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OF NONLINEAR PROGRAMS∗
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Abstract. This paper extends classical sensitivity results for nonlinear programs to cases in
which parametric perturbations cause changes in the active set. This is accomplished using lexico-
graphic directional derivatives, a recently developed tool in nonsmooth analysis based on Nesterov’s
lexicographic differentiation. A nonsmooth implicit function theorem is augmented with generalized
derivative information and applied to a standard nonsmooth reformulation of the parametric KKT
system. It is shown that the sufficient conditions for this implicit function theorem variant are implied
by a KKT point satisfying the linear independence constraint qualification and strong second-order
sufficiency. Mirroring the classical theory, the resulting sensitivity system is a nonsmooth equation
system which admits primal and dual sensitivities as its unique solution. Practically implementable
algorithms are provided for calculating the nonsmooth sensitivity system’s unique solution, which is
then used to furnish B-subdifferential elements of the primal and dual variable solutions by solving
a linear equation system. Consequently, the findings in this article are computationally relevant
since dedicated nonsmooth equation-solving and optimization methods display attractive conver-
gence properties when supplied with such generalized derivative elements. The results have potential
applications in nonlinear model predictive control and problems involving dynamic systems with
mathematical programs embedded. Extending the theoretical treatments here to sensitivity analysis
theory of other mathematical programs is also anticipated.
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cographic differentiation, lexicographic directional derivatives, nonsmooth implicit functions
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1. Introduction. Fiacco and McCormick [11] characterized primal and dual
variable first-order sensitivities of parametric nonlinear programs (NLPs) from lin-
earized KKT conditions, furnished by application of the classical implicit function
theorem under appropriate regularity conditions. However, the theory of Fiacco and
McCormick yields no information in the presence of active index set changes un-
der parametric perturbations. In this article, the aforementioned classical sensitivity
results are extended to include active index set changes; parametric sensitivities of
NLPs are characterized by evaluating lexicographic directional (LD-) derivatives of
nonsmooth equation-based reformulations of KKT systems.

Built from the theory of lexicographic differentiation [30], the LD-derivative is
a nonsmooth extension of the classical directional derivative and can be used in es-
tablished methods for nonsmooth equation-solving and optimization. LD-derivatives

∗Received by the editors March 10, 2017; accepted for publication (in revised form) August 22,
2017; published electronically February 1, 2018.

http://www.siam.org/journals/siopt/28-1/M112038.html
Funding: This material was based on work supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) and the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357.
†Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge,

MA 02139 (pstechli@mit.edu, http://yoric.mit.edu). Current address: Department of Mathematics
and Statistics, University of Maine, Orono, ME 04469 (peter.stechlinski@maine.edu).
‡Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada

(kamilkhan@mcmaster.ca).
§Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge,

MA 02139 (pib@mit.edu, http://yoric.mit.edu).

272

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

8.
10

.7
9.

17
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siopt/28-1/M112038.html
mailto:pstechli@mit.edu
http://yoric.mit.edu
mailto:peter.stechlinski@maine.edu
mailto:kamilkhan@mcmaster.ca
mailto:pib@mit.edu
http://yoric.mit.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERALIZED DERIVATIVES OF NONLINEAR PROGRAMS 273

have been used successfully to furnish generalized derivative information for linear
programs (for use in sensitivity analysis of ordinary-differential equations with linear
programs embedded) [16], lexicographic linear programs [13], as well as optimization
problems with nonsmooth dynamical systems embedded [20, 39]. As the LD-derivative
satisfies sharp calculus rules, generalized derivatives of the problems outlined above
can be evaluated using a tractable numerical implementation; a nonsmooth vector
forward mode of automatic differentiation has been developed [21] for automatable
and relatively cheap LD-derivative computation, extending established automatic dif-
ferentiation methods [15]. For an overview of the theory of LD-derivatives, the reader
is referred to [1].

This article shows that, when applied to the setting of parametric NLPs under
appropriate regularity conditions, the LD-derivatives approach furnishes an auxiliary
nonsmooth and nonlinear equation system that describes NLP primal and dual vari-
able sensitivities. Said system admits a unique solution under complete coherent orien-
tation [34] of nonsmooth equation-based reformulations of KKT systems. Complete
coherent orientation is implied by the linear independence constraint qualification
(LICQ) and strong second-order sufficiency and guarantees primal and dual variable
NLP solution mappings that are piecewise differentiable in the sense of Scholtes [37]
and unique in a neighborhood of a reference problem parameter. Moreover, the unique
solution of said system can be used to obtain lexicographic derivatives of the pri-
mal and dual variable solution mappings, which are guaranteed to be elements of
the B-subdifferential (and therefore Clarke’s generalized Jacobian [3]) of the solution
mappings and thus computationally relevant; dedicated nonsmooth equation-solving
algorithms (e.g., semismooth Newton methods [32] and LP-Newton methods [7]) and
nonsmooth optimization methods (e.g., bundle methods for local optimization [26])
can be applied with convergence properties similar to their smooth counterparts.

Tracing back to the influential works of Kojima [24] on NLPs and Robinson [35]
on generalized equations, a series of results have been obtained in the literature to
address parametric sensitivities of NLPs in the presence of active index set changes
[17, 38, 25, 6], culminating in a practical method to calculate directional derivatives
of the primal variable solution in the form of an auxiliary convex quadratic program
(QP) with a linear program embedded [33]. It is straightforward to calculate B-
subdifferential elements of nonsmooth equation-based reformulations of NLP KKT
systems (see [9, Chapter 10] and, in particular, [9, Proposition 10.1.16]) for use in
furnishing KKT points via nonsmooth equation-solver methods; various methods for
finding KKT triples of variational inequalities (VIs) are discussed, with numerical
advantages and drawbacks highlighted. Arguments advocating a nonsmooth equa-
tion system reformulation over smoothening approximations are given in [9, section
9.1]. However, there is currently no theory for computing B-subdifferential elements
of primal and dual variable NLP solutions (i.e., generalized derivative first-order sen-
sitivity information) until this article, extending the classical results of Fiacco and
McCormick by removing their restrictive assumption of strict complementarity.

An overview of sensitivity analysis theory for mathematical programs is found
in [10, 12, 2, 23, 8]; [8, section 5.7] presents a detailed account of current sensitivity
analysis theory for parametric NLPs, as well as complementarity problems, VIs, and
mathematical programs with equilibrium constraints (MPECs). This article focuses
on a nonsmooth equation-based reformulation of NLP KKT systems using the min-
imum function, but the results can be generalized to any suitable nonlinear comple-
mentarity problem (NCP) function reformulation of NLP KKT systems and to mixed
complementarity problems (MiCPs) and VIs under suitable regularity conditions. For
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274 P. STECHLINSKI, K. A. KHAN, AND P. I. BARTON

example, an auxiliary variable formulation in the spirit of [7, Example 2], which has
shown to have numerical benefits, can be treated with the present theory. Exten-
sions to sensitivity analysis of other mathematical programs are expected using the
theoretical machinery presented here.

The rest of this article is structured as follows. Necessary background material
is presented in section 2. Section 3 details existence and computation of generalized
derivatives of nonsmooth inverse and implicit functions, including a specialization
to MiCPs useful for present purposes in section 4. Generalized derivatives of NLPs
are given in section 5, including a connection to familiar regularity conditions and a
scheme for evaluating the unique solution of the nonsmooth and nonlinear sensitivity
system. Future work and conclusions are given in section 6.

2. Background material. Unless specified otherwise, the following notational
conventions are used. N and R+ denote the positive integers and nonnegative real
numbers, respectively. Rn is the Euclidean space of n-dimensions (equipped with the
Euclidean norm ‖ · ‖) and the vector space Rm×n is equipped with the corresponding
induced norm. A set is denoted by an uppercase letter (e.g., H). The canonical pro-
jections of H ⊂ Rn×Rm onto Rn and Rm are denoted by πxH and πyH, respectively.
Vector-valued functions and vectors in Rn are denoted by lowercase boldface letters
(e.g., h) whose ith component is denoted by hi. Given a function h : Rn → Rm
and a nonempty subset J ≡ {j1, . . . , js} ⊂ {1, . . . ,m} with s ≤ m and jl < jl+1

∀l ∈ {1, . . . , s− 1}, let hJ ≡ (hj1 , . . . , hjs) (i.e., the components of h indexed by J ).
Similarly, given a vector h ∈ Rm, let hJ denote its components indexed by J .

Matrix-valued functions and matrices in Rm×n are denoted by uppercase boldface
letters (e.g., H). Parenthetical subscripts are used to indicate the column vector of
a matrix (e.g., the matrix H ∈ Rm×n has the kth column h(k) ∈ Rm whose ith com-
ponent is h(k),i), a leftmost submatrix of a matrix (e.g., H(k) ≡ [h(1) · · · h(k)] ∈
Rm×k), or to indicate a sequence of vectors or vector-valued functions. The kth row
of H ∈ Rm×n is denoted by Hk ∈ R1×n. Unless stated otherwise, parenthetical su-
perscripts (e.g., h(k)) are used for lexicographic differentiation. 0n denotes the zero
vector in Rn, 0m×n denotes the m×n zero matrix, and In denotes the n×n identity
matrix. The notation (M,N) is used for a well-defined vertical block matrix (or vec-
tor): [ MN ]. For convenience in inductive proofs, an empty matrix with m rows but no
columns is denoted by ∅m×0 and concatenated with H ∈ Rm×n as follows:

[H ∅m×0] = [∅m×0 H] = H.

Let diag(a1, . . . , am) ∈ Rm×m denote the diagonal matrix with (i, i)-entry ai ∈ R.
Given H ∈ Rm×n, nonempty subset J ≡ {j1, . . . , js} ⊂ {1, . . . ,m} satisfying

s ≤ m and jl < jl+1 ∀l ∈ {1, . . . , s − 1}, and nonempty subset I ≡ {i1, . . . , ir} ⊂
{1, . . . , n} satisfying r ≤ n and il < il+1 ∀l ∈ {1, . . . , r− 1}, let HJ ,• denote the rows
of H indexed by J and H•,I denote the columns of H indexed by I. That is,

HJ ,• ≡


h(1),j1 h(2),j1 . . . h(n),j1

h(1),j2 h(2),j2 . . . h(n),j2
...

...
...

...
h(1),js h(2),js . . . h(n),js

 ∈ Rs×n,

H•,I ≡
[
h(i1) h(i2) . . . h(ir)

]
∈ Rm×r.

The following convention is adopted: given two distinct index sets, i.e., nonempty
subsets J1,J2 ⊂ {1, . . . ,m} such that J1 ∩ J2 = ∅, the matrix HJ1∪J2,• denotes the
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GENERALIZED DERIVATIVES OF NONLINEAR PROGRAMS 275

columns of H indexed by J ∗, where J ∗ is the index set formed by merging J1 and
J2 with proper ordering. H•,I1∪I2 and hJ1∪J2

are defined in a similar spirit. Let
IJ ,• ∈ Rs×m denote the rows of Im indexed by J (i.e., the matrix whose kth row is
equal to eT

(jk), where e(i) denotes the ith unit coordinate vector in Rm).

