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ABSTRACT: Organic structure directing agents (OSDAs) play a
crucial role in the synthesis of micro- and mesoporous materials
especially in the case of zeolites. Despite the wide use of OSDAs,
their interaction with zeolite frameworks is poorly understood, with
researchers relying on synthesis heuristics or computationally
expensive techniques to predict whether an organic molecule can
act as an OSDA for a certain zeolite. In this paper, we undertake a
data-driven approach to unearth generalized OSDA−zeolite
relationships using a comprehensive database comprising of
5,663 synthesis routes for porous materials. To generate this comprehensive database, we use natural language processing and
text mining techniques to extract OSDAs, zeolite phases, and gel chemistry from the scientific literature published between 1966 and
2020. Through structural featurization of the OSDAs using weighted holistic invariant molecular (WHIM) descriptors, we relate
OSDAs described in the literature to different types of cage-based, small-pore zeolites. Lastly, we adapt a generative neural network
capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry. We apply this model to
CHA and SFW zeolites generating several alternative OSDA candidates to those currently used in practice. These molecules are
further vetted with molecular mechanics simulations to show the model generates physically meaningful predictions. Our model can
automatically explore the OSDA space, reducing the amount of simulation or experimentation needed to find new OSDA candidates.

■ INTRODUCTION

Zeolites and related zeotype materials are crystalline, micro-
porous materials extensively used in a variety of industrial
applications.1−3 Among their different physicochemical proper-
ties, the crystalline structure and building unit geometry are
critical in determining their suitability for target applications
based on structure-dependent molecular shape selectivity,
diffusivity, and confinement. Although there are over 250
recognized zeolite structures,4 the exact mechanisms associated
with the nucleation and crystallization of zeolites are still not
fully understood,5−8 making the a priori prediction of a desired
zeolite phase from an initial set of conditions inexact and
difficult. For this reason, the discovery of new zeolite structures
has historically been based on trial-and-error synthesis
methodologies guided by accumulated human knowledge
and chemical intuition.9 Variables known to influence zeolite
formation include the types and amounts of framework atoms,
mineralizing agents, and inorganic/organic structure directing
agents.1,9,10

Organic structure directing agent (OSDA) molecules play a
crucial role in zeolite synthesis. They can provide different
effects within the synthesis from charge balancing and space
filling to a templating, lock-and-key relationship.11 This results
in a wide range of OSDA specificity with some OSDAs able to
crystallize many different zeolite phases while others can only

direct the formation of a limited number of phases. The size,
flexibility, hydrophilicity, and charge of the OSDA, among
other factors, play an important role in zeolite crystallization
kinetics and phase specificity.12−14 Indeed, experimental
heuristics within the zeolite community connects the OSDA
size with increasing zeolite pore size and increasing OSDA
rigidity with increasing specificity or formation of fewer zeolite
phases, although designing OSDAs from these heuristics
remains challenging.12 Researchers have used computational
approaches including density functional theory and molecular
dynamics to suggest candidate OSDAs for specific zeolite
structures,15−17 but these approaches are typically limited to a
single zeolite system, computationally expensive, and focus on
pure silica systems. More recently, a strategy involving the “ab
initio” design of the OSDA to mimic the transition states of
industrially relevant catalytic reactions has gained atten-
tion,18,19 but this technique relies on computationally
expensive density functional theory calculations, hindering its
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widespread implementation. Undoubtedly, we must develop
new modeling approaches that are more efficient and
comprehensive to advance OSDA design.
Data-driven approaches have been used to study porous

materials,20−23 but data-driven zeolite synthesis studies are
limited in scope and rely on overly simplified OSDA−zeolite
interactions that cannot capture the complexity of the system.
Machine learning (ML) and data mining have been used in
studies that do not require explicitly modeling the OSDA−
zeolite interaction including specific zeolites within limited
regions of the chemical space,24,25 OSDA-free zeolite
systems,26 and interzeolite transformations.27 Studies that
have attempted to model this interaction either simplify the
OSDA representation to basic properties such as molecular
volume28 or are limited to a single zeolite structure,16

