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POINTWISE CONVERGENCE OF THE SCHRÖDINGER FLOW

E. COMPAAN, R. LUCÀ, AND G. STAFFILANI

Abstract. In this paper we address the question of the pointwise almost
everywhere limit of nonlinear Schrödinger flows to the initial data, in both
the continuous and the periodic settings. Then we show how, in some cases,
certain smoothing effects for the non-homogeneous part of the solution can be
used to upgrade to a uniform convergence to zero of this part, and we discuss
the sharpness of the results obtained. We also use randomization techniques
to prove that with much less regularity of the initial data, both in continuous
and the periodic settings, almost surely one obtains uniform convergence of
the nonlinear solution to the initial data, hence showing how more generic
results can be obtained.
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1. Introduction

In this work, we are concerned with the question of almost everywhere conver-
gence of solutions to certain nonlinear Schrödinger equations (NLS) to initial data.
More precisely, let u(x, t) be a solution to

(1)

{
i∂tu+∆u = N (u),

u(x, 0) = f(x),
x ∈ Td or Rd ,
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dom data.
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where T := R/2πZ and N is a power type nonlinearity. If f ∈ Hs, for what s do
we have that u(x, t) → f(x) as t→ 0 for (Lebesgue) almost every x ?

In the linear Euclidean setting, namely N = 0 and x ∈ Rd, this question was
first posed by Carleson [11], who showed that almost everywhere (a.e.) convergence

holds for f ∈ H
1
4 (R). Dahlberg–Kenig [15] showed that this one dimensional result

is sharp; in fact they proved that s ≥ 1
4 is a necessary condition for a.e. convergence

on Rd, d ≥ 1. Since then, the higher dimensional problem has been studied by many
authors [14, 10, 39, 47, 3, 32, 45, 46, 43, 27, 6, 28, 16, 29, 20]. Recently, Bourgain
[7] proved that s ≥ d

2(d+1) is a necessary condition for a.e. pointwise convergence

to the data (see also [30] for an alternative counterexample). This has been proved
to be sharp, up to the endpoint, by Du–Guth–Li [19] in the R2 case, and by Du–
Zhang [18] in higher dimensions.

In the linear periodic setting, namelyN = 0 and x ∈ Td, much less is known. The
only result appears to be that of Mouya–Vega [33] when d = 1, (sufficiency of s > 1

3

and necessity of s ≥ 1
4 ), which method of proof, based on Strichartz estimates, has

been extended to higher dimensions by Wang–C. Zhang [48]. Together with recent
improvements in periodic Strichartz estimates [8], one can show that s > d

d+2 is a

sufficient condition for almost everywhere convergence to initial data1. We refer to
Section 3.1 for more details. In Section 3.1 we also show that almost everywhere
convergence fails when s < d

2(d+1) ,
2 see Proposition 3.2. At the moment, in the

periodic case almost sure convergence when s ∈
[

d
2(d+1) ,

d
d+2

]
remains an open

question.
In the first part of this paper we extend these results to the nonlinear setting.

Hereafter Ω denotes either T or R. We define

(2) sΩd :=





d
d+2 if Ω = T,

d
2(d+1) if Ω = R.

Summarizing the results mentioned above, one has

lim
t→0

eit∆f(x) = f(x) for a.e. x ∈ Ωd

for all f ∈ Hs(Ωd) with s > sΩd . If Ωd = R we only need s ≥ sR = 1
4 .

In the following theorem we prove that a similar result is true for solutions to
NLS with power nonlinearities.

Theorem 1.1. Let N (z) = ±|z|p−1z with p ≥ 3. If f ∈ Hs(Ωd) with

(3) s > max

(
sΩd ,

d

2
−

2

p− 1

)
,

and u is the corresponding solution to (1), then

(4) lim
t→0

u(x, t) = f(x) for a.e. x ∈ Ωd .

1Although in this paper we only consider rational tori, this particular result holds for any torus
since it is based on Strichartz estimates, now available for any torus thanks to [8].

2This follows adapting the non periodic counterexamples to the periodic setting and still works
if we consider irrational tori.
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If Ωd = R and p < 9 we can relax the condition s > sR = 1
4 to s ≥ 1

4 . Moreover if

we consider the cubic equation (p = 3) and d = 1 or Ωd = R2 we have for s > d
6

(5) lim
t→0

u(x, t)− eit∆f(x) = 0 for every x ∈ Ωd

and the convergence is uniform with respect to the x variable3, namely

lim
t→0

sup
x∈Ωd

|u(x, t)− eit∆f(x)| = 0 .

Remark 1.2. The result is sharp in the following sense. The conditions p ≥ 3 and

s > max

(
0,

d

2
−

2

p− 1

)
,

ensure that the flow is locally well defined, in fact sc := d
2 − 2

p−1 is the critical

exponent. The extra assumption s > sΩd ensures that the linear part eit∆f of the
flow converges pointwise a.e. to the initial datum f . This condition is sharp if
Ω = R (modulo endpoints when d ≥ 2) and we do not expect improved convergence
to the data when we introduce a nonlinearity. Moreover by the proof of Theorem
1.1 it will be clear that any improvement of the exponent sΩd into the linear setting
would provide an analogous improvement of Theorem 1.1 as well. More precisely,
if we define

(6) s∗Ωd := inf
{
s : lim

t→0
eit∆f(x) = f(x) for a.e. x ∈ Ωd, ∀f ∈ Hs(Ωd)

}
,

we can replace the assumption (3) by

(7) s > s∗Ωd and s >
d

2
−

2

p− 1
,

and we can relax s > s∗Ωd to s ≥ s∗Ωd if the inf in (6) is a min.

In the second part of this paper we adopt a different approach than the purely
deterministic one we presented in the first part that culminated in Theorem 1.1.
More precisely we consider the linear and the cubic NLS and we show that actually
uniform convergence to the data is generically true for initial data which are less
smooth than the data postulated in Theorem 1.1. In the periodic setting, we
consider

(8) fω(x) =
∑

n∈Zd

gωn

〈n〉
d
2+α

ein·x , α > 0 ,

where gωn are independent (complex) standard Gaussian variables and we define

〈·〉 = (1+ | · |2)
1
2 . We will need the following facts, proved in Section 4.1. Fix t ∈ R.

Then eit∆fω(x) belongs to
⋂

s<αH
s(Td) P-almost surely. Thus we are working at

the Hα− level. Moreover, eit∆fω is P-almost surely a continuous function of the x
variable, where P is the law of the sequence {gωn}n∈Z.

In the following statement we consider the Wick ordered cubic NLS in Td, d =
1, 2. Namely equation (1) with nonlinearity

(9) N (u) := ±u
(
|u|2 − 2µ

)
, µ :=

 

Td

|u(x, t)|2dx ,

3A proof of (5) in the case d = 1 is in [21, 13]. Here we extend the result to Ωd = R2.
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Since once we fix the initial datum f ∈ L2, solutions to this equation are related to
that of the cubic NLS by multiplication with a factor ei2µt, the study of pointwise
convergence of (9) turns out to be equivalent to that of the cubic NLS.

Theorem 1.3. Let fω be defined in (8) for α > 0. Then one has P-almost surely
the following. For all t ∈ R the free solution eit∆fω belongs to

⋂
s<αH

s(Td) and
is continuous in the x variable. Moreover

(10) lim
t→0

eit∆fω(x) = fω(x) for every x ∈ Td .

and the convergence is uniform in the x variable. Let d = 1, 2 and let u be the
solution to the Wick ordered cubic NLS (9) with random initial data fω as above.
Again, P-almost surely one has

(11) lim
t→0

u(x, t) = fω(x) for a.e. x ∈ Td .

Furthermore, if α > d−1
2 , then

(12) lim
t→0

u(x, t)− eit∆fω(x) = 0 for every x ∈ Td.

and the convergence is uniform in the x variable.

Remark 1.4. Notice that if d = 1 combining (10) and (12) we get in fact a
stronger convergence statement than (11), namely the convergence occurs at any x
and uniformly (P-almost surely). If d = 2 the combination of (10) and (12) gives

this stronger convergence result only for data that are in H
1
2+(T2), while by (11)

we see that a.e. convergence occurs for initial data that are merely in H0+(T2)
(P-almost surely).

We also obtain results for randomized initial data on Euclidean spaces. We use
an integer tiling–type randomization, of the type introduced in [49, 31, 2]. To
begin, we construct a partition of unity on Rd. Let η be a smooth cut-off of the
unit interval. Specifically, let η : Rd → [0, 1] be a smooth function such that
supp η ⊂ {ξ : |ξ| ≤ 2} and η(ξ) = 1 for all |ξ| ≤ 1. Then for n ∈ Zd, define

(13) ψn(ξ) =
η(ξ − n)∑

ℓ∈Zd η(ξ − ℓ)
.

Observe that ψn is smooth function supported on {ξ : |ξ − n| ≤ 2} and we have∑
n ψn(ξ) = 1 for all ξ.

Fix f ∈ Hs(Rd) with s > 0. We construct a randomization fω of f as follows.
Let gωn be a collection of independent (complex) standard Gaussian variables and
define fω by

(14) f̂ω(ξ) =
∑

n∈Zd

gωn ψn(ξ) f̂(ξ) .

This randomization satisfies analogous properties to the one described above in the
periodic setting. If fω ∈ Hs(Rd) then eit∆fω is in Hs and is a continuous function
of the x variable P-almost surely, for all t ∈ R; we refer to Section 4.2 for more
details. In order to compare (14) with (8) it is convenient to look at the Fourier
transform of (8), that is

(15) f̂ω(n) =
gωn

〈n〉
d
2+α
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and remember that ψn(ξ) is a bump function of a neighborhood of ξ = n and that

a function with Fourier coefficients . 〈n〉−
d
2−α Belongs to Hα−. We then have the

following

Theorem 1.5. Fix f ∈ Hs(Rd) with s > 0. Let fω be a randomization of f as
defined in (14). Then one has P-almost surely the following. For all t ∈ R the
free solution eit∆fω belongs to Hs(Rd) and that is continuous in the x variable.
Moreover

(16) lim
t→0

eit∆fω(x) = fω(x) for every x ∈ Rd

and the convergence is uniform in the x variable. Let then u be the solution to the
cubic NLS with initial data fω. If d = 1, 2 and s > d

6(d+1) , again P-almost surely

(17) lim
t→0

u(x, t) = fω(x) for almost every x ∈ Rd.

Remark 1.6. Both the randomization procedures described do not improve smooth-
ness; see for example Remark 1.2 in [9] and the introduction of [31].

Remark 1.7. The statements (10), (16) are still true, with same proof, as explained
in Sections 4.1, 4.2, if we consider random Fourier series drawn from distribution
with sufficiently strong decay properties. In fact, the argument we present works for
independent gωn drawn from a sequence of centered sub Gaussian random variables
with unitary variance.

Remark 1.8. The randomization precedures give convergence eit∆fω → fω for
any x ∈ Ωd (and uniformly) P-almost surely; see (10), (16). In the deterministic
case one has convergence at any x ∈ Rd (and uniformly) only for s > d/2. In fact
when s ≤ d/2 it make sense to consider a refined version of the a.e. convergence
problem, which consists into determine the (worst possible) Hausdorff dimension of
the set where the convergence to Hs(Rd) initial data fails. This problem, introduced

in [38], has been solved in [1] when s ∈
[
d
4 ,

d
2

]
. In the range s ∈

(
d

2(d+1) ,
d
4

)
, where

the problem is still open, the best positive and negative results to date are in [18]
and [29, 30], respectively.

We now give a brief description of our methods of proof for the three main
theorems listed above.

