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Searches are reported for Higgs bosons in the context of either the standard model extended to include
a fourth generation of fermions (SM4) with masses of up to 600 GeV or fermiophobic models. For
the former, results from three decay modes (ττ , WW, and ZZ) are combined, whilst for the latter
the diphoton decay is exploited. The analysed proton–proton collision data correspond to integrated
luminosities of up to 5.1 fb−1 at 7 TeV and up to 5.3 fb−1 at 8 TeV. The observed results exclude the
SM4 Higgs boson in the mass range 110–600 GeV at 99% confidence level (CL), and in the mass range
110–560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110–147 GeV at
95% CL, and in the range 110–133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV
is not consistent with either an SM4 or a fermiophobic Higgs boson.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

In the standard model (SM) [1–3], electroweak symmetry
breaking is achieved by introducing a complex scalar doublet,
leading to the prediction of the Higgs boson (H) [4–9]. Precision
electroweak measurements indirectly constrain the SM Higgs bo-
son mass mH to be less than 158 GeV [10]. The direct experimental
searches exclude at 95% confidence level (CL) the SM Higgs boson
in the mass range up to 600 GeV, except for the mass window
122–128 GeV [11–14], where a new particle with a mass near
125 GeV was recently observed in a combination of searches tar-
geting SM Higgs boson decay modes [13,14].

Various extensions of the standard model have been proposed,
such as the inclusion of a fourth generation of fermions (the SM4
model) [15–19] or models with multiple Higgs bosons and mod-
ified couplings such that one of the Higgs bosons couples only
to vector bosons at tree level (the fermiophobic, FP, benchmark
model) [20–25]. Both types of model have a major impact on
Higgs phenomenology. In the SM4 context for example, constraints
from electroweak data become less restrictive, allowing the mass
range 115–750 GeV at 95% CL, as long as the mass splitting in the
fourth generation is O(50) GeV [17]. Likewise Higgs boson pro-
duction cross sections and decay branching fractions are strongly
affected in both scenarios. Therefore, the conclusions regarding the
existence (or not) of a Higgs boson based on direct searches that
assume the SM are not valid in SM4 or FP scenarios without a
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proper re-interpretation. Given that the nature of the new boson
near 125 GeV has yet to be determined definitively, it is appropri-
ate to test alternative interpretations beyond the standard model.

To date, the direct searches for the SM4 Higgs boson have ex-
cluded at 95% CL the mass range 121–232 GeV [26–28]. Previous
searches using the diphoton decay at the LEP collider [29], the
Tevatron collider [26], and the Large Hadron Collider (LHC) [30] ex-
clude a fermiophobic Higgs boson lighter than 121 GeV at 95% CL.
Using a combination of decay modes, searches at the LHC [31]
have ruled out a fermiophobic Higgs boson in the mass range
110–194 GeV at 95% CL; the range 110–188 GeV is excluded at
99% CL, with the exception of two gaps from 124.5–127 GeV and
from 147.5–155 GeV.

In this Letter, we re-interpret and combine the SM Higgs boson
searches [13,32–34], carried out by the Compact Muon Solenoid
(CMS) experiment [35] at the LHC, in the SM4 context. The search
is performed in the mass range 110–600 GeV. We also report
on a search for a fermiophobic Higgs boson in the mass range
110–150 GeV, in the γ γ decay mode. The analysed proton–
proton collision data correspond to integrated luminosities of up
to 5.1 fb−1 at 7 TeV and up to 5.3 fb−1 at 8 TeV.

2. The SM4 and FP models

The presence of fourth-generation fermions would have a sig-
nificant impact on the effective couplings of the Higgs boson to the
SM particles and, thus, directly affect the Higgs boson production
cross sections and decay branching fractions. Since the couplings
of the Higgs boson to fermions are proportional to their masses,
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http://dx.doi.org/10.1016/j.physletb.2013.06.043

Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.physletb.2013.06.043
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:cms-publication-committee-chair@cern.ch
http://dx.doi.org/10.1016/j.physletb.2013.06.043
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physletb.2013.06.043&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


CMS Collaboration / Physics Letters B 725 (2013) 36–59 37

the electroweak loop corrections with fourth-generation fermions
have a non-vanishing effect even for arbitrarily heavy fermions,
although perturbative calculations become unreliable for fermion
masses larger than 600 GeV.