suggesting that more advanced ML techniques and larger
data sets are needed to better model the OSDA−zeolite
relationship.29 The literature provides a comprehensive data
set of the known OSDA−zeolite pairs, and recent studies have
provided natural language processing (NLP) frameworks that
can be adapted to extract OSDA, zeolite, and chemistry
information, including all the elemental species present in the
synthesis gel.28,30−32 Literature-extracted data combined with
advanced ML techniques for the OSDA−zeolite relationship
could expand the scope of data-driven zeolite studies.
ML also enables the pursuit of inverse design for both

porous materials33−35 and organic molecules. One approach to
inverse design is generative neural network models, which have
been successful for many applications including drug
discovery,36 property optimization,37 synthesis prediction,38

and molecular design.39,40 These models learn a latent
representation of an organic molecule typically by compressing
the training data into a multidimensional Gaussian distribution
and reconstructing it from sampled vectors. This latent space

can then be explored to generate novel organic molecules that
resemble the support distribution. These new samples are then
converted into standard molecular representations such as the
“simplified molecular-input line-entry system” (SMILES)
format.41 Recent models have been trained to generate
molecules directly from the molecule’s physical and chemical
properties.42 During inference, researchers input in the desired
properties and generate molecules that possess them. This
model can be adapted to zeolite data by training the model to
generate organic molecules from specific zeolite structures and
gel chemistry.
In this paper, we use a data-driven approach to examine the

relationships between OSDAs, qualitative gel chemistry, and
resulting zeolite structures. We present an exhaustive OSDA,
zeolite, and qualitative synthesis data set extracted through
NLP and text mining techniques. We use structural
descriptions of the OSDAs to reduce the dimensionality of
the chemical space and visualize trends found in the
crystallization of certain zeolites. Finally, we adapt a generative
neural network model trained on this extracted data set to
suggest potential OSDA molecules conditioned on specific
zeolite structures and synthesis conditions. The data, models,
and resulting analyses provide research opportunities for the
community to further expedite zeolite research and represent
an important first step toward developing a high-throughput
zeolite research pipeline.

■ RESULTS AND DISCUSSION
Extracted Data Set. We extract a data set of OSDAs,

chemistry, and zeolite phases from across the entire zeolite
literature with automated techniques.28,30,31 This data set
consists of articles from over 15 different publishers and 140
journals and spans the year range from 1966 to 2020. It
contains 5,663 synthesis routes from 1,384 articles containing

Figure 1. Overview of the automatically extracted data set. (a−c) Average molecular volume, OSDA specificity, and charge distributions for all
OSDAs in the data set. (d) Shows the five OSDAs known to make the most zeolite structures. (e) Shows the five zeolites that can be made with the
most OSDAs.
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the OSDAs, qualitative synthesis gel components, and the
resulting zeolite phases. This data set contains information on
758 distinct OSDA molecules and 205 zeolite phases. Among
the different synthesis routes, 3,085 describe traditional
zeolites (pure Si, Si/Al, and Si/B frameworks), 1,274 describe
aluminophosphate (AlPO)-type materials, while the remaining
1,304 data points describe additional zeotypes including
germanium-based and metal-containing (Ti, Sn, or Zr,
among others) microporous structures. Distributions of
different zeolite structures and synthesis gel chemistry
contained in the data set can be seen in Figures S1 and S2.
Figure 1a shows the average molecular volume distribution

of the OSDAs in the data set. The molecular volumes range
from about 30 to 1000 Å3. Figure 1a shows that larger OSDAs
are related to the synthesis of zeolites instead of AlPO-type
materials. This observation agrees with less correlation
between organic molecules and the pores/cages observed
experimentally for AlPO-type materials12 and the limited
stability of large-pore AlPO-type materials compared to their
aluminosilicate counterparts. This limited stability has mostly
precluded heuristic studies using bulky and expensive OSDA
molecules in their synthesis.
The majority of the OSDAs have high specificity, producing

