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Accurate Tracking of Aggressive Quadrotor
Trajectories using Incremental Nonlinear Dynamic

Inversion and Differential Flatness
Ezra Tal, Student Member, IEEE, Sertac Karaman, Member, IEEE

Abstract—Autonomous unmanned aerial vehicles (UAVs) that
can execute aggressive (i.e., high-speed and high-acceleration)
maneuvers have attracted significant attention in the past few
years. This paper focuses on accurate tracking of aggressive
quadcopter trajectories. We propose a novel control law for
tracking of position and yaw angle and their derivatives of up
to fourth order, specifically, velocity, acceleration, jerk, and snap
along with yaw rate and yaw acceleration. Jerk and snap are
tracked using feedforward inputs for angular rate and angular
acceleration based on the differential flatness of the quadcopter
dynamics. Snap tracking requires direct control of body torque,
which we achieve using closed-loop motor speed control based
on measurements from optical encoders attached to the motors.
The controller utilizes incremental nonlinear dynamic inversion
(INDI) for robust tracking of linear and angular accelerations
despite external disturbances, such as aerodynamic drag forces.
Hence, prior modeling of aerodynamic effects is not required. We
rigorously analyze the proposed control law through response
analysis, and we demonstrate it in experiments. The controller
enables a quadcopter UAV to track complex 3D trajectories,
reaching speeds up to 12.9 m/s and accelerations up to 2.1g,
while keeping the root-mean-square tracking error down to 6.6
cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall.
We also demonstrate the robustness of the controller by attaching
a drag plate to the UAV in flight tests and by pulling on the UAV
with a rope during hover.

Index Terms—Flight control, robust control, drone racing,
aggressive maneuvering, trajectory following, differential flatness,
incremental control, nonlinear dynamic inversion, quadcopter.

SUPPLEMENTAL MATERIAL

A video of the experiments can be found at https://youtu.
be/K15lNBAKDCs.

I. INTRODUCTION

H IGH-SPEED aerial navigation through complex environ-
ments has been a focus of control theory and robotics

research for decades. More recently, drone racing, in which
remotely-operated rotary-wing aircraft are piloted through
challenging, obstacle-rich courses at very high speeds, has
further inspired and popularized this research direction. De-
velopment of fully-autonomous drone racers requires accurate
control of aircraft during aggressive, i.e., high-speed and agile,
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Fig. 1: Quadrotor with body-fixed reference system and mo-
ment arm definitions.
maneuvers. At high speeds, aerodynamic drag, which is hard
to model, becomes a dominant factor. This poses an important
challenge in control design. Additionally, accurate tracking of
a reference trajectory with fast-changing acceleration requires
considering its higher-order time derivatives, i.e., jerk and
snap. In contrast, control design for rotary-wing, vertical
take-off and landing (VTOL) aircraft at low speeds typically
neglects both aerodynamics and higher-order derivatives.

In this paper, we propose a novel control design for accurate
tracking of aggressive trajectories using a quadcopter aircraft,
such as the one shown in Fig. 1. The proposed controller gen-
erates feedforward control inputs based on differential flatness
of the quadcopter dynamics, and uses incremental nonlinear
dynamic inversion (INDI) to handle external disturbances,
such as aerodynamic drag.

Nonlinear dynamic inversion (NDI), also called feedback
linearization, enables the use of a linear control law by
transforming the nonlinear dynamics into a linear input-output
map [2]–[4]. Although variants of NDI were quickly developed
for flight control [5]–[9], it is well known that exact dynamic
inversion inherently suffers from lack of robustness [10]. As a
result, other nonlinear control methods, e.g., adaptive sliding
mode [10]–[12] and backstepping designs [13], have been
considered in order to achieve robustness in flight control.
More recently, an incremental version of nonlinear dynamic
inversion has been developed [14], [15], based on earlier
derivations [16], [17], which provide robustness by incremen-
tally applying control inputs based on inertial measurements.
In existing literature, the INDI technique has been applied to
quadcopters for stabilization, e.g., for robust hovering [18],
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[19], but not for trajectory tracking.
Differential flatness, or feedback linearizability, of a dynam-

ics system allows expressing all state and input variables in
terms of a set of flat outputs and its derivatives [20]–[24]. In
the context of flight control, this property enables reformu-
lation of the trajectory tracking problem as a state tracking
problem [9], [25]. Specifically, it enables consideration of
higher-order derivatives of the reference trajectory through
feedforward state and input references, which has also been
applied to control [26]–[29].

Quadcopter aircraft are relatively easy to maneuver and
experiment with. Arguably, these qualities make them ideal
for drone racing events. For the same reasons, they have been
heavily used as experimental platforms in robotics and control
theory research since the start of this century [30]–[33]. Com-
plex trajectory tracking control systems have been designed
and demonstrated for aircraft in motion capture rooms, where
the position and the orientation of the aircraft can be obtained
with high accuracy [34]–[40]. Agile maneuvers for quadcopter
aircraft have also been demonstrated [41], [42]. Despite being
impressive, these demonstrations have showcased complex
trajectories only at relatively slow speeds, e.g., less than 2 m/s,
so that aerodynamic forces and moments may be neglected.
At higher speeds, aerodynamic effects heavily influence the
vehicle dynamics. This has been addressed in recent research
through modeling [29], [43], [44], estimation [45], [46], and
learning [47] of aerodynamic drag effects towards tracking
control in high-speed flight.

The main contribution of this paper is a trajectory tracking
control design that achieves accurate tracking during high-
speed and high-acceleration maneuvers without depending
on modeling or estimation of aerodynamic drag parameters.
The design exploits differential flatness of the quadcopter
dynamics to generate feedforward control terms based on the
reference trajectory and its derivatives up to fourth order, i.e.,
velocity, acceleration, jerk, and snap. Modeling inaccuracies
and disturbances due to aerodynamic drag are compensated
for using incremental control based on the INDI technique.
This control design is novel in the following ways. Firstly, the
design incorporates direct tracking of reference snap through
accurate control of the motor speeds using optical encoders
attached to each motor. We recognize that snap is directly
related to vehicle angular acceleration, and thus to the control
torque acting on the quadcopter. Accurate application of torque
commands is achieved by precise closed-loop control of the
motor speeds using measurements from the optical encoders.
To the best of our knowledge, the direct control over snap us-
ing motor speed measurements is novel. In contrast, trajectory
tracking control based on body rate inputs, e.g., using a typical
inner-loop flight controller, is incapable of truly considering
reference snap. Secondly, we develop a novel INDI control
design for quadcopter trajectory tracking. Thrust and torque
commands are applied incrementally for robustness against
significant external disturbances, such as aerodynamic drag,
without the need to model or estimate said disturbances. As
far as we are aware, the proposed controller is the first design
that is tailored for trajectory tracking, as existing INDI flight
control designs focus on state regulation, e.g., for maintaining

hover under external disturbances. Thirdly, we provide and
evaluate a novel implementation of INDI angular acceleration
control that includes nonlinear computation of the control in-
crements, as opposed to the existing implementations that use
inversion of linearized control effectiveness equations. Finally,
we demonstrate the proposed controller in experiments, and
we rigorously analyze the benefits of the key aspects of our
control design through response analysis. In our experiments,
the proposed control law enables a unmanned aerial vehicle
(UAV) to track complex 3D trajectories, reaching speeds up
to 12.9 m/s and accelerations up to 2.1g, while keeping the
root-mean-square (RMS) tracking error down to 6.6 cm, in
a flight volume that is roughly 18 m long, 7 m wide, and 3
m tall. We also demonstrate the robustness of the controller
by attaching a drag plate to the UAV in flight tests and by
pulling on the UAV using a tensioned wire during hover. The
improved performance due to the tracking of reference jerk
and snap through feedforward angular velocity and angular
acceleration inputs is also demonstrated both in theoretical
analysis and in experiments.

