MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Classification of Degenerate Verma Modules for E(5, 10)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1007/s00220-021-04031-z
Publisher: Springer Science and Business Media LLC
Persistent URL: https://hdl.handle.net/1721.1/133312

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133312
https://creativecommons.org/licenses/by/4.0/

Commun. Math. Phys.

o - . Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04031-z

Mathematical
Physics

®

Check for
updates

Classification of Degenerate Verma Modules for E (5, 10)

Nicoletta Cantarini', Fabrizio Caselli' ), Victor Kac?

1 Dipartimento di matematica, Universita di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy.
E-mail: nicoletta.cantarini @unibo.it; fabrizio.caselli @unibo.it

2 Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
E-mail: kac@math.mit.edu

Received: 4 August 2020 / Accepted: 3 February 2021
© The Author(s) 2021

Abstract: Given a Lie superalgebra g with a subalgebra g>¢, and a finite-dimensional
irreducible g>o-module F, the induced g-module M (F) = U(g) ®u(g=0) F is called a
finite Verma module. In the present paper we classify the non-irreducible finite Verma
modules over the largest exceptional linearly compact Lie superalgebra g = E (5, 10)
with the subalgebra g-¢ of minimal codimension. This is done via classification of
all singular vectors in the modules M (F). Besides known singular vectors of degree
1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that
the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be
arranged in an infinite number of bilateral infinite complexes, which may be viewed as
“exceptional” de Rham complexes for E(5, 10).

1. Introduction

Recall that a linearly compact Lie (super)algebra g is defined by the property that, viewed
as a vector space, g is linearly compact. According to E. Cartan’s classification, the list
of infinite-dimensional simple linearly compact Lie algebras consists of four Lie—Cartan
series: W,,, S,, H,, and K,,.

The infinite-dimensional simple linearly compact Lie superalgebras were classified
in [6] and explicitely described in [5]; all their maximal open subalgebras were classified
in [4]. The complete list consists of ten “classical” series (which include the Lie—Cartan
series), and five exceptional examples, denoted by E (1, 6), E(3, 6), E(3, 8), E(4,4),and
E(5, 10). With the exception of E (4, 4), these Lie superalgebras carry a Z—gradation,
compatible with the parity:

g= @ g

j=—d
where d = 2 for E(1,6), E(3,6) and E(5, 10), and d = 3 for E(3, 8). Then g>¢ :=

@;>09; is a maximal open subalgebra of g of minimal codimension. In the case of
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g = E(3,6) and E(3, 8) the subalgebra gg is isomorphic to sl3 @ sl, & C, and for
g = E(5, 10), go is isomorphic to s[5, which hints to connections to particle physics [8].

Let F be an irreducible finite-dimensional go-module, extend it to g>o by letting all
g; with j > 0 act by 0, and consider the finite Verma g-module

M(F) =U(g) ®ug.o) F

where M (F) is viewed as a vector space with discrete topology. These modules are
especially interesting since their topological duals are linearly compact.

The first problem of representation theory of linearly compact Lie superalgebras is
to classify their degenerate (i.e., non-irreducible) finite Verma modules and morphisms
between them. This is equivalent to classification of singular vectors in these modules,
i.e., those which are annihilated by g; with j > 1. This problem was solved for Lie
algebras W,,, S,, and H, by Rudakov [11,12]. In particular, he showed that the degenerate
finite W,,-modules form the de Rham complex in a formal neighborhood of 0 in C”" (rather
its topological dual).

In a series of papers [7,8,10] this problem was solved for the exceptional linearly
compact Lie superalgebra E(3, 6). It turned out that all the morphisms between the
degenerate finite Verma modules over E(3, 6) can be arranged in an infinite number
of complexes, and cohomology of these complexes was computed in [8] as well. The
most difficult technical part of this work is [10], where all singular vectors have been
classified.

In the subsequent paper [9] a solution to this problem was announced for E(3, 8),
and a conjecture on classification of degenerate finite Verma modules for E (5, 10) was
posed, motivated by the singular vectors of degree 1 constructed there (the degree on
M(F) = U(g<o) ® F is induced by the degree on g9 = @;<0g;). In a more recent
paper [13] it was proved that these are all singular vectors of degree 1, and also some
singular vectors of degree 2,3,4 and 5 have been constructed. In the subsequent paper
[2] it was shown that the singular vectors of degree less than or equal to 3 constructed
by Rudakov are all singular vectors of degree less than or equal to 3. Actually, the
morphisms of degrees 2, 3 and 5 corresponding to singular vectors constructed in [13]
are composition of morphisms of degree 1 and 4, and the morphisms of degree 1 and 4
can be arranged in an infinite number of infinite complexes [13]. However, in Fig. 2 of
[13] there are two notable gaps in the complexes.

The key discovery of the present paper is the existence of morphisms of degree 7 and
11, which fill these gaps (see Fig. 4). Moreover, we show that there are no further singular
vectors (Theorem 10.1), thereby proving the conjecture from [9] on classification of
degenerate finite Verma modules over E (S5, 10).

The proof of Theorem 10.1 goes as follows. First, using a result from [12] on S, -
modules for n = 5, which is the even part of E(5, 10), we show that there are no singular
vectors of degree greater than 14. Next we find that for degrees between 11 and 14 there
is only one singular vector, it has degree 11 and defines a morphism from M (C%) to
M(C5"), where C3 is the standard sls-module and C5" its dual. After that, using the
techniques of [2], we show that in degrees between 6 and 10 the only singular vector has
degree 7 and it defines a morphism from M ($>C?) to M (S>C> *). These are precisely
the two morphisms, missing in Fig. 2 of [13]. Finally, we show that in degrees less than
or equal to 6 there are no other singular vectors as compared to [13]. The calculations
involve solution of large systems of linear equations, which are performed with the aid
of computer. Note also that the construction of morphisms is facilitated by the duality,
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constructed in [3], such that the morphism M(F) — M (Fp) induces the morphism
M (F))* — M(F)* and for E(5, 10) has the property that M (F)* = M(F™*).

We have learned recently that Daniele Brilli obtained in [1] the upper bound 12 on the
degrees of singular vectors for finite Verma modules over E (5, 10), using the techniques
of representation theory of Lie pseudoalgebras.

2. Preliminaries

We let N = {0, 1,2, 3, ...} be the set of non-negative integers and for n € N we set
[n]={ieN|1<i<n}.

We consider the simple linearly compact Lie superalgebra of exceptional type g =
E(5, 10) whose even and odd parts are as follows: gg consists of zero-divergence vector
fields in five (even) indeterminates xq, ..., Xs, i.€.,

5
g5 ="S5=1{X=)_fidi | fi € Cllx1,...,x5]],div(X) = 0},
i=1

where 9; = dy;, and g7 = Qfl consists of closed two-forms in the five indeterminates
X1, ..., xs5. The bracket between a vector field and a two-form is given by the Lie
derivative and for f, g € C[[x, ..., xs]] we have

[fdxi /\d-xjv gd.Xk N d.X[] = eijklfgal‘,'jkl

where, for i, j, k,I € [5], &;jk; and t;ji; are defined as follows: if |{i, j, k,[}| = 4 we
let #;j5; € [5] be such that |{i, j, k, [, t;j1}| = 5 and &;j; be the sign of the permutation
@, j, kL tijr). I |{i, j, k,[}] < 4then gy = 0.

From now on we shall denote dx; A dx; simply by d;;.

The Lie superalgebra g has a consistent, irreducible, transitive Z-grading of depth 2
where, for k € N,

gu—2=(fo;li=1,...,5 feCllxi,...,xs5]lk) NS5
g1 = (fdij |i,j=1,....5 f € Cllxi,...,xs]lk) N Q%

where by C[[x1, ..., x5]]x we denote the homogeneous component of C[[x, ..., x5]]
of degree k.
Note that gg = sls5, g_» = (C)*, g1 = A2C3 as go-modules (where C> denotes
the standard sls-module). We setg— = g2 @ g—1, 9+ = ®;>09; and g>0 = go D g+
We denote by U (resp. U_) the universal enveloping algebra of g (resp. g—). Note
that U_ is a go-module with respect to the adjoint action: forx € goandu € U_,

x.u=[x,u]l =xu —ux.

We also point out that the Z-grading of g induces a Z-grading on the enveloping algebra
U_.Itis customary, though, to invert the sign of the degrees hence getting a grading over
N. Note that the homogeneous component (U_), of degree d of U_ under this grading
is a go-submodule.

We fix the Borel subalgebra (x;0;, h;j = x;0; —x;0; | i < j) of go and we consider
the usual base of the corresponding root system given by {o12, ..., as5}. We let A
be the weight lattice of sls and we express all weights of sl5 using their coordinates
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with respect to the fundamental weights @12, ¢23, @34, @as, 1.e., for A € A we write
A= (A2,...,A45) forsome X; ;41 € Z to mean A = Ap@12 + - - - + A45045.
If A € A is a weight, we use the following convention: forall 1 <i < j <5 we let

j—1
Aij = Zlklm-
k=i

If V is a sls-module and v € V is a weight vector we denote by A(v) the weight of v
and by 4;; (v) = (A(v));j-

If A = (a,b,c,d) € A is a dominant weight, i.e. a, b, c,d > 0, let us denote by
F(A) = F(a, b, c, d) the irreducible sls-module of highest weight A. In this paper we
always think of F(a, b, c, d) as the irreducible submodule of

Sym?(C’) ® Sym?(A*(C?)) ® Sym“(A*(C)*) @ Sym? ((C)*)

generated by the highest weight vector x?x{’zxi‘scx;‘ 4 where {x1, ..., x5} denotes the

standard basis of C, Xij = x; A xj, and xi* and xi*j are the corresponding dual basis
elements. Besides, for a weight A = (a, b, ¢, d) weletA* = (d, ¢, b, a), sothat F(L)* =
F(1*).

Notice that, as a go-module, g; = F(1, 1,0, 0_) and that x5dss5 is a lowest weight
vector in g. Moreover, for j > 1, we have g; = g{.

3. Generalized Verma Modules and Morphisms

We recall the definition and some properties of (generalized) Verma modules over
E(5,10), most of which hold in the generality of arbitrary Z—graded Lie superalge-
bras (for some detailed proofs see [2]).

Given a go-module V, we extend it to a g>o-module by letting g, act trivially, and
define

M) =U Qu(g V-

Note that M (V) has a g-module structure by multiplication on the left, and is called the
(generalized) Verma module associated to V. We also observe that M(V) = U_ ®c V
as go-modules.

If the gg-module V is finite-dimensional and irreducible, then we call M (V) a finite
Verma module (it is finitely-generated as a U_-module). We denote by M (1) the finite
Verma module M (F(})). A finite Verma module is said to be non-degenerate if it is
irreducible and degenerate otherwise.

Definition 3.1. We say that an element w € M (V) is homogeneous of degree d if
weU_)®V.

Definition 3.2. A vectorw € M (V) is called a singular vector if it satisfies the following
conditions:

(1) x;0jyyw =0foreveryi =1,...,4;
(i1) zw = O for every z € g1;
(iii) w does not lie in V.
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We observe that the homogeneous components of positive degree of a singular vector
are singular vectors. The same holds for its weight components. From now on we will
thus assume that a singular vector is a homogeneous weight vector unless otherwise
specified. Notice that if condition (i) is satisfied then condition (ii) holds if xsdssw = 0
since xsds5 is a lowest weight vector in gj.

We recall that a finite Verma module M (V) is degenerate if and only if it contains a
singular vector [2, Proposition 3.3].

Degenerate Verma modules can be described in terms of morphisms. A morphism
¢ : M(V) - M(W) can always be associated to an element ® € U_ ® Hom(V, W)
as follows: foru € U_ and v € V we let

o(u @ v) =ud(v)

where,if ® = ), u; ®6; withu; € U_,0; € Hom(V, W), welet ®(v) = ), u; ®6; (v).
We will say that ¢ (or @) is a morphism of degree d if u; € (U-)4 for every i.
The following proposition characterizes morphisms between Verma modules.

Proposition 3.3. [9,13] Let ¢ : M(V) — M (W) be the linear map associated with the
element ® € U_ @ Hom(V, W). Then ¢ is a morphism of g-modules if and only if the
following conditions hold:

(a) go.® =0;
(b) Xp(v) = 0 for every X € g1 and for everyv € V.

We observe that, if M (V) is a finite Verma module and condition (a) holds, it is
enough to verify condition (b) for an element X generating g; as a go-module and for v
a highest weight vector in V.

We recall that a finite Verma module M () contains a singular vector if and only if
there exist a finite Verma module M (A) and a morphism ¢ : M (L) — M (u) of positive
degree [2, Proposition 3.5].

We recall the following duality on finite Verma modules which is established in [3]
in a much wider generality.

Theorem 3.4. Let ¢ : M(A) — M () be a morphism of g-modules of degree d. Then
there exists a dual morphism ¢* : M (™) — M (1*) of the same degree d. Equivalently,
if M(A) contains a singular vector of degree d and weight u, then M (u*) contains a
singular vector of degree d and weight \*.

Remark 3.5. Let ¢ : M(V) — M (W) be a linear map of degree d associated to an
element ® € U_ ® Hom(V, W) that satisfies condition (a) of Proposition 3.3. Then
there exists a go-morphism v : (U-)% — Hom(V, W) such that ® = } ", u; ® ¥ (u)
where {u;,i € I} is any basis of (U-)4 and {u}, i € I} is the corresponding dual basis.

