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Abstract. Brenier’s theorem is a cornerstone of optimal transport that
guarantees the existence of an optimal transport map T between two
probability distributions P and Q over Rd under certain regularity
conditions. The main goal of this work is to establish the minimax esti-
mation rates for such a transport map from data sampled from P and
Q under additional smoothness assumptions on T . To achieve this goal,
we develop an estimator based on the minimization of an empirical ver-
sion of the semi-dual optimal transport problem, restricted to truncated
wavelet expansions. This estimator is shown to achieve near minimax
optimality using new stability arguments for the semi-dual and a com-
plementary minimax lower bound. Furthermore, we provide numerical
experiments on synthetic data supporting our theoretical findings and
highlighting the practical benefits of smoothness regularization. These
are the first minimax estimation rates for transport maps in general
dimension.
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1. INTRODUCTION

Wasserstein distances and the associated problem of optimal transport date back to the work of
Gaspard Monge [Mon81] and have since then become important tools in pure and applied math-
ematics [Vil03, Vil09, San15]. Tools from optimal transport have been successfully employed in
machine learning [AGCJ18, PC19, SHB+18, FCCR18, ACB17, GPC18, JCG18, MMC16, RCP16,
SHB+17, GJB19, SCSJ17, AJJ18, ACB17, DBGGL19, CR12] computer graphics [LCCS18, SdGP+15,
SPKS16, FCVP17], statistics [SC15, AGP18, RW18, WB19, ZP19, PZ19, BGK+17, CSB+18,
RTC17, CS18, TM18, KTM18, BCP17, dBGLL19, KSS19], and, more recently, computational
biology [SST+19, YDV+18].

Monge asked the following question: Given two probability measures P,Q in Rd, how can we
transport P to Q while minimizing the total distance traveled by this transport. A classical instan-
tiation of this problem over Rd is to find a map T0 : Rd → R

d that minimizes the objective

min
T

∫
Rd

‖T (x)− x‖22 dP (x), s.t. T#P = Q, (1.1)
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2 HÜTTER AND RIGOLLET

which is known as the Monge problem, where T#P denotes the push-forward of P under T , that is,

T#P (A) = P (T−1(A)), for all Borel sets A. (1.2)

The highly non-linear constraint in (1.2) made the mathematical treatment of the Monge problem
seem elusive for a long time, until the seminal work of Kantorovich [Kan42, Kan48], who considered
the following relaxation. Instead of looking for a map T0, look for a transport plan Γ0 in the set
of all possible probablity measures on Rd ×Rd whose marginals coincide with P and Q, which we
denote by Π(P,Q). This leads to the optimization problem

min
Γ

∫
‖x− y‖22 dΓ(x, y) s.t. Γ ∈ Π(P,Q), (1.3)

which is known as the Kantorovich problem, and whose value is the square of the 2-Wasserstein
distance, W 2

2 (P,Q), between the two probability measures P and Q. The two optimization prob-
lems are indeed linked: Brenier’s Theorem (Theorem 1 below), guarantees that under regularity
assumptions on P , a solution Γ0 to (1.3) is concentrated on the graph of a map T0. That is, using a
suggestive informal notation, Γ0(x, y) = P (x) δy=T0(x), where δ denotes a point mass. Moreover, T0

is the gradient of a convex function f0. While cost functions other than ‖x−y‖22 could be of interest,
such as ‖x−y‖p2 for p ≥ 1, this work entirely focuses on the quadratic cost, which allows leveraging
the well-established theory of convex functions and formulating key assumptions in terms of strong
convexity.

Statistical optimal transport describes a body of questions that arise when the measures P and Q
are unknown but samples are available. While the question of estimation of various quantities such
as W2(P,Q), for example, are of central importance, for applications such as domain adaptation
and data integration [DKF+18, CFT14, CFHR17, SDF+18, PCFH16, CFTR17, FHN+19, RW19],
the main quantity of interest is the transport map T0 itself since it can be used to push almost every
point in the support of P to a point in the support of Q. Moreover, the optimal transport map plays
an important role in characterizing the Riemannian geometry that arises from endowing probability
measures that have finite second moments with the 2-Wasserstein-distance. In particular, it can
be used to define the right-inverse to the exponential map in that space [Gig11], which in turn
enables the generalization of PCA (principal component analysis) to spaces of probability measures
[BGK+17, MPZ19]. The goal of this paper is to study the rates of estimation of a smooth transport
map T0 from samples.

To fix a concrete setup assume that we have at our disposal 2n independent observations
X1, . . . , Xn from P and Y1, . . . , Yn from Q, based on which we would like to find an estimator
T̂ for T0. This statistical problem poses several challenges:
(i) The most straightforward estimator is obtained by replacing P and Q by their empirical coun-
terparts [MC98]. It leads to a finite-dimensional linear problem that can be approximated very
efficiently due to recent algorithmic advances [Cut13, AWR17, PC19, DGK18]. However, even
if the resulting optimizer Γ̂ is actually a map (matching), which it is not in general, it is not
defined outside the sample points. In particular, it does not indicate how to transport a point
x /∈ {X1, . . . , Xn}. In contrast, we would like to obtain an estimator T̂ with guarantees in L2(P ),
that is, with convergence of

‖T̂ − T0‖2L2(P ) :=

∫
‖T̂ (x)− T0(x)‖22 dP (x) . (1.4)

Note that such an estimator of T0 could be obtained by post-processing the above optimizer Γ̂, for
example by interpolation techniques, see [ABM16]. We also employ related techniques in Section
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6 to obtain practical estimators for T0. However, we are not aware of a statistical analysis of these
procedures.
(ii) It is known that the estimator W 2

2 (P̂ , Q̂) can be a poor proxy for W 2
2 (P,Q) if the underlying

dimensionality of the distributions P and Q is large, as it suffers from the so-called curse of dimen-
sionality. For example, if both P and Q are absolutely continuous with respect to the Lebesgue
measure in Rd, d ≥ 4, it is known that up to logarithmic factors, E[|W2(P̂ , Q̂)−W2(P,Q)|] � n−1/d

(see [NWR19]). In fact, we show in Theorem 6 that without further assumptions on either P,Q, or
T0, no estimator can have an expected squared loss (1.4) uniformly better than n−2/d.
(iii) While many heuristic approaches have been brought forward to address the previous point,
a thorough statistical analysis of the rate of convergence has so far been lacking. This can be
partly attributed to the structure (or lack thereof) of problem (1.3). Being a linear optimization
problem, it lacks simple stability estimates that are key to establish statistical guarantees by relating
‖T̂ − T0‖L2(P ) to the sub-optimality gap∫

Rd

‖T̂ (x)− x‖22 dP (x)−
∫
Rd

‖T0(x)− x‖22 dP (x).

In this paper, we aim to address these problems by imposing additional assumptions on the
transport map T0 that lead to a rate faster than n−2/d. One assumption we impose on the transport
map T0 is smoothness, a standard way of alleviating the curse of dimensionality in non-parametric
estimation. Another key assumption is based on an observation of Ambrosio published in an article
by Gigli [Gig11]. They show that the optimization problem (1.1) has quadratic growth, in the sense
of a stability estimate

‖T − T0‖2L2(P ) .
∫
Rd

‖T (x)− x‖22 dP (x)−
∫
Rd

‖T0(x)− x‖22 dP (x), (1.5)

provided T0 = ∇f0 is Lipschitz continuous on Rd and T#P = Q. While this observation does not
immediately lend itself to the analysis of an estimator due to the presence of the push-forward
constraint, we show in Proposition 10 that under similar assumptions, the so-called semi-dual
problem (see (2.5) below) admits a stability estimate.

Due to the rising interest in Optimal Transport as a tool for statistics and machine learning,
many empirical regularization techniques have been proposed, ranging from the computationally
successful entropic regularization [Cut13, GCPB16, AWR17], `2-regularization [BSR17], smoothness
regularization [PCFH16], to regularization techniques specifically adapted to the application of
domain adaptation [CFT14, CFTR17, CFHR17]. Notably, [GCPB16] also consider regularization
based on the semi-dual objective and reproducing kernel Hilbert spaces. However, the statistical
performance of these regularization techniques to estimate transport maps from sampled data has
been largely unanswered, with the following exceptions.

The estimation of transport maps has been studied in the one-dimensional case under the name
uncoupled regression [RW19] where the sample Y1, . . . , Yn is subject to measurement noise. There,
the main statistical difficulty arises from the presence of this additional noise and boils down to
obtaining deconvolution guarantees in the Wasserstein distance. Such guarantees were recently
obtained under smoothness assumptions on the underlying density [CCDM11, DM13, DFM15] but
they do not translate directly into rates of estimation for the optimal transport map beyond the 1D
case. Note that in the presence of Gaussian measurement noise, the rates of estimation are likely
to become logarithmic rather than polynomial as deconvolution is a statistically difficult task.

Concurrently to this work, [FLF19] study the estimation of linear transport maps and establish
a fast rate of convergence in this parametric setup. Moreover, after finishing the first version of
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this paper, the authors became aware of the parallel work [Gun18]. There, Gunsilius analyzes the
asymptotic variance of an estimator for f0 under smoothness assumptions on the densities of the
marginals P and Q and states the problem of obtaining estimation rates for the transport map T0

explicitly as an open problem, which we address in this paper. A similarity between [Gun18] and
this work is that the rates for the variance are obtained by applying empirical process theory to the
semi-dual objective function. However, we note the following key differences: First, Gunsilius obtains
curvature estimates for the semi-dual objective via variational techniques, while we use strong
convexity of the candidate potentials. Note that under slightly stronger regularity assumptions, i.e.,
uniform convexity of the supports, his assumptions would imply strong convexity for the ground
truth potential, as shown in [Gig11]. Second, by assuming smoothness of the transport map instead
of the distributions P and Q, our results are more flexible and can be applied in cases where
neither distribution possesses Hölder smooth densities. Third, by appealing to Cafarelli’s global
regularity theory, [Vil09, Theorem 12.50(iii)], [Caf92b, Caf92a, Caf96], we can obtain a variance rate
of n−2α/(2α−2+d) (up to log factors) under assumptions quantitatively comparable to Gunsilius’s,
while his results imply a sub-optimal rate of n−(2α−2)/(2α−2+d), see Section E in the appendix.

We note that both in the application of Caffarelli’s theorem in Appendix E and in the state-
ment of our main result, Theorem 2 below, currently available analytical tools limit the extent
to which minimax results can be established. In Appendix E, the lack of uniformity in Cafarelli’s
global regularity theory prevents us from claiming (near) minimax optimality over Hölder smooth
densities, see Remark 36. Similarly, in Theorem 2, (near) minimax optimality is attained by consid-
ering fixed marginal supports because of the need for uniformly bounded constants in some of the
classical inequalities we employ (for example, Poincaré inequality), see Remark 3. In effect, further
strengthening these minimax results poses an interesting open problem involving deep analytical
questions.

The rest of this paper is organized as follows. In Section 2, we review some important concepts of
optimal transport, mainly duality and Brenier’s theorem. These are instrumental in the definition
of our estimator, which is postponed to Section 5. Indeed, since the main goal of this paper is to
establish minimax rates of convergence for smooth transport maps, we present these rates in Sec-
tion 3 and prove lower bounds in the following Section 4, since this proof illustrates well the source
of the nonstandard exponent in the rates. We then proceed to Section 5 where we define a minimax
optimal estimator constructed as follows. First, we define an estimator for the optimal Kantorovich
potential as the solution to the empirical counterpart of the semi-dual problem restricted to a class
of wavelet expansions. Then, our estimator is defined as the gradient of this potential. We prove that
it achieves the near-optimal rate in the same section. In Section 6, we present numerical experiments
on synthetic data, introducing two estimators that exploit smoothness of the transport map. The
first illustrates that a version of the estimator considered in Section 5 can in fact be implemented,
at least in low dimensions. The second is heuristically motivated and based on kernel-smoothing the
transport plan between empirical distributions, showing that practical gains in higher dimensions
can be achieved for smooth transport maps. Finally, some useful facts from convex analysis (Section
A), approximation theory for wavelets (Section B), empirical process theory (Section C), and tools
for proving lower bounds (Section D), are appendix. Moreover, the appendix also contains a version
of our upper bounds based on smoothness assumptions on the densities instead of the transport
map (Section E), the deferred proofs (Section F), additional lemmas (Section G), and more details
on the numerical experiments (Section H).
Notation. For any positive integer m, define [m] := {1, . . . ,m}. We write |A| for the cardinality
of a set A. The relation a . b is used to indicate that two quantities are the same up to a constant
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C, a ≤ Cb. The relation & is defined analogously, and we write a � b if a . b and a & b. We denote
by c and C constants that might change from line to line and that may depend on all parameters
of the statistical problem except n. We abbreviate with a ∨ b, a ∧ b the maximum and minimum
of a ∈ R and b ∈ R, respectively. For a ∈ R, the floor and ceiling functions are denoted by bac
and dae, indicating rounding a to the next smaller and larger integer, respectively. We use supp f
to denote the support of a function or measure f , and diam Ω for the diameter of a set Ω ⊆ Rd.
We denote by B1 the unit-ball with respect to the Euclidean distance in Rd, where d should be
clear from the context. For a real symmetric matrix A and λ ∈ R, we write λ � A if all eigenvalues
of A are bounded below λ, and similarly for A � λ. Moreover, we denote the smallest and largest
eigenvalues of A by λmin(A), λmax(A), respectively.

For p ∈ [1,∞], we denote by `p either the space Rd endowed with the usual `p norms ‖ . ‖p, or, by
abuse of notation, the spaces of multi-dimensional sequences γ : Zm → R with ‖γ‖p`p =

∑
k∈Zm |γk|p

for m ∈ N. Further, for p ∈ [1,∞], we denote by Lp the Lebesgue spaces of equivalence classes of
functions on Rd or subsets Ω ⊆ Rd with respect to the Lebesgue measure λ on Rd, whose norms
we denote by ‖ . ‖Lp(Rd) and ‖ . ‖Lp(Ω), respectively. By abuse of notation, for a different measure P ,
we denote the associated Lebesgue norms by ‖ . ‖Lp(P ). We abbreviate with “a.e.” any statement
that holds “almost everywhere” with respect to the Lebesgue measure.

For a differentiable one-dimensional function f : R ⊇ Ω → R, we denote its derivative by d
dxf .

For a function f : Rd ⊇ Ω→ R, we denote by ∂i = ∂/(∂xi) its weak derivative in the sense of distri-
butions in direction xi, which coincides with the usual (point-wise) derivative if f is differentiable
in Ω. For a multi-index [ ∈ Nd, we set

∂[f =
∂

∂[1x1
. . .

∂

∂[dxd
f, and |[| =

d∑
i=1

[i.

The symbol ∂f is also used to denote the sub-differential of a convex function f , while we use
the symbols ∇f for the gradient of a function f and Dg for the derivative of a vector-valued
function g : Rd1 ⊇ Ω → R

d2 , ∇f = (∂1f, . . . , ∂df)> and Dg = (∇g1, . . . ,∇gd2)> respectively, and
D2f = D∇f denotes the Hessian of f .

If Ω ⊆ Rd is a closed set with non-empty interior and α > 0, the Hölder spaces on Ω as defined
in Appendix B are denoted by Cα(Ω) and their associated norms by ‖ . ‖Cα(Ω). Similarly, the p-
Sobolev spaces of order α for p ∈ [1,∞] are denoted by Wα,p(Ω) with norms ‖ . ‖Wα,p(Ω), as defined
in Appendix B.

We say that Ω ⊆ Rd is a Lipschitz domain if its boundary can be locally expressed as the sublevel
set of Lipschitz functions [Tri06, Definition 1.103].