A preliminary version of this paper was previously pre-
sented at 57th IEEE Conference on Decision and Control
(CDC 2018) [1]. The significant extensions introduced in the
current work include a reformulation of the controller using
quaternion attitude representation, a more elaborate descrip-
tion of its architecture, the response analysis section in its
entirety, and new experimental results at increased speeds. The
application of the singularity-free quaternion representation
enables tracking of very aggressive trajectories that would
incur singular states if an Euler angle representation were used.

The paper is structured as follows: Nomenclature is pre-
sented in Table I. In Section II, the quadrotor model is
specified, and we show how differential flatness is used to
formulate feedforward control inputs in terms of the reference
trajectory. In Section III, we describe the architecture of the
trajectory tracking controller, and its individual components.
Analysis in Section IV illustrates the robustness of INDI and
the effect of the feedforward control inputs through response
analysis. Finally, we give experimental results from real-life
flights in Section V.

II. PRELIMINARIES

In this section, we describe the quadrotor dynamics model,
and its differential flatness property. Specifically, we show how
the control system utilizes this property to track the reference
trajectory jerk and snap through feedforward angular rate and
angular acceleration inputs.

A. Quadrotor Model

We consider a 6 degree-of-freedom (DOF) quadrotor, as
shown in Fig. 1. The unit vectors depicted in the figure are
the basis of the body-fixed reference frame and form the
rotation matrix R = [bx by bz] ∈ SO(3), which gives
the transformation from the body-fixed reference frame to
the inertial reference frame. The basis of the north-east-down
(NED) inertial reference frame consists of the columns of the
identity matrix [ix iy iz].
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TABLE I: Nomenclature. The subscript ref is used to indicate elements of the reference trajectory function and its time
derivatives, as well as feedforward variables directly obtained from the reference trajectory function. The subscript c is used
for commanded values that are obtained from a feedback control loop. Low-pass filtered measurements and signals obtained
from such measurements are indicated by the subscript f .

◦ Hamilton quaternion product
•◦n n-th Hadamard (element-wise) power
[•]× cross-product matrix
a linear acceleration in inertial frame, m/s2

ab linear acceleration including gravitational acceleration
in body-fixed frame, i.e., as measured by IMU, m/s2

bx, by , bz basis vectors of body-fixed frame
Cn n-th order differentiability class
fext external disturbance force vector in inertial frame, N
g gravitational acceleration, m/s2

G1 propeller speed control effectiveness matrix
G2 propeller acceleration control effectiveness matrix
H(s) low-pass filter transfer function
ix, iy , iz standard basis vectors
j jerk in inertial frame, m/s3

J vehicle moment of inertia matrix, kg·m2

Jyy vehicle moment of inertia around by-axis, kg·m2

Jrz motor rotor and propeller moment of inertia, kg·m2

kθ , kq scalar control gains
kG linearized pitch control effectiveness, kg·m2/(rad·s)
kµz propeller torque coefficient, kg·m2/rad2

kτ propeller thrust coefficient, kg·m/rad2

Kx, Kv , diagonal control gain matrices
Ka, Kξ

KΩ, KIω
lx moment arm component parallel to bx-axis, m
ly moment arm component parallel to by-axis, m
m vehicle mass, kg
M(s) motor (control) dynamics transfer function
NI transfer function corresponding to non-incremental controller

p polynomial relating motor speeds to throttle inputs
q vehicle pitch rate around by-axis, rad/s
rψ yaw direction vector in inertial frame
R body-fixed to inertial frame rotation matrix
s Laplace variable
s snap in inertial frame, m/s4

S angular rate to yaw rate transformation
SO(3) three-dimensional special orthogonal group
t time, s
T thrust, N
T circle group
v velocity in inertial frame, m/s
x position in inertial frame, m
α vehicle pitch acceleration around by-axis, rad/s2

∆ modeling error parameter
ζ throttle command vector
θ vehicle pitch angle, rad
µ control moment vector, N·m
µext external disturbance moment vector, N·m
ξ normed quaternion attitude vector
ξw , ξx, ξy , ξz elements of ξ
ξc incremental command relative to current attitude
ξe vector of error angles in body-fixed frame
σref (t) reference trajectory function, m, rad
τ specific thrust, m/s2

τm motor dynamics time constant, s
ψ vehicle yaw angle, rad
ω deviation from hover state motor rotation speed, rad/s
ω0 hover state motor rotation speed, rad/s
ω vector of four motor rotation speeds, rad/s
Ω vehicle angular velocity in body-fixed frame, rad/s

The vehicle translational dynamics are given by

ẋ = v, (1)

v̇ = giz + τbz +m−1fext, (2)

where x and v are the position and velocity in the inertial
reference frame, respectively. Equation (2) includes three con-
tributions to the linear acceleration. Firstly, the gravitational
acceleration g in downward direction. Secondly, the specific
thrust τ , which is the ratio of the total thrust T and the
vehicle mass m. Note that the thrust vector is always aligned
with the bz-axis, so that the quadrotor must pitch or roll to
accelerate forward, backward or sideways. Finally, the external
disturbance force vector fext accounts for all other forces
acting on the vehicle, such as aerodynamic drag.

The rotational dynamics are given by

ξ̇ =
1

2
ξ ◦Ω, (3)

Ω̇ = J−1(µ+ µext −Ω× JΩ), (4)

where Ω is the angular velocity in the body-fixed reference
frame, and ξ = [ξw ξx ξy ξz]T is the normed quaternion
attitude vector, so that Rx = ξ ◦ x ◦ ξ−1 with ◦ the Hamil-
ton product. Note that a zero magnitude element is implied
when multiplying three-element vectors with quaternions. The
matrix J is the vehicle moment of inertia tensor. The control
moment vector is indicated by µ, and the external disturbance
moment vector by µext. The third term of (4) accounts for the
conservation of angular momentum.