Definition 3.6. Let M (1) be a finite Verma module and let 7 : M(u) — U_ @ F (1),
be the natural projection, F'(u), being the weight space of F'(u) of weight . Given a
singular vector w € M (1), we call 7 (w) the leading term of w.

It is shown in [2] that the leading term of a singular vector is non-zero, and therefore
a singular vector is uniquely determined by its leading term.

The action of E (5, 10) on a module M restricts to an action of its even part on M. It
is therefore natural to take into account the structure of M as an Ss-module also. In order
to do this we consider the grading on S5 given by deg x; = 2 and deg(d;) = —2 to be
consistent with the embedding of S5 in E (5, 10). The definition of a Verma module for
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M(0, 0,0, 0)
1
= (@]
M(0,0,0,1) AR AR e M(1,0,0,0)
\ P2
¥3
(] (]
M(0,0,1,0) M(0,1,0,0)

Fig. 1. All non-zero morphisms between finite Verma modules for S5. External morphisms have degree 2,
and the internal one has degree 4. The morphisms ¢y, ..., @g correspond to the singular vectors in R1, ..., R6
in Theorem 3.7

S5 is analogous to the one for E (5, 10). Rudakov classified all singular vectors for the
infinite-dimensional Lie algebra S, in [12] and we recall here his results in the special
case of Ss.

Theorem 3.7 [12]. The following is a complete list (up to multiplication by a scalar) of
singular vectors w in finite Verma modules M (1) for Ss.

R1.A=(1,0,0,0), w =01 ®x1+0 @x2+ 03 @ x3+ g ® x4 + 05 ® x5,
R2.12=1(0,1,0,0), w =0 @ x12+ 93 ® x13 + 04 @ X14 + 05 ® X15,
R3.4=1(0,0,1,0), w = 33 ® xj5 + 94 @ xI3 + 05 @ X3,

R4. A =(0,0,0, 1), w=84®x§‘—85 ®xjf;

R5.A=(0,0,0,0), w=05® 1,

R6. 1 =(1,0,0,0), w =05(01 @ x1 +d» @ x2 + 093 ® X3+ 04 ® x4 + 05 ® Xx5),

Theorem 3.7 provides the diagram of all non-zero morphisms between finite Verma
modules for S5 shown in Fig. 1.

4. A First Bound

Let @ = {{1,2}, {1, 3}, {1, 4}, {1,5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} and, if
p =1{i,j} € Qwithi < j, then we let d, = d;; = dx; A dx;. In order to avoid
cumbersome notation, when no confusion may arise we will denote in this section the
subset {i, j} simply as ij.

Let V be a finite dimensional ggp-module. For all kK > 0 we let

=C[a1)_ > Cdpy -

Jj<k p1,..p;eQ

Mi(V) dy, BV
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Note that My (V) isnotan E (5, 10)-submodule of M (V). Nevertheless the following
result holds.

Proposition 4.1. Forallk =0, 1, ..., 10 the subspace My (V) is an Ss-module.
Proof. Itis enough to show thatforall X € S5,1 < j <k, p1,...,p; € Q,andv eV
Xdp, ---dp, ®veM;V), (1)
since M;(V) € My (V). We also show that
[X,dp1dp, - -dp; @ v EM;(V) 2)

and we prove that (1) and (2) hold simultaneously by a double induction on j and deg X.
If j = 1 then (2) is trivial and (1) follows from (2).
If deg X = —2 then (1) and (2) are both trivial, so we assume that j > 2 and
deg X > 0.
We have
Xdp, ...dp; ®@v=1[X,dp]dp, - -dp, ®Vv+dp Xdp,---dp, Q.

The latter summand clearly lies in M ; (V') by induction on j and so (1) will follow from
(2). We have

(X, dp)dp, - dp; @ v = —dp,[X,dp 1dpy - dp; @ v+I[X, dp, 1, dpyldpy -~ dp; ® v.

The former summand lies in M; (V) by induction on j and the latter by induction on
deg X: the result follows. O

By Proposition 4.1 we have a filtration
{0} =M_1(V) CClO]®V =Mo(V) S Mi(V) S -+ € Mio(V) =M(V)
of Ss-modules and we let
Ne(V) = M (V) /My (V)
forallk =0,...,10.

Proposition 4.2. For allk = 0, ..., 10 and for any total order < on Q we have

N(V)=Cll® @ Cdp-dp®V

p1<-=<pi
as (C-VECTO}" spaces.
Proof. For all py, ..., pr € Q and every permutation o of the indices {1, ..., k} we
have
dpdp, - -dp, —e(©0)dp, ) - dpyyy € Mk—1(V) 3)

and so Ni(V) is generated as C[0]-module by the elements dp, ---dp, ® v for all
p1 < --- < pr and all v € V. The result follows by Poincaré-Birkhoff—Witt theorem
for U(g-). |
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Next we observe that the subspace
FR(V)= @ Cdp-dyoV
P1=-=pk
of N (V) also has a special structure:

Proposition 4.3. The subspace Fy, (V) of Ny (V) is an sls-module annihilated by (S5)~.
The Ss-module Ny (V) is the finite Verma module for Ss induced by Fy(V), i.e.

Ni(V) = M(Fi (V).

Proof. The subspace Fy (V) of N¢(V) is an sls-module since g_; is a go-module, and
by the definition of Ny (V). The fact that F; (V) is annihilated by (Ss)~¢ follows easily
by degree reasons. The second part follows from Proposition 4.2 and the first part. O

This result together with Theorem 3.7 allows us to determine a first bound on the
degree of singular vectors for E (5, 10).

Corollary 4.4. Let M (V) be a finite Verma module for E(5, 10) and w € M (V) be a
singular vector. Then w has degree at most 14.

Proof. Let k be minimal such that w € My (V). Then w is a fortiori either a highest
weight vector in Fi (V') or a singular vector in the Ss-Verma module N (V), and as such
it has degree at most 4. It follows that w has degree at most k + 4, where &k < 10. O

5. Singular Vectors of Degree Greater than 10

The description of singular vectors for Ss allows us to give a much more precise de-
scription of possible singular vectors for E (5, 10) of degree greater than 10. We fix a
total order < on the set 2 = {{1,2},{1,3},...,{4,5}}.If I = {p1,..., p;} € Q with
p1 <. <pjweletd; =dp, ---d,;. Welet

Li(V)y=C[a] P cafev.
I:1|=h
By construction we have
My(V)=L;(V)® M_1(V)

forallh =0, ..., 10 and in particular
10
M) = L;W).
h=0

Every non-zero vector w in M (V) can be expressed uniquely in the following form:
w=w, +w, ++wg

for some h =0, ..., 10, with w;* # 0 and w; € L;(V) for all j < h. We say in this
case that w has height h and we call w* the highest term of w. Note that the height of
an element does not depend on the order <, while its highest term does.
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IfM = (my,....,ms) € N> welet 0™ = 9" -0 and [M| = m| + -+ ms.
Moreover we let e; = (1,0,0,0,0),e; = (0,1,0,0,0),...,e5 =(0,0,0,0, 1).
If w is homogeneous of degree d, then the term wf has the following form

M
wf = Z Z Md ®vm, 1. “4)
1SR I=] yeNs: |M|=45L

where vy ; € V.
Note that if w is homogeneous of height &, then wf = 0 forall j # h mod 2.

Observe that, by construction, if w has height 4, then
w=w, mod M,_1(V),

and, in particular, w and w; lie in the same class in N, (V). Theorem 3.7 provides us
the following description of possible singular vectors for E (5, 10).

Corollary 5.1. Let w € M (V) be a singular vector of degree d and height h, and let
w,;* be its highest term. Let u)f be as in (4). Then one of the following applies:

(i) d =h;
(i1) d = h + 2 and there exists i € [5] such that
Z df Ve;,1 #0
I:|I|=h

is a highest weight vector for sls in N, (V) and

5
w,f = 28] Z d1< ®Uej,l

j=i  I:|I|=h
with
0,0,0,0) ifi=1; (1,0,0,0) ifi=1;
(1,0,0,0) ifi =2; 0,1,0,0) ifi =2;
)= 10,1000 ifi=3% ad 2 Y dives)=10,0,1,0 ifi=3
0,0,1,0) ifi =4 L\ =h 0,0,0,1) ifi =4
0,0,0,1) ifi =35; 0,0,0,0) ifi =5;
(iii) d = h +4,

D divesess #0

I:|I|=h
is a highest weight vector for sls in N, (V) and

5

w;:3523/’ Z d1<®vej+e5,1

j=1 I:|I|=h

with M(w) = (0,0,0, 1) and (3. 1=p d1Ver+es.1) = (1,0,0,0).
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Proof. This is a straightforward consequence of Theorem 3.7. We know that N, (V) is
a Verma module for S5 and w; is annihilated by (Ss5)~0 and by x;0; foralli < j.In
particular, if d # h, we have that the class of w* in N, (V) is a genuine singular vector
for Ss: the classification of singular vectors in Theorem 3.7 then completes the proof.
Note that if d = £, then the class of w; in N; (V) is actually a highest weight vector in
F(V), i.e. the sls-module we are inducing from. |

In this section we classify all possible singular vectors with degree strictly bigger
than height, i.e. we treat the cases d = h + 2 and d = h + 4 in Corollary 5.1, and, in
particular, we find all singular vectors of degree greater than 10. We fix the lexicographic
order on 2 = {{1,2},{1,3},...,{4,5}},1i.e. we set

{1,2} < {1, 3} < {1,4} < {1,5} < {2,3} < {2,4} < {2,5} < {3,4} < {3,5} < {4, 5}
and we simply write Ly (V) instead of L;*(V), wy, instead of w;" and d; instead of d".

Remark 5.2. The following inclusions are immediate from the definition of the action of
go and gy on M(V):

g0.-Lp(V) S Lp(V)® Lp—2(V) @)
91.Ly(V) S Lps1 (V) D Lp—1(V) @ Lyp—3(V). (6)

Due to (5), for X € go and w € L, (V), we adopt the following notation:
Xw =X+ X %w @)

with XOw € Lj(V) and X 2w € Ly_»(V). Similarly, due to (6), for X € g; and
w € Lp(V) we write:

Xw=Xw+Xw+X 3w (8)

with X w € Ly (V), X welL,, (V) and X3we Ly _3(V). The following simple
observation will be crucial in the sequel.

Remark 5.3. Let w € M (V) be a singular vector of height /. Then for all X € g; we
have

Xlwh =0 )

X wp + X 'wp_y =0. (10)
Moreover, foralli = 1,2, 3,4 and E; = x;0;+1 € go we have

Edw, =0 (11)

E 2wy + Edwy_p = 0. (12)

It will be convenient to rephrase (9) in the following equivalent way: for all X € g;
we have

Xw, =0 mod My(V). (13)

Proposition 5.4. Let w be a singular vector in M (F) with height h and degree d with
d=h+4.Thend = 14and F = F(1,0,0, 0) is the standard representation of go.
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Proof. By Corollary 5.1 we have
wp, = 05 Z didr ® vi 1.
il

By applying (13) with X = x;dy; and all k # j, we deduce thatif v; ; # O then / must
contain all pairs containing i and all pairs containing 5, and, in particular, w has height
at least 7 since vy ; # 0 for some /. If we apply (13) with X = x1d23 +x2d13, we obtain

—05d>3 Zdivl’] — 05d13 Zd{l)z,] =0 mod My(V).
1 1

We deduce that, if v; ; 7 0 and I does not contain 23, then it necessarily contains 24,
since all terms in the second summand do, and one can similarly show that / must contain
34 using X = x1d23 — x3d12. Permuting the roles of 2, 3, 4, this argument shows that /
must contain at least two of the three pairs 23, 24, 34 and hence w has height at least 9.
A singular vector of height 9 and degree 13 produces a morphism ¢ : M(0,0,0, 1) —
M ()) for some A, by Corollary 5.1. The dual morphism ¢* : M (A*) — M(1,0, 0, 0) is
also a morphism of degree 13 and so we necessarily have 1 = (1, 0, 0, 0). Therefore, if
v1, 7 # 0 then the weight of d; must be (0, 0, 0, 0), but one can easily check that there
are no [ with |I| = 9 such that A(d;) = (0,0, 0, 0) (see [2, §6] for an easy way to
compute the weight of the d;’s).

If w has height 10 and degree 14, then by Corollary 5.1, and an argument analogous
to the previous one shows that w € M (1, 0, 0, 0). m|

Now we can rule out the only left case withd = h + 4.
Proposition 5.5. Let w be a singular vector of degree d and height h. Then d < h + 4.
Proof. By Propositions 5.1 and 5.4 we can assume that d = 14, h = 10 and

wip = d5(101dq @ X1 + -+ + a505dg ® Xs5),
for some a7y, ..., a5 € C with a; # 0, and that wg has the following form:
5
wg = Z Z ZOlM,I,kaMdI ® Xk,
I:[11=8 M:|M|=3 k=1

for some ays 11 € C. If we expand

xsdas(wio +ws) = Y Bu 1 x0Mdr @ xi,
by (10) we obtain the relation

B(1.0,0.1,0).Q\(23}.4 = —04 — 0(1,0,0,1,1),2\{23.45}.4 = 0.

