
access, or minimizing cost, or any combination of them.
More generally, the network optimization model can
support strategic decisions related to network integration,
expansion of service lines, recovery of leaked demand, and



Optimization-driven framework to understand health care...

improvement of access to care. Specifically, applications
include:

– Business development: Evaluate how to better use spare
capacity across the network; which services to offer at
each location. Determine the priority in which types
of leaked services should be attacked; which leaked
demand is most valuable for the network.

– Operations: Determine the extent to which the network
can meet (or not meet) expected demand with
the existing resources, and how capacity should be
deployed. Evaluate the financial impact of shifting
capacity across the different network locations. Identify
which resources are limiting and whether it makes
financial sense to expand capacity (network building
decisions).

Expanding on network building decisions, our model
can be used to evaluate the marginal benefit of capacity
investments by simply looking at the shadow prices of the
resources. Also, it can inform operational decisions. The
capacity and resource allocation in the short term is difficult
due to variability in demand arrivals, duration, and resource
consumption. Thus, solutions at the aggregate level need
to be translated into an operational feasible plan, e.g., for
scheduling and staffing. The formulation presented above
can be easily adapted to account for operational variability.
For instance, by using more conservative estimates of
the typical resource consumption parameters. For instance,
instead of using the mean or median resource consumption
as the typical amount, we can simply use higher quantiles.
Alternatively, we could also add or modify constraints,
for example, by adding buffer capacity to account for
the variability in duration, or by reserving capacity for
emergency cases, and so on. With these simple adjustments,
we can obtain solutions that can better complement and
guide short-term operational decisions.

4 Application and discussion of results

We employ the above model to recommend how to
use the network surgical spare capacity to our partner
network. The analyses focus on identifying which services
to shift to the community, what the best use of the spare
community capacity is, and how this capacity should
be allocated to the AMC’s surgeons. We also analyze
changes in utilization as a proxy for access improvement.
The time frame studied is one year, and the parameters
of the model are estimated according to this timeline.
The parameter estimation procedure is described in detail
in Appendix B. The recommendations of the model are
compared to the recommendations resulting from the
traditional ‘net contribution’ approach. As described in

Section 2, this commonly used approach values services by
revenue—‘allocated cost’, where allocated cost includes the
(discretionary) portions of overhead and labor costs that are
traditionally assigned based on cost accounting principles.
The ‘net contribution’ approach closely represents how
executives and managers value and prioritize services in our
partner network, and generally in the industry. Specifically,
we study the following scenarios:

– Baseline (Section 4.1). This represents the current
operations at the AMC, and we use it as a reference
for subsequent analyses. Specifically, we consider that
all existing demand is served at the AMC, and unmet
demand and spare capacity in the community are
excluded in this scenario. The validation of this scenario
is based on the inputs from practitioners.

– Estimate the value of capacity at the AMC
(Section 4.2). This study quantifies the benefit of hav-
ing an optimal case-mix from an RNVC perspective;
can the AMC increase the value generated out of its
capacity by choosing an appropriate case-mix? If so,
which services should be emphasized to maximize
RNVC? In the analysis, we consider the baseline sce-
nario as a starting point and allow for small changes in
volume while maintaining the same levels of resource
utilization.

– Quantify the value of recovering leaked demand
using spare network capacity (Section 4.3). This
analysis answers the question on how to best use
the spare capacity in the community to increase
the network’s RNVC. Which services should be
reallocated from the AMC to the community, and
how unmet demand should be recovered across the
network? Specifically, the study expands upon the
baseline scenario by including spare capacity in the
community hospitals and unmet demand. We assume
that some portion of the baseline AMC demand can be
reallocated to the community and that leaked demand
can be recovered across the entire network, provided
that the necessary resources exist. In addition, we
restrict the utilization of AMC bottleneck resources
to the baseline utilization. The spare capacity in the
community is fixed, except for the ward-beds, for which
we explicitly report the capacity needs based on optimal
volumes and typical length-of-stay.