Each propeller axis is assumed to be aligned perfectly with
the bz-axis, so that all motor speeds are described by the four-
element vector ω > 0. The total thrust T and control moment
vector in body-reference frame µ are given by[

µ
T

]
= G1ω

◦2 + G2ω̇, (5)

where ◦ indicates the Hadamard power;

G1 =


lykτ −lykτ −lykτ lykτ
lxkτ lxkτ −lxkτ −lxkτ
−kµz kµz −kµz kµz
−kτ −kτ −kτ −kτ

 , (6)

with lx and ly the moment arms indicated in Fig. 1, kτ
the propeller thrust coefficient, and kµz the propeller torque
coefficient; and

G2 =


0 0 0 0
0 0 0 0
−Jrz Jrz −Jrz Jrz

0 0 0 0

 (7)

with Jrz the rotor and propeller moment of inertia. The
second term in (5) represents the control torque directly due to
motor torques. Due to their relatively small moment of inertia,
the contribution of the motors to the total vehicle angular
momentum may be neglected.
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B. Differential Flatness

The controller aims to accurately track the reference trajec-
tory defined by the following function:

σref (t) = [xref (t)T ψref (t)]T , (8)

which consists of four differentially flat outputs, i.e., the
quadrotor position in the inertial reference frame xref (t) ∈
R3, and the vehicle yaw angle ψref (t) ∈ T, where T denotes
the circle group. Henceforward, we do not explicitly write the
time argument t everywhere.

For (8) to be dynamically feasible, it is required that xref is
of differentiability class C4, i.e., its first four derivatives exist
and are continuous, and that ψref is of class C2. The temporal
derivatives of xref are successively the reference velocity
vref , the reference acceleration aref , the reference jerk jref ,
and the reference snap sref , all in the inertial reference frame.
Similarly, temporal differentiation of ψref gives the yaw rate
ψ̇ref , and the yaw acceleration ψ̈ref .

The quadcopter dynamics are differentially flat, so that we
can express its states and inputs as a function of σref (t) and
its derivatives. This enables reformulation of the trajectory
tracking problem as a state tracking problem. In this section,
we derive expressions for the angular rate reference Ωref , and
the angular acceleration reference Ω̇ref in terms of trajectory
jerk, snap, yaw rate, and yaw acceleration. These reference
states will be applied as feedforward inputs in the trajectory
tracking control design.

Taking the derivative of (2) yields the following expression
for jerk:

j = τR [iz]
T
×Ω + τ̇bz, (9)

where [•]× indicates the cross-product matrix, and variations
in the unmodeled external force fext are neglected. This
external force consists chiefly of body drag and rotor drag [48],
[49]. Both contributions can be included in the differential
flatness transform [29], but the resulting controller will depend
on a vehicle-specific aerodynamics model. Instead, we forgo
modeling of the external force and instead use sensor-based
control to directly compensate for it. Therefore, our controller
is able to handle external disturbances without depending on
a vehicle-specific model, as described in the next section.

By taking the derivative once more, the following expression
for snap is found:

s = R
(
τ̈ iz + (2τ̇ + τ [Ω]×) [iz]

T
×Ω + τ [iz]

T
× Ω̇

)
. (10)

According to typical aerospace convention, we define yaw as
the angle between ix and the vector

rψ =
[
b1x b2x 0

]T
(11)

with superscripts indicating individual elements of bx. Taking
the derivative of (11) using Ṙ = R[Ω]×, we obtain the
following expression for the yaw rate:

ψ̇ =
rψ × ṙψ
rTψrψ

=

[
−b2x b1x

]
rTψrψ

[
0 −b1z b1y
0 −b2z b2y

]
︸ ︷︷ ︸

S

Ω = SΩ,

(12)

and, by the product rule, the following expression for the yaw
acceleration:

ψ̈ = SΩ̇ + ṠΩ. (13)

An expression for the derivative Ṡ is omitted here for brevity,
but can be obtained by applying the product rule to the
expression for S given in (12). From (9) and (12), we obtain
the angular rate reference[

Ωref

τ̇ref

]
=

[
τR[iz]

T
× bz

S 0

]−1 [
jref
ψ̇ref

]
, (14)

and from (10) and (13) the angular acceleration reference[
Ω̇ref

τ̈ref

]
=

[
τR[iz]

T
× bz

S 0

]−1

([
sref
ψ̈ref

]
−
[

R(2τ̇ + τ [Ω]×)[iz]
T
×Ω

ṠΩ

])
. (15)

Note that these expressions also contain reference signals for
the first and second derivatives of specific thrust. However, as
we are unable to command the corresponding first and second
derivatives of the motor speed, these references remain unused
by the controller.

III. TRAJECTORY TRACKING CONTROL

The control design consists of several components based
on various control methods. Table II gives an overview of
the components with their respective methodology, references,
and control outputs. The control architecture is visualized in
three block diagrams. Figure 2 shows the outer-loop position
and velocity controller as described in Section III-A. The
intermediate control loop shown in Fig. 3 controls linear
acceleration, attitude and angular rate, and angular acceleration
as described in Section III-B, III-C, and III-D, respectively.
Finally, vehicle moment and thrust are directly controlled
through closed-loop motor speed control in the inner loop,
shown in Fig. 4 and described in Section III-E.

The controller utilizes a vehicle state estimate consisting
of position, velocity, and attitude. Additionally, motor speed
measurements are obtained from optical encoders, and linear
acceleration and angular rate measurements are obtained from
the inertial measurement unit (IMU). For the application of
incremental angular acceleration control, angular acceleration
measurements are obtained by numerical differentiation of the
measured angular rate. A low-pass filter (LPF) is required
to alleviate the effects of noise, e.g., airframe vibrations, on
measurements obtained directly from the IMU. We denote the
LPF outputs using the subscript f , e.g., by Ωf and Ω̇f for the
angular rate output and its derivative, respectively. The gravity-
corrected LPF acceleration output in the inertial reference
frame is obtained as follows:

af = (Rab + giz)f . (16)

A. PD Position and Velocity Control

Position and velocity control is based on two cascaded
proportional-derivative (PD) controllers. The resulting con-
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Fig. 2: Position and Velocity Control. The blue area contains the PD control design as described in Section III-A.
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ψ̈ref
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Fig. 3: Acceleration and Attitude Control. The blue area contains the INDI linear acceleration and yaw control as described in
Section III-B. The green area contains the computation of angular rate and angular acceleration references based on differential
flatness as described in Section II-B. The red area contains the attitude and angular rate control as described in Section III-C.
The yellow area contains the INDI angular acceleration control as described in Section III-D.

Numerical Control
Effectiveness Inversion

p(·)
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Fig. 4: Motor Control and Computation of Filtered Signals. The blue and green areas contain the moment and thrust control
(including motor speed command saturation resolution), and the motor speed control, respectively. Both are described in
Section III-E. The UAV block represents the UAV hardware, including ESCs, motors, and sensors. The red area contains the
computation of filtered signals based on IMU and optical encoder measurements.
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TABLE II: Overview of trajectory tracking controller components.