2.1. Generalized derivatives. Let X ⊂ Rn be open and f : X → Rm be
locally Lipschitz continuous on X. By Rademacher’s theorem, f is differentiable at
each point x0 ∈ X\Zf , where the subset Zf ⊂ X has zero (Lebesgue) measure. The
B-subdifferential of f at x0 is equal to

∂Bf(x0) ≡
{

H ∈ Rm×n : H = lim
i→∞

Jf(x(i)), lim
i→∞

x(i) = x0, x(i) ∈ X\Zf ∀i ∈ N
}

and is nonempty and compact. The Clarke (generalized) Jacobian of f at x0 [3] is
defined as

∂f(x0) ≡ conv ∂Bf(x0).

If f is continuously differentiable (C1) at x0, then ∂f(x0) = ∂Bf(x0) = {Jf(x0)}. If
f is differentiable at x0, then Jf(x0) ∈ ∂fB(x0). If f is piecewise differentiable (PC1)
[37] at x0 then, by [31, Lemma 2],

∂Bf(x0) =
{
Jf(i)(x

0) : i ∈ Iess
f (x0)

}
,

where

Iess
f (x0) ≡ {i ∈ {1, . . . , k} : x0 ∈ cl(int{ηηη ∈ Nx0 : f(ηηη) = f(i)(ηηη)})}

is the set of essentially active indices of f at x0 with respect to a set of C1 selection
functions {f(1), . . . , f(k)} defined on a neighborhood Nx0 ⊂ X of x0. Corresponding
to the essentially active indices are the set of essentially active selection functions of
f at x0, defined as Ef (x0) ≡ {f(i) : i ∈ Iess

f (x0)}. Note that the class of piecewise
differentiable functions of order-r (PCr) is defined analogously as the class of Cr

functions.
Given W ⊂ Rn × Rm open and g : W → Rq Lipschitz continuous on a neighbor-

hood of (x0,y0) ∈W , let gx0 ≡ g(x0, ·) and gy0 ≡ g(·,y0). Let Zgx0 ⊂ πy(W ; x0) ⊂
Rm and Zgy0 ⊂ πx(W ; y0) ⊂ Rn be the zero measure subsets for which gx0 and gy0

are not differentiable, respectively. The partial Clarke (generalized) Jacobian of g
with respect to y at (x0,y0) is the convex hull of the partial B-subdifferential of g
with respect to y at (x0,y0),

∂B
y g(x0,y0) ≡ ∂B[g(x0, ·)](y0).

The Clarke (generalized) Jacobian projection of g with respect to y at (x0,y0) is
defined as

πy∂g(x0,y0) ≡
{
N ∈ Rq×m : ∃[M N] ∈ ∂g(x0,y0)

}
.

If g is C1 at (x0,y0), then πx∂g(x0,y0) = ∂xg(x0,y0) =
{
Jxg(x0,y0)

}
. The gener-

alized derivatives ∂B
x g(x0,y0) and πx∂g(x0,y0) are defined similarly.

Suppose that g is PC1 at (x0,y0) ∈ W with selection functions {g(1), . . . ,g(k)}
and essentially active indices Iess

g (x0,y0). For use in their analysis of piecewise smooth
equations, Ralph and Scholtes [34, p. 607] made use of the Cartesian product of partial
Jacobians of essentially active selection functions, called here the combinatorial partial
Jacobian of g with respect to y at (x0,y0),
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Λyg(x0,y0)

≡ {M ∈ Rq×m : M{i},• = Jyg(δi),i(x
0,y0),∀i ∈ {1, . . . , q}, δδδ ∈ ∆g(x0,y0)}

=

q∏
j=1

{Jyg(i),j : i ∈ Iess
g (x0,y0)},

where the combinatorial vectorization of the essentially active indices of g at (x0,y0)
is given by

∆g(x0,y0) ≡ {δδδ ∈ Nq : δi ∈ Iess
g (x0,y0), i ∈ {1, . . . , q}}.

The combinatorial partial Jacobian of g with respect to x is defined similarly.

Example 2.1. Let g : R2 → R : (x, y) 7→ max(0,min(x, y)), which is PC1 on R2.
The subset of R2 at which g is not differentiable is given by

Zg = {(x, y) : y = x, x ≥ 0, y ≥ 0} ∪ {(x, y) : y = 0, x ≥ 0} ∪ {(x, y) : x = 0, y ≥ 0}.

Then {g(1), g(2), g(3)} is a set of essentially active C1 selection functions of g at (0, 0),
where

g(1) : (x, y) 7→ 0, g(2) : (x, y) 7→ x, g(3) : (x, y) 7→ y.

Hence,

∂Bg(0, 0) = {Jg(i)(0, 0) : i ∈ {1, 2, 3}} = {[1 0], [0 1], [0 0]},

from which it follows that

∂g(0, 0) = {[λ1 λ2] : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1},

and thus
πy∂g(0, 0) = {λ : λ ∈ [0, 1]}.

To calculate the partial Clarke Jacobian, consider

ĝ ≡ g(0, ·) : R→ R : y 7→ max{0,min{0, y}},

and note that ĝ(y) ≡ 0 ∀y ∈ R. Hence,

∂yg(0, 0) = ∂B
y g(0, 0) = {0}.

The combinatorial partial Jacobian of g with respect to y at (0, 0) evaluates as

Λyg(0, 0) = {Jyg(i)(0, 0) : i ∈ {1, 2, 3}} = {0, 1, 0} .

Therefore, ∂B
y g(0, 0) ⊂ Λyg(0, 0) ⊂ πy∂g(0, 0), where the inclusions are strict.

The Clarke Jacobian is the smallest convex-valued generalized derivative satisfy-
ing a number of useful properties: a mean-value, inverse, and implicit function theory;
recovery of the subdifferential from convex analysis whenever the Lipschitzian function
is scalar; and a necessary optimality condition, among others [3, 29]. Moreover, the
Clarke Jacobian has practical application due to computational relevance; dedicated
nonsmooth methods exhibit attractive convergence rates when supplied with Clarke
Jacobian elements. However, it is challenging to compute Clarke Jacobian elements
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in general, for a number of reasons: the Clarke Jacobian satisfies inclusion-based cal-
culus rules, componentwise computation may not yield a Clarke Jacobian element of
a vector-valued function, etc.

Before proceeding, we briefly discuss other generalized derivatives that are preva-
lent in the literature. The Mordukhovich (M-) subdifferential [28] and coderivative
[29, 27] satisfy a number of desirable properties, including ones the Clarke Jacobian
lacks. For example, there are situations in which the M-subdifferential satisfies sharp
calculus rules but the Clarke Jacobian does not. As the B-subdifferential is con-
tained in the M-subdifferential, methods furnishing B-subdifferential elements yield
M-subdifferential elements as well (which is the case in this article). The proximal
subdifferential [3, 4] is applicable to functions that are not Lipschitzian and is used
in stability analysis theory [5] but is not suitable for the aforementioned dedicated
nonsmooth methods. Linear Newton approximations (LNAs; see [9], for example)
are straightforward to compute but lack desirable properties of Clarke’s constructions
(e.g., an LNA element of a differentiable function is not necessarily the derivative
[19, Example 5.2], and an LNA element of a convex scalar-valued function is not
necessarily a subgradient).

2.2. Lexicographic differentiation and the lexicographic directional
derivative. Let X ⊂ Rn be open and f : X → Rm. The directional derivative
of f at x0 ∈ X in the direction d ∈ Rn is denoted by f ′(x0; d). The class of lex-
icographically smooth functions and the lexicographic (generalized) derivative were
introduced by Nesterov [30]: given that f is locally Lipschitz continuous on X, f is
said to be lexicographically smooth (L-smooth) at x0 ∈ X if for any k ∈ N and any
M = [m(1) · · · m(k)] ∈ Rn×k, the following higher-order directional derivatives are
well-defined:

f
(0)
x0,M : Rn → Rm : d 7→ f ′(x0; d),

f
(j)
x0,M : Rn → Rm : d 7→ [f

(j−1)
x0,M ]′(m(j); d) ∀j ∈ {1, . . . , k}.

f is said to be lexicographically smooth (L-smooth) on X if it is L-smooth at each
point x ∈ X. The class of L-smooth functions is closed under composition and
includes all C1 functions, convex functions [30], and PC1 functions [21]. L-smooth
functions that are not PC1 on their domain include the Euclidean norm (or any p-
norm with 2 ≤ p < ∞), solutions of parametric ODEs and DAEs with certain PC1

right-hand-side functions [1], and the function

f : R2 → R : (x, y) 7→ inf
k∈N

∣∣∣x− y

k

∣∣∣ ,
which was suggested by Jeffrey Pang and illustrated by Roshchina [36].

Given any nonsingular matrix M ∈ Rn×n and f : X → Rm L-smooth at x0,

the mapping f
(n)
x0,M is necessarily linear [30, Theorem 2] and the lexicographic (L-)

derivative of f at x0 in the directions M is defined as

JLf(x0; M) ≡ Jf
(n)
x0,M(0n) ∈ Rm×n.

The lexicographic (L-) subdifferential of f at x0 is defined as

∂Lf(x0) ≡ {JLf(x0; N) : N ∈ Rn×n,det N 6= 0}.
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Introduced by Khan and Barton [21], the LD-derivative is defined as follows: given
any k ∈ N, any M = [m(1) · · · m(k)] ∈ Rn×k, and f : X → Rm L-smooth at x0 ∈ X,
the LD-derivative of f at x0 ∈ X in the directions M is

f ′(x0; M) ≡
[
f

(0)
x0,M(m(1)) f

(1)
x0,M(m(2)) · · · f

(k−1)
x0,M (m(k))

]
.

The LD-derivative is uniquely defined for any M ∈ Rn×k and k ∈ N and satisfies the
linear equation system

(1) f ′(x0; M) = JLf(x0; M)M

if, in addition, M is square and nonsingular. Equation (1) mirrors the relationship
between the classical directional derivative and the Jacobian matrix. Indeed, if f is
differentiable at x0, then f ′(x0; M) = Jf(x0)M and ∂Lf(x0) = {Jf(x0)}. If M has
one column, the LD-derivative is equivalent to the directional derivative.

A convincing case on the usefulness of L-derivatives has been made in [19, 21]:
if f is PC1 at x0 (which is pertinent to this article), then f is L-smooth at x0 and
∂Lf(x0) ⊂ ∂Bf(x0); if f is a scalar-valued function that is L-smooth at x0 (i.e., objec-
tive functions), then ∂Lf(x0) ⊂ ∂f(x0); and if f is L-smooth at x0, then ∂Lf(x0) is a
subset of the plenary hull [42] of the Clarke Jacobian (whose elements are no less useful
than Clarke Jacobian elements in nonsmooth methods using matrix-vector products,
for example). The L-derivative JLf(x0; M), which can be furnished via computing an
LD-derivative for a square and nonsingular M and solving (1), is therefore computa-
tionally relevant in nonsmooth equation-solving methods (e.g., semismooth Newton
methods and the LP-Newton methods) and nonsmooth optimization methods (e.g.,
bundle methods).

