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Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon
pair of

√
sNN = 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total

integrated luminosity of 3.42 μb−1. The collective motion of the system formed in the collision is parametrized
by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients v2, v3,
and v4 are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within
a hydrodynamic picture, these methods have different sensitivities to noncollective and fluctuation effects. The
dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-
xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are
also compared to the experimental results. The observed angular correlations provide new constraints on the
hydrodynamic description of heavy ion collisions.

DOI: 10.1103/PhysRevC.100.044902

I. INTRODUCTION

At sufficiently high temperatures or densities, lattice quan-
tum chromodynamics predicts a transition from ordinary
hadronic matter to a state of deconfined quarks and gluons, the
so-called quark gluon plasma (QGP) (see, e.g., Ref. [1]). The
QGP state can be reached through relativistic heavy ion col-
lisions, where the collective behavior of the created medium
manifests itself in azimuthal correlations among the emitted
particles. These correlations have been studied in gold-gold
collisions at the BNL RHIC [2–5], lead-lead (PbPb) collisions
at the CERN LHC [6–8], as well as in collisions involving
lighter nuclei, such as the copper-copper system studied at
RHIC [9,10]. More recently, collective behavior similar to that
observed in collisions of heavy nuclei has also been found
in high-multiplicity events produced in the proton-lead (pPb)
system, and in proton-proton (pp) collisions [11–14]. The re-
sults from these small systems raise the question as to how the
size of the colliding system affects the onset of QGP forma-
tion. Measurements from xenon-xenon (XeXe) collisions, as
presented here, bridge the gap between the small (pp and pPb)
and large (PbPb) systems previously studied at LHC energies.

Anisotropic flow can be characterized by a Fourier expan-
sion [15–17],

2π

N

dN

dφ
= 1 +

∞∑
n=1

2vn cos[n(φ − �n)], (1)

where dN/dφ is the azimuthal particle density and φ is the
particle azimuthal angle with respect to a reference angle �n.
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Different reference angles can be defined. The “participant
plane” angle is the direction of the semiminor axis of the
region perpendicular to the beam direction spanned by the
nucleons that undergo a primary interaction. The “event-
plane” angle is defined by the direction perpendicular to the
beam direction of the maximum outgoing particle density. In
this paper the measured anisotropies are expressed in terms of
the event-plane reference angle. Averaged over many events,
the anisotropies measured with respect to the event plane are
expected to be similar to those that would be obtained if it
were possible to determine the actual participant plane.

The magnitude of the azimuthal anisotropy is characterized
by the Fourier coefficients vn. The second- and third-order
Fourier coefficients are referred to as “elliptic” (v2) and
“triangular” (v3) flow, respectively. The former reflects the
lenticular shape of the collision overlap region, as well as
initial-state fluctuations in the positions of nucleons at the
moment of impact [18]. The latter is largely a consequence
of fluctuations. While the v2 and v3 harmonics are believed
to reflect the initial-state geometry [19], for n � 4 the flow
harmonics are also strongly affected by the dynamics of the
system expansion. Hence, studying both the lower and higher
flow harmonics is important for understanding the medium
created in heavy ion collisions.

This analysis presents measurements of the charged-
particle collective flow in XeXe collisions at a center-of-mass
energy per nucleon pair of

√
sNN = 5.44 TeV. The results

are shown as functions of transverse momentum, pT, for the
pseudorapidity region |η| < 2.4 and for different collision
overlap geometries. Spectrum-weighted values with 0.3 <

pT < 3.0 GeV/c, with the efficiency-corrected yield in each
pT interval used as the weight, are also presented. The Fourier
coefficients v2, v3, and v4 are obtained by two-particle cor-
relations (vn{2}), the scalar-product method (vn{SP}), and
multiparticle cumulant analyses (vn{m}, m = 4, 6, and 8).

Event-by-event fluctuations in the spatial overlap geom-
etry lead to method-dependent differences in the extracted
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vn values [20,21]. The fluctuations cause an increase in the
deduced vn values found using two-particle correlations and
the scalar-product method, as compared to the corresponding
participant plane value, while the four-particle cumulant vn

results are decreased. For fluctuations that follow a two-
dimensional Gaussian behavior, the flow harmonics based
on more than four particles are expected to be the same
as the four-particle correlations results. Deviations from this
common behavior can be used to estimate the higher-order
moments of the fluctuation distribution. Comparison of flow
coefficients measured by different methods probes the initial-
state conditions.