To prove (4) in Theorem 1.1 we consider (smooth) approximations of the solu-
tions of NLS obtained by truncating (1) on the first N Fourier modes. Since for this
class of solutions we have pointwise convergence to the initial data, we are able to
rewrite the convergence problem as an L2

x,loc bound for a suitable maximal function,
adapted to the nonlinear setting; see Proposition 3.3. It is worth mentioning that
(already in the linear setting) the maximal function approach is the most powerful
tool to study a.e. pointwise convergence to the initial data. In order to obtain a

good enough bound, in Proposition 3.3 we embed the restriction space X
s, 12+

δ into
the space {

F (x, t) : ‖ sup
0≤t≤δ

|F (x, t)|‖L2
x,loc

<∞

}
,

for s > sΩd ; see Proposition 2.2 ([0, δ], δ > 0 will be the local existence time).
This embedding allows us to use Strichartz estimates to conclude the proof; see
Section 3.2.
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For the cubic NLS we can prove stronger results, taking advantage of the alge-
braic structure of the nonlinearity N (z) = ±|z|2z. A first example of this phenom-
enon is already in the statement (5). Let us consider x ∈ R2 to fix the notations
(similar observations can be made if x ∈ Ω). Since for s > sR2 = 1

3 one has

eit∆f(x) → f(x) as t → 0 for a.e. x ∈ R2, we see that (5) is clearly stronger
than (4). In fact, we can show that for any t ∈ R, the function

x ∈ R2 → u(x, t)− eit∆f(x) ∈ C

is continuous. Moreover the map

(18) t ∈ R → u(x, t)− eit∆f ∈ Cx(R
2) (with the supx∈R2 norm)

is also continuous. This stronger convergence result is a consequence of a smoothing
effect associated to the cubic nonlinearity on R2, that we prove in Corollary 2.6. A
similar smoothing effect has been noted in 1d in both the periodic4 [21] and non-
periodic [13] settings: the nonlinearity turns out to be σ–smoother than the initial
datum in Hs, with σ < max(2s, 12 ). We strengthen and extend this smoothing

effect on Rd, d = 1, 2 to σ < max(2s, 1); see Corollary 2.6. Using these facts

and the Sobolev embedding H
1
2+(Ω) →֒ L∞(Ω), we see that the (1d analog of)

property (18) is satisfied by initial data in Hs(Ω) with s > 1
6 . On the other hand,

in [37] (see also [30]) it has been observed that for any s < 1
4 there are initial data

such that lim supt→0 |e
it∆f(x)| = ∞ for x in a set of strictly positive measure. This

construction, done for Ω = R, is based on the Dahlberg–Kenig counterexample
and can be repeated also in the periodic setting. Combining this with the above
mentioned smoothing effect of the 1d cubic NLS, it is immediate to see that the
convergence statement (4) fails for s ∈ (16 ,

1
4 ) for the one-dimensional cubic NLS

(p = 3). However, as observed in Remark 1.2, we expect (4) to fail for any s < s∗Ωd

and for any p ≥ 3.
The proofs of Theorem 1.3 and Theorem 1.5 rely upon a combination of the

following two facts. First, the randomization improves the integrability of the
randomized function. This allows us to deduce uniform convergence of the linear
propagator eit∆fω to the initial data fω, P-almost surely; see Propositions 4.1 and
4.5. Second, we deduce a smoothing effect associated to the cubic nonlinearity.
This allows us to control the nonlinear (Duhamel) contribution u(x, t) − eit∆fω.
While in the Euclidean case (Theorem 1.5), we use the deterministic smoothing
effect given in Corollary 2.6, in the periodic case (Theorem 1.3) the proof is much
more involved. In fact, we follow the argument of Bourgain in [5] and we start with
the Wick–reordering of the nonlinearity. Then using more probabilistic arguments
and Jarnick’s theorem (namely counting lattice points on convex archs), as in [5],
we obtain in Proposition 4.6 a precise quantification of the amount of smoothing
(that in this case happens P-almost surely). In our argument a quantification of the
smoothing is necessary because we need to be sure that the nonlinear (Duhamel)

contribution sits in X
s, 12+

δ with s > sTd (we consider d = 1, 2), so that we can
conclude the proof by implementing techniques from Theorem 1.1.

1.1. Acknowledgements. E. Compaan is supported by NSF MSPRF 1704865.
R. Lucà is supported by the ERC grant 676675 FLIRT, by BERC 2018-2021, by

4In fact in the periodic setting one has to consider the Wick ordered equation; see the paragraph
before Theorem 1.3 and Section 4.3 for details.
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BCAM Severo Ochoa SEV-2017-0718 and IHAIP project PGC2018-094528-B-I00
(AEI/FEDER, UE). G. Staffilani is supported by NSF grants DMS 1462401 and
DMS 1764403. The authors thank Chenjie Fan for useful discussions on Proposi-
tions 4.1 and 4.5 and the referees for their useful comments.

1.2. Notations and terminology. For a fixed p ∈ R we often use the nota-
tion p+ := p + ε, p− := p − ε, where ε is any sufficiently small strictly positive
real number. When in the same inequality we have two such quantities we use the
following notation to compare them. We write p+ · · ·+ := p+ ε · (number of +),
p−· · ·− := p−ε ·(number of −). We will use C > 0 to denote several constants de-
pending only on fixed parameters, like for instance the dimension d. The value of C
may clearly differ from line to line. Let A,B > 0. We may write A . B if A ≤ CB
when C > 0 is such a constant. We write A & B if B . A and A ∼ B when A . B
and A & B. We write A≪ B if A ≤ cB for c > 0 sufficiently small (and depending
only on fixed parameters) and A ≫ B if B ≪ A. We denote A ∧ B := min(A,B)
and A ∨B := max(A,B). We refer to the following inequality

‖DsPNf‖Lq . Ns+ d
p
− d

q ‖PNf‖Lp, 1 ≤ p ≤ q ≤ ∞ ,

simply as Bernstein inequality. Here PN is the frequency projection on the annu-
lus ξ ∼ N .

2. Preliminaries

Let us recall that Ω denotes either T or R. We denote by Bρ a ball of radius
ρ > 0 centered at a generic point of Ωd or Zd. The following Strichartz estimates
are the main tool to study the nonlinear Schrödinger flow:
(19)

‖eit∆f(x)‖Lp
x,t(Ω

d+1) . N
d
2−

d+2
p

+‖f‖L2
x(Ω

d), p ≥ 2

(
d+ 2

d

)
, supp f̂ ⊆ BN .

These estimates were proved in [41] for Ω = R and in [8] for Ω = T. The additional
factor N0+ is removable except when Ω = T and p = 2

(
d+2
d

)
; see [4, 26] and the

references therein. However, we never use this finer information.
Hereafter δ ∈ (0, 1], sometimes we will restrict to sufficiently small values of δ.

The main tool used in the study of the a.e. pointwise convergence of solutions to
linear Scrödinger equation to the initial data is the following maximal estimate

(20)

∥∥∥∥ sup
0≤t≤δ

|eit∆f(x)|

∥∥∥∥
L2

x(B1)

. ‖f‖Hs
x(Ω

d) .

The validity of this estimate is equivalent to the fact that eit∆f(x) → f(x) as t→ 0
for almost every (with respect to the Lebesgue measure) x ∈ B1. One implication
of this statement is elementary; the other is a consequence of the Stein–Nikǐshin
maximal principle [40, 35]. Inequality (20) holds for all s > sΩd where sΩd is defined
in (2); see the introduction and the forthcoming Proposition 3.1.

The main result of this section (Lemma 2.2) is that given a function

F : (x, t) ∈ Ωd × R → F (x, t) ∈ C

we can bound the L2
x(B1) norm of the associated maximal function sup0≤t≤δ |F (x, t)|

with an appropriate Xs,b
δ norm of F ; see also [4]. This embedding is used to obtain

pointwise convergence results for solutions to the nonlinear Schrödinger equation.
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We recall that

‖F‖Xs,b
δ

:= inf
G=F on t∈[0,δ]

‖G‖Xs,b,

where

‖F‖2Xs,b :=

ˆ

R

∑

n∈Zd

〈τ + |n|2〉2b〈n〉2s|F̂ (n, τ)|2dτ if Ω = T ,

‖F‖2Xs,b :=

ˆ

R

ˆ

Rd

〈τ + |ξ|2〉2b〈ξ〉2s|F̂ (ξ, τ)|2dξdτ if Ω = R ,

〈·〉 := (1 + | · |2)
1
2 , and F̂ is the space-time Fourier transform of F .

The next lemma shows how to embed Xs,b
δ , b > 1

2 , into several functional spaces.
The proof can be found in [44, Lemma 2.9], in the case Ω = R. The argument
adapts to Ω = T.

Lemma 2.1. Let b > 1
2 and let Y be a Banach space of functions

F : (x, t) ∈ Ωd × R → F (x, t) ∈ C .

Let α ∈ R. Assume

(21) ‖eiαteit∆f(x)‖Y ≤ C‖f‖Hs(Ωd) ,

with a constant C > 0 uniform over α ∈ R. Then

‖F‖Y ≤ C‖F‖Xs,b .

Using Lemma 2.1 with

‖F‖Y =

∥∥∥∥ sup
0≤t≤δ

|F (x, t)|

∥∥∥∥
L2

x(B1)

and the fact that the maximal estimate (20) hold for s > sΩd (s ≥ 1
4 if Ωd = R),

we have the following

Lemma 2.2. Let b > 1
2 and s > sΩd defined in (2). We have

(22)

∥∥∥∥ sup
0≤t≤δ

|F (x, t)|

∥∥∥∥
L2

x(Ω
d)

. ‖F‖Xs,b
δ
.

If Ωd = R we can relax s > sR = 1
4 to s ≥ 1

4 .

We also recall several useful estimates, repeatedly used in the paper, that can
be obtained using the Strichartz estimates (19) and Lemma 2.1. Let PN be the
frequency projection into the annulus of size N , namely {N/2 < |ξ| ≤ N}. Let PA

be the frequency projection into the set A. We denote by QN a (frequency) cube
of side length N , centered at any point. Then in the statement of the lemma below
we use ΓN to denote either QN or the (frequency) annulus of size N . Thus PΓN

is
either PQN

or PN .

Lemma 2.3. Let p ≥ 2
(
d+2
d

)
. Then

(23) ‖PΓN
F‖Lp

x,t(Ω
d+1) . N

d
2−

d+2
p

−s+‖PΓN
F‖

Xs, 1
2
+ ,

(24) ‖PΓN
F‖

X0,− 1
2
++ . N0+‖PΓN

F‖
L

2d+2
d+4

+

x,t (Ωd+1)
.
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Let also s > d
2 − d+2

p , then

(25) ‖F‖
L

2 d+2
d−2s

−

x,t (Ωd+1)
. ‖F‖

Xs, 1
2
+ .

Proof. By dyadic decomposition in frequency, summing a geometric series, and then
using Plancherel, we see that (19) implies

‖eit∆f‖Lp
x,t(Ω

d+1) . ‖f‖
H

d
2
−

d+2
p

+
(Ωd)

.

This and Lemma 2.1 imply

(26) ‖F‖Lp
x,t(Ω

d+1) . ‖F‖
X

d
2
−

d+2
p

+, 1
2
+ .

Now the estimate (23) is an immediate consequence of (26). Letting p = 2
(
d+2
d

)

in (23) and interpolating it with ‖ · ‖X0,0 = ‖ · ‖L2
x,t(Ω

d+1) we get

‖PΓN
F‖

L
2d+2

d
−

x,t (Ωd+1)
. N0+‖PΓN

F‖
X0, 1

2
−−

.

Dualizing this yields (24). The estimate (25) follows from (23) by taking p =

2
(

d+2
d−2s

)
− and PΓN

= PN , after again performing a dyadic frequency decomposi-

tion, summing a geometric series, and using Plancherel.
�

We also recall some well known properties of the Xs,b spaces that are repeatedly
used in the paper; see for example [25]. Hereafter η is a smooth cut-off of the unit
interval.

Lemma 2.4. Let s ∈ R. Then

(27) ‖η(t)eit∆f(x)‖
Xs, 1

2
+ . ‖f‖Hs(Ωd) ,

(28)

∥∥∥∥η(t)
ˆ t

0

ei(t−t′)∆F (·, t′)dt′
∥∥∥∥
Xs, 1

2
+

. ‖F‖
Xs,− 1

2
+ ,

(29) ‖F‖
X

s,− 1
2
+

δ

. δ0+‖F‖
X

s,−1
2
++

δ

.

We end this section with a bilinear estimate in the space R2 and in R. We first
prove the result in R2. This is the harder case, and a proof has already appeared in
[12]; we report it below for completeness. The analogous result in R is easier and
can be proved with similar techniques. These blinear estimates are used to obtain
smoothing results for the nonlinear (Duhamel) part of the solution.

We start with some notation. For dyadic numbers M0,M1,M2 we set M∗ =
min(M0,M1,M2) and M

∗ = max(M0,M1,M2). We use the notation fχ{|µ|∼M} =:
fM for the restriction to a dyadic annulus. We then define

ˆ

τ0+τ1+τ2=0,µ0+µ1+µ2=0

=:

ˆ

∗

and

(30) C∓(f ; g, h) =

ˆ

∗

f(µ0, τ0)
g(µ1, τ1)

(1 + |τ1 − |µ1|2)b
h(µ2, τ2)

(1 + |τ2 ± |µ2|2)b
dτ1dτ2dµ1dµ2,

with b > 1
2 .



10 E. COMPAAN, R. LUCÀ, AND G. STAFFILANI

Lemma 2.5 ([12, Lemma 1]). Assume we are in R2. The following estimates hold

|C+(fM0 ; gM1 , hM2)| .

(
M∗

M∗

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 ,

|C−(fM0 ; gM1 , hM2)| .

(
M1 ∧M2

M1 ∨M2

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2.

We then have the following corollary.

Corollary 2.6. Assume we are in Rd, d = 1, 2, b > b′ > 1
2 and s ≥ 0. Then if

σ < min(2s, 1) we have

‖|u|2u‖Xs+σ,b′−1 . ‖u‖3Xs,b.

Proof. We describe the proof in dimension d = 2, which is the hardest case. At the
end of the proof we comment on the case d = 1. Using a dyadic decomposition and
duality we need to estimate for v ∈ X0,1−b′

Mσ+s
0

∣∣∣∣
ˆ

uM1 ūM2uM3 v̄M0dxdt

∣∣∣∣ .