fewer than 5 zeolite phases, while a few outliers are capable of
making more than 20 phases (Figure 1b). These lower-
specificity OSDAs are typically small and simple alkylammo-
nium cations, such as tetramethylammonium (TMA) or
tetraethylammonium (TEA) shown in Figure 1d. These
molecules act as space-filling molecules to provide charge
balance to the framework and generally do not provide a true
templating effect. Other low-specificity OSDAs feature high

flexibility with many rotatable bonds, such as hexamethonium
(see Figure 1d). The zeolites that have been experimentally
obtained using the most organic molecules are MFI, MTW,
*BEA, CHA, and MOR (Figure 1e). These topologies are
among the most widely used industrial applications (along with
FAU and FER), thereby having more fundamental research
efforts to improve their physicochemical properties and cost
effectiveness.43

The number and distribution of ionic charges within the
OSDAs play an important role in the nucleation and
crystallization processes and, together with the presence/
absence of alkali cations, are crucial for positioning the
negatively charged heteroatoms in specific framework posi-
tions. Heteroatom location has been shown to drastically alter
the catalytic properties of the materials.44−46 In zeolite
synthesis, most OSDAs contain one or two positive charges,
generally in the form of mono- or dicationic ammonium
species (Figure 1c).12−14 While the use of neutral amines has
also been reported for the synthesis of zeolite-type materials,
these molecules mostly act as pore fillers. In contrast, AlPO-
type materials are preferentially synthesized using amines as
OSDAs (blue bar in 0 charge in Figure 1c), which are
protonated in the neutral or acidic media of a typical AlPO-
type material synthesis gel.

Literature-Mined OSDA/Zeolite Correlations. Due to
the complex interactions between OSDAs and the resulting
zeolite framework (Figures S3 and S4), simple descriptors like
molecular volumes and/or flexibility parameters (e.g.,
nConf20)47 are insufficient to describe links between specific
OSDAs and zeolite structures. We also consider nonstructural
properties of the OSDAs and their effect on zeolite structure

Figure 2. Principal component analysis (PCA) WHIM vector representation of OSDA molecules used in five cage-based small-pore zeolite
systems. PCA 1, 2, and 3 represent the first three principal component axes. The gray points represent all of the OSDAs extracted from the
literature.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.1c00024
ACS Cent. Sci. 2021, 7, 858−867

860

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00024?rel=cite-as&ref=PDF&jav=VoR


(Figure S5), but these features also inadequately describe the
OSDA−zeolite relationship. To capture molecular shape
matching, we need a more informative structural descriptor
to capture not only the size of the molecule but also other
structural features such as folding and charge distributions.
Accordingly, weighted holistic invariant molecular (WHIM)48

descriptors contain information about the size, shape,
symmetry, and atom distribution that is dependent on the
three-dimensional conformation of the molecule. Depending
on the flexibility of the molecule, different conformations can
have drastically different WHIM representations. For example,
a long linear molecule can either stretch out or fold, giving two
different three-dimensional representations (Figure S6). To
address this challenge, we calculate the average conformation
WHIM descriptor using geometries obtained with RDkit49 to
capture the varying three-dimensional representation of each
molecule based on its different conformations.
Because WHIM is a high-dimensional descriptor, we use

principal component analysis (PCA) to reduce the dimension-
ality of the WHIM descriptor space and enable visualization of
all the OSDAs in the data set. The first principal component
(PCA 1) accounts for 58% of the variance and correlates with
the volume of the molecule, as it contains WHIM features
corresponding to the longest axial and global dimension of the
molecule. The second principal component (PCA 2) accounts
for 15% of the variance and is composed of global dimension
and symmetry features. The third principal component (PCA
3) accounts for 13% of the variance and has many contributing
features including all three of the axial dimensions and the
global dimensions (Figures S7 and S8). We show the PCA
WHIM visualization comparing the OSDAs to a sampling of
the entire organic space to highlight the limited chemical space

of known OSDAs (Figure S9). These dimensionally reduced
WHIM descriptors highlight relationships between OSDAs
and zeolite phases.
We select five cage-based small-pore zeolites, LEV, CHA,