The XeXe values are compared to the results from PbPb
collisions at

√
sNN = 5.02 TeV. The comparison with mea-

surements from different collision systems, but with similar
collision geometry, can give insight to the system size depen-
dence of the anisotropic flow [22]. Theoretical predictions are
compared to the observed system size dependence of the flow
harmonics. The results presented here provide new informa-
tion on the initial-state geometry and its fluctuations, as well
as the system size dependence of the medium properties.

II. CMS DETECTOR

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity
coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel
flux-return yoke outside the solenoid. The hadron forward
(HF) calorimeter uses steel as an absorber and quartz fibers
as the sensitive material. The two HF calorimeters are located
11.2 m from the interaction region, one on each end, and
together they provide coverage in the range 3.0 < |η| < 5.2.
These calorimeters serve as luminosity monitors, are used
to establish the event centrality, and provide the event-plane
information for the scalar-product analysis. The HF calorime-
ters are azimuthally subdivided into 20◦ modular wedges and
further segmented to form 0.175 × 10◦(�η × �φ) towers.
The silicon tracker measures charged particles within the
pseudorapidity range |η| < 2.5. For nonisolated particles of
1 < pT < 10 GeV/c and |η| < 1.4, the track resolutions are
typically 1.5% in pT and 25–90 (45–150) μm in the trans-
verse (longitudinal) impact parameter [23]. A more detailed
description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [24]. The detailed Monte Carlo
(MC) simulation of the CMS detector response is based on
GEANT4 [25].

III. EVENTS AND TRACK SELECTION

Results based on data recorded by CMS during the LHC
runs with XeXe collisions at

√
sNN = 5.44 TeV in 2017,

with an integrated luminosity of 3.42 μb−1, are compared
to similar data obtained in 2015 from PbPb collisions at√

sNN = 5.02 TeV with an integrated luminosity of 26 μb−1.
In both systems, only tracks with |η| < 2.4 and 0.3 < pT <

10.0 GeV/c are used.
For the XeXe events, a hardware level (level-1) trigger

required at least one tower of the HF calorimeters to be
above a threshold that was fixed to maximize the number of
events counted, while keeping low the noise contamination
from electromagnetic scattering and from pileup (i.e., multiple
interactions in the same or neighboring bunch crossings). This
trigger also required the presence of both colliding bunches at
the interaction point. The average online pileup fraction was
0.018 per event. In addition, a high-level trigger was applied
that required at least one track in the pixel detector. Events
are further selected offline by requiring at least 3 GeV of
energy being detected in each of three HF calorimeter towers
on either side of the CMS detector and to have a reconstructed
primary vertex, containing at least two tracks, located within
15 cm of the nominal collision point along the beam axis
and within 0.2 cm in the transverse direction. In addition,
contamination from beam-gas interactions are suppressed by
applying a filter where, for each event with more than ten
tracks, at least 25% of the tracks are required to satisfy a high
purity [23] track quality criteria. The event selection efficiency
is 95%. The track reconstruction algorithm is similar to that
used for pp collisions [23].

For PbPb collisions, as compared to XeXe events, there
is an additional level-1 trigger requirement of a coincidence
between signals in the HF calorimeters on either side of the
CMS detector. While offline event selection is similar for
PbPb and XeXe events, for the PbPb events the filter to sup-
press beam-gas interaction is not applied and pileup contam-
ination is controlled by following the procedure outlined in
Ref. [26].