Similarly, if we expand

xadys(wio +wg) = Y ym.rx0Md; @ xi,
by (10) we obtain te relation

Y(1,0,0,0,1),2\{23},4 = &1 — &4 — ((1,0,0,1,1),Q\{23,45},4 = 0,

and hence «; = 0, a contradiction. O
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Next target is to deal with the case d = h + 2 in Corollary 5.1.

Proposition 5.6. Let w be a singular vector in M (V') of degree d and height h, with
d =h+2. Then h > 8. Moreover, if h = 8 and

5
wg=) 0; Y di®uvj;

j=i  I:|1|=8
as in Corollary 5.1, then vj 1 # 0 only if A(d;d;) = (0,0, 0, 0).
Proof. By (13) we have for all k # [

Xrdy wy = —dyy Zd] ® vk, ; =0 mod Mu(V).
1

This implies that, if vi ; # 0O, then {k, [} € I for all/ # k. In particular, we immediately
deduce that & > 4 and

wy =Y djdij--djj---ds; Y di, ® vy, mod My_i(V),
J I;

where I runs through all subsets of {{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} of car-
dinality & — 4, and similarly for I», ..., I5, where the vectors v i have been rein-
dexed. Now let k, /, m be distinct integers in [5] and use again (13) with the element
X = xidjy, + x1di,. We obtain:

Ay~ dig - dsg Y dp @ vg g +digmdyy -+ dyp -+ dsp Y _dpy @ vy, =0 mod My(V)
Iy I

Again, by (3), this implies that, if vt ;, # O, then I; contains {/, m} (in which case
the corresponding summand is zero), or it contains both pairs {/, r} and {/, s}, where
{k,l,m,r, s} = [5]. It follows that I; must contain at least two pairs containing / (since
if it does not contain one such pair it must contain the other two). This implies that I}
contains at least four pairs, and this completes the proof that 7 > 8.

If h = 8, by the previous argument, the two missing pairs in /; must contain the four
elements distinct from k exactly once, and so the weight of dxdy - - 'C?kk e dsdy 1s
0,0,0,0). O

We can now tackle the case of singular vectors of height 8 and degree 10.
Proposition 5.7. There are no singular vectors M (V) of height 8§ and degree 10.

Proof. Assume by contradiction that w is a singular vector of height 8 and degree 10.
For distinct i, j, k,l € [5], withi < j and k < [ we let dijJm = dq\{jk,im}- For
example df/4 25 = diad13d15dy3dr4d34d35dss. By Proposition 5.6 we have that wg can
be expressed in the following way

\2
wg =Y 0y 1 ® Vi jkim
i,j.k,l,m

where the sum is over all distinct i, j, k,I,m € [5] such that j < k,[,and ] < m
(so we have exactly 15 summands). We also adopt the convention v; ;. jk = Vi, jk,im
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12 13 14 15 23 24 25 34 35 45
° ° ° ° ® ° ° ° ° °

Fig. 2. The lexicographic order

for notational convenience. By construction, we immediately have (x; dix)'wg = 0 for
all i # k. We will therefore consider elements in g; of the form x;d i + x;d;; and
xidjx —xd;j (foralli < j < k), which will allow us to deduce that wg = 0. To perform
this computation efficiently we need the following notation.

Let

1 ifi+j=5

T =10 otherwise.

The reason for introducing this function is the following: let d(ij, kl) be the distance
between the pairs ij and k! in the lexicographic order (i.e. in the graph represented in
Fig. 2; then one can easily check that for all i < j < k we have

(= DAEKIR) = (pyni+] (14
and
(= AWk — (pymHkei+l (15)
Leti, j, k, 1, m be distinct such thati < j < k and [ < m. We have
(ridji + xjdi) wg = ~djkd i i ® Vi, jkim — ik iy 1y ® Vj ik tm mod Mg(V)

By (3) and (14) we have

(—1)’71.f+1v‘,‘k,1 ifi <l<j
Vi jkim = S = (16)
(=D v; ik im otherwise.
Similarly, applying x;d i — xd;; we obtain
(xidjr — xedij) ' ws = ~djkd i 1y ® Vi jim + dijdy 1y @ Viijm  mod Mg(V)
and by (3) and (15) we have
(=DM iy i ifi <1< j
. — eal 17
Vi, jk.m {(—1)’7i/+k+/+lvk,ij,1m otherwise. (17

By repeated application of Eq. (16) we obtain

® U1,23,45 = U2,13,45 = U4,15,23
® U1,24,35 = V2,14,35 = —V3,15,24
® U1,25,34 = U2,15,34 = —U3,14,25
® V213,45 = V4,13,25

® U2,14,35 = —U3,14,25

® U2,15,34 = —U3,15,24

® U3,12,45 = U4,12,35

and by repeated application of Eq. (17) we obtain
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U1,23,45 = V312,45 = V5,14,23
U1,24,35 = —U4,12,35 = V5,13,24
U1,25,34 = VU5,12,34 = —U4,13,25

V2,13,45 = V5,13,24
V214,35 = VU5,14,23
V2,15,34 = —V4,15,23
® V312,45 = VU5 12 34.

All these equations together imply that all v; jx s, vanish. O

We now consider the case of a singular vector w of height 9 and degree 11. In this
case, as in the proof of Proposition 5.6, we can immediately deduce that w9 must have
the following form

wo =Y did} ® vijk, (18)
i,j,k

where the sum is over all distinct i, j, k with j < k (a total of 30 summands) and
djvk = dq\{j k). As in the case of height 8, we can now proceed by applying all elements
in g; of the form x;djx + xjd;; and x;d i — xid;j.

Lemma 5.8. [f w is a singular vector of height 9 and degree 11 with highest term wg as
in (18), then

V1,23 = V2,13 = V3,12,

°

® V124 = V2,14 = —V4,12,
® V125 = V2,15 = V5,12,

® V1 34 = V3,14 = V4,13,

® V135 = V3,15 = —U5,13;
® V1 45 = —V4,15 = —U514,
® U234 = —U324 = —U423/
® V2,35 = —U3,25 = U523,
® U2 45 = V425 = U524,

® U345 = V4,35 = V5,34.

Proof. All equalities are obtained using (3) and (13) applying elements x;d j; + x jd;
and x;d ;. — xyd;j. For example we have

(x2d35 + x3da5)wg = —d3s5d3s ® v 35 — dpsdys ® v3 25 = do(—v235 — v325) mod Mg(V),
hence v 35 = —v3,25. All other equalities can be obtained similarly. O

Thanks to Lemma 5.8 the highest term of the singular vector assumes the following
form:
wo = 1 (dyy @ ui — dyy @ uz +dys @ uz — dsy @ ua +d3s @ us — djs @ ug)  (19)
+0(ds@ui —d), @uy+d)s @uz —dyy @ uy+dys ® ug — dys ® uo)
+03(d)y @ui — dyy @ ua +d)s @ us +dyy @ u7 — dys ® ug — dys ® u10)
+34(d1v2®142—dlv3®u4+d1v5®u6+d£/3®u7—d2v5®u9—d3vS®u10)
+05(d)y @ uz —dy3 ® us +dyy ® ug +dys @ ug — dyy ® ug — dyy ® uyo).

for suitable elements uy, ..., ujp € V.
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Lemma 5.9. Let E; = x;0;+1 € go and w be a singular vector of height 9 and degree
11 with wg as in (19) above. Then

e FE| annihilates uy, us, usz, us4, us, ug, u10, E1.u7 = ug, E1.ug = us, E1.u9 = ug.
o E5 annihilates uy, us, us, ug, u7, ug, ug, E1.uqg = uy, E1.us = us, Equig = uo.
e E3 annihilates uy, us, uq, us, u7, ug, uig, E1.ur = uy, E1.ug = us, Eyug = ug.
e Ey4 annihilates uy, u», uq, ug, u7, ug, u19, E1.u3 = us, E1.us = ug, Eyug = u7.

Proof. Recall the definition of E ? from (7). By (11) we have

OzE?wg
= 0(dy, @ us — dys @ us +dy5 ® ue) + 93(—dyy ® us +dys ® us)

+04(—dyy @ us + d4dys ® ug) + 95(—dyz @ us +dy, ® ue)
+01(dy; @ Erup —dyy ® El.u2+d2v5 Q Ej.uz —dy, @ Ej.us
+d3v5 ® Eq.us —d4v5 ® E1.ug)
+h(d5®Ejul —dyy ® Efuy +d)s ® Ey.uz —d3y ® Ey.uz
+d;5 ® Ej.ug —d4VS ® Ej.u9)
+83(d1v2 ® Eq.ug _dl\it ® El.u4+df/5 ® E1.u5+d2v4 ® E.u7
—dys ® Ey.ug —dys ® Ey.u0)
+04(d), ® Ey.up —dyy ® Ey.us +d)s ® Ey.ug +dyy ® Ey.ug
—dzvs ® eq.ug —d3\/5 ® Eq.ui19)
+05(d); @ Er.uz —d\5 ® Ej.us +d)y ® Ey.ug +dyy ® Ey.ug
—dyy ® Ej.ug — dyy ® Ej.uip).

The result for E; follows. The other statements are obtained similarly. O

Lemma 5.9 is depicted in Fig. 3, where an arrow from u; to uy labelled E; means
Ej.u; = uy and the absence of an arrow labelled E; coming out from u; means E;.u; =
0.

Proposition 5.10. Let w € M(V) be a singular vector of height 9 and degree 11 and
let wg be as in (19). Then uy = --- = ug = 0, uy is a highest weight vector, V. =
F(0,0,0,1) and .(w) = (1,0,0,0).

Proof. We first show that one of the following applies:
(1) wu; is a highest weight vector, V = F(0, 0, 1, 0) and A(w) = (0, 0, 0, 0);

(2) uy =--- = ug = 0, uy is a highest weight vector, V = F(0,0,0, 1) and A(w) =
(1,0,0,0).
(3) uy =uy = --- =ug = 0, ujp is a highest weight vector, V.= F(0, 0, 0, 0) and

A(w) =(0,1,0,0).

If u; # 0 then it is a highest weight vector in V by Lemma 5.9, and by Corollary 5.1
we necessarily have A(w) = (0,0, 0,0) and hence A(u;) = (0,0,1,0). If u; = 0
and up # 0, then u» is a highest weight vector by Lemma 5.9, and by Corollary 5.1
we necessarily have A(w) = (0,0,0,0) and hence A(up) = (0,1, —1, 1), which is
impossible since it is not a dominant weight. Similarly, if u1, uy = 0 and u3 # O then
u3 would be a highest weight vector of weight (0, 1,0, —1).
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o U
E3
@ U2
Ey Ey
Us @ @ Uy
E
E2 El

5y E
[} U

Ey
® Uio

Fig. 3. The action of the E;’s on the elements u ;’s

Ifu; = upr = u3 = 0and us # 0 then u4 would be a highest weight vector of weight
(1,-1,0,1).

If u; = up = u3 = uqg = 0 then then u5 would be a highest weight vector of weight
{a,-1,1,-1).

If uy = --- = us = 0 then ug would be a highest weight vector of weight
(1,0, —1,0).

Ifu; =--- =ue = 0and u; # 0 then by Corollary 5.1 we have A(w) = (1,0, 0, 0)
and so A(u7) = (0,0,0, 1).

Ifu; = --- =wuy7 =0and ug # 0, then A(w) = (1, 0,0, 0) by Corollary 5.1 and
hence A(ug) = (0,0, 1, —1).

Ifu; = -+ =ug = 0and ug # 0, then L(w) = (1,0, 0,0) by Corollary 5.1 and
hence A(ug) = (0, 1, —1, 0).

Finally, if u1 = --- = u9 = 0 then uj9 # 0 is a highest weight vector, A(w) =

(0, 1, 0, 0) by Corollary 5.1 and so A(u19) = (0, 0, 0, 0).
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Now we show that cases (1) and (3) can not occur. Observe that by Theorem 3.4 it is
enough to show that case (3) does not occur. In this case we have:

wo = (8302/5 + 34d3v5 + 35d3v4) R u,

where u is a generator of the trivial go-module. By construction wg satisfies (9) for all
X € g1 and (11) for all i. We will therefore take into account also (10) and (12) showing
that there exists no w7 which satisfies these equations. We start computing

(xsdas) ™ "wo = (—01dys 34 — Do) 34 + 93d)3 24 + ad)303) @ u mod M7 (V).
We have

w7 = Z 9;9; Z dgl,pz,p_s ® Vi, j,{p1.p2,p3}> (20)

i<j P1=<p2=<p3
and

(xsdas)'wr =Y "(1+85)0 D> dy, ,,das ® Vis(p.ppasy mod My(V).
i p1=<p2=<{4,5}

We deduce in particular that v4 5 {13,23,45) = —u 7# 0 by (10).
Next observe that x405w9 = 0 and

(x405)00405d)5 53 45 ® U = —03d3 53 45 @ u  mod Me(V),

and no other term of w7 in (20) can ”produce” a summand 852d1V3’23’ 45 @ u by applying
x405. This would imply v4 5 {13,23,45y = 0 by (12), a contradiction. |

Proposition 5.10 leads us to the following surprising discovery.