The L-subdifferential is nonempty and bounded, with the function’s local Lip-
schitz constant providing a bound [30]. (The same properties hold true for the
B-subdifferential, Clarke Jacobian, and M-subdifferential.) When viewed as a set-
valued mapping, the B-subdifferential, Clarke Jacobian, and M-subdifferential are
outer-semicontinuous (also called upper-semicontinuous), which is not true of the L-
subdifferential. Outer-semicontinuity is desirable since it provides some robustness
to numerical error. However, since the L-subdifferential is a subset of all three in
the PC1 setting, it benefits from the same robustness to numerical error. Of course,
this moderate robustness is weaker than the usual sense, which would require the
set-valued mappings to be continuous or even Lipschitz with respect to some appro-
priate metric. Notwithstanding, this moderate level of robustness can be sufficient to
achieve attractive convergence behavior (e.g., in nonsmooth equation-solving meth-
ods). Other notions of robustness have been pursued (e.g., because of its normal-
cone-based definition, the M-subdifferential benefits from other properties the Clarke
Jacobian lacks).

Importantly, the LD-derivative obeys a sharp chain rule [21], unlike the Clarke
Jacobian: let X ⊂ Rn and Y ⊂ Rm be open and h : X → Y and g : Y → Rq be
L-smooth at x0 ∈ X and h(x0) ∈ Y , respectively. Then, the composition g ◦ h is
L-smooth at x0; for any k ∈ N and any M ∈ Rn×k, the chain rule for LD-derivatives
is given as

(2) [g ◦ h]′(x0; M) = g′(h(x0); h′(x0; M)),

which reduces to Nesterov’s chain rule [30, Theorem 5] when the directions matrix
is square and nonsingular and reduces further to the classical chain rule if the par-
ticipating functions are differentiable. Thanks to said sharp chain rule, a nonsmooth
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vector forward mode of automatic differentiation to calculate LD-derivatives has been
recently developed [21]. The property that LD-derivatives are well-defined for sin-
gular or nonsquare directions matrices is crucial for the LD-derivative chain rule
(2); given a nonsingular directions matrix M, the intermediate directions matrix
h′(x0; M) ∈ Rm×k is permitted to be singular or nonsquare. This is important in
problems where the directions matrix is not chosen a priori (e.g., if the directions
matrix is the output of an embedded problem).

Lexicographic differentiation and the LD-derivative are illustrated in the next
example.

Example 2.2. Recall the function g : R2 → R : (x, y) 7→ max(0,min(x, y)) in
Example 2.1. Let M = I2 be the directions matrix. For any d ∈ R2,

g
(0)
02,I2

(d) = max(0,min(d1, d2)),

g
(1)
02,I2

(d) = max(0, d2),

from which it follows that

g′(0, 0; I2) =
[
g

(0)
02,I2

(1, 0) g
(0)
02,I2

(0, 1)
]

=
[
0 1

]
.

Using (1),

JLg(0, 0; I2) =
[
0 1

]
∈ ∂Lg(0, 0) ⊂ ∂Bg(0, 0).

(Observe that g
(2)
02,I2

(d) ≡ d2 is linear and Jg
(2)
02,I2

(0, 0) = [0 1], as expected.) Choos-

ing instead M = [ 0 1
1 0 ] yields

g′ (0, 0; [ 0 1
1 0 ]) =

[
0 1

]
,

which furnishes the L-derivative

JLg (0, 0; [ 0 1
1 0 ]) = g′ (0, 0; [ 0 1

1 0 ])

[
0 1
1 0

]−1

=
[
1 0

]
∈ ∂Lg(0, 0) ⊂ ∂Bg(0, 0).

Choosing M = −I2 gives g′(0, 0;−I2) = [0 0], which yields

JLg (0, 0;−I2) = [0 0] ∈ ∂Lg(0, 0) ⊂ ∂Bg(0, 0).

Alternatively, define the functions

h : R2 → R : (x, y) 7→ min(x, y),

f : R→ R : z 7→ max(0, z).

Then g ≡ f ◦ h and the LD-derivative chain rule (2) yields

[f ◦ h]′(0, 0; I2) = f ′(h(0, 0); h′(0, 0; I2)) = f ′(0; [0 1]) = [0 1],

[f ◦ h]′ (0, 0; [ 0 1
1 0 ]) = f ′ (h(0, 0); h′ (0, 0; [ 0 1

1 0 ])) = f ′(0; [0 1]) = [0 1],

[f ◦ h]′(0, 0;−I2) = f ′(h(0, 0); h′(0, 0;−I2)) = f ′(0; [0 0]) = [0 0],

as above.
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3. Nonsmooth inverse and implicit functions: Existence and general-
ized derivative information. Clarke provided inverse and implicit function the-
orems for locally Lipschitz continuous functions (Theorem 7.1.1 and its corollary in
[3]); a Lipschitzian function admits a local inverse (implicit) function near one of its
domain points (zeroes) if Clarke Jacobian projections contain no singular matrices
at said domain point (zero). However, these two results do not describe generalized
derivative information of the inverse or implicit functions.

Khan and Barton [22] described generalized derivative information for inverse
functions, in the form of an LD-derivative, assuming L-smoothness of the partici-
pating functions (see [22, Theorem 1]). A sufficient condition less restrictive than
Clarke Jacobian projections containing no singular matrices exists for the piecewise
differentiable case due to the work of Ralph and Scholtes [34]. Using the present
terminology and the remark following [34, Definition 16], coherent orientation and
complete coherent orientation of piecewise differentiable functions are defined.

Definition 3.1. Let X ⊂ Rn and Y ⊂ Rm be open and g : X × Y → Rm PCr

at (x0,y0) ∈ X × Y . The function g is called coherently oriented with respect to y at
(x0,y0) if all matrices in ∂B

y g(x0,y0) have the same nonvanishing determinant sign.
The function g is called completely coherently oriented with respect to y at (x0,y0)
if all matrices in Λyg(x0,y0) have the same nonvanishing determinant sign. g is
called (completely) coherently oriented with respect to y on W ⊂ X × Y if it is (com-
pletely) coherently oriented at each (x,y) ∈ W . g is called (completely) coherently
oriented with respect to y if it is (completely) coherently oriented with respect to y
on X × Y .

As noted by Ralph and Scholtes [34], complete coherent orientation of piecewise
affine functions is a natural generalization of the P-matrix property (i.e., every prin-
cipal minor has positive determinant sign) for linear complementarity problems. The
authors provide the example

f : R2 → R2 : x 7→
[
min(x1, 0.5x1 + 0.5x2)
min(x2, 0.5x1 + 0.5x2)

]
,

which is coherently oriented on its domain, but not completely coherently oriented.
(If the dimension of the preimage and image space of a function are equal, then the
definition of (complete) coherent orientation extends as expected using the (combi-
natorial Jacobian) B-subdifferential instead of the (combinatorial partial Jacobian)
partial B-subdifferential of said function [34].) In particular,

∂Bf(0, 0) =

{[
1 0

0.5 0.5

]
,

[
0.5 0.5
0 1

]}
,

but the matrix [
0.5 0.5
0.5 0.5

]
∈ Λf(0, 0)

has determinant equal to zero.
Theorem 1 in [22] is adapted here, including the piecewise differentiable case since

a PCr function is L-smooth.

Theorem 3.2. Let X ⊂ Rn be open and f : X → Rn be L-smooth (PCr) at
x0 ∈ X. If f is a Lipschitz (PCr-) homeomorphism at x0, then the corresponding
local inverse function f−1 of f around x0 is L-smooth (PCr) at y0 ≡ f(x0); for any
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k ∈ N and any M ∈ Rn×k, [f−1]′(y0; M) is the unique solution N ∈ Rn×k of the
equation system

(3) f ′(x0; N) = M.

Remark 3.3. As noted by the authors of [22], if f in Theorem 3.2 is L-smooth
at x0, then f is a Lipschitz homeomorphism at x0 if ∂f(x0) contains no singular
matrices by [3, Theorem 7.1.1]. Theorem 3.2 also augments [34, Theorem 5] with
generalized derivative information; if f in Theorem 3.2 is PCr at x0, then f is a PCr-
homemorphism at x0 if and only if f is coherently oriented at x0 and the directional
derivative mapping f ′(x0; ·) is invertible. (Other equivalencies are presented in [34,
Theorem 5].)

Implicit functions can be built from homeomorphisms; the zero of a function
determines an implicit function if and only if an auxiliary mapping admits a local
inverse at said zero (see [37, Lemma 3.2.1]). Theorem 2 in [22] is adapted here and
augmented with the PCr case since complete coherent orientation of a PCr function
at one of its zeros gives a PCr implicit function (see [34, Corollary 20]).

Theorem 3.4. Let X ⊂ Rn and Y ⊂ Rm be open and g : X×Y → Rm L-smooth
(PCr) at (x0,y0) ∈ X × Y . Suppose that g(x0,y0) = 0m and, in addition, the
auxiliary mapping f : X ×Y → Rn×Rm : (x,y) 7→ (x,g(x,y)) is a Lipschitz (PCr-)
homeomorphism at (x0,y0). Then, there exist a neighborhood Nx0 ⊂ X of x0 and
a Lipschitz continuous (PCr-) function r : Nx0 → Rm such that, for each x ∈ Nx0 ,
(x, r(x)) is the unique vector in a neighborhood of (x0,y0) satisfying g(x, r(x)) = 0m.
Moreover, r is L-smooth (PCr) at x0; for any k ∈ N and any M ∈ Rn×k, the LD-
derivative r′(x0; M) is the unique solution N ∈ Rm×k of the equation system

(4) g′(x0,y0; (M,N)) = 0m×k.

In addition, the following statements hold:
(i) If g is L-smooth at (x0,y0) and πy∂g(x0,y0) contains no singular matrices,

then f is a Lipschitz homeomorphism at (x0,y0).
(ii) If g is PCr at (x0,y0) and completely coherently oriented with respect to y

at (x0,y0), then f is a PCr-homeomorphism at (x0,y0).

Proof. The first part of the theorem is proved: the case in which g is L-smooth
at (x0,y0) and f is a Lipschitz homeomorphism at (x0,y0) is a restatement of [22,
Theorem 2]. Suppose that g is PCr at (x0,y0) and f is a PCr-homeomorphism at
(x0,y0). According to [37, Lemma 3.2.1], the zero (x0,y0) of g implies the existence of
such a PCr implicit function r since r(x) = f−1

y (x,0m) ∀x ∈ Nx0 , where f−1(u,v) ≡
(f−1

x (u,v), f−1
y (u,v)) ∈ Rn × Rm for (u,v) in a neighborhood of (x0,0m) is the

corresponding PCr local inverse of f . Since g is PCr (and therefore L-smooth) at
(x0,y0), [37, Proposition 4.2.1] implies that f is a Lipschitz homeomorphism at x0,
from which (4) follows again by [22, Theorem 2].

Next, statement (i) follows from [40, Lemma 3.1] and [3, Theorem 7.1.1]. State-
ment (ii) holds by the following arguments: the PCr function r is immediately fur-
nished from [34, Corollary 20] and the auxiliary mapping f is therefore PCr at (x0,y0)
by construction. As the zero (x0,y0) of g implies the implicit function r, f admits
a local inverse f−1 at (x0,y0) which satisfies r(x) = f−1

y (x,0m) ∀x ∈ Nx0 by [37,
Lemma 3.2.1]. Moreover, since f−1

x is the identity mapping, f−1 is PCr at x0 since r
is PCr on Nx0 .
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Numerical solution of (3) and (4) can be computed practically using the following
lemmata in an approach that is described subsequently.

Lemma 3.5. Let X ⊂ Rn be open and f : X → Rm L-smooth at x ∈ X. Given
M ∈ Rn×k and some j ∈ {0, 1, . . . , k − 1}, define a function h : Rn → Rm : d 7→
f

(j)
x,M(d). Then, h is L-smooth on Rn; for any d ∈ Rn and A ∈ Rn×q,

h′(d; A) = f ′(x; [M(j) d A])

[
0(j+1)×q

Iq

]
,

where M(0) ≡ ∅n×0.