Without loss of generality we can assume that M1 ≥ M3. Also, below we present
the calculation as if v ∈ X0,b, but we can adjust this by possibly losing an ε on the
highest frequency, and this can be done by assuming that b′ < b. We then consider
two cases, when M1 ≥M2 or when M1 ≤M2. In the first case the most dangerous
situation is when M0 ∼M1. In this case we have

Mσ+s
0

∣∣∣∣
ˆ

uM1 ūM2uM3 v̄M0dxdt

∣∣∣∣ .Mσ+s
0 ‖uM1uM3‖L2‖ūM2 v̄M0‖L2 .

After renormalizing and using the lemma above with C+ we can continue with

. Mσ+s
0 M

− 1
2

1 M
1
2
3 M

− 1
2

0 M
1
2
2 ‖uM1‖X0,b‖uM2‖X0,b‖uM3‖X0,b‖vM0‖X0,b

. Mσ−1
0 M

1
2−s
3 M

1
2−s
2 ‖uM1‖Xs,b‖uM2‖Xs,b‖uM3‖Xs,b‖vM0‖X0,b .

If s ≤ 1
2 then we need σ − 2s < 0 and hence σ < 2s. If s > 1

2 then we need σ < 1.
Assume now that M1 ≤ M2 and that again M0 ∼ M2. With a similar argument
we estimate

Mσ+s
0

∣∣∣∣
ˆ

uM1 ūM2uM3 v̄M0dxdt

∣∣∣∣ .Mσ+s
0 ‖uM1 ūM2‖L2‖v̄M0uM3‖L2 .

After renormalizing and using the lemma above with C− we obtain a similar result.
The previous argument (and Lemma 2.5) adapts to the case d = 1; see also [25].

Alternatively one can deduce them from the case d = 2 using Lemmata 3.1 and 3.6
in [42].

�

3. Deterministic Results

3.1. The Linear Schrödinger Equation on Td.
In this section we focus on maximal estimates of the linear Schödinger flow

(31)

∥∥∥∥ sup
0≤t≤1

|eit∆f(x)|

∥∥∥∥
L2

x(T
d)

. ‖f(x)‖Hs
x(T

d) .
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As mentioned in Section 2, it is standard that this estimate implies pointwise con-
vergence eit∆f(x) → f(x) as t → 0 for almost every x ∈ Td. The problem of
identifying the minimal regularity s for which (31) holds is still open. The follow-
ing result has been proved in [33] when d = 1 and in [48] when d ≥ 2. The proof is
based on Strichartz estimates. However, comparing with [48], the exponent in the
next proposition is better for d ≥ 3 due to the use of the optimal periodic Strichartz
estimates from [8]. Thus, we recall the proof for the sake of completeness.

Proposition 3.1. The inequality (31) holds for all s > d
d+2 .

Proof. By dyadic frequency decomposition (here N ∈ 2N) it is sufficient to prove
that

(32)

∥∥∥∥ sup
0≤t≤1

|eit∆ PN f |

∥∥∥∥
L2(Td)

. Ns‖PN f‖L2(Td)

holds for all s > d
d+2 ; we recall that PN is the frequency projection into the annulus

of size N .
We actually prove the stronger estimate

(33)

∥∥∥∥ sup
0≤t≤1

|eit∆ PN f |

∥∥∥∥
L2 d+2

d (Td)

. N
d

d+2+‖PN f‖L2(Td)

We use the following inequality (see [27]), that holds by the Fundamental Theorem
of Calculus and Hölder’s inequality,

(34) sup
0≤t≤1

|φ(t)| . |φ(0)|+ α
1
p
−1‖∂tφ(t)‖Lp

t ([0,1])
+ α

1
p ‖φ(t)‖Lp

t ([0,1])
,

with φ(t) = eit∆ PN f(x). The parameter α > 0 will be chosen later in such a
way as to equalize the second and third term on the right hand side of (34). Since
∂te

it∆ PN f(x) = i∆eit∆ PN f(x) we obtain

sup
0≤t≤1

|eit∆ PN f(x)|(35)

. |PN f(x)|+ α
1
p
−1‖∆eit∆ PN f(x)‖Lp

t ([0,1])
+ α

1
p ‖eit∆ PN f(x)‖Lp

t ([0,1])

. |PN f(x)|+ α
1
p
−1N2‖eit∆ PN f(x)‖Lp

t ([0,1])
+ α

1
p ‖eit∆ PN f(x)‖Lp

t ([0,1])
.

Specifying α = N2 and taking the Lp
x(T

d) norm of (35) we arrive at
∥∥∥∥ sup
0≤t≤1

|eit∆ PN f |

∥∥∥∥
Lp(Td)

. ‖PN f‖Lp(Td) +N
2
p ‖eit∆ PN f‖Lp(Td×[0,1])(36)

. N
d
2−

d
p ‖PN f‖L2(Td) +N

2
p ‖eit∆ PN f‖Lp(Td×[0,1]) ,

where in the second estimate we used Bernstein’s inequality. Letting p = 2
(
d+2
d

)

and using the Strichartz estimates (19) we obtain (33).
�

In the proof of Proposition 3.1 one can replace Td by Rd. However, in the latter
case more powerful techniques are available.

We now analyze the sharpness of the maximal estimate (31). We exhibit a coun-
terexample which shows that in fact the maximal estimate (31) fails for sufficiently
rough data. Proposition 3.2 below follows adapting the non periodic counterexam-
ples to the periodic setting. Remarkably, it has been proved in [33] that in the case
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d = 1 there are different counterexamples which lead to the necessity of s > 1/4,
exploiting the quadratic Gauss summation. Here we give another one dimensional
counterexample for the necessity of s > 1/4, based on the Galilean invariance of the
Schrödinger equation. It is worth to mention that the quadratic Gauss summation
approach is instead related to the pseudoconformal invariance. The equivalence
between these symmetries in the convergence problem has been already observed
when the (linear) problem was settled on Rd, comparing the counterexmples in
[16, 29] and [7, 30].

Proposition 3.2. The inequality (31) fails for all s < d
2(d+1) .

Proof. One can adapt the non periodic counterexamples. The maximal inequality
(31) is disproved using a family of initial data frequency supported on a ball of radius
R > 1 (letting then R → ∞). The time interval at which the R-th member fR of
this family attains the supt |e

it∆fR(x)| is contained in [0, 1/R], for all R > 1. Since
in this time/frequency region there is essentially no difference between periodic and
non periodic solutions, the procedure is straightforward. If d = 1 one can prove
this statement in different ways (see [33]). Here we also give an alternative proof.
Let κ ∈ (0, 12 ), N ≫ 1 and D = ⌊N1−κ⌋. We first focus on the family of initial data

(37) f(x) =
∑

k∈Z

|k|≤N/D

eiDkx

and the corresponding solutions

(38) eit∆f(x) =
∑

|k|≤N/D

ei(Dkx−D2|k|2t) .

Notice that

(39) |eit∆f(x)| ∼
∑

|k|≤N/D

1 ∼ N/D ∼ Nκ if (x, t) ∈ X × T ,

where

X := D−1Z+B

(
0,

1

10N

)
, T := D−2Z .

This is because we can write elements t ∈ T as ⌊N1−κ⌋−2τ with τ ∈ Z, so that

D2|k|2t = D2|k|2D−2τ = |k|2τ ∈ Z

and we can write elements x ∈ X as x = D−1ℓ+ε, with ℓ ∈ Z, ε ∈ R with |ε| ≤ 1
10N ,

so that

Dkx = Dk(D−1ℓ+ ε) = kℓ+Dkε ∈ Z+B (0, D|k||ε|)

and

D|k||ε| ≤ N1−κNκ 1

10N
≤

1

10
.

We consider instead the modulated initial data

f̃(x) = eixf(x) ,

where f is chosen as in (37). The corresponding solutions are

eit∆f̃(x) = ei(x−t)(eit∆f)(x− 2t) .
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Thus, recalling (39), we have

(40) sup
0≤t≤1/D

|eit∆f̃(x)| & Nκ if x ∈
⋃

t∈T∩[0,1/D]

X + t ,

Since the set
⋃

t∈T∩[0,1/D]X + t is equidistributed in T, its measure is of order

1 ∧ (D2N−1) ∼ 1 ∧ N1−2κ), the first factor being the cardinality of T ∩ [0, 1/D],
the second the cardinality of the small balls of X ∩ T, and the last the volumes of
these balls. Thus the set

⋃
t∈T∩[0,1/D]X + t has full measure for all large N since

we assume κ < 1/2. By (40) and noting that

‖f̃‖L2(T) = ‖f‖L2(T) ∼ (N/D)1/2 ∼ N
κ
2 ,

the maximal inequality (31) implies that

Nκ . NsN
κ
2 .

Letting N → ∞ this leads to a contradiction if s < κ
2 . Since we have restricted

to κ < 1
2 we have disproved the inequality (31) for all s < 1

4 .
�

3.2. The NLS Equation on Td and Rd (Theorem 1.1).
In this section we prove Theorem 1.1. Thus we focus on the NLS equation (1)

on Ωd, where Ω = R or Ω = T. The nonlinearity is N (z) = ±|z|p−1z with p ≥ 3.
We focus on initial data in Hs(Ωd) with

(41) s > max

(
0,
d

2
−

2

p− 1

)
.

For such data the flow is locally well defined; see [24, 44] for the non-periodic case
and [4] for the periodic one. Let ΦN

t be the flow associated to the truncated NLS
equation

(42) i∂tΦ
N
t f +∆ΦN

t f = P≤N N (ΦN
t f) ,

with initial datum ΦN
0 f := P≤N f . As usual P≤N denotes the frequency projection

on the ball of radius N centered in the origin. We write Φtf := Φ∞
t f for the flow of

the NLS equation with initial datum f = P∞ f . We also denote P>N := P∞ −P≤N

and as alreday mentioned PN := P≤N −P≤N/2.
The following maximal estimate ensures a.e. pointwise convergence to the data.

This is the nonlinear analog of the maximal estimate (20).

Proposition 3.3. Let f ∈ L2(Ωd) be such that

(43) lim
N→∞

‖ sup
0≤t≤δ

|Φtf(x) − ΦN
t f(x)|‖L2

x(B1) = 0

for any B1 ⊂ Ωd. Then Φtf(x) → f(x) as t→ 0 for almost every x ∈ Ωd.

From the proof it will be clear that in (43) we can replace the L2 norm with the
(smaller) L1 norm. However is usually convenient to work in L2 setting.

Proof. To prove Proposition 3.3 we decompose the difference as follows:

|Φtf(x)− f(x)| ≤ |Φtf(x)− ΦN
t f(x)|+ |ΦN

t f(x)− P≤N f(x)|+ |P>N f(x)|(44)
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and pass to the limit t → 0. The second term on the right hand side is zero. In
fact, since P≤N f is smooth once has immediately that

lim
t→0

ΦN
t f(x) = P≤N f(x) ,

for all x ∈ Ωd. So we arrive at5

lim sup
t→0

|Φtf − f | ≤ lim sup
t→0

|Φtf − ΦN
t f |+ |P>N f | .

Let λ > 0. Using the Chebyshev inequality

|{x ∈ B1 : lim sup
t→0

|Φtf − f | > λ}| ≤ |{x ∈ B1 : sup
0≤t≤δ

|Φtf − ΦN
t f | > λ/2}|

+ |{x ∈ B1 : |P>N f | > λ/2}|

. λ−2

(∥∥∥∥ sup
0≤t≤δ

|Φtf − ΦN
t f |

∥∥∥∥
2

L2(B1)

+ ‖P>N f‖2L2(B1)

)
,

where | · | is the Lebesgue measure. On the other hand we have ‖P>N f‖L2(Ωd) → 0

as N → ∞ (since f ∈ L2(Ωd)) and

lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf − ΦN
t f |

∥∥∥∥
L2(B1)

= 0

by assumption (43). Thus we arrive to

|{x ∈ B1 : lim sup
t→0

|Φtf − f | > λ}| = 0

and the statement follows taking the union over λ > 0 and covering Ωd with a
countable collection of balls B1.

�

We combine the following lemma with the embedding contained in Lemma 2.2
to verify the maximal estimate hypothesis of Proposition 3.3 in concrete situations.

Lemma 3.4. Let p ≥ 3 and s > max(0, d2 − 2
p−1 ). Then

(45) ‖N (u)−N (v)‖
Xs,− 1

2
++ .