Component Methodology Reference Control Output Description
Position and Velocity Control PD xref , vref , aref ac Section III-A
Linear Acceleration and Yaw Control INDI ac, ψref ξc, Tc Section III-B
Jerk and Snap Tracking Differential Flatness jref , sref , ψ̇ref , ψ̈ref Ωref , Ω̇ref Section II-B
Attitude and Angular Rate Control PD ξc, Ωref , Ω̇ref Ω̇c Section III-C
Angular Acceleration Control INDI Ω̇c µc Section III-D
Moment and Thrust Control Inversion µc, Tc ωc Section III-E
Motor Speed Control Integrative ωc ζ Section III-E

troller is mathematically equivalent to the following single
expression:

ac = Kx (xref − x) + Kv (vref − v)

+ Ka (aref − af ) + aref (17)

with K• indicating diagonal gain matrices. The subscript ref
is used to indicate values obtained directly from the reference
trajectory. In contrast, the subscript c indicates commanded
values that are computed in one of the control loops. For
example, aref is obtained directly from the reference trajectory
as the second derivative of xref , while ac is computed based
on (17) and includes terms based on the position, velocity, and
acceleration deviations. The first three terms in (17) ensure
tracking of position and velocity references, while the final
term serves as a feedforward input to ensure tracking of
the reference acceleration. The control utilizes the inertial
reference frame with — in our implementation — identical
gains for the horizontal ix- and iy-directions, but separately
tuned gains for the vertical iz-direction. The commanded
acceleration is used to calculate thrust and attitude commands,
as will be shown in the next section.

B. INDI Linear Acceleration and Yaw Control

Existing literature presents the derivation of an INDI linear
acceleration controller using Taylor series approximation [19].
In this section, we arrive at equivalent control equations
through an intuitive derivation that follows the practical work-
ing of the INDI notion based on estimation of the external
force acting on the quadrotor.

An expression for the external force in terms of measured
acceleration and specific thrust is obtained by rewriting (2), as
follows:

fext = m (af − (τbz)f − giz) , (18)

where τ is the specific thrust calculated according to (5) using
motor speed measurements. Identical LPFs must be used to
ensure that equal phase lag is incurred by acceleration and
thrust measurements [18]. Note that the specific thrust vector
and the linear acceleration (cf. (16)) are both transformed to
the inertial reference frame prior to filtering. This order is
appropriate because the external force in the inertial reference
frame fext is assumed to be slow-changing relative to the
LPF dynamics, as described in Section II-B. Substitution of

(18) into (2) gives the following expression for the current
acceleration:

a = τbz + giz +m−1fext

= τbz + giz +m−1 (m (af − (τbz)f − giz)) (19)
= τbz − (τbz)f + af .

The specific thrust vector command that results in the com-
manded acceleration prescribed by (17) can be computed using
the following incremental relation based on (19):

(τbz)c = (τbz)f + ac − af . (20)

The incremental nature of (20) enables the controller to
achieve the commanded acceleration despite possible distur-
bances or modeling errors. If the commanded value is not
obtained immediately, the thrust and attitude commands will
be incremented further in subsequent control updates. This
principle eliminates the need for integral action anywhere in
the control design.

The thrust magnitude command is obtained as

Tc = −m‖(τbz)c‖2 (21)

with the negative sign following from the definition that
thrust is positive in bz-direction. The incremental attitude
command ξc represents the rotation from the current attitude
to the commanded attitude and is obtained in two steps: first,
the minimum rotation to align −bz with the thrust vector
command (τbz)c is obtained; second, a rotation around bz
is added to satisfy the yaw reference ψref . For the first step,
we transform the normalized thrust vector command to the
current body-fixed reference frame, as follows:

(−bz)
b
c = ξ−1 ◦ (−bz)c ◦ ξ. (22)

The appropriate rotation to align the current −bz with (τbz)c
is then given by

ξ̄c =
̂[

1− iTz (−bz)
b
c

−iz × (−bz)
b
c

]
, (23)

where hat refers to quaternion normalization, i.e., ξ̂ = ξ/‖ξ‖2.
For the second step, the yaw reference normal vector is first
transformed to the intermediate attitude command frame, as
follows:

n̄ψref = (ξ ◦ ξ̄c)−1

◦
[

sinψref − cosψref 0
]T ◦ (ξ ◦ ξ̄c). (24)
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Next, we obtain the following rotation that makes bx coincide
with the plane defined by normal vector n̄ψref :

ξψ =
̂[

1 0 0 −
n̄1
ψref

n̄2
ψref

]T
. (25)

Equation (25) implicitly selects between tracking of ψref and
ψref +π rad based on minimizing the magnitude of rotation.
Due to continuity of ψref this does not cause any unwanted
switching, but it does prevent unwanted discontinuities such
as a π rad rotation around bz to maintain yaw tracking when
pitching through ±π/2 rad. Note that (23) and (25) incur
singularities if iz = (−bz)

b
c and n̄2

ψref
= 0, respectively.

However, by computing the attitude command relative to the
current attitude we move these singularities far away from
the nominal trajectory. Moreover, they are straightforwardly
detected and resolved by selecting any direction of rotation.
Finally, the incremental attitude command is obtained as

ξc = ξ̄c ◦ ξψ. (26)

C. PD Attitude and Angular Rate Control

In this section, we describe the attitude and angular rate
controller. This controller specifies the angular rate command
and is thus solely based on angular kinematics. This has two
major advantages compared to incorporating control torque or
motor speeds. Firstly, the attitude controller does not take into
account any model-specific parameters, such as the vehicle
inertia matrix J. Therefore the control design avoids discrep-
ancies due to model mismatches and has vehicle-independent
gains. Secondly, accurate torque control cognizant of the exter-
nal moment µext can be performed separately using sensor-
based INDI, as described in Section III-D. This eliminates
the need to incorporate a complicated disturbance model
in the attitude controller, which further improves controller
robustness and simplicity.

The three-element angle vector ξe associated with the
incremental attitude command ξc is computed as follows:

ξe =
2 arccos ξwc√

1− ξwc ξwc

[
ξxc ξyc ξzc

]T
. (27)

Using these error angles, the angular acceleration command is
obtained as

Ω̇c = Kξξe + KΩ (Ωref −Ωf ) + Ω̇ref , (28)

where Ωref and Ω̇ref are the angular velocity and angular
acceleration feedforward terms defined in (14) and (15), re-
spectively. The resulting attitude controller not only tracks
the attitude command, but also angular rate and acceleration.
This enables tracking of trajectory jerk and snap, which is
essential for accurate tracking of aggressive trajectories, as
will be shown analytically in Section IV and experimentally
in Section V. In contrast, trajectory tracking control based on
body rate inputs, e.g., using an off-the-shelf flight controller,
is incapable of truly considering reference snap, because snap
corresponds to the vehicle angular acceleration, as shown in
(15).