In this analysis, we use the SM4 benchmark recommended by
the LHC Higgs cross section group in Ref. [36]: m�4 = mν4 = md4 =
600 GeV and mu4 − md4 = (50 + 10 · ln(mH/115)) GeV. Here m�4

and mν4 are the masses of the 4th generation charged lepton and
neutrino, while mu4 and md4 are the masses of the 4th generation
“up” and “down” quarks. These masses are not excluded by the di-
rect searches for heavy fermions [37–40] and still allow for pertur-
bative calculations. The SM4 Higgs boson cross sections and decay
branching fractions used in this analysis include electroweak next-
to-leading order (NLO) corrections [41,42]. The next-to-NLO order
QCD corrections are taken from Ref. [43]. Below we summarise the
effect of the fourth generation fermions, with the specified masses,
on the production and decay of an SM4 Higgs boson compared
with the SM Higgs boson of the same mass.

The square of the effective coupling of an SM4 Higgs boson to
gluons (g) is increased by a factor Kgg(mH) that ranges between
nine and four for a Higgs boson mass that ranges from 110 to
600 GeV. This enhancement results from the inclusion of u4 and
d4 quarks in the quark loop diagrams associated with the H → gg
and gg → H processes. The square of the effective coupling of an
SM4 Higgs boson to W and Z vector bosons (henceforth referred
to collectively as V bosons) becomes about three times smaller,
K V V (mH) ∼ 0.3, as the amplitudes of the NLO and leading order
(LO) contributions are of opposite signs in this case. A coinciden-
tal cancellation of the contributions from W bosons and heavy
fermions (top, u4, d4, �4) to the loop diagrams responsible for the
H → γ γ decay suppresses the square of the effective coupling to
photons by O(100). The squares of the fermionic ( f ) couplings are
enhanced by a factor K f f (mH) ∼ 1.6.

The enhancement in the effective couplings to gluons and the
suppression of couplings to vector bosons causes gluon fusion
production to dominate over the vector boson fusion (VBF) and
associated (VH) production mechanisms. Hence, the last two pro-
cesses can be neglected in searches for SM4 Higgs bosons, and
are ignored in the search presented in this Letter. The contribu-
tion from gluon fusion is rescaled by the SM4/SM mH-dependent
factor Kgg(mH) mentioned above. The H → bb search channel that
fully relies on associated production is not included in this combi-
nation. For simplicity, H → bb is denoted as H → bb, H → τ+τ−
as H → ττ , etc. Following Ref. [36], the uncertainties on the gluon
fusion cross section for the SM4 model are assumed to be the
same as for the SM Higgs boson and are taken from Ref. [44]. The
change in the Higgs boson decay partial widths modifies the decay
branching fractions as follows. The branching fraction B(H → γ γ )

is suppressed by O(100) with respect to the standard model. The
branching fractions B(H → WW) and B(H → ZZ) are suppressed
by approximately a factor of five for low Higgs boson masses for
which the WW and ZZ partial widths are not dominant. They re-
main almost unchanged in the mid-range around mH ∼ 200 GeV,
where vector boson partial widths are the main contributors to the
total width Γtot, and are about 60% of the SM Higgs boson values
above mH ∼ 350 GeV after the H → tt decay channel opens up. The
branching fraction B(H → ττ ) is affected only slightly, O(20%), in
the mass range where this decay mode is used. The total width
of the SM4 Higgs boson at high masses, where it is relevant for
the H → ZZ → 4� (where � denotes an electron or a muon) search,
is about 30–50% of the SM Higgs width, depending on the Higgs
boson mass.

Since the H → γ γ channel is so strongly suppressed, it has
nearly no sensitivity for the SM4 Higgs boson and is therefore not
included in the combination. We explicitly checked that including

or omitting this channel has no effect on the combined SM4 Higgs
boson search results even in the presence of the significant excess
near 125 GeV observed in the standalone search for H → γ γ [13].