Proof. Choose d ∈ Rn and A ∈ Rn×q, and set B ≡ [M(j) d A] ∈ Rn×(j+1+q).

It follows from the definition of the intermediate directional derivatives f
(i)
x,M that

f
(j)
x,M ≡ f

(j)
x,B, and so h ≡ f

(j)
x,B. Thus, h is L-smooth, and

h
(0)
d,A ≡

[
f

(j)
x,B

]′
(d; ·) ≡

[
f

(j)
x,B

]′
(b(j+1); ·) ≡ f

(j+1)
x,B .

Starting from this equivalence, the following inductive argument then shows that

h
(p)
d,A ≡ f

(j+1+p)
x,B for each p ∈ {0, 1, . . . , q − 1}. Assume that this statement is true for

some p ∈ {0, 1 . . . , q − 2}; taking directional derivatives then yields

h
(p+1)
d,A ≡

[
h

(p)
d,A

]′
(a(p+1); ·) ≡

[
f

(j+1+p)
x,B

]′
(a(p+1); ·) ≡

[
f

(j+1+p)
x,B

]′
(b(j+2+p); ·),

from which it follows that h
(p+1)
d,A ≡ f

(j+1+(p+1))
x,B , completing the inductive step. The

final claim of the lemma then follows immediately from the constructive definition of
the LD-derivative.

Lemma 3.6. Assume the setting of Theorem 3.2 with f an L-smooth, Lipschitz
homeomorphism at x0. The jth column of N ≡ [f−1]′(y0; M) is the unique solution
n of the equation system

0n = f
(j−1)
x0,N(j−1)

(n)−m(j).

Denote the residual function for this equation system as h : Rn → Rn : d 7→
f

(j−1)
x0,N(j−1)

(d)−m(j). Then, h is L-smooth on Rn; for any d ∈ Rn and any A ∈ Rn×q,

h′(d; A) = f ′(x0; [N(j−1) d A])

[
0j×q
Iq

]
.

Proof. Consider any d ∈ Rn and A ∈ Rn×q, define an auxiliary mapping r ≡
f

(j−1)
x0,N(j−1)

, and set B ≡ [N(j−1) d A] ∈ Rn×(j+q). According to Lemma 3.5, r is

L-smooth on Rn, and

r′(d; A) = f ′(x0; B)

[
0j×q
Iq

]
.

Observe that h is the mapping v 7→ r(v) −m(j); the chain rule for LD-derivatives
implies that h is L-smooth on Rn and that h′(d; A) = r′(d; A), as required.

Lemma 3.7. Assume the setting of Theorem 3.4 with g L-smooth at (x0,y0) and
f a Lipschitz homeomorphism at (x0,y0). The jth column of N ≡ r′(x0; M) is the
unique solution n of the equation system

(5) 0m = g
(j−1)[
x0

y0

]
,

[
M(j−1)

N(j−1)

]([m(j)

n

])
.
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Denote the residual function for this equation system as

h : Rm → Rm : d 7→ g
(j−1)[
x0

y0

]
,

[
M(j−1)

N(j−1)

]([m(j)

d

])
.

Then, the function h is L-smooth on Rm; for any d ∈ Rm and any A ∈ Rm×q,

(6) h′(d; A) = g′
([

x0

y0

]
;

[
M(j−1) m(j) 0n×q
N(j−1) d A

])[
0j×q
Iq

]
.

Proof. Choose any d ∈ Rm and A ∈ Rm×q, and define an auxiliary mapping

r : Rn+m → Rm : v 7→ g
(j−1)[
x0

y0

]
,

[
M(j−1)

N(j−1)

](v).

According to Lemma 3.5, r is L-smooth on Rn+m, and, for any v ∈ Rn+m and
C ∈ R(n+m)×q,

(7) r′(v; C) = g′
([

x0

y0

]
;

[[
M(j−1)

N(j−1)

]
v C

])[
0j×q
Iq

]
.

By construction of r, for any w ∈ Rm,

h(w) = r

([
m(j)

w

])
;

the chain rule for LD-derivatives then implies that h is L-smooth on Rm and that

h′(d; A) = r′
([

m(j)

d

]
;

[
0n×q
A

])
.

The claimed result then follows from (7).

Lemma 3.7 provides a way to solve the nonsmooth and nonlinear equation system
(4). Assuming the settings of Theorem 3.4 and Lemma 3.7, the mapping N 7→
g′(x0,y0; (M,N)) is not necessarily continuous, but the mappings

n 7→ g
(j−1)[
x0

y0

]
,

[
M(j−1)

N(j−1)

]([m(j)

n

])
are continuous for each j ∈ {1, . . . , k} [22]. Consequently, (4) can be decomposed
columnwise and solved from left to right, using a nonsmooth equation-solving method
for each columnwise solve (i.e., solving (5) for j = 1, 2, . . . , k). Invoking nonsmooth
equation-solving methods requires a generalized derivative element at each iteration,
which can be furnished from (6); for example, the (l + 1)th iteration of a nonsmooth
Newton method is obtained by solving the linear equation system

(8) h′(v(l); Im) (v(l+1) − v(l)) = −h(v(l))

for v(l+1), where h′(v(l); Im) is given by (6) and can be computed by, for example,
a nonsmooth vector forward mode of automatic differentiation [21]. The iteration
scheme (8) produces n(j) (i.e., the jth column of N ≡ r′(x0; M)).

If g is PC1 at (x0,y0), then Proposition 2 in [22] can also be applied to compute
N, which cycles through a set of essentially active selection functions and performs
linear equation solves per cycle. As remarked in [22] after Proposition 2, said algo-
rithm scales worst-case linearly with respect to the number of selection functions and
according to the linear equation solves needed. (Similarly, Proposition 1 in [22] may
be applied instead of Lemma 3.6 in the PC1 case.) More recently, a branch-locking
procedure has also been developed [18, section 4] to solve (4) more efficiently.
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4. Specialization of results to the minimum function. To calculate para-
metric sensitivities of the motivating problem (i.e., NLP KKT nonsmooth equation
systems), LD-derivatives of the mapping minminmin are detailed in this section. Let the
generalized inequalities ≺ and � denote lexicographic ordering; given x,y ∈ Rn,

x ≺ y if and only if ∃j ∈ {1, . . . , n} s.t. xi = yi ∀i < j and xj < yj ,

x � y if and only if x = y or x ≺ y.

The generalized inequalities � and � are defined similarly. Let the lexicographic-
minimum function return the lexicographically ordered minimum of two vectors:

Lmin : Rn × Rn → Rn : (x,y) 7→

{
x if x � y,

y if x � y.

The lexicographic-matrix-minimum, which compares two matrices lexicographically
(by rows), is defined as

LMmin : Rm×n × Rm×n → Rm×n : (X,Y) 7→


(Lmin(XT

1 ,Y
T
1 ))T

(Lmin(XT
2 ,Y

T
2 ))T

...
(Lmin(XT

m,Y
T
m))T

 .
Given n ∈ N, n ≥ 2, the shifted-lexicographic-minimum is defined as

SLmin : Rn × Rn → Rn−1 : (x,y) 7→

{
(x2, . . . , xn) if x � y,

(y2, . . . , yn) if x � y.

The shifted-lexicographic-matrix-minimum SLMmin : Rm×n×Rm×n → Rm×(n−1) is
defined similarly as LMmin with Lmin replaced by SLmin and returns the shifted-
lexicographic-minimums of the rows of X and Y.

Lemma 4.1. The LD-derivative of the componentwise minimum function minminmin :
Rn × Rn → Rn at (x,y) ∈ Rn × Rn in the directions (M,N) ∈ R2n×k evaluates as

minminmin′(x,y; (M,N)) = SLMmin ([x M], [y N]) ∈ Rn×k.

Proof. Let M = [m(1) · · · m(k)] ∈ Rn×k and N = [n(1) · · · n(k)] ∈ Rn×k.
By virtue of [21, Example 4.3], the LD-derivative of min at (x1, y1) in the directions

D(1) ≡
[
m(1),1 m(2),1 · · · m(k),1

n(1),1 n(2),1 · · · n(k),1

]
=

[
M1

N1

]
∈ R2×k

is evaluated as

min′(x1, y1; D(1)) =

{
[1 0]D(1) if fsign

(
(x1,M

T
1 )− (y1,N

T
1 )
)
≤ 0,

[0 1]D(1) if fsign
(
(x1,M

T
1 )− (y1,N

T
1 )
)
> 0,

where the first-sign function [14] is given as

fsign : Rq → {−1, 0, 1} : ηηη 7→

{
sign(ηi∗), with i∗ ≡ min{i : ηi 6= 0}, if ηηη 6= 0q,

0 if ηηη = 0q,
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and sign(·) denotes the signum function. Noting that x � y if and only if fsign(x−y) ≤
0 and x � y if and only if fsign(x− y) > 0, it follows that

min′(x1, y1; D(1)) =
(
SLmin

(
(x1,M

T
1 )− (y1,N

T
1 )
))T

= (SLmin([x M]Te(1), [y N]Te(1)))
T.

The result follows by definition of the shifted-lexicographic-matrix-minimum and not-
ing that minminmin′(x,y; (M,N)) = (min′(x1, y1; D(1)), . . . ,min′(xn, yn; D(n))), where

D(i) ≡
[
m(1),i m(2),i · · · m(k),i

n(1),i n(2),i · · · n(k),i

]
=

[
Mi

Ni

]
∀i ∈ {1, . . . , n}.

The LD-derivative chain rule yields LD-derivatives of compositions of minimum
and C1 functions.

Lemma 4.2. Let X ⊂ Rn and Y ⊂ Rm be open. Let f : X × Y → Rv and
g : X × Y → Rv be C1 at (x,y) ∈ X × Y . The LD-derivative of the mapping
minminmin ◦ (f ,g) : X × Y → Rv at (x,y) in the directions (M,N) ∈ R(n+m)×k is given by

[minminmin ◦ (f ,g)]′(x,y; (M,N))

= SLMmin([f(x,y) Jf(x,y)(M,N)], [g(x,y) Jg(x,y)(M,N)]) ∈ Rv×k.

Proof. Define the mapping q : X × Y → R2v : (ηηηx, ηηηy) 7→ (f(ηηηx, ηηηy),g(ηηηx, ηηηy)).
Then,

Jq(x,y) =

[
Jf(x,y)
Jg(x,y)

]
∈ R2v×(n+m),

and, by the LD-derivative chain rule (2) and Lemma 4.1,

[minminmin ◦ (f ,g)]′(x,y; (M,N))

= minminmin′(q(x,y); q′(x,y; (M,N)))

= minminmin′
([

f(x,y)
g(x,y)

]
; Jq(x,y)

[
M
N

])
= minminmin′

([
f(x,y)
g(x,y)

]
;

[
Jf(x,y)
Jg(x,y)

] [
M
N

])
= SLMmin([f(x,y) Jf(x,y)(M,N)], [g(x,y) Jg(x,y)(M,N)]),

as required.

A specialization of Theorem 3.4 to a useful function form is given; generalized
derivative information is obtained for an MiCP function.