Theorem 5.11. The following vector is a (unique up to multiplication by a scalar) sin-
gular vector in M(0, 0, 0, 1) of degree 11, height 9, and weight (1,0, 0, 0):

w(ll] = d12d13d14d15( — 02da3darsdrsdssdys @ x5 — drdazdrsdrsdiadys @ xj
— dadp3dradrsdzadss @ x5 + 33d3drsdzadsdss @ x5 + 33dr3dradiadsdss @ xj

+ B3dr3dosdorsdiadss @ x5 + dadoadosdisdasdas @ x5 — dadozdosdisdasdss @ x3
+ d4dr3doadosdisdas @ x5 — dsdaradosdiadasdas @ xj — dsdrzdosdiadasdas @ x3
+ d5dr3daadasdzsdas ® x5 — 3102dr3daadas ® X5 + 83dazdaadas ® X7+ 8193d23dasdrg @ X
— 02 03d3drsdas @ x| + 0104dradrsdzs ® x5 — 0204dradosdzs ® x| — 3103d23doadss ® x5
+ 0203d23dar4dss @ x| + 0105daadarsdas @ x5 — 0205dradrsdas @ x| — 0103d23d34d3s @ x3
+03dr3daadzs ® x§ — 810adaadsadss @ X5 + D3dadaadzadss ® x§ — 3105dasdradss ® x5
+ 3395dasdradss ® X7 — 81dadr3doadas @ x5 + 90ada3daadas ® x| — 3135da3dasdas ® x5
+ 0205do3drsdas @ x| — 0103d23d34das @ xj + 0304dr3d34das @ x| — 0104drad34das @ xj
+ 03 daadzadss ® x} — 31 dsdasdzadas ® xj + dadsdasdzadas ® X} — 91 93dr3d3sdas @ x%
+ 0305d23d35dss @ x| — 0104doad3s5dss @ X3 + 0405dr4d35das @ x| — 0105dr5d35d45 @ X3
+03dpsdssdss @ X — 37 03da3 ® x5 + 01920323 ® X} — 07 dadas @ X3

+010204da4 ® X7 — 02055 ® X} + 8D dsdas @ x;‘).
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Proof. We prefer to omit the long but elementary computations that show that this
is indeed a singular vector. Its uniqueness follows from the fact that the term wq is
determined up to a scalar by Lemma 5.9 and Proposition 5.10. So if w’ is another
singular vector with wg = wg then w — w’ would be a singular vector of degree 11 with
height at most 7 and this would contradict Proposition 5.5. O

The last possible case with d > h is ruled out by the following result.
Proposition 5.12. There are no singular vectors of height 10 and degree 12.

Proof. By hypothesis we are in one of the five cases in (i7) of Corollary 5.1. Suppose
there exists a singular vector w of height 10 and degree 12 in M (1, 0, 0, 0) with weight
(0,0,0,0), i.e., by Theorem 3.7,

5
w = Zaidgz ® x;.

i=1
Then there exists a morphism ¢ of E (S, 10)-modules,
¢:M(@©,0,0,0) — M(1,0,0,0).
By duality (see Theorem 3.4), there exists a morphism
¢*:M(0,0,0,1) — M(0,0,0,0),

i.e., a singular vector w of degree 12, of weight (0,0, 0, 1) in M (0, 0, 0, 0). Then, by
Theorem 3.7 and Proposition 5.5, we have: w19 = dsdg ® 1 with 1 the highest weight
vector in F (0, 0, 0, 0). Let

wg = Z 0 0jdys o5 ® 1+ Z 005 (Bi. ik o ® 1+ Bijed}) 4y ® 1+ B jud} g ® 1)
i,j.k,l i,j.k,lt

for some «;;, Bi rs € C, where the first sum is over all {7, j, k, [} = [4] withi < j and
k < I, and the second sum is over all {i, j, k, [, t} = [5] with j < k <[ < t. We apply
condition (10) with 2 = 10, using the following elements X in g;:

1) X = xsd4s hence getting B 45 = —1 = B3 45;
il) X = xs5d13 + x3d5 hence getting a3 = 1 = — B 45;
iii) X = xsdj2 — x1das hence getting a3 = —1 = B3 45;

iv) X = x1das5 + x2d5 hence getting o13 = a23.

These conditions lead to a contradiction, we therefore conclude that there is no singular
vector of degree 12 and height 10 as in R1 and RS, of Theorem 3.7.
Now assume that w is a singular vector as in R2, i.e., by Corollary 5.1, w =

Z?:z 0;dq®x1;,1.e., that there exists amorphism ¢, of degree 12, of E (5, 10)-modules:
¢ :M(1,0,0,0) - M(0,1,0,0).
By duality this means that there exists a morphism

" :M(0,0,1,0) > M(0,0,0,1)
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of degree 12, 1.e., a singular vector w of degree 12 and weight (0, 0, 1, 0) in M (0, 0, 0, 1).
By Theorem 3.7 and Proposition 5.7, w is necessarily as in R4, with height 10, i.e.,

Wi = d4do ® x5 — dsdg @ xj.
We have:
(xsdys) "' (10) = da(dyy ® x5 +d)5 @ x5 +dys @ x7) + (33d), + hd)s + 01dy3) Q xj.
By condition (10) with 2 = 10 and X = xsdas it follows that in the expression of wg
the summand 04 85d2v3’ 45 ® x| must appear with coefficient equal to 1. Now we have:

E4(0495d55 45 ® x7) = (E4) (040545, 45 ® x7) = —03dy3 45 ® x}.

This contradicts condition (12) for 2 = 10. Indeed, one can see that no termin £, 2w 10+
Effti)g can cancel the summand 852d2V3 45 ® x]“.

Finally, let us assume that there exists a singular vector of degree 12 and height 10,
as in R3, i.e.,

wio = B3do ® xjfs + 04dg ® xgk3 + 05dg ® x§k4.
Then we have:

(xsdas) " (wi) =3(d)y @ x3y +d5 @ x5y +ds @ x7y)
+ 84(_di/3 ® x;} — d2v3 ® xik3) - (33d1v2 + 32df/3 + a]dﬁé) X x§<4.

Therefore, similarly as above, by condition (10) with 4~ = 10 and X = xsd4s, in the
expression of wg the summand 84855% 453 must appear with coefficient 1. Then we
have: ’

E4(8405dy3 45 ® x{3) = (E4)0(8435d2va,45 ® xi3) = _352d2V3,45 ® x{3.

This contradicts condition (12) for 4 = 10. Indeed, one can see that no term in E;zwlo +
ngg can cancel the summand 852d£/3 45 ® x5 O

6. Properties of oy

In order to study morphisms between finite Verma modules and to better understand their
structure as go-modules, a particular basis of U_ has been introduced in [2]. The main
goal of this section is to show that this basis is also extremely useful when considering
the action of the whole g on a Verma module. We recall some technical notation needed
to give an explicit definition of such a basis. We refer the reader to [2, §5] for further
details.

We recall that (U_), denotes the homogeneous component of U_ of degree d. We
let

Tao={I=U1,....1g): I = (i, ji) with 1 <1y, jy <S5foreveryl=1,...,d}.

Ifl =(y,...,1;) € Z;weletd; = dll .- ~d1d € (U-)q4, with dll = diljl‘ Note that
this notation is slightly different from the one adopted in Sects. 4 and 5.
We let Sy be the set of subsets of [d] of cardinality 2, so that |S;| = (‘21)
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Note that elements in Z; are ordered tuples of ordered pairs, while elements in Sy
are unordered tuples of unordered pairs.

If{k,1} € Sgand I € T; we let ., = tig, jiin i and EL L = Ei,jrin i+

We also let

_ 1 l+k
Duny(h) = 5 (=1 en. 0y, € U-)a.

Definition 6.1. A subset S of S; is self-intersection free if its elements are pairwise
disjoint.

For example S = {{1, 3}, {2, 5}, {4, 7}} is self-intersection free while {{1, 3}, {2, 5},
{3, 7}} is not. We denote by SIF; the set of self-intersection free subsets of S;.

Definition 6.2. Let {k, [}, {h, m} € S; be disjoint pairs. We say that {k, [} and {h, m}
cross if exactly one element in {k, [} is between & and m. If S € SIF,; we let the crossing
number c¢(S) of S be the number of pairs of elements in S that cross.

Definition 6.3. Let S = {S1, ..., S,} € SIF;. We let

Ds(I) =[] Ds;(I) € (U-)ar
j=1

if r > 2 and Dy (1) = 1 (note that the order of multiplication is irrelevant as the elements
Dy, (I) commute among themselves).

Definition 6.4. For I = (I}, ..., I;) € Zyand S = {S}, ..., S,} € SIF; weletCs(I) €
Z4—>, be obtained from / by removing all /; such that j € S for some k € [r].

Definition 6.5. For all I € Z; we let

wr= Y (=)ODs(I)dcsay € (U-)a.
SESIFd

Ifl e Zgweletx; =xp A+ AXp, € AY(A?(C3)). The main properties of the
elements w; have been obtained in [2, Proposition 5.6 and Theorem 5.8] and can be
summarized in the following result.

Proposition 6.6. Letd = 0, . .., 10. Then the map ¢ : NY(A\*(C3)) — U_, given by

(P(-xll /\"'/\xld) = wj,..., 1
forall (I1, ..., 1) € 1y, is a (well-defined) injective morphism of go-modules.

We will also need the following very useful notation. Let I € Z; and J € Z., with
¢ < d.If there exists K € 7y, suchthatx; = x; Axg # 0 weletwy\y = wg, and we
let wy\y = 0if such K does not exist. Note that this notation is well-defined also thanks
to Proposition 6.6.

For example, in order to compute w(12,24,35,54)\ (24,45) We observe that x12 24,35 54 =
X24.45 A X12,35, therefore w(12,24,35 54)\(24,45) = ®12,35-

Instead of the explicit definition of the elements w; given in Definition 6.5, we will
need some (equivalent) recursive properties that they satisfy.
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Lemma 6.7. Let [ = (11, ..., 1). Then for all k > 1 we have

. 1
Y. EOODsDdegay = —5en,0.0,

) 1 P )\ I
SeSIFy:{1,k}eS

Furthermore

d

1
wp =dpon,...1p) = 5 > en 1, 4 O\ Iy @
k=2

Proof. We prove the first statement for all / € Z; by induction on k. If kK = 2 we have
D) = —%811,[23[11’12 and so, letting J = (J1, ..., Jg—2) = (I3, ..., Iz) we have

1
Y. COIDsdesy = —5enndy,, Y (D Ds(Ddesw)
SeSIF;: {1,2}eS SeSIF;_»

= =500y, ,®n, .14

2
= _5811,128111.126‘)(12 ,,,,, ID\I2+

Ifk>2weletJ =(Iy,..., lk—2, Ix, Ix—1, Ix+1, - . ., I7) be obtained from / by swap-
ping I and Ir_1. We also observe that swapping k with k — 1 provides a bijection
S + S8 between elements in SIF; containing {1, k} and elements in SIF; contain-
ing {1, k — 1}; we also observe that by this bijection we have dcg) = dcg(s) and
(—=1)ODg(I) = —(—=1)*) Dy (J): indeed if there exists [ such that {k, [} € S then
(=) = —(=1)¢S) and Dg(I) = Dy (J), and if such element / does not exist then

(=D = (= I)C(S/) and Dg(I) = —Dg (J). Therefore, using the induction hypothesis,
we have

Y =) Dg(degy = - > =)Dy desw
SeSIF;: {1,k}eS S'eSIFg: {1,k—1}es’

1
= §8J1Jk—1 afJI,Jk,lw(Jz,.-.Jd)\kal
= =500ty g Ol )\ -
Equation (21) now follows from the first part observing that the first summand in the
right-hand side of (21) is just
> (=)@ Dg (1) degr).-
SeSIFy: {1,k}¢S Vk
O

The following result is probably the easiest way to handle and compute the elements
wr in a recursive way.

Proposition 6.8. Let [ = (I, ..., 1;). Then

d
1
or =7 dion.
j=1
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Proof. By (21) and Proposition 6.6 we have

d
1 1
“r= E Z( N J Y (VO PR
j=1
1 |
j+1
=7 Z(_l)ﬁ' (dlja)h’___’[j ’’’’’ T3 Ze,j 1By, 1, @,
i=1 ey
1 d 1
= E Zd]ja)l\lj - 5 ZEI],Ikat]ija)[\([j’[k)
j=1 k#j
1 d
4 Zdljwl\l./’
j=1
since, clearly, ONUI;.I) = —ON\(. 1)) forall k # j.

O

The following is an immediate consequence which is not needed in the sequel but

sheds more light on the symmetric nature of the elements w;’s.

Corollary 6.9. We have

1
Oy, Ig = a0 Z 8Gdla(1) "'dla(,,)-

ToeSy

Proof. We proceed by induction on d, the result being trivial for d = 1.
We have

1 . ~

_ - _1)/-1

4! Z eodiy gy - diyy = — Z (=D eody;di,, - diyg
ToeSy T j=10eS(nl\j)

Il
'M“‘ i M&

- .
(=1 dy, Z odly - dly,
1 oeS([n]\j)

~
Il

I
Ul
.M&

D/ o, g
1

~
I

d[].a)[\jj.

~
I
-

I
Ul
.M&

.. 'dla(d)

o dy

o (d)

O

We now reformulate (21) in a way which is more suitable for our next arguments.

Lemma 6.10. Let I € 1, and let {i, j,r,s,t} = {1,2,3,4,5} be such that &;j 5 =

Eijst = &ijtr = 1. Then

1 1 1
dijo; = wij 1 + §3rw1\xz + Easa)l\tr + Eatwl\rs~
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Next target is to study the commutator between an element in g; of the form x,d ),
and a generic element w;. In order to simplify the reading of the arguments we prefer
to show the proof explicitly in the special case x5dus.