The theoretical uncertainties on the SM4 Higgs boson decay
branching fractions are derived from three independent sources
of relative uncertainty on the partial widths, which amount to
approximately 50%, 10%, and 5% for ΓV V , Γ f f , and Γgg, respec-
tively [36]. Any given decay channel H → xx is affected by each
of these three uncertainties. Using the equation Bxx = Γxx/Γtot and
standard error propagation, we translate the uncertainties on the
partial widths into uncertainties on the branching fractions of the
decay modes (ττ , WW, ZZ) used in this combination. The signal
acceptance for each exclusive final state is assumed to be the same
as reported in previous SM Higgs boson searches [13,32–34].

As a fermiophobic Higgs boson does not couple to fermions,
gluon fusion production becomes negligible, while the VBF and
VH production cross sections remain unchanged. Direct decays to
fermion pairs become impossible, which significantly increases the
branching fractions B(H → γ γ ), B(H → WW) and B(H → ZZ).
The diphoton decays are enhanced further as the negative inter-
ference between the W and top loops responsible for this decay
in the SM is no longer present. For a low mass FP Higgs bo-
son (mH ≈ 125 GeV) the decay to two photons is enhanced by
an order of magnitude with respect to the SM [23–25], and this
compensates for the reduced production cross section, keeping the
overall diphoton signal rate very similar to that in the SM. Produc-
tion cross sections and decay branching fractions, together with
their uncertainties, are taken from Ref. [44] and are derived from
Refs. [45–50].

3. The CMS detector and event reconstruction

The CMS apparatus [35] consists of a barrel assembly and two
endcaps, comprising, in successive layers outwards from the colli-
sion region, the silicon pixel and strip tracker, the lead tungstate
crystal electromagnetic calorimeter (ECAL), the brass/scintilla-
tor hadron calorimeter, the superconducting solenoid, and gas-
ionization chambers embedded in the steel flux return yoke for
the detection of muons. The polar coordinate system (θ , φ) is used
to describe the direction of particles and jets emerging from the
pp collisions, where θ is the polar angle measured from the pos-
itive z axis (along the anticlockwise beam direction) and φ is the
azimuthal angle. The pseudorapidity, defined as η = − ln[tan(θ/2)],
is commonly used in place of θ .

Particles are reconstructed with the CMS “particle-flow” event
description [51,52] using an optimised combination of all sub-
detector information to form “particle-flow objects”: electrons,
muons, photons, charged and neutral hadrons. Jets are formed by
clustering these objects with the anti-kT algorithm [53] using a
distance parameter �R = 0.5, where �R = √

(�η)2 + (�φ)2 and
�η and �φ are the pseudorapidity and azimuthal angle differ-
ences between the jet axis and the particle direction. The missing
transverse energy vector, �Emiss

T , is taken as the negative vector sum
of all particle transverse momenta, and its magnitude is referred to
as Emiss

T .

4. Search channels

4.1. The SM4 search channels

The SM4 results presented are obtained by combining searches
in the individual Higgs boson decay channels listed in Table 1.
The table summarises the main characteristics of these searches,
namely: the mass range of the search, the integrated luminosity
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Table 1
Summary of the analyses included in the SM4 combination.

Channel mH range (GeV) Int. lumi. (fb−1) Sub-channels mH resolution Ref.

7 TeV 8 TeV

H → ττ → eτh/μτh/eμ/μμ 110–145 4.9 5.1 16 20% [13]
H → WW → 2�2ν 110–600 4.9 5.1 4 20% [13,32]
H → ZZ → 4� 110–600 5.0 5.3 3 1–2% [13]
H → ZZ → 2�2ν 250–600 4.9 – 2 7% [33]

H → ZZ → 2�2q

{
130–164
200–600

4.9 – 6
3%
3%

[34]
used, the number of exclusive sub-channels, and the approximate
instrumental mass resolution.

Below we give a brief summary of the individual searches. More
detailed descriptions of all analyses can be found in Refs. [13,
32–34]. In the combination presented here, Higgs boson produc-
tion via VBF is neglected, and thus sub-channels in the H → ττ
and H → WW decay channels that explicitly target VBF production
are also dropped.

The H → ττ search [13] is performed using the final-state sig-
natures eμ, μμ, eτh, and μτh, where electrons and muons arise
from leptonic τ decays and τh denotes hadronic τ decays. Each of
these categories is further divided into 4 exclusive sub-categories
based on the jet multiplicity and transverse momentum (pT) of the
visible tau lepton decay. In each category, we search for a broad
excess in the reconstructed ττ mass distribution. The main irre-
ducible background, Z → ττ production, and the largest reducible
backgrounds (W + jets, multijet production, Z → ee) are evaluated
from various control samples in data.