AEI, LTA, and AFX (Figure 2a), to evaluate the OSDA−
zeolite correlations through the WHIM descriptor featurization
and PCA analysis (Figure 2b,c). Cage-based zeolites have a
strong correlation between the three-dimensional structure of
the OSDA and the shape of the cage, making them good
candidates for analysis. Since gel composition also affects the
relationship between the OSDA and zeolite, we filter the data
set to include only conventional zeolite chemistry versions for
the selected zeolites using the extracted qualitative synthesis
gel information. We also explore this relationship for selected
large-pore zeolites to examine the generalization of this
approach to other zeolite systems (Figure S10).
For these five zeolites, Figure 2 shows that each zeolite

topology is associated with specific and distinct OSDA
characteristics. Differences are observed between the locations
of the clusters, particularly PCA 2 and PCA 3, likely due to the
differences in cage size and shape requiring different molecular
structures as OSDAs. The OSDAs for LTA show larger
variability among the PCA parameters than those for the other
zeolite clusters (purple crosses in Figure 2b). The synthesis of
high-silica LTA has been preferentially reported by using large
aromatic molecules50,51 (Figure S11), while small organic
molecules have been employed for the synthesis of low-silica
LTA, i.e., tetramethylammonium or diethyldimethylammo-
nium (Figure S11), which act as pore fillers in combination
with additional alkali cations. The difference in OSDA size for
high- and low-silica LTA materials is likely responsible for the
large PCA variability observed for the LTA cluster.

Figure 3. Comparing literature OSDAs and generated OSDAs of a CHA zeolite. (a) Shows the position of TMAda (shown with the blue star)
relative to the rest of the OSDAs in the PCA WHIM space. (b) A zoomed in view of the ellipse surrounding it. (c) The blue square contains
literature CHA OSDAs that fall within the ellipse. (d) The orange square contains examples of generated OSDAs for CHA that fall within the
ellipse.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.1c00024
ACS Cent. Sci. 2021, 7, 858−867

861

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00024?rel=cite-as&ref=PDF&jav=VoR


The two clusters representing CHA and AEI are very close
in the PCA WHIM vector representation (blue diamonds and
red circles in Figure 2b,c) and have significantly reduced
variance compared to LTA. The overlapped region of both
clusters suggests that the OSDAs used to synthesize these
frameworks are structurally similar. In fact, some of these
molecules can be used to make either framework by modifying
the synthesis conditions (Figure S12). This phenomenon is
expected given that both AEI and CHA zeolites have many
structural similarities including a cage-like three-dimensional
small-pore system and identical framework density (15.1 T/
1000 Å3). However, since these materials present cavities with
different shapes (Figure 2a), elongated and symmetrical in the
case of CHA (11.7 × 10.2 Å) and basket-cage-type in AEI
(12.6 × 11.2 Å), there are specifically shaped OSDA molecules
that would selectively fit CHA or AEI cavities, thus guiding
their preferential crystallization (Figure S12).
Suggesting New Candidate OSDAs through Gener-

ative Modeling.We adapt a generative neural network model
published by Kotsias et al.42 to suggest alternative organic
molecules for use as OSDAs. This model is trained on the
extracted literature data to output a SMILES string for an
OSDA molecule given a zeolite phase and gel chemistry as
input (architecture and training procedure is described in the
Experimental Section). This model allows us to move beyond
mining relationships from the literature toward the process of
discovering new OSDAs for particular zeolite structures. This
model requires a large quantity of data to train a useful
model,52 which is enabled by the size of our extracted data set.
Quantitative performance and benchmarking metrics for the
model are discussed in the Supporting Information (see Table
S1 and Figure S13).
With this model, we generate potential OSDA molecules for