D. INDI Angular Acceleration Control

Robust tracking of the angular acceleration command Ω̇c is
achieved through INDI control. We rewrite (4) into the follow-
ing expression for the external moment based on the measured
angular rate, angular acceleration, and control moment:

µext = JΩ̇f − µf + Ωf × JΩf (29)

with µf the control moment in the body-fixed reference frame,
obtained from the measured motor speeds by (5) and low-pass
filtering. Analogous to the external force in Section III-B, the
external moment µext is assumed slow-changing with regard
to the LPF dynamics. Substitution of (29) into (4) then gives:

Ω̇ = J−1(µ+ µext −Ω× JΩ)

= J−1(µ+ (JΩ̇f − µf + Ωf × JΩf )−Ω× JΩ)

= Ω̇f + J−1(µ− µf ). (30)

In (30), it is assumed that the difference between the gyro-
scopic angular momentum term and its filtered counterpart is
sufficiently small to be neglected, because the term is relatively
slow changing compared to the angular acceleration and
control moment, and moreover is second-order. By inversion of
the final line, we obtain the following incremental expression
for the commanded control moment:

µc = µf + J
(
Ω̇c − Ω̇f

)
. (31)

E. Inversion-Based Moment and Thrust Control, and Integra-
tive Motor Speed Control

In Section III-B and Section III-D, we have found expres-
sions for the commanded thrust Tc and control moment µc,
respectively. Tracking of these commands requires control of
the motor speeds, as evidenced by the direct relation given
in (5). State-of-the-art INDI implementations for quadrotors
are based on linearization of this relation and do not ac-
curately model transient behavior [18], [19]. Our proposed
implementation is based on a nonlinear inversion of the control
effectiveness and explicitly incorporates the motor response
time constant, as such it provides a more accurate computation
of control inputs.

In order to achieve fast and accurate closed-loop motor
speed control, we employ optical encoders that measure the
motor speeds. The availability of motor speed measurements
furthermore enables accurate calculation of the thrust and
control moment, as required by the INDI controller in (20)
and (31). In practice, the optical encoder, shown in Fig. 5,
measures the motor rotational speed by detecting the passage
of stripes on a reflective strip attached to the motor hub.
As such, the optical encoder provides a high-rate, accurate,
lightweight, and unintrusive manner to obtain the motor speed.

The motor speed corresponding to the commanded thrust
and control moment is found by inverting the nonlinear control
effectiveness equation (5). In order to do so, we estimate
the effect of the motor speed command on the motor speed
derivative using the following first-order model:

ω̇ = τ−1
m (ωc − ω) (32)
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Fig. 5: Motor (propeller removed) with optical encoder for
rotational speed measurement. Note the optical encoder lens on
the right, and the accompanying reflective strip on the motor
hub.

with τm the motor dynamics time constant. After equating
to the control moment and thrust commands, the resulting
equation, [

µc
Tc

]
= G1ω

◦2
c + τ−1

m G2(ωc − ω), (33)

can be solved numerically, e.g., using Newton’s method. Inver-
sion of this nonlinear control effectiveness relation improves
the accuracy of thrust and control moment tracking, when
compared to the linearized inversion that does not consider
the motor transient response as given by (52).

Inversion of (33) may lead to infeasible, i.e., saturated,
motor speed commands. We address this first by altering the
control moment around bz . Since the control effectiveness is
relatively much smaller around this axis, this is most likely to
resolve the command saturation. Moreover, it typically least
affects vehicle stability and position tracking, since rotation
purely around the bz-axis does not alter the thrust vector.
Let

¯
ω and ω̄ be respectively the minimum and maximum

feasible motor speeds, then the set of bz control momenta
— excluding Jrz contributions — that result in feasible motor
speed commands is

max

{
kµz
kτ

(
4kτ

¯
ω2 + Tc ±

(
µyc
lx
− µxc
ly

))
,

−kµz
kτ

(
4kτ ω̄

2 + Tc ±
(
µyc
lx

+
µxc
ly

))}
≤ µzc

≤ min

{
kµz
kτ

(
4kτ ω̄

2 + Tc ±
(
µyc
lx
− µxc
ly

))
,

−kµz
kτ

(
4kτ

¯
ω2 + Tc ±

(
µyc
lx

+
µxc
ly

))}
. (34)

If this set is non-empty, we set µzc to equal the boundary closest
to the original moment command. The motor speed command
is then obtained as

ωc =

(
G−1

1

[
µc
Tc

])◦ 1
2

. (35)

Note that due to Jrz contributions the actual bz control mo-
ment will not exactly be equal to µzc . However, we still obtain

the feasible control moment that is closest to the original
commanded moment, because kµz and Jrz have identical signs
in (6) and (7), respectively. If there exists no µzc that results in
feasible motor commands, we consider a reduction or limited
increase in the thrust magnitude command Tc based on the
reasoning that application of thrust is only effective in the
correct direction, i.e., at the correct vehicle pitch and roll.
Since adjustment of Tc results in equal magnitude shift of
the constraints, it is straightforward to verify whether there
exists an acceptable value of Tc such that the lower and upper
boundaries in (34) coincide. If so, Tc is set to this value and
µzc to the feasible point, after which (35) is used to compute
the motor speed commands. If not, µzc is set to the average
of the lower and upper boundaries in (34), and any infeasible
motor speed commands resulting from (35) are clipped.

Finally, the throttle vector ζ that contains the motor elec-
tronic speed control (ESC) commands is obtained as follows:

ζ = p(ωc) + KIω

∫
ωc − ωdt (36)

with p a vector-valued polynomial function relating motor
speeds to throttle inputs. This function was obtained by
regression analysis of static test data. Integral action is added
to account for changes in this relation due to decreasing
battery voltage. The measured motor speed signal ω remains
unfiltered here to minimize phase lag.

IV. RESPONSE ANALYSIS

Incremental control, and the tracking of high-order reference
derivatives are two key aspects of our control design. In
this section, we theoretically verify the advantages of these
features. Namely, the improved robustness of incremental
control in comparison to non-incremental control, and the
improved trajectory tracking accuracy due to the consideration
of high-order reference trajectory derivatives, i.e., jerk and
snap. The purpose of this section is to provide an intuitive
understanding of how these aspects improve tracking perfor-
mance. In order to analyze the behavior of the closed-loop
system, we use linearized dynamics and control equations,
as the resulting simplifications allow for easier qualitative
interpretation. However, the observations in this section also
apply to the full, nonlinear dynamics and control equations.
Our findings are validated and quantitatively assessed using
real-life flights in Section V.

We consider forward and pitch movement around the hover
state. The subscript x indicates the forward component, e.g.,
ax,ref = aTref ix, and the subscript y the pitch component,
e.g., µy = µT iy . In hover condition, τ = −g, θ = 0, and
Ω = 03×1, so that (2) and (4) can be linearized to obtain

ax = −gθ +m−1fx,ext, (37)
Jyy q̇ = µy + µy,ext, (38)

where θ is the pitch angle, and Jyy is the vehicle moment of
inertia about the by-axis. Similarly, the INDI linear accelera-
tion control law (20) is linearized to obtain the error angle

− gθe = −gθf + ax,ref − (ax)f + gθ, (39)
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Fig. 6: Linearized closed-loop forward acceleration dynamics, with pitch acceleration dynamics in blue area.

where −gθf represents the forward component of the specific
thrust vector, and (ax)f represents the filtered forward acceler-
ation as obtained by (16). The commanded pitch acceleration
αc is obtained by taking the pitch component of (28), as
follows:

αc = kθθe + kq (qref − qf ) + αref , (40)

where qref = − jx,refg and αref = − sx,refg by linearization of
(14) and (15). The scalar control gains kθ and kq are obtained
by selecting the pitch elements from the corresponding control
gain matrices described in Section III.