The H → WW → 2�2ν analysis [13,32] searches for an ex-
cess of events with two leptons of opposite charge, large missing
transverse energy Emiss

T , and less than two jets. Events are di-
vided into four categories, with different background compositions
and signal-to-background ratios, according to the number of jets
and whether the leptons are of the same or different flavour. For
events with no jets, the main background stems from non-resonant
WW production; for events with one jet, the dominant back-
grounds are from WW and top-quark production. The events are
split into same-flavour and different-flavour dilepton sub-channels,
since the background from Drell–Yan production is much larger
for the same-flavour dilepton events. To improve the separation of
signal from background in the 7 TeV analysis, multivariate analysis
classifiers are trained for a number of Higgs boson masses, and a
search is made for an excess of events in the output distributions
of the classifiers. All background rates, except for small expected
contributions from WZ, ZZ, and Wγ , are evaluated from data.

In the H → ZZ → 4� channel [13], we search for a four-lepton
mass peak over a small continuum background. To separate sig-
nal and background, we use a discriminant calculated for each
event as the ratio of the respective probability densities for sig-
nal and background to form an event with the observed kinematic
configuration of four leptons. The 4e, 4μ, and 2e2μ sub-channels
are analysed separately since there are differences in the four-
lepton mass resolutions and the background rates arising from
jets misidentified as leptons. The dominant irreducible background
in this channel is from non-resonant ZZ production with both
Z bosons decaying to either 2e, 2μ, or 2τ (with the tau lep-
tons decaying leptonically) and is estimated from simulation. The
smaller reducible backgrounds with jets misidentified as leptons,
e.g. Z + jets, are estimated from data.

In the H → ZZ → 2�2ν search [33], we select events with a
lepton pair (e+e− or μ+μ−), with invariant mass consistent with
that of an on-shell Z boson, and a large missing transverse energy.
We then define a transverse invariant mass mT from the dilepton
momenta and �Emiss

T , which is assumed to originate from neutrinos

in the Z → νν decays, and search for a broad excess of events in
the mT distribution. The ZZ and WZ backgrounds are taken from
simulation, while all other backgrounds, Z + jets and a cumulative
sum of the rest, are evaluated from control samples in data.

In the H → ZZ → 2�2q search [34], we select events with two
oppositely-charged leptons (e+e− or μ+μ−), and two jets. The
two leptons and the two jets are required to have invariant masses
consistent with that of on-shell Z bosons. The events are cate-
gorised by the lepton flavour and the number of jets identified as
coming from the decay of a b-quark, thus defining six exclusive fi-
nal states. We search for a peak in the invariant mass distribution
of the dilepton–dijet system, with the background rate and shape
estimated using control regions in data.

4.2. The FP search channels

In this section, we describe the FP Higgs boson search with
the 8 TeV dataset. We use the H → γ γ decay mode and ex-
ploit the characteristic signatures associated with the VBF and VH
processes: namely, the two forward jets produced by the scat-
tered quarks in VBF production and charged leptons (electrons or
muons) or large missing transverse energy induced by neutrinos,
both coming from vector boson decays in VH production. The FP
Higgs boson search in the diphoton decay mode with the 7 TeV
dataset is described elsewhere [31].

The simulated VBF signal samples are generated with powheg

[54]. The difference in the event selection acceptance for samples
generated with powheg at NLO and with pythia [55] at LO is taken
as a systematic uncertainty, which is found to have a negligible im-
pact on the final results. The simulated VH samples are generated
with pythia.

Nine exclusive classes are defined. All require two, isolated,
high pT photons. Five of the nine require an additional tag: ei-
ther a pair of jets (subdivided into two sub-classes with low and
high dijet invariant masses, m jj), or an isolated lepton (subdivided
into e and μ sub-classes), or a large missing transverse energy.
The remaining diphoton events failing to pass VBF and VH pro-
duction tags form an untagged category, which is divided into four
sub-classes according to the photon shower shape and position in
the detector [13]. The selection criteria for the photon candidates
are the same as in the SM search [13] except for the modifications
noted below. A Higgs boson produced via the VBF or VH mecha-
nisms typically has a larger pT than a Higgs boson produced via
gluon fusion (which dominates SM Higgs production) and hence
the photon pT thresholds are increased. Furthermore, such photons
also have a harder transverse momentum spectrum than those of
photons produced by background processes [56] and thus signif-
icant separation of signal and background can be achieved. The
transverse momentum of the photon pair (pγ γ

