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A B S T R A C T

For practical engineering optimization problems, the design space is typically narrow, given all the
real-world constraints. Reinforcement Learning (RL) has commonly been guided by stochastic al-
gorithms to tune hyperparameters and leverage exploration. Conversely in this work, we propose
a rule-based RL methodology to guide evolutionary algorithms (EA) in constrained optimization.
First, RL proximal policy optimization agents are trained to master matching some of the prob-
lem rules/constraints, then RL is used to inject experiences to guide various evolutionary/stochastic
algorithms such as genetic algorithms, simulated annealing, particle swarm optimisation, differen-
tial evolution, and natural evolution strategies. Accordingly, we develop RL-guided EAs, which
are benchmarked against their standalone counterparts. RL-guided EA in continuous optimisation
demonstrates significant improvement over standalone EA for two engineering benchmarks. The
main problem analyzed is nuclear fuel assembly combinatorial optimization with high-dimensional
and computationally expensive physics. The results demonstrate the ability of RL to efficiently
learn the rules that nuclear fuel engineers follow to realize candidate solutions. Without these rules,
the design space is large for RL/EA to find many candidates. With imposing the rule-based RL
methodology, we found that RL-guided EA outperforms standalone algorithms by a wide margin,
with >10 times improvement in exploration capabilities and computational efficiency. These in-
sights imply that when facing a constrained problem with numerous local optima, RL can be useful
in focusing the search space in the areas where expert knowledge has demonstrated merit, while
evolutionary/stochastic algorithms utilize their exploratory features to improve the number of feasi-
ble solutions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Gradient-based reinforcement learning (RL) [1] and
gradient-free evolutionary algorithms (EA) [2] have been
used to complement each other in many different applica-
tions by blending learning with evolution and vise versa
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This is a peer-reviewed postprint version written by the au-
thors using the Latex template “elsarticle” available to the
public. The official version of this paper can be accessed via
https://doi.org/10.1016/j.knosys.2021.106836

[3]. The interaction between RL and EA has begun a
while ago [4, 5], but started to grow recently after the in-
troduction of deep neural networks in RL [6, 7]. In the
literature, most studies explore using EA to guide RL and
vise versa.

Integration of EA with RL, which is more common, can
be classified in three major categories: (1) a tool to tune
RL hyperparameters, (2) an alternative approach to train
neural networks instead of gradient descent and backprop-
agation, and (3) an assisting tool to enhance RL explo-
ration via population-based search. A population-based
training approach is proposed by [8] to tune RL neural
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networks, including its model architecture, learning rate,
loss function, and the internal optimization algorithm. Hi-
erarchical genetic representation scheme was also pro-
posed by [9] to tune neural network architectures in im-
age classification, outperforming random search. Hyper-
parameters of SARSA and Q-learning algorithms were
tuned by the genetic algorithm (GA) [10], leading to a
maximized reward and increasing learning speed. The
second category is usually referred to as neuroevolution
[11]. Earlier efforts featured using NEAT, an evolution-
ary algorithm that leverages both neural architecture and
weights to optimize function approximators correspond-
ing to the value function in Q-learning [12, 13]. A sur-
vey of using EA as an alternative to temporal credit as-
signment and value function in RL is conducted by [5]
in the past. After deep learning revolution, the work by
[14] demonstrated evolution strategies as an alternative
approach to backpropagation and value function in train-
ing deep RL agents, which proved to be competitive in
Atari games, and highly scalable with number of CPUs.
Similar scalability and competitive results of deep neu-
roevolution were also achieved by [15], which utilized
GA and novelty search to train agents of deep Q learning
and Asynchronous Advantage Actor-Critic (A3C) [16].
For the last category, EA in form of GA was used to lever-
age a population of neural networks, to provide diversified
data to train RL agents with improved exploration abil-
ity [17]. The tests with EA-guided RL seemed to han-
dle the sparse rewards issue and outperform standalone
RL in several Atari games [17]. Additional example was
demonstrated by [18] on using an EA called goal explo-
ration processes to generate diverse samples for RL first,
followed by fine-tuning policy parameters using regular
policy gradient techniques. An earlier application of evo-
lutionary RL to perform autonomous vehicle navigation
was performed by [4].