Lemma 6.11. We have
Z [[xsdas. di, ], dlj]wl\(lk,lj) = Z [[xs5das. dil, 601\1,-] — 30401\(12,23,31)
k#j J
3
+3 Y o @ppy-
(o, B,7)€S3

Proof. We first notice that in the left-hand side we have nonzero contributions only for
those k such that I = 12, 23, 31 (up to order). We compute the contribution of [ = 12,
the others will be similar. We have

Z[xs 93, di;lonaz,1;) = daswi12,23) + ds1o1\(12,31) + d5aw1\(12,34)
J

and by Lemma 6.10 and Proposition 6.6 we have

Z[x533, di;lonaz, 1) = w25,1\(12,23) + ©51,1\(12,31) + @54,1\(12,34)
J

1
+ 5(31601\(12,23,34) + 03w\ (12,23,41) + 0401\ (12,23,13) + 0201\ (12,31,34)

+ 03w1\(12,31,42) + 04W1\(12,31,23)
+ 0101\ (12,34,32) + BON\(12,34,21) + N01\(12,34,13))

= [x503, wp\12] — 04w\ (12,23,31) + 0101\ (12,23,34) + D201\ (21,13,34)

1

+ 533601\(32,21,14) + 533601\(31,12,24)

The contributions of [y = 23, 31 are similarly computed and the result follows. O
Theorem 6.12. For all I € T; we have

d

1
[xs5dss, wr] = Z (E[[X5d45, dr;], o, | + on; [xsdss, d1,-]>
j=1

1 1
+ 534601\(12,23,31) 7 Z Ou @\ (0B, By,y4)-
(o, B,y)ES3

Proof. We proceed by induction on d, the case d = 1 being easy. Note that by induction
hypothesis we can assume that

1
[xs5dss, on\1;]1 = Z (5[[x5d45’ d 1, o |+ ona;.lxsdas, dlk])
-y,

1 1
+ 584w1\(1j,12,23,31) 2 Z a1\ (1,08, By v4)-
(a,B,7)€S3
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Using Proposition 6.8 and the induction hypothesis we have:

1

[xsdas, wr] = 7 (Ixsdas, diJop g, — di;[xsdas, o1\1;])

™=~

j=1

1
7 ([[x5d45, dr; 1, on ;| + i, [xsdas, di;]

-

~
I
_

1
—dj, Z (E[[Xsdzts, drl, w1\(1_,,1k)] +on ;1) [*sdas, dr,])

k#j
1
+ S 0401\(17,12,23,31) — 1 Z aotwl\(lj,aﬁ,ﬂy,y4))
(a,B,y)€S3
1
7 (on1;xsdas, dr;] — di, Z o\, [xsdas, d,])
k£j

d

1
Z [xsdas.dp; )], wpg, | — di; Z 5[[x5d45,d1k],wl\(lj,lk)])
j=1 k]

M= ~i-

—

J

&I»—k

d
1

Z - —34601\(1 122331+ 7 Z 8awl\(lj,aﬂ,ﬁy,y4))

Jj=1 (et.B,y)ES3

We split this formula into three parts (according to the last three lines above): the first

part is

d
1
Z o1, [xsdas, dr; ] — di; Zwl\(l_i,lk)[x5d45»dlk])

= ki
1 d
= E(Zwl\lj [xs5dss, dr; 1+ szl_/wl\(lkslj)[x5d45’ dlk])
j=1 k=1 j#k

d d
1
= g(zwl\[j [xs5dss, dr; ]+ Z(d — Doy g [xsdas, dp, 1)

j=1 k=1

d
= Z w1, [xsdas, dy; .
j=1
The third part is

d
1
- Z - —34601\(1 12,23,31) + 1 Z 3aw1\(1,-,aﬁ,ﬂy,y4))
j=1 (o,B,7)€S3

&

d
1
= —34 Zdz @N(12.233L1) T 4 Z O Zdljwl\(aﬁ,ﬂ%whlj)
(a.By)es3y  j=1
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d—3 d—3
2d d401\(12,23.31) — “ad Z do 1\ (@B.By.y4)-
(. B.7)€S3

In order to compute the second part we notice, using Lemma 6.11, that the following
holds:

—dy; Z[[xsdzts, dr], (U]\(Ij,lk)] =dy; Z [[xsdas. di, 1. wl\(lk,l_,»)]
k,j k.j

= Z ([[x5d45, di 1 dionay.1p] — [[xsdas, di, 1, dlj]wl\(lk,lj))
Jk

= Z [[xsdas. dp, ], Zdljwl\(lk,lj)] - Z ([xsdas, dy ), di; Jon .15
k j ik

=d-1 Z [[xsdas. dp, ), op\p ] — Z [[xsdas. dr; ], o1, | + 30400122331

k J
3
-3 Y deon@p sy
(o, B,7)€S3
3
=(d-2) Z [[xsdas, dp ], wpyg ] + 30w 12,23.31) — 3 Z a1\ (B, By.v4)-

k (a,B,Y)€ES3

Therefore the whole second part is
1 1
7 ([[xsdas. dr, 1. op1; ] — di; Z 5[[x5d45, dr 1. oni;.ap )
=1 kit j

1 3
(Z [[xsdas. dr; ), o, | + E(d -2) Z [lxsdas, di ], wpg ] + 534w1\(12,23,31)
J k

> 3aw1\<aﬂ,ﬂy.y4>)

(@.B.y)€S3

J

Bl o=

1 3 3
=5 Z [[xsdas. dr; ], o, + ﬁ34w1\(12,23,31) 17 Z O O\, By .14
J (o, B,y)€S3

The sum of the three parts gives the result. O
One can analogously prove the following result.
Theorem 6.13. Let {p,q,a,b,c} ={1,2,3,4,5} and I € Z,4. Then

d
1
[xpdpg, wi] = Z (E[[xpdpq, il wI\Ij] +onxpdpg, d1,-]>
j=1
1 1

~ %@ @bbe.ca) + 7 > da I\ (@p.By.v)>
(o, B,y)€S(a,b,c)

where S(a, b, c) denotes the set of permutations of {a, b, c}.
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7. The Fundamental Equations

We are now going to use Theorem 6.13 to study possible morphisms of finite Verma
modules ¢ : M (V) — M(W). Let ~ be the equivalence relation on Z,; such that I ~ I’
if and only if w; = Fwy, i.e. if I’ can be obtained from I by permuting the pairs in /
and the elements in each pair. By Proposition 3.3, Remark 3.5 and Proposition 6.6 we
know that if a morphism has degree d then it can be expressed in the following way

= D Y e 6 (w) (22)

1=d/21€Ty o/~ 1<r1<--<n<5
where the 6,""" : V. — W are such that the map
Sym'(C%) @ A" (N’ ((C*)*) — Hom(V, W)
given by
Xy Xy @ X[ A AT O (23)

is a (well-defined) morphism of gp-modules. This fact permits us to easily compute the
action of gp on the morphisms 91” "°s For example we have

2,3 _ L3 2,3 2,3 _ 13 2,3
X102.015 13 14,03 = 012,13.14,23 — 013.23,14.23 — 012.13.24.23 = 013.13,14.23 + 015,13 23,24
A technical lemma is in order.

Lemma 7.1. For all distinct a, B, y, p € [5] we have:

Z [xpayawl]®9aﬂ,12_ Z wJ@(xp8y~9aﬂ,J)-
Jely/~ JeZy/~
and
5 5
> (—a,,wK®90’[’ﬁ,,<+Zat[xpa,,,w;<]®%ﬂ,,{):—Z Y ok ® (xpdy g k-
KeZy/~ t=1 t=1KeZy/~

Proof. The first equation follows from the following observation. By Proposition 6.6
and (23) we have that if [x,0,, w;] = Y ay ywy then x,d,.0p = =) ;a; ;0
and hence also

Xpdy bop = — Zau/%ﬂ,/,
7

since o and B are distinct from p. We can conclude that
Z[xpay’ wr1®0up. s = Za)]/ ® Za‘]’jlgalg’j =— Zw]r ® (xp0y.0ap, 7).
J J J J

In order to prove the second equation we proceed in a similar way. If [x,0,, wx] =
Yk ak,k'@g’ we have x,d,.0x = —) gpag g0k and also x,0, .08k =
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— > g ak. k'0up k. Therefore, if t # y we have x,0,. 9 B K = = —>x aKsK/eéﬁ,K
and for r = y we have

%
(xpdy. eaﬂ k)= a[},K/ - Z“K,K’Qaﬂ,K-
K

So we can compute

Z(—Bwa ®9¢fﬂ,K + Zat[xpays wg]® 9(5:/3,1()
K
—Z( oywg @0 ﬂK+ZatZaKK’wK ®905/3K)
= Zayw,« ® (04 +Za1< KO )+ D ok ® ZaK K'0up.k

t#y K’
- > awk ® (xXpdy 01 -
t K’

O

We let C(a, b, c) = {(a, b, ¢), (b, c,a), (c,a, b)} the set of cyclic permutations of
(a, b, ¢). From now on when we write ) we always mean the sum over («, 8, y) €
C(a,b,c).

Lemma 7.2. Let ¢ : M(V) — M (W) be a morphism of finite Verma modules as in (22)
and (p, q, a, b, c) be any permutation of [5]. Then

Xpdpg Y @ ®60;(v)= Y wl®%8pqabcz

1eTy)~ JeTy/~ oy
(= (Xpdy -Bup, 1) (V) +2x,0, . (O, s (1))

1
+ Z 80)K®_ abbccaK(U)
KeZy 3/~

afy

1
+ Z dakx ® Z(eaﬁ-ﬁy,yq,lf(”) + Oary.yp.pa.k (V).
apy

Proof. Theorem 6.13 can be reformulated in the following more convenient way

1
[xde‘Is wl] Zié‘pqabc Z ([xpay,a)l\aﬁ]+2wl\aﬂ xpay) (24)
(a,B,y)eC(a,b,c)

1 1
- anwl\(ab,bc,ca) 7 Z 3o (@N\(@p.By.yq) + CI\(@y.v.69))-
(a.B.y)eC(a,b,c)

We can therefore compute
1
xpdpq Z wr @01 (v) = Egpqabc Z Z ([x[}a)/7 wl\{xﬂ] ®01(v) + 2w1\uﬂ ® xpay (61 (U)))
IeZy/~ 1€Zy/~ (a.B.y)eC(a.b,c)

Y (-1n YO E S DR ¥ N )©0,0))
5 94 @1\ @b,be,ca) 1 1 o \WI\(aB.By.yq) T PI\(ay.vB.B9) 1
1€/~ (a,B,7)eCla,b,c)
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1
= EEanbc Z Z ([xpiiy,wj]®9a,s,1(v)+2wj ®xp3y.(9aﬁ.1(v)))
]eI,j 1/~ (a.B,y)eC(a.b,c)

1
+ Z ( 3 Wk @ Oab,be,ca,k (V) + Z Z Jgwg ® (Ootﬂ,ﬂy,yq,l((v) +9ay,yﬁﬂq,K(U)))
KeZy 3 (a,B,y)€Cla,b,c)

1
= Sepaabe ) S (00 ® Gy Bup) (V) + 205 @ 2y Bups (1))
JEI,] 1/~ (a,B,y)eC(a,b,c)

1
+ Z ( - *8 wg ® 91117 be,ca, k (V) + Z Z dpwg ® (Go:ﬂ,ﬂy,yq,]((v) +90(y,y5<5q_1((v))),
KeZys (a,B,y)eC(a,b,c)

where we have used Lemma 7.1. m]

Lemma 7.3. Let ¢ : M(V) — M(W) be a morphism of finite Verma modules as in
(22). Then

5
Xpdpg Y Y. G @)= Y w5 ®—0), ()

t=11ely_o/~ Jely_1/~

5
+> ) dek® smahCZ(—(xpay.eglﬁ,,()(v)+2x,,ay.(0;ﬂ’,((v)))

t=1 Kely 3/~ afy
+Z Z 8f8 oL ® — abbccaL(v)
I Lely s/~
1
+ Z O dar ® Z(%ﬂ,ﬁy,yqi(v) + Oy yp.89.L (V)
aBy

Proof. By Lemma 6.10, Lemma 7.1 and (24) we have

5
xpd,,qz Z dor @0, (v) =

t=11€Zya/~
1
= Z (—wpq.1 — Eb‘pqabc Z E);/U«’I\otﬁ) ® 6,’7(1))
1€Zy2/~ afy

1
5 Epaancd Y (1Xpdy. ©1\ap] ® 0] (v) + 2010 ® By . (0] (1)

Y

=1 1Ty o/~ apy
+ Z Z ( - *3r3 O1\(ab,be.cay ® 07 (V) + Z 800 (01\(@p.py.yq) + ON\(@y.vh.69) ® 9}(1)))
1 1€y o/~ wﬁy
= Z ©1 @ =07, g (V)
JeLy 1/~

5
1 E
+Egpqah(.'z Z (_aya)l( ®0£/51K +Zal[xllayswk]®9éﬁ.1<
afy KeZy 3/~ =1
5

+Y 200k ® x,,a,.(egﬁ,,((v)))
t=1

+ Z Z 3,3 oL @ — ab be.ca, L(v) + Z O dewr ® 7 ( aﬁ,ﬁy.yq,L(v) + Gz;y,yﬁ.ﬁq.L(v))
I LeZys/~ apy

= Z ©1 @ =07, g (V)

JeLy 1/~
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5
1
+ gé‘pqu}wz Z drwg ®Z_(xpay‘0éﬂ.[()(v)

1=1 KeZy_3/~ aBy

+ 2286l 1 (1))

1
+ Y ddoL® _Eetib,hc,L'u.L(v)

t LeZy-s/~

[ t
+ % 3 dowr ® 4 (eozﬁ.ﬁy.yq.L(v) + gay.yﬁ.ﬂq,L(v))'
«,

The following result is fundamental in our study.