(
‖u‖p−1

Xs,1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)
‖u− v‖

Xs, 1
2
+

We postpone the proof of Lemma 3.4 to the end of the section.
We denote R0 = ‖f‖Hs(Ωd). Recall that η is a smooth cut–off of [0, 1]. Taking

δ = δ(R0) < 1 sufficiently small and combining (27), (28), (29) and Lemma 3.4 one
can show that the map

(46) Γ(u(x, t)) = η(t)eit∆ P≤N f(x)− iη(t)

ˆ t

0

ei(t−t′)∆ P≤N N (u(x, t′))dt′

is a contraction on the ball {u : ‖u‖
X

s, 1
2
+

δ

≤ 2R0}, for all N ∈ 2N ∪ {∞}. This

is a standard argument, so we omit the proof (see for instance [22, Section 3.5.1]).
Moreover, a similar computation is part of the proof of Theorem 1.1. However, we
stress that the value of δ is uniform in N ∈ 2N ∪ {∞}. In particular we have

(47) ‖ΦN
t f‖

X
s, 1

2
+

δ

≤ 2R0, for all N ∈ 2N ∪ {∞} .

5Hereafter we remove the x variable in the argument of decompositions like (44) to simplify
the notation.
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove the a.e. convergence statement (4). By
Lemma 2.2 we have∥∥∥∥ sup

0≤t≤δ
|Φtf(x)− ΦN

t f(x)|

∥∥∥∥
L2

x(B1)

. ‖Φtf − ΦN
t f‖

X
s, 1

2
+

δ

.

Thus using Proposition 3.3 it suffices to show that the right hand side goes to zero
as N → ∞. For t ∈ [0, δ] we have (see (46))

Φtf(x)− ΦN
t f(x)

= η(t)eit∆ P>N f(x)− iη(t)

ˆ t

0

ei(t−t′)∆
(
N (Φt′f(x)) − P≤N N (ΦN

t′ f(x))
)
dt′.

Then using (27) and (28) we have

‖Φtf − ΦN
t f‖

X
s, 1

2
+

δ

. ‖P>N f‖Hs(Ωd) + ‖N (Φtf)− P≤N N (ΦN
t f)‖

X
s,− 1

2
+

δ

.(48)

To handle the nonlinear contribution we further decompose

N (Φtf)− P≤N N (ΦN
t f) = P≤N

(
N (Φtf)−N (ΦN

t f)
)
+ P>N N (Φtf)

so that

‖Φtf − ΦN
t f‖

X
s, 1

2
+

δ

. ‖P>N f‖Hs(Ωd) + ‖P>N N (Φtf)‖
X

s,− 1
2
+

δ

(49)

+ ‖P≤N

(
N (Φtf)−N (ΦN

t f)
)
‖
X

s,− 1
2
+

δ

.

Then by (29), Lemma 3.4, and (47), we get

‖P≤N

(
N (Φtf)−N (ΦN

t f)
)
‖
X

s,− 1
2
+

δ

. δ0+Rp−1
0 ‖Φtf − ΦN

t f‖
X

s, 1
2
+

δ

,(50)

where we recall R0 = ‖f‖Hs(Ωd). Plugging (50) into (49), taking δ = δ(R0) small
enough and absorbing

δ0+Rp−1
0 ‖Φtf − ΦN

t f‖
X

s,1
2
+

δ

≤
1

2
‖Φtf − ΦN

t f‖
X

s, 1
2
+

δ

into the left hand side, we arrive to

‖Φtf − ΦN
t f‖

X
s, 1

2
+

δ

. ‖P>N f‖Hs(Ωd) + ‖P>N N (Φtf)‖
X

s,− 1
2
+

δ

(51)

The right hand side of (51) goes to zero as N → ∞ since f ∈ Hs(Ωd) and N (Φtf) ∈

X
s,− 1

2+

δ ; in fact applying Lemma 3.4 with v = 0 and recalling (47) we have

‖N (Φtf)‖
X

s,− 1
2
+

δ

. ‖Φtf‖
p

X
s, 1

2
+

δ

. Rp
0 .

This concludes the proof of (4).
To prove (5) it is enough to show that if d = 1, 2 and s > d/6 then

(52)

∥∥∥∥
ˆ t

0

ei(t−t′)∆|Φt′f |
2Φt′fdt

′

∥∥∥∥
X

d
2
+, 1

2
+

δ

. ‖Φtf‖
3

X
s, 1

2
++

δ

. R3
0 .

Indeed then we would have Φtf − eit∆f ∈ X
d
2+, 12+

δ and we can use X
d
2+, 12+

δ →֒

Ct([0, δ];H
d
2+(Ωd)) and H

d
2+(Ωd) →֒ Cx(Ω

d) (Sobolev embedding) to get (5). On
the other hand (52) follows by (28), Corollary 2.6 and (47), so we are done.

✷
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We conclude this section with the proof of Lemma 3.4 and the statement of a
similar one – an analog for functions with frequencies restricted to dyadic annuli.
These kind of results are now very well understood; however we report the proof
for the sake of completeness.

Proof of Lemma 3.4. We consider the case Ω = T. The proof in the case Ω = R

requires some modification. It is in fact easier, since there is no loss in the endpoint
case p = 2

(
d+2
s

)
of the Strichartz estimates (19). We abbreviate everywhere in the

proof

Lq
x,t(T

d+1) to Lq
x,t .

Recalling N (z) := |z|p−1z and using the Fundamental Theorem of Calculus we can
represent

N (u)−N (v) =

ˆ 1

0

d

dρ
(N (v + ρ(u− v)))dρ(53)

= (u− v)

ˆ 1

0

(∂zN )(v + ρ(u− v))dρ + (u− v)

ˆ 1

0

(∂z̄N )(v + ρ(u− v))dρ

=: (u− v)ζ1(u, v) + (u − v)ζ2(u, v) .

Notice that ∂zN and ∂z̄N are continuous functions since p ≥ 3. For simplicity we

only show that the Xs,− 1
2++ norm of (u− v)ζ1(u, v) is bounded by the right hand

side of (45). The proof that the same holds for (u− v)ζ2(u, v) is identical. Let
decompose dyadically

(54) ‖(u− v)ζ1(u, v)‖
2

Xs,− 1
2
++

=
∑

N

N2s‖PN ((u − v)ζ1(u, v))‖
2

X0,− 1
2
++

and estimate

Ns‖PN ((u− v)ζ1(u, v))‖
X0,− 1

2
++ . Ns‖PN ((u − v) P≪N ζ1(u, v))‖

X0,− 1
2
++

(55)

+
∑

N1&N

Ns‖PN ((u − v) PN1 ζ1(u, v))‖X0,− 1
2
++ .

We first focus on the second term on the right hand side of (55). This one is the
easiest to bound, since the restriction on frequencies N1 & N gives a gain once we
estimate the norm of PN1 ζ1(u, v). Using (24), Hölder’s inequality, and (23) we get

∑

N1&N

Ns‖PN ((u − v) PN1 ζ1(u, v))‖X0,− 1
2
++(56)

.
∑

N1&N

Ns+‖(u− v) PN1 ζ1(u, v)‖
L

2(d+2
d+4 )+

x,t

.
∑

N1&N

Ns+‖u− v‖
L

2( d+2
d )

x,t

‖PN1 ζ1(u, v)‖
L

d+2
2

+

x,t

.
∑

N1&N

N0+‖u− v‖
Xs, 1

2
+‖PN1 ζ1(u, v)‖

L
d+2
2

+

x,t

.

Recalling the definition of ζ1(u, v) and using Minkowski’s inequality and Lp esti-
mates for nonlinear operators of power type (see for instance [17, Proposition 2.3])
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we have

‖PN1 ζ1(u, v)‖
L

d+2
2

+

x,t

. N0+
1

(
‖u‖p−2

L
2( d+2

d−2s )−
x,t

+ ‖v‖p−2

L
2( d+2

d−2s )−
x,t

)
(57)

×
∑

N2

min

(
1,
N2

N1

)(
‖PN2 u‖

L

2(d+2)
4−(p−2)(d−2s)

+

x,t

+ ‖PN2 v‖
L

2(d+2)
4−(p−2)(d−2s)

+

x,t

)
.

Notice that (23) gives

(58) ‖PN2 F (x, t)‖
L

2(d+2)
4−(p−2)(d−2s)

+

x,t

. N0−−−
2 ‖PN2 F (x, t)‖Xs, 1

2
+ .

Indeed, if 2(d+2)
4−(p−2)(d−2s) ≥

2(d+2)
d we can use (23) and we get a factorN

(p−1)(d−2s)−4
2 +

2 .

Since (p−1)(d−2s)−4
2 + < 0 for s > d

2 − 2
p−1 we get (58). If 2(d+2)

4−(p−2)(d−2s) ≤ 2(d+2)
d

we can bound the L
2(d+2)

4−(p−2)(d−2s)

x,t norm with the L
2(d+2)

d

x,t norm and use (23), to get

a factor N−s+
2 . Again, since s > 0 we get (58). Using (58) and (25) the estimate

(57) becomes

‖PN1 ζ1(u, v)‖
L

d+2
2

+

x,t

. N0+
1

(
‖u‖p−2

Xs,1
2
+
+ ‖v‖p−2

Xs, 1
2
+

)
(59)

×
∑

N2

min

(
1,
N2

N1

)
N0−−

2

(
‖PN2 u‖Xs, 1

2
+ + ‖PN2 v‖Xs, 1

2
+

)

. N0−−
1

(
‖u‖p−1

Xs,1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)

Plugging (59) into (56) we obtain (recall N1 & N)
∑

N1&N

Ns‖PN ((u − v) PN1 ζ1(u, v))‖X0,− 1
2
++

.
∑

N1&N

N0−
1 ‖u− v‖

Xs, 1
2
+

(
‖u‖p−1

Xs, 1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)

. N0−‖u− v‖
Xs, 1

2
+

(
‖u‖p−1

Xs,1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)
.

Summing the square of this inequality over N , we have handled the contribution
of the second term on the right hand side of (55). To handle the first term we note
that

Ns‖PN ((u− v) P≪N ζ1(u, v))‖
X0,− 1

2
++ . Ns‖(P∼N (u− v)) P≪N ζ1(u, v)‖

X0,− 1
2
++

(60)

and decompose

(P∼N (u − v)) P≪N ζ1(u, v) =
∑

N1≪N

∑

QN,N1

(PQN,N1
(u− v)) PN1 ζ1(u, v)

(61)

=
∑

N1≪N

∑

QN,N1

P100QN,N1

(
(PQN,N1

(u− v)) PN1 ζ1(u, v)
)
,(62)

where QN,N1 is a partition of the annulus of size N into cubes of side N1 (this
is possible since N1 < N). In the second identity we used that the support of
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(PQN,N1
F ) PN1 G is contained in 100QN,N1. Since for different N,N1 the projec-

tions PQN,N1
are (almost) orthogonal, squaring (61) we get

N2s‖PN ((u− v) P≪N ζ1(u, v))‖
2

X0,− 1
2
++

(63)

= N2s
∑

N1≪N

∑

QN,N1

‖P100QN,N1

(
(PQN,N1

(u− v)) PN1 ζ1(u, v)
)
‖2
X0,− 1

2
++
.

Proceeding exactly as before we get

‖P100QN,N1

(
(PQN,N1

(u − v)) PN1 ζ1(u, v)
)
‖
X0,− 1

2
++(64)

. N0−
1 ‖PQN,N1

(u − v)‖
X0, 1

2
+

(
‖u‖p−1

Xs, 1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)
;

notice that since the side of QN,N1 is N1 we had only powers of N1 in this compu-
tation. Thus

N2s‖PN ((u − v) P≪N ζ1(u, v))‖
2

X0,− 1
2
++

.

(65)

(
‖u‖p−1

Xs, 1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)2
N2s

∑

N1≪N

∑

QN,N1

N0−
1 ‖PQN,N1

(u− v)‖2
X0, 1

2
+
.

Summing the square of (65) over QN,N1 (recall that these cubes are a partition of
the annulus of size N) and later over N1, we obtain (after taking the square root)

Ns‖PN ((u−v) P≪N ζ1(u, v))‖
X0,− 1

2
++ .

(
‖u‖p−1

Xs,1
2
+
+ ‖v‖p−1

Xs, 1
2
+

)
‖PN (u−v)‖

Xs, 1
2
+ ,

which gives the correct control also on the first term on the right hand side of (55).
This concludes the proof.

✷

Later we will also need the following Lemma, whose proof is a straightforward
adaptation of the previous argument.

Lemma 3.5. Let d = 2 and s > 0. Let M1 ≥M2 ≥M3 be dyadic scales. Then

(66) ‖(PM1 F )(PM2 G)(PM3 H)‖
Xs,− 1

2
++

. ‖PM1 F‖Xs, 1
2
+‖PM2 G‖X0+, 1

2
+‖PM3 H‖

X0, 1
2
+ .

4. Probabilistic Results

4.1. The Linear Schrödinger Equation on Td with Random Data. Here
we prove almost surely uniform convergence of the randomized Schrödinger flow to
the initial datum, at the H0+ level. More precisely, we show that eit∆fω → fω as
t→ 0 uniformly over x ∈ Td and P-almost surely for data fω defined as

(67) fω(x) =
∑

n∈Zd

gωn

〈n〉
d
2+α

ein·x, x ∈ Td ,

where α > 0 and each gωn is complex and independently drawn from a standard
normal distribution. In fact, the argument we present works for independent gωn
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drawn from any distribution with sufficiently strong decay properties. We present
the standard normal case for definiteness. Fix t ∈ R. We have that P-almost surely

eit∆fω ∈
⋂

s<α

Hs(Td).