2. BRENIER’S THEOREM AND THE SEMI-DUAL PROBLEM

We begin by recalling the Monge and Kantorovich problems given in Section 1. Let P, Q be two
Borel probability measures on Rd with finite second moments.

The Monge (primal) problem is defined as

min
T
PM(T ) s.t. T#P = Q ,

where PM(T ) :=
1

2

∫
Rd

‖T (x)− x‖22 dP (x),

and the push-forward T#P is defined as T#P (A) = P (T−1(A)) for all Borel sets A.
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Its relaxation, the Kantorovich (primal) problem, is given by

min
Γ
P̃K(Γ) s.t. Γ ∈ Π(P,Q) (2.1)

where P̃K(Γ) :=
1

2

∫
‖x− y‖22 dΓ(x, y),

and Π(P,Q) denotes the set of couplings between P and Q, that is, the set of probability measures
Γ on Rd ×Rd such that Γ(A×Rd) = P (A) and Γ(Rd ×A) = Q(A) for all Borel set A ⊂ Rd.

The value of problem (2.1) is the square of the 2-Wasserstein distance, denoted by

W 2
2 (P,Q) := min

Γ∈Π(P,Q)
P̃K(Γ).

Note that we can expand the objective in (2.1) as

P̃K(Γ) =
1

2

∫
‖x− y‖22 dΓ(x, y)

=
1

2

∫
‖x‖22 dP (x) +

1

2

∫
‖y‖22 dQ(y)−

∫
〈x, y〉 dΓ(x, y),

Since the first two terms above do not depend on Γ, we obtain the equivalent optimization problem

max
Γ
PK(Γ) s.t. Γ ∈ Π(P,Q) , where PK(Γ) :=

∫
〈x, y〉dΓ(x, y) . (2.2)

We focus on this equivalent formulation for the rest of the paper because it is more convenient to
work with.

Problem (2.2) is a linear optimization problem, albeit an infinite-dimensional one. Hence, it is
natural to consider its dual problem:

min
f,g

∫
f(x) dP (x) +

∫
g(y) dQ(y) s.t. (2.3)

f(x) + g(y) ≥ 〈x, y〉 , P ⊗Q-a.e,
f ∈ L1(P ), g ∈ L1(Q).

The dual variables f and g are called potentials, and for an optimal pair (f0, g0), f0 is called a
Kantorovich potential.

The dual problem (2.3) can be further simplified: Assume we are given a candidate function f
in (2.3) above. Then, we can formally solve for the corresponding g to get an optimal g given by
the Legendre-Fenchel conjugate (see Section A) of f :

gf (y) = sup
x∈Rd
〈x, y〉 − f(x) = f∗(y), (2.4)

Plugging solution (2.4) back into the optimization problem leads to the so-called semi-dual
problem,

min
f
S(f) =

∫
f(x) dP (x) +

∫
f∗(y) dQ(y) s.t. f ∈ L1(P ), (2.5)

where the supremum in (2.4) is interpreted as an essential supremum with respect to P . By tran-
sitioning to the semi-dual, we effectively solved for all constraints in (2.3), leaving us with an
unconstrained convex problem that is not linear anymore. Under regularity assumptions, a solution
to the semi-dual provides a solution to the Monge problem as indicated by the following theorem,
which is a cornerstone of modern optimal transport.
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Theorem 1 (Brenier’s theorem, [KS84, Bre91, RR90]). Assume P is absolutely continuous
with respect to the Lebesgue measure and that both P and Q have finite second moments. Then,
a unique optimal solution to (2.2) exists and is of the form Γ0 = (id, T0)#P , where T0 = ∇f0 is
the gradient of a convex function f0 : Rd → R. In fact, f0 can be chosen to be a minimizer of the
semi-dual objective in (2.5).

Brenier’s theorem implies that a solution to the semi-dual problem readily gives an optimal
transport map. Our strategy is to minimize an approximation of the semi-dual and establish stability
results as well as generalization bounds to conclude that the minimizer to the approximation is close
to the minimizer of the original problem.

3. MAIN RESULTS

Let X1:n = (X1, . . . , Xn) and Y1:n = (Y1, . . . , Yn) be n independent copies of X ∼ P and Y ∼
Q = (T0)#P respectively. Furthermore, assume that X1:n and Y1:n are mutually independent. Our
goal is to estimate T0. To that end, we consider the following set of assumptions on P, Q and T0.
Throughout, we fix a constant M ≥ 2.

A1 (Source distribution). LetM =M(M) be the set of all probability measures P with support
Ω = [0, 1]d that admit a density ρP with respect to the Lebesgue measure such that M−1 ≤ ρP (x) ≤
M for almost all x ∈ Ω. Assume that the source distribution P is in M.

A2 (Transport map). Let Ω̃ = [−1, 2]d denote the enlargement of Ω by 1 in every direction.
Let T = T (M) be the set of all differentiable functions T : Ω̃ → R

d such that T = ∇f for some
differentiable convex function f : Ω̃→ R

d and

(i) |T (x)| ≤M for all x ∈ Ω̃,
(ii) M−1 � DT (x) �M for all x ∈ Ω̃,

(iii) suppT#P = Ω = [0, 1]d .

For R > 1 and α > 1, assume that T0 ∈ Tα = Tα(M,R), where

Tα(M,R) = {T ∈ T (M) : T is bαc-times differentiable and ‖T‖Cα(Ω̃) ≤ R}.

Our main result is the following theorem. It characterizes, up to logarithmic factors, the minimax
rate of estimation of an α-smooth transport map T0 ∈ Tα in the setup described above.

Theorem 2. Fix α ≥ 1, then

inf
T̂

sup
P∈M, T0∈Tα

E

[∫
‖T̂ (x)− T0(x)‖22 dP (x)

]
& n−

2α
2α−2+d ∨ 1

n
. (3.1)

where the infimum is taken over all measurable functions T̂ of the data X1:n = (X1, . . . , Xn), Y1:n =
(Y1, . . . , Yn). Moreover, if P ∈ M and T0 ∈ Tα, there exists an estimator T̂ , given in Section 5,
that is near minimax optimal. More specifically, there exists an integer n0 = n0(d, α,M,R) such
that for any n ≥ n0, it holds,

sup
P∈M, T0∈Tα

E

[∫
‖T̂ (x)− T0(x)‖22 dP (x)

]
. n−

2α
2α−2+d (log(n))2 ∨ 1

n
. (3.2)
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Remark 3. Assumption A1 can be significantly relaxed with respect to the geometry of Ω and
the density of P . In fact, the upper bounds are given under more general assumptions in Section 5.
Similarly, the assumption A2(iii) that supp(Q) = [0, 1]d can also be relaxed.

However, the constants in the resulting upper bounds exhibit a dependence on the geometry of
the supports of both P and Q as well as on the enclosing set Ω̃ through functional analytical results
used in the proofs. While it may be possible to make this dependence explicit in terms of geometric
features of the sets supp(P ), supp(Q) and Ω̃—see for example [Jon81, ENT11, TMS+13] for such
estimates under restrictive assumptions—providing a uniform control on these quantities in terms
of easily interpretable properties of the sets is beyond the scope of this article. Instead, we chose to
present Theorem 2 under these simplified assumptions to make the results more readable.

To discuss the remaining assumptions, we note that the most essential ones to obtain upper
bounds are the following: first, the lower bound in A2 (ii), M−1 � DT (x), in particular on the
support of P , x ∈ Ω. This yields convergence estimates for the optimal transport map as shown in
[Gig11], see (1.5), and might be necessary to obtain fast rates for transport map estimation since
it provides curvature estimates commonly needed to prove error bounds for M-estimators [VdV00,
Chapter 5]. Second, the Sobolev regularity of T0 is what governs the approximation rates of T0 by
wavelet expansions (see Section 5.5 below) and thus enables fast rates via a bias-variance trade-off.
All remaining assumptions in A1 and A2, including the existence of extensions of T0 to a superset
Ω̃, are of technical nature and serve to give explicit bounds as needed in the proof of the upper
bound. While one might be able to relax these assumptions, especially in specific problem instances,
we do not pursue this here beyond the more general versions given in B1 and B2 below.

We conjecture that the logarithmic terms appearing in the upper bound are superfluous and
arise as an artifact of our proof techniques. We briefly make a qualitative comment on the rate

n−
2α

2α−2+d . Note first that it appears from this rate that estimation of transport maps, like the
estimation of smooth functions suffers from the curse of dimensionality. However, as α → ∞, this
curse of dimensionality may be mitigated by extra smoothness with the parametric rate n−1 as
a limiting case. Note also that we can formally take the limit α → 1, which corresponds to the
case where no additional smoothness condition holds beyond having a strongly convex Kantorovich
potential with Lipschitz gradient. This is essentially the minimal structural condition arising from
Brenier’s theorem with additional bounds on the derivative of T0. In this case, one formally recovers
the rate n−2/d and we conjecture that this is the minimax rate of estimation in the context where
T0 is only assumed to be the gradient of a strongly convex function with Lipschitz gradient. If either
of these two additional requirements is not fulfilled, our stability results no longer hold.

Remark 4. Since the transport map T0 is the main focus of our results, our assumptions impose
smoothness directly on T0. In fact, smoothness of T0 can also be seen as a consequence of smoothness
of the source and target distribution using Caffarelli’s regularity theory [Caf92b, Caf92a, Caf96].
For completeness, we also give a version of our upper bound results under smoothness assumptions
on P and Q in Theorem 33, Section E of the Appendix.

Remark 5. By prescribing a known base measure P , such as the uniform distribution on [0, 1]d,
and considering Q̃ = T̂#P , estimation rates for T̂ immediately translate into rates for estimating
Q in the 2-Wasserstein distance [WB17, SP18, WB19]. In fact, W 2

2 (Q̃,Q) can be bounded by
EP [‖T̂ − T0‖22], since (T̂ , T0)#P is a candidate transport plan between Q and Q̃. Up to log factors,
our rates obtained below match those obtained in [WB19] for the estimation of a smooth density on
[0, 1]d in the 2-Wasserstein distance.
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4. LOWER BOUND

In this section we begin by proving the lower bound (3.1) as it sheds light on the source of the
non-standard exponent 2α

2α−2+d in the minimax rate. We prove the following theorem.

Theorem 6. Fix α ≥ 1. It holds that

inf
T̂

sup
P∈M, T0∈Tα

E

[∫
‖T̂ (x)− T0(x)‖22 dP (x)

]
& n−

2α
2α−2+d ∨ 1

n
.

where the infimum is taken over all measurable functions of X1, . . . , Xn, Y1, . . . , Yn.

Proof. The proof uses standard tools to establish minimax lower bounds, [Tsy09, Theorem 2.5,
Lemma 2.9, Theorem 2.2], that we restate in Appendix D for the convenience of the reader as
Theorem 30, Lemma 31, and Theorem 32, respectively. It relies on the following construction.

Set P = Unif([0, 1]d) ∈M, the uniform distribution on the hypercube. For α > 1, let ξ : R→ R

be a non-zero function in C∞(R) with support contained in [0, 1] such that there exists x0 ∈ [0, 1]
with ξ(x0) 6= 0, d

dxξ(x0) 6= 0, for example a bump-function. Define g : Rd → R by

g(x) =
∏
i∈[d]

ξ(xi) , x = (x1, . . . , xd) ,

and note that ∇g(x0, . . . , x0) 6= 0 and supp(g) = [0, 1]d by the above assumptions on ξ.

Let m = dθn
1

2α−2+d e be a positive integer where θ is a universal constant to be chosen later. We
form a regular discretization of the space [0, 1]d by defining the collection of vectors {x(j) : j ∈
[m]d} ⊂ [0, 1]d to have coordinates x

(j)
i = (ji − 1)/m, i = 1, . . . , d and let

gj(x) =
κ

mα+1
g(m(x− x(j))),

for a constant κ > 0 to be chosen later. Note that supp(gj) ⊆ x(j) + [0, 1/m]d and hence that the
supports of the functions {gj}j∈[m]d are pairwise disjoint.

Next, let [ ∈ Nd be a multi-index and observe that the differential operator ∂[ applied to gj
yields ∂[gj(·) = m|[|−α−1∂[g(m(· − xj)). Since ξ ∈ Cα+1, if α > 1, a second-order Taylor expansion
yields that gj has uniformly vanishing Hessian: ‖D2gj‖L∞(Rd) → 0 as m→∞. In particular, in that

case, there exists m0 such that ‖D2gj(x)‖op ≤ 1/2 for all x ∈ Rd, m ≥ m0, j ∈ [m]d. If α = 1, the
same can be obtained by choosing κ small enough. By the same reasoning, we can also guarantee
‖∇gj‖L∞(Rd) ≤ 1.

For md ≥ 8, the Varshamov-Gilbert lemma, Lemma 31, guarantees the existence of binary vectors
τ (0), τ (1), . . . , τ (K) ∈ {0, 1}[m]d , τ (0) = (0, . . . , 0), K ≥ 2m

d/8 such that ‖τ (k) − τ (k′)‖22 ≥ md/8 for
0 ≤ k 6= k′ ≤ K. With this, we define the following collection of Kantorovich potentials:

φk(x) =
1

2
‖x‖2 +

∑
j∈[m]d

τ
(k)
j gj(x) , k = 0, . . . ,K .

It is easy to see (Lemma 38) that for any k = 0, . . . ,K and m ≥ m0, ∇φk is a bijection from
[0, 1]d to [0, 1]d. Moreover, by Weyl’s inequality and the above bound ‖D2gj(x)‖op ≤ 1/2, for all k,

λmin(D2φk(x)) ≥ 1−
∑
j∈[m]d

λmax(D2gj(x)) ≥ 1

2
.
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Similarly, we obtain ‖∇φk‖L∞([0,1]d) ≤ 2 and λmax(D2φk(x)) ≤ 2 for all x ∈ Rd. Hence, Tk :=
∇φk ∈ Tα(M,R) for M > 2 and κ small enough. We now check the conditions of Theorem 30,
where we consider the distance measure

d(Tk, Tk′)
2 =

∫
[0,1]d

‖Tk − Tk′‖2 dx, , 0 ≤ k, k′ ≤ K.

First, observe that for 0 ≤ k 6= k′ ≤ K, it holds that∫
[0,1]d

‖∇φk(x)−∇φk′(x)‖2 dx

=
κ2

m2α+d

∑
j∈[m]d

(τ
(k)
j − τ (k′)

j )2

∫
Rd

‖∇g(x)‖2 dx &
1

m2α
.

This yields ∫
[0,1]d

‖∇φk(x)−∇φk′(x)‖2 dx & n−
2α

2α−2+d ,

which completes checking the separation condition (i) of Theorem 30.
To check condition (ii) of Theorem 30, recall the Kullback-Leibler (KL) divergence between two

measures Q,P such that Q is absolutely continuous with respect to P is defined by

D(Q‖P ) = E log
(dQ

dP
(W )

)
, W ∼ Q.

In view of Lemma 38, for any k = 0, . . . ,K, the measure Qk = (∇φk)#P is supported on [0, 1]d

and in particular, it is absolutely continuous with respect to P . By the change of variables formula,
it admits the density

dQk
dP

(y) :=
1

detD2φk((∇φk)−1(y))
1((∇φk)−1(y) ∈ [0, 1]d). (4.2)

Moreover, let X ∼ P and Y ∼ Qk be two random variables. It holds

D(Qk‖P ) = E log

(
dQk
dP

(Y )

)
= E log

(
dQk
dP

(
∇φk(X)

))
(4.3)

= −
∫

[0,1]d
log
(
detD2φk(x)

)
dx .