Corollary 7.4. If o : M(V) — M (W) is a morphism of finite Verma modules as in (22),
then for all p, q,a, b, ¢ such that {p, q, a, b, c} = [5] we have

1
=00\ pg @)+ €pgave Y (= (pdy Oup. 1) () + 228y (Oup. s (1)) =0 (25)
afy

forall J € Ty and

1
Z (eab,bc,cq,K(U) + eac,cb,bq,K(v)) - 9111<,\ppq (v)
1

+§8pqabc Z ( — (x,,ay.egﬁ,,()(v) +2xp0,. (eaﬂ K(v))) (26)
afy
1
2650, () + 5Epqabe D (= (pdy 0l ) ) + 2,804 £ (1)) =0, (27)
aBy
—zez\qpq(l)) - eab be,ca, k(v)
+epgabe( — (Xpdy O 1) (V) + 230,015  (v))) = 28)

forall K € Ty_3.

Proof. Recallthat@(v) = 3"/ _yn D 1e7, 5/~ 2ol<ri<<n<5 O """ O 010, (v).
By Proposition 3.3 we have x,dp,¢(v) = 0 and if we expand

xpdpq(p(v) = Z Z Z ar] te arla)l 02y U(ry, ..., ry), 1
I<d-1)/21<r1<<r<51€ly_1-n/~

we have that all vectors v,
J e Id—l

),1 must be 0. By Lemmas 7.2 and 7.3 we have for all

,,,,,

1
00,7 = =07\ pg ) + S€pgave D (= Xy Bp, 1) () + 2By (Oup. s (1))
apy

hence (25) follows. Moreover, for all K € Z;_3, by Lemmas 7.2 and 7.3 we have

Va),K = _(eab,bc,cq,K(v) + eac,cb,bq,K(U)) - 9?(,\1717(1 (v)

4

1
+2€pqabe D (= (xpdy 085 k) (V) +2x,0 (055 (V).
afy
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Note that in this case we have an additional term —02’{7 v (v) which is produced by

Xpdpg 3a0pWK\pg @ OK\pg (V).

Equation (26) follows. Equations (27) and (28) are obtained similarly by considering
V(p),K and V(g).K - O

Corollary 7.4 can be slightly simplified if v is a highest weight vector in V. For all
n, m we let

1 ifn > m;

Xn=m =10 otherwise.

Corollary 7.5. Let ¢ : M(V) — M (W) be a morphism of finite Verma modules as in
(22) and let s € V be a highest weight vector. Then for all {p, q, a, b, c} we have:

_295)\pq (s) + Epgabc Z ((_1)Xp>y (xp0y .0ap,7)(s)
afy

+2Xp>yxp8y.(9aﬂ,1(s))) =0 (29)

forall J € Ty and

491(1(\171)(1 (s) + (gab,bc,cq,K(s) + Ouc.,cb,bq,K(s)) + 26 pgabe Z ((_I)XPV (xpdy 'Ogﬁ’K)(S)

afy
+2x p=yXpdy (Oyp x (5))) =0, (30)
—49§\pq(s) + & pqabe Z ((=D77=7 (xpdy O5g )(8) + 2Xp=y Xpdy (O (5))) =0
afy
(31)
—Zgg\qpq — Oab,be,ca, k (8)
+8pqabc(( 1)X‘U>y (xpay op, K)(S) "'2)(;)>;/xpa (90,5 K(S))) (32)

forall K € T;_3.

Proof. We prove Equation (29), the others are similar. By (25), if p > y we clearly have

(= DA77 (xpdy Bap, 1) (5) + 2Xp>y Xpdy - (Bap, 1 (5)) = —(xpdy bup. 1) (5) + 2xpdy . (Bp, 1 (5)).

If p < y we have

_(xpay ~9a/3,1)(5) + 2x1)8y -(901,3,./ (s)) = (xpay -Qaﬂ,l)(s)
since s is a highest weight vector, and the result follows. O

Now observe that all (non trivial) summands in any equation appearing in Corol-
lary 7.5 have the same weight, and we call it the weight of the equation. Next result
shows that if ¢ : M(A) — M(w) is a morphism between finite Verma modules, then
every equation of weight p in Corollary 7.5 can be further simplified.
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Corollary 7.6. Let ¢ : M(X) — M () be a morphism of finite Verma modules. If
JeZyj_1anda,b,c, p,q are such that Equation (29) has weight u, then

— 29f\pq (8) + €pgabe Z(—l)x1’>y (xp0y.00p,7)(s) = 0. (33)
apy
IfK and a, b, c, p, q are such that Equation (30) has weight i, then
_49[‘?\1)1,(1 (s) + Qab,bc,cq,K (s) + eac,cb,bq,[( (s)
+2¢ pgabe Z(—I)XPV (xp0y. gﬂ,,{)(s) =0. (34)
afy
If K and a, b, c, p, q are such that Equation (31) has weight | then
— 40" (5) + Epgabe Y _ (=% (xpdy 00 1 )(s) = 0. (35)
afy

If K and a, b, c, p, q are such that Equation (32) has weight | then
- 291‘?\(],,4 (s) — eab,bc,ca,K(s) + gpqabc(_l)Xp>y (xpay-egﬂ’[()(s) =0. (36)

Note that all equations appearing in Corollary 7.6 do not depend on the weights A
and p: this observation will be the keypoint of our final classification.

8. Singular Vectors of Degree Between 5 and 10

If w € M () is a singular vector of degree d at most 10 we know that it also has height
d by the results in Sect. 4. In particular we can express it as

w = Z Z Z 8r1 ...3r1w1®9;1 ,,,,, rl(s)7 (37)
I=d/21€ly o/~ 1<r<--<n=<5
where s is a highest weight vector in F ().

Lemma 8.1. If w € M () is a singular vector of degree and height d as in (37), then
there exists 1y € Ty such that 01,(s) # 0 is a highest weight vector in F (1).

Proof. Since w has height d, we know that there exists I € Z; such that 8;(s) # O.
Among all such I’s choose Iy such that 0y, (s) has maximal weight. Applying x;0;4+1 to
w we obtain a term wy, ® x;d;+1.0,(s), which cannot be simplified by any other term.
Therefore x;0;4+1.6;,(s) = 0. |

If we fix any possible [y as in Lemma 8.1, we can consider all equations in Corol-
lary 7.6 with weight ;v and we observe that these equations do not depend on . For
example, if we choose Iy = (12,24, 34,45), we can consider Equation (33) with
(a,b,c,p,q)=(1,2,4,5,3) and J = (25, 34, 45), getting

2014,24,25,34(5) + 201224, 34,45(s) = 0,
and also with (a, b, ¢, p,q) = (2,4,5,3,1) and J = (14, 23, 34), getting

2014,24,25,34(s) = 0,

and deducing 6y, (s) = 0.
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Theorem 8.2. Let

w = Z Z Z 3” ..,3”0)1 ®91r1 ..... rl(s)

1<d/21e€Ty y/~1<r1<--<r<5

be a singular vector of degree d, withS < d < 10and let Iy € I, be suchthat6;,(s) # 0
is a highest weight vector. Then d = 7 and Iy ~ (12,13, 14, 15,25,35,45) ord = 5
and Iy ~ (12,13, 14, 15, 45) or Iy ~ (12, 15, 25, 35, 45).

Proof. The proof is based on Corollary 7.6. The set of Eqs. (33)—(36) of weight A.(6y, (s))
provides a system of homogeneous linear equations among all 9; (s), 6’ (s) and 6;(1 2 ()
(with I € Zy, J € Ty— and K € Zy_4) such that 67, 6’ and 6;/*"* have the same weight
of 6j,, and which do not depend on (the weight of) s. This system can be solved with
the help of a computer in all possible cases and one can check that it implies 6;,(s) = 0
in all cases, but in the three exceptions stated above.

We add a few words to explain what happens in the most complicated case, i.e.,
d = 10 and Iy = (12, 13, 14, 15, 23, 24, 25, 34, 35, 45). In this case 86 variables are
involved: 6y, (s), 15 vectors of the form 6’ (s), and 70 vectors of the form 6}/ (s) with
r1 # r2. Equations (33) and (35) do not provide any condition. In Equation (34) we can
choose (a, b, ¢, p, q) tobe any permutationin S5 and K = (ac, ap, aq, bp, bq, cp, pq),
getting 120 linear equations among our 86 variables, and in Equation (36) we can choose
(a, b, c, p, q) to be any permutation in S5 (witha < b < ¢ to avoid repeated equations)
and K = (ap, aq, bp, bq, cp, cq, pqg) getting 20 more equations. This system of 140
equations implies that all 86 variables involved vanish. O

Now we study the exceptions given by Theorem 8.2. The case of degree 7 leads to
another new singular vector.

Theorem 8.3. The following vector w[7] € M(0,0, 0, 2) of weight (2,0,0,0) is the
unique (up to a scalar factor) singular vector of degree 7 in a finite Verma module:

w([7] = di2di3d1adis (d23d24d25 ® (¥))? — do3dasdss ® x3x% — dasdasdas ® x3x} + dazdaadss @ X3x5
— doadasdss ® x3x% + drzdaadss ® (x5)? + doadsadss ® xix; + dasdaadss @ X3xt + dozdasdss ® x3x}
+dyzdosdss ® x3x% + dozdsadss ® x3x} + daadaadis ® (1)) + dasdaadas ® xjx% + dozdssdas ® x5x%

+dodzsdas @ Xix% + dosdzsdas @ (x3)? +d1da3 ® x3x% + d1daa @ X3xf + d1das @ x3xE — drday ® XX}

— 0adps @ XTx} — Badps @ XTX5 +03d3 @ X[ x5 — 03d34 @ X[ X} — 03d35 @ X[ x5
+ 04drs ® x[x3 + d4dz4 ® x] x5 — dadas ® x] x5 + d5das ® x| x5 + d5d3s @ x| x5 + 05dys @ xj‘xj{).

Proof. Let Iy = (12, 13, 14, 15, 25, 35, 45). In this case Equations (33)—(36) of weight
A(61,(s)) provide the following homogeneous linear relations:

913,14,15,25.35,45(5) = _29124,15,25’35(5) = 29122,13’1525,45(5) =
3 3
— 2673,14,15,25,35(5) = 2013 13 15,3545 () (38)
4 4 2,2 23
= —2013,14,15.25,45(5) = 2613 14,15,35.45(8) = —401375 55 (5) = —401375 55(5)

2.3 33 2.4 2.4

= —401315,35(5) = —4013715 35(5) = —401; 15 55(5) = —40}3 |5 45(5)
3.4 3.4 4.4

= =401} 1535(8) = —4013 15 45(5) = —40,5 15 45(5)-

We use Equation (29) to determine the weight © = (w12, 123, 134, tas). Taking
(a,b,c,p,q) = (1,2,3,4,5) and J = (13, 14,15, 25,35,45) in (29) we obtain
u34 = 0, using (38).
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Taking (a, b, c, p,q) = (4,5,1,3,2) and J = (12, 13, 14, 15, 25, 35, ) in (29) we
obtain p13 = 0.

Taking (a, b, c, p,q) = (1,2,4,5,3) and J = (13, 14, 15, 25, 35,45) in (29) we
have

5
0= —20013 14,1525 35,45\ (53) — (¥504.012,13,14,15,25,35.45) () + 2X504(612,13,14,15,25,35,45(5))
— (x501.024,13,14,15,25,35,45) (5)
5 '
= 2013 14.15.25.45(8) + 012,13,14,15,25,35,45(s) + 012,13,14,15,25,34,45(5)
+2x504.(012,13,14,15,25,35.45(5))
+624,13,14,15,21,35,45(5)
5
= 2013 14.15.25.45(8) + 2012,13,14,15,25,35,45(5) + 012,13,14,15,25,34,45(5)

+2x504.(012,13,14,15,25,35,45(5))-

Finally we can apply x40s to this equation and use (38) to conclude

4
0 =2013 14.15.25.45(5) — 2012,13,14,15,25,35,45(5) — 012,13,14,15,25,35,45(5)
+2145012,13,14,15,25,35,45(5)
= 2(p45 — 2)012,13,14,15,25,35,45(5).
This shows that the only possible singular vector of degree 7 sits in M (0, 0, 0, 2) and
has weight (0, 0, 0, 2) + A(w12,13,14.15.25.35.45) = (2,0, 0, 0). The uniqueness of such
singular vector follows from Lemma 8.1, since there are no other / € Z7 such that
A(I) = A(lp). The fact that the displayed vector is indeed a singular vector can be
checked with a long and technical calculation.
Note that (38) is consistent with the vector w[7] since one can check that
4dypd13d14disdasdzsdys =
4w13,14,15,25,35,45 — 200w12,14,15,25,35 + 2020012,13,15,25,45
— 203w13,14,15,25,35 + 203012,13,15,35,45
2
— 204w)3,14,15,25,45 + 20412,14,15,35,45 — 05012,15,25 — 0203w13,15,25
2
— 0203w12,15,35 — 03®13,15,35

2
— 0204w14,15,25 — 0204w12,15,45 — 030414,15,35 — 030413,15,45 — 05 W14,15,45-
o

The two possible cases in degree 5 given by Theorem 8.2 are dual to each other. They
lead to singular vectors which were already known to Rudakov in [13].