The use of RL to guide EA, which is the main focus of
this work, is more limited. RL-guided EA have been used
for two main applications [19]: (1) online parameter con-
trol of EA and (2) design of hyper-heuristics for combi-
natorial optimization, which are an ensemble of heuristics
that automatically adapt to search for the optimal solution
[20]. Controlling GA behaviour using Q-learning was
done by [21], the RL agent adapts both the crossover and
mutation operators as well as individual selection for off-
spring at every generation. Similar effort was performed
by [22], however, utilizing SARSA as the RL algorithm.
In application contexts, RL was utilized for combinatorial
optimization through adaptive parameter control of GA to
solve the travel salesman problem [23]. In addition, Q-
learning was used to update the crossover and mutation
operators of GA to facilitate optimising multidimensional
data discretization [24]. For hyper-heuristics research,
the survey by [25] covers advances on hyper-heuristics,
which include variety of examples of RL usage, a few can
be found here [26, 27, 28]. The idea is using RL to re-

ward or punish each heuristic during EA search, based on
its individual performance or the reward gain from its us-
age to ensure an optimal ensemble during search. RL has
always been perceived as an effective tool for action pref-
erences to learn heuristics due to its dynamic nature [29].
The work by [30] presented a study on using RL to learn
certain heuristics, and then RL was used to pick an initial
guess for a simulated annealing chain. Additional exam-
ples of how RL can be effective in decision support can
be seen in several efforts such as shaping game strategies
[31], multi-objective planning of actions in autonomous
control tasks [32], supporting large-scale service compo-
sition in service-oriented systems [33], and many more.
Lastly, an interesting and comprehensive study of RL,
EA, and the history of their hybridization can be found
in this recent review [19].

Unlike the previous applications of hybrid RL and EA,
this work explores the possibility to use modern deep RL,
namely, proximal policy optimization (PPO) to embed do-
main knowledge in form of rules to solve optimization
problems with excessive constraints, which are likely in
large-scale engineering optimization. Therefore, the nov-
elty of this work originates from exploring the benefits of
hybridizing RL and EA to solve a certain class of opti-
mization problems, namely, constrained optimization of
both combinatorial and continuous natures. We demon-
strate how standalone EA and RL algorithms start strug-
gling as the search space becomes more confined, while
RL-guided EA algorithms under similar settings and hy-
perparameters can maintain an excellent performance. To
support our methodology, a real-world nuclear engineer-
ing application with a challenging combinatorial nature
is selected to test the proposed algorithms. In addition,
two engineering benchmark problems from mechanical
and structural engineering are selected to test the per-
formance of the proposed algorithms in continuous op-
timisation. The RL model is first used to learn some of
the problem constraints/rules, and then used to guide EA
search through taking proper actions to ensure the search
is taking place in feasible regions, leading to more robust
search and cost savings.

As our focus in this work will be on the nuclear assem-
bly combinatorial problem due to its complexity along
with its importance to our engineering background, most
of this paper is devoted to this problem. The other
two engineering problems are highlighted in more brief
forms, as they are more well-known optimisation engi-
neering benchmarks in the literature. Accordingly, the
novelty of the proposed concept is motivated by at least
one of the following reasons: (1) effective exploration of
heavily-constrained search spaces, (2) computational effi-
ciency of RL-guided EA, (3) handling the problem com-
plexity, and (4) the practical value of optimization. We
demonstrate our methodology through developing RL-
guided genetic algorithm, RL-guided simulated anneal-
ing for combinatorial optimisation, and RL-guided parti-
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cle swarm optimisation, RL-guided differential evolution,
and RL-guided natural evolution strategy for continuous
optimisation. Then, we test all algorithms against their
standalone counterparts, under heavily-constrained opti-
misation problems.

A common optimization problem drawn from nuclear
reactor design is described in section 2, which is used to
demonstrate the RL-guided concept on discrete optimisa-
tion. The problem has several challenges of being multi-
objective, combinatorial, constrained, high-dimensional,
and expensive (i.e. computer simulation is needed for
fitness evaluation). As such, while the standalone ver-
sions of RL [34] and EA [35, 36] have been applied to
such problems in the past, the nuclear industry still relies
on expert input given that a brute force approach is not
feasible due to the prescribed challenges. Nevertheless,
solving such problems efficiently can lead to a great im-
provement in nuclear fuel efficiency, cost reduction, and
nuclear safety assurance, which is why the largest nuclear
power plant operator in the United States (Exelon Cor-
poration) is supporting this work. In Appendices A - B,
two common engineering benchmark problems are briefly
described to demonstrate the RL guidance concept in con-
tinuous optimisation, which are the speed reducer design
and the welded beam design. In section 3, the method-
ology is described on using the RL algorithm PPO to in-
form genetic algorithm (GA), simulated annealing (SA),
particle swarm optimisation (PSO), differential evolution
(DE), and natural evolution strategies (NES). We should
highlight that SA does not belong to the EA family, but
to the bigger family of stochastic optimisation. The five
algorithms have been widely used as optimization algo-
rithms, especially for the nuclear optimization problem
investigated in this work. Afterward, in section 4, we
present our findings on using RL-guided EA algorithms
to efficiently solve the prescribed engineering problems,
highlighting their computational and search capabilities
compared to the standalone (unguided) algorithms, fol-
lowed by the discussion of these findings in section 5. Fi-
nally, the conclusions of this work and outlooks on future
work are presented in section 6.