4.1 Baseline

In the baseline scenario, we focus on the AMC’s current
operations excluding the community hospitals’ capacity and
network’s leaked demand. Later, in Section 4.3 we study
the value of using the entire network capacity to recover
leaked demand. Thus, we set the model resources capacity
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and demand parameters according to the AMC’s current
capacities and existing demand levels. To better understand
the importance of the different services at the AMC, Fig. 4
shows the cumulative RNVC and corresponding volume.
We observe that 10 services account for 50% of the RNVC,
while their volume accounts for about 31% of the total
volume across the 57 studied services.

To validate that this scenario represents the current
operations at the AMC, we obtain utilization values from
the output of the optimization model. The operating room
has the largest utilization, about 82%, followed by 62%
and 35% in the preoperative and post-anesthesia bays,
respectively. The overall surgeon time utilization is 62%.
For the ward-beds capacity, we did not have a hard capacity
constraint in the model, but we consider a lower bound
based on the existing volumes and typical length-of-stay.
The data suggests a minimum of 26.23 beds per year to
serve the existing demand. Based on our conversations with
the managers at the surgical department, these results are
a reasonable representation of the current AMC utilization
levels. Moreover, the surgical team also validated that the
operating room utilization is already high, and cannot be
increased without negatively affecting the service quality
(e.g., excessive overtime and delays in the schedule). Based
on their knowledge, the team also considers that ward-
beds are a limiting resource. Conversely, they believe that
surgeon time utilization could still be increased. Note that
this, and the issue of leaked demand and spare surgical
capacity in the community hospitals, motivated our work,
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Fig. 4 Baseline cumulative revenue net of variable cost and volume
for the set of 57 studied services. Note: Stagged bars represent
different service lines. The dark bars correspond to the top ten largest
contributors of RNVC. Data from 2012

to begin with. Therefore, the bottleneck resources are the
ward-beds and operating rooms. In the subsequent analyses,
we restrict the utilization of these AMC resources to be at
most the baseline utilization. The model also suggests that
most of the resources, especially equipment, have very low
utilization, hence we do not adjust their utilization since
they are not significantly constraining volumes. However,
we do recognize that the coordination and scheduling of
these resources will be crucial to ensure case-mix feasibility
at the operational level.

We note that surgical services can be very different
from each other. Figure 5 shows a comparison of the
different services based on their resource consumption and
profitability (revenue—service cost). Generally, services
that consume more resources than the average service, also
tend to report higher profitability, which is represented by
larger bubble sizes.

At a more aggregate level, the medical specialties with
the largest contribution to RNVC are general, colorectal,
and breast, there are also the specialties with the largest
volumes (Table 2). In terms of average profitability per case,
the specialties are ranked as HPB, esophageal, colorectal,
bariatric, general, endocrine, and breast.

4.2 Estimate the value of capacity at the AMC

Starting from the baseline scenario, we allow the model
to make small changes in AMC volumes and evaluate the
corresponding impact on profitability. Specifically, for each
service, we allow an ±x% volume change (i.e., we modify
bounds in constraint Eq. 6 by (1 ± x%)), while the total
volume stays within ±y% of the existing volume (i.e., we
modify bounds in constraint Eq. 5 by (1 ± y%))). Figure 6
shows the potential RNVC gains for different changes in
services volume. By changing services volume (x-axis) in
up to ±5%, a 1% increase in RNVC can be obtained. We
recall that a 1% increase in RNVC will approximately result
in a 16% increase in AMC’s bottom line.

We also analyze the consequent changes in the portfolio
of services at the AMC. Figure 7 shows directional changes
in volume for each service. The services are ranked based
on their ‘net contribution’, which is the traditional approach
for prioritizing services based on profitability. The y-axis
notation, ‘+1’ and ‘−1’, indicates directional changes
in AMC volume (increase (‘+1’) or decreased (‘−1’))
when the optimization model is allowed to slightly vary
baseline volumes by up to ±5%. Intuitively, ‘+1’ indicates
that prioritizing that service at the AMC will expand
network profitability. In contrast, ‘−1’ implies that higher
profitability could be obtained by reducing that service’s
volume. This marginal analysis allows us to see that the
current volumes and profitability prioritization are not
optimal at the AMC–higher profitability could be achieved
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Fig. 5 Comparison of resource
consumption and value by
service. Note: Each point
represents a different service
line. The x-axis an y-axis
correspond to the ratio of
operating room and ward-beds
consumption over the average
consumption, respectively. The
bubbles size represents the ratio
of profitability
(revenue—service cost) relative
to the average profitability.
Averages are computed on the
set of studied services
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by de-emphasizing the volume of some services in the top
10 net contribution ranking.

