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Statistical shape analysis: From landmarks to diffeomorphisms

Miaomiao Zhang and Polina Golland*

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, United States

Abstract

We offer a blazingly brief review of evolution of shape analysis methods in medical imaging. As 

the representations and the statistical models grew more sophisticated, the problem of shape 

analysis has been gradually redefined to accept images rather than binary segmentations as a 

starting point. This transformation enabled shape analysis to take its rightful place in the arsenal of 

tools for extracting and understanding patterns in large clinical image sets. We speculate on the 

future developments in shape analysis and potential applications that would bring this 

mathematically rich area to bear on clinical practice.
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1. Introduction

The study of anatomical shape changes and of their relationship with disease processes is 

one of the central topics in medical image analysis. For example, many neurodegenerative 

disorders cause widespread brain shape changes that can be observed in 3D brain MRI 

scans, as illustrated in Fig. 1. Identifying statistical shape differences between healthy 

subjects and patients affected by a disease promises to provide new clinical insights and 

ultimately improve diagnosis and treatment. In this paper, we briefly review the evolution of 

representations and statistical modeling techniques used for anatomical shape analysis and 

highlight recent developments that take us closer to routine applications of shape analysis 

based on large collections of medical images.

2. Shape representation

Shape representations commonly used in medical image analysis include landmarks, implicit 

representations, parametric representations, medial models, and deformation-based 

descriptors. Many variants have been proposed in the field based on these fundamental 

descriptors.

Landmarks are points on the object's boundary that can be identified reliably (Cootes et al., 

1995; Bookstein, 1997). Landmarks are detected automatically or placed manually based on 

geometric properties of the surface, such as curvature, and image intensity. Since the quality 
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of landmarks directly affects the statistical efficiency of the resulting shape model, 

substantial research effort has been focusing on selecting distinct and reproducible 

landmarks, including automatic methods for achieving compact representations of the group 

variability (Davies et al., 2001). Landmark-based methods most often characterize the object 

boundary and ignore the structure of the object's interior.

To overcome the sensitivity of the descriptor to the placement of the landmarks, a distance 

transform is commonly used as an implicit representation of the object's boundary (Leventon 

et al., 2000). While more robust to the noise in the boundary, such implicit descriptors give 

rise to a highly non-linear space, necessitating approximations when modeling shape 

distributions (Golland et al., 2005).

Parametric descriptors represent the object boundary in a particular functional basis and 

thus reduce the representation to a small number of discrete coefficients that capture the 

entire continuous boundary. Examples include the Fourier basis in 2D (Staib and Duncan, 

1992) and the spherical harmonics in 3D (Brechbühler et al., 1995). While offering 

computational efficiency and robustness to noise in landmark locations, this inherently 

global descriptor makes it challenging to localize shape changes.

Based on the original work of Blum (1973), the medial axis descriptor represents the shape 

as an envelope of spheres whose centers define the object's “core” and whose radii 

determine the object's thickness at each point of the core. The original medial axis 

representation is sensitive to the noise in the binary label map that defines the object, which 

is overcome by robust fitting methods applied to medial representations of constrained 

topology (Pizer et al., 1999).

In contrast to the earlier descriptors that focused on binary segmentations of a specific organ, 

deformation-based representations capture shape information in the entire image 

(Christensen et al., 1993; Rueckert et al., 2003). With the underlying assumption that the 

geometric information in the deformations conveys a shape, descriptors in this class arise 

naturally by matching a template to an input image with smoothness constraints on the 

deformation field. In many applications, it is natural to require the deformation to be a 

diffeomorphism, i.e., a differentiable, bijective mapping with a differentiable inverse. While 

biological motivation for using diffeomorphic deformations may exist in some applications, 

the biggest advantage of using diffeomorphisms is computational. Employing diffeomorphic 

transformations greatly facilitates the mapping between the atlas and subject coordinate 

systems. Moreover, the theoretical framework of Large Deformation Diffeomorphic Metric 

Mapping (LDDMM) defines a metric in the space of deformations that in turn induces a 

distance metric on the shape space (Beg et al., 2005).

The deformation-based approach to shape representation transformed shape analysis from 

requiring binary segmentations to operating on raw images. This change enabled many new 

applications of shape analysis for which no robust segmentation methods are available.
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3. Statistical analysis

Principal component analysis (PCA) is widely used in combination with various shape 

representations to capture anatomical variability in a population (Cootes et al., 1995; Staib 

and Duncan, 1992; Leventon et al., 2000; Brechbühler et al., 1995). Many descriptors give 

rise to non-linear spaces, which require statistical analysis to account for the non-linearities 

in the model. Examples of such non-linear modeling methods include kernel PCA (Twining 

and Taylor, 2001), principal geodesic analysis (PGA) that estimates lower-dimensional 

geodesic subspaces by minimizing the sum-of-squared geodesic distances (Fletcher et al., 

2003), and clustering (Sabuncu et al., 2009). And while most sophisticated methods for 

modeling high-dimensional distributions that capture low-dimensional phenomena has been 

attempted in the context of shape analysis, PCA and its manifold variants remain a 

workhorse of this field.