a cage-based zeolite system featured above, CHA, due to its
industrial relevance. A total of 10,000 samples are drawn from

the model using different zeolite gel chemistry variations
including pure Si, Si−Al, and Si−B while also including Na+

and K+ cations and F− as a mineralizer. This procedure
generates 408 unique OSDAs for CHA.
To filter the generated OSDA molecules, we compare them

to the OSDA currently used in industry for CHA, N,N,N-
trimethyladamantammonium (TMAda). We take the PCA-
reduced WHIM coordinates of the TMAda and create an
ellipsoid around the point taking 5% of the range along the first
three principal component axes (see Figure 3a,b). Of the 408
generated CHA molecules, 57 fall within the TMAda ellipsoid.
Another 11 OSDAs previously reported in the literature for
CHA and 24 other OSDAs reported for other topologies also
fall within this range. Organic molecules within the ellipsoid
are expected to be structurally similar to TMAda and therefore
may be suitable alternative OSDAs as we explore further
below.
Figure 3 shows this information flow and some of the

resulting generated organic molecules for CHA (Figure 3d).
The highlighted points within the WHIM space represent
OSDAs that fall within the ellipsoid in all three PCA
dimensions. Looking qualitatively, the generated OSDAs
contain many similar features as the OSDAs found in literature
used for the synthesis of CHA (Figure 3c). For instance,
different adamantyl-type, rigid molecules are predicted (row 1
in Figure 3d), in good agreement with the experimentally
described TMAda, considered as the most effective template to
stabilize the CHA cavity.53−55 Beyond adamantyl-type
molecules, different alkyl-substituted spiro and piperidinium
molecules have been generated by the model as proposed
OSDAs for CHA (rows 2 and 3 respectively in Figure 3d),
which present similar structural features as some reported
CHA OSDAs. In addition, two simple tetraalkylammonium
cations have also been generated (row 4 in Figure 3d). We
note that tetraethylammonium has been recently reported as

Figure 4. OSDAs for SFW obtained from literature and generated by our model. (a) PCA-reduced WHIM locations for the three OSDAs known to
make SFW (blue stars) and five selected molecules generated by our model (orange stars). (b) Minimum conformer binding energy with SFW for
the three literature OSDAs. (c) Binding energy with SFW for the five selected generated molecules.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.1c00024
ACS Cent. Sci. 2021, 7, 858−867

862

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.1c00024/suppl_file/oc1c00024_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00024?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00024?rel=cite-as&ref=PDF&jav=VoR


an OSDA for the synthesis of CHA in its silicoaluminate
form.56 The model also generates other types of molecules not
directly seen in the literature (row 5 in Figure 3d) but have
commonly observed features including a single positively
charged nitrogen atom and cyclic structures. The generated
molecules demonstrate the model’s ability to add domain and
data-informed chemical noise into the OSDA space in a way
that allows intelligent prediction of potential OSDA
candidates.
We also evaluate the generated OSDA candidates for a

zeolite that is less studied than CHA. We choose the SFW
framework, which has been synthesized as a Si−Al zeolite using
three different OSDA molecules according to our data set and
presents high potential interest for its application as an
effective catalyst for NOx abatement.57,58 SFW is structurally
similar to CHA, having the same framework density (15.1 T/
1000 Å3) and being cage-based with the gme cage replacing the
cha cage. Since few OSDAs are known for SFW, we use
molecular mechanic simulations to calculate the binding
energy of each of the generated molecules with the SFW
framework to gauge our model’s predictive ability, rather than
comparing to known molecules as for CHA. The atomistic
simulations follow the procedures laid out by Schwalbe-Koda
and Go ́mez-Bombarelli59,60 (see also the Experimental
Section).
The molecular mechanic simulations show that many of the