Decreasing the volume of services 6 (General surgery),
7 (HPB), 9, and 10 (Colorectal) were somehow counter-
intuitive to executives and managers at our partner network.
The discrepancy between the model and their ranking is
because the model explicitly accounts for services’ resource
consumption while maximizing RNVC. For example,
service 6 reports high ‘net contribution’, however, it is
also a very expensive service in terms of the usage of
bottleneck resources (highest bubble in Fig. 5). The problem
with the ‘net contribution’ ranking is that it does not
capture the interaction among services that compete for
limited resource capacity. Thus, by reducing the volume
of service 6, the model is freeing capacity that is then
used to increase the volume of several other seemingly
‘less profitable’ services (e.g., 41 (General surgery), 43
(Colorectal)).

Table 2 Sub-specialty profitability in baseline scenario. Percentages
computed over the 57 service lines included in the study

Sub-specialty % Revenue net of variable cost % Baseline volume

Bariatric 4% 4%

Breast 12% 21%

Colorectal 27% 22%

Endocrine 9% 10%

Esophageal 2% 1%

General 36% 39%

HPB 11% 3%

4.3 Quantify the value of recovering leaked demand
using spare network capacity

We optimize the network under two changes: (1) allow
reallocation of existing volumes from the AMC to the
community, and (2) allow recovery of leaked demand across
the network. Note that we do not restrict where to recover
unmet demand, the model chooses the best location for it.
Providers believe that a small volume reallocation from the
AMC to the community is operationally feasible, as long
as the resulting case-mix can be accommodated within the
AMC capacity limits. Estimates of leaked demand volume
for each facility is obtained from historical claims data by
assigning patients to the closest hospital in the network
according to patients’ home zip code. We consider different
scenarios of leaked demand recovery. Ideally, the network
would like to recover 100% of leaked demand, however
because of capacity limitations and some patients’ strong
preferences, it might not be able to do so. Alternatively,
one might interpret leaked demand recovery as a proxy for
low-hanging-fruit growth opportunities. Hence, recovery of
unmet demand in our model is a way for the network to
identify which growth opportunities to pursue and which
surgical procedures to prioritize at each facility. Thus,
the different scenarios aim at capturing the network’s
effectiveness in retaining patients in-network. Specifically,
we modify demand bounds (in constraints Eqs. 5 and 6)
to allow reallocation of volume from the AMC to the
community hospitals of at most x% for each service and
recovery of unmet demand across the network of up to w%
of leaked volume for each service.



F. Bravo et al.

Fig. 6 AMC’s RNVC increase
for small changes in services
volume. Note: The different
curves are closed to each other
because the AMC is capacity
constrained. Thus, even if we
allow to increase total volume,
the AMC does not have the
capacity to serve it
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In Fig. 8, we observe that by simply reallocating volumes
(i.e., 0% leaked demand recovery curve), the network can
increase RNVC by up to 1.2%. This gain is simply reflecting
differences in reimbursement rates across locations. Once
again, we recall that a 1% increase in RNVC corresponds
to approximately 16% in the network’s bottom line. Now,
if the network is able to backfill AMC reallocated volumes
by recovering leaked demand, RNVC can be increased
by up to 12% (100% AMC volume reallocation and
100% leaked demand recovery curve). Additionally, we
also observe that reallocation has decreasing marginal
returns; hence, small reallocation of AMC volumes can
provide most of the benefits. Finally, notice that these

gains do not require additional capacity at the AMC
since spare capacity in the community hospitals is used
instead.