Next, we linearize the angular acceleration and moment
control laws. The four motors can be modeled collectively,
as the system is linearized around the hover state where all
motors have identical angular speeds. The scalar value ω refers
to the deviation from the hover state motor speed ω0, or,
equivalently, to half of the angular speed difference between
the front and rear motor pairs. Equating (31) and (33), and
isolating the pitch channel gives

ωc =
√

((ω0 + ω)2)f + Jyy(4lxkτ )−1(αc − αf )− ω0. (41)

with the factor 4 due to the number of motors. Linearization
around the hover state gives

ωc = ωf + Jyyk
−1
G (αc − αf ), (42)

with the linearized control effectiveness gain kG = 8ω0lxkτ ,
so that µy = kGω.

In order to analyze the robustness properties provided by the
proposed incremental controller, it is compared to a regular,
i.e., non-incremental, controller with linearized equations (cf.
(39) and (42))

θc,NI = −ax,ref
g

, ωc,NI =
Jyy
kG

αc, (43)

where αc is still given by (40) using θe = θc − θ, and the
subscript NI is used to indicate the non-incremental controller.

A. Robustness against Disturbance Forces and Moments

An overview of the resulting linearized closed-loop accel-
eration dynamics is given in Fig. 6. From the blue area, we
obtain the following pitch acceleration dynamics:

α

αc
(s) =

Jyyk
−1
G

M(s)
1−M(s)H(s)kGJ

−1
yy

1 + Jyyk
−1
G

M(s)
1−M(s)H(s)kGJ

−1
yy H(s)

= M(s),

(44)

α

µy,ext
(s) =

J−1
yy

1 + H(s)M(s)
1−H(s)M(s)

= J−1
yy (1−H(s)M(s)) (45)

with α(s) the pitch acceleration, i.e., α(s) = sq(s) = s2θ(s).
The LPF transfer function is denoted by H(s), e.g., αfα (s) =
H(s), and the motor (control) dynamics are denoted by M(s),
i.e., ω

ωc
(s) = M(s). In (44), we observe that the closed-

loop angular acceleration dynamics are solely determined
by the motor dynamics [18]. Hence, the aggressiveness of
trajectories that can be tracked is theoretically limited by only
the bandwidth of the motor response. This is also the case for
a non-incremental version of the controller.

The disturbance moment µy,ext is fully counteracted using
incremental control based on the two feedback loops in the
blue shaded area of Fig. 6: the expected angular acceleration
from the motor speeds, i.e., kG

Jyy
ωf , and the measured angular

acceleration αf , which includes the effects of the disturbance
moment. As shown in (45), the counteraction depends on
H(s) and M(s) so that the ability to reject disturbances is
limited by the bandwidth of both the LPFs and the motors.
To the contrary, in a non-incremental controller the αf and
ωf feedback loops are not present, so that α = J−1

yy µy,est (cf.
(45)). The disturbance moment now propagates undamped to
the attitude and position control loops, as there is no closed-
loop angular acceleration control that directly evaluates the
moments acting on the vehicle.

We obtain similar results for the disturbance force fx,ext,
which is corrected for incrementally using the difference
between the acceleration due to thrust, i.e., −gθf , and the
true acceleration including the disturbance force, i.e., (ax)f .
All in all, the proposed incremental controller maintains iden-
tical nominal reference tracking performance for both angular
and linear accelerations, while achieving superior disturbance
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(a) Position response to fx,ext step input.
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(b) Position response to µy,ext step input.

Fig. 7: Simulated disturbance response using the proposed incremental controller,
and a non-incremental controller.
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Fig. 8: Simulated angular acceleration step
response for various modeling errors using
the proposed incremental controller.

TABLE III: Trajectory tracking controller gains.

Gain Value
Kx diag ([18 18 13.5])
Kv diag ([7.8 7.8 5.9])
Ka diag ([0.5 0.5 0.3])
Kξ diag ([175 175 82])
Kξ̇ diag ([19.5 19.5 19.2])

rejection of external moments and forces when compared to
the non-incremental controller.

In order to evaluate the effect of the disturbance force
and moment on the position tracking error, we close the
loop around Fig. 6 using the position and velocity controller
given by (17). Figure 7 shows the resulting step responses for
both incremental and non-incremental control. The response
was simulated using the platform-independent control gains
given in Table III, a second-order Butterworth filter with cut-
off frequency equal to 188.5 rad/s (30 Hz), and the first-
order motor model given by (32) with τm set to 20 ms. It
can be seen that the proposed incremental controller is able
to counteract the disturbances and reaches zero steady-state
error, while the non-incremental controller is unable to do
so. In order to null the steady-state errors due to force and
moment disturbances, integral action must be added to the
non-incremental controller. This is not necessary in the case
of INDI, so that our proposed control design is able to quickly
and wholly counteract disturbance forces and moments, while
avoiding the negative effects that integral action typically
has on the tracking performance, e.g., degraded stability, and
increased overshoot and settling time.

B. Robustness against Modeling Errors

The proposed control design requires only few vehicle-
specific parameters. Nonetheless, it is desirable that tracking
performance is maintained if inaccurate parameters are used,
e.g., because control effectiveness data obtained from static
tests may not be representative for the entire flight envelope.
The linearized control equations described above incorporate
the ratio of the moment of inertia Jyy and the linearized
control effectiveness kG. We denote the values used in the

controller J̄yy and k̄G, and define the modeling error ∆ such
that

J̄yy
k̄G

= ∆
Jyy
kG

. (46)

This leads to the following pitch acceleration dynamics for the
proposed incremental NDI controller, and the non-incremental
controller described above:

α

αc
(s) =

∆M(s)

(∆− 1)H(s)M(s) + 1
, (47)

α

αc NI
(s) = ∆M(s). (48)

It can be seen that the error acts as a simple gain in the non-
incremental controller, leading to an incorrect angular accel-
eration. On the contrary, the proposed incremental controller
compares the expected angular acceleration from the motor
speeds, i.e., k̄G

J̄yy
ωf , to the measured angular acceleration, i.e.,

αf , to implicitly correct for the modeling error. The corre-
sponding angular acceleration responses for several values of
∆ are shown in Fig. 8. The figure shows that the modeling
error affects the transient response, but that the incremental
controller is able to correct for it and quickly reaches the
commanded acceleration value even for very large model
discrepancies.

In order to assess the effect of modeling errors on acceler-
ation tracking, we simulate the time response to the following
acceleration reference:

ax,ref (t) =
1

2
tanh

(
4

3
πt− 2π

)
+

1

2
, (49)

which is C2, i.e., the corresponding jerk and snap signals
are continuous, and has boundary conditions ax,ref (0) =
jx,ref (0) = sx,ref (0) = jx,ref (3) = sx,ref (3) = 0 and
ax,ref (3) = 1 m/s2. The responses for various values of ∆ are
shown in Fig. 9. It can be seen that the incremental controller
is able to accurately track the reference signal even when large
modeling errors are present. When non-incremental control is
used, the tracking performance declines more severely with
growing modeling error.
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Fig. 9: Simulated linear acceleration tracking response for various modeling errors.
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Fig. 10: Simulated linear acceleration
tracking response using the proposed
controller with and without jerk and snap
tracking.