Theorem 8.4. Let w be a singular vector of degree 5 in M (1) of weight A. Then one of
the following occurs.

(1) = (0,0,1,0), » = (3,0,0,0) and

w = w[5¢cp]l = dipd13d14d5(dys ®XIS +d35® xékS +drs ® xiks +dys @ x5y +dp3 ®xik3);

2)pn =(0,0,0,3), A =(0,1,0,0) and w = w[Sga] = dipwl4Eg], where w[4Eg] is
explicitly described in Sect. 11.
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Proof. By Theorem 8.2 we can assume that 0y, (s) is a highest weight vector with Iy =
(12,13, 14, 15,45) or Iy = (12,15, 25,35,45) and by Theorem 3.4 it is enough to
show that the case Ip = (12, 13, 14, 15, 45) leads to conditions (1).

In this case Eqgs. (33)—(36) easily provide the following relations:

012,13,14,15.45(8) = =200 14.15(5) = =205 14.15(5). (39)

We use Equation (29) three times to show that necessarily © = (0, 0, 1, 0). We first use
Equation (29) with (a, b, ¢, p,q) = (4,5,1,3,2) and J = (12, 13, 14, 15). All terms
but one vanish and we obtain

x301.(045,12,13,14,15(5)) =0,
and so ;12 = w23 = 0. Using Equation (9) with (a, b, ¢, p,q) = (1,2,3,4,5) and
J = (13, 14, 15, 45), we obtain
0= _29?13,14,15,45)\(45) - (x483-912,13,14,15,45)(5)
+2x403.(012,13,14,15,45(5)) — (x402.031,13,14,15,45) (5)
— 2x402.(031,13,14,15,45(5)) — (x401.023,13,14,15,45) (§) — 2x401.(623,13,14,15,45(5))

4
=20314.15(5) +012,13,14,15,35(5) +2x403.(012,13,14,15,45(5)),

where we have used the fact that 623 13,14,15,45(s) = 0 since it has weight greater than
012.13.14.15,45(s). Applying x394 to the previous equation, we obtain

3
—2073 14.15(5) — 012,13,14,15,45(s) + 21434612,13,14,15,45(s) = 0.

By (39) we can conclude that p34 = 1.
Similarly, by Equation (9) with (a, b, ¢, p,q) = (1,2,3,5,4)and J = (13, 14, 15, 45),
we obtain

0= —29(513,14,15,45)\(54) +(x503.012,13,14,15,45) () — 2x503.(012,13,14,15,45(5))

and applying x305 and then using (39) we obtain

0= =205 14.15(5) + 012,13, 14,1545 (5) — 2435012,13,14.15,45(5) = 2(1 — 1£35)012,13,14,15,45(5).

So 35 = 1 and 145 = u3s — 34 = 0. The weight of wis A = pu +A(w12,13,14,15,45) =
0,0,1,00+(3,0,—1,0) = (3, 0,0, 0). The uniqueness follows by Lemma 8.1 and the
verification that dj2dy3d14d15(das @ x5+ d3s @ X35 +dos @ X35 +dog @ x5, +dr3 ® X33)
is actually such a singular vector is left to the reader. This shows, by duality, that there
exists a (unique) singular vector in M (0, 0, 0, 3) of weight (0, 1, 0, 0), and one can check
that it is given by djpw[4g]. O

9. Degree 4

The last case to be considered concerns singular vectors of degree and height 4.

Proposition 9.1. Let w be a singular vector of degree 4 as in (22) and let Iy € T4 be
such that 01,(s) # 0 is a highest weight vector in M (). Then Iy ~ (12,13, 14, 15) or
Ip ~ (15,25, 35, 45).
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Proof. We make use of the duality in Theorem 3.4 to consider nearly a half of the cases.
Indeed let w be a singular vector in M (u) of weight A such that 8,(s) is a highest
weight vector (of weight ). Also consider the dual singular vector w* in M (A*) of
weight ©* and assume that w* = ¢*(s*), where s* is a highest weight vector in M (1*),
can be expressed as in (22) with 6*’s instead of 6’s, and with 970 (s") of weight ". Then
A(0ry) = nw— A and )»(9}‘0) = A* —p* = —A(0y,)*. In particular if there are no singular
vectors such that 6;,(s) # O for all Iy such that A(6;,) = A then there are no singular
vectors such that 67, (s) # O for all /y such that A(67,) = —A*.

As in Theorem 8.2, we can use Egs. (33)—(36), but in this case we have some more
exceptions which must be considered apart.

More precisely we have that 6;,(s) = 0 in all but the following cases (and their
duals):

(1) (12,13, 14, 15);

2) (12,14, 15,23), (12,13, 15, 24), (12, 13, 14, 25);
(3) (13,23, 34, 35);

(4) (14,23, 34,35), (13,24, 34, 35), (13, 23, 34, 45);
(5) (14,24, 34,35), (13,24, 34, 45), (14, 23, 34, 45);
(6) (14,24, 34,45);

(7) (15,24, 34, 45), (14, 34,25, 45), (14, 24, 35, 45);
(8) (15,25, 34, 45), (14, 25, 35, 45), (15, 24, 35, 45).

These exceptions have been grouped according to their weight. We now analyze all these
cases.

(1) This is the case which is not excluded by the statement.
(2) Equations (33)—(36) provide 612,14,15.23 = 012,13,14.25 = —012.13,15.24. In this case
Equation 29) witha =2,b =3,c=1,p =5,9g =4and J = (12, 14, 15) gives:

x502.(031,12,14,15(8)) + x501.(623,12,14,15(s)) = 0.
If we apply the vector field x19s, we get the following equation:
x102.(031,12,14,15(5)) + 15(023,12,14,15(5)) = 0,

where we used that if 67312 14,15(s) has the highest weight, then 835 12.14,15(s) =
031,52,14,15() = 631,12,54,15(s) = 0. Hence we get

—032,12,14,15(8) — 031,12,24,15(8) — 631,12,14,15(5) + n15(623,12,14,15(s)) =0,

ie., (—u15 — 3)(012,14,15,23(s)) = 0, a contradiction.
(3) In this case Equation (29) witha = 1,b =3,c =2, p =5, = 4and J =
(23, 34, 35) gives:

—X502.(013,23,34,35(5)) + x503.(012,23,34,35(5)) = 0.
If we apply the vector field x,0s, we get the following equation:
—25(013,23,34,35(5)) + x203.(012,23,34,35(s)) = 0,

where we used that if 613 23,34,35(s) has the highest weight then 615 23 34,35(s) = 0.
Hence we get

(— p2s — 1)(013,23,34,35(5)) =0,

a contradiction.
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In this case Egs. (33)—(36) provide 014233435 = 013,24.34,35 = 013,23.34,45. Equa-
tion (29) witha =1,b=2,c =3, p=35,qg =4and J = (24, 34, 35) gives:

—(x501.023,24,34,35)(5) + (x502.031,24,34,35) (5) + (x503.012,24,34,35) ()
+2x502.(031,24,34,35(5)) + 2x503.(012,24,34,35(5)) = O,

where we used that, if 013 24 34,35 (s) has the highest weight, then 623 24,34 35(s) = 0.
This is equivalent to the following:

2013,23,24,34(8) — 2x502.(013,24,34,35(5)) + 2x503.(012,24,34,35(s)) = 0.

If we apply the vector field x2 05 and use the equality 013 24,34,35(s) = 613,23,34.45(5),
we get the following equation:

—125(013,24,34,35(5)) + x203.(012,24,34,35(s)) = 0,

where we used that, if 013 24,34,35(s) has the highest weight, then 615 24 34 35(s) =
0 = 612,34,35,45(s). Hence we get

(— pas — 1)(013,24,34,35(5)) = 0,

a contradiction.
In this case Eqgs. (33)—(36) provide 614,24 34,35 = 014.23.34.45 = 013,24,34.45. Equa-
tion 25) witha =1,b=4,c=3,p=5,9 =2and J = (24, 34, 35) gives:

—X504.(013,24,34,35(5)) + x503.(014,24,34,35(s)) = 0.
If we apply the vector field x30s, we get the following equation:
—Xx304.(013,24,34,35(5)) + 135(014,24,34,35(s)) = 0,

where we used that if 614,24 34,35(s) has the highest weight, then 615 24 34 35(s) =
0 = 013,24,35,45(s). Hence, using the hypothesis 014,24,34,35(s) = 013,24,34,45(5), we
get

(2 + 135)(014,24,34,35(5)) = 0,
a contradiction.
In this case Equation (29) witha = 1,b =4,¢c =3, p =5,g =2and J =
(24, 34, 45) gives:
—x504.(013,24,34,45(5)) + x503.(014,24,34,45(s)) = 0.
If we apply the vector field x305, we get the following equation:
—x304.(013,24,34,45(5)) + 135(014,24,34,45(5)) = 0,

where we used that if 614 24,34.45(s) has the highest weight, then 615 24,34, 45(s) = 0.
Hence we get

(1 + 135)(014,24,34,45(s)) =0,

a contradiction.
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(7) In this case Eqs. (33)—(36) provide 015,24,34,45 = 014,25.34,45 = 014,24.35,45. Equa-
tion (29) witha =1,b=2,c =4, p=5,9 =3 and J = (15, 34, 45) gives:

— (x501.624,15,34,45) (8) — (x502.041,15,34,45) (8) — (x504.012,15,34,45) (5)
+2x501.(024,15,34,45(5)) + 2x502.(041,15,34,45(5))
+ 2x504.(012,15,34,45(s)) = 0,

which is equivalent to the following equation:
—2014,15,24,34(8) +2012,14,34,45(5) — 2x501.(015,24,34,45(5)) — 2x502.(014,15,34,45(5))
+2x504.(012,15,34,45(s)) = 0.
If we apply the vector field x; 95 we get the following equation:
—2054,15,24,34 () — 2652,14,34,45(5) — 21415(015,24,34,45(5)) — 2x102.(014,15,34,45(5))
+2x104.(012,15,34,45(s)) = 0,

where we used that if 0524 34,45(s) has highest weight then 615 25 34.45(s) = 0.
Hence we get

(=6 — 24415)(015,24,34,45(s)) = 0,
a contradiction.
(8) We have by Eqgs. (33)—=(36) 015,25,34,45 = 015,24,35.45 = 014,2535,45 and 9115,45 =
9225’45 = 0;5’45 = 0. In this case Equation (29) witha = 1,b =2, c =4, p =5,
g =3 and J = (25, 35, 45) gives:
—293\{53}@) — (x501.624,25,35,45) (8) — (x502.041,25,35,45) (8) — (x504.012,25,35,45) (5)
—2x502.(014,25,35,45(5)) + 2x504.(012,25,35,45(s)) = 0

where we used that if 014 25 35,45(s) has highest weight then 624 25 35.45(s) = 0.
Hence we have:

—293\{53}(@ +2012,24,35,45(5) + 624,25,31,45(5) + 041,25 32,45(5) + 2614,24,25,35(5)
+612,25,34,45(8) — 2x502.(014,25,35,45(5)) + 2x504.(012,25,35,45(s)) = 0.

If we apply the vector field x,d5 we obtain the following equation:

—2615,24,35,45(8) — 041,25,35,45(5) — 2014,54,25,35(5)
—015,25,34,45(5) — 225(614,25,35,45(5)) — 2614,25,35,45(s) =0

where we used 9225’ 45(5) = 0 and that if 014 25 35 45(s) has highest weight then

015,25,35,45(s) = 0. Now, using the hypotheses 6|5 25 34,45 = 015,24,35 45 = 014,25 35 45,
we get:

—2(p2s + 1)014,25,35,45,

a contradiction.

The following result completes the study of singular vectors of degree 4
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Theorem 9.2. Let w be a singular vector in M (1) of weight X and degree 4. Then one
of the following occurs:

(D) p=(®,0,0,0),1=(1n+3,0,0,0) and w = di2d13d14d15 ® x| for some n € N.
2)u=1(0,0,0,n+3), A =1(0,0,0,n) and w = w[4dg] (see Sect. 11) for some n € N.

Proof. By Proposition 9.1 we know that we can assume that w is as in (22) with
012.13,14,15(s) a highest weight vector. By (29) with (a,b,c, p,q) = (1,2,3,5,4)
and J = (12, 14, 15) we immediately get x502.(612,13,14,15(s)) = O (recalling that
012.23.14.15(s) = 0 for weight reasons) and therefore © = (n,0,0,0) for some n
and A = A(w12,13,14,15) + (n,0,0,0) = (n + 3,0, 0,0). The uniqueness follows by
Lemma 8.1. It is a trivial check that the vector di2di3d14d1s ® x{ is such a singular
vector. By duality we have that the other possible case in Proposition 9.1 leads to a
unique singular vector in M (0, 0, 0, n+3) of weight (0, 0, 0, n). The fact that this vector
is actually w[4g] displayed in Sect. 10 is a huge verification that can be made with a
computer. O

10. Conclusions

As a result of discussions in the previous sections we are now in a position to state a
complete classification of singular vectors in finite Verma modules for E (5, 10).