To ease the computational load for high-multiplicity cen-
tral PbPb collisions, track reconstruction for PbPb events
is done in two iterations. The first iteration reconstructs
tracks from signals (“hits”) in the silicon pixel and strip
detectors compatible with a trajectory of pT > 0.9 GeV/c.
The second iteration reconstructs tracks compatible with a
trajectory of pT > 0.2 GeV/c using solely the pixel detector.
In the final analysis, the first iteration tracks with pT >

1.0 GeV/c are combined with pixel-detector-only tracks with
pT < 2.4 GeV/c, after removing duplicates.

In this paper only tracks from primary charged particles
are considered. For the XeXe tracks and the PbPb tracks
with both silicon pixel and strip hits, the impact parameter
significance of the tracks with respect to the primary vertex
in both the beam direction (dZ ) and the transverse plane (d0)
must be less than three standard deviations, while the relative
pT uncertainty (σpT/pT) must be below 10%. In addition,
each track is required to have at least 11 hits in the tracker,
and the chi-square per degree of freedom, associated with
fitting the track trajectory, normalized to the total number
of layers with hits along the trajectory, χ2/dof/layers, must
be less than 0.15. For the PbPb pixel-only tracks, it was
required that dZ be less than eight standard deviations and that
χ2/dof/layers < 12.
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IV. ANALYSIS TECHNIQUES

The analysis techniques used in this study are fully de-
scribed in previous CMS publications. A two-particle corre-
lation analysis, as discussed in Refs. [27,28], is performed for
both the XeXe and PbPb data sets. In addition, scalar-product
and multiparticle cumulant analyses, as described in Ref. [29],
are done for the XeXe data.

In the two-particle correlation analyses, a charged par-
ticle from one transverse momentum interval is used as
a “trigger” particle, to be paired with all of the remain-
ing charged particles from either the same or a different
pT interval, the “associated” particles. For a given trigger
particle, the pairing is done in bins of pseudorapidity and
azimuthal angle (�η,�φ). A similar pairing between the
particles randomly chosen from two different events is done
to establish a background distribution. A Fourier analysis of
the azimuthal correlation between the trigger and associated
particles leads to Vn� Fourier coefficients, where n is the
Fourier order. If factorization is assumed, the two-particle
coefficients can be expressed in terms of single-particle coeffi-
cients, with Vn�(pT

trig, pT
assoc) = vn{2}(pT

trig)vn{2}(pT
assoc).

The vn(pT
assoc) term is given by

√
Vn�(pT

assoc, pT
assoc),

thereby allowing vn(pT
trig) to be determined.

In order to minimize statistical uncertainties, the associated
particles are taken from a wide pT range with large average
anisotropic flow. In this analysis, 1.0 < pT

assoc < 3.0 GeV/c.
To avoid short-range, nonflow correlations, a pseudorapidity
gap of |�η| > 2 is required for the particle pairs.

The scalar-product event-plane measurements are based on
recentered flow Q vectors, defined as

�Qn =
(

M∑
i

wi cos(nφi ) −
〈

M∑
i

wi cos(nφi )

〉
,

M∑
i

wi sin(nφi ) −
〈

M∑
i

wi sin(nφi )

〉)
.

Here, wi is a weight for the ith particle emitted at azimuthal
angle φi. The summations are over the number of particles M
within a given (centrality, η range, pT range) analysis bin for
a given event. The averages indicated by the angular brackets
are taken over all particles in all events within each analysis
bin. These averages correspond to the recentering operation
and are needed to minimize detector acceptance effects. If the
Q vectors are presented as the corresponding complex scalars,
the flow coefficients are given by

vn{SP} ≡ 〈QnQ∗
nA〉√ 〈QnAQ∗

nB〉〈QnAQ∗
nC〉

〈QnBQ∗
nC〉

. (2)

The particles of interest are used to obtain the Qn vector, with
unit weighting (wi = 1) in the sum. The subscripts A, B, and C
refer to three separate reference vectors established in differ-
ent η regions. The product of Qn with the QnA reference vector
correlates the particles of interest with particles detected in
the HF calorimeter (region A). For the current measurement
particles of interest with −0.8 < η < 0.0 (0.0 < η < 0.8) and
within different pT ranges are correlated with HF particles
in the range 3 < η < 5 (−5 < η < −3). The products with

Q vectors B and C are used to correct for finite resolution
effects. The QnC vector corresponds to particles detected in
the HF calorimeter opposite to that used to define the QnA

vector. The QnB vector corresponds to particles measured
in the tracker with |η| < 0.5. Since the vn(pT) coefficients
increase with pT up to ≈3 GeV/c, the choice of either pT or ET

weighting results in a better event-plane resolution than with
unit weighting. The QnA and QnC vectors use ET weighting,
whereas the QnB vector uses pT weighting [30].