generated molecules produced by our model are suitable
OSDA candidates for SFW. Of the generated molecules, 60%
have binding energies within the range of the literature OSDAs
(−9.98 to −7.48 kJ/mol SiO2). Interestingly, an additional 7%
have lower binding energies than the known OSDAs. Figure 4a
shows the results of generating molecules for SFW in the
reduced WHIM space. The blue stars represent the OSDAs
known to s yn th e s i z e SFW, N - e t h y l -N - ( 2 , 4 , 4 -
trimethylcyclopentyl)pyrrolidinium, N-ethyl-N-(3,3,5-
trimethylcyclohexyl)pyrrolidinium, and N,N-diethyl-5,8-di-
methyl-azonium bicyclo[3.2.2]nonane, while the orange points
represent generated molecules. Figure 4b shows the binding
energy for each of the three literature OSDAs. We select five of
the generated molecules, shown in Figure 4c. Molecules 1, 2,
and 3 are structurally similar to the known OSDAs and have
very low binding energies. These strong binding energies
support the relationship between distance in the WHIM space
and OSDA potential. Molecules 4 and 5 are chosen for strong
binding energies while being structurally different than the
known OSDAs. Molecule 4 is significantly larger than the
known OSDAs, indicating that a single, well-fitting OSDA per
cage could also have a strong templating effect toward SFW,
while molecule 5 is significantly smaller than the known
OSDAs, requiring packing more molecules into the cage.
These two molecules demonstrate the model’s ability to
suggest molecules that are structurally dissimilar from the
known OSDAs.
While the model is able to generate physically meaningful

suggestions for the SFW zeolite, it has performance limitations.
We probe its ability to provide different distributions of
molecules depending on the zeolite and chemistry. First, we
compare the generated SFW OSDAs with generated LAU
OSDAs. LAU is structurally very different than SFW, having a
higher framework density (18.0 T/1000 Å3), a 1-dimensional,
10-membered ring channel, and no composite building units in
common with SFW. Furthermore, LAU is typically synthesized
as an M−(Al/Ga)PO (M = Co, Mn, Zn, Fe)-type material,61,62

while SFW is a conventional zeolite,57,58 making them
chemically different as well. There is a clear difference in the
WHIM distributions of the molecules generated for the two
systems indicating the model’s ability to distinguish between
the structures during prediction (Figure S14a). Figure S14b
shows the distributions of minimum distance in the WHIM
space to one of the known SFW and LAU OSDAs. We also
generate LAU OSDAs using the SFW zeolite chemistry to
compare the effect chemistry has on the model. As expected,
having similar chemistry shifts the generated distributions
closer together although they are still distinct. We also
compare the SFW binding energies of the generated OSDAs
and OSDAs from the entire zeolite literature (Figure S15).
Figure S15 shows these distributions are very similar,
indicating the model may have a limited ability to predict
OSDAs specific to each zeolite system. However, the model is
able to match the literature distribution, containing molecules
known to be suitable OSDAs. These results taken together
demonstrate the model’s ability to generate different OSDA
suggestions by injecting chemical noise into the OSDA space
but still matching the performance of known literature OSDAs.
This result indicates that generated molecules may have
potential as OSDAs for several structurally similar zeolite
systems. Pairing this model with binding energy simulations
could help in selecting predicted OSDAs.

■ CONCLUSION

We have extracted and featurized data on OSDAs, zeolite
phases, and gel chemistry from across the zeolite literature,
resulting in a large, comprehensive data set of zeolite synthesis
parameters. We have then mined this literature data to uncover
relationships between the structure of the OSDA and the
resulting zeolite phase using a calculated three-dimensional
feature called WHIM. Finally, we model the interaction
between the OSDA, zeolite, and gel chemistry using a
generative neural network. This model can suggest novel
organic molecules with binding energies below and comparable
with their known literature counterparts.
While all of the chemistry data extracted in this paper is

qualitative, a promising avenue for supplemental work is to
extract quantitative information about the gel chemistry. This
information would allow for more detailed thermodynamic and
kinetic studies of zeolite synthesis. Additional atomistic
simulations could further aid the selection of OSDAs with
greatest potential to experimentally form the target zeolite.
This model and data could be combined with more advanced,
rapid simulation techniques and experimental optimization to
develop a high-throughput zeolite synthesis pipeline.