T ) together with
their invariant mass (mγ γ ) are included in a two-dimensional un-
binned maximum likelihood. The signal and background models,
which are used to extract limits on the signal cross section, are
described in detail in Ref. [31]. The dijet-tagged class has the
greatest sensitivity; here the background model is derived from
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Table 2
Number of selected events in the γ γ event classes, for data in the mass range 100–180 GeV and for a fermiophobic Higgs boson signal (mH = 125 GeV). The expected
number of background events in the signal region 120–130 GeV obtained from the fit of the data in the full mass range 100–180 GeV and the mass resolution for the
125 GeV FP Higgs boson signal in each event class are also given. All numbers are for the 8 TeV dataset.

Emiss
T tag Dijet high m jj Dijet low m jj Lepton tag (e,μ) Untagged

(a) (b) (c) (d)

Data 41 84 271 30 4992 9546 5105 8574
Signal (mH = 125 GeV) 2.3 14 10 3.5 18 23 12 14
Expected background 5.8 17 40 4.1 740 1400 760 1300

σeff (GeV) 2.0 2.1 2.2 2.1 1.5 2.0 3.8 3.9
data, by fitting the diphoton mass distributions over the range
100 < mγ γ < 180 GeV.

In the dijet-tagged classes the photon pT thresholds are raised
(compared with the SM search [13]) to pγ

T (1) > mγ γ /2, and
pγ

T (2) > 25 GeV, where pγ
T (1) and pγ

T (2) are the transverse mo-
menta of the leading and sub-leading photons respectively. The pT
thresholds for the two jets are 30 GeV and 20 GeV, and their sep-
aration in η must be greater than 3.0. The dijet mass is required
to be greater than 250 GeV. The selected events are subdivided
into two regions 250 < m jj < 500 GeV and m jj > 500 GeV, based
on the amount of background contamination as a function of dijet
mass. In addition, for events with m jj > 500 GeV, the pT threshold
for the subleading jet is raised to 30 GeV. Two additional selec-
tion criteria, relating the dijet and diphoton systems, are applied
to all selected events. The difference between the average η of the
two jets and the η of the diphoton system is required to be less
than 2.5 [57]. The difference in φ between the diphoton and dijet
systems is required to be greater than 2.6 radians.

In the lepton-tagged channel, which targets VH production, the
pT thresholds are again altered; values of pγ

T (1) > 3 × mγ γ /8, and
pγ

T (2) > 25 GeV are set. Separate muon and electron sub-classes
are defined, with at least one muon (electron) with pT > 20 GeV
and within |η| < 2.4 (|η| < 2.5) required. The leptons must be
isolated, using isolation criteria similar to those used for pho-
tons, and separated from the photons by �R > 1. To protect
against background events that arise from an electron misidenti-
fied as a photon in the Z → ee process, the mass of the photon–
electron system must differ from the Z boson mass by at least
5 GeV.

A significant fraction of events from VH production contains
large missing transverse energy due to the neutrinos from Z → νν
decays. Events that passed the requirements of the lepton-tag
channel are excluded to form a statistically independent Emiss

T -tag
class. The Emiss

T is required to be larger than 70 GeV. The photon
pT threshold requirements are the same as for the lepton-tag class.
Due to the negligible contribution of photons at large pseudorapid-
ity to the expected exclusion limit, only photons falling within the
ECAL barrel are kept (|η| < 1.48).

A substantial fraction of the FP signal events are not expected
to pass any of the previous tags, and so the remaining untagged
events are also exploited. Photon pT requirements of pγ

T (1) >

mγ γ /3, pγ
T (2) > mγ γ /4 and pγ γ

T /mγ γ > 0.1 are applied. The se-
lected events are divided into four classes according to the ex-
pected mass resolution and amount of background contamination
[13]. Two classifiers are used: the minimum R9 of the two pho-
tons, Rmin

9 , and the maximum absolute pseudorapidity of the two
photons. The quantity R9 is defined as the sum of the energy
in the 3 × 3 crystal array centred on the crystal with the max-
imum energy deposit divided by the total clustered energy, and
is designed to identify photons undergoing a conversion. The un-
tagged diphoton event classes are: (a) both photons in the barrel
and Rmin

9 > 0.94, (b) both photons in the barrel and Rmin
9 < 0.94,

(c) one or both photons in the endcaps and Rmin
9 > 0.94, and

(d) one or both photons in the endcaps and Rmin
9 < 0.94.