Recall that D2φk = Id +
∑

j∈[m]d τ
(k)
j D2gj where Id denotes the identity matrix in Rd. Therefore,

since the functions gj have disjoint support, we have for all x ∈ [0, 1]d that

log
(
detD2φk(x)

)
=

d∑
l=1

log
(

1 + λl
( ∑
j∈[m]d

τ
(k)
j D2gj(x)

))

=
d∑
l=1

∑
j∈[m]d

log
(

1 + τ
(k)
j λl

(
D2gj(x)

))
,
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where λl(A) denotes the lth eigenvalue of a matrix A. Since log(1 + z) ≥ z − z2/2 for all z > 0,

log
(
detD2φk(x)

)
≥
∑
j∈[m]d

τ
(k)
j Tr(D2gj(x))− 1

2

∑
j∈[m]d

‖D2gj(x)‖2F

where ‖ · ‖F denotes the Frobenius norm. Thus,

D(Qk‖P ) ≤ −
∑
j∈[m]d

τ
(k)
j

∫
[0,1]d

Tr(D2gj(x)) dx

+
1

2

∑
j∈[m]d

∫
[0,1]d

‖D2gj(x)‖2F dx.

On the one hand, by the divergence theorem and the fact that gj has bounded support,∫
[0,1]d

Tr(D2gj(x)) dx =

∫
∂[0,1]d

〈v(x),∇gj(x)〉 dx = 0 ,

where ∂[0, 1]d denotes the boundary of the unit hypercube and v(x) its outward-pointing unit
normal vector. On the other hand∑

j∈[m]d

∫
[0,1]d

‖D2gj(x)‖2F dx =
κ2

m2α−2+d

∑
j∈[m]d

∫
Rd

‖D2g(x)‖2F dx .
1

m2α−2
.

The above three displays yield

D(P⊗n ⊗Q⊗nk ‖P
⊗n ⊗ P⊗n) = nD(Qk‖P ) .

n

m2α−2
≤ md

θ
≤ logK

9

for θ large enough. This completes checking (ii) in Theorem 30 and hence the proof of the first part
of the minimax lower bound.

To show the remaining lower bound of 1/n, repeat the same argument as above with the two
potentials φ0(x) = ‖x‖22/2 and φ1(x) = φ0(x) + (θ̃/

√
n)g(x) for θ̃ chosen to ensure φ0, φ1 ∈ Tα,

applying Theorem 32 in Appendix D. The separation condition is given by∫
[0,1]d

‖∇φ0(x)−∇φ1(x)‖2 dx =
θ̃2

n

∫
[0,1]d

‖∇g(x)‖22 dx &
1

n
,

and the KL divergence between the associated probability distributions can be estimated by

D(P⊗n ⊗Q⊗n1 ‖P
⊗n ⊗ P⊗n) = nD(Q1‖P ) .

θ̃2n

n

∫
[0,1]d

‖D2g(x)‖2F dx .
1

9
,

for θ̃ large enough.

Looking back at this proof, we get a better understanding of the exponent in the minimax

rate n−
2α

2α−2+d . Given that n
− 2(β−k)

2β+d is the minimax rate of estimation of the kth derivative of a
β-smooth density in L2 [MG79], the rate that we obtain is formally that of an “antiderivative”
(k = −1) of a β = α− 1-smooth signal in this model. This is due to the fact that, on the one hand,
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the information structure, measured in terms of Kullback-Leibler divergence, is governed by the
derivative of the signal T0, i.e., the Hessian of the α + 1-smooth Kantorovich potential, see (4.3),
which is α− 1-smooth. This follows directly from the Monge-Ampère equation (4.2). On the other
hand, we measure the performance of the estimator in terms of the L2(P ) distance between T̂ and
T0, corresponding to the antiderivative of the Hessian. Of course, in the absence of the classical
fundamental theorem of calculus in dimension d > 1 for arbitrary maps T : Rd → R

d, the existence
of an antiderivative needs to be guaranteed a priori, as in the case of transport maps by assuming
T = ∇f for f : Rd → R.

Similar rates arise in the estimation of the invariant measure of a diffusion process when smooth-
ness is imposed on the drift [DR07, Str18]. This is not surprising as the drift is the gradient of the
logarithm of the density of the invariant measure in an overdamped Langevin process.

Finally, note that the multivariate case is singularly different from the traditional univariate case
where the rate of estimation of linear functionals such as anti-derivatives is known to be parametric
regardless of the smoothness of the signal [IH81].

5. UPPER BOUNDS

In this section, we give an estimator T̂ that achieves the near-optimal rate (3.2). We present this
estimator under the following more general assumptions on the distribution and the geometry of
the support of both P and Q = (T0)#P . We also need slightly weaker conditions on the regularity of
the transport map (Sobolev instead of Hölder regularity). After stating these weaker assumptions,
we present our estimator and restate the main upper bound. Its proof relies on a separate control
of approximation error and stochastic error, similar to a standard bias-variance tradeoff.

5.1 Assumptions

Throughout, we fix two constants M ≥ 2, β > 1.

B1 (Source distribution). Let M = M(M) be the set of all probability measures P whose
support ΩP ⊆MB1 is a bounded and connected Lipschitz domain, and that admit a density ρP with
respect to the Lebesgue measure such that M−1 ≤ ρP (x) ≤ M for almost all x ∈ ΩP . Assume that
the measure P ∈M.

B2 (Transport map). For any P ∈ M with support ΩP , let Ω̃P denote a convex set with
Lipschitz boundary such that Ω̃P ⊆ MB1, and ΩP + M−1B1 ⊆ Ω̃P . Let T̃ = T̃ (M) be the set of
all differentiable functions T : Ω̃P → R

d such that T = ∇f for some differentiable convex function
f : Ω̃P → R

d and

(i) |T (x)| ≤M for all x ∈ Ω̃P ,
(ii) M−1 � DT (x) �M for all x ∈ Ω̃P .

For R > 1 and α > 1, assume that

T0 ∈ T̃α = T̃α(M,R) = {T ∈ T̃ (M) : ‖T‖Cβ(Ω̃P ) ∨ ‖T‖Wα,2(Ω̃P ) ≤ R}.

These new conditions have two implications. First, they imply regularity of the Kantorovich
potential f0, where T0 = ∇f0, and second, they imply some conditions on the pushforward measure
Q = (T0)#P that subsume the generalization of Assumption A2(iii). These results are gathered in
the following proposition (see Section F.1 for a proof).
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Proposition-Definition 7. Assume that P satisfies B1, T0 satisfies B2 and let X = X (M)
be the set of all twice continuously differentiable functions f : Ω̃P → R such that

(i) |f(x)| ≤ 2M2 and |∇f(x)| ≤M for all x ∈ Ω̃P ,
(ii) M−1 � D2f(x) �M for all x ∈ Ω̃P .

Then there exists a Kantorovich potential f0 ∈ X (M) such that T0 = ∇f0,

‖f0‖Cβ+1(Ω̃P ) ∨ ‖f0‖Wα+1,2(Ω̃P ) ≤ R+ 2M3. (5.1)

Further, Q = ∇(f0)#P has a connected and bounded Lipschitz support ΩQ ⊆ MB1 and admits a
density ρQ with respect to the Lebesgue measure that satisfies M−(d+1) ≤ ρQ(y) ≤ Md+1 for all
y ∈ ΩQ.

Note that the simplified Assumptions A1 and A2 from Section 3 follow from B1 and B2 in the
case ΩP = Ω = [0, 1]d and Ω̃P = Ω̃ = [−1, 2]d. Additionally, the simplified assumptions restrict the
class of transport maps to those such that ΩQ = [0, 1]d and for which β = α. Indeed, noting that
‖T0‖Wα,2(Ω̃) . ‖T0‖Cα(Ω̃), we can fold the two smoothness conditions into one.

5.2 Estimator

To construct an estimator for T0, we observe that if we had access to a Kantorovich potential
f0, then T0 = ∇f0 by Brenier’s Theorem, Theorem 1. In turn, f0 is the minimum of the semi-
dual objective (2.5). Hence, we replace population quantities with sample ones in its definition to
obtain an empirical loss function. Moreover, to account for the assumed smoothness of the transport
map and to ensure stability of the objective, we constrain our minimization problem to smooth
and strongly convex Kantorovich potentials, restricted to a compact superset of the support of P .
Then, our estimator is the gradient of the solution to this stochastic optimization problem.

More precisely, for a measurable function f , let us write

Pf =

∫
f(x) dP (x), Qf =

∫
f(y) dQ(y),

P̂ f =
1

n

n∑
i=1

f(Xi), Q̂f =
1

n

n∑
j=1

f(Yi),

where, as in Section 3, X1:n = (X1, . . . , Xn) and Y1:n = (Y1, . . . , Yn) are n i.i.d. samples from P and
Q, respectively, that are mutually independent as well. Recall from Section 2 that the semi-dual
objective is defined as S(f) = Pf + Qf∗ for f ∈ L1(P ), where f∗ denotes the convex conjugate
of f . Replacing both P and Q by their empirical counterparts, we obtain the empirical semi-dual,

Ŝ(f) = P̂ f + Q̂f∗. (5.2)

In order to incorporate smoothness regularization into the minimization of (5.2), we consider
the restriction of potentials f to a wavelet expansion of finite degree, a strategy that is frequently
used in non-parametric estimation [HKPT98, GN16]. For the purpose of this section, it is enough
to think about wavelets as a graded orthogonal basis of L2(Rd), leading to nested subspaces

V0 ⊆ V1 ⊆ · · · ⊆ VJ ⊆ · · · ⊆ L2(Rd),



14 HÜTTER AND RIGOLLET

that roughly correspond to increasing frequency ranges of the continuous Fourier transform of
a function f ∈ L2(Rd). Truncated wavelet decompositions yield good approximations for smooth
functions and we control their approximation error in Lemma 13. We only consider the span VJ(Ω̃P )
of those basis functions of the wavelet expansion whose support has non-trivial intersection with Ω̃P .
This is a finite-dimensional vector space as long as the elements of the wavelet basis have compact
support. The cut-off parameter J is chosen according to the regularity of f0 in assumption B2, see
Section 5.6, or alternatively can be chosen adaptively by a straightforward but technical extension
using a penalization scheme [Mas07] that we omit for readability. Alternatively, other selection
methods such as Lepski’s method [Lep91, Lep92, Lep93] could be used. In order to ensure the
necessary regularity and the compact support of the elements of the wavelet basis, we assume
throughout that the wavelet basis is given by Daubechies wavelets of sufficient order. For a more
detailed treatment of wavelets, we refer the reader to Section B.

To ensure stability of the minimizer of the semi-dual with respect to perturbations of the input
distributions P and Q, we further restrict the potentials f to mimic the assumptions in Proposition-
Definition 7, in particular, we enforce upper and lower bounds on the Hessian D2f on Ω̃P by
demanding f ∈ X (2M).

Combined, both wavelet regularization and strong convexity lead to the set

FJ = X (2M) ∩ VJ(Ω̃P ) (5.3)

of candidate potentials, based on which we define the estimators

f̂J ∈ argmin
f∈FJ

Ŝ(f), T̂J = ∇f̂J , (5.4)

for the Kantorovich potential and transport map, respectively.
Note that since we consider candidate potentials only on the compact set Ω̃P , f∗ above is defined

as
f∗(y) = sup

x∈Ω̃P

〈x, y〉 − f(x) = sup
x∈Rd
〈x, y〉 − (f + ιΩ̃P )(x), y ∈ Rd,

where ιΩ̃P is the usual indicator function in convex analysis (see Section A).
With this, we can restate the upper bound of Theorem 2.

Theorem 8. Under assumptions B1 and B2, there exists n0 ∈ N and J such that for n ≥ n0,

E(X1:n,Y1:n)

[∫
‖T̂J(x)− T0(x)‖22 dP (x)

]
≤ C

[
n−

2α
2α−2+d (log(n))2 ∨ 1

n

]
,

where n0, C, and J may depend on d,M,R,ΩP ,ΩQ, Ω̃P , n0 may additionally depend on β, C may
additionally depend on α, and J depends on n.

The cutoff J depends on α if d ≥ 3, but in the cases d = 1 and d = 2, J can be chosen
independently from α.

Remark 9. A few remarks are in order.

(i) Similar upper bounds hold with high probability and can be inferred from the proof.
(ii) As written, the estimator f̂J is not directly implementable since the calculation of f∗ in-

volves computing a maximum over a continuous subset of Rd. However, this limitation can
be overcome by a discretization of the space, although this is not practical even in moderate
dimensions. We provide such an example implementation in Section 6, along with a more
practical estimator for which we give no theoretical upper bounds.
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(iii) The numerical experiments in Section 6 suggest that restricting the optimization in (5.4) to
X (2M), while necessary for our proofs, might not be necessary in practice.

(iv) The estimator employed in Theorem 8 can be made adaptive to the unknown smoothness
parameter α using a standard penalization scheme, see [Mas07]. We omit this straightforward
extension and instead focus on establishing minimax rates of estimation. For a more detailed
account, we refer the reader to [H1̈9].

(v) For the sake of readability, we do not explicitly track the dependence on the parameter M .
However, an inspection of the proof yields that the final rate scales like M c1 d+c2 for constants
c1, c2 ≥ 1, i.e., there is an exponential dependence on the dimension d. Further, the dependence

on R is captured in (5.15) below and amounts to R
2(d−2)
2α−2+d log(R) in the case d ≥ 3. We do

not claim an optimal dependence of our rates on these parameters.

In the rest of this section, we present the proof of Theorem 8. We begin by stating our key result,
which relates the semi-dual objective to the square of our measure of performance. This result
also allows us to employ a fixed-point argument when controlling the risk of our estimator using
empirical process theory. Combined with approximation results for truncated wavelet expansions,
these lead to a bias-variance tradeoff that achieves the minimax lower bound of Theorem 6 up to
log factors.

5.3 Stability of optimal transport maps

In this section, we leverage the assumed regularity of the optimal transport map to relate the
suboptimality gap in the semi-dual objective function S and the L2-distance of interest.

Proposition 10. Under assumptions B1 – B2, for all f ∈ X (2M) as defined in Proposition-
Definition 7, we have

1

8M
‖∇f(x)−∇f0(x)‖2L2(P ) ≤ S(f)− S(f0) ≤ 2M‖∇f(x)−∇f0(x)‖2L2(P ) (5.5)

and
1

4M
‖∇f∗(y)−∇f∗0 (y)‖2L2(Q) ≤ S(f)− S(f0) . (5.6)

Proof. It follows from Proposition-Definition 7(ii) and a second-order Taylor expansion that f
is of quadratic type [Kol11] around every x ∈ ΩP :

1

2L
‖z − x‖22 ≤ f(z)− f(x)− 〈∇f(x), z − x〉 ≤ L

2
‖z − x‖22, for x ∈ ΩP , z ∈ Ω̃P , (5.7)

for all L ≥ 2M . It turns out that these conditions are sufficient to obtain the desired result.
The upper bound in (5.7) is of the form

f(z) ≤ qx(z) = f(x) + 〈∇f(x), z − x〉+
L

2
‖z − x‖22 + ιΩ̃P (z) .

Since the convex conjugate is order reversing and because the convex conjugate q∗x of the quadratic
function qx can be computed explicitly (Lemma 21), we have

f∗(∇f0(x)) ≥ q∗x(∇f0(x)) =
1

2L
‖∇f0(x)−∇f(x)‖22 + 〈x,∇f0(x)〉 − f(x)

− L

2
d2
(∇f0(x)−∇f(x)

L
− x, Ω̃P

)
.
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The squared distance term vanishes for L = 4M : by the triangle inequality ‖∇f0(x)−∇f(x)‖2 ≤
4M and since x ∈ ΩP , it holds that

∇f0(x)−∇f(x)

L
− x ∈ Ω̃P .