This is an immediate consequence of (75) below, taking the union over ε > 0.
Moreover, for all t ∈ R the eit∆fω are P-almost surely continuous functions6 of
the x variable. This is a consequence of the higher integrability property (72)
below, from which one can easily deduce uniform convergence as N → ∞ of the
sequence P≤Nf

ω, with probability larger than 1− ε. So the limit fω is continuous
with the same probability, and the almost sure continuity follows taking the union
over ε > 0.

Now we prove the first part of Theorem 1.3, namely

Proposition 4.1. Let α > 0. For P-almost every fω of the form (8) we have that

eit∆fω(x) → fω(x) as t→ 0

for every x ∈ Td and uniformly.

This proposition proves the first part of Theorem 1.3. Its proof appears at the
end of this section after we establish few lemmata.

We start recalling the following well–known concentration bound:

Lemma 4.2 ([9, Lemma 3.1]). There exists a constant C such that

(68)

∥∥∥∥∥∥
∑

n∈Zd

gωn an

∥∥∥∥∥∥
Lr

ω

≤ Cr
1
2 ‖an‖ℓ2n(Zd)

for all r ≥ 2 and {an} ∈ ℓ2(Zd).

Using (68) with an = ein·x−i|n|2t〈n〉−
d
2−α we obtain for r ≥ 2 that for fω an

in (67)

(69) ‖PNe
it∆fω‖Lr

ω
≤ Cr

1
2N−α ,

with a constant uniform in t ∈ R. From this, we also have improved Lp
x estimates

for randomized data.

Lemma 4.3. Let p ∈ [2,∞). Assume fω is as in (67). There exists constants C
and c, independent of t ∈ R, such that

(70) P(‖PNe
it∆fω‖Lp

x(Td) > λ) ≤ Ce−cN2αλ2

.

In particular, for any ε > 0 sufficiently small, we have

(71) ‖PNe
it∆fω‖Lp

x(Td) . N−α (− ln ε)
1/2

, N ∈ 2Z ∪ {∞} ,

with probability at least 1− ε. Thus

(72) ‖PNe
it∆fω‖L∞

x (Td) . N−α+ (− ln ε)
1/2

, N ∈ 2Z ∪ {∞} ,

with probability at least 1− ε.

6In fact they belong to
⋂

s<α
Cs(Td) P-almost surely, but we will never need this stronger

information.
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Proof. We prove (71), then (72) follows by Bernstein inequality. By Minkowski’s
inequality and Lemma 4.2 above, we have for any r ≥ p ≥ 2

(
ˆ

‖PNe
it∆fω‖rLp

x(Td)dP(ω)

) 1
r

≤
∥∥∥‖PNe

it∆fω‖Lr
ω

∥∥∥
Lp

x(Td)
≤ CN−αr

1
2 .

which is enough to conclude that ‖PNe
it∆fω‖Lp

x(Td) is a sub-Gaussian random
variable satisfying the tail bound (70).

�

Proceeding as in the proof of Lemma 4.3 we also obtain improved Strichartz
estimates for randomized data.

Lemma 4.4. Let p ∈ [2,∞). Assume fω is as in (67). Then we have, for some
constants C and c, independent of t ∈ R the bound

P

(
‖eit∆ PNf

ω‖Lp
x,t(T

d+1) > λ
)
≤ Ce−cN2αλ2

.

In particular, for any ε > 0 sufficiently small, we have

(73) ‖eit∆ PNf
ω‖Lp

x,t(T
d+1) . N−α (− ln ε)

1/2
, N ∈ 2Z ∪ {∞} ,

with probability at least 1− ε. Thus

(74) ‖eit∆ PNf
ω‖L∞

x,t(T
d+1) . N−α+ (− ln ε)

1/2
, N ∈ 2Z ∪ {∞} ,

with probability at least 1− ε.

Fix t ∈ R. Later we will also need the following bound (with high probability)
for the Hs norm of eit∆fω with s < α. This is a well know fact that we recall

applying again (68) with an = ein·x−|n|2t〈n〉−
d
2−α+s, so that we get for r ≥ 2

‖PN 〈D〉seit∆fω‖Lr
ω
≤ Cr

1
2Ns−α, s < α .

Here 〈D〉 denotes the Fourier multiplier operator 〈n〉. Proceeding as in the proof
of Lemma 4.3 we also obtain

P
(
‖〈D〉s PNe

it∆fω‖L2
x(T

d) > λ
)
≤ Ce−cN2(α−s)λ2

, s < α

and in particular, for any ε > 0 sufficiently small

(75) ‖eit∆fω‖Hs
x(T

d) . (− ln ε)
1/2

s < α, t ∈ R ,

with probability at least 1− ε. Again the constant is uniform on t ∈ R.
We thanks Chenjie Fan for sharing with use the argument we used in the next

proof, and that strengthens our original a.e. convergence to a uniform one.

Proof of Proposition 4.1. Let us decompose

(76) |eit∆fω − fω| ≤ |eit∆ P>N fω|+ |eit∆ P≤N fω − P≤N fω|+ |P>N fω|.

We fix λ > 0 and ε > 0 sufficiently small. Using (74) we see that

(77) ‖eit∆ P>N fω‖L∞

x,t(T
d+1) + ‖P>N fω‖L∞

x (Td) < λ/2

holds for all N sufficiently large, depending on λ, ε, with probability larger than
1− ε. Let us fix such N∗ = N∗(λ, ε). We also fix s∗ > d

2 . Since

eit∆ P≤N∗ fω − P≤N∗ f
ω =

∑

|n|≤N∗

(e−it|n|2 − 1)ein·x f̂ω(n), ,
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using Cauchy–Schwartz, the summability of 〈n〉−2s∗ and (75) with s = 0, t = 0 (in
the last inequality) we get

‖eit∆ P≤N∗ fω − P≤N∗ f
ω‖L∞

Td
. sup

|n|≤N∗

|e−it|n|2 − 1|


 ∑

|n|≤N∗

〈n〉2s
∗

| f̂ω(n)|2




1/2

. |t|(N∗)s
∗+2‖fω‖L2 . |t|(N∗)s

∗+2(− ln ε)1/2 ,(78)

with probability larger than 1−ε. Thus we can find t∗ sufficiently small, depending
only on N∗ and ε, such that for all t ∈ (0, t∗) we have

(79) ‖eit∆ P≤N∗ fω − P≤N∗ fω‖L∞

x (Td) < λ/2

with probability larger than 1−ε. Plugging (77), (79) into (76) we see the following.
Given λ > 0, we have found t∗ = t∗(λ, ε) such that

(80) ‖eit∆fω − fω‖L∞

x (Td) < λ, for all t ∈ (0, t∗) ,

with probability larger than 1 − ε. Namely for all ε > 0 we have uniform (in x)
convergence eit∆fω → fω as t→ 0 for all ω ∈ Aδ with P(Aδ) > 1− 2ε. This means
that the uniform convergence fails only if ω belongs to any of the complemen-
tary sets AC

ε , thus in particular for ω ∈
⋂

k∈N
A1/k. Since Since P

(⋂
k∈N

A1/k

)
=

limk→0 P(A1/k) = 0 the statement follows.
✷

4.2. The Linear Schrödinger Equation on Rd with Random Data.
For the linear Schrödinger equation on Rd, randomization arguments similar to

those in Section 4.1 can be applied. Given s > 0 and f ∈ Hs(Rd), we work with
the randomized data fω defined in (14). As in the periodic case, this argument
works for any independent random variables whose distribution functions decay
sufficiently rapidly. We work with the standard normal distribution for the sake of
definiteness.

By arguments almost identical to those for the periodic case, we have for any
p ∈ [2,∞)

‖PNe
it∆fω‖Lp(Rd×[0,1]) . N−s(− ln ε)1/2‖PNf‖L2(Rd), N ∈ 2Z ∪ {∞} ,

for ω in a set of probability at least 1− ε. Thus the Bernstein inequality gives

‖PNe
it∆fω‖L∞(Rd×[0,1]) . N−s+(− ln ε)1/2‖PNf‖L2(Rd), N ∈ 2Z ∪ {∞} ,(81)

for ω in a set of probability at least 1 − ε. In particular eit∆fω is P-almost surely
continuous7.

Moreover one has uniform in t ∈ R bounds for the Hs norm

(82) ‖eit∆fω‖Hs(Rd) . (− ln ε)1/2‖f‖Hs(Rd) ,

for ω in a set of probability at least 1 − ε. For more general versions of these
estimates we refer to [36, Lemmata 2.1 & 2.3].

Using these estimates and proceeding exactly as in the periodic case, we can
establish the first part of Theorem 1.5, namely

7In fact one can show it is P-almost surely in Cs
′

x for all s′ < s.
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Proposition 4.5. Let s > 0 and f ∈ Hs(Rd). For P-almost every fω of the form
(14) we have

eit∆fω(x) → fω(x) as t→ 0

for every x ∈ Rd and uniformly.

4.3. The Cubic NLS Equation on Td (d = 1, 2) with Random Data (The-
orem 1.3).

In this section, we consider the cubic Wick-ordered NLS (9) on Td (d = 1, 2) as
in the work of Bourgain in [5]. Namely, we look at the nonlinearity

N (u) := ±u
(
|u|2 − 2µ

)
, µ :=

 

Td

|u(x, t)|2dx .

We are interested again in randomized initial data, i.e. fω is taken to be of the
form (67). Recall (see (75)) that such data is P-almost surely in Hs for all s < α
and

(83) ‖fω‖Hs . (− ln ε)1/2 , s < α ,

with probability at least 1 − ε, for all ε ∈ (0, 1) sufficiently small. Since we work
with any α > 0, we are considering initial data in H0+. We approximate equation
(9) as in (42), for all N ∈ 2N∪{∞}. Recall that ΦN

t f
ω denotes the associated flow,

with initial datum

ΦN
0 f

ω := P≤N fω =
∑

|n|≤N

gωn

〈n〉
d
2+α

ein·x .

We write Φtf
ω = Φ∞

t f
ω for the flow of (9) with datum fω = P∞ fω.

Proposition 4.6. Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 12 ),
the following holds. Assume

(84) u = u(I) + u(II), u(I) = eit∆ P≤N fω, ‖u(II)‖
Xα+σ,1

2
+ < 1

and the same for v. Then

(85) ‖N (u)‖
Xα+σ,−1

2
+ . (− ln ε)

3/2

(86) ‖N (u)−N (v)‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u− v‖

Xα+σ, 1
2
+

for initial data of the form (67), with probability at least 1 − ε, for all ε ∈ (0, 1)
sufficiently small. If we take u as in (84) and we instead assume

v = v(I) + u(II), v(I) = eit∆fω, ‖u(II)‖
Xα+σ,1

2
+ < 1 ,

we have

(87) ‖N (u)−N (v)‖
Xα+σ,− 1

2
++ . N−α .

Remark 4.7. Recall that α indicates the regularity of the initial datum. We are
denoting by σ the amount of smoothing we can prove for the Wick–ordered cubic
nonlinearity N . More precisely, since the initial data (67) belongs to Hα−, we can
interpret this statement as saying that, with arbitrarily large probability, N is σ+
smoother than fω. Since σ < 1

2 is permissible, we reach 1
2− smoothing for N and,

combining with (28), also for the Duhamel contribution ΦN
t f

ω − eit∆P≤Nf
ω.



POINTWISE CONVERGENCE OF THE SCHRÖDINGER FLOW 23

We postpone the proof of Proposition 4.6 to the end of the section. Recall that
η is a smooth cut-off of the unit interval. Let us fix α > 0. Using (28), (29) and
Proposition 4.6 one can show that for all δ > 0 sufficiently small the following holds.
For all N ∈ 2N ∪ {∞}, the map

(88) ΓN(u) := η(t)eit∆ P≤N fω − iη(t)

ˆ t

0

ei(t−s)∆ P≤N N (u(·, s)) ds

is a contraction on the set

(89)

{
eit∆ P≤N fω + g, ‖g‖

X
α+σ,1

2
+

δ

< 1

}

equipped with the X
α+σ, 12+

δ norm, outside an exceptional set (we call it a δ–

exceptional set) of initial data of probability smaller than e−δ−γ

, with γ > 0 a
given small constant. Notice that this holds uniformly over N ∈ 2N ∪ {∞}. Again,
this is a standard routine calculation that we omit (see for instance [22, Section
3.5.1]). We only explain how to find the relation between the local existence time
δ and the size of the exceptional set. Given any ε ∈ (0, 1) sufficiently small, using
(28), (29) and Proposition 4.6, we have

‖ΓN (u)− η(t)eit∆ P≤N fω‖
X

α+σ,1
2
+

δ

. δ0+ (− ln ε)
3/2

,

for all fω outside an exceptional set of probability smaller than ε. Letting δ such

that ε = e−δ−γ

with γ > 0 a fixed small constant, we have Cδ0+ (− ln ε)3/2 < 1 for

all δ > 0 sufficiently small. Note that the measure e−δ−γ

of the δ–exceptional set
converges to zero as δ → 0. In particular, for ω outside the δ–exceptional set, the
fixed point ΦN

t f
ω of the map (88) belongs to the set (89), namely

(90) ‖ΦN
t f

ω − eit∆ P≤N fω‖
X

α+σ,1
2
+

δ

< 1, N ∈ 2N ∪ {∞} .