The numbers of events in the γ γ event classes are shown in
Table 2, for simulated signal events and for data. A Higgs boson
with mH = 125 GeV is chosen for the signal, and the data are
counted in the mass range 100–180 GeV. The table also shows the
mass resolution, σeff, defined as half the width of the narrowest
window containing 68.3% of the distribution.

5. Combination method

The combination of the Higgs boson searches, be it across dif-
ferent sub-channels within a given decay mode or across different
decay modes, requires simultaneous analysis of the data selected
by all individual analyses, accounting for all statistical and sys-
tematic uncertainties and their correlations. The overall statisti-
cal methodology used in this combination was developed by the
ATLAS and CMS Collaborations in the context of the LHC Higgs
Combination Group. The description of the general methodology
can be found in Refs. [58,59]. Below we give concise definitions of
statistical quantities we use for characterising the outcome of the
search. Results presented in this Letter are obtained using asymp-
totic formulae [60], including a few updates recently introduced in
the RooStats package [61].

For calculations of exclusion limits, we adopt the modified fre-
quentist criterion CLs [62,63]. The chosen test statistic, qμ , used to
determine how signal- or background-like the data are, is based
on the profile likelihood ratio. Systematic uncertainties are incor-
porated in the analysis via nuisance parameters and are treated
according to the frequentist paradigm. The profile likelihood ratio
is defined as

qμ = −2 ln
L(obs | μ · s + b, θ̂μ)

L(obs | μ̂ · s + b, θ̂ )
, (1)

where s stands for the expected number of signal events under
the SM4/FP Higgs boson hypothesis, μ is a signal strength mod-
ifier introduced to accommodate deviations from SM4/FP Higgs
boson predictions, b stands for backgrounds, and θ are nuisance
parameters describing systematic uncertainties The likelihood in
the numerator reaches its maximum, for a given μ, at θ̂μ; while
μ̂ and θ̂ define the point at which the likelihood reaches its global
maximum. The quantity μ̂ is constrained to be between 0 and μ.

The ratio of probabilities to observe a value of the test statis-
tic at least as large as the one observed in data, qobs

μ , under the
signal + background (s + b) and background-only (b) hypotheses,

CLs = P(qμ � qobs
μ | μ · s + b)

P(qμ � qobs
μ | b)

� α, (2)

is used as the criterion for excluding the signal at the 1 − α confi-
dence level.

To quantify the presence of an excess of events over what is ex-
pected for the background, we use another test statistic where the
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Fig. 1. The observed and expected CLs values for the SM4 Higgs boson hypothe-
sis as a function of the Higgs boson mass in the range 110–600 GeV (top) and
110–145 GeV (bottom). The three horizontal lines show confidence levels of 95%,
99%, and 99.9%, defined as (1 − CLs).

likelihood appearing in the numerator is for the background-only
hypothesis:

q0 = −2 ln
L(obs | b, θ̂0)

L(obs | μ̂ · s + b, θ̂ )
. (3)

The statistical significance Z of a signal-like excess is computed
from the probability p0

p0 = P
(
q0 � qobs

0

∣∣ b
)
, (4)

henceforth referred to as the p-value, using the one-sided Gaussian
tail convention:

p0 =
+∞∫
Z

1√
2π

exp
(−x2/2

)
dx. (5)

In the Higgs boson search, we scan over Higgs boson mass hy-
potheses and look for the one giving the minimum local p-value
pmin

local, which describes the probability of a background fluctuation
for that particular Higgs boson mass hypothesis. The probability to
find a fluctuation with a local p-value lower or equal to the ob-
served pmin

local anywhere in the explored mass range is referred to
as the global p-value, pglobal.