■ EXPERIMENTAL SECTION

Data Extraction, Processing, and Validation. Over 3.5
million chemistry and materials science journal articles were
scanned for keywords relating to zeolite materials including
“zeolite”, “osda”, “aluminophosphate”, and “molecular sieve”,
resulting in a corpus of approximately 90,000 papers. From this
corpus, OSDA names, zeolite structures, and synthesis gel
components were extracted from the tables and synthesis
sections of each paper using regular expression and domain
specific keyword matching. While this approach works well for
extracting raw zeolite data with very high recall, it is difficult to
determine specific OSDA−zeolite−synthesis systems, espe-
cially for papers that contain multiple experimental samples.
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Because of this, each extracted paper was manually checked to
ensure integrity and accuracy of the extracted synthesis route.
Data Normalization and Featurization. Since authors

use a variety of chemical names to describe both OSDA
molecules and zeolite structures, the extracted text data needed
to be normalized so different naming schemes did not affect
the final representation. For OSDAs, the CIRpy (Chemical
Identifier Resolver) Python package was used to determine the
IUPAC name and SMILES string. If the OSDA name was not
given in the paper, a chemistry expert determined the correct
IUPAC name and SMILES. Each zeolite material was
normalized to its International Zeolite Association (IZA)
code through its list of known materials. Materials not in the
IZA database were manually assigned the correct three letter
code.
RDkit49 was utilized to featurize the OSDA molecules. In

addition to the canonical SMILES representation, physical and
chemical properties of the organic molecules were also
calculated, including molecular volume, surface area, charge,
and WHIM descriptors. A total of 2,000 gas phase conformers
for each molecule were generated, embedded, and optimized
with the MMFF94 force field.63 Average WHIM descriptors
were calculated from the WHIM descriptors of all conformers.
PCA transformations for the WHIM vectors were calculated
using scikit-learn after each WHIM feature was standardized to
remove the mean and scale to unit variance.
Zeolite structures were featurized with structural data

obtained from the IZA database including framework density,
maximum ring size, channel dimensionality, maximum
included volume of a sphere, accessible volume, maximum
channel area, and minimum channel area. Qualitative gel
chemistry was one-hot encoded to describe the important
components of zeolite synthesis. One-hot categories were the
presence of Si, Al, Ge, P, Ti, B, Ga, Fe, Na, K, F, additional
framework elements, additional cations, extra solvents in
addition/instead of water, acid used in the synthesis, and
other synthesis components.
Generative OSDA Model. The generative neural network

borrowed heavily in both architecture and training protocol
from Kotsias et al.,42 but instead of using organic molecular
descriptors, the model used zeolite and synthesis gel features as
inputs. For each extracted synthesis route, the zeolite and
synthesis are featurized and concatenated into the input vector,
while the SMILES string of the OSDA is the output. To
augment the training data, up to 100 different noncanonical
versions of each OSDA’s SMILES string are generated,
resulting in training sets of approximately 150,000 points for
the different train/test splits. This data augmentation has been
shown to increase the accuracy of generative models for
organic molecules.64 The input is fed through 6 dense layers of
256 units with ReLU activation. Then, the data is fed through
three unidirectional LSTM layers consisting of 256 units.
Finally this output goes through a feedforward dense layer with
35 units having a softmax activation. Batch normalization is
used on the first dense layers and LSTM layers. The model was
implemented in Keras v2.2.4 with TensorFlowGPU v2.0.0
backend and trained using two NVIDIA Titan Xp GPUs.
The model was trained for 100 epochs on a variety of train/

test splits to test various aspects of the generative model using
the “teacher’s forcing method”.65 The Adam optimizer with
default parameters was used with a batch size of 128. A custom
learning rate scheduler was used with an initial rate of 10−3 for
50 epochs, and then each epoch was exponentially decayed