2. Engineering Optimisation Problem Set

In this section, we describe the three engineering prob-
lems analyzed in this work. The first problem, the focus of
this work, is discrete/combinatorial problem, described in
more detail in this section as limited information is avail-
able in the literature. The second and third problems are
continuous problems, described in brief in Appendices A
- B, as these problems are widely investigated in the liter-
ature.

The main problem analyzed in this work is nuclear fuel
assembly optimisation. A top view of a sample nuclear
fuel assembly design is sketched in Figure 1. The assem-
bly is based on commercial boiling water reactor design

[37, 38], and it has a dimension of 10x10. For the sample
design in Figure 1, there are four types of rods. First, 74
pure Uranium Oxide (UO2) fuel rods, which are enriched
to a specific U-235 enrichment, e.g. 4.4% weight fraction
to drive fission reactions. Second, 18 poison rods, each
consists of UO2 fuel mixed with Gadolinium Oxide (neu-
tron poison) to absorb neutrons and help in controlling
the fission reaction. Poison rods are represented in pair
(X,Y), where X is the UO2 enrichment and Y is the poi-
son enrichment, e.g. (4.4%, 8%). Third, border rods are
regular UO2 fuel rods, but with smaller enrichment than
the interior fuel rods to improve the performance through
reducing neutron leakage from the borders. In this work,
the border rods are applied as fixed external frames, thus
are not included in the optimization process. The last type
is two large water rods, occupying the remaining 8 posi-
tions at the center to enhance assembly cooling and neu-
tron moderation. The assembly design follows 1/2 sym-
metry, so only half of the assembly needs to be optimised,
and by excluding the border rods, 32 rod locations will be
optimized, numbered in Figure 1. The numbered rods on
and below the diagonal line in Figure 1 are included in the
optimization process.

Fig. 1. Top view of the nuclear fuel assembly analyzed in this study
with 1/2 symmetry

For the rod items 1-32 in Figure 1, we consider eight
combinatorial choices in each location. The first four
choices belong to the fuel rod set Fset = {3.6%, 4.0%,
4.4%, 4.95%}, while the rest belongs to the poison rod set
Pset = {(4.4%, 7%), (4.95%, 7%), (4.4%, 8%), (4.95%,
8%)}. Accordingly, the full combinatorial search space is
proportional to O(mn), i.e. 832 ≈ 1029, which is computa-
tionally prohibitive to be analyzed by brute force search,
given each combination (i.e. assembly pattern) requires
computer simulation to be evaluated, as will be described
later in this section. What makes the problem even more
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challenging is that the design of nuclear fuel assemblies
in general follows a heavily-constrained optimization pro-
cess by adhering to several rules. These rules, which will
be used to shape the reward/fitness function for RL and
EA, can be summarised as follows:

1. Rule 1 (r1): focuses on assembly patterns with small
number of poison rods, Npoison < 25 (green rods
in Figure 1), since large Npoison overly kills neu-
trons and suppresses power production. Therefore,
if Npoison ≥ 25 and the RL agent attempts to take an-
other poison action, a -1 penalty is applied, and the
poison rod is replaced by a random choice from Fset
(e.g. 4.0%)

V1 =

T∑
t=1

1{NGAD ≥ 25 ∩ at ∈ Pset}, (1)

where 1 is the indicator function and at is the action
taken at time step t.

2. Rule 2 (r2): After passing rule 1, the optimization
should focus only on assembly patterns with a tight
Npoison range, for this work, Npoison ∈ [16, 18]. The
violation of this rule can be quantified using relative
difference V2 =

∣∣∣∣Npoison−b
b

∣∣∣∣%+ p, where b can be either
16 or 18 depending on Npoison value. p is a penalty
factor between [0,400] to handle a caveat in this rule.
The p value is determined based on the first term of
V2, which proved to improve the learning stability of
this rule. Patterns with Npoison outside this range are
discarded. The reader may notice at the first sight
that Rule 1 and Rule 2 are redundant, however, they
are indeed complementary. As the RL agent starts
the training by taking many poison actions (> 40),
which are undesirable, the penalty of Rule 1 helps
accelerating the movement to the low-poison search
regions. Then Rule 2 can balance the number of poi-
son rods between 16 and 18. Dropping Rule 1 math-
ematically has no impact, but computationally slows
down the optimisation.