In terms of bottleneck resources, the operating room
and ward-beds capacity utilization (see Fig. 9) –as well as
preoperative and post-anesthesia bays– decrease as more
flexibility (reallocation) is permitted. Figure 9a shows
the changes in the AMC’s operating room utilization;
it decreases with the reallocation of existing volumes
but increases again with the recovery of unmet demand.
Interestingly, the ward-beds resource seems to be the most
limiting resource for the recovery of unmet demand. In
Fig. 9b, we observe that the ward-beds need reaches the
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Fig. 7 Changes in AMC’s portfolio of services. Note: Directional volume changes are represented by ‘+1’ when positive and by ‘−1’ when
negative. We assume that the volume of each service can change in up to ±5%, and total volume stays within ±1% of the total baseline volume
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Fig. 8 Network RNVC increase
obtained by reallocating AMC
volume and recovering unmet
demand
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baseline capacity (26.23 beds per day) when 50% of the
unmet demand is recovered.

In terms of volume, this is now redistributed between
the community and the AMC. For example, let us assume
that reallocation is allowed for up to 10% of AMC volumes
and that all leaked demand can be recovered across the
network. Figure 10 summarizes the directional changes
in volumes. As before, services are ranked on the x-
axis from highest to lowest ‘net contribution’. The model
suggests reallocating to the community services at the

bottom of this ranking. This, again, was in agreement
with our partner’s expectations. However, the model also
suggests reallocating to the community services at the top
of the ranking (procedures types 2 (HPB), 3 (Colorectal), 6
(General Surgery), and 7 (HPB)). This was surprising, and
somehow counter-intuitive for the executives and managers.
The difference is rooted in the fact that these services
consume a large number of bottleneck resources (largest
and darkest bubbles in the upper middle area in Fig. 5),
and also in the fact that the traditional approaches ignore
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Fig. 9 Operating room utilization, and required ward-beds capacity at the AMC when reallocating AMC volumes and recovering unmet demand
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Fig. 10 Changes in the network’s portfolio of services obtained by
recovering unmet demand. Note: We assume up to 10% volume real-
location from the AMC to the community and full unmet demand
recovery across the network. Directional volume changes are mea-
sured relative to the baseline volumes. Positive changes are coded as

‘+1’, negative as ‘−1’, and no change as ‘0’. The AMC is represented
by filled circles and the community hospitals (combined) as unfilled
squares. When there is no change in volume (AMC and COM at zero),
it means that there is no unmet demand for the specific service

the opportunity cost of resources. Thus, by shifting cases
of these services to the community, the model frees up
AMC capacity and backfills it with cases of services that,
under the traditional view, are seemingly less profitable.
Ultimately, the reallocation results in better value out of the
entire network capacity.

Another output of the model is the allocation of surgeons’
time across the network. In Fig. 11, we show an example of
the resulting surgeons’ operative time allocation assuming a
10% volume reallocation from the AMC to the community
and full unmet demand recovery. Even in the case where
all leaked demand is recovered, the overall surgeon time
utilization is below 70% (versus 62% in the baseline
scenario). In general, we observe that breast, endocrine,
and HPB specialties, and therefore surgeons’ time, are
partially moved from the AMC to the community, while the
other specialties increase or maintain their presence at the
AMC. Interestingly, breast and endocrine specialties have
the lowest average profitability per case, and HPB has the
highest. Moving HPB cases out to the community setting
was, again, somehow counter-intuitive for the managers and
executives, but it demonstrated how traditional approaches
might fail to capture complex interactions in a network
environment. On the other hand, at this point in time, and
independently of this study, our partner network started
to shift some breast and endocrine services to a recently
acquired clinic, our analysis validates such strategy.