Together with the fact that Q = (∇f0)#P , this yields

S(f) = Pf +Qf∗ =

∫
[f(x) + f∗(∇f0(x))]dP (x)

≥ 1

8M
‖∇f −∇f0‖2L2(P ) +

∫
〈x,∇f0(x)〉dP (x) .

Moreover, by strong duality, we have

S(f0) = Pf0 +Qf∗0 =

∫
〈x,∇f0(x)〉dP (x) .

The above two displays yield S(f)−S(f0) ≥ (8M)−1‖∇f −∇f0‖2L2(P ). In the same way, using the

lower bound in (5.7), we get that S(f)− S(f0) ≤ 2M‖∇f −∇f0‖2L2(P ), which concludes the proof

of (5.5).
It turns out that (5.6) is even easier to prove. Indeed, by Proposition-Definition 7(ii) and

Lemma 17, we get that the upper bound in (5.7) is also true for f∗ on all of Rd. In this case,
we can simply take L = 2M and get similar results.

There are many ways to leverage strong convexity in order to obtain faster rates of convergence,
often known as fixed-point arguments [Mas07, Kol11, GN16]. In this work, we employ van de Geer’s
“one-shot” localization technique originally introduced in [vdG87] and stated in a form close to our
needs in [vdG02].

5.4 Control of the stochastic error via empirical processes

In light of Proposition 10, the performance of our estimator T̂J = ∇fJ defined in (5.4) requires
the control of S(f̂J)− S(f0), which can be achieved using tools from empirical process theory. To
that end, for any f , define

S0(f) = S(f)− S(f0) and Ŝ0(f) = Ŝ(f)− Ŝ(f0) ,

and let f̄J ∈ FJ . We observe that by optimality of f̂J for Ŝ,

S0(f̂J)− S0(f̄J) ≤
[
S0(f̂J)− Ŝ0(f̂J)

]
+
[
Ŝ0(f̄J)− S0(f̄J)

]
.

To proceed, we control the localized empirical process

sup
f∈FJ :S0(f)≤τ2

|S0(f)− Ŝ0(f)|.

for some fixed τ2 > 0. More precisely, we prove the following result in Appendix F.2.

Proposition 11. Let assumptions B1 – B2 be fulfilled and define FJ as in (5.3). For any
τ > 0, define

FJ(τ2) := {f ∈ FJ : S0(f) ≤ τ2}.
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Then, there exists C1 = C1(d,ΩP , Ω̃P ,ΩQ,M) > 0 such that with probability at least 1− exp(−t),

sup
f∈FJ (τ2)

|S0(f)− Ŝ0(f)| ≤ C1

(
φJ(τ2) + τ

√
t

n
+
t

n

)
,

where

φJ(τ2) =
2J(d−2)/2 τ√

n

√
J log

(
1 +

C1

τ

)
+

2J(d−2)J

n
log

(
1 +

C1

τ

)
+

τ√
n
. (5.8)

Equipped with this result, we can apply van de Geer’s localization technique. To simplify the
presentation, assume that f̄ = f̄J ∈ argminf∈FJ S(f) exists. If not, we may repeat the proof with an

ε-approximate minimizer and let ε→ 0. Throughout the proof, we write f̂ = f̂J and ‖·‖ = ‖·‖L2(P ).
Fix σ > 0 to be defined later and set

f̂s = sf̂ + (1− s)f̄ , s =
σ

σ + ‖∇f̂ −∇f̄‖
, (5.9)

Note that since s ∈ [0, 1] and FJ is convex, we have f̂s ∈ FJ .
On the one hand, f̂s is localized in the sense that

‖∇f̂s −∇f̄‖ = s‖∇f̂ −∇f̄‖ =
σ‖∇f̂ −∇f̄‖
σ + ‖∇f̂ −∇f̄‖

≤ σ.

By Proposition 10 and the triangle inequality respectively, this yields

S0(f̂s) ≤ 2M‖∇f̂s −∇f0‖2 ≤ 4M
(
σ2 + ‖∇f̄ −∇f0‖2

)
=: τ2 .

Therefore, f̂s ∈ FJ(τ2). For the same reason, we also have that f̄ ∈ FJ(τ2).
On the other hand, f̂s, akin to f̂ , has empirical risk smaller than f̄ . Indeed, by convexity of Ŝ

and the fact that f̂ minimizes Ŝ over G, we obtain

Ŝ(f̂s) ≤ sŜ(f̂) + (1− s)Ŝ(f̄) ≤ Ŝ(f̄),

which yields

S0(f̂s) ≤ S0(f̄) + 2 sup
f∈FJ (τ2)

∣∣S0(f)− Ŝ0(f)
∣∣.

Together with Jensen’s inequality and Proposition 10 respectively, the above display yields

‖∇f̂s −∇f̄‖2 ≤ 2‖∇f̂s −∇f0‖2 + 2‖∇f0 −∇f̄‖2 ≤ 16MS0(f̂s) + 16MS0(f̄)

≤ 32MS0(f̄) + 32M sup
f∈FJ (τ2)

∣∣S0(f)− Ŝ0(f)
∣∣.

Next, note for s as in (5.9), we have that ‖∇f̂s −∇f̄‖ ≥ σ/2 iff ‖∇f̂ −∇f̄‖ ≥ σ. Hence

P
(
‖∇f̂ −∇f0‖ ≥ σ + ‖∇f̄ −∇f0‖

)
≤ P

(
‖∇f̂s −∇f̄‖2 ≥ σ2/4

)
≤ P

(
sup

f∈FJ (τ2)

|S0(f)− Ŝ0(f)| ≥ σ2

128M
− S0(f̄)

)
= P

(
sup

f∈FJ (τ2)

|S0(f)− Ŝ0(f)| ≥ τ2

512M2
− 1

128M
‖∇f̄ −∇f0‖2 − S0(f̄)

)
.
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Recalling Proposition 11, we take σ such that

τ2

512M2
≥ S0(f̄) +

1

128M
‖∇f̄ −∇f0‖2 + C1

(
φJ(τ2) + τ

√
M t

n
+
M2 t

n

)
, (5.10)

so that we get
P
(
‖∇f̂ −∇f0‖ ≥ σ + ‖∇f̄ −∇f0‖

)
≤ e−t .

In particular, we can check that (5.10) is fulfilled if we choose σ such that

σ2 & S0(f̄) +
2J(d−2)J

n
log (1 + C2n) +

1 + t

n
,

for a suitable choice of C2 > 0.
With this, and applying Theorem 10 again, we get that with probability at least 1− e−t, it holds

‖∇f̂ −∇f0‖2 . ‖∇f̄ −∇f0‖2 +
2J(d−2)J

n
log (1 + C2n) +

1 + t

n
.

Moreover, integrating the tail with respect to t readily yields by Fubini’s theorem that

E‖∇f̂ −∇f0‖2 . ‖∇f̄ −∇f0‖2 +
2J(d−2)J

n
log (1 + C2n) +

1

n
.

We have proved the following result.

Proposition 12. Let B1 – B2 hold and define FJ as in (5.3). Then, writing

EJ :=
2J(d−2)J

n
log (1 + C2n) +

1

n
,

the estimator T̂J defined in (5.4) satisfies

E‖T̂J − T0‖2L2(P ) . inf
f∈FJ

‖∇f − T0‖2L2(P ) + EJ . (5.11)

Moreover, with probability at least 1− exp(−t),

‖T̂J − T0‖2L2(P ) . inf
f∈FJ

‖∇f − T0‖2L2(P ) + EJ +
t

n
.

5.5 Control of the approximation error

Next, we control the approximation error inff∈FJ ‖∇f−∇f0‖L2(P ) that appears in Proposition 12.
In fact, it is sufficient to control ‖∇f̄ − ∇f0‖L2(P ) where f̄ = ΠJ ext f0 is the truncation of f0 to

its first J wavelet scales after extending f0 to all Rd. In light of Theorem 23, we may assume that
ext f̄ has the same Cβ- and Wα,2-norm as f̄ up to a constant depending on Ω̃P .

To control the approximation associated with truncating a wavelet decomposition, we rely on
the following lemma for Besov functions.
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Lemma 13. Let f ∈ Bs
p,q(R

d) and denote by ΠJ its projection onto the first scale J wavelet
coefficients. That is, if

f =
∞∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k , we set ΠJf =

J∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k ,

where Ψj,g
k are multi-dimensional Daubechies wavelets and Gj the associated index sets as in Sec-

tion B. Then, for all 1 ≤ p, q ≤ ∞, s ≥ 0,

‖ΠJf‖Bsp,q(Rd) ≤ ‖f‖Bsp,q , (5.12)

‖ΠJf − f‖Bsp,q(Rd) ≤ ‖f‖Bsp,q . (5.13)

Moreover, for every q′ ∈ [1,∞], s′ > 0, and 1 ≤ p ≤ p′ ≤ ∞ such that s− d/p > s′ − d/p′,

‖ΠJf − f‖Bs′
p′,q′

. 2−J(s−d/p−(s′−d/p′))‖f‖Bsp,q .

In particular: If f ∈ Cα+1 for α > 1, then ‖f −ΠJf‖C2 . 2−J(α−1)‖f‖Cα+1 and if f ∈Wα+1,2, for
α > 0, then ‖f −ΠJf‖W 1,2 . 2−Jα‖f‖Wα+1,2.

Proof. Write γ for the wavelet coefficients of f . The statements (5.12) and (5.13) follow imme-
diately from the wavelet characterization of the Besov norms, (B.2).

To prove the remaining statements, note that for every j, because ‖ . ‖`p′ ≤ ‖ . ‖`p and ‖ . ‖q and
‖ . ‖q′ are comparable up to a constant due to |Gj | ≤ 2d being finite,

2
j(s′+ d

2
− d
p′ )
[ ∑
g∈Gj

( ∑
k∈Zd
|γj,gk |

p′
)q′/p′]1/q′

= 2
j(s′− d

p′−(s− d
p

))
2
j(s+ d

2
− d
p

)
[ ∑
g∈Gj

( ∑
k∈Zd
|γj,gk |

p′
)q′/p′]1/q′

. 2
j(s′− d

p′−(s− d
p

))
2
j(s+ d

2
− d
p

)
[ ∑
g∈Gj

( ∑
k∈Zd
|γj,gk |

p
)q/p]1/q

≤ 2
j(s′− d

p′−(s− d
p

))‖f‖Bsp,q .

Then, plugging this into the wavelet expansion of ΠJf − f , we obtain

‖ΠJf − f‖q
′

Bs
′
p′,q′

=

∞∑
j=J+1

2
jq′(s′+ d

2
− d
p′ )
∑
g∈Gj

( ∑
k∈Zd
|γj,gk |

p′
)q′/p′

.
∞∑

j=J+1

2
jq′(s′− d

p′−(s− d
p

))‖f‖q
′

Bsp,q
. 2

Jq′(s′− d
p′−(s− d

p
))‖f‖q

′

Bsp,q
,

Finally, to obtain the special cases, note that ‖ . ‖Bs∞,∞ . ‖ . ‖Cs . ‖ . ‖Bs1,∞ and ‖ . ‖W s,2 = ‖ . ‖Bs2,2
by Theorem 22.

The above lemma together with Proposition-Definition 7 allows us to check that f̄ ∈ FJ . Indeed,
by Weyl’s inequality, we have for any x ∈ Ω̃P that

λmin(D2ΠJ ext f0(x)) ≥ λmin(D2f0(x))− ‖D2ΠJ ext f0(x)−D2f0(x)‖op

≥M−1 − C‖ΠJ ext f0 − f0‖C2(Ω̃P ).
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It follows from Lemma 13 that ‖ΠJ ext f0 − f0‖C2(Ω̃P ) . 2−(β−1)J(M3 +R) ≤ 1/(2M), if

J ≥ J0 := C3
1

β − 1
log
(
2M4 + 2RM

)
,

and C3 = C3(d, β, Ω̃P ) is large enough. This yields λmin(D2ΠJ ext f0(x)) ≥ 1/(2M) and f̄ is strongly
convex. Similarly, we get λmax(D2ΠJ ext f0(x)) ≤ 2M and hence that f̄ ∈ FJ . Thus,

inf
f∈FJ

‖∇f −∇f0‖2L2(P ) ≤ ‖∇f̄ −∇f0‖L2(P ) .
∫

ΩP

‖∇f̄ −∇f0‖22 dλ(x)

≤ ‖f̄ − f0‖2W 1,2(ΩP ) . R2 2−2Jα.

where we used Assumption B2 and Lemma 13.
We have thus proved that

inf
f∈FJ

‖∇f −∇f0‖2L2(P ) . R2 2−2Jα for J ≥ J0. (5.14)

5.6 Bias-variance tradeoff

We are now in a position to complete the proof of Theorem 8. Combining the bounds (5.11)
and (5.14), we get

E‖T̂J − T0‖2L2(P ) . R2 2−2Jα + 2J(d−2)J
log(n)

n
+

1

n
.

We conclude the proof by optimizing with respect to J . It yields

E‖T̂J − T0‖2L2(P ) .


n−1 if d = 1,

log(R)n−1(log(n))2 if d = 2,

R2 (1/R2)
2α

2α−2+d log(R)n
−2α

2α−2+d (log(n))2 if d ≥ 3.

(5.15)

We note that since α > 1, in the first two cases, d ∈ {1, 2}, the cut-off J can be picked independently
from α. Finally, high-probability bounds can be obtained in a similar manner.

6. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments with synthetic data that illustrate how lever-
aging the smoothness of the underlying transport map can lead to dramatically improved rates.
We give two estimators exploiting smoothness: the first, T̂wav below, is an approximation to the
estimator T̂J in (5.4), illustrating that (5.4) can be implemented in low dimensions and that this ap-
proximation achieves favorable rates in d = 3. The second, T̂ker below, is a more practical heuristic
two-step procedure based on smoothing the optimal matching between the empirical distributions
via radial basis functions. We compare these to a baseline estimator given by the optimal transport
plan between the empirical distributions.

Additional implementation details and comments on these experiments are provided in Section
H of the Appendix.

6.1 Estimators

6.1.1 Baseline estimator In order to highlight the benefit of regularization, we consider the fol-
lowing simple estimator based on the optimal transport matrix between the empirical distributions
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as a baseline. Denote the empirical distributions of P and Q by

P̂ =
1

n

n∑
i=1

δXi , Q̂ =
1

n

n∑
i=1

δYi ,

respectively, and calculate the optimal transport matrix Γ ∈ Rn×n

Γ̂ = argmin


n∑

i,j=1

‖Xi − Yj‖2Γi,j :
Γi,j ≥ 0 ∀i, j ∈ [n],

Γ1 = 1/n, Γ>1 = 1/n


which can be solved exactly by linear optimization toolkits or approximated by entropic regular-
ization [PC19]. An estimated transport function on the observations Xi is then obtained by

T̂emp(Xi) = n

n∑
j=1

Γ̂i,jYj ,

which corresponds to the conditional mean of the coupling given Xi. Note that since we assume
that the sample sizes from P and Q are both n, the optimal Γ̂ is in fact a (rescaled) permutation
matrix, leading to a matching π̂ : [n]→ [n], and hence to T̂emp(Xi) = Yπ(i).

Because T̂emp(Xi) above is only defined on the sample points and we do not want to introduce
additional bias against the estimator, we consider the following error measure, approximating the
L2(P ) norm analyzed in Theorem 2:

MSEn(T̂emp) =
1

n

n∑
i=1

∥∥∥T̂emp(Xi)− T0(Xi)
∥∥∥2

2
.