3. Rule 3 (r3): focuses on balancing the average
UO2 enrichment (E) of the whole assembly (for
all fuel, poison, and border rods) within a tight
bound determined by the designer, in this work,
E ∈ [4.25%, 4.36%]. This rule is an economic rule
to minimize E, while maintaining effective and safe
performance, since high E requires additional costs.
The violation of this rule is quantified by relative dif-
ference, V3 = 50

∣∣∣∣ E−b
b

∣∣∣∣%, where b can be either 4.25%
or 4.36% depending on E value.

4. Rule 4 (r4): this rule handles the position of poi-
son rods, where two poison rods are not allowed to
neighbour each other in the assembly either verti-
cally or horizontally, diagonally is allowed, see Fig-
ure 1 for typical poison rod positioning. This rule

is very important for the nuclear reactor safety, and
hence any pattern with at least two poison rods vio-
lating this condition is discarded. After counting in-
dividual violations (Nviolate), the violation of this rule
is expressed by V4 = 10 ∗ Nviolate.

The previous rules can be perceived as constraints on
the input space or assembly layout. Three additional con-
straints must be met in the output space, which is a func-
tion of the input space:

1. Rule 5 (r5): the infinite neutron multiplication fac-
tor (k∞) is an important safety parameter, which is a
measure of the change in the fission neutron popula-
tion in the assembly analyzed in this work, and usu-
ally expressed in 5 significant digits. k∞ should be
maintained below a threshold value during the sim-
ulation, i.e. k∞ ≤ kmax

∞ . We will define kmax
∞ later

in section 4 as we will use different threshold values
to demonstrate the methodology by imposing addi-
tional confinement on the space. If k∞ condition is
not met, the pattern is discarded.

2. Rule 6 (r6): power peaking factor (PPF), which is
the ratio of the highest fuel rod power in the as-
sembly to the average assembly power by all rods.
Likewise k∞, PPF is a stringent safety parameter
to be maintained below a threshold value, PPF ≤
PPFmax, and similarly PPFmax values will be de-
fined later in section 4.

3. Rule 7 (r7): cycle length (CL), which is a mea-
sure of the operating time the assembly can pro-
vide power inside nuclear power plant before it is
completely depleted. In this work, maximizing CL
forms the main objective function once all previous
constraints, r1 − r6, are met. We use the “burnup”
unit GWD/MTU to express CL (GigaWatt Days per
Metric Ton of Uranium), which expresses the power
production per day normalized by the initial fuel
loading. CL should be maximized and maintained
to CL ≥ CLmin GWD/MTU to ensure economic op-
eration, where CLmin values will be defined later in
section 4.

The violation of r5−r6 rules (i.e. V5−V6) can be quan-
tified similarly through relative difference by determining
the deviation from the corresponding threshold of each
rule (i.e. kmax

∞ , PPFmax). Our choices of the bounds and
thresholds above are not arbitrary, but based on commer-
cial designs in the literature. The summary of the seven
rules and the objective is given in Table 1. It is obvious
that we have used an approach similar to the common ε-
constraint approach in multi-objective optimisation [39],
where Rules 1-6 are treated as constraints, while Rule 7
(CL) is treated as our single objective to maximize. In
addition, according to the previous descriptions, we typi-
cally used the penalty factor approach for constraint han-
dling [40] of the rules above, which are of inequality type.
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Therefore, the optimiser is penalized when the solution
deviates largely from the constraint.

To obtain a realistic physics representation and accu-
rate values for the figure of merits: k∞, PPF, and CL, an
advanced computer simulation is needed. The remaining
rules (r1 − r4) can be evaluated by averaging and simple
mathematical formulas. Therefore, the nuclear assembly
geometry is modeled and simulated using the CASMO4
code. CASMO4 [41] is a multigroup two-dimensional
neutron transport code for nuclear time-dependent cal-
culations of boiling water reactor fuel assemblies, based
upon the Method of Characteristics. More details about
CASMO4 methodology can be found in the code manu-
als and related research utilizing CASMO4 [41, 42, 43].
For this study, each CASMO4 simulation needs about
1.5 minutes to complete, and hence 1.5 minutes will be
used as the basis to obtain an insight about the computing
time saving by all algorithms. Although using simplified
physics analytical or surrogate models can be beneficial
to accelerate optimisation, the reader should be careful
about using these models as they can give inaccurate val-
ues about the objective function and the constraints.