4.4 Limitations

The specific results reported in this case study cannot
be generalized to other healthcare networks. Recommen-
dations pertaining to case-mix, capacity deployment, and

resource allocation at each hospital location reflect the
financial and operational realities at our partner system.
Reimbursement rates are sensitive to the mix of payers
and patients, which can vary widely across institutions.
Resources and their usage, as well as demand and growth
opportunities, are also specific to each hospital’s reality
and practices. Nonetheless, the optimization model and
estimation methods can certainly be used elsewhere. Specif-
ically, the methodology used for modeling and estimating
resource usage, capacities, demand, revenue, and cost, and
the mapping approaches developed to convert from DRGs
and ICD-9 to internal codes can be replicated. Because of
the ambiguity in how cost allocation and profitability anal-
ysis are conducted in practice, others will most likely find
surprising insights when comparing the model recommen-
dations to current practice.

Specific to our case study, we consider a static and
deterministic view of our partner system operations. Ser-
vice profitability is an evolving metric that is subject to
market changes, such as reimbursement models, contract
negotiation, and patient composition (e.g., type of insur-
ance, age, and severity of illness). For instance, it is likely
that new financial incentives to move care from inpatient
to outpatient or ambulatory settings will result in a differ-
ent prioritization of procedures [19]. Also, unmet demand
recovery, in reality, is a complex phenomenon and would
likely depend on other exogenous factors (e.g., competi-
tion), as well as the various recovery mechanisms, and
their effectiveness, used by the network. Our model does
not include retention/growth measures directly. Addition-
ally, the best retention/growth measures might be different
depending on the optimal case-mix recommendation (e.g.,
offering bariatric surgery only at the main campus versus
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Fig. 11 Example of total
surgeons’ operating time by
specialty at the AMC and across
the network. Note: We assume
up to 10% reallocation from the
AMC to the community and full
unmet demand recovery. The
‘AMC baseline’ scenario
corresponds to the baseline
volumes performed at the AMC.
The ‘AMC final allocation’
corresponds to the optimal total
operative time at the AMC, and
the ‘Network final allocation’ is
the total operative time across
the entire network (AMC plus
COM)
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offering it at each satellite location.) Indeed, the output of
our model might be used to inform the implementation of
such recovery measures.

In this work, we ignore all fixed costs because our focus
was on informing short-term tactical decisions, however,
to study long-term strategic decisions the model should
include fixed costs. But note that using full cost to value
services is not recommended. Full cost includes fixed cost
allocations that are derived based on current volumes–
these cost allocations are likely going to change when the
case-mix of services shifts. In addition, using full cost
assumes cost will change linearly in volume, which might
not be the case as some resources might have economies
or diseconomies of scale. Our modeling framework is
very flexible and can be easily modified to study strategic
long-term resource allocation and case-mix decisions and
avoid the shortcomings above. For example, currently, the
model assumes a fixed number of nurse-hours available
per week, but that capacity might not be appropriate
for a long-term strategy. One might want to increase
this capacity by hiring additional nurses. The model can
incorporate this by considering the nurse-hours as a decision
variable and adding its cost to the objective. The dual
prices from the short-term implementation of the model
can be used to identify the resources that are limiting
the output of the process so decision variables should be
added for those resources in the long-term implementation.
By modeling labor capacity in this fashion instead of
through cost allocations to services, we avoid the noise
introduced by arbitrary allocation rules, which are often
based on uncertain volume projections. Moreover, resource
economies/diseconomies of scale can be modeled directly
in the cost function. The same approach can be taken for
equipment and facility-related resources (e.g., additional
beds allocated to a surgical department) whose capacity is
flexible. We expect the optimal short-term and long-term

strategy to differ, and a priori, it is unclear whether the
optimal long-term strategy will resemble the outcome of
myopic rules based on full cost allocations–we thus advise
to use the model whenever possible.

5 Conclusion

In this paper, we propose a general framework to support
strategic decision making in health care delivery networks.
Specifically, we developed a linear optimization framework
akin to revenue management models that allow us to
support several strategic network decisions related to
case-mix, resource and capacity allocation, and network
integration and expansion. Our approach is surprising, in
stark contrast with current practices; the contrast lies in
how one ‘prices’ the use of resources which must be
provisioned well in advance of serving procedures. Existing
practice will frequently ‘amortize’ the real dollar cost of
these resources across activities in an ad-hoc fashion based
on cost accounting principles. Our approach prices each
service according to the resources it uses, where resources
are valued based on their opportunity cost (i.e., the cost
for an additional unit of that resource). This opportunity
cost corresponds to the shadow price of the resource and
is computed while acknowledging all of the operational
constraints one faces in providing services and the demand
for those services across the network. This ultimately allows
us to provide an objective allocation of resources and
capacities in a network environment.