6.1.2 Wavelet estimator Next, we turn to an approximation of (5.4). Assume that in addition
to a superset Ω̃P ⊇ ΩP , we are also given a superset Ω̃Q ⊇ ΩQ, and that both Ω̃P and Ω̃Q are
boxes (hypercubes). We consider all functions originally defined over Ω̃P and Ω̃Q as given by their

samples on grids with resolution N ∈ N, x = (xi)i∈[N ]d ∈ (Rd)N
d

and y = (yi)i∈[N ]d ∈ (Rd)N
d
,

respectively. In particular, we write f = (fi)i∈[N ]d ∈ RNd
for the discretization of the potential f

and T = (Ti)i∈[N ]d ∈ (Rd)[N ]d for the discretization of the transport map T on the grid x. Here,
we pick N = 65.

We employ the following discretization/approximation schemes:

(i) The restrictions to functions up to wavelet scale J ∈ N can be obtained by parametrizing f
by the inverse discrete wavelet transform up to order J , which we write as f = W>J γJ for
wavelet coefficients γJ ∈ RmJ with mJ ∈ N. For these experiments, we use db4 Daubechies
wavelets, i.e., Daubechies wavelets with four vanishing moments.

(ii) An approximation to the (continuous) Legendre transform is given by the discrete Legendre
transform,

L(f)j := L(f)(yj) := Lx→y(f)(yj) (6.1)

:= sup
i∈[N ]d

{〈xi, yi〉 − fi : i ∈ [N ]d},

for f ∈ (Rd)N
d

and j ∈ [N ]d.
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(iii) The gradient of f on grid-points can be calculated by a finite-difference scheme, which we
write as ∇xf .

(iv) To obtain values of these approximations at non-grid points, we appeal to linear interpolation,
which we write as Px→{X1,...,Xn}f for the interpolated value of f defined on the grid x at the

point {X1, . . . , Xn} ∈ Rd, collected in one vector.

Given i.i.d. observations X1:n = {X1, . . . , Xn} and Y1:n = {Y1, . . . , Yn} from P and Q, respec-
tively, we arrive at the following optimization problem as approximation to (5.4):

γ̂J = min
γJ∈RmJ

1

n
1
>Px→X1:nW

>
J γJ +

1

n
1
>Py→Y1:n L(W>J γJ). (6.2)

Note that we dropped all boundedness and convexity constraints that were given by X (2M) in
(5.4). In practice, this can lead to degraded estimation quality of the gradient of W>J γJ near the
boundary of ΩP , see Section H.3 in the Appendix, which we remedy by computing the convex
envelope of the resulting estimator, yielding an estimator of f0 that is convex. This envelope can,
for example, be calculated by applying the Legendre transform twice, and we set

T̂J = ∇x[Ly→x(Lx→y(W>J γ̂J))].

With this, we denote by T̂
(J)
wav the function obtained by linearly interpolating T̂J ,

T̂ (J)
wav(x) = Px→xT̂J , x ∈ Ω̃P .

For the purpose of these experiments, we select the wavelet scale Ĵ by an oracle choice, i.e., as the
minimizer of an approximation to the population semi-dual (2.5), see Section H.1, while in practice,
one would resort to cross-validation methods for this purpose. Finally, we set

T̂wav = T̂ (Ĵ)
wav.

To obtain an error measure for T̂wav that is easily comparable to MSEn(T̂emp), we consider the
empirical L2(P̂ ) norm on the sample points,

MSEn(T̂wav) =
1

n

n∑
i=1

∥∥∥T̂wav(Xi)− T0(Xi)
∥∥∥2

2
.

Note that the objective function in (6.2) can be calculated in linear time with respect to the
underlying grid, that is, in O(Nd), thanks to efficient algorithms for the discrete wavelet transform
[Mal99] and the Linear-Time Legendre Transform algorithm [Luc97]. It can be checked that the
objective is convex, rendering first-order methods provably convergent. We use the L-BFGS Quasi-
Newton method to find γ̂J , even though the objective is not smooth for every γJ due to the form
of the discrete Legendre transform. In practice, we observe that it converges faster than simple
(sub-)gradient descent methods.

Since T̂wav is mainly used to illustrate the practical behavior of a wavelet-based regularization
of the semi-dual objective, we do not explicitly analyze the convergence of T̂wav to the estima-
tor T̂J considered in Section 5. We remark, however, that our approximations closely follow the
definition of T̂J and that the omitted constraints defining the set X (2M) could be incorporated
into the approximation by means of a finite-difference discretization as well, albeit at an additional
computational cost.
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6.1.3 Kernel smoothing estimator While the estimator T̂wav closely follows our theoretical anal-
ysis, its applicability is limited to low dimensions by the fact that a discretization grid is needed.
As a heuristic alternative, we consider smoothing the assignment obtained by T̂emp. The idea of
smoothing the empirical transport matrix has been previously used in practice, see for example
[SST+19], where regularized linear regression was used as a post-processing step, and kernels have
been applied for smoothing potential functions in [GCPB16]. Here, we obtain a smoother version
of T̂emp by smoothing it via kernel-ridge regression [Mur12].

Let H denote a reproducing kernel Hilbert space (RKHS) with associated kernel k(x, y), x, y ∈
R
d, and norm ‖T‖H for T ∈ H. Here, we consider the RKHS given by Gaussian radial basis

functions,
k(x, y) = exp(−νkernel‖x− y‖2), x, y ∈ Rd, νkernel > 0.

We fit an RKHS function T to the pairs (Xi, Ỹi = T̂emp(Xi)) by solving the regularized kernel
regression objective

T̂
(νridge,νkernel)
ker = argmin

T∈H

n∑
i=1

‖Ỹi − T (Xi)‖22 + νridge‖T‖2H, (6.3)

for νridge > 0. By the representer theorem [Mur12], (6.3) has a solution

T̂
(νridge,νkernel)
ker (x) =

n∑
i=1

ŵik(xi, x),

where

Ŵ =

ŵ
>
1
...
ŵ>n

 = (K + νridgeI)−1Ỹ , with Ki,j = k(Xi, Xj) and Ỹ =

Ỹ1
...

Ỹn

 .

We measure its performance by

MSEn(T̂
(νridge,νkernel)
ker ) =

1

n

n∑
i=1

∥∥∥T̂ (νridge,νkernel)
ker (Xi)− T0(Xi)

∥∥∥2

2
. (6.4)

Similar to T̂wav, we select the tuning parameters νkernel and νridge by an oracle procedure, picking
those parameters from a finite grid that minimize (6.4) on an independent hold-out sample X̃1:n,
and denote the resulting estimator by T̂ker.

6.2 Setup

For d ∈ N, we consider the following examples of smooth potentials and transport maps:

f
(1)
0 (x) =

1

2
‖x‖22, T

(1)
0 (x) = x, x ∈ Rd; (id)

f
(2)
0 (x) =

d∑
i=1

exp(xi), (T
(2)
0 (x))i = exp(xi), x ∈ Rd, i ∈ [d]; (exp)

where for (id), P (1) = Q(1) = Unif([0, 1]d). For (exp), P (2) = Unif([0, 1]d), and the target measure is

defined as Q(2) = (T
(2)
0 )#P

(2). Note that these potentials and transport maps are C∞ and strongly
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(a) Ground truth transport map
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(b) Transport map estimator from empirical
distributions and 1-NN interpolation
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(c) Wavelet estimator, J = 1

x10.0 0.5 1.0x2 0.0
0.5

1.0

0.2
0.4
0.6
0.8
1.0

(Tker)1

(d) Kernel estimator, νridge = νkernel = 10−3

Figure 1: Qualitative comparison between T̂emp, T̂wav, and T̂ker. Both the wavelet-based estimator
T̂wav and the kernel estimator T̂ker produce a qualitatively smoother output then the optimal
coupling between the empirical measures. Visualizations of the first coordinate of the transport
maps.

convex on any compact convex subset ofRd. For the purpose of qualitative comparisons, we consider
case (id) in d = 2. In order to determine the quantitative behavior of the estimators, we study both
cases for d ∈ {3, 10}.

The runtime of computing the optimal transport matching via linear programming scales unfa-
vorably with the sample size, a shortcoming that could be remedied by employing recent numer-
ical approximation techniques [ABRNW19]. Similarly, computing the kernel regression (6.3) with
off-the-shelf methods scales with O(n3). For the sake of this comparison, we simply restrict our
experiments on T̂emp and T̂ker to sample sizes ≤ 104. Likewise, we do not compute T̂wav in d = 10
due to the large computational cost.

6.3 Results

6.3.1 Qualitative comparison in 2D To give a qualitative idea of the considered estimators com-
pared to the baseline T̂emp, we visualize the first coordinate of the transport map estimators for
case (id) with d = 2 and n = 100 observations from P = Q = Unif([0, 1]2) in Figure 1, together

with the ground truth transport map (T
(1)
0 )1. To depict the coupling T̂emp induced by the empirical
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distributions, we employ 1-nearest-neighbor (1-NN) interpolation to obtain a map on [0, 1]2. We
observe that the wavelet-based regularization in Figure 1c produces a visibly smoother map com-
pared to the unregularized T̂emp in Figure 1b. The kernel estimator in Figure 1d is even smoother
and visually very similar to the ground truth in Figure 1a, due to the possibility of employing a
large amount of regularization.
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(a) Identity transport map, d = 3
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(b) Identity transport map, d = 10
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(c) Exponential transport map, d = 3
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(d) Exponential transport map, d = 10

Figure 2: Log-log plot of MSE plotted against n, showing the median error over 32 replicates. See
Section 6.2 for details.

6.3.2 Quantitative comparison in 3D and 10D To obtain a quantitative comparison, for both
test cases and d ∈ {3, 10}, we compute T̂emp, T̂wav (only d = 3), and T̂ker over 32 replicates and a
logarithmically spaced selection of sample sizes n, reporting the median error over the replicates
in Figure 2. Here, the dashed lines indicate the result of linear regression on the logarithmically
transformed sample sizes and error results for a selected subset of n.

In 3D, for both test cases, the error curves for the standard empirical measure-based estimator
T̂emp roughly follow a n−2/3 rate. This corresponds to the decay of the average `2 cost of optimal
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matchings between samples from the uniform distribution on the cube [Tal14, Yuk06] (and Gaussian
distributions [Led19]), and also matches the n−2/d rate for the convergence of W 2

2 (P̂ , P ). We are,
however, not aware of a generalization of this rate to the error measure MSE in the case of a
transport map different from the identity.

The error curves for the wavelet estimator T̂wav all follow a similar trend. For low sample sizes,
we obtain rates faster than n−0.85, showing the large statistical benefit of fitting only functions
that have wavelet expansions of low order. For large sample sizes, the error flattens out, which
can be explained by the numerical approximation errors dominating the statistical ones. This can
be readily seen from repeating the experiment with a smaller grid resolution (N = 33), which
shows the same trend for smaller values of n, see Section H.2 in the Appendix. Moreover, for all
sample sizes we considered, the error curves for T̂wav all lie below the baseline estimator. The kernel
estimator T̂ker performs even better, attaining rates close to n−1 and yielding consistently better
rates than T̂wav.

We observe that the favorable behavior of T̂wav suggests that the restriction of candidate poten-
tials to X (2M) in (5.4) might not be necessary and could possibly be omitted.

In 10D, for both test cases, T̂emp shows a convergence rate of about n−0.25, which is slightly better
than the expected n−2/d = n−0.2 rate. It is vastly outperformed by the kernel-based estimator that
achieves rates better than n−0.6 in both examples.

Further plots showing individual error curves for varying values of the regularization parameters
can be found in Section H.4 of the appendix, illustrating the sample size-dependent performance
gain achieved by T̂wav and T̂ker.

To summarize, in cases where smoothness of the transport map can be assumed, its estimation
greatly benefits from smoothness regularization. In particular, these experiments suggest further
research on proving error bounds for the kernel estimator T̂ker under regularity assumptions on T0,
for which the minimax rates established in this work can serve as a benchmark.
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APPENDIX A: CONVEX ANALYSIS

In this section, we recall some useful facts from convex analysis. We refer the reader to [HL01]
for a comprehensive treatment.

Recall that a set U ⊆ Rd is convex if for all x, y ∈ U , t ∈ [0, 1], tx + (1 − t)y ∈ U . A function
f : U → R ∪ {+∞} is convex if for all x, y ∈ U , t ∈ [0, 1], it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Moreover, we call a function µ-strongly convex if for all x, y ∈ U , t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2
t(1− t)‖x− y‖2.
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For twice differentiable functions, it is often more convenient to employ the following analytic
criterion for strong convexity.

Lemma 14 ([HL01, Theorem B.4.3.1]). Let U ⊆ Rd be an open convex set and f : U → R twice
differentiable. Then, f is µ-strongly convex if and only if λmin(D2f(x)) ≥ µ for all x ∈ U .

Note that even if U ( R
d is a proper convex subset of Rd, we can always consider a function

f : U → R∪{+∞} to be defined on all of Rd by setting it to +∞ outside of U . To that end, let ιU
be the indicator function defined by

ιU (x) =

{
0, x ∈ U
+∞, otherwise.

We define the extension of f outside U by f + ιU , which by abuse of notation we also denote by f .
Note that if f is (strongly) convex on U then its extension outside U is also (strongly) convex. We
call dom(f) = {x ∈ Rd : f(x) < +∞} the domain of a convex function.

We now recall two important notions associated with convex functions f .
First, the subdifferential of f at x ∈ dom(f) is defined as

∂f(x) = {a ∈ Rd : f(y) ≥ 〈a, y − x〉+ f(x) for all y ∈ Rd}.

As indicated by the following lemma, the subdifferential reduces to the gradient for differentiable
functions.

Lemma 15 ([HL01, Corollary D.2.1.4]). Let f : Rd → R ∪ {+∞} be a convex function. If f is
differentiable at x ∈ Rd with gradient ∇f(x), then ∂f(x) = {∇f(x)}.

Conversely, if ∂f(x) = {a} consists of only a single element, then f is differentiable at x with
gradient ∇f(x) = a.

Second, the convex conjugate, or Legendre-Fenchel conjugate, is defined for any function f : Rd →
R ∪ {+∞} as

f∗(y) = sup
x∈Rd
〈x, y〉 − f(x), y ∈ Rd.

By considering f + ιU , this definition extends to functions f : U → R ∪ {+∞}.
We recall the following standard facts about the convex conjugate, stated here without proof

(see [HL01, Part E] for details).

Lemma 16. If f : Rd → R ∪ {+∞} is convex and lower semi-continuous, then f∗∗ = f .

Lemma 17. Let U be a closed, convex set. If f : U → R is µ-strongly convex, then dom(f∗) =
R
d, and ∇f∗ is µ−1-Lipschitz:

‖∇f∗(x)−∇f∗(y)‖2 ≤
1

µ
‖x− y‖2 , ∀x, y ∈ Rd .

Lemma 18. Denote by f : Rd → R∪{+∞} a lower semi-continuous and convex function. Then,
for x, y ∈ Rd,

f∗(y) = 〈x, y〉 − f(x) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y).
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Lemma 19. If f, g : U → R, f(x) ≤ g(x) for all x ∈ U , then f∗(y) ≥ g∗(y) for all y ∈ R.

Lemma 20. Given two functions f, g : U → R for a compact set U . Abusing notation, denote
the convex conjugate of the function f + ιU by f∗. Then, ‖f∗ − g∗‖L∞(Rd) ≤ ‖f − g‖L∞(U).

The next lemma provides an explicit form for the convex conjugate of a quadratic function. It is
instrumental in the stability proof for the semi-dual objective function (see Proposition 10).