The Q-cumulant method is used in this analysis to obtain
the four- (vn{4}), six- (vn{6}), and eight- (vn{8}) particle nth-
order harmonic results by correlating unique combinations of
four, six, and eight particles within each event. The method
uses a generic framework described in Ref. [31]. This frame-
work allows for a track-by-track weighting to correct for the
detector acceptance effects. A wider pseudorapidity range
with |η| < 2.4 is used for the cumulant method analysis, as
compared to the scalar-product method, to reduce statistical
uncertainties.

Results are presented in ranges of collision centrality. The
centrality variable is defined as a fraction of the inelastic
hadronic cross section, with 0% corresponding to full overlap
of the two colliding nuclei. The event centrality is determined
offline and is based on the total energy measured in calorime-
ters located in the forward pseudorapidity region 3 < |η| <

5. The analysis is performed in 11 centrality classes, with
intervals ranging from 0–5% to 60–70%. By comparing the
XeXe and PbPb results in given centrality ranges, similar
collision overlap geometries can be achieved, albeit with
different numbers of participants.

In comparing the XeXe and PbPb results for more periph-
eral collisions, it needs to be noted that the XeXe results can
be affected by an experimental bias introduced by the cen-
trality determination. Multiplicity fluctuations in the forward
region used to determine the event centrality can reduce the
centrality resolution. Monte Carlo studies using the HYDJET

event generator indicate this bias can be as large as 5% in the
50–60% centrality range and 10% in the 60–70% range for
the vn{2} coefficients. For the vn{4} coefficients, the bias is
less than 5% in the 60–70% centrality range. For more central
events, the bias is found to be negligible.

V. SYSTEMATIC UNCERTAINTIES

Four different sources of systematic uncertainties are con-
sidered. To study the effect of the track selection on the final
results, different track criteria are applied by varying the limits
for the impact parameter significance from 2 to 5, and the
relative pT uncertainty from 5% to 10%. These variations
are found to have a 1% influence on vn results for peripheral
collisions, increasing to 10% for the most central collisions at
the lowest pT values. The effect of moving the primary vertex
position along the beam axis is studied by comparing the re-
sults with events from the vertex position ranges |zvtx| < 3 cm
and 3 < |zvtx| < 15 cm to the default range of |zvtx| < 15 cm.
A 1% systematic uncertainty is attributed to this source. The
systematic uncertainty resulting from the XeXe centrality
calibration is estimated by varying the event selection criteria.
This uncertainty is largest for the most peripheral centrality
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FIG. 1. Elliptic-flow coefficients v2 based on different analysis techniques, as functions of transverse momentum and in bins of centrality,
from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle and multiparticle correlations
correspond to the range |η| < 2.4, while the scalar-product results are for |η| < 0.8. The bars and the shaded boxes represent statistical
and systematic uncertainties, respectively.

bin, where it reaches a value of 3%. To explore the sensitivity
of the results to the MC simulations on which the efficiency
determinations are based, analyses using the HYDJET 1.9 [32]
event generator are done for generated tracks both before and
after the detector effects are taken into account. The results for
the two cases differ by about 2% for most centrality ranges,
but the difference increases to 10% for the most central events
and the lowest track transverse momenta, 0.3–0.4 GeV/c.
The observed differences are included as a systematic un-
certainty. The different uncertainty sources are independent
and uncorrelated, therefore the total systematic uncertainty
is obtained by combining the individual contributions in
quadrature.