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Notice that (10) is the content of Proposition 4.1. To prove
(11), let us assume that we have proved

(91) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf
ω(x)− ΦN

t f
ω(x)|

∥∥∥∥
L2

x(T
2)

= 0

for all fω outside a δ–exceptional set Aδ. This means that given fω we can find,
P-almost surely, a δω such that (91) is satisfied. Indeed, if we could not do so, this
would mean that fω ∈

⋂
δ>0 Aδ, and the probability of this event is zero, since

P(Aδ) → 0 as δ → 0. So, using Proposition 3.3 with δ = δω, we have P-almost
surely

lim
t→0

Φω
t f

ω(x) − fω(x) = 0, for a.e. x ∈ T2 ,

as claimed. It remains to prove (91). We decompose

|Φtf
ω − ΦN

t f
ω| ≤ |eit∆ P>N fω|+ |Φtf

ω − eit∆fω − (ΦN
t f

ω − eit∆ P≤N fω)| ,

Thus, recalling the decay of the high frequency linear term given by (74), it remains
to show that

(92) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf
ω − eit∆fω − (ΦN

t f
ω − eit∆ P≤N fω)|

∥∥∥∥
L2(T2)

= 0 ,

for all fω outside a δ–exceptional set.
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For any α > 0, we can choose σ sufficiently close to 1
2 that

(93) sT < sT2 =
1

2
< α+ σ .

Thus, using the Xs,b space embedding from Lemma 2.2, it suffices to prove

(94) lim
N→∞

∥∥w − wN
∥∥
X

α+σ, 1
2
+

δ

= 0 ,

where

wN := ΦN
t f − eit∆ P≤N fω, w := w∞ .

Notice that by (90) we have

‖wN‖
X

α+σ,1
2
+

δ

< 1, N ∈ 2N ∪ {∞} .

Since for t ∈ [0, δ] we have

(95) w − wN = −iη(t)

ˆ t′

0

ei(t−t′)∆
(
N (Φt′f

ω)− P≤N N (ΦN
t′ f

ω)
)
dt′ ,

using (28), (29), we get

(96) ‖w − wN‖
X

α+σ,1
2
+

δ

. δ0+‖N (Φtf)− P≤N N (ΦN
t f)‖

X
α+σ,−1

2
++

δ

.

We decompose

N (Φtf)− P≤N N (ΦN
t f) =

(97)

P≤N

(
N (eit∆ P≤N fω + w)−N (eit∆ P≤N fω + wN )

)
+Remainders ,

where

Remainders := P≤N

(
N (eit∆fω + w)−N (eit∆ P≤N fω + w)

)
+ P>N N (Φtf) .

Notice that by (85), (87) we have

(98) ‖Remainders‖
X

α+σ,−1
2
++

δ

→ 0 as N → ∞ ,

with probability at least 1− ε. Using (86) we can estimate

‖P≤N

(
N (eit∆ P≤N fω + w) −N (eit∆ P≤N fω+ wN )) ‖

X
α+σ,− 1

2
++

δ

(99)

. (− ln ε)
∥∥w − wN

∥∥
X

α+σ, 1
2
+

δ

and (96), (97), (99) give
(100)∥∥w − wN

∥∥
X

α+σ, 1
2
+

δ

. δ0+ (− ln ε)
∥∥w − wN

∥∥
X

α+σ, 1
2
+

δ

+ ‖Remainders‖
X

α+σ,− 1
2
++

δ

with probability at least 1 − ε. Since with our choice of ε = e−δ−γ

we have

Cδ0+ (− ln ε)
3/2

< 1, we can absorb the first term on the right hand side into
the left hand side and we still have that (98) holds outside a δ–exceptional set.
Thus letting N → ∞ the proof of (11) is complete.

To prove (12) we proceed as before. We show that for any δ > 0 sufficiently
small we have

(101) Φtf
ω − fω ∈ X

d
2+, 12+

δ .
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for fω outside a δ-exceptional set Aδ. This means that given fω we can find, P-
almost surely, a δω such that (101) is satisfied. Indeed, if we could not do so, this
would mean that fω ∈

⋂
δ>0 Aδ, and the probability of this event is zero, since

P(Aδ) → 0 as δ → 0. Once we know that Φtf
ω − eit∆fω ∈ X

d
2+, 12+

δω
we can use

X
d
2+, 12+

δω
→֒ Ct([0, δω];H

d
2+(Ωd)) and H

d
2+(Ωd) →֒ Cx(Ω

d) (Sobolev embedding) to

get (12), that so holds with probability = 1. To prove (101) we use the smoothing,
exactly as before, except that now we have to require the stronger inequality

d

2
< α+ σ .

Since we can take σ < 1
2 for d = 1, 2, we see that the previous condition is satisfied

as long as α > d−1
2 . This concludes the proof.

✷

Remark 4.8. It is worthy to remark that, comparing with for instance [5], the
procedure which allows to promote a statement valid on a δ-exceptional set Aδ for
arbitrarily small δ > 0 to a statement which is valid with probability = 1 is far
easier. In particular we only need that limδ→0 P(Aδ) = 0 but we do not need any
efficient upper bound of the convergence rate. This is because we are considering
a property which has to be verified only at time t = 0 a.s., instead that in a given
small time interval containing t = 0, as in [5].

We are now ready to prove the smoothing estimates given in Proposition 4.6.

Proof of Proposition 4.6. Notice that the Wick–ordered nonlinearity can be written
as

(102) N (u(x, ·)) =
∑

n2 6=n1,n3

û(n1)û(n2)û(n3)e
i(n1−n2+n3)·x −

∑

n

û(n)|û(n)|2ein·x

where we are looking at the nonlinear term for fixed time and û(·) denotes the space
Fourier coefficients. From (102), exploiting the symmetry n1 ↔ n3, we also have
the identity

N (u(x, ·))−N (v(x, ·))

(103)

=
∑

n2 6=n1,n3

(û(n1)− v̂(n1))û(n2)û(n3)e
i(n1−n2+n3)·x −

∑

n

(û(n)− v̂(n))|û(n)|2ein·x

+
∑

n2 6=n1,n3

(û(n3)− v̂(n3))v̂(n2)v̂(n1)e
i(n1−n2+n3)·x −

∑

n

(û(n)− v̂(n))|v̂(n)|2ein·x

+
∑

n2 6=n1,n3

(û(n2)− v̂(n2))v̂(n1)v̂(n3)e
i(n1−n2+n3)·x −

∑

n

(û(n)− v̂(n))û(n)v̂(n)ein·x .

Using (103) (and recalling again the symmetry n1 ↔ n3), it is clear that we can
reduce to proving the (more general) Lemma 4.9 given below. It implies the desired
statement since each summation in the above decomposition can be controlled by
letting

uj(nj) = u(nj), v(nj), or u(nj)− v(nj) .

✷

The proof of Lemma 4.9 below follows closely the arguments introduced by
Bourgain in [5]. We still display the details since we need to quantify the gain of
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regularity. One will note though that the proof of Lemma 4.9 reported here is much
easier than the one presented in [5] since in our case fω is more regular, namely we
consider α > 0 instead of α = 0.

Lemma 4.9. Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 12 ) the
following holds. Assume for j = 1, 2, 3

(104) uj(I) = eit∆ P≤N fω, ‖uj(II)‖
Xα+σ, 1

2
+ < 1.

Let Jj ∈ {I, II}, j = 1, 2, 3. Then, for all ε ∈ (0, 1) sufficiently small we have the
following

(105) ‖N (u1(J1), u2(J2), u3(J3))‖
Xα+σ,− 1

2
+ . (− ln ε)

3/2
,

and more precisely

(106) ‖N (u1(II), u2(J2), u3(J3))‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u1(II)‖

Xα+σ, 1
2
+ ,

(107) ‖N (u1(J1), u2(II), u3(J3))‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u2(II)‖

Xα+σ, 1
2
+ ,

with probability at least 1− ε. Moreover, if in (104) we replace for some j = j∗ the
projection operator P≤N by P>N , then the estimate (105) with Jj∗ = I holds with
an extra factor N−α on the right hand side.

Notice that by the symmetry n1 ↔ n3 the estimate (106) implies an analogous
estimate for u3(II).

Before we pass to the proof we should remark that Lemma 4.9 proves an almost
sure gain of smoothness of σ = 1

2− for the nonhomogeneous part of the solution of
(9) with initial data fω ∈ Hα−, α > 0. This smoothing effect should be compared
to the one recorded in Corollary 2.6 proved in a deterministic manner. There
we proved that if the initial data is in H0+ then basically there is only a 0 + +
smoothing.

Proof. We prove (105), (106), (107) in the case N = ∞. It is then immediate to
adapt the proof to N ∈ N and to prove the second part of the statement. Moreover,
we first give the proof in dimension d = 2, which is the hardest case. At the end of
the proof we explain how to handle the case d = 1. We split the nonlinearity into
two parts:

N1(u1(J1), u2(J2), u3(J3)) =
∑

n2 6=n1,n3

û1(J1)(n1)û2(J2)(n2)û3(J3)(n3)e
i(n1−n2+n3)·x ,

N2(u1(J1), u2(J2), u3(J3)) =
∑

n

û1(J1)(n)û2(J2)(n)û3(J2)(n)e
in·x .

We prove (105), (106), (107) for N1, which is the most challenging contribution.
The proof for N2 is elementary, so we leave the details to the reader. We decompose
over dyadic scales N1, N2, N3 in the following way:

‖N1(u1(J1), u2(J2), u3(J3))‖
Xα+σ,− 1

2
++

≤
∑

N1,N2,N3

‖N1(PN1 u1(J1),PN2 u2(J2),PN3 u3(J3))‖Xα+σ,− 1
2
++

=:
∑

M1,M2,M3

‖N1(PM1 w1(J1),PM2 w2(J2),PM3 w3(J3))‖
Xα+σ,− 1

2
++
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where we denoted with M1,M2,M3 the decreasing order of N1, N2, N3. Notice that
in this way w1 denotes the uj supported on the largest frequency. We estimate
this sum by first doing some reductions and then considering several cases. First
we show that we can reduce to considering the case where the highest–frequency
function is a random linear flow; i.e.

(108) w1(J1) = w1(I) .

Indeed if w1(J1) = w1(II) we get, using (66)

‖N1(PM1 w1(II),PM2 w2(J2),PM3 w3(J3))‖
Xα+σ,− 1

2
++(109)

. ‖w1(II)‖
Xα+σ, 1

2
+‖w2(J2)‖

X0+, 1
2
+‖w3(J3)‖

X0, 1
2
+ ,

On the other hand, recalling (104) and (83) we have

(110) ‖wj(II)‖
Xα+σ, 1

2
+ < 1, ‖wj(I)‖

X0+, 1
2
+ . (− ln ε)1/2 ,

where the second inequality holds with probability at least 1 − ε. Thus, when
w1(J1) = w1(II) the estimates (105), (106), (107) follow summing the square of
(109) over M1,M2,M3, factorizing the sum, and then using Plancherel and (110).
To prove the second bound in (110) one should notice that the space-time Fourier
transform of eit∆fω is

êit∆fω(n, τ) =
gω

〈n〉
d
2+α

δ(τ + |n|2) ,

where δ is the delta function. So a direct computation gives

‖eit∆fω‖2
X0+, 1

2
+
=
∑

n

|gωn |
2

〈n〉d+2α−
<∞ ,

which using

(111)

ˆ

gωnj
gωn′

j
dP(ω) = 0,

ˆ

gωnj
gωn′

j
dP(ω) =

{
0 if j 6= j′

1 if j = j′
,

immediately implies

‖‖eit∆fω‖
X0+, 1

2
+‖

2
L2

ω

∑

n

1

〈n〉d+2α−
<∞ .

Using the hypercontractivity (basically (111) many times) we can upgrade this to
an Lp

ω bound, for any p < ∞, with a constant Cp1/2 (see [23, Proposition 4.5] for
details). Proceeding as in the proof of Lemma 4.3, this implies the second bound
in (110) for all ω outside a set of probability smaller than ε, as required.