Theorem 4.3. Let X ⊂ Rn and Y ⊂ Rm be open. Let f : X × Y → Rq,
g : X × Y → Rq, and h : X × Y → Rm−q be C1 at (x0,y0) ∈ X × Y . Suppose
that ΘΘΘmin(x0,y0) = 0m, where

ΘΘΘmin : Rn × Rm → Rm : (x,y) 7→
[

h(x,y)
minminmin(f(x,y),g(x,y))

]
.

Let

α ≡ {i ∈ {1, . . . , q} : fi(x
0,y0) = 0 < gi(x

0,y0)},
β ≡ {i ∈ {1, . . . , q} : fi(x

0,y0) = 0 = gi(x
0,y0)},

γ ≡ {i ∈ {1, . . . , q} : fi(x
0,y0) > 0 = gi(x

0,y0)}.
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Suppose that ΘΘΘmin is completely coherently oriented with respect to y at (x0,y0).
Then, there exist a neighborhood Nx0 ⊂ X of x0 and a function r : Nx0 → Rm
that is PC1 on Nx0 such that, for each x ∈ Nx0 , (x, r(x)) is the unique vector in a
neighborhood of (x0,y0) satisfying ΘΘΘmin(x, r(x)) = 0m. Moreover, for any k ∈ N and
any M ∈ Rn×k, the LD-derivative r′(x0; M) is the unique solution N ∈ Rm×k of the
equation system

0(m−q)×k = Jxh(x0,y0)M + Jyh(x0,y0)N,(9a)

0|α|×k = Jxfα(x0,y0)M + Jyfα(x0,y0)N,(9b)

0|γ|×k = Jxgγ(x0,y0)M + Jygγ(x0,y0)N,(9c)

0|β|×k = LMmin(Jfβ(x0,y0)(M,N),Jgβ(x0,y0)(M,N)).(9d)

Proof. Theorem 3.4 can immediately be applied to yield the following: there
exist a neighborhood Nx0 ⊂ X of x0 and PC1 mapping r : Nx0 → Rm such that, for
each x ∈ Nx0 , (x, r(x)) is the unique vector in a neighborhood of (x0,y0) satisfying
ΘΘΘmin(x, r(x)) = 0m. Moreover, for any k ∈ N and any M ∈ Rn×k, the LD-derivative
r′(x0; M) is the unique solution N ∈ Rm×k of the equation system

0m×k = ΘΘΘ′min(x0,y0; W),

where W ≡ (M,N), which is equivalent to

0(m−q)×k = Jxh(x0,y0)M + Jyh(x0,y0)N,

0q×k = SLMmin(
[
f(x0,y0) Jf(x0,y0)W

]
,
[
g(x0,y0) Jg(x0,y0)W

]
),(10)

by Lemma 4.2. By definition of the shifted-lexicographic-matrix-minimum, (10) is
equivalent to the equation system

0|α|×k = SLMmin
([

fα(x0,y0) Jfα(x0,y0)W
]
,
[
gα(x0,y0) Jgα(x0,y0)W

])
,

(11)

0|γ|×k = SLMmin
([

fγ(x0,y0) Jfγ(x0,y0)W
]
,
[
gγ(x0,y0) Jgγ(x0,y0)W

])
,

(12)

0|β|×k = SLMmin
([

fβ(x0,y0) Jfβ(x0,y0)W
]
,
[
gβ(x0,y0) Jgβ(x0,y0)W

])
.

(13)

By definition of the set α, fα(x0,y0) = 0|α| < gα(x0,y0) (i.e., componentwise), which
gives that

SLMmin
([

fα(x0,y0) Jfα(x0,y0)W
]
,
[
gα(x0,y0) Jgα(x0,y0)W

])
= SLMmin

([
0|α| Jfα(x0,y0)W

]
,
[
gα(x0,y0) Jgα(x0,y0)W

])
= Jfα(x0,y0)W.

Similarly,

SLMmin
([

fγ(x0,y0) Jfγ(x0,y0)W
]
,
[
gγ(x0,y0) Jgγ(x0,y0)W

])
= SLMmin

([
fγ(x0,y0) Jfγ(x0,y0)W

]
,
[
0|γ| Jgγ(x0,y0)W

])
= Jgγ(x0,y0)W.
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Also, fβ(x0,y0) = 0|β| = gβ(x0,y0) by definition of the set β:

SLMmin
([

fβ(x0,y0) Jfβ(x0,y0)W
]
,
[
gβ(x0,y0) Jgβ(x0,y0)W

])
= SLMmin

([
0|β| Jfβ(x0,y0)W

]
,
[
0|β| Jgβ(x0,y0)W

])
= LMmin

(
Jfβ(x0,y0)W,Jgβ(x0,y0)W

)
.

Therefore (11), (12), and (13) yield (9b), (9c), and (9d), respectively.

A sufficient condition for complete coherent orientation of the mapping outlined
in Theorem 4.3 is detailed next.

Lemma 4.4. Assume the setting of Theorem 4.3. For each i ∈ {1, . . . ,m} and
J ⊂ β, let

v
(J )
i : Rn × Rm → R : (x,y) 7→


hi(x,y) if i ∈ {1, . . . ,m− q},
fi(x,y) if i− (m− q) ∈ α ∪ J ,
gi(x,y) if i− (m− q) ∈ γ ∪ (β \ J ).

If all matrices in the set {Jyv(J ) ∈ Rm×m : J ⊂ β} have the same nonvanishing
determinant sign, then the mapping ΘΘΘmin is completely coherently oriented with respect
to y at (x0,y0).

Proof. By construction of the sets α, β, and γ, E ≡ {v(J ) : J ⊂ β} is a set of
selection functions of the mapping ΘΘΘmin at (x0,y0). Assume for now that E is a set
of essentially active selection functions. Noting that |E| = 2|β|, enumerate the power
set of β by P(β) = {J1,J2, . . . ,J|E|}. Let φφφ(i) ≡ v(Ji) for each i ∈ {1, . . . , |E|}.
Then, {φφφ(1), . . . ,φφφ(|E|)} = E is a set of essentially active selection functions of the
mapping ΘΘΘmin at (x0,y0), with essentially active indices Iess

ΘΘΘmin
(x0,y0) = {1, . . . , |E|}.

The combinatorial vectorization of the essentially active indices is thus given by

∆ΘΘΘmin
(x0,y0) = {δδδ ∈ Rm : δi ∈ {1, . . . , |E|}, i ∈ {1, . . . ,m}} = {1, . . . , |E|}m.

For any J1,J2 ∈ P(β), v
(J1)
i = v

(J2)
i for every i ∈ α ∪ γ by definition of the

mappings v(J ). Consequently, Jyv
(J1)
i (x0,y0) = Jyv

(J2)
i (x0,y0) and, for any i, l ∈

Iess
ΘΘΘmin

, Jyφ(i),j(x
0,y0) = Jyφ(l),j(x

0,y0) ∀j ∈ α ∪ γ. For each k ∈ {1, . . . , |E|}, let

∆Jk
≡ {δδδ ∈ ∆ΘΘΘmin

(x0,y0) : φ(k),j = φ(δj),j ∀j ∈ β}. Note that |∆ΘΘΘmin
(x0,y0)| =

|E|m, ⋃
k∈{1,...,|E|}

∆Jk
= ∆ΘΘΘmin

(x0,y0),

and, by symmetry, |∆Jk
| = |∆Jl

| for any l ∈ {1, . . . , |E|};

|E|∑
i=1

|∆Ji
| = |E||∆Jk

| = |∆ΘΘΘmin
(x0,y0)| = |E|m

implies that |∆Jk
| = |E|m−1.

Given δδδ ∈ ∆ΘΘΘmin
(x0,y0), let

M(δδδ) ≡


Jyφ(δ1),1(x0,y0)
Jyφ(δ2),2(x0,y0)

...
Jyφ(δm),m(x0,y0)

D
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so that ΛyΘΘΘmin(x0,y0) = {M(δδδ) ∈ Rm×m : δδδ ∈ ∆ΘΘΘmin
(x0,y0)}. Then, for any

k∗ ∈ {1, . . . , |E|},

M(δδδ∗) = M



k∗

k∗

...
k∗


 =


Jyφ(k∗),1(x0,y0)
Jyφ(k∗),2(x0,y0)

...
Jyφ(k∗),m(x0,y0)

 ∀δδδ∗ ∈ ∆Jk∗ .

Moreover, 
Jyφ(k∗),1(x0,y0)
Jyφ(k∗),2(x0,y0)

...
Jyφ(k∗),m(x0,y0)

 =


Jyv

(Jk∗ )
1 (x0,y0)

Jyv
(Jk∗ )
2 (x0,y0)

...

Jyv
(Jk∗ )
m (x0,y0)


for some Jk∗ ∈ P(β). That is, ΛyΘΘΘmin(x0,y0) contains at most |E| distinct matrices,
each of which corresponds to Jyv(J ) for some J ⊂ β; ΘΘΘmin(x0,y0) is completely
coherently oriented with respect to y at (x0,y0) if and only if all matrices in the set
{Jyv(J ) ∈ Rm×m : J ⊂ β} have the same nonvanishing determinant sign.

Suppose that E is not a set of essentially active selection functions and let, without
loss of generality, Y ⊂ E be a set of essentially active selection functions of the
mapping ΘΘΘmin at (x0,y0). By the above arguments, there are χ ≤ |E| distinct matrices
in ΛyΘΘΘmin(x0,y0), denoted Y1, . . . ,Yχ, which necessarily satisfy {Y1, . . . ,Yχ} ⊂
{Jyv(J ) ∈ Rm×m : J ⊂ β}. It immediately follows that if all matrices in the set
{Jyv(J ) ∈ Rm×m : J ⊂ β} have the same nonvanishing determinant sign, then ΘΘΘmin

is completely coherently oriented with respect to y at (x0,y0).

Remark 4.5. Given mappings G : Rn1 × Rn2
+ → Rn1 , H : Rn1 × Rn2

+ → Rn2 , the
MiCP (see [8]) associated with (G,H) is to find a pair (u,v) ∈ Rn1 × Rn2 such that

G(u,v) = 0n1
,

0n2
≤ v ⊥ H(u,v) ≥ 0n2

.

Theorem 4.3 therefore yields sensitivities for parametric MiCPs with C1 mappings
(G,H) by setting y ≡ (u,v) and f(x,y) ≡ v (i.e., x is the problem parameter
here). Since MiCPs generalize NCPs, sensitivities for parametric NCPs with smooth
participating function are also obtained.

5. Lexicographic derivatives of solutions of nonlinear programs. Let
Dp ⊂ Rp and Dx ⊂ Rn be open. Let f : Dp × Dx → R, g : Dp × Dx → Rm and
consider the following parametric NLP:

(14)
φ(p) ≡ min

x∈Dx

f(p,x),

s.t. g(p,x) ≤ 0m,

in which p is a problem parameter and φ the objective-value function. Suppose that
f and g are differentiable at (p0,x0) ∈ Dp×Dx and that (p0,x0,µµµ0) ∈ Dp×Dx×Rm
is a KKT point of (14); i.e., it satisfies the following MiCP:

(15)
∇xL(p0,x0,µµµ0) = 0n,

0m ≤ µµµ0 ⊥ −g(p0,x0) ≥ 0m,
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where L is the usual Lagrangian function associated with (14). Equation (15) can be
written as a nonsmooth equation system using any suitable NCP function [41, 8]; for
example, (p0,x0,µµµ0) satisfies

(16) ΦΦΦmin(p,x,µµµ) = 0n+m,

where

ΦΦΦmin : Dp ×Dx × Rm → Rn × Rm : (p,x,µµµ) 7→
[
∇xL(p,x,µµµ)

minminmin(−g(p,x),µµµ)

]
.