VI. RESULTS

Figure 1 shows the v2 results, as a function of pT and in
11 centrality bins, as measured with the different techniques.
The two- and multiparticle correlation results are averaged
over the pseudorapidity range of |η| < 2.4, while the scalar-
product results are based on tracks with |η| < 0.8. The elliptic
flow values extracted from two-particle correlations show the
same pattern as with the multiparticle correlations, but with
higher magnitudes. The difference in the results obtained
from the two different methods can be largely ascribed to
event-by-event fluctuations of the v2 coefficient [20]. The
v2 magnitude increases with pT, reaching a maximum value
of 0.21 around 3–4 GeV/c in the 30–35% centrality range,
and then slowly decreases. The maximum shifts to a lower

pT value as the events become more peripheral. Whereas
v2{SP} is found to be generally larger than v2{2, |�η| > 2},
as expected for the narrower range near midpseudorapidity
used for the scalar-product analysis, the situation switches at
higher pT values for centralities >30%. This might reflect
a larger nonflow contribution to the two-particle correlation
results. The pseudorapidity gap of two units used in the
two-particle correlation analysis is less effective in remov-
ing non-flow effects, as compared to the gap of three units
used for the scalar-product analysis. In the most peripheral
events, the v2{2} distribution becomes almost flat for pT >

3.0 GeV/c. This may be a consequence of nonflow, dijet
correlations dominating the results as the system size becomes
small.

Figure 2 shows the v3 values. The difference between the
two- and four-particle v3 values are larger than found for
the corresponding v2 values, exceeding a factor of 2. This
suggests a larger fluctuation component to triangular flow as
compared to elliptic flow. The difference in amplitude would
be qualitatively expected if the v3 correlations were dominated
by initial-state fluctuations [18]. For most centralities, the
four-particle distributions have no clear peak value and their
pT dependence is not as prominent as that found for the two-
particle and scalar-product methods. The v3{m > 4} values
could not be reliably determined because of their large sta-
tistical uncertainties. The v3{2}(pT) distribution has a similar
shape as found for the v2{2}(pT) distribution, but with smaller
values that approach zero, or even become negative, at higher
pT values in the most peripheral centrality ranges.
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FIG. 2. Triangular-flow coefficients v3 based on the different analysis techniques, as functions of transverse momentum and in bins of
centrality, from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle and multiparticle correlations
correspond to the range |η| < 2.4, while the scalar-product results are for |η| < 0.8. The bars and the shaded boxes represent statistical and
systematic uncertainties, respectively.

The v4 results from the two-particle correlation and scalar-
product methods are presented in Fig. 3. The Q-cumulant
results are not shown because of statistical limitations. The
shape of the v4(pT) distribution is similar to those for the other
measured harmonics. All three harmonics, with n = 2, 3, and
4, are found to have maxima at similar pT values, but with
the n = 3 and n = 4 harmonics having a reduced centrality
dependence as compared to the n = 2 harmonic. For all three
harmonics, the scalar-product values are systematically larger
than the two-particle correlation results. While fluctuation
effects are expected to affect both methods in a similar way,
the methods measure flow in different pseudorapidity ranges,
which might account for the observed difference. The similar-
ity of the results suggests there is only a weak pseudorapidity
dependence for all three harmonics.

The spectrum-weighted, single-particle anisotropy coeffi-
cients, using the two- and multiparticle correlation methods,
are presented in Fig. 4. The v2 coefficients show a strong
centrality dependence with a maximum value in the 40–
50% centrality bin. The v3 and v4 coefficients have only a
weak dependence on centrality. Results based on multiparticle
cumulants are below the vn{2} values, as expected for the
influence of flow fluctuations. The predictions of the IP-
GLASMA+MUSIC+UrQMD model are compared to the ex-
perimental vn{2} results. In this model, initial-state dynamics
are described by impact parameter dependent flowing Glasma
gluon fields [33]. The subsequent hydrodynamic evolution is
calculated with a MUSIC simulation [34], which is a relativistic
(3 + 1)D model that includes shear viscosity (with a shear

viscosity over entropy ratio η/s = 0.16) and a temperature-
dependent bulk viscosity over entropy ratio [ζ/s(T )] [35]. The
simulation finally switches from a fluid-dynamic description
to a transport description using the ultrarelativistic quantum
molecular dynamics (UrQMD) model at the hadronization
hypersurface [36]. The theoretical calculations are in good
agreement with data for the v2 and v4 values. For the v3

coefficient, the calculation gives slightly larger values than
observed, with the difference increasing as the size of the
nuclear overlap region decreases (i.e., increasing centrality
percentage).