C. Jerk and Snap Tracking

Jerk and snap tracking is a crucial aspect of the proposed
controller design that enables tracking of fast-changing accel-
eration references. It is embodied by the feedforward terms kqs
and s2 in the nominator of the acceleration response transfer
function

ax
ax,ref

(s) =
M(s)

(
s2 + kqs+ kθ

)
s2 + kqH(s)M(s)s+ kθM(s)

. (50)

These feedforward terms add two zeros to the closed-loop
transfer function. These zeros — in combination with the LPF
— act essentially as a lead compensator and help improve
the transient response of the system. Effective placement of
the zeros through tuning of kq leads to improved tracking
of a rapidly changing acceleration input signal, e.g., during
aggressive flight maneuvers.

Figure 10 shows the simulated acceleration responses with
and without jerk and snap tracking to the reference signal
defined in (49). It can be seen that the inclusion of jerk
and snap tracking causes a faster response, resulting in more
accurate acceleration tracking. In the next section, we show
that the improvement is also achieved in practice.

V. EXPERIMENTAL RESULTS

In this section, experimental results for high-speed, high-
acceleration flight are presented. A video of the experiments
is available at https://youtu.be/K15lNBAKDCs. We evaluate
the performance of the trajectory tracking controller on two
trajectories that include yawing, tight turns with acceleration
up to over 2g, and high-speed straights at up to 12.9 m/s.

Furthermore, we examine the effect of the feedforward inputs
based on the reference trajectory jerk and snap. We establish
the independence of any model-based drag estimate by at-
taching a drag-inducing cardboard plate that more than triples
the frontal area of the vehicle. Robustness against external
disturbance forces is further displayed by pulling on a string
attached to the quadcopter in hover. Finally, we compare the
proposed nonlinear INDI angular acceleration control to its
linearized counterpart.

A. Experimental Setup
Experiments were performed in an indoor flight room using

the quadcopter shown in Fig. 1. The quadrotor body is
machined out of carbon fiber composite with balsa wood core.
The propulsion system consists of T-Motor F35A ESCs and
F40 Pro II Kv 2400KV motors with Gemfan Hulkie 5055
propellers. Adjacent motors are mounted 18 cm apart. The
quadcopter is powered by a single 4S LiPo battery. Its total
flying mass is 609 g.

Control computations are performed at 2000 Hz using an
onboard STM32H7 400 MHz microcontroller running custom
firmware. On this platform, the total computation time of a
control update at 32-bit floating point precision is 16 µs. Lin-
ear acceleration and angular rate measurements are obtained
from an onboard Analog Devices ADIS16477-3 IMU at 2000
Hz, while position, velocity, and orientation measurements are
obtained from an OptiTrack motion capture system at 360 Hz
with an average latency of 18 ms. The latency is corrected
for by propagating motion capture data using integrated IMU
measurements. Motor speed measurements are obtained from

TABLE IV: 3D trajectory tracking performance for experi-
ments with forward yaw and constant yaw.

Forward yaw Constant yaw
RMS ‖x− xref‖2 [cm] 6.6 6.1
max ‖x− xref‖2 [cm] 10.8 11.9
RMS |ψ − ψref | [deg] 5.1 1.9
max |ψ − ψref | [deg] 12.8 6.4
RMS ‖v‖2 [m/s] 6.8 5.6
max ‖v‖2 [m/s] 12.9 11.3
RMS ‖a− giz‖2 [m/s2] 14.4 12.5
max ‖a− giz‖2 [m/s2] 20.8 20.0

TABLE V: Roulette curve trajectory tracking performance for:
(i) the proposed controller; (ii) jerk and snap tracking disabled;
and (iii) drag plate attached.

(i) (ii) (iii)
RMS ‖x− xref‖2 [cm] 9.0 16.8 7.6
max ‖x− xref‖2 [cm] 14.3 28.9 14.2
RMS ψ [deg] 1.8 5.3 12.6
max |ψ| [deg] 5.3 14.9 51.7
RMS ‖v‖2 [m/s] 3.7 4.3 3.8
max ‖v‖2 [m/s] 7.3 8.2 7.7
RMS ‖a− giz‖2 [m/s2] 14.0 15.2 14.2
max ‖a− giz‖2 [m/s2] 19.1 21.3 20.4

https://youtu.be/K15lNBAKDCs
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Fig. 11: Experimental flight results for 3D trajectory.
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Fig. 12: Experimental flight results for 3D trajectory: forward yaw (blue), and constant yaw (red).

the optical encoders at approximately 5000 Hz. The motor
speed and IMU measurements are low-pass filtered using a
software second-order Butterworth filter with cutoff frequency
188.5 rad/s (30 Hz).

The platform-independent controller gains listed in Table
III were used. Additionally, the controller requires several
platform-specific parameters, namely: vehicle mass m, mo-
ment of inertia J, motor time constant τm, control effec-
tiveness matrices G1 and G2, and the gain and polynomial
fit used by the motor speed controller. We obtained control
effectiveness data from static tests. In experiments, it was
found that using the controller on a different quadcopter (with
different dynamic properties, inertial sensors, and propulsion
system) required no changes to controller algorithms or gains.
After updating only the aforementioned platform-specific pa-

rameters, the controller performed without loss of tracking
accuracy.

B. Evaluation of Proposed Controller

In this section, we evaluate the performance of the trajectory
tracking controller on two trajectories: a 3D trajectory that
includes a high-speed straight and fast turns, and a roulette
curve trajectory consisting of fast successive turns resulting
in high jerk and snap. The 3D trajectory is generated from
a set of waypoints using the method described in [50]. The
trajectory is flown with two yaw references: forward yaw,
i.e., with the bx-axis in the velocity direction, and constant
yaw set to zero. Figure 11 shows the corresponding reference
trajectories, along with experimental results. The forward yaw
trajectory is flown in slightly shorter time. Performance data
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Fig. 13: Experimental flight results for roulette curve trajectory: reference trajectory (green), proposed controller (blue), without
jerk and snap tracking (red), and with drag plate attached (magenta).

for both trajectories are given in Table IV and shown in Fig.
12. Over the forward yaw trajectory a maximum speed of 12.9
m/s is achieved, while the RMS tracking error is limited to
6.6 cm. The vehicle attains a maximum proper acceleration
of 20.8 m/s2 (2.12g). Similar values can be observed for the
constant yaw trajectory. The most significant difference is a
reduction in yaw tracking error from an RMS value of 5.1 deg
to 1.9 deg and from a maximum value of 13 deg to 6.4 deg.