The fact that pglobal can be significantly larger than pmin
local is of-

ten referred to as the look-elsewhere effect. The global significance
(and global p-value) of the observed excess can be evaluated in

Fig. 2. The observed and expected 95% CL upper limits on the signal strength mod-
ifier, μ = σ/σSM4 H, for the SM4 Higgs boson hypothesis as a function of the Higgs
boson mass in the range 110–600 GeV (top) and 110–145 GeV (bottom).

this case by generating pseudo-datasets, which, however, becomes
too computationally intensive and not practical for very small
p-values. Therefore, we use the method suggested in Ref. [64]. The
relationship between global and local p-values is given by:

pglobal = pmin
local + C · e−Z 2

local/2. (6)

When the look-elsewhere effect is very large, as in this search,
the constant C can be evaluated directly from data [58] by count-
ing upcrossings Nup of μ̂(mH) with the line μ = 0 and setting
C = Nup. The best-fit signal strength μ̂ in this case is obtained
from maximising the likelihood L(obs | μ̂ · s + b, θ̂ ) with no con-
straints on μ̂.

6. Results

The following conventions are used. The observed values are
shown in the plots by a solid line. A dashed line is used to indi-
cate the median of the expected results for the background-only
hypothesis. The green (dark) and yellow (light) bands show the
ranges in which the measured values are expected to reside in at
least 68% and 95% of all experiments under the background-only
hypothesis.

6.1. The SM4 results

The CLs value for the SM4 Higgs boson hypothesis as a func-
tion of its mass is shown in Fig. 1. CLs values of 0.05, 0.01, and
0.001 are indicated by horizontal thick red lines. The mass re-
gions where the observed CLs values are below these lines are
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Fig. 3. The observed (solid lines) and expected (dashed lines) 95% CL upper limits
on the signal strength modifier, μ = σ/σSM4 H, as a function of the SM4 Higgs bo-
son mass in the range 110–600 GeV (top) and 110–145 GeV (bottom) for the four
explored Higgs boson decay modes and their combination.

excluded with the corresponding (1 − CLs) confidence levels of
95%, 99%, and 99.9%. We exclude an SM4 Higgs boson in the
range 110–600 GeV at 99% CL, and in the range 110–560 GeV
at 99.9% CL. Fig. 2 shows the 95% CL upper limits on the signal
strength modifier, μ = σ/σSM4 H, as a function of mH. The ordinate
on this plot shows the Higgs boson cross section that is excluded
at 95% CL, expressed as a multiple of the SM4 Higgs boson cross
section.

Fig. 3 shows the observed and expected limits for the three in-
dividual decay channels that have been considered, and their com-
bination. The H → ττ search is the most sensitive channel in the
mass range below 135 GeV. In the mass range 135–150 GeV, the
best sensitivity is shared between H → ZZ and H → WW. In the
mass range 150–190 GeV, the H → WW channel has the best sen-
sitivity. For masses above 190 GeV, the sensitivity is driven mostly
by the H → ZZ decay channels.

To quantify the consistency of the observed excesses with the
background-only hypothesis, we show in Fig. 4 a scan of the com-
bined local p-value p0, together with the results observed in the
individual Higgs boson decay channels. The minimum combined
local p-value pmin

local = 1.5 × 10−3 at mH � 126 GeV corresponds to
a local significance Z local of 3σ . The global probability of observing
at least as large an excess somewhere in the entire search range
110–600 GeV is estimated directly from the data using Eq. (6). The
best-fit value μ̂(mH), shown in Fig. 5, has four upcrossings with
μ̂ = 0. This can be better seen as upcrossings of the solid line
above the dashed line in Fig. 2. Taking into account the number
of observed upcrossings, the global p-value of observing a local

Fig. 4. The observed local p-value p0 as a function of the SM4 Higgs boson mass
in the range 110–600 GeV (top) and 110–145 GeV (bottom). The dashed line shows
the expected local p-values should an SM4 Higgs boson with a mass mH exist. The
expected p-value is obtained with nuisance parameters constrained by the data,
giving it some dependence on the observed data, and hence the small modulations
on top of the overall smooth trend as a function of mH.

3σ excess anywhere in the search region for the background-only
hypothesis is 0.05.