The feasible set of (14) with respect to p0 ∈ Dp ⊂ Rp is denoted by

K(p0) ≡ {x ∈ Dx : g(p0,x) ≤ 0m}.

Let I ≡ {1, . . . ,m} and define the active set of (14) at (p0,x0) ∈ Dp ×K(p0) by

A(p0,x0) ≡ {i ∈ I : gi(p
0,x0) = 0}.

The set of all multipliers satisfying the KKT conditions at (p0,x0) is denoted by

M(p0,x0) ≡ {µµµ ∈ Rm : (p0,x0,µµµ) is a KKT point of (14)}.

For µµµ0 ∈ M(p0,x0), the strongly active, degenerate (or weakly active), and inactive
sets of (14) at (p0,x0,µµµ0) are defined as

A+(p0,x0,µµµ0) ≡ {i ∈ I : gi(p
0,x0) = 0 < µ0

i },
A0(p0,x0,µµµ0) ≡ {i ∈ I : gi(p

0,x0) = 0 = µ0
i },

A−(p0,x0,µµµ0) ≡ {i ∈ I : gi(p
0,x0) < 0 = µ0

i }.

The mapping minminmin is PC1 on its domain in the sense of Scholtes [37]. If f and
g are C2 on their respective domains, then ∇xL is C1 on its domain and ΦΦΦmin is
PC1 (and thus L-smooth) on its domain. Complete coherent orientation allows for
application of Theorem 4.3 to characterize parametric sensitivites of (14).

Theorem 5.1. Let f and g be C2 at (p0,x0) ∈ Dp × Dx and (p0,x0,µµµ0) ∈
Dp×Dx×Rm be a KKT point of (14). If ΦΦΦmin is completely coherently oriented with
respect to (x,µµµ) at (p0,x0,µµµ0), then there exist a neighborhood Np0 ⊂ Dp of p0 and
a PC1 mapping (x̃, µ̃µµ) : Np0 → Rn ×Rm such that, for each p ∈ Np0 , (p, x̃(p), µ̃µµ(p))
is the unique solution of (16) in a neighborhood of (p0,x0,µµµ0). Moreover, for any
k ∈ N and any P ∈ Rp×k, the LD-derivatives x̃′(p0; P) and µ̃µµ

′
(p0; P) are the unique

solutions X ∈ Rn×k and U ∈ Rm×k, respectively, of the following nonlinear equation
system:  ∇2

xxL (JxgA+∪A0)T

−JxgA+ 0|A+|×(|A+|+|A0|)


 X

UA+∪A0,•

 =

[
−∇2

xpL
JpgA+

]
P,(17a)

UA−,• = 0|A−|×k,(17b)

LMmin
(
−JpgA0P− JxgA0X,UA0,•

)
= 0|A0|×k,(17c)

where the arguments of the Hessians associated with L and Jacobians associated with
g have been omitted for brevity. Moreover, the objective-value function φ is PC1 on
Np0 , and its LD-derivative is given by

(18) φ′(p0; P) = Jpf(p0,x0)P + Jxf(p0,x0)X.
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Proof. Let

u : Dp ×Dx × Rm → Rm : (p,x,µµµ) 7→ −g(p,x),

v : Dp ×Dx × Rm → Rm : (p,x,µµµ) 7→ µµµ.

In the setting of Theorem 4.3 (with h, f , and g replaced by ∇xL, u, and v, respec-
tively), α = A+(p0,x0,µµµ0), β = A0(p0,x0,µµµ0), and γ = A−(p0,x0,µµµ0). The neigh-
borhood Np0 and PC1 mapping (x̃, µ̃µµ) : Np0 → Rn satisfying ΦΦΦmin(p, x̃(p), µ̃µµ(p)) =
0n+m for each p ∈ Np0 exist by virtue of Theorem 4.3. Equation (9) implies that, for

any k ∈ N and any P ∈ Rp×k, the LD-derivatives x̃′(p0; M) and µ̃µµ
′
(p0; M) are the

unique solutions X ∈ Rn×k and U ∈ Rm×k of the equation system

0n×k = J[∇xL](p0,x0,µµµ0)(P,X,U),(19a)

0|A+|×k = JuA+(p0,x0,µµµ0)(P,X,U),(19b)

0|A−|×k = JvA−(p0,x0,µµµ0)(P,X,U),(19c)

0|A0|×k = LMmin(JuA0(p0,x0,µµµ0)(P,X,U),JvA0(p0,x0,µµµ0)(P,X,U)).(19d)

Note that

JvA−(p0,x0,µµµ0)(P,X,U) =
[
0|A−|×p 0|A−|×n IA−,•

] P
X
U

 = UA−,•.

Hence, (19c) is equivalent to (17b). Furthermore,

JuA+(p0,x0,µµµ0)(P,X,U) =
[
−JpgA+(p0,x0) −JxgA+(p0,x0) 0|A+|×m

] P
X
U


= −JpgA+(p0,x0)P− JxgA+(p0,x0)X,

and

J[∇xL](p0,x0,µµµ0)(P,X,U)

= ∇2
xpL(p0,x0,µµµ0)P +∇2

xxL(p0,x0,µµµ0)X + (Jxg(p0,x0))TU

= ∇2
xpL(p0,x0,µµµ0)P +∇2

xxL(p0,x0,µµµ0)X

+
[
(JxgA+(p0,x0))T (JxgA0(p0,x0))T

] [UA+,•
UA0,•

]
,

since UA−,• = 0|A−|×k. Thus, (17a) is furnished by rearranging (19a) and (19b).
Last,

LMmin(JuA0(p0,x0,µµµ0)(P,X,U),JvA0(p0,x0,µµµ0)(P,X,U))

= LMmin(−JpgA0(p0,x0)P− JxgA0(p0,x0)X,UA0,•);

(17c) is recovered from (19d).
Hence, φ satisfies φ(p) = f(p, x̃(p)) for p ∈ Np0 and is therefore PC1 on Np0 as

the composition of a C2 and PC1 function. Defining x̄(p) ≡ (p, x̃(p)) for p ∈ Np0 ,
it follows that φ(p) = [f ◦ x̄](p), from which the LD-derivative chain rule (2) yields

φ′(p0; P) = f ′(x̄(p0); x̄′(p0; P)) =
[
Jpf(p0,x0) Jxf(p0,x0)

] [P
X

]
.
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Familiar nonlinear programming regularity conditions can be shown to guarantee
complete coherent orientation of the nonsmooth mapping ΦΦΦmin. First, a sufficient
condition for complete coherent orientation is given in terms of a set of matrices
having the same nonvanishing determinant sign (compare to Lemma 4.4).

Lemma 5.2. Given the setting of Theorem 5.1, if all matrices in the set

{H(J ) ∈ R(n+|A+|+|J |)×(n+|A+|+|J |) : J ⊂ A0(p0,x0,µµµ0)}

have the same nonvanishing determinant sign, where

(20) H(J ) ≡
[
∇2

xxL(p0,x0,µµµ0) (JxgA+∪J (p0,x0))T

−JxgA+∪J (p0,x0) 0(|A+|+|J |)×(|A+|+|J |)

]
,

then ΦΦΦmin is completely coherently oriented with respect to (x,µµµ) at (p0,x0,µµµ0).

Proof. Define the mappings

u : Dp ×Dx × Rm → Rm : (p,x,µµµ) 7→ −g(p,x),

v : Dp ×Dx × Rm → Rm : (p,x,µµµ) 7→ µµµ.

In the same vein as Lemma 4.4, if all the matrices in the set {M(J ) ∈ R(n+m)×(n+m) :
J ⊂ A0(p0,x0,µµµ0)} have the same nonvanishing determinant sign, where

M(J ) ≡

 ∇2
xxL(p0,x0,µµµ0) (Jxg(p0,x0))T

−diag(a1, . . . , am)Jxg(p0,x0) Im − diag(a1, . . . , am)

 ,

ai(p
0,x0,µµµ0) ≡


1 if i ∈ A+(p0,x0,µµµ0),

1 if i ∈ J ,
0 if i ∈ J ′,
0 if i ∈ A−(p0,x0,µµµ0),

for each i ∈ {1, . . . ,m}, and J ′ ≡ A0(p0,x0,µµµ0) \ J , then ΦΦΦmin is completely coher-
ently oriented with respect to (x,µµµ) at (p0,x0,µµµ0).

Without loss of generality, let the submatrix (Jxg(p0,x0))T be equal to[
(JgA+∪J (p0,x0))T (JgA−∪J ′(p

0,x0))T
]

under q ∈ N ∪ {0} column permutations. By symmetry, the submatrix

−diag(a1, . . . , am)Jxg(p0,x0)

is equal to the matrix [
−JgA+∪J (p0,x0)

0(|A−|+|J ′|)×n
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under q row permutations. Hence,

det(M(J )) = det


 ∇2

xxL(p0,x0,µµµ0) (Jxg(p0,x0))T

−diag(a1, . . . , am)Jxg(p0,x0) Im − diag(a1, . . . , am)




= (−1)2q det


∇2

xxL(p0,x0,µµµ0) (JgA+∪J (p0,x0))T

−JgA+∪J (p0,x0) 0(|A+|+|J |)×(|A+|+|J |)

G(J )

0(|J ′|+|A−|)×(n+|A+|+|J |) I|J ′|+|A−|

 ,

where

G(J ) ≡
[
(JgJ ′(p

0,x0))T (JgA−(p0,x0))T

0(|A+|+|J |)×|J ′| 0(|A+|+|J |)×|A−|

]
.

It therefore follows that, for any J ⊂ A0(p0,x0,µµµ0),

sign(det(M(J ))) = sign

det


 H(J ) G(J )

0(|J ′|+|A−|)×(n+|A+|+|J |) I|J ′|+|A−|





= sign(det H(J )).

Assuming that f and g are C2 on their respective domains, the strong second-
order sufficient condition is recalled.

Definition 5.3 (strong second-order sufficient condition). The strong second-
order sufficient condition (SSOSC) is said to hold at (p,x,µµµ) ∈ Dp × Dx × Rm
if dT∇2

xxL(p,x,µµµ)d > 0 ∀d ∈ Rn \ {0n} satisfying (∇xgi(p,x))Td = 0 ∀i ∈
A+(p,x,µµµ).

If the LICQ, SSOSC, and strict complementarity hold at a KKT point (p,x,µµµ)
(i.e., µi − gi(p,x) > 0 ∀i ∈ I), the active index set is unchanged under continuity
of g and sufficiently small parameter perturbations, allowing for an application of
the classical implicit function theorem to yield the sensitivities for primal and dual
variable solutions of (14) [10]. To remove the strict complementarity condition, a
lemma is first needed which shows that complete coherent orientation holds under
LICQ and SSOSC.

Lemma 5.4. Let (p0,x0,µµµ0) ∈ Dp ×Dx ×Rm be a KKT point of (14) satisfying
SSOSC. Assume that LICQ holds at (p0,x0). Then, ΦΦΦmin is completely coherently
oriented with respect to (x,µµµ) at (p0,x0,µµµ0).