Lemma 21. Let a > 0, b, t ∈ Rd, c ∈ R and let U ⊆ Rd be a closed, convex set. Define

qt(x) =
a

2
‖x− t‖22 + 〈b, x− t〉+ c+ ιU (x) , x ∈ Rd .

Then,

q∗t (y) =
‖y − b‖22

2a
+ 〈t, y〉 − c− a

2
d2

(
y − b
a
− t, U

)
,

where d2 denotes the squared distance d2(x, U) = infy∈U ‖x− y‖22.

Proof. Note first that for any y ∈ Rd,

q∗t (y) = sup
x∈Rd
〈x, y〉 − q(x− t) = sup

x∈Rd
〈x+ t, y〉 − q(x) = q∗(y) + 〈t, y〉 , (A.1)

where
q(x) =

a

2
‖x‖22 + b>x+ c+ ιU+t(x)

Moreover,
q∗(y) = sup

x∈Rd
〈x, y〉 − q(x) = − inf

x∈Rd
{q(x)− 〈x, y〉}. (A.2)

Writing

q(x)− 〈x, y〉 =
a

2

∥∥x− y − b
a

∥∥2

2
− ‖y − b‖

2
2

2a
+ c+ ιU+t(x)

we see that the infimum in (A.2) is achieved by the projection x̄ of (y− b)/a onto the closed convex
set U + t. Moreover, the value of the objective at x̄ is given by

q(x̄)− 〈x̄, y〉 =
a

2
d2

(
y − b
a

, U + t

)
− ‖y − b‖

2
2

2a
+ c

=
a

2
d2

(
y − b
a
− t, U

)
− ‖y − b‖

2
2

2a
+ c

Together with (A.1) and (A.2), this completes the proof of the lemma.

APPENDIX B: WAVELETS AND FUNCTION SPACES

In this section, we give a brief overview of the different function spaces used in the paper and
how their norms can be related to their wavelet coefficients.

First, we recall the definition of Hölder and Sobolev spaces. Let Ω ⊆ Rd be a closed set with
non-empty interior and denote by Cu(Ω) the set of uniformly continuous functions on Ω. The Hölder
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norms for any f ∈ Cu(Ω) are defined as follows. For any integer k ≥ 0 and f that admits continuous
derivatives up to order k, define

‖f‖Ck(Ω) :=
∑
|[|≤k

‖∂[f‖L∞(Ω),

and for any real number α > 0, define

‖f‖Cα(Ω) := ‖f‖Cbαc(Ω) +
∑
|[|=bαc

sup
x 6=y,x,y∈Ω

|∂[f(x)− ∂[f(y)|
‖x− y‖α−bαc2

.

The space Cα(Ω) is then defined as the set of functions for which this norm is finite. For a vector-
valued function T : Ω→ R

d, T = (T1, . . . , Td)
>, we similarly define the norms as the sum over the

individual norms,

‖T‖Cα(Ω) :=

d∑
i=1

‖Ti‖Cα(Ω).

Similarly, for an integer k ≥ 0 and p ∈ [1,∞], the Sobolev norms are defined as

‖f‖Wk,p(Ω) :=
∑
|[|≤k

‖∂[f‖Lp(Ω),

where the derivative ∂[ is to be understood in the sense of distributions and the Sobolev space
Wm,2(Ω) is the space of all functions for which this norm is finite. This definition can be extended
to α > 0, for example by defining Wα,2(Ω) as the Besov space Bα

2,2(Ω), which we define shortly.
Next, we define wavelet bases and Besov spaces, following the definitions given in [Tri06, Section

3], and we refer the reader to this reference for further details on wavelets. Denote by ψM ∈ Cr(R)
and ψF ∈ Cr(R) a compactly supported wavelet and scaling function, respectively, for example
Daubechies wavelets. This implies that

ψjk =

{
ψF(x− k), j = 0, k ∈ Z,

2(j−1)/2ψM(2j−1x− k), j ∈ N, k ∈ Z,

is an orthonormal basis of L2(R). To obtain a basis of L2(Rd), for j ∈ N, set

Gj = {F,M}d \ {(F, . . . ,F)}, G0 = {(F, . . . ,F)},

and for g ∈ Gj ∪G0,

Ψg
k(x) =

n∏
i=1

ψgi(xi − ki), k ∈ Zd.

This gives the orthonormal basis

Ψj,g
k =

{
Ψg
k(x), j = 0, g ∈ G0, k ∈ Zd

2(j−1)d/2Ψg
k(2

j−1x), j ∈ N, g ∈ Gj , k ∈ Zd.

Wavelet coefficients, defined as the expansion coefficients with respect to the above basis for
L2(Rd) functions, can be used to characterize the so-called Besov spaces: Let 1 ≤ p, q ≤ ∞, s ≥ 0,
and let the regularity of the above wavelets satisfy
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r > s ∨
(

2d

p
+
d

2
− s
)
.

With this, if f admits the wavelet representation

f =
∞∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k , (B.1)

we define the family of norms ‖ . ‖Bsp,q by

‖f‖Bsp,q := ‖f‖Bsp,q(Rd) := ‖γ‖bsp,q (B.2)

:=

 ∞∑
j=0

2
jq(s+ d

2
− d
p

)
∑
g∈Gj

∑
k∈Zd
|γj,gk |

p

q/p


1/q

.

In particular, by the orthonormality of the wavelets {Ψj,g
k }j,g,k,

‖f‖B0
2,2

= ‖γ‖`2 = ‖f‖L2(Rd).

For a bounded Lipschitz domain Ω ⊆ Rd, we can define the Besov spaces Bs
p,q(Ω) by restrictions

of functions on Rd with norm

‖f‖Bsp,q(Ω) := inf{‖g‖Bsp,q(Rd) : g|Ω = f}.

Note that since we work with compactly supported wavelets, for a function f with compact
support, only a finite number of wavelet coefficients are non-vanishing in (B.1). In particular, for
non-zero wavelet coefficients are contained in a set Λ(j) with |Λ(j)| . 2jd.

The following theorem collects some basic properties of Besov spaces and their relationship to
Hölder and Sobolev spaces.

Theorem 22. Let Ω ⊆ Rd be a bounded Lipschitz domain.

(i) [GN16, Proposition 4.3.6] Let s, s′ > 0, 1 ≤ p, p′, q, q′ ≤ ∞. Then, the following inclusions
hold in the sense of continuous embeddings:

(a) Bs
p,q ⊆ Bs

p,q′, if q ≤ q′,

(b) Bs
p,q ⊆ Bs′

p,q′, if s > s′,

(ii) [Tri06, Theorem 1.122] Let k ∈ N. Then, W k,2(Ω) = Bk
2,2(Ω) and we define Wα,2(Ω) :=

Bα
2,2(Ω) for α > 0 not an integer.

(iii) [Tri06, Theorem 1.122], [GN16, Proposition 4.3.20] Let α > 0. If α is not integer, then

Cα(Ω) = Bα
∞,∞(Ω),

If α is integer, then
Bα

1,∞(Ω) ⊆ Cα(Ω) ⊆ Bα
∞,∞(Ω). (B.3)
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Note that the proof in [GN16] of (B.3) is given in 1D, but extends naturally to arbitrary dimen-
sions by summability of the wavelet coefficients.

A very useful tool to handle function spaces on domains is the availability of extension operators
that preserve the norms. The following theorem guarantees the existence of such an extension
operator that is the same among all Besov spaces. This allows us to characterize Besov functions
on domains via the wavelet coefficients of their extensions.

Theorem 23 (Extension operator, [Tri06, Theorem 1.105], [Ryc99]). Let Ω ⊆ Rd be a bounded
Lipschitz domain. Then, there exists a linear extension operator ext that preserves L2-, Cβ-,
and Wα,2-norms. That is, there exists an extension operator ext = ext(Ω) such that for A ∈
{L2, Cβ,Wα,2 : β > 0, α > 0}, there exist constants C = C(Ω, A) with

‖ ext f‖A(Rd) ≤ C‖f‖A(Ω), and ext f |Ω = f, for f ∈ A.

We conclude this section by a lemma that provides uniform control of a function by its wavelet
coefficients. It is useful to control bracketing entropy numbers.

Lemma 24. Let f ∈ VJ(Rd) with wavelet coefficients γj,gk for compactly supported mother and
father wavelets. Then, ‖f‖∞ . 2Jd/2‖γ‖∞ ≤ 2Jd/2‖γ‖2.

Proof. Let x ∈ Rd and write

|f(x)| =
∣∣ J∑
j=0

∑
g∈Gj ,k∈Zd

γj,gk Ψj,g
k (x)

∣∣ ≤ ‖γ‖∞ J∑
j=0

∑
g∈Gj ,k∈Zd

|Ψj,g
k (x)|

. ‖γ‖∞
J∑
j=0

2jd/2 . 2Jd/2‖γ‖∞,

where we used Hölder’s inequality and the fact that only a finite number of k enters the summation
for each fixed x ∈ Rd. The last inequality is trivial.

APPENDIX C: METRIC ENTROPY AND SUPREMA OF STOCHASTIC PROCESSES

Here, we collect some basic results about empirical processes that are needed in the proofs. Note
that because all suprema we deal with are over subsets of finite-dimensional vector spaces, we do
not consider issues of measurability in the remainder.

Denote the bracketing number of a set F with respect to a norm ‖.‖ by N[ ](δ,F , ‖ . ‖) and define
the Dudley integral as

D[ ](σ,F , ‖ . ‖) =

∫ σ

0

√
1 + logN[ ](δ,F , ‖ . ‖) dδ. (C.1)

Theorem 25 (Bernstein chaining, [vW07, Lemma 3.4.2] ). Let F be a class of measurable
functions such that E[f2] < σ2 and ‖f‖∞ ≤M for all f ∈ F . Then,

E

[
sup
f∈F
|
√
n(P̂ − P )f |

]
. D[ ](σ,F , L2(P ))

(
1 +
D[ ](σ,F , L2(P ))

σ2
√
n

M
)
.
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Theorem 26 (Concentration, see [Mas07, Equation (5.50)], going back to [Bou02]). Under the
same assumptions as Theorem 25,

P

(
sup
f∈F

√
n|(P̂ − P )f | ≥ 2E[sup

f∈F

√
n|(P̂ − P )f |] + σ

√
2x+

M√
n
x
)
≤ exp(−x).

Lemma 27 (Bracketing numbers from L∞ covering numbers). Let P be a probability measure
and A ⊆ F be a set of functions with N(A,L∞(P ), δ/2) ≤ φ(δ). Then, N[](A,L

2(P ), δ) ≤ φ(δ).
Moreover, if for every function in the original class f ∈ F , E[f2] < σ2 and ‖f‖L∞(P ) < M , then

every bracket [f1, f2] in a δ-cover above (note that f1 and f2 need not be members of F) satisfies

E[f2
j ] < 2σ2 +

1

2
δ2, ‖fj‖L∞(ν) < M + δ/2, j ∈ {1, 2}.

Proof. Denote by {f1, . . . , fN} the centers of a minimal δ/2-covering of F in L∞(P ). Let
i ∈ {1, . . . , N}. Then, each δ/2 ball around fi is contained in the bracket [fi − δ/2, fi + δ/2].
Moreover, the L2(P ) diameter of the above bracket is bounded by its L∞(P ) diameter, which is δ,
so the collection of those brackets yields the desired covering with brackets.

The rest of the lemma follows from

E[(f ± δ/2)2] ≤ 2E[f2] +
1

2
δ2, ‖f ± vδ/2‖L∞(ν) ≤ ‖f‖L∞(ν) +

δ

2
.

The following lemma can be shown by directly specifying a grid or by a volume argument such
as [Ver18, Proposition 4.2.12].

Lemma 28 (Covering numbers for norm balls). Fix p ∈ N and denote by B∞(A) the `∞ ball of
R
d with radius A. Then, N(B∞(A), ‖ . ‖∞, δ) ≤ (3A/δ)d.

Lemma 29 ([Rau10, Lemma 10.3]). For α > 0,∫ α

0

√
log(1 + t−1) dt ≤ α

√
1 + log(1 + α−1) .

APPENDIX D: TOOLS FOR LOWER BOUNDS

For the convenience of the reader, in this section we restate the standard tools we use in the
proof of Theorem 6 to establish lower bounds based on Fano’s inequality and the Varshamov-Gilbert
Lemma, taken from [Tsy09, Theorem 2.9, Lemma 2.9, Theorem 2.2].

Theorem 30 (Lower bounds from multiple hypotheses). [Tsy09, Theorem 2.9] Let K ≥ 2,
Θ = {T0, . . . , TK} a collection of hypotheses, and let d be a pseudometric, i.e., a bi-variate function
on Θ such that

(a) d(Tj , Tk) ≥ 0;
(b) d(Tj , Tj) = 0;
(c) d(Tj , Tk) = d(Tk, Tj);
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(d) d(Tj , T`) ≤ d(Tj , Tk) + d(Tk, T`);

for all 0 ≤ j, k, ` ∈ {0, . . . ,K}.
Suppose Θ fulfills:

(i) d(Tj , Tk) ≥ 2s > 0, for all 0 ≤ j < k ≤ K;
(ii) Pj � P0, for all j ∈ [K], and

1

K

K∑
j=1

D(Pj‖P0) ≤ C logK

with 0 < C < 1/8, where Pj = PTj denotes a probability distribution associated with every Tj
for all j = 0, 1, . . . ,K.

Then,

inf
T̂

sup
T∈Θ

PT (d(T̂ , T ) ≥ s) ≥
√
K

1 +
√
K

(
1− 2C −

√
2C

logK

)
> 0.

Lemma 31 (Varshamov-Gilbert lemma). [Tsy09, Lemma 2.9] Let D ≥ 8. There exists a subset
τ (0), . . . , τ (K) of {0, 1}D such that τ (0) = (0, . . . , 0),

D∑
`=1

1(τ
(j)
l , τ

(k)
l ) ≥ D

8
, for all 0 ≤ j < k ≤ K,

and
K ≥ 2D/8.

Theorem 32 (Lower bounds from two hypotheses). [Tsy09, Theorem 2.2] Let T0, T1 be two
hypotheses with associated probability measures Pj = PTj for j ∈ {0, 1}. Denoting s = d(T0, T1)/2,
if

D(P1‖P0) ≤ C <∞,

then

inf
T̂

max
j∈{0,1}

Pj(d(T̂ , Tj) ≥ s) ≥
1

4
exp(−C) ∨

1−
√
C/2

2
> 0.

APPENDIX E: ALTERNATIVE ASSUMPTIONS VIA CAFFARELLI’S REGULARITY
THEORY

In this section, we show how to apply Theorem 8 under smoothness assumptions on the source
and target distribution instead of the transport map. This is enabled by Caffarelli’s regularity theory
[Caf92b, Caf92a, Caf96], Theorem 33 below, which gives regularity estimates on the transport map
T0 under regularity assumptions on the source and target densities and their supports.

For simplicity, we denote an open, convex set Ω with C2 boundary as uniformly convex if it can
be written as the sublevel set, Ω = {f < 0}, of a strongly convex function f . Note that uniform
convexity can also be characterized by the positivity of the second fundamental form of Ω on its
boundary ∂Ω [Vil09].
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C1 (Supports). Assume ΩP ,ΩQ are two uniformly convex, bounded, open subsets of Rd with
Cbα−1c+2 boundaries.

C2 (Densities). With ΩP ,ΩQ as in Assumption C1, assume that ρP ∈ Cα−1(ΩP ) and ρQ ∈
Cα−1(ΩQ) are two probability densities on R

d with supp(ρP ) = ΩP , supp(ρQ) = ΩQ that are
bounded from above and below on their support. Further, denote the associated probability distribu-
tions by P and Q, respectively.