Figure 5 shows the ratios v2{6}/v2{4}, v2{4}/v2{2}, and
v3{4}/v3{2}. Theoretical predictions from a hydrodynamic
model [37] calculation that uses TRENTo initial conditions
[38] and from the IP-GLASMA+MUSIC+UrQMD model are
compared to the experimental results. The former starts the
hydrodynamic evolution at a time τ = 0.6 fm/c and has
a shear viscosity to entropy ratio of η/s = 0.047. Xenon
is known to be a deformed nucleus with a quadrupole
deformation of ε2 = 0.15 [39]. The TRENTo calculations are
performed assuming both spherical and nominally deformed
xenon nuclei. The v2{4}/v2{2} ratio shows a strong centrality
dependence, with the greatest deviation from unity, with a
value of 0.625, corresponding to 5–10% central events. The
v3{4}/v3{2} and v2{6}/v2{4} ratios show little, if any, central-
ity dependence. The v3{4}/v3{2} has a value close to 0.55 for
all centralities, indicating a strong influence of fluctuations
on triangular flow [20]. The v2{6}/v2{4} ratio is a few percent
below unity and suggests the existence of higher-order
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FIG. 3. The v4 coefficients, based on the different analysis techniques, as functions of transverse momentum and in bins of centrality,
from the 5% most central (top left) to 60–70% centrality (bottom right). The results for the two-particle correlations correspond to the range
|η| < 2.4, while the scalar-product results are for |η| < 0.8. The bars and the shaded boxes represent statistical and systematic uncertainties,
respectively.

corrections to a near-Gaussian distribution of the event-by-
event flow fluctuations [40]. The IP-GLASMA+MUSIC+
UrQMD and hydrodynamic models give comparable
agreement with data for the flow harmonic ratios. No
significant difference is found between the calculations that
assume spherical and deformed Xe nuclear shapes. This

suggests that the fluctuations are not sensitive to the small
deformation associated with the nucleus.

The v2 coefficients obtained by the two-particle corre-
lations technique for XeXe collisions at √sNN = 5.44 TeV
are compared with corresponding PbPb data at 5.02 TeV
as a function of transverse momentum in various centrality
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bins in Fig. 6. The v2 values for the two systems show
similar dependence on pT. However, the maximum value of
the PbPb elliptic flow coefficient is found to be greater than
the corresponding XeXe value except in the 0–5% centrality
bin. Since, for the most central collisions, the participant
fluctuations in the initial-state geometry provide the dominant

contribution to the final spacial anisotropy, lower values of v2

in that region are expected [37] for PbPb collisions because
of the larger system size. The v3{2, |�η| > 2} coefficients for
the two systems are compared in Fig. 7. The v3 harmonic
is entirely generated by initial participant fluctuations, so
slightly larger values are expected in XeXe than in PbPb for
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central events (e.g., 0–30% centrality), as observed in the data.
However, the v3 harmonic has a larger sensitivity to transport
coefficients (i.e., the shear viscosity) of the created medium,
which tends to suppress the azimuthal anisotropy, especially
for systems with a small size. This might explain the trend
of v3 where the system with the larger value is reversed in
the 30–70% centrality range, with the larger PbPb system
showing slightly higher v3 values for more peripheral events.
The v4{2, |�η| > 2} coefficients in PbPb and XeXe collisions
are shown in Fig. 8. Higher v4 values are found for PbPb
collisions, as compared to the corresponding XeXe collision
results, except for the transverse momentum interval pT <

3.0 GeV/c in the 5% most central events. The ordering of the
measured harmonics between the two systems is consistent
with participant fluctuations having a dominant role in central
collisions, and viscosity effects becoming more important for
mid-central and peripheral collisions.