We demonstrate one of the potential applications of our
framework by working in collaboration with the surgical
department of a network of hospitals. The goal for our
partner network was to determine how to better use the
spare surgical capacity in the community to recapture leaked
demand while maximizing profits across the network.
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We conducted several analyses that demonstrate how the
model outputs differ from traditional practices, specifically,
compared to how services are commonly prioritized. The
results revealed significant and practical managerial insights
to the executives and managers related to case-mix across
the entire network and at the hospital level, leaked demand
recovery, and allocation of capacity among surgeons and
specialties.

More generally, our framework can support other
strategic decisions related to how to use a multi-site
health care network to meet the population care needs,
which procedures to offer at each location, and the
corresponding capacity allocations. In terms of resources,
our approach can guide decisions on how to allocate
limited resources (e.g., operating room time, surgeon
time, and specialist time) across the various procedures
and activities in alignment with the network’s welfare
objectives. Additionally, decisions, such as which growth
opportunities to pursue, how much capacity to reserve
for specific procedures, and what surgeon’s expertise
to bring into the network, can be supported as well.
Finally, by incorporating specific operations constraints, our
framework can also be used to analyze current operations,
identify bottlenecks, and evaluate the effect of changes in
capacity, payments, and the portfolio of services offered
in the network’s objectives. Overall, we strongly believe
that our proposed approach has the potential to transform
how health care networks understand the cost and allocate
resources in a network environment in practice.

Appendix A: Notation summary

Table 3 Definition of sets and indexes

Set Notation

Locations l ∈ L

Services p ∈ P

Activities a ∈ A

Fixed resources r ∈ RFix

Flexible resources r ∈ RFlex

Substitutable resources r ∈ RSubs , s ∈ S(r)

The subset S(r) corresponds to a set of substitute resources for
resource r . The complete set of resources R = RFix ∪ RFlex

Appendix B: Estimation ofmodel parameters

We estimate model parameters based on the current
utilization levels at the AMC, and spare surgical capacity

in the community hospitals. Specifically, we use historical
financial, surgical records, capacity data, and in-network
claims data, from the AMC and community hospitals
(where available) from years 2009–2013. Most of the
parameters are estimated using the last complete year of
data (2012). In addition, the IT systems are not integrated
across our partner network, hence the AMC’s data bases
only contain historical records of surgical patients at this
location. Thus, data for the community hospitals had to
be collected manually through surveys and interviews.
The estimation of the model parameters is specific for
this application, but it can serve as a guideline for other
applications of our model.

B.1 Capacity of resources

Limiting the analysis to a subset of services introduces
a unique challenge in capacity modeling. Specifically,
resources are used by all services, including those that are
not part of our model. To reconcile this discrepancy, we
approximately segment the capacity into the portion that
is available for the studied services. For operating rooms,
we have a natural paradigm to assist us in performing
this segmentation: surgeon block time. For the AMC, we
estimate the surgeons block time share in 2012. This
corresponds to the portion of operating room total block
time assigned to surgeons who can perform the set of
studied procedures. We use this share to adjust capacity of
various other resources as follows.

Capacity for type A resources The capacity for supplies and
equipment is difficult to scale. Cleaning, transportation and
set-ups consume usable time. At the AMC, the inventory
of resources is readily acquired from the IT system.
Thus, we adjust total capacity proportionally to surgeons’
block time share. Even though this is a conservative
assessment, it is more realistic than assuming that the
entire capacity is available for the studied services. At
the community hospitals, on the other hand, such an IT
system does not exist, and we had to manually collect data
on spare capacity with the assistance of the local nursing
teams.