4. Deformation-based representations meet statistics on manifolds

In this section, we illustrate the ideas reviewed above in the context of a contemporary 

formulation based on a Bayesian variant of PGA. This particular approach encodes shape in 

the space of deformations parameterized through the so called geodesic shooting 

construction (Miller et al., 2006). The model employs an automatic relevance determination 

prior to encourage a compact representation. Detailed derivations of the statistical model and 

of the resulting inference algorithm can be found in (Zhang and Fletcher, 2015).

4.1. Diffeomorphisms for shape representation

We define diffeomorphic transformations on a d-dimensional torus . The tangent 

space of diffeomorphisms at identity is the space V of smooth vector fields on Ω. For any 

two vector fields v, w ∈ V, there exists a weak Sobolev metric such that

(1)

where L is a symmetric, positive-definite, differential operator that induces a metric on the 

shape space. Diffeomorphisms are generated by flows of time-varying velocity fields as a 

solution to an ordinary differential equation

(2)

where v and ϕ are the time-varying velocity field and the resulting diffeomorphic 

transformation, respectively.

Given an initial velocity field at time t = 0, the geodesic path on the manifold of 

diffeomorphisms is uniquely determined by the Euler-Poincaré equations (EPDiff) (Arnol'd, 

1966; Miller et al., 2006):
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(3)

where D is the Jacobian and div is the divergence operator. This process is known as 

geodesic shooting (Miller et al., 2006). This construction provides a representation of 

diffeomorphisms via initial velocities.

With a slight abuse of notation, in the remainder of the paper we use v to denote the initial 

velocity field and ϕ to denote the corresponding final deformation.

4.2. Image likelihood

Fig. 2 illustrates the graphical model for Bayesian principal geodesic analysis (BPGA), first 

presented in Zhang and Fletcher (2015). Given a set of N deformation fields {ϕn}, we treat 

the input images {Jn} as iid samples from a Gaussian distribution induced by the model of 

the image noise (n = 1, ···, N). In particular, input image Jn is generated by applying 

deformation ϕn to the image template I:

(4)

where σ2 is the image noise variance. The norm inside the exponent is the  norm 

defined on a finite discretized grid. More sophisticated models of image noise can be readily 

converted into a likelihood model for the observed images.

4.3. Generative model of shape

We let the columns of matrix  represent the K principal modes of variation in the 

d-dimensional space of the initial velocity fields. We let  denote a vector of K latent 

loading weights such that the initial velocity field vn = Wxn generates diffeomorphism ϕn in 

Eq. (4). Similar to the Bayesian variant of PCA (Bishop, 1999), we impose a Gaussian prior 

on the loading factors:

(5)

In contrast to Bayesian PCA, this distribution includes principal components W to ensure the 

smoothness of the resulting geodesic shooting path. The prior distribution on W encourages 

sparsity by suppressing small principal initial velocity values towards zero, thus providing 

dimensionality reduction through automatic relevance determination (Bishop, 1999):

(6)
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where Wk is the kth principal component of the model and γk is the precision of the 

principal component Wk.

4.4. Learning and inference

The maximum likelihood estimates of the image template I, the noise variance σ2, and the 

precision hyperparameters {γk} are obtained through an iterative algorithm that is derived 

by observing that maximizing the likelihood of the input images is equivalent to minimizing 

the cost function that leads to geodesic shooting (Miller et al., 2006). The optimization 

procedure produces estimates of the hyperparameters {γk} that often tend to infinity. Since 

high precision is equivalent to concentration around zero, this process yields sparse 

solutions. Other choices of sparsity, such as Laplacian priors, can also be used to implement 

dimensionality reduction. Once the algorithm converges, the maximum a posteriori 
estimates of the latent loading weights xn provide a compact representation of the 

anatomical shape in image Jn and can be used for further analysis in clinical studies.

Fig. 3 illustrates the application of this approach in a study of brain shape variability based 

on a set of 3D MRI scans of healthy subjects in ADNI. We display regions of expansion (in 

red) and contraction (in blue) captured in the first principal component, as well as the 

anatomical variability represented by this component. We observe that ventricle size change 

is a dominant factor in brain shape variability in this cohort.

5. Conclusions and discussion

In this paper, we briefly reviewed the evolution of statistical shape representations, from 

landmarks to diffeomorphisms, and of the statistical methods that have been employed to 

capture the variability in the resulting shape descriptors. We illustrated a contemporary 

approach to shape analysis by demonstrating one possible combination of diffeomorphism-

based shape representation coupled with the Bayesian principal geodesic analysis to extract 

principal modes of variation in the brain anatomy of healthy aging population.

In addition to ever increasing sophistication in the mathematical methods for capturing 

shape and its variation, the field underwent an exciting development of realizing shape 

analysis on raw images rather than requiring accurate segmentation as a prerequisite step. 