Proof. By Remark 5.2.3 and the proof of [37, Proposition 5.2.1] (SSOSC implies
the second-order sufficiency condition used by the author),

(21) sign(det(H(J ))) = sign(det(V(J )T∇2
xxL(p0,x0,µµµ0)V(J )))
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∀J ⊂ A0(p0,x0,µµµ0), where H(J ) is defined in (20) and the columns of the matrix
V(J ) form a basis of the nullspace of the matrix JxgA+∪J (p0,x0). Moreover, all the
matrices in the set

{V(J )T∇2
xxL(p0,x0,µµµ0)V(J ) : J ⊂ A0(p0,x0,µµµ0)}

have the same positive determinant since SSOSC holds at (p0,x0,µµµ0). Equation (21)
therefore yields that all the matrices in the set

{H(J ) ∈ R(n+|A+|+|J |)×(n+|A+|+|J |) : J ⊂ A0(p0,x0,µµµ0)}

have the same positive determinant since LICQ holds at (p0,x0). The result follows
from Lemma 5.2.

An extension of Fiacco and McCormick’s classical result is thus given (without
strict complementarity), which furnishes an equation system whose unique solution
describes L-derivatives of the primal and dual variables with respect to parametric
perturbations.

Theorem 5.5. Let f and g be C2 at (p0,x0) ∈ Dp × Dx and (p0,x0,µµµ0) ∈
Dp ×Dx × Rm be a KKT point of (14) satisfying SSOSC. Assume that LICQ holds
at (p0,x0). Then, there exist a neighborhood Np0 ⊂ Dp of p0 and a PC1 mapping
(x̃, µ̃µµ) : N(p0)→ Rn×Rm such that, for each p ∈ Np0 , x̃(p) is an isolated strict local
minimum of (14) and (p, x̃(p), µ̃µµ(p)) is the unique KKT point in a neighborhood of
(p0,x0,µµµ0). Moreover, for any nonsingular P0 ∈ Rp×p, the L-derivatives JLx̃(p0; P0)
and JLµ̃µµ(p0; P0) are the unique solutions XL ∈ Rn×p and UL ∈ Rm×p, respectively,
of the following linear equation system:

(22)

[
X
U

]
=

[
XL

UL

]
P0,

where (X,U) is furnished as the LD-derivative solution of (17) with k = p and
P = P0. The L-derivative JLφ(p0; P0) of the objective-value function φ, which is
PC1 on Np0 , is the unique vector z ∈ R1×np that solves the following linear equation
system: zP0 = Jpf(p0,x0)P0 + Jxf(p0,x0)X.

Proof. The existence of Np0 and PC1 mapping (x̃, µ̃µµ) such that (p, x̃(p), µ̃µµ(p))
is the unique KKT point in a neighborhood of (p0,x0,µµµ0) follows immediately from
Theorem 5.1 and Lemma 5.4. That x̃(p) is an isolated strict local minimum of (14) for
each p ∈ Np0 follows from the following observations: by reducing the neighborhood
Np0 as necessary, (p, x̃(p), µ̃µµ(p)) satisfies SSOSC and (p, x̃(p)) satisfies LICQ for each
p ∈ Np0 (by the classical sensitivities result in [10]). Moreover, a KKT point of (14)
satisfying SSOSC implies x̃(p) is a strict local minimum of (14) for each p ∈ Np0 by
[10, Lemma 3.2.1]. Its isolation follows from the uniqueness of (p, x̃(p), µ̃µµ(p)) in a
neighborhood of (p0,x0,µµµ0).

The PC1 mapping φ satisfies φ(p) = f(p, x̃(p)) for p ∈ Np0 by Theorem 5.1.
Since P0 is nonsingular, the linear equation system zP0 = φ′(p0; P0) admits a unique
solution z∗ ∈ ∂Lφ(p0) ⊂ ∂Bφ(p0). The result follows from (18).

Remark 5.6. If, in addition, strict complementarity holds at (p0,x0,µµµ0) in
Theorem 5.5, then the classical result of Fiacco and McCormick is recovered; in
this case, A0(p0,x0,µµµ0) = ∅ and the nonsmooth equation system (17) reduces to
the classical sensitivity linear equation system by choosing P = Ip. Moreover,
X = XL = JLx̃(p0; Ip) = Jx̃(p0), U = UL = JLµ̃µµ(p0; Ip) = Jµ̃µµ(p0), and z =
JLφ(p0; Ip) = Jφ(p0).
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Remark 5.7. It is straightforward to extend the results to generalized derivatives
of parametric NLPs with equality constraints. In fact, a more general sensitivities
result can be given, which is applicable to different KKT nonsmooth equation sys-
tem reformulations and the case where the participating functions are not necessar-
ily C2: let the first part of the setting of Theorem 5.1 hold with f and g instead
only C1 with (Fréchet) derivatives that are L-smooth at (p0,x0) ∈ Dp ×Dx and let
ΦΦΦNCP(p0,x0,µµµ0) = 0n+m, where

ΦΦΦNCP : Dp ×Dx × Rm → Rn × Rm : (p,x,µµµ) 7→
[
∇xL(p,x,µµµ)

ψψψNCP(−g(p,x),µµµ)

]
,

and ψψψNCP : Rm × Rm → Rm is any suitable NCP function that is L-smooth at
(p0,x0,µµµ0). If the auxiliary mapping (p,x,µµµ) 7→ (p,ΦΦΦNCP(p,x,µµµ)) is a Lipschitz
homeomorphism at (p0,x0,µµµ0), the conclusions of Theorem 5.1 hold with (17) re-
placed by the equation system

0n×k = [∇xL]′(p0,x0,µµµ0; (P,X,U)),

0m×k = ψψψNCP
′

[−g(p0,x0)
µµµ0

]
;

[
−Jpg(p0,x0) −Jxg(p0,x0) 0m×m

0m×p 0m×n Im

]P
X
U

 .

The theory is illustrated with an example, inspired by the one in [45].

Example 5.8. Consider the following parametric NLP:

(23)

min
x∈R2

x2
1 + x2

2 + 2(p1x1 + p2x2) + x2

s.t. − x1 + p1 ≤ 0,

2x2
1 + x2 − 10 ≤ 0,

− x2 + 0.5 + p2 ≤ 0.

Let p0 = (0, 0). Then, (p0,x0,µµµ0) is the unique KKT point of (23) where x0 = (0, 0.5)
and µµµ0 = (0, 0, 2). As a function of the parameter value, the isolated strict local
minimum of (23) in a neighborhood of p0 is given by

x̃ : Np0 → R2 : p 7→ (|p1|, |p2 + 0.5|),

where Np0 = (−1, 1). Moreover, for each p ∈ Np0 , (p, x̃(p), µ̃µµ(p)) is the unique KKT
point of (23) in a neighborhood of (p0,x0,µµµ0), where

µ̃µµ : Np0 → R3 : p 7→ (max(4p1, 0), 0,max(4p2 + 2, 0)).

The PC1 mappings x̃ and µ̃µµ are the primal and dual variable solutions of (23)
for different parameter values and correspond to the implicit functions outlined in
Theorem 5.5. The objective-value function satisfies

(24) φ : Np0 → R2 : p 7→ p2
1 + (p2 + 0.5)2 + 2(p1|p1|+ p2|p2 + 0.5|) + |p2 + 0.5|.

Note that A(p0,x0) = {1, 3} with strongly active set A+(p0,x0) = {3} and
weakly active set A0(p0,x0)={1}. Though strict complementarity does not hold
(p0,x0,µµµ0), Theorem 5.5 is applicable as LICQ holds at (p0,x0) and SSOSC holds
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at (p0,x0,µµµ0). Equation (17) yields the following nonsmooth and nonlinear equation
system:

(25)

2 0 −1 0
0 2 0 −1
0 1 0 0



X11 X12

X21 X22

U11 U12

U31 U32

 =

−2 0
0 −2
0 1

[P11 P12

P21 P22

]
,

[
U21 U22

]
=
[
0 0

]
,

LMmin
([
X11 − P11 X12 − P12

]
,
[
U11 U12

])
=
[
0 0

]
.

The solution of (25) yields LD-derivatives as functions of P:

x̃′(p0; P) ≡
[
fsign(P11, P12) 0

0 1

]
P

and

µ̃µµ
′
(p0; P) ≡ LMmax

4P11 4P12

0 0
4P21 4P22

 ,
 0 0

0 0
4P21 4P22

 ,

where LMmax is the lexicographic-matrix-maximum, defined similarly as LMmin.
For P nonsingular,

JLx̃(p0,P) =

[
fsign(P11, P12) 0

0 1

]
and

JLµ̃µµ(p0,P) =



4 0

0 0

0 4

 if LMmax([4P11 4P12], [0 0]) = [4P11 4P12],

0 0

0 0

0 4

 if LMmax([4P11 4P12], [0 0]) = [0 0]

are elements of the L-subdifferentials of the primal and dual solutions, and

JLφ(p0,P) =
[
0 1 0 2

] [ Ip
JLx̃(p0,P)

]
.

Calculate the B-subdifferentials of x̃ and µ̃µµ at p0 from the closed-form solutions:

∂Bx̃(p0) =

{[
1 0
0 1

]
,

[
−1 0
0 1

]}
, ∂Bµ̃µµ(p0) =


4 0

0 0
0 4

 ,
0 0

0 0
0 4

 .

Noting that φ in (24) is C1 at p = p0, with Jφ(p0) = [0 3], observe that

JLx̃(p0; P) ∈ ∂Lx̃(p0) ⊂ ∂Bx̃(p0),

JLµ̃µµ(p0; P) ∈ ∂Lµ̃µµ(p0) ⊂ ∂Bµ̃µµ(p0),

JLφ(p0; P) ∈ ∂Lµ̃µµ(p0) = ∂Bµ̃µµ(p0) = {Jφ(p0)} = {[0 3]}.
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Finally, complete coherent orientation is confirmed to hold (i.e., Lemma 5.4); the
set Λx,µµµΦΦΦmin(p0,x0,µµµ0) contains two distinct elements, which have determinant one
and two, implying that complete coherent orientation holds at (p0,x0,µµµ0). The set
of matrices outlined in Lemma 5.2 is equal to

{H(J ) : J ∈ {{1}, ∅}} =




2 0 −1 0
0 2 0 −1
1 0 0 0
0 1 0 0

 ,
2 0 0

0 2 −1
0 1 0


 ;

both matrices have the same nonvanishing determinant sign (the determinants are
equal to one and two, respectively), in agreement with Lemma 5.2.

Practically implementable methods to solve the nonsmooth and nonlinear sen-
sitivity system (17) (and thereby obtain L-derivatives of primal and dual variable
solutions via the linear equation system (22)) are outlined as follows. In the spirit of
the discussion at the end of section 3, Proposition 2 in [22] can be applied to compute
L-derivatives (and therefore B-subdifferential elements) of ΦΦΦmin by performing up to

2|A
0(p0,x0,µµµ0)| linear equation solves, instead of solving the nonsmooth and nonlin-

ear equation system (17). In this approach, |(A0(p0,x0,µµµ0) − 1)p| comparisons of
elements in the worst case are needed in the verification stage to terminate the for
loop.