Capacity for type B resources At the AMC, the available
operating room capacity is the result of scaling total
operating room time by the surgeon’s block time share,
and by the average studied services share. The latter share
corresponds to the average portion of surgeons’ block time
that has been historically spent on cases of the studied
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Table 4 Model parameters

Parameter Notation Description Units

Revenue net of variable cost πpl (Revenue–service cost) obtained by performing . Dollars.

service p at location l

Resource usage uparl Amount of resource r required by activity a to Time equivalent units.

provide service p at location l.

Capacity crl , c̃r , and ĉr Amount of fixed, flexible, and substitutable Time equivalent units.

resource r available at location l, or across the entire network.

Network demand Δ−
p , Δ

+
p Minimum and maximum network demand for service p. Cases.

Single hospital demand δ−
pl , δ

+
pl Minimum and maximum demand for service p at location l. Cases.

procedures. The operating room available capacity at the
AMC (in time units) is

cOR,AMC = Total OR block time at AMC in a year

×Surgeons block time share at AMC(%)

×Avg. studied services share at AMC(%).

We follow a similar procedure for determining available
capacity for the pre-operative and post-anesthesia bays. For
the recovery beds, on the other hand, we were unable to
directly estimate the number of beds available for cases of
the studied services, so we instead approximate the available
capacity by computing the number of bed hours used by our
57 services in 2012. We use this as the minimum capacity
available. For the community hospitals, we directly ask the
operating room managers to estimate the spare capacity for
all the physical infrastructure resources.

Capacity for type C resources The AMC surgeons operating
time available capacity is computed on a surgeon class
basis based on the AMC 2012 records. A surgeon class is
a set of specialties (bariatric, breast, colorectal, endocrine,
esophageal, general, and Hepato-Pancreato-Biliary (HPB));
each surgeon belongs to exactly one class, and two surgeons
are in the same class if they can perform surgeries from
the same set of specialties. For example, John and Jane
specialize in bariatric and colorectal surgeries. Judy, on the
other hand, masters colorectal and endocrine surgeries. In
this example, there are two surgeon classes, {bariatric and
colorectal} and {colorectal and endocrine}. John and Jane
belong to the first class, and Judy to the second. Thus,
each surgeon class is treated as a different resource in the
model, and its capacity corresponds to the pooled capacity
of the surgeons in the class. Specifically, we first compute
the actual total operating time (TOT) spent on the studied
services. TOT includes all the operating time, regardless of
whether the case was performed within surgeons’ own block
time. Secondly, we estimate the adjusted block time (ABT).
This is the surgeon’s block time allocation, but scaled by the
average share of surgeon’s total operating time spent on the

studied procedures, plus any shared block time allocation.
Shared blocks are blocks used by a group of surgeons, and
we estimate the distribution of this time across surgeons
based on historical usage. Again, ABT is a conservative
estimate of the time surgeons could spent operating cases of
the studied procedures. Finally, surgeon’s available time is
defined as the maximum between TOT and ABT. Thus, the
available time for surgeon class r is just the pooled capacity
across the surgeons in the class,

ĉr =
∑

i∈Surgeon Class r

max{T OTi, ABTi}

B.2 Resource usage

Resources are used by different activities and services, and
the usage is measured in time equivalent units and depends
on the duration of the activity and the quantity of resource
used during the activity, both of which are specific to a
service.

Typical activity duration Using historical data fromAMC in
2012, we compute the empirical distribution of the duration
of each phase in the surgical path (Fig. 2) for each surgical
service. For phases I–IV, the duration differs in variability,
and right skewness. Thus, we use the median duration as
the typical phase duration. For phase IV however, we noted
that some services are performed in both, inpatients and
outpatients settings. Using median duration for phase IV
does not represent the typical duration for neither subset
of patients. Instead, we use the weighted average of the
median duration for the two subset of patients to estimate
the duration of phase IV.

Typical durationPhase IV = Inpatient cases

Total cases
×Inpatient median length-of-stay.