Then we perform a second reduction to remove frequencies which are far from the
paraboloid. More precisely, we denote with PA the space-time Fourier projection
into the set A and our goal is to reduce

∑

M1,M2,M3

‖N1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2

Xα+σ,− 1
2
++

(112)

=
∑

N,M1,M2,M3

N2α+2σ‖PN N1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2

X0,− 1
2
++
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to
(113)∑

N,M1,M2,M3

N2α+2σ‖PN P{

〈τ+|n|2〉≤N1+ 1
10

}N1 (PM1 w1(I) PM2 w2(J2) PM3 w3(J3)) ‖
2

X0,− 1
2
++

(the 1
10 is removable, however it does not create any problems and facilitates the

computations). To obtain this reduction, it is sufficient to show that projection of
the nonlinearity onto the complementary set is appropriately bounded; i.e. that

∑

N,M1,M2,M3

N2α+2σ‖PN P{

〈τ+|n|2〉>N
11
10

}N1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2

X0,− 1
2
++

(114)

. (− ln ε) ‖w2(J2)‖
2

X
0+, 1

2
+
‖w3(J2)‖

2

X
0+, 1

2
+

on a set of probability larger than 1− ε. Indeed, recalling (110) and summing over
N , this would imply the validity of (105), (106), (107) for this term. We could have

required a weaker bound than (114), replacing the X0+, 12+ norm with an Xα+σ, 12+

norm if J2 = II and with a ln 1
ε factor if J2 = I. However, we are able to prove the

stronger estimate (114). To do so we bound

∑

M1,M2,M3

N2α+2σ‖PN P{

〈τ+|n|2〉>N
11
10

}N1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2

X0,− 1
2
++

(115)

∼ N2α+2σ
∑

M1,M2,M3
n∼N

ˆ χ
{〈τ+|n|2〉>N

11
10 }

〈τ + |n|2〉1−−

∣∣∣N̂1(·)(n, τ)
∣∣∣
2

dτ

. N2α−
∑

M1,M2,M3
n∼N

ˆ ∣∣∣N̂1(·)(n, τ)
∣∣∣
2

dτ

∼ N2α−
∑

M1,M2,M3

‖PN N1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2
L2

x,t
.

Then using Hölder’s inequality, the improved Strichartz inequality (73) for random-
ized functions (for the Lq norm of w1(I)), and the Strichartz inequality (23) (for
the L4 norms of w2(J2) and w3(J3)), we obtain

‖PNN1 (PM1 w1(I),PM2 w2(J2),PM3 w3(J3)) ‖
2
L2

x,t
(116)

≤ ‖PM1 w1(I)‖
2
Lq

x,t
‖PM2 w2(J2)‖

2
L4+

x,t

‖PM3 w3(J3)‖
2
L4+

x,t

.

. (− ln ε)M−2α
1 ‖PM2 w2(J2)‖

2
L4+

x,t

‖PM3 w3(J3)‖
2
L4+

x,t

,

. (− ln ε)M−2α
1 ‖PM2 w2(J2)‖

2

X0+, 1
2
+
‖PM3 w3(J3)‖

2

X0+, 1
2
+

where we are taking q ≫ 1 sufficiently large. This holds on a set of probability
larger than 1 − ε. Since M1 ∼ N once we plug (116) into into (115) the factor
N2α− is absorbed by M−2α

1 and we can rewrite the remaining factor as M0−
1 N0−.

Thus, summing over N,M1,M2,M3 we obtain (114). So we have reduced to (113).
To handle this term we need a more explicit expression for the functions wj . If

we consider functions of the form w(I) (here we omit the subscript j to simplify
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the notation) we already know

(117) w(I)(x, t) =
∑

m

gωm
〈m〉1+α

eim·x−i|m|2t .

We can obtain a similar expression for w(II), namely

(118) w(II)(x, t) =

ˆ

φ(λ)
∑

m

bλ(m)eim·x−i|m|2t dλ ,

where φ satisfies

(119)

ˆ

|φ(λ)| dλ . ‖w(II)‖
Xα+σ, 1

2
+ ,

and the coefficients bλ(m) satisfy

(120)
∑

m

〈m〉2α+1−|bλ(m)|2 = 1 .

To prove (118)–(120) we change variables by setting τ ′ = τ + |m|2:

w(II)(x, t) =
∑

m

ˆ

eix·m+it·τ ŵ(II)(m, τ) dτ

=
∑

m

ˆ

eit·τ
′

eim·x−i|m|2tŵ(II)(m, τ ′ − |m|2) dτ ′

=

ˆ

(∑

ℓ

ℓ2α+2σ|ŵ(II)(ℓ, τ ′ − |ℓ|2)|2

) 1
2

eit·τ
′
∑

m

eim·x−i|m|2tbτ ′(m) dτ ′,

where we have defined

(121) bλ(m) :=
ŵ(II)(m,λ− |m|2)

(∑
ℓ〈ℓ〉

2α+2σ |ŵ(II)(ℓ, λ− |ℓ|2)|2
) 1

2

.

Thus (118) holds with

φ(λ) :=

(∑

ℓ

〈ℓ〉2α+2σ|ŵ(II)(ℓ, λ− |ℓ|2)|2

) 1
2

eit·λ

Notice that (120) is immediate by the definition (121). The property (119) follows
by the Cauchy–Schwartz inequality and changing variables λ′ = λ− |ℓ|2:

ˆ

|φ(λ)| dλ ≤

(
ˆ

dλ

〈λ〉1+

) 1
2 (

〈λ〉1+〈ℓ〉2α+2σ |ŵ(II)(ℓ, λ− |ℓ|2)|2 dλ
) 1

2

.
(
〈λ′ + |ℓ|2〉1+〈ℓ〉2α+2σ |ŵ(II)(ℓ, λ′) dλ′

) 1
2

= ‖w(II)‖
Xα+σ, 1

2
+ .

We now come back to the u functions and introduce the notation

(122) au(J),λ(m) :=





gω
m

〈m〉1+α if J = I,

bλ(m) if J = II .

Recalling (117) and (118), we have

PN P{〈τ+|n|2〉≤N2s} N1(PN1 u1(I),PN2 u2(J2),PN3 u3(J3))(123)
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=

ˆ

PN P{〈τ+|n|2〉≤N2s}


 ∑

|nj |∼Nj

eix·(n1−n2+n3)e−it(|n1|
2−|n2|

2+|n3|
2)




×
∏

j=1,2,3

auj(Jj),λj
(nj)δJj

(
φ(λj) dλj

)
,

where

δJj

(
φ(λj) dλj

)
=

{
1 if Jj = I,

φ(λj) dλj if Jj = II.

Thus using Minkowski’s inequality and recalling (119) we see that (113) satisfies
the desired inequalities (105), (106), (107) as long as we can bound

N2α+2σ

∥∥∥∥∥∥
∑

N1,N2,N3

PN P{

〈τ+|n|2〉≤N
11
10

}


 ∑

|nj|∼Nj

eix·(n1−n2+n3)e−it(|n1|
2−|n2|

2+|n3|
2)




(124)

×
∏

j=1,2,3

auj(Jj),λj

∥∥∥∥∥∥

2

X0,− 1
2
++

. (− ln ε)
3
N0− ,

uniformly in λj , for all ε ∈ (0, 1) sufficiently small, on a set of probability larger than
1− ε. All the following estimates are indeed uniform in λj and the exceptional set
on which (124) could be not satisfied is independent of λj . We omit the subscript λj
to simplify the notation.

Since

F
(
eix·(n1−n2+n3)e−it(|n1|

2−|n2|
2+|n3|

2)
)
(n, τ)(125)

=
∑

n1−n2+n3=n

δ(τ + |n1|
2 − |n2|

2 + |n3|
2) ,

where F is the space-time Fourier transform and δ is the delta function, we re-
duce (124) to showing that

(126) N2α+2σ
∑

N1,N2,N3

∑

|n|∼N

χ
{〈|n|2−|n1|2+|n2|2−|n3|2〉≤N

11
10 }

〈|n|2 − |n1|2 + |n2|2 − |n3|2〉1−−

×

∣∣∣∣∣∣∣∣

∑

|nj |∼Nj, n2 6=n1,n3

n=n1−n2+n3

∏

j=1,2,3

auj(Jj)(nj)

∣∣∣∣∣∣∣∣

2

. (− ln ε)
3
N0−.

Letting

µ = |n|2 − |n1|
2 + |n2|

2 − |n3|
2 .

we see that (126) follows by

(127) N2α+2σ
∑

N1,N2,N3

∑

µ∈Z,〈µ〉≤N
11
10

1

〈µ〉1−−

∑

|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

∏

j=1,2,3

auj(Jj)(nj)

∣∣∣∣∣∣

2

. (− ln ε)
3
N0− ,
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where for fixed n, µ we have denoted

Rn(n1, n2, n3) :=
{
(n1, n2, n3) ∈ Z3 : |nj | ∼ Nj , j = 1, 2, 3,

(128)

n2 6= n1, n3, n1 − n2 + n3 = n, µ = |n|2 − |n1|
2 + |n2|

2 − |n3|
2
}
.

The set Rn(·) depends on µ also (like all the sets we define below). However we
omit this dependence to simplify the notation. Since summing 〈µ〉−1+ gives an
N0+ factor, we reduced to prove

(129) N2α+2σ
∑

N1,N2,N3

sup
|µ|.N

11
10

∑

|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

∏

j=1,2,3

auj(Jj)(nj)

∣∣∣∣∣∣

2

. (− ln ε)
3
N0− ,

Notice that in the definition of Rn(·) the condition

|n|2 − |n1|
2 + |n2|

2 − |n3|
2 = µ

can be equivalently replaced by

2(n1 − n2) · (n3 − n2) = µ .

Recalling thatM1,M2,M3 is the decreasing order of N1, N2, N3, we now notice that
we must have N1 ∼ M1 or N3 ∼ M1. Indeed, if we assume that both N1 ≪ M1

and N3 ≪ M1 we must have N2 ∼ M1 ∼ N and µ ∼ N2, which contradicts the
fact that µ ∼ N

11
10 . Since the roles of N1 and N3 are symmetric (they are always

the size of the indices of the Fourier coefficents of u1, u3), hereafter we assume that

N1 =M1 ∼ N and so u1 = w1 ;

recall that w1 is the uj supported on the largest frequency, and we have previously
reduced to considering w1(J1) = w1(I); see (108). Thus, the argument above allows
us to further reduce (129) to showing that
(130)

N2α+2σ
∑

N1,N2,N3

sup

|µ|.N
11
10
1

∑

|n|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α
au2(J2)(n2)au3(J3)(n3)

∣∣∣∣∣∣

2

. (− ln ε)3N0− .

To estimate (130) we can now distinguish few last possibilities. It is useful to
denote

S(n1, n2, n3) :=
{
(n1, n2, n3) ∈ Z3 : |nj | ∼ Nj , j = 1, 2, 3,(131)

n2 6= n1, n3, µ = 2(n1 − n2) · (n3 − n2)
}
.

Case J2 = J3 = I. We must show that
(132)

N2α+2σ
∑

N1,N2,N3

sup

|µ|.N
11
10
1

∑

|n|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣

2

. (− ln ε)
3
N0− .
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Recalling that (111) along with the fact that the sum is restricted over n1, n3 6= n2

and symmetric under n1 ↔ n3, we get

ˆ

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣

2

dP(ω) = 2
∑

Rn(n1,n2,n3)

1

〈n1〉2α+2

1

〈n2〉2α+2

1

〈n3〉2α+2
.

In the following bound we first restrict the summation over (n1, n2, n3) ∈ Rn(n1, n2, n3)
such that n1 6= n3 (with a small abuse of notation we do not introduce additional
notation for this restriction). In this case

ˆ ∑

|n|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣

2

dP(ω)(133)

.
∑

|n|∼N1

∑

Rn(n1,n2,n3)

1

〈n1〉2α+2

1

〈n2〉2α+2

1

〈n3〉2α+2

.
∑

S(n1,n2,n3)

1

〈n1〉2α+2

1

〈n2〉2α+2

1

〈n3〉2α+2

∼
∑

S(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

. N−2α−2
1 N−2α−2

2 N−2α−2
3 #S(n1, n2, n3)

. N−2α−1
1 N−2α

2 N−2α
3 ,

where we used that if n1 6= n3, then

#S(n1, n2, n3) . N1N
2
2N

2
3 ;

this is because once we have fixed n2, n3 in N2
2N

2
3 possible ways, we remain with

at most N1 choices for n1 by the relation µ = 2(n1 − n2) · (n3 − n2). If we sum
over (n1, n2, n3) ∈ Rn(n1, n2, n3) such that n1 = n3, the restriction µ = 2|n1−n2|

2

implies that once we have chosen n2 in N2
2 possible ways, we remain with . µ0+ .

N0++
1 choices for n1 = n3 (since a circle of radius µ contains . µ0+ integer points).

This gives an even better bound than the one above. Summing the (133) over
N2, N3 and recalling that N1 ∼ N , we have bounded the L2

ω norm of the left hand
side of (132) by

N2α+2σ
∑

N1

N−2α−1
1 . N2σ−1 . N0− ,

where we used σ < 1
2 . Using the hypercontractivity of the Gaussian variables, we

can upgrade this to an Lp
ω bound, for any p < ∞, with a constant Cp3/2 (see [23,

Proposition 4.5] for details). Proceeding as in the proof of Lemma 4.3, this implies
(132) for all ω outside a set of probability smaller than ε, as required.