Alternatively, Lemma 3.7 provides a way to solve (17) directly using a nonsmooth
equation-solving algorithm; assuming the setting of Theorem 5.5, the nonsmooth sen-
sitivity system (17) can be solved columnwise (from left to right) using, for example,
the nonsmooth Newton method (8) with v(l) ≡ (x(l),µµµ(l)) to furnish the jth columns
x(j) and µµµ(j) of X and U, respectively, and h′(v(l); Im) replaced by

(26) ΦΦΦ′min

p0

x0

µµµ0

 ;

P(j−1) p(j) 0p×n 0p×m
X(j−1) x(l) In 0n×m
U(j−1) µµµ(l) 0m×n Im

0p×n 0p×m
In 0n×m

0m×n Im

 .
Motivated by this, a hybrid algorithm is proposed as Algorithm 1, with a user-

chosen critical number βcrit dictating which of these two methods is used: either
cycling through linear equation system solves, or nonsmooth equation-solving.

• βcrit = m corresponds to application of Proposition 2 in [22] (i.e., solving the
linear equation system (27) until a solution is verified in line 7).

• βcrit = −1 corresponds to application of nonsmooth equation-solving methods
(i.e., solving (28) using (26)), regardless of the weakly active set size.

• βcrit = 0 corresponds to solving a linear equation system (i.e., Fiacco and
McCormick’s classical result), given an absence of weakly active indices and
performing nonsmooth equation solves otherwise.

The verification test in line 7 for the cycling approach may mistakenly fail for
a correct solution, because of numerical error (e.g., due to the coefficient matrix on
the left-hand side of (27) having a high condition number). Such false negatives have
been observed in practice [43] when applying the cycling approach (i.e., Proposition
2 in [22]) to solve PC1 equation systems. The method of iterative refinement [44] has
successfully alleviated this issue in the aforementioned work and can be optionally
added to the cycling part of Algorithm 1.

The for-loop beginning on line 14 in Algorithm 1 updates the set of weakly active
indices by definition of LMmin, in the spirit of [18, section 4]; if −Jpgl(p

0,x0)p(j)−
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Jxgl(p
0,x0)a < bl for some l ∈ A0 and j = j∗, then the corresponding vector (i.e.,

−Jpgl(p
0,x0)P− Jxgl(p

0,x0)A instead of Bl) is the lexicographically ordered mini-
mum. The remaining p−j∗ comparisons (in the case of verifying the solution of (27))
or nonsmooth equation method solves (in the case of solving (28)) are not needed.

Algorithm 1. Evaluate L-derivatives of primal and dual variable solutions.

Require: βcrit ∈ {−1, 0, 1, . . . ,m}, nonsingular P ∈ Rp×p
1: procedure Calculate (JLx̃(p0; P),JLµ̃µµ(p0; P))
2: Set A0 ← A0(p0,x0,µµµ0), A+ ← A+(p0,x0,µµµ0), A− ← A−(p0,x0,µµµ0).
3: for j = 1, . . . , p do
4: if |A0| ≤ βcrit then
5: for all J ⊂ A0 do
6: Solve the following linear equation system for (a,b) ∈ R(n+m)×1:

(27)

 ∇2
xxL (JxgA+∪J )T

−JxgA+ 0(|A+|)×(|A+|+|J |)


 a

bA+∪J

 =

[
−∇2

xpL
JpgA+

]
p(j),

bA−∪(A0\J ) = 0|A−|+|A0\J |.

7: if 0|A0| = minminmin
(
−JpgA0p(j) − JxgA0a,bA0

)
then

8: go to 21
9: end if

10: end for
11: else
12: Solve the following nonsmooth equation system for (a,b) ∈ R(n+m)×1:

(28)

 ∇2
xxL (JxgA+∪A0)T

−JxgA+ 0(|A+|)×(|A+|+|A0|)


 a

bA+∪A0

 =

[
−∇2

xpL
JpgA+

]
p(j),

bA− = 0|A−|,

minminmin
(
−JpgA0p(j) − JxgA0a,bA0

)
= 0|A0|.

13: end if
14: for all l ∈ A0 do
15: if −Jpgl(p

0,x0)p(j) − Jxgl(p
0,x0)a < bl then

16: Set A0 ← A0 \ {l}, A+ ← A+ ∪ {l}
17: else if −Jpgl(p

0,x0)p(j) − Jxgl(p
0,x0)a > bl then

18: Set A0 ← A0 \ {l}, A− ← A− ∪ {l}
19: end if
20: end for

21: Set

[
A
B

]
←
[
A a
B b

]
22: end for
23: Solve the equation system (A,B) = (XL,UL)P for (XL,UL) ∈ R(n+m)×p.
24: return (XL,UL).
25: end procedure
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Example 5.9. Consider applying Algorithm 1 to the parametric NLP (23). Let
P = I2 and βcrit = 1. Then, A0 = {1}, A− = {2}, A+ = {3}, and solving two

equation systems (at worst) is guaranteed to furnish the sensitivities since 2|A
0| = 2.

For j = 1, the linear equation system (27) associated with J = ∅ is given by2 0 0
0 2 −1
0 1 0

a1

a2

b3

 =

−2
0
0

 ,
b1 = 0,

b2 = 0,

which is solved to yield a = (−1, 0) and b = (0, 0, 0). The LD-derivative test in line 7
fails since min(−2, 0) 6= 0; the inner for loop does not terminate. The linear equation
system (27) associated with J = {1} has solution a = (1, 0) and b = (4, 0, 0). In this
case, min(0, 4) = 0 and the LD-derivative test passes; the following assignments are
made: A ← (1, 0), B ← (4, 0, 0), A0 ← ∅, and A+ ← {1, 3}. For j = 2, the linear
equation system (27) associated with J = ∅ is given by

(29)


2 0 0 −1
0 2 −1 0
1 0 0 0
0 1 0 0



a1

a2

b1
b3

 =


0
−2
1
0

 ,
b2 = 0,

since the weakly active set is empty (i.e., a solve of the classical sensitivity system).
The solution is given by a = (0, 1) and b = (0, 0, 4),

(30) A← I2, B←

4 0
0 0
0 4

 ,
and (XL,UL) = (A,B) is a correct L-derivative of primal and dual solutions.

Repeating the problem with P = I2 and βcrit = 0 (i.e., an aversion to cycling
through linear equation solves in the presence of weakly active sets) yields the follow-
ing: for j = 1, the nonsmooth and nonlinear equation system (28) is given by

2 0 0 −1
0 2 −1 0
1 0 0 0
0 1 0 0



a1

a2

b1
b3

 =


−2
0
0
1

 ,
b2 = 0,

min

([
−1 0

] [1
0

]
−
[
−1 0

] [a1

a2

]
, b1

)
= 0,

which admits unique solution a = (1, 0) and b = (4, 0, 0). The following assignments
are made: A ← (1, 0), B ← (4, 0, 0), A0 ← ∅, and A+ ← {1, 3}. For j = 2, (29) is
solved to yield a = (0, 1) and b = (0, 0, 4) and the assignments in (30) are made.

Application of the new method to a class of parametric QPs is straightforward.
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Example 5.10. Consider the following parametric QP:

(31)
φ(p) ≡ min

x∈Dx

0.5xTHx + xTGp

s.t. Cx ≤ Fp,

where C ∈ Rm×n, F ∈ Rm×p, and H ∈ Rn×n are matrices with real-valued elements.
Given a reference parameter value p0 ∈ Dp ⊂ Rp, let (p0,x0,µµµ0) ∈ Dp×Dx×Rm be
a KKT point of (31); (p0,x0,µµµ0) satisfies the system of equations

Hx + Gp +µµµTC = 0n,

minminmin(Fp−Cx,µµµ) = 0m.

Given the index set I ≡ {1, . . . ,m}, the active, strongly active, weakly active, and
inactive index sets of (31) at (p0,x0) are equal to, respectively,

A(p0,x0) ≡ {i ∈ I : Cix
0 = Fip

0},
A+(p0,x0,µµµ0) ≡ {i ∈ I : Cix

0 − Fip
0 = 0 < µ0

i },
A0(p0,x0,µµµ0) ≡ {i ∈ I : Cix

0 − Fip
0 = 0 = µ0

i },
A−(p0,x0,µµµ0) ≡ {i ∈ I : Cix

0 − Fip
0 < 0 = µ0

i }.

Let H be positive definite, which implies SSOSC holds at (p0,x0,µµµ0). Let the
active constraint matrix CA,• be full row rank, which implies LICQ holds at (p0,x0).
Then, according to Theorem 5.5, the nonsmooth equation system

(32)

 H (CA+∪A0)T

−CA+ 0|A+|×(|A+|+|A0|)


 X

UA+∪A0,•

 =

[
−G
−FA+

]
,

UA−,• = 0|A−|×p,

LMmin
(
−FA0 −CA0X,UA0,•

)
= 0|A0|×p,

admits the unique solution (XL,UL) ∈ R(n+m)×p which are B-subdifferential elements
of primal and dual variable solutions of (31) at p = p0:

XL ∈ ∂Lx̃(p0) ⊂ ∂Bx̃(p0)

and
UL ∈ ∂Lµ̃µµ(p0) ⊂ ∂Bµ̃µµ(p0).

(In this case, P = Ip is chosen.) Moreover, a B-subdifferential element of the objective-
value function φ at p = p0 is calculated as xTHXL ∈ ∂Lφ(p0) ⊂ ∂Bφ(p0).

6. Conclusions. Parametric sensitivities for NLPs exhibiting active set changes
have been obtained. The primal and dual variables sensitivities are characterized by L-
derivatives, which are computationally relevant (as elements of the B-subdifferential,
M-subdifferential, and Clarke Jacobian) and calculated as the unique solution of an
auxiliary nonsmooth and nonlinear equation system. The classical sensitivity the-
ory of Fiacco and McCormick is recovered in the absence of active index set changes
(i.e., strict complementarity). The regularity conditions on the NLPs are shown to
be implied by LICQ and SSOSC and there is no competing theory for furnishing
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computationally relevant generalized derivatives (i.e., B-subdifferential elements) of
solutions of NLPs (and MiCPs). Often in practice a well-conditioned nonsingular
(or even orthonormal) matrix is chosen for the directions matrix when calculating
an LD-derivative. However, since LD-derivatives are well-defined for singular (or
even nonsquare) directions matrices and satisfy a sharp chain rule, automatable com-
putation of generalized derivative information in applications involving nonsmooth
optimization problems with nonsmooth dynamical systems embedded (or vice versa)
is possible. Though the minimum-function reformulation of the KKT system is used
in this work, the theory developed here is without loss of generality in this regard as
it can be extended to other NCP function reformulations.

As mentioned earlier, applying the theoretical tools used here to other types of
mathematical programs (e.g., VIs and MPECs) is of interest going forward. The
results in this article assume the computational costs associated with computing a
KKT point and verifying its regularity are already incurred, as in the classical theory,
since the focus here is the subsequent sensitivity analysis step. However, analyzing
the computational complexity of computing sensitivities of solutions of NLPs using
the theory in this article warrants investigation; choosing an appropriate value of
βcrit in Algorithm 1 requires consideration of the computational complexity of the
cycling approach (which scales exponentially with the number of weakly active sets
in the worst case) and the nonsmooth equation-solving approach (which is presently
unclear). Using the sensitivity results here in model predictive control and dynamic
optimization problems is another direction for future work.

Acknowledgment. The authors would like to acknowledge the anonymous re-
viewers for their helpful comments.
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