Finally, we also assume that the duration of phases I–IV
is the same across all locations. Conversely, the duration of
the turnover (phase V) is not service specific but location
dependent, and it is defined according to the scheduling
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standards at each hospital (e.g., 30 min at the AMC, 45 min
at the community hospitals).

Typical resource quantity Using resource usage data from
AMC in 2012, the typical resource quantity is modeled by
the average quantity used in each phase of the surgical path.
Although our general model allows for different resource
usage at each location, we assume that the typical quantity
is the same across hospitals. According to the local nursing
teams, required resources and quantities are inherent to
the service, and are not expected to change significantly
based on location. Differences in resource requirements
are exceptions, and we handle them individually. Thus, the
typical resource usage (uparl in the general formulation) is
defined as follow, for a given phase a, the typical usage of
resource r by service p is

upar = Avg. resource r used by service p in phase a

× Typical duration of phase a

The index l is dropped since in the application we assume
that usage is the same across locations.

B.3 Demand

Unmet demand, or leaked demand, is estimated by
analyzing claims data of in-network patients that received
surgical care outside the network in 2012. The leaked
demand records are indexed by the Diagnosis-Related
Groups (DRGs) coding systems; the HCFA/CMS-DRG for
Medicare cases and the AP-DRG for non-Medicare cases.
The mapping between this coding system and the hospital
internal coding system is non-trivial because multiple DRGs
can be assigned to a single service type. To reconcile this,
we create a mapping based on the empirical frequency of
DRGs on existing demand. Consider a service x and an
DRG code z, then using the AMC existing volumes, we
can estimate the probability of having a service x given that
DRG z is observed as

P(x|z) = P(x, z)

P (z)
∼ No. cases of x and z

No. cases of z

Thus, the unmet demand for a specific procedure type x is
simply the weighted average of the leaked demand volumes

Unmet demand(x) =
∑

z∈DRG

P (x|z) × Leaked demand(z)

B.4 Revenue and cost

A major difficulty in the estimation of revenue and cost
per service is that financial data is commonly indexed
by encounter (i.e., entire episode of care), and itemized
using a different coding system, usually ICD-9 or ICD-
10. A single episode of care may involve different surgical

services and medical services (which are not included in this
application). We are able to parcel out the codes related to
surgical services, but there is still the problem that multiple
codes, and not necessarily the same codes in all cases, are
linked to each surgical service. To address this, we create a
mapping based on the empirical frequency of ICD-9 codes
and services. For each encounter, we can identify a major
surgical service, and a primary ICD-9 code. Based on these,
we consider a service type x, and a primary ICD-9 code
y, and estimate the conditional probability of observing
service x given that the primary ICD-9 code y was recorded
as

P(x|y) = P(x, y)

P (y)
∼ No. encounters of x and y

No. encounters of y
(B1)

We were able to estimate these probabilities using the
AMC financial data from 2012. Thus, the average revenue
of a specific surgical service is simply the weighted average
of the average payments by primary ICD-9 codes:

Avg. Revenue AMC(x) =
∑

y∈ICD-9
P(x|y) × Avg. AMC Payment(y) (B2)

For the community, however, estimating the probabilities
in Eq. B1 is not possible. The payment data is also
indexed by encounter and ICD-9 code, but it does not
indicate the major surgical service. Instead, we use the
AMC probabilities as a proxy. However, even if we use the
mapping from the AMC, we still have the problem that some
ICD-9 codes are rarely performed in the community, or not
at all, thus the average payment per ICD-9 in the community
is noisy. To overcome this, we adjust the average payment
of ICD-9 codes that have less than 10 observations using the
AMC’s average payment. Thus, for an ICD-9 code y with
sample size n < 10

Adj. Avg. COM payment(y) =
Avg. COM payment(y)

( n

10

)
+

γ Avg. AMC payment(y)

(
10 − n

10

)

Where γ > 0 is the average payment differential between
the community, and the AMC, across ICD-9 codes with 10
or more records. For example, γ = 0.8 means that the
payments in the community are on average 20% lower than
at the AMC. We use the adjusted average back in Eq. B2 to
obtain an estimate of the average revenue per service in the
community.
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