Theorem 33 (Caffarelli’s global regularity theory).
[Vil09, Theorem 12.50(iii)], [Caf96]. Let α > 1 and assume that Assumptions C1 and C2 hold.

Then, for the optimal transport potential f0, i.e., the solution to (2.5) for P and Q, which is unique
up to an additive constant, it holds that f0 ∈ Cα+1(ΩP ).

Moreover, we need the following extension lemma to smoothly extend the potential (and associ-
ated transport map) to a larger set as required by Assumption B2. Similar statements have been
shown in [Gho02, Yan14, AM19].

Lemma 34. Let Ω be a convex compact subset of Rd, f : Ω → R a convex Cα(Ω) function for
α > 2 with

min
x∈Ω

λmin(D2f(x)) > 0.

Then, there exists an ε > 0 and an extension f̃ of f to Ωε = Ω + εB(0, 1) such that f ∈ Cα(Ωε) and

min
x∈Ωε

λmin(D2f̃(x)) > 0. (E.1)

Proof. The claim follows from extending f via Theorem 23 to all of Rd while preserving the
Hölder class Cα, and observing that the strong convexity condition (E.1) on an enlargement of Ω
can be ensured by uniform continuity of the extension.

Corollary 35. Let α > 1. Under Assumptions C1 and C2, writing f0 and T0 = ∇f0 for the
Kantorovich potential and optimal transport map between P and Q, respectively, there exists an
estimator T̂ such that

E(X1:n,Y1:n)

[∫
‖T̂ (x)− T0(x)‖22 dP (x)

]
.

[
n−

2α
2α−2+d (log(n))2 ∨ 1

n

]
,

where X1:n, Y1:n denote i.i.d. observations from P and Q, respectively.

Proof. The statement follows by verifying the assumptions B1 and B2 on the original transport
map and concluding by Theorem 8, using the same estimator.

Assumption B1 is satisfied for ΩP by the (stronger) conditions imposed on it in Theorem 33.
To show Assumption B2, denote by f0 the optimal transport potential and by T0 the optimal

transport map for the problem given by ρP and ρQ. By Theorem 33, f0 ∈ Cα+1(ΩP ) and thus
T0 = ∇f0 ∈ Cα(ΩP ,R

d). Denoting by f̃0 the extension of f0 to Ω̃P = (ΩP )ε from Lemma 34, we
observe that Ω̃P is connected and has a Lipschitz boundary. This follows from the general fact that
the Minkowski sum of a convex set with C1 boundary and another convex set has a C1 boundary
[KP91]. From the regularity of T̃0 = f̃0 and the compactness of Ω̃P , all requirements in B2 can now
be easily checked.
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An inspection of the proof of our lower bound results, Theorem 6, readily yields a lower bound
under smoothness assumptions on P and Q as well. In particular, after changing the domain from
[0, 1]d to the unit ball in d dimensions, the explicit form of the density of Qk in (4.2) guarantees
that the candidate densities fulfill assumptions C1 and C2. This indicates that the above rate is
optimal up to log factors.

Remark 36. In Corollary 35, we do not claim any uniform bound over a regularity class,
such as an explicit dependence of the constant on the Cα−1-norms of ρP and ρQ alone. Although
the statement of Theorem 33 strongly suggests a bound on ‖f0‖Cα+1(ΩP ) in terms of ‖ρP ‖Cα−1(ΩP )

and ‖ρQ‖Cα−1(ΩQ), to the best of our knowledge, such bounds are not available in the literature

for the “global” version of Caffarelli’s regularity theory as stated Theorem 33. On the other hand,
such bounds hold “locally”, that is, ‖f0‖Cα+1(U) can be bounded for strictly open subsets of ΩP ,
see [Vil09, Theorem 12.56], [Caf92b]. This deficiency is due to the non-constructive nature of the
available proofs of Theorem 33 and could possibly be remedied, but we consider it out of the scope
of this paper.

APPENDIX F: OMITTED PROOFS

F.1 Proof of Proposition-Definition 7

We proceed in order of statement of the results.
(i) It follows from B2 that there exists f0 such that ∇f0 = T0 and by B2(i) that |∇f0(x)| ≤ M

for all x ∈ Ω̃P . Moreover, since f0 is defined up an additive constant, assume that f0(x0) = 0 for
some x0 ∈ Ω̃P . A first-order Taylor expansion yields that for any x ∈ Ω̃P ,

|f0(x)| = |f0(x)− f0(x0)| ≤ sup
z∈Ω̃P

‖∇f0(z)‖2‖x− x0‖2 ≤M diam(Ω̃P ) ≤ 2M2,

where in the second inequality, we used B2(i), and in the third one, we used that diam(Ω̃P ) ≤ 2M
according to B2.

(ii) follows immediately from B2(ii).
Next, as in (i), (5.1) follows from a first-order expansion: For any x ∈ Ω̃P , note that on the one

hand
|f0(x)| = |f0(x)− f0(x0)| ≤ 2‖T0‖2M ≤ 2M2

so that ‖f0‖L∞ ≤M2 and ‖f0‖L2 ≤ 2M3. Together with the fact that T0 = ∇f0, this allows us to
shift the smoothness index by one speaking about potentials.

To show the statements about Q, by Lemma 14 and (ii) above, f0 is strongly convex on int(Ω̃P )
and can be extended to +∞ outside of Ω̃P and thus be also be considered a strongly convex function
onRd. By Lemmas 17 and 18, we conclude that T0 = ∇f0 is a bijection from ΩP onto its image ΩQ =
supp((∇f0)#P ), with both ∇f0 and (∇f0)−1 being continuously differentiable; in other words,
∇f0 is a C1-diffeomorphism between ΩP and ΩQ. Since C1-diffeomorphisms preserve Lipschitz
domains [HMT07, Theorem 4.1] and connectedness, we can conclude that ΩQ is a connected and
bounded Lipschitz domain, and the fact that ΩQ ⊆MB1 follows from T (x) ≤M for all x ∈ Ω̃P .

Finally, we turn to check the condition on the density ρQ. To that end, note that by the change
of variables formula, Q has the density

ρQ(y) =
1

| detD2f0((∇f0)−1(y))|
ρP ((∇f0)−1(y))1(y ∈ ΩQ).
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This readily yields the desired bound in light of B1 which assumes boundedness of ρP and (ii)
which gives boundedness of the Hessian D2f0.

F.2 Proof of Proposition 11

We first bound the expectation of the supremum of interest and then obtain the high-probability
bound via concentration. To begin, note that

Ŝ0(f)− S0(f) = (P̂ − P )(f − f0) + (Q̂−Q)(f∗ − f∗0 ) , (F.1)

which yields

E[ sup
f∈FJ (τ2)

|Ŝ0(f)− S0(f)|]

≤ E[ sup
f∈FJ (τ2)

|(P̂ − P )(f − f0)|] +E[ sup
f∈FJ (τ2)

|(Q̂−Q)(f∗ − f∗0 )|]

=: T1 + T2.

We first focus on the T2-term. Once understood, the T1-term can be bounded similarly.

Bound on T2-term.
We estimate T2 from above by two suprema, corresponding to low and high frequencies. To this

end, we center all functions and consider the extension of a restriction of the functions to ΩQ, which
allows us to use wavelet expansions for harmonic analysis.

First, because (Q̂ − Q)(g + c) = (Q̂ − Q)g for every function g and constant c ∈ R, we may
assume without loss of generality that∫

ΩQ

(f∗(z)− f∗0 (z)) dλ(z) = 0 ∀f ∈ FJ .

Note that f∗ and f∗0 are defined over all of Rd but we do not control their norms over the whole
space. To overcome this limitation, with a slight abuse of notation, we denote by ext f∗ (resp.
ext f∗0 ) the Lipschitz extension of the restriction of f∗ (resp. f∗0 ) to ΩQ. The existence of a linear
extension operator is guaranteed by Theorem 23. In particular, we control the norms of ext f∗ and
ext f∗0 .

For a function g with wavelet expansion

g =
∞∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k ,

as defined in Section B, we define the two L2-projections

ΠJg =
J∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k , Π>Jg =

∞∑
j=J+1

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k .

With this, we write T2 = T2,1 + T2,2, where

T2,1 = E[ sup
f∈FJ (τ2)

|(Q̂−Q)ΠJ ext(f∗ − f∗0 )|] ,

T2,2 = E[ sup
f∈FJ (τ2)

|(Q̂−Q)Π>J ext(f∗ − f∗0 )|] .
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Note that the projected functions are again well-defined continuous functions: By assumption,
all f and f0 are strongly convex, hence their conjugates have Lipschitz-continuous gradients and
therefore bounded B2

∞,∞(ΩQ)-norm. In turn, their projections also have bounded B2
∞,∞(ΩQ)-norm,

and by Theorem 23, this implies that both ΠJ ext(f∗ − f∗0 ) and Π>J ext(f∗ − f∗0 ) are in Cs(Rd),
for s < 2, and hence they are continuous.

Bound on T2,1-term.
Recall that it follows from Proposition-Definition 7 that ΩQ is a connected Lipschitz domain, so

we can apply the Poincaré-Wirtinger inequality, Lemma 39, together with (5.6) from Proposition 10,
to get ∫

ΩQ

(f∗ − f∗0 )2 dλ .
∫

ΩQ

‖∇f∗ −∇f∗0 ‖2 dλ .Mτ2,

where we used that we assumed f∗ − f∗0 to be centered.
Hence, f ∈ FJ(τ2) implies ‖f∗ − f∗0 ‖W 1,2(ΩQ) . τ , and therefore due to the properties of the

extension operator ext,
‖ ext(f∗ − f∗0 )‖W 1,2(Rd) ≤ C4 τ, (F.2)

for some constant C4 = C4(ΩQ,M). Since ΠJ is a non-expansive operator on Besov spaces, it
follows from the above display that

T2,1 ≤ sup{|(Q̂−Q)h| : h ∈ VJ(Rd), ‖h‖W 1,2(Rd) ≤ C4τ}.

Bounding the empirical process over this standard function class can now be performed as follows.
Observe first that for any function h ∈ VJ(Rd) with wavelet decomposition

h =
J∑
j=0

∑
g∈Gj

∑
k∈Zd

γj,gk Ψj,g
k , (F.3)

the condition ‖h‖W 1,2(Rd) ≤ C4 τ is equivalent to

J∑
j=0

∑
g∈Gj

∑
k∈Zd

22j |γj,gk |
2 ≤ C2

4τ
2.

Next, by symmetrization, for independent copies of Rademacher random variables εi, i = 1, . . . , n,

E sup |(Q̂−Q)h| ≤ E sup
1

n

n∑
i=1

εih(Yi),

where both suprema are taken over the set GJ = {h ∈ VJ(Rd), ‖h‖W 1,2(Rd) ≤ C4τ}. To control
the Rademacher process, fix h ∈ GJ with wavelet decomposition (F.3). By the Cauchy-Schwarz
inequality,

n∑
i=1

εih(Yi) ≤
(∑

22j |γj,gk |
2
)1/2(∑( n∑

i=1

εi
2j

Ψj,g
k (Yi)

)2)1/2

≤ C4 τ
(∑( n∑

i=1

εi
2j

Ψj,g
k (Yi)

)2)1/2
,
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where here and below, all sums without indices are over {0 ≤ j ≤ J, g ∈ Gj , k ∈ Zd}. Since the
right-hand side in the display above does not depend on h, we get by Jensen’s inequality that

E sup
1

n

n∑
i=1

εih(Yi) ≤
C4 τ

n

(
E

∑( n∑
i=1

εi
2j

Ψj,g
k (Yi)

)2)1/2
.

Since Yi ∈ ΩQ, a compact set by assumption, for given j and g, Ψj,g
k (Yi) is non-zero only for k ∈ Λ(j)

where Λ(j) depends on the diameter of ΩQ, and |Λ(j)| . 2jd. Together with the independence of
the εi, this yields

E

∑( n∑
i=1

εi
2j

Ψj,g
k (Yi)

)2
=

∑
0≤j≤J,

g∈Gj ,k∈Λ(j)

n∑
i=1

1

22j
E

[
Ψj,g
k (Yi)

2
]
.

By Proposition-Definition 7 and the fact that the Ψj,g
k form an orthonormal basis in L2(Rd),

E

[
Ψj,g
k (Yi)

2
]
.
∫

ΩQ

Ψj,g
k (y)2 dλ(y) ≤

∫
Rd

Ψj,g
k (y)2 dλ(y) = 1.

Thus,

∑
0≤j≤J,

g∈Gj ,k∈Λ(j)

n∑
i=1

1

22j
E

[
Ψj,g
k (Yi)

2
]
. n

∑
0≤j≤J

2jd

22j
.


n, d = 1,

nJ, d = 2,

n2J(d−2), d ≥ 3.

We have proved that

T2,1 .
τ√
n
rJ , rJ :=


1, d = 1,
√
J, d = 2,

2J
d−2
2 , d ≥ 3.

(F.4)

Bound on T2,2-term.
To control the term T2,2, we use a chaining bound for bracketing entropy (Theorem 25). To that

end, we exhibit bounds on the L∞-covering numbers of the corresponding function space, which
in turn implies control of L2-bracketing numbers. The idea is to bound the covering numbers in
the original space FJ(τ2) and exploit continuity properties of the transformations that lead to the
function class in the definition of T2,2, in particular the operation of taking the convex conjugate.

Define the function space

F̃J(τ2) = {Π>J ext(f∗ − f∗0 ) : f ∈ FJ(τ2)} ,

and let f1, f2 ∈ FJ(τ2) have wavelet coefficients given by the sequences γ1 and γ2. Observe that by
linearity of the projection and extension operators, we have for any cutoff J ′ ≥ 0,

‖Π>J ext(f∗1 − f∗0 )−Π>J ext(f∗2 − f∗0 )‖L∞(ΩQ)

= ‖Π>J ext(f∗1 − f∗2 )‖L∞(ΩQ)

≤ ‖Π>J ′Π>J ext(f∗1 − f∗2 )‖L∞(ΩQ) + ‖ΠJ ′Π>J ext(f∗1 − f∗2 )‖L∞(ΩQ) .

To control the first term in the right-hand side above, in the following lemma, we establish
bounds on the potentials in F̃J(τ2). Its proof is deferred to the next section.
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Lemma 37. There exists a constant C5 = C5(ΩP , Ω̃P ,ΩQ,M) such that for all f ∈ X (2M),

‖ ext f∗‖B2
∞,∞(Rd) ≤

C5

2
.

Moreover, under assumptions B1 – B2, ‖ ext f∗0 ‖B2
∞,∞(Rd) ≤ C5/2 as well.

It follows from Lemma 37 that there exists C5 such that for any f ∈ F(τ2), we have

‖Π>J ext(f∗1 − f∗2 )‖B2
∞,∞
≤ C5 .

Therefore, by Lemma 13, we get

‖Π>J ′Π>J ext(f∗1 − f∗2 )‖L∞(ΩQ) ≤ 2−2J ′‖Π>J ′ ext(f∗1 − f∗2 )‖B2
∞,∞
≤ ε

if we choose J ′ = dlog (C5/ε) /2e so that C5 2−2J ′ ≤ ε.
To control the second term, we get from Lemma 24 that

‖ΠJ ′Π>J ext(f∗1 − f∗2 )‖L∞(ΩQ) . 2J
′d/2‖ΠJ ′γ‖2 ≤ 2J

′d/2‖γ‖2
= 2J

′d/2‖ ext(f∗1 − f∗2 )‖L2(Rd).