Theorem 10.1. The following is a complete classification of singular vectors and cor-
responding morphisms for finite Verma modules.
In degree I we have

o w[ls] =di2 @ x{"x}, € M(m,n,0,0) forall m,n > 0, giving a morphism
o[la]l : M(m,n+1,0,0) - M(m,n,0,0);

e w[lg] =dis ®x’1"(x;‘)”+l +d14 @x1"x) (x3)" +d13 @x]" x5 (x3)" +d12 @ x7" x5 (x3)"
forallm,n > 0, giving a morphism

o[lpl :M(m+1,0,0,n) > M(m,0,0,n + 1);
e w[lc] = ij dij ® xi*j (x35)" (x5%)" for all m,n > 0, giving a morphism
ollcl: M(0,0,m,n) — M(0,0,m +1,n).
In degree 2 we have
o w[2g4] = Zj>1 diads ®x{”xj € M(@m, 0,0, 1) forallm > 0, giving amorphism
¢[2pal = ¢llplopllal : M(m+1,1,0,0) - M(m, 0,0, 1);

o w[2cp] = Zj>1 Zh<k dljdhk ® x;l‘kx;f(x; e M@©,0,1,n + l)for alln > 0,
giving a morphism

ol2cl =¢llcloe[lp]l : M(1,0,0,n) — M(0,0,1,n+1);
o w[2cal = ij di2d;; ®x;“j € M(0,0, 1, 0), giving a morphism
¢[2cal = pllclop[la]l : M(0,1,0,0) — M(0,0,1,0).

In degree 3 we have
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e w[3cpal = Zj>1 Yok dindijdiy ® x;‘x;:l € M(0,0, 1, 1), giving a morphism
¢Bcral) = ¢llclo@llplo[lal: M(1,1,0,0) - M(0,0, 1, 1).
In degree 4 we have
o w[4p] = dipdi3d14dis @ x{' € M(m, 0,0, 0) for all m > 0, giving a morphism
pl4pl: M(m +3,0,0,0) - M(@m,0,0,0);
e wldg] € M(0,0,0, n + 3) displayed in Section 11, giving a morphism
¢l4g] : M(0,0,0,n) — M(0,0,0,n +3).
In degree 5 we have
o w[5¢cpl = dipdi3diads Z2<i<j dij ® xl*j giving a morphism
¢l5cpl =¢llclog : [4p]: M(3,0,0,0) — M(0,0, 1,0);
o W[Sga]l =dpwld4e] € M(0, 0,0, 3), giving a morphism
@[5eal = @l4gl o @[la] : M(0,1,0,0) — M(0,0,0, 3).
In degree 7 we have
e w[7] € M(0, 0,0, 2) given in Theorem 8.3, giving a morphism
e[7]1: M(2,0,0,0) - M(0,0,0,2).
In degree 11 we have
e w[ll] € M(0,0,0, 1) given in Theorem 5.11, giving a morphism
o[11]: M(1,0,0,0) — M(0,0,0,1).

Proof. In[9] singular vectors of degree 1 were constructed, and in [13] it was shown that
there are no other ones. In [13] singular vectors of degree 2,3,4 and 5 were constructed,
and it was shown in [2] that there are no other ones of degree 2 and 3. In the present paper
we show that there are no other singular vectors of degree 4 and 5. Namely, singular
vectors of degree 4 are classified in Section 9, singular vectors of degree that is equal to
height, which is greater than 5, are classified in Section 8, and singular vectors of degree
greater than height are classified in Section 5. O

This theorem gives an affirmative answer to the conjecture posed in [9].

Corollary 10.2. All degenerate finite Verma modules over E(5,10) are of the form
M@m,n,0,0), M©,0,m,n) or M(m, 0,0, n), where m,n € N.

Figure 4 represents all morphisms between finite degenerate Verma modules, which
are not compositions of other morphisms.

Since a singular vector of weight w in a finite Verma module with highest weight A cor-
responds to a non-zero morphism M (u) — M (A), we can construct infinite sequences
of morphisms as in Fig. 4. All of these sequences are complexes (i.e. all compositions of
consecutive morphisms vanish), except for the one through the origin; the latter becomes
a complex if we replace the sequence

M@©,1,0,0) - M(0,0,0,0) = M(1,0,0,0)
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M(m,n,0,0)

n

M(0,0,m,1
(0,0,m, n) M(m,0,0,n)

Fig. 4. All nonzero morphisms between finite Verma modules for E (5, 10) which are not compositions of
other morphisms. Morphisms of degree > 1 are labelled by their degree

of morphisms of degree 1 by their composition of degree 2. This claim, when morphisms
of degree 7 and 11 are not involved, follows from [13]; if they are involved, it follows
since there are no morphisms of degree 8 and 12.

Figure 5 represents all morphisms between finite degenerate Verma modules of de-
gree 2 and 3; the corresponding bilateral infinite sequences shown in this picture are
complexes, since any possible composition of two of these morphisms does not appear
in Theorem 10.1.
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M (m,n,0,0)

O— 3
O
O
O
O(_
O—
O—

. Jﬁfégééjl
B j;/y////
B C&?y/§§/
s
M(0,0,m,n) M(m,0,0,n)

Fig. 5. All nonzero morphisms between finite Verma modules for E (5, 10) of degree 2 and 3 and their infinite
bilateral complexes

11. The singular vector in M (0, 0, 0, n + 3) of degree 4 and weight (0, 0, 0, n)

The following is the singular vector (which has been found and checked with the aid of
a computer) in M (0, 0, 0, n + 3) of degree 4 and weight (0, 0, 0, n). Here we denote xl?"
by f; and we omit all tensor product symbols.

wl4g] = dipdizdiadss fi f2 + dipdiadisds fL fo 2+ dizdiadisdas f1 3 2 — diadiadisdas 1 o f2
+dizdiadisda fL faf2 +diadisdosdaa fi f2 f2 + dizdisdazdos fi o f3 f2 + dadisdozdaa fi fo fa f2
+dindizdiadas fL Y+ disdiadisdas [ — diadadasdas fi 7 2 — dizdiadazdas fi fo f3 f2
+diadisdazdas fi fo i+ + diadizdoadas fi 72 — dizdiadoadas fi fo faf2 — dizdisdaadbs fi fo f]
+dipdyzdasdas f3 f2 +di3dasdaados f3 f3 2 + diadozdaadas f3 faf2 + dysdaadosdas f7 2!
— dipdyzdisdaa f1 f3 f2 — diadiadisdss fE fa f2 + dvadisdazdss f1 fo f3 f2 + dizdisdazdss f1 f7 f2
+disdisdazdsa f1 f3 fa 2+ diadisdasdss fi fo faf2 + disdisdaadsa f1 f3 fa f2 + diadisdaadss f1 f7 f2
— dypdizdasdsa fi fo f3 f — diadiadasdss f1 o fa 2+ disdisdasdas fi f3 f27 + diadisdasdaa fi fa fo!
- d12d23d25d34f§2f3f§" - d13d23d25d34f2f32f§' — disddosdsa o f3 2 2 — disdazdasdaa fo f3 fo+!
— diadoadasdza f7 faf — dizdaadasdss o f3 fa 2 — dvadaadasds f2 [} f2 — disdaadasdaa fo fu f2!
+didiadiadss [ f3 12 — diadiadisdss [ — diadiadaadss fi fo f 2 — diadiadazdas fi f5 £
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+diadisdaadss fi f3 24 + diadizdoadss fi fo f3 £ — dizdiadaadss f1 f3 fa f2 + diadisdaadas fi fo f27!
+diadisdaadss fi fa 2+ + dvadazdoadas f7f3 f2 + disdosdaadss o 7 2+ diadazdaadss fo f3 fa f2
+disdazdasdss fo f3 f27 — dipdiadasdss f1 fo 2+ — dizdiadosdss f1 f3 f27 + dvadisdasdss f1 f272
— diadndasdss f5 fi! — diadaadasdss fo 3 f3! — dvadaadasdss fo fu f3 — disdaadasdss fo f3
+didizdaadss fi f2 f2 + diadiadsadas fi fs fa f2 + diodisdaadss fi fs f24 + diadaadsadas f f7 f2
+di3dozdsadss f3 f2 + diadasdsadas 7 fa [ + disdosdsadss f7 27 + diadoadsadss o f fa f2
+dizdaadaadss f3 faf2 + diadaadsadas f5 f7 f2 + disdoadsadss f3 fa f271 + dindasdaadss fo f3 f2F)
+di3dasdsadss f7 21 + diadosdzadss f3 fu f2 + disdasdsadss f3 f272 + diadisdiadas £ faf2
+dindizdisdas fE A — dindiadasdas fi fo fa £ — dizdiadosdas f1 f3 fa fi — diadisdazdas fi fo f2!
— diadisdazds fi f3 f21 + diadiadoadss fi fo fa f2 — dizdiadoadas f1 f7 2 — diadysdaadas fi fa f2!
+diodazdaadas £3 fa f2 + dizdasdaadas fo f3 fa f2 + diadosdoadas fo f7 F2 + disdysdoadas fo fa f2H
+didizdasdas fi fo i+ — dizdiadasdas fi fa 2+ — dizdisdasdas fi f2¥2 + diadozdasdas f7 f2+!
+di3dazdasdus fo f3 f27 + diadaadasdys fo fa f87 + disdazdasdas fo f272 + diadizdaads f1 f3 fa f2
+ diadiadsadys fi [} 2+ dindisdaadas fi fa f271 + diadasdaadas fo fs fa f2 + diadazdsadas 2 fa f2
+d14d23d34d45f3f42f5" +6115dz3d34d45f3f4f5”+I +d12dz4d34d45fszf5" +d13d24d34d45f3f42}%'1
+diadoadzadas f7 f2 + disdoadsadas 7 f2 + diadosdadas fo fa f271 + dizdasdaadas f3 fa f2+
+digdasdagdys f7 f271 + disdasdaadys f4 22 + diadiadssdas f1 f3 f2 + dipdyadasdas fi fa foF!
+diadisdssdss fi f277 + diadosdssdas fo f3 f27 + disdasdssdus f3 f2F! + diadosdasdas f3 fa f2!
+disdodasdys f3 22 + diadosdssdas fo fa f271 + dizdoadasdys f3 fa f2+! + dyadaadasdas f7 2
+disdadasdas fa 22 + dipdosdssdas o[22 + dizdasdssdas f3 f272 + diadosdasdas fa fo+

+disdosdzsdas f27 + d1diadis fi fo f3 f8 + Didiadva f1 fa fa f + Drdiadys fi fo S
+01dindas 7 f5 f2 + d1di3dos fo f7 F2 + d1diadas fo f3 fa fo + didisdas fo f3 f2F)

+01d1adoa 7 fa 2 + B1di3doa fo f3 fa f2 + Brdiadoa fo 7 2 + 81dysdaa fo fa f24)

+d1diadas 7 2+ d1disdas o fs S5 + Bidiados fo fa f2H + didisdas fo 22

— Ddiadiz [ I — dadindia f2 faf2 — dadiodis fE LI — Badindas fi fo 13 S

— Ddizdos fi f{ 2 — dadiados 1 3 fa [ — Dadisdas fi f3 f27 — dadiados f1 o fa fE

— dadizdas i f3 fu £y — drdvadaa i £ 1 — Oadisdoa fi fa 2! — Dadiados fi fo o+

— ddi3dos fi 5 27 — dadiados f1 fa f2 — Badisdas fi 22 + d3diadis fE fo f2

— Badiadia fE faf2 — 3diadys [T F2 + 03diados f1 f3 f2 + Dxdiados fi fo f3 f2

+03d1adaz f1 fo fa f2 + 3disdas fi fo foF — adiadaa fi fo fa f2 — B3diadsa fi f3 fa f2

— Badiadsa i f 13 — dadisdsa fi fa fH1 — dadiadss fi o ! — dadiadss fi f3 f5

— Ddiadas fi fa f271 = B3disdss f1 f2VF + dadiadia fE o f2 + dadiadia fTf3 f2

— dadiadss [T 10+ Badiados f1 7 2 + dadizdaa fi fo 3 2 + dadradoa f1 fo fa f2

+ 0adysdag f1 fo f2 + Badiadsa fi o fa f2 + Badiadsa f1 3 f2 + Sadvadaa f1 f3 fa 2

+adisdaa f1 f3 21 — dadiadus fi fo f2 — Badizdas 1 5 f21 — dudiadus fi fa f2H

— dadysdas f1 f272 + Dsdiadys [ o f2 + dsdizdys £ f3 f2 + Osdyadys [T fa f2

+8sdiados f1 f7 f2 + dsdiadas f1 f2 f3 [+ Bsdradas fi fo fa f2 + dsdisdas f1 fo 2+

+0sdiadss f1 fo f3 2+ dsdizdss fi f3 f + Osdiadss [ f3 fa f2 + Osdisdss f1 f3 2!

+05d1ndas f1 2 fa f3 + Osdiadas f1 f3 fa f3 + Dsdradas f1 f7 £2 + Osdisdas f1 fa o
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We recall that the construction of this vector is also sketched by Rudakov in [13, §4].
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