down to 10−6. Four different training and testing splits were
used to train the model. (1) The training and test split was
chosen at random with 80% of the data used for training and
20% used for testing. (2) The training and test split was chosen
so all data points resulting in CHA were isolated in the test set.
This results in 5,398 training points and 265 (5%) testing
points. (3) Data was split in the same manner as (2) but using
AEI. This results in 5,555 training points and 108 (2%) testing
points. (4) The final model was trained on the entire data set
with no held out test set. Splits 1, 2, and 3 are used to evaluate
the model’s performance, while split 4 is used to look at
specific zeolite systems CHA and SFW. Holding out an entire
zeolite structure from the training tests the model’s capability
of suggesting new OSDA candidates for previously unseen
zeolites and can confirm that the model is not memorizing
pairs of OSDAs and zeolites, which can occur when randomly
splitting. CHA and AEI were chosen due to their cage-like
structure, industrial relevance, and presence of enough data to
construct a large-enough test set for benchmarking.
OSDA generation followed the procedure outlined in

Kotsias et al.42 very closely. All generation occurred with
multinomial sampling with the temperature parameter set
equal to 1. Specific zeolite phases were manually chosen and
paired with the appropriate chemistry conditions. For example,
when looking at CHA zeolites, the CHA phase is paired with
Si/F, Si/B, Si/Na, Si/K, Si/Al/Na, Si/Al/K, and Si/Al/F. For
each zeolite/chemistry pair, 10,000 molecules are generated
along with the negative log-likelihoods of generating that
molecule.

Atomistic Simulations. Molecular mechanics simulations
were performed using the General Utility Lattice Program
(GULP),66,67 version 5.1.1, through the GULPy package.59

The Dreiding force field68 was used to model interactions
between the zeolite and the OSDA. The initial structure for the
SFW zeolite was retrieved from the International Zeolite
Association database and optimized using the Sanders−
Leslie−Catlow force field.69 Docking of OSDAs in SFW was
performed using the VOID package using the default
parameters.60 Pose optimizations were performed at constant
volume, and binding energies were calculated following the
frozen pose method.59
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organic structure directing agents for the synthesis of specific zeolitic
structures: An experimentally tested computational study. Chem.
Mater. 2005, 17, 545−552.
(9) Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites:
Precursors, intermediates and reaction mechanism. Microporous
Mesoporous Mater. 2005, 82, 1−78.
(10) Corma, A.; Davis, M. E. Issues in the Synthesis of Crystalline
Molecular Sieves: Towards the Crystallization of Low Framework-
Density Structures. ChemPhysChem 2004, 5, 304−313.
(11) Lok, B.; Cannan, T.; Messina, C. The role of organic molecules
in molecular sieve synthesis. Zeolites 1983, 3, 282−291.
(12) Lobo, R. F.; Zones, S. I.; Davis, M. E. Structure-direction in
zeolite synthesis. Top. Inclusion Sci. 1995, 6, 47−78.
(13) Moliner, M.; Rey, F.; Corma, A. Towards the Rational Design
of Efficient Organic Structure-Directing Agents for Zeolite Synthesis.
Angew. Chem., Int. Ed. 2013, 52, 13880−13889.
(14) Burton, A. Recent trends in the synthesis of high-silica zeolites.
Catal. Rev.: Sci. Eng. 2018, 60, 132−175.
(15) Brand, S. K.; Schmidt, J. E.; Deem, M. W.; Daeyaert, F.; Ma, Y.;
Terasaki, O.; Orazov, M.; Davis, M. E. Enantiomerically enriched,
polycrystalline molecular sieves. Proc. Natl. Acad. Sci. U. S. A. 2017,
114, 5101−5106.
(16) Daeyaert, F.; Ye, F.; Deem, M. W. Machine-learning approach
to the design of OSDAs for zeolite beta. Proc. Natl. Acad. Sci. U. S. A.
2019, 116, 3413−3418.
(17) Moliner, M.; Serna, P.; Cantín, Á.; Sastre, G.; Díaz-Cabañas, M.
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