Accordingly, we can formulate the optimisation prob-
lem mathematically as follows:

max
~x

CL(~x) = CAS MO4(~x), (2)

subject to r1(~x)-r6(~x), where ~x is the vector of fuel
choices in all 32 locations of Figure 1. The problem state-
ment can be described as follows: What are the optimal
fuel choices ~x (from Pset and Fset) in all 32 rod locations
in Figure 1, such that all six rules can be satisfied simul-
taneously and r7 is maximized above CLmin.

Due to the large size of the search space ∼ 1029 and the
expensive simulation time to evaluate each individual (1.5
minutes), we cannot know the global optimal solution,
which has the maximum CL with all rules/constraints
satisfied. Alternatively, we use an implicit constraint
(CL ≥ CLmin) in the fitness objective of Eq.(2), where we
filter the patterns with satisfactory CL from an engineer-
ing perspective. Consequently, once an assembly pattern
is found with all rules met including the implicit rule on
CL, this pattern is called “candidate” pattern. Our ob-
jective is then to maximize the number of these candidate
patterns to better inform the final assembly design. The
reader should notice that all algorithms are programmed
to maximize the objective in Eq. (2), and the candidate
pattern alternative is nothing but a postprocessing step of
the fitness function. Also from an engineering point of
view, in the real nuclear reactor design problem, the de-
signer will test out the top candidate assemblies in the full
reactor design (consists of over 500 assemblies). There-
fore, the larger the candidate patterns to select from, the
higher the performance attained by the designer in the
next step of the nuclear reactor design process.

Finally, it is worth highlighting that a physics-based

environment is developed under the OpenAI Gym [44]
toolkit to allow interactions between CASMO4 assem-
bly model and RL/EA algorithms. OpenAI Gym pro-
vides data structures to test RL algorithms, where we have
added additional functions to the environment to facilitate
CASMO4 processing as well as EA fitness evaluation.
Using OpenAI gym is advantageous in this work due to
its compatibility with the RL algorithm and platform we
use in this work, which are both described next.

3. Methodology

In this section, we describe the reinforcement learning
methodology first, then we describe the five RL-guided
algorithms: RL-guided GA/RL-guided SA for combi-
natorial optimisation, and RL-guided PSO/RL-guided
DE/RL-guided NES for continuous optimisation.

3.1. Reinforcement Learning Proximal Policy Optimiza-
tion

The recent review by Bengio et al. [45] highlighted
different machine learning approaches to tackle combina-
torial optimisation, among these, RL is highlighted as an
intuitive choice. RL learned by the “experience” setting
of [45] can be used in this work. The policy is learned by
taking actions in trial/error form accompanied by a reward
signal for these actions, where the reward is calculated as
described in section 2 for the nuclear assembly, and Ap-
pendices A - B for the other engineering problems. For
the nuclear assembly, after sufficient training, the policy
will learn how to arrange the fuel in Figure 1 such that the
reward return (i.e. cycle length) is maximized. Also, the
process is Markovian with full observability, as we have
access to all problem states, which are the fuel type in
each position. These conclusions are also applicable to
the speed reducer and welded beam problems.

Proximal policy optimization (PPO) belongs to the pol-
icy gradient (PG) family, which is a RL family that trains
a policy to map states to actions by optimising the follow-
ing loss function

LPG(θ) = Et[log πθ(at |st)At], (3)

where Et is the expectation over a batch of transitions, π
is the policy to be optimised which has weights θ, and At
is the advantage estimate, which is controlled by γ (the
discount factor) and λ (the bias-variance tradeoff parame-
ter). For brevity of this work, we refer the reader to this
reference [46] for full mathematical details about general-
ized advantage estimation and its hyperparameters (γ, λ).
The policy π predicts action a given state s at time step
t. Vanilla PG suffers from poor data efficiency, noisy be-
haviour, and limited exploration [47]. These limitations
inspired several efforts to improve PG performance, ref-
erenced here for conciseness: deep deterministic policy
gradient [7], Trust-Region Policy Optimization [48], and
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Table 1. Summary of the rules/constraints to match for the problem of interest (see Figure 1)

Rule ID Rule Type Description

r1 Constraint Maintain poison rods in low levels (Npoison < 25)
r2 Constraint Only consider patterns with Npoison ∈ [16 − 18] rods
r3 Constraint Only consider patterns with average enrichment E ∈ [4.25%, 4.36%]
r4 Constraint Only consider patterns with proper poison positions
r5 Constraint Only consider patterns with k∞ ≤ kmax

∞

r6 Constraint Only consider patterns with PPF ≤ PPFmax

r