Since ideal hydrodynamics is scale invariant, the XeXe and
PbPb results should have similar behavior [37]. For the same
percentage centrality range, the interaction regions of the two
colliding systems will have similar average shapes, but will
have different size. For example, in the 30–40% centrality
class, the number of participating nucleons is about 1.6 times
higher for the PbPb collisions. However, initial-state fluctu-
ations and viscosity corrections can cause scale invariance
breaking. Fluctuations of the initial state are proportional to
A−1/2, where A is the atomic mass, and, therefore, one can
expect a larger fluctuation component for XeXe collisions
than for PbPb collisions [41]. However, the influence of the

localized fluctuations will decrease with increasing viscosity.
The viscosity is thought to be proportional to A−1/3 [42] and
is therefore also expected to be larger for XeXe collisions.
Although the hydrodynamic model simulations do not suggest
a large effect on the vn{4}/vn{2} and v2{6}/v2{4} ratios based
on the Xe deformation, this deformation can influence the
ratio of the XeXe and PbPb results. The quadrupole defor-
mation of the colliding nuclei is expected to have the greatest
influence for the XeXe v2 values corresponding to the most
central collisions [37].

Figure 9 shows the pT dependent ratios of XeXe and
PbPb harmonic coefficients for different centrality ranges.
The ratios reach a maximum value between 1 and 2 GeV/c,
within the current uncertainties, and then decrease up to pT ∼
6 GeV/c, at which point they start to increase again. The
increasing trend above 6 GeV/c, which is most pronounced
for the v2 coefficient, might be a consequence of back-to-back
dijet correlations that cannot be fully eliminated with the
|�η| > 2 requirement. This nonflow behavior is increasingly
significant as the system size becomes smaller, with corre-
spondingly smaller particle multiplicities.

Figure 10 compares the spectrum-weighted v2, v3, and v4

values with 0.3 < pT < 3.0 GeV/c for the XeXe and PbPb
systems. The largest difference between the two systems is
found for the v2 coefficients corresponding to the most central
events, where the XeXe results are larger by a factor of about
1.3. For centralities above 10%, the PbPb results become
higher and the ratio has only a weak centrality dependence.
For the v3 and v4 coefficients, the ratio vn[XeXe]/vn[PbPb]
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decreases with centrality with an almost constant slope. The
relativistic hydrodynamic model calculations of Ref. [37] are
also shown in Fig. 10. Compared to calculations assuming a
spherical Xe shape, including the xenon nuclear deformation
in hydrodynamic models has little effect on the predicted flow
characteristics over the centrality range 10–70%, as expected.
For the most central 0–10% range, the v2[XeXe]/v2[PbPb]
model ratio shows a greater sensitivity to the xenon nuclear
deformation, with the calculation including deformation in
better agreement with experiment. For all measured harmon-
ics, the model values lie below the experimental results, with
the greatest difference found for the v4 coefficients.

VII. SUMMARY

In this paper, the v2, v3, and v4 azimuthal flow harmonics
are shown for xenon-xenon (XeXe) collisions at a center-of-
mass energy per nucleon pair of

√
sNN = 5.44 TeV based

on data obtained with the CMS detector. Three analysis
techniques with different sensitivities to flow fluctuations, in-
cluding two-particle correlations, the scalar-product method,
and the multiparticle cumulant method, are used to explore
the event-by-event fluctuations. The harmonic coefficients are
compared to those found with lead-lead (PbPb) collisions at√

sNN = 5.02 TeV to explore the effect of the system size.
The magnitude of the v2 coefficients for XeXe collisions
are larger than those found in PbPb collisions for the most
central collisions. This is attributed to a larger fluctuation
component in the lighter colliding system. In more peripheral
events, the PbPb vn coefficients are consistently larger than
those found for XeXe collisions. This behavior is qualitatively
consistent with expectations from hydrodynamic models. A
clear ordering v2{2} > v2{4} ≈ v2{6} ≈ v2{8} is observed for

XeXe collisions, with v2{6} and v2{4} values differing by
2–3%. The v3{4}/v3{2} ratio is found to be significantly
smaller than the v2{4}/v2{2} ratio, suggesting a dominant
fluctuation component for the v3 harmonic. Hydrodynamic
models that consider the xenon nuclear deformation are able
to better describe the v2[XeXe]/v2[PbPb] ratio in central
collisions than those assuming a spherical Xe shape, al-
though the deformation appears to have little effect on the
fluctuation-sensitive ratio of the cumulant orders. These mea-
surements provide new tests of hydrodynamic models and
help to constrain hydrodynamic descriptions of the nuclear
collisions.
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