The second, roulette curve trajectory is defined as

σref (t) =


r1 cos k1t+ r2 cos k2t+ r3 sin k3t
r4 sin k1t+ r3 sin k2t+ r5 cos k3t

rz
0

 (51)

with r1 = 6 m, r2 = 1.8 m, r3 = 0.6 m, r4 = -2.25 m,
r5 = -0.3 m, r6 = -0.45 m, k1 = 0.28 rad/s, k2 = 2.8
rad/s, k3 = 1.4 rad/s, and rz a constant offset. The trajectory,
shown in Fig. 13(a), contains fast, successive turns. Accurate
tracking is particularly demanding as it requires fast changes in
acceleration, i.e., large jerk and snap, requiring high angular
rates and angular accelerations. A single lap is traversed in
22.4 s. The position tracking error is shown in blue in Fig.
13(b), and tracking performance metrics are given in the first
column of Table V. Comparison of the position tracking error
to the values in Table IV confirms that the controller achieves
consistent performance across trajectories. Due to its arduous
nature, the roulette curve trajectory is particularly suitable to
expose differences in tracking performance. Therefore, we use
the trajectory defined by (51) to examine several modifications
in subsequent sections. In all cases, the trajectory parameters
are identical to those given above.

Fig. 14: Quadrotor with 16 cm × 32 cm cardboard drag plate.

C. Jerk and Snap Tracking

The red curves in Fig. 13 correspond to our proposed
control design, but with jerk and snap tracking disabled, i.e.,
Ωref = Ω̇ref = 03×1. Examination of the figures shows
the significant improvement in trajectory tracking performance
obtained through the tracking of the jerk and snap feedforward
terms. This observation is confirmed by comparing the first
two columns of Table V. It can be seen that the RMS position
tracking error increases from 9.0 cm to 16.8 cm when jerk
and snap tracking are disabled. In Section IV, it was shown
that lead compensation provided by jerk and snap tracking
results in improved performance when tracking fast-changing
acceleration commands. This effect can also be observed in
Fig. 13. It can be seen that the system response has less
overshoot when jerk and snap tracking are enabled, conform
the analytical response of the linearized system.
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Fig. 15: Estimated external disturbance force for roulette curve
trajectory: proposed controller (blue), and with drag plate
attached (magenta).

D. Increased Aerodynamic Drag

The magenta curves in Fig. 13 correspond to the trajectory
tracking controller as described in this paper, but using the
quadcopter with attached drag plate. The drag plate is a 16
cm × 32 cm cardboard plate that is attached to the bottom
of the quadrotor, as shown in Fig. 14. The plate more than
triples the frontal surface area of the quadrotor, and as such
has a significant effect on the aerodynamic force and moment
that act on the vehicle, especially during high-speed flight, and
fast pitch and yaw motion. The flight controller is not adapted
in any way to account for either these aerodynamic effects, or
the changes in mass and moment of inertia.

Comparison of columns (i) and (iii) in Table V shows that
the drag plate does not significantly affect position tracking
performance. Yaw tracking performance is also consistent,
except when the drag plates generates an external yaw moment
that causes motor speed saturation and very large momen-
tary yaw tracking error. The consistent tracking performance
demonstrates the robustness property of INDI. Controllers that
depend on the estimation of drag forces based on velocity,
such as [29] and [43], may suffer from much larger loss of
tracking performance when the aerodynamic properties of the
vehicle are modified. Instead of depending on a model-based
drag estimate, INDI counteracts the disturbance force and
moment by sensor-based incremental control. The controller
implicitly estimates the external force by (18). In Fig. 15,
it can be seen that the drag plate has a significant effect
on the external disturbance force: its estimated magnitude
is approximately tripled. In order to counteract the greater
external force, commanded thrust and vehicle pitch increase
when the drag plate is attached.

E. Nonlinear Control Effectiveness Inversion

We also compare our proposed nonlinear inversion of the
control effectiveness (33), with linearized INDI as presented in

[19]. In the latter case, control moment and thrust commands
are tracked using linearized inversion of (5), as follows:

ωc = ωf +
(
2G1 + ∆t−1G2

)([
µc − µf
Tc − Tf

]
+ ∆t−1G2B(ωc − ωf )

)
, (52)

where B is the one-sample backshift operator and ∆t is
the controller update interval. This linearized inversion does
not take into account local nonlinearity of (5), nor does
it consider the transient response of the motors. Therefore,
nonlinear inversion of (33) — as described in Section III-E
— theoretically results in improved tracking of the angular
acceleration command and thereby in improved trajectory
tracking performance.

In experimental flights we found that the difference between
nonlinear and linearized inversion does not lead to significant
differences in tracking performance for our quadrotor system.
However, we found that the failure to properly consider the
transient response of the motors in (52) can be detrimental
for controller performance. In particular, if the motor time
constant τm and the controller interval ∆t differ greatly, this
may result in fast yaw oscillations. Consideration of the motor
time constant τm, as in (33), resolves this issue.

F. Hover with Disturbance Force

For a constant σref input, i.e., hover, the controller con-
sistently achieves sub-centimeter position tracking error if no
external disturbance is purposely applied. In this section, we
present results for hover with an external disturbance force
through a tensioned wire. One end of the wire is attached to
the bottom plate of the quadrotor. We pull on the other end
of the wire to drag the vehicle away from its hover position.

In Fig. 16, it can be seen that the quadrotor maintains its
position to within at most 4 cm, while a changing disturbance
force is applied through the wire. The largest position error
occurs around 10 s when an external force of approximately
3.7 N is applied. Figure 17 shows the estimated external
disturbance force, computed according to (18). The force com-
ponent in the iz-direction has a small steady-state value due
to discrepancy between true and estimated thrust. Comparison
to Fig. 18 shows that the direction of the estimated external
disturbance force vector corresponds to the direction of the
wire. For example, at 22 s, Fig. 17 shows that the external force
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0.03

0.04

Fig. 16: Euclidean norm of position error for hover with
disturbance force through tensioned wire.
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Fig. 17: Estimated external disturbance force for hover with
disturbance force through tensioned wire.

has a negative component in the ix-direction and a positive
component in the iy-direction, and in Fig. 18(a) the wire is
indeed tensioned in negative ix- and positive iy-direction.

VI. CONCLUSIONS

In this paper, we proposed a novel control system for the
tracking of aggressive, i.e., fast and agile, trajectories for
quadrotor vehicles. Our controller tracks reference position
and yaw angle with their derivatives of up to fourth order,
specifically, the position, velocity, acceleration, jerk, and snap
along with the yaw angle, yaw rate and yaw acceleration
using incremental nonlinear dynamic inversion and differential
flatness. The tracking of snap was enabled by closed-loop con-
trol of the propeller speeds using optical encoders attached to
each motor hub. The resulting control system achieves 6.6 cm
RMS position tracking error in agile and fast flight, reaching
a top speed of 12.9 m/s and acceleration of 2.1g, in an 18
m long, 7 m wide, and 3 m tall flight volume. Our analysis
and experiments demonstrated the robustness of the control
design against external disturbances, making it particularly
suitable for high-speed flight where significant aerodynamic
effects occur. The proposed controller does not require any
modeling or estimation of aerodynamic drag parameters.
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Ph.D. dissertation, École Nationale Supérieure des Mines de Paris, 1992.

[22] M. Van Nieuwstadt, M. Rathinam, and R. Murray, “Differential flatness
and absolute equivalence of nonlinear control systems,” SIAM Journal
on Control and Optimization, vol. 36, no. 4, pp. 1225–1239, 1998.

[23] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence
and trajectory generation,” California Institute of Technology, Tech. Rep.
2003.008, 2003.
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