While this transformation alleviated the challenges of obtaining high quality segmentations, 

it came at a cost of computational complexity. Since deformation-based shape descriptors 

exist in a high dimensional space defined by the image grid, manipulating these descriptors 

requires substantial computational re sources and specialized programming techniques. We 

expect the future turns of the spiral in shape analysis evolution to produce efficient 

deformation representations that still capture all the intricate and clinically relevant 

anatomical detail. As an additional benefit, such representations will also bring us closer to 

efficient implementations of image alignment and practical applications of shape analysis in 

large scale studies of anatomical change in development, aging and disease.

We conclude by observing that shape analysis has not yet made its way into the standard 

medical practice or clinical research. While technical challenges of characterizing complex 

anatomical shape have been successfully addressed by the evolution of methods in medical 
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image computing, the challenge of translation remains for the current and future researchers 

in this area. Only when clinical researchers and practitioners rely on shape analysis tools in 

the everyday decision making, can we confidently state that the research reviewed in this 

paper has lived up to its true potential.

Acknowledgments

This work was supported in part by NIH NIBIB NAC P41EB015902, NIH NINDS R01NS086905, NIH NICHD 
U01HD087211 grants and by Wistron Corporation. The images in this work were provided by the Alzheimer's 
Disease Neuroimaging Initiative.

References

Arnol'd VI. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à 
l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier. 1966; 16:319–361.

Beg M, Miller M, Trouvé A, Younes L. Computing large deformation metric mappings via geodesic 
flows of diffeomorphisms. Int. J. Comput. Vis. 2005; 61(2):139–157.

Bishop CM. Bayesian PCA. Advances in Neural Information Processing Systems. 1999:382–388.

Blum H. Biological shape and visual science (part I). J. Theor. Biol. 1973; 38(2):205–287. [PubMed: 
4689997] 

Bookstein, FL. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge 
University Press; 1997. 

Brechbühler C, G. G. Kübler O. Parametrization of closed surfaces for 3-d shape description. Comput. 
Vis. Image Understand. 1995; 61(2):154–170.

Christensen, GE., Rabbitt, RD., Miller, MI. 27th Annual Conference on Information Sciences and 
Systems. Citeseer; 1993. A deformable neuroanatomy textbook based on viscous fluid mechanics.; 
p. 211-216.

Cootes TF, Taylor CJ, Cooper DH, Gr aham J, et al. Active shape models-their training and 
application. Comput. Vis. Image understand. 1995; 61(1):38–59.

Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ. A minimum description length approach 
to statistical shape modelling. IEEE Trans. Med. Imag. 2001; 21:525–537.

Fletcher, PT., Lu, C., Joshi, S. Computer Vision and Pattern Recognition. Vol. 1. IEEE; 2003. Statistics 
of shape via principal geodesic analysis on Lie groups.; p. I-95.

Golland P, Grimson WEL, Shenton ME, Kikinis R. Detection and analysis of statistical differences in 
anatomical shape. Med. Image Anal. 2005; 9(1):69–86. [PubMed: 15581813] 

Leventon, ME., Grimson, WEL., Faugeras, O. Computer Vision and Pattern Recognition, 20 0 0. 
Proceedings. IEEE Conference on. Vol. 1. IEEE; 2000. Statistical shape influence in geodesic 
active contours.; p. 316-323.

Miller MI, Trouvé A, Younes L. Geodesic shooting for computational anatomy. J. Math. Imag. Vis. 
2006; 24(2):209–228.

Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, Chaney EL. Segmentation, registration, and 
measurement of shape variation via image object shape. Med. Imag. IEEE Trans. 1999; 18(10):
851–865.

Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-d statistical deformation models of 
the brain using nonrigid registration. Med. Imag. IEEE Trans. 2003; 22(8):1014–1025.

Sabuncu MR, Balci SK, Shenton ME, Golland P. Image-driven population analysis through mixture 
modeling. Med. Imag. IEEE Trans. 2009; 28(9):1473–1487.

Staib L, Duncan J. Boundary finding with parametrically deformable models. IEEE Trans. Pattern 
Anal. Mach. Intell. 1992; 14(11):1061–1075.

Twining CJ, Taylor CJ. Kernel principal component analysis and the construction of non-linear active 
shape models. British Machine Vision Conference. 2001:1–10.

Zhang M, Fletcher PT. Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic 
image variability. Med. Image Anal. 2015; 25(1):37–44. [PubMed: 26159890] 

Zhang and Golland Page 6

Med Image Anal. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Axial slices of example scans of a healthy subject and a patient from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database. The red contour highlights changes in the 

shape of the ventricles due to brain tissue atrophy in Alzheimer's disease.
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Fig. 2. 
Graphical representation of BPGA.
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Fig. 3. 
Top to bottom: axial, coronal and sagittal views of shooting the estimated image template I 
along the first principal mode W1. Left to right: log determinant of the Jacobian at 

, resulting image at {−3, −1.5, 0, 1.5.3} ×  respectively. (For interpretation 

of the references to color in the text, the reader is referred to the web version of this article.)
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