Case J2 = J3 = II. We show that
(134)

N2α+2σ
∑

N1,N2,N3

sup

|µ|.N
11
10
1

∑

|n|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α
b2(n2)b3(n3)

∣∣∣∣∣∣

2

. (− ln ε)N0− ,
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which clearly implies (130). We denote

Rn,n2(n1, n3) := {(n1, n3) ∈ Z2 : (n1, n2, n3) ∈ Rn(n1, n2, n3)} ,

and for j = 2, 3

‖bj‖
2
ℓ2
Nj

:=
∑

|nj |∼Nj

|bj(nj)|
2 .

Notice that by (120) (and recalling the change in notations) we have for σ < 1/2

(135)
∑

Nj

N2α+2σ
j ‖bj‖

2
ℓ2Nj

. 1,
∑

Nj.N

N2α+1
j ‖bj‖

2
ℓ2Nj

. N0+ .

Hereafter all the sums over indexes nj are restricted to nj ∼ Nj . We omit this fact
in the subscripts to simplify the notation. We estimate

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α
b2(n2)b3(n3)

∣∣∣∣∣∣

2

≤
∑

n2

|b2(n2)|
2
∑

n2

∣∣∣∣∣∣
∑

Rn,n2(n1,n3)

gωn1

〈n1〉1+α
b3(n3)

∣∣∣∣∣∣

2

(136)

. ‖b2‖
2
ℓ2
N2

∑

n2

∣∣∣∣∣∣
∑

Rn,n2(n1,n3)

gωn1

〈n1〉1+α
b3(n3)

∣∣∣∣∣∣

2

,

where we have used the Cauchy–Schwartz inequality with respect to n2 and (120).
We further denote

Sn2(n1, n3) := {(n1, n3) ∈ Z2 : (n1, n2, n3) ∈ S(n1, n2, n3)} .

We recall the estimate

(137) #Sn2(n1, n3) . N0+
1 (Lemma 1 part (i) in [5]) .

Thus, summing the (136) over |n| ∼ N1 yields

∑

n

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α
b2(n2)b3(n3)

∣∣∣∣∣∣

2

(138)

. ‖b2‖
2
ℓ2
N2

∑

n,n2

∣∣∣∣∣∣
∑

Rn,n2(n1,n3)

gωn1

〈n1〉1+α
b3(n3)

∣∣∣∣∣∣

2

. (− ln ε) ‖b2‖
2
ℓ2N2

∑

n2


 ∑

Sn2(n1,n3)

|b3(n3)|

〈n1〉1+α




2

. (− ln ε) ‖b2‖
2
ℓ2N2

N0+
1

∑

n2

∑

Sn2(n1,n3)

|b3(n3)|2

〈n1〉2α+2

. (− ln ε) ‖b2‖
2
ℓ2
N2

N0+
1 N−2α−2

1

∑

S(n1,n2,n3)

|b3(n3)|
2 ,

where we used (137) and the fact that
∑

S(n1,n2,n3)

=
∑

n2

∑

Sn2(n1,n3)

.
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To justify the previous computation, in particular the factor of (− ln ε), we should
first average over dP(ω) and then use the hypercontractivity of the Gaussian vari-
ables. Since this works exactly as in the previous case (J2 = J3 = I), we omit the
details. We do the same in (142). Denoting

Sn3(n1, n2) :=
{
(n1, n2) ∈ Z3 : (n1, n2, n3) ∈ S(n1, n2, n3)

}
,

we recall that
(139)

#Sn3(n1, n2) . N1+
1 N2 (Lemma 2 part (i) in [5] switching n1 and n3) .

Since ∑

S(n1,n2,n3)

=
∑

n3

∑

Sn3(n1,n2)

,

we have by (139)
∑

S(n1,n2,n3)

|b3(n3)|
2 . N1+

1 N2

∑

n3

|b3(n3)|
2 . N1+

1 N2‖b3‖
2
ℓ2
N3

.(140)

Plugging (140) into (138) we see that (134) is satisfied as long as

N2α+2σ
∑

N1,N2,N3

N−2α−1+0+
1 N2‖b2‖

2
ℓ2
N2

‖b3‖
2
ℓ2
N3

. N0− .

Recalling (135) and the fact that N ∼ N1 & Nj, j = 2, 3, this is immediately
verified for σ < 1

2 .

Case J2 = I, J3 = II. We show that
(141)

N2α+2σ
∑

N1,N2,N3

sup

|µ|.N
11
10
1

∑

|n|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α
b3(n3)

∣∣∣∣∣∣

2

. (− ln ε)
2
N0− ,

which clearly implies (130). Since

#Rn(n1, n2, n3) . N2N
0+
3 (Lemma 1 in [5]) ,

we can estimate using the Cauchy–Schwartz inequality:
∣∣∣∣∣∣

∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α
b3(n3)

∣∣∣∣∣∣

2

(142)

. (− ln ε)
2
N2N

0+
3

∑

Rn(n1,n2,n3)

|b3(n3)|2

〈n1〉2+2α〈n2〉2+2α

. (− ln ε)2N2N
0+
3 N−2−2α

1 N−2−2α
2

∑

Rn(n1,n2,n3)

|b3(n3)|
2

. (− ln ε)
2
N−2−2α

1 N−1−2α
2 N0+

3

∑

Rn(n1,n2,n3)

|b3(n3)|
2 .

Summing this over |n1| ∼ N1 yields

∑

|n1|∼N1

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α
b3(n3)

∣∣∣∣∣∣

2

(143)
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. (− ln ε)2N−2−2α
1 N−1−2α

2 N0+
3

∑

|n1|∼N1

∑

Rn(n1,n2,n3)

|b3(n3)|
2

. (− ln ε)
2
N−2−2α

1 N−1−2α
2 N0+

3

∑

S(n1,n2,n3)

|b3(n3)|
2 .

Then since ∑

S(n1,n2,n3)

=
∑

n3

∑

Sn3(n1,n2)

and

(144) #Sn3(n1, n2) . N1+
1 N2, (Lemma 2 part (i) in [5]) ,

we have

(145)
∑

S(n1,n2,n3)

|b3(n3)|
2N1+

1 N2

∑

n3

|b3(n3)|
2 . N1+

1 N2‖b3‖
2
ℓ3
N3

.

Plugging (145) into (143) we see that the left hand side of (141) is bounded by

N2α+2σ
∑

N1,N2,N3

N−2α−1+0+
1 N−2α

2 N0+
3 ‖b3‖

2
ℓ3N3

. N0−

as required, where we used σ < 1
2 , (135), and the fact that N ∼ N1 & N3.

Case J2 = II, J3 = I. We proceed exactly as in the case J2 = I, J3 = II, but we
exchange the roles of n2 and n3. Notice that everything works symmetrically under
n2 ↔ n3 except the fact that the sets Sn3(n1, n2) and Sn2(n1, n3) do not coincide.
However, in the previous argument, we only needed the estimate (144). Here we
instead use

#Sn2(n1, n3) . N1+
1 N3, (Lemma 2 part (ii) in [5]) ,

whose right hand side is indeed the same as that of (144) after interchanging N2 ↔
N3. This concludes the proof of (105), (106), (107) in dimension d = 2.

The case d = 1 is much easier. One can easily check that the previous argument
indeed adapts and simplifies.

�

The quintic NLS on T. Here we explain how one can prove an analogous 1
2−

smoothing result for the quintic NLS (p = 5) on T, after removing certain bad
resonances from the nonlinearity, as we have done using the Wick order in the
cubic case. We plan to study this problem in detail in a future work. We consider8

(146) N (u) := ±u
(
|u|5 − 3µ

)
, µ =

 

T

|u(x, t)|4dx ,

and

(147)

{
i∂tu+∆u = N (u), x ∈ T,

u(x, 0) = fω(x),

with randomized initial data

(148) fω(x) =
∑

n∈Z

gωn

〈n〉
1
2+α

ein·x .

8For more information about why this is the relevant nonlinear term to consider in the quintic
case, consult [34].
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Recall that such data is P-almost surely in Hs for all s < α (namely we work at
H0+ level) and satisfies a uniform bound for these Hs norms with arbitrarily high
probability; see (83). Proceeding as for the cubic equation before, and focusing
only on the fully random evolution, namely the case Jj = I for j = 1, . . . , 5, we
reduce to proving the following fact. We fix

0 < σ <
1

2
.

Then with probability at least 1− ε , we have

(149) N2α+2σ
∑

N1,...,N5

sup
µ

∑

|n|∼N1

∣∣∣
∑

Rn(n1,...,n5)

gωn1

〈n1〉
1
2+α

gωn2

〈n2〉
1
2+α

gωn3

〈n3〉
1
2+α

×
gωn4

〈n4〉
1
2+α

gωn5

〈n5〉
1
2+α

∣∣∣
2

. (− ln ε)
5
N0− ,

where

Rn(n1, . . . , n5) :=
{
(n1, . . . , n5) ∈ Z3 : |nj | ∼ Nj, j = 1, . . . , 5,(150)

n2, n4 6= n1, n3, n5 , n1 − n2 + n3 − n4 + n5 = n,

µ = |n|2 − |n1|
2 + |n2|

2 − |n3|
2 + |n4|

2 − |n5|
2
}

and we have assumed N1 = max{N1, . . . , N5}, so that we can restrict to the case
N ∼ N1. However, the argument below adapts immediately to the case in which
the largest frequency is N2 (all the other cases are clearly symmetric). Again,
averaging in dP(ω) and upgrading the corresponding estimate to any Lp

ω, p ∈ [2,∞)
by hypercontractivity, we reduce to proving, uniformly over µ, the following:

N2α+2σ
∑

N1,...,N5

∑

|n|∼N1

∑

Rn(n1,...,n5)

∏

j=1,...,5

1

〈nj〉1+2α
. N0− .(151)

In fact, we have

N2α+2σ
∑

N1,...,N5

∑

|n|∼N1

∑

Rn(n1,...,n5)

∏

j=1,...,5

1

〈nj〉1+2α

. N2α+2σ
∑

N1,...,N5

#R(n1, . . . , n5)N
−(1+2α)
1 N

−(1+2α)
2 N

−(1+2α)
3 N

−(1+2α)
4 N

−(1+2α)
5

and since #R(n1, . . . , n5) . N5N4N3N2 and σ < 1
2 , the estimate (151) is proved.

4.4. The Cubic NLS Equation on Rd (d = 1, 2) with Random Data (The-
orem 1.5).

We prove Theorem 1.5. Given f ∈ Hs(Rd) with s > 0, we are considering
the randomized initial data fω defined in (14). Remember that these functions
are typically more integrable than f . They are P-almost surely in Lp for any
p ∈ [2,∞). On the other hand, they are not more regular than f , but they rather
have comparable Hs norms; see (82). We approximate the equation (here N (z) =
±|z|2z) as in (42), for all N ∈ 2N ∪ {∞}, and ΦN

t f
ω denotes the associated flow,

with initial datum fω.
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Proof of Theorem 1.5. Notice that (16) is the content of Proposition 4.5. To prove
(17), proceeding exactly as in the proof of Theorem 1.3, it suffices that given any
δ > 0 sufficiently small we prove

(152) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf
ω(x)− ΦN

t f
ω(x)|

∥∥∥∥
L2

x(T
2)

= 0

for all fω outside a δ–exceptional set Aδ. This can be done using Corollary 2.6
exactly as in the proof of (91) using Proposition 4.6. In fact, since Corollary 2.6 is
a deterministic statement, we can actually prove (152) for all ω. To do so we need
to require (compare with (93))

(153) sRd =
d

2(d+ 1)
< s+ σ, d = 1, 2 .

Since we used Corollary 2.6, we are allowed to take σ < min(2s, 1) and we see that
(153) is satisfied for all s > d

6(d+1) . This completes the proof.
✷
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[30] R. Lucà and K. M. Rogers. A note on pointwise convergence for the Schrödinger equation.

Math. Proc. Cambridge Philos. Soc., 166(2):209–218, 2019.
[31] J. Lührmann and D. Mendelson. Random data Cauchy theory for nonlinear wave equations

of power-type on R3. Comm. Partial Differential Equations, 39(12):2262–2283, 2014.
[32] A. Moyua, A. Vargas, and L. Vega. Restriction theorems and maximal operators related to

oscillatory integrals in R
3. Duke Math. J., 96(3):547–574, 1999.

[33] A. Moyua and L. Vega. Bounds for the maximal function associated to periodic solutions of
one-dimensional dispersive equations. Bull. Lond. Math. Soc., 40(1):117–128, 2008.

[34] A. R. Nahmod and G. Staffilani. Almost sure well-posedness for the periodic 3D quintic non-
linear Schrödinger equation below the energy space. J. Eur. Math. Soc. (JEMS), 17(7):1687–
1759, 2015.
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