Fig. 5 also illustrates why the SM4 Higgs boson is excluded
even though a 3σ excess is observed at a mass near 126 GeV. The
band shown in Fig. 5 corresponds to the ±1 standard deviation
uncertainty (statistical + systematic) on the μ̂ value. Given these
uncertainties, the best-fit values of signal strength μ̂(mH) are sig-
nificantly smaller than expected for the SM4 Higgs boson (μ̂ = 1)
in the entire explored mass range.

Although the SM4 combination is not optimal for searching for
the SM Higgs boson, the presence of such a boson would still pro-
duce an excess in the SM4 combination. The expected significance
for a SM Higgs boson with a mass near 125 GeV is 3.5σ , which
is very close to the observed value of 3σ . For reference, the ex-
pected significance at 125 GeV with the dedicated SM Higgs boson
combination is 5.8σ [13].

6.2. The FP results

The CLs value for the FP Higgs boson hypothesis as a function of
its mass is shown in Fig. 6 (top). The CLs values of 0.05, 0.01, and
0.001 are indicated by thick red horizontal lines. The mass regions
where the observed CLs values are below these lines are excluded
with the corresponding (1−CLs) confidence levels of 95%, 99%, and
99.9%. The fermiophobic Higgs boson is excluded at 95% CL in the
mass range 110–147 GeV and at 99% CL in the range 110–133 GeV.
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Fig. 5. The best-fit μ̂ = σ/σSM4 H as a function of the SM4 Higgs boson mass in the
range 110–600 GeV (top) and 110–145 GeV (bottom). The band corresponds to the
±1 standard deviation uncertainty on the μ̂ values.

Fig. 6 (bottom) shows the 95% CL upper limits on the signal
strength modifier, μ = σ/σFP H, as a function of mH. The ordinate
on this plot shows the Higgs boson cross section that is excluded
at 95% CL, expressed as a multiple of the FP Higgs boson cross
section.

Fig. 7 (top) shows the local p-value as a function of the FP
Higgs boson mass for each run period and for their combination.
The largest upwards fluctuation of events over the expected back-
ground is observed at 125.5 GeV, and is computed to have a local
significance of 3.2σ . This deviation from the expected limit is too
weak to be consistent with the fermiophobic Higgs boson signal,
as can be seen in Fig. 7 (bottom), which shows that the observed
signal strength for a fermiophobic Higgs boson at 125.5 GeV is
0.49 ± 0.18, as obtained from the fit of signal + background on
data. The excess of events at 125.5 GeV is present in the SM Higgs
boson search reported in Ref. [13] and corresponds to the discov-
ery of the new boson around 125 GeV. This recently observed
boson is not consistent with a fermiophobic Higgs boson at 99%
confidence level.

As in the SM4 case, the FP analysis is not optimal for searching
for the SM Higgs boson, but still has some sensitivity. The expected
sensitivity to a SM Higgs boson with a mass of 125 GeV is 1.3σ ;
we observe 3.2σ . For reference, in the dedicated SM Higgs boson
diphoton analysis, using the same dataset as the FP combination
here, the observed significance of the excess near 125 GeV is 4.1σ ,
with an expected sensitivity of 2.8σ [13]. In both the SM and FP
diphoton analyses the observed significances for the SM Higgs bo-
son are greater than the expected, but statistically compatible at
the O(10%) level.

Fig. 6. (Top) The observed and expected CLs values for the FP Higgs boson hypoth-
esis as a function of the Higgs boson mass in the range 110–150 GeV. (Bottom)
The observed and expected 95% CL upper limits on the signal strength modifier,
μ = σ/σFP H, as a function of the FP Higgs boson mass in the range 110–150 GeV.

7. Summary

Searches are reported for Higgs bosons in the context of ei-
ther the standard model extended to include a fourth generation
of fermions with masses of up to 600 GeV or fermiophobic models.
For the former, results from three decay modes (ττ , WW, and ZZ)
are combined, whilst for the latter the diphoton decay is exploited.
The analysed proton–proton collision data correspond to integrated
luminosities of up to 5.1 fb−1 at 7 TeV and up to 5.3 fb−1 at 8 TeV.
The observed results exclude the SM4 Higgs boson in the mass
range 110–600 GeV at 99% CL, and in the mass range 110–560 GeV
at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass
range 110–147 GeV at 95% CL, and in the range 110–133 GeV at
99% CL. The recently observed boson with a mass near 125 GeV is
not consistent with either an SM4 or a fermiophobic Higgs boson.
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