Moreover, using respectively the fact that ext is a Lipschitz operator on Besov spaces, ΩQ is
bounded, and the convex conjugate is non-expansive in L∞ by Lemma 20, we have

‖ ext(f∗1 − f∗2 )‖L2(Rd) . ‖f∗1 − f∗2 ‖L2(ΩQ) . ‖f∗1 − f∗2 ‖L∞(ΩQ)

≤ ‖f1 − f2‖L∞(Ω̃P ) . 2Jd/2‖γ1 − γ2‖∞,

where in the last inequality, we used Lemma 24. We have proved that

‖Π>J ext(f∗1 − f∗0 )−Π>J ext(f∗2 − f∗0 )‖L∞(ΩQ) ≤ C6 2(J+J ′)d/2‖γ1 − γ2‖∞ + ε ,

for some constant C6 = C6(Ω̃P ,ΩQ). This inequality allows us to control the L∞-bracketing numbers
of F̃J(τ2) using `∞-covering numbers for the wavelet coefficients. To control the latter, note that for
all f ∈ FJ(τ2) ⊂ X (2M), it holds ‖f‖B2

∞,∞(Rd) .M2 so that ‖γ‖`∞ .M2. Moreover, these wavelet

coefficients are in a space of dimension at most C 2Jd, C(Ω̃P ,M) > 0 because FJ(τ2) ⊆ VJ(Ω̃P ).
Hence, choosing ε = δ/4, Lemmas 27, 28, and the previous display yield

logN[ ](F̃J(τ2), ‖ . ‖L2(ΩQ), δ) . logN(F̃J(τ2), ‖ . ‖L∞(ΩQ), δ/2)

. 2JdJ + 2Jd log

(
1

δ

)
. (F.5)

To apply the chaining bound of Theorem 25, note that by (F.2) and Lemma 37, respectively,
combined with Lemma 13, we have

‖g‖L2(Rd) . C4 2−J τ, ‖g‖L∞(Rd) . C5 2−2J , for g ∈ F̃J(τ2).

Thus,

T2,2 .
1√
n
D[ ]

(
1 +

D[ ]

C2
4 2−2J τ2

√
n
C5 2−2J

)
=

1√
n
D[ ]

(
1 + C7

D[ ]

τ2
√
n

)
,
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where D[ ] = D[ ](C4 2−Jτ, F̃J(τ2), L2(Q)) is the Dudley integral defined in (C.1). Moreover, by (F.5)
and Lemma 29, we have

D[ ] .
∫ C4 2−Jτ

0

√
1 + 2JdJ + 2Jd log (1/δ) dδ

. τ2J
d−2
2

√
J log (1 + C5/τ) ,

and therefore,

T2,2 . τ
2J

d−2
2

√
n

√
J log (1 + C5/τ) +

2J(d−2)J

n
log (1 + C5/τ) .

Together with (F.4), we have T2 . φJ(τ2) with φJ defined as in (5.8) and we absorbed rJ for
d ≥ 2 into the first term on the right-hand side.

Bounding T1. T1 can be bounded completely analogously to how we bounded T2, with the
exception that Lemma 20 is not needed. Thus, we obtain T1 . φJ(τ2).

Final bound and concentration. Collecting the above bounds on T1 and T2, we get

E[ sup
f∈FJ (τ2)

|Ŝ0(f)− S0(f)| . φJ(τ2) .

To obtain a bound that holds with high probability, we apply the concentration result of Theo-
rem 26. For this, note that (F.1) can be written as

Ŝ0(f)− S0(f) = ((P̂ ⊗ Q̂)− (P ⊗Q))((f − f0)⊗ (f∗ − f∗0 )),

where P ⊗ Q denotes the product measure and (f ⊗ g)(x, y) = f(x) + g(y). Following the same
argument as in the proof of Lemma 37, we get

‖(f − f0)⊗ (f∗ − f∗0 )‖L∞(ΩP×ΩQ) ≤ C5 .

Moreover, similarly to Proposition 10, we have for any f ∈ FJ(τ2) that

‖(f − f0)⊗ (f∗ − f∗0 )‖L2(P⊗Q) ≤ C4 τ.

We can therefore apply Theorem 26 and conclude that with probability at least 1 − e−t, it holds
that

sup
f∈FJ (τ2)

∣∣∣S0(f)− Ŝ0(f)
∣∣∣ . φJ(τ2) + τ

√
t

n
+
t

n
,

which concludes our proof.

F.3 Proof of Lemma 37

By the boundedness conditions in the definition of X (2M) in Proposition-Definition 7, and the
boundedness of Ω̃P and ΩQ, we have for y ∈ ΩQ that

|f∗(y)| = | sup
x∈Ω̃P

〈x, y〉 − f(x)| ≤ 1

2
C5(Ω̃P ,ΩQ,M).
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Moreover, by Lemma 17, ∇f∗ is 2M -Lipschitz. Therefore, since ΩQ is bounded,

‖ ext f∗‖B2
∞,∞(ΩQ) .ΩQ ‖f

∗‖C2(ΩQ) . C5.

We can similarly deduce the second claim by Proposition-Definition 7 since f0 ∈ X (M), possibly
choosing a larger C5.

APPENDIX G: ADDITIONAL LEMMAS

Lemma 38. In the notation of the proof of Theorem 6, for any k = 0, . . . ,K and m ≥ m0, ∇φk
is a bijection from [0, 1]d to [0, 1]d.

Proof of Lemma 38. By construction, φk is strongly convex and has Lipschitz continuous
derivatives, hence so does its convex conjugate φ∗k by Lemma 17. In particular, φ∗k is defined on all
of Rd and for each y,

φ∗k(y) = sup
x
〈x, y〉 − φk(x).

Hence, the equation ∇φk(x) = y has a unique solution x(y) for every y ∈ Rd which implies that
∇φk is injective and that for any y ∈ [0, 1]d, there exists x = x(y) ∈ Rd such that ∇φk(x) = y.
It remains to check that x(y) ∈ [0, 1]d for all y ∈ [0, 1]d. To that end, note that φk(x) = ‖x‖2/2
for x /∈ [0, 1]d. Hence x(y) = y whenever y /∈ [0, 1]d. In particular, if y ∈ [0, 1]d, we must have
x(y) ∈ [0, 1]d. This completes the proof.

Lemma 39 (Poincaré inequality, [Eva10, Section 5.8.1], [Leo17, Theorem 13.27]).
Let Ω ⊆ Rd be a bounded and connected Lipschitz domain. Then, there exists a constant C = C(d,Ω)
such that for any function f ∈W 1,2(Ω),

‖f −
∫

Ω
f(x) dλ(x)‖L2(Ω) ≤ C‖∇u‖L2(Ω).

APPENDIX H: NUMERICAL EXPERIMENTS, CONTINUED

In this section, we give additional details on the numerical experiments in Section 6, using the
same notation used there to define T̂emp, T̂wav and T̂ker.

H.1 Implementation details

All simulations are done with Python 3.8.0 and Numpy 1.17.3, where some calculations are
accelerated by the just-in-time compiler of Numba 0.47.0, in particular the calculation of the Linear-
Time Legendre transform [Luc97]. The discrete wavelet transform is calculated with PyWT 1.1.1
[LGW+19]. We use a second-order finite difference operator for the calculation of the numerical
gradient provided by the findiff package, version 0.8.0. The optimization (6.2) is performed with the
L-BFGS algorithm [LN89] as implement in Scipy 1.4.1, stopping at a relative decrease in objective
function value of less than 10−9 and a maximum iteration number of 10000. The baseline estimator
is computed with the ot.emd function of the Python Optimal Transport package, version 0.6.0.
The kernel regression problem (6.3) is solved via scikit-learn, version 0.22.2 [PVG+11]. Plots were
made using Matplotlib 3.1.2 and Seaborn 0.9.0.

The boxes in the calculation of f̂J are picked to be Ω̃P = Ω̃Q = [−0.5, 1.5]d in the case (id) and

Ω̃P = [−0.5, 1.5]d, Ω̃Q = [0, 4]d in the case (exp). To compute f̂J for different J , we initialize the
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optimization at all scales of J with the all zeros vector. An approximation to the ground truth semi-
dual objective (2.5) is obtained by integrating both W>J γJ and the interpolation Py→T0(x)L(W>J γJ)

over [0, 1]d with Simpson’s rule, exploiting the fact that integration over Q is equivalent to integra-
tion over P under the push-forward T0.

The parameters νkernel and νridge are chosen via an oracle procedure, picking the best νkernel ∈
{10−9, 10−8.5, . . . , 10−5}, νridge ∈ {10−5, 10−4.5, . . . , 10−1} as determined by evaluating MSE for an
independent draw from P .

The data for all quantitative plots are obtained by taking the median over 32 i.i.d. replicates.
Error bars are not shown since 95-percentile bootstrapped confidence intervals were not visible for
most estimators at the present scale of the plots.

Running on one core of server processors such as an Intel R© Xeon R© E5-2670 v3 (2.30GHz),
the calculation of all wavelet scales of T̂wav for one replicate takes between 10 and 70 minutes,
depending on the sample size and hence the conditioning of the problem. We note that the runtime
and space complexity of the algorithm is determined both by the discretization size N and to a
lesser extent by the sample size n, as opposed to computing the optimal transport plan between
empirical distributions, whose complexity in the regimes considered here is governed entirely by
the sample size n. As a comparison, computing all 100 different parameter settings for T̂ker with
n = 10000 takes about five hours.

H.2 Numerical error dominates for large sample size

To investigate the observed flattening out of the T̂wav error curves in Figure 2, we repeat the
experiment for (id) and d = 3 with a lower resolution discretization, N = 33. In Figure 3, we
compare the resulting error to the N = 65 case considered in Section 6. The error bottoms out for
much lower values of n, suggesting that numerical accuracy is indeed responsible for this behavior.

10
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n

10
3

10
2

10
1

M
SE

MSE for (id), d = 3, varying accuracy

MSEn(Twav), N = 65
MSEn(Twav), N = 33

Figure 3: Estimation errors for (id), d = 3, low and high accuracy discretization. Median over 32
replicates. The error curve flattens out earlier for N = 33, suggesting that numerical approximation
errors are responsible for this phenomenon.
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Figure 4: Estimation errors for (id), d = 3, direct output of (6.2), T̂wav,direct, compared to its convex

envelope T̂wav. Median over 32 replicates. For low sample sizes, taking the convex envelope improves
the estimation rate.

H.3 Improved gradient estimation by computing convex envelope

Write f̂J = W>J γ̂J . We observe that while f̂J by itself often qualitatively yields good results on
ΩP (the support of P ), the lack of additional global regularity conditions in the optimization (6.2)
often leads to poor approximation outside of the support, i.e., on Ω̃P \ ΩP . In particular, certain
regions could simply not enter the optimization at all due to the form of the discrete Legendre
transform L in (6.1). The numerical gradient estimate is somewhat sensitive to this, especially near
the boundary, which prompts us to regularize the result further by instead considering its convex
envelope, i.e., the largest convex function that lies entirely below the graph of f̂J .

We give a qualitative visual example of this in Figure 5. Depicted for d = 2 are first the ground
truth potential f0(x) = 1

2‖x‖
2
2 corresponding to the identity transport map (Figure 5a) and its

derivative in the first coordinate (Figure 5b), where we set P = Unif([0, 1]2). The parts of those
functions corresponding to the support of P are depicted in yellow, while those outside of the
support are colored blue. Results of the optimization for n = 100 i.i.d. samples from P and Q =
Unif([0, 1]2) are shown in Figures 5c (potential) and 5d (first coordinate of numerical gradient) for
J = 1. While the estimator yields a good approximation to f0 and T0 on the interior of ΩP , the
outside appears very ragged. This is remedied by applying L twice, see Figures 5e (potential) and
5f (numerical gradient).

We also quantitatively compare the estimation accuracy of a linear interpolation of ∇xf̂Ĵ , de-

noted by T̂wav, direct to that of T̂wav by repeating the experiment for (id) and d = 3, plotting the
results in Figure 4. One can observe that for low sample sizes, considering the convex envelope
indeed significantly improves the estimation accuracy.

H.4 Performance for varying regularization strength

In order to further investigate the performance of the proposed regularized estimators T̂wav and
T̂ker, we show error plots for a selection of fixed regularization parameters in Figure 6. In the case

of T̂wav, we plot T̂
(J)
wav for the whole range of J ∈ {0, . . . , 3} that can be calculated by means of the
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(b) Ground truth transport map, first coordinate,
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Figure 5: Numerical instability of the boundary is remedied by computing the convex envelope of f̂ ,
see Section H.3. Visualization of potentials (ground truth (a), estimated potential (c), and convex
envelope of estimated potential (e)), and the first coordinate of the associated gradients (b, d, f,
respectively) for the identity transport map and P = Unif([0, 1]2) in d = 2, J = 1, n = 100.
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discrete wavelet transform when N = 65. In the case of T̂ker, we plot a subset of all considered
combinations νkernel ∈ {10−9, 10−8.5, . . . , 10−5}, νridge ∈ {10−5, 10−4.5, . . . , 10−1}.

First, for the wavelet estimators T̂
(J)
wav, we observe that the best bias-variance trade-off is achieved

by J = 0 for smaller values of n and by J = 1 for n ≥ 103.5. Moreover, the curve for J = 3,
corresponding to no regularization, roughly follows the shape of the error curve of T̂emp, until it
flattens out due to the numerical error. This is most likely due to the grid approximations involved
in the definition of T̂wav.

Next, the kernel estimators T̂
(νridge,νkernel)
ker in 3D show mostly similar error curves for the range

of parameters considered, although a trade-off that depends on the sample size can be observed
between (νridge, νkernel) ∈ {(10−7, 10−4), (10−7, 10−3)}. Moreover, in the case of very strong regular-
ization, (νridge, νkernel) = (10−5, 10−5), the error curve flattens out for values of n as low as 102.5.

In general, for T̂ker, we observe that its performance is more sensitive to changes in νkernel than to
those in νridge.

Last, In 10D, we observe a wider range of error curves according to the regularization strength,
ranging from a curve that closely matches that of T̂emp for (νridge, νkernel) = (10−9, 10−1) to a curve
that matches most of the error curve shown in Figure 2d for (νridge, νkernel) = (10−7, 10−4).
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Figure 6: Log-log plot of MSE for the exponential transport map, plotted against n, showing the
median error over 32 replicates. Individual curves correspond to the performance for different values
of the regularization parameters, with errors for T̂emp shown for comparison.
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volution for the Wasserstein metric and geometric inference. Electronic Journal of
Statistics, 5:1394–1423, 2011.
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transport for diffeomorphic registration. In Medical Image Computing and Computer
Assisted Intervention - MICCAI 2017 - 20th International Conference, Quebec City,
QC, Canada, September 11-13, 2017, Proceedings, Part I, pages 291–299, 2017.

[FHN+19] Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Geoffrey Schiebinger, Philippe
Rigollet, and Jonathan Weed. Statistical optimal transport via factored couplings.
AISTATS, 06 2019.
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[HKPT98] Wolfgang Härdle, Gerard Kerkyacharian, Dominique Picard, and Alexander Tsy-
bakov. Wavelets, Approximation, and Statistical Applications, volume 129. Springer
Science & Business Media, 1998.

[HL01] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex Anal-
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NY, pages 99–102, 2015.

[SC15] Vivien Seguy and Marco Cuturi. Principal geodesic analysis for probability measures
under the optimal transport metric. In Advances in Neural Information Processing
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[SP18] Shashank Singh and Barnabás Póczos. Minimax distribution estimation in wasserstein
distance. arXiv preprint arXiv:1802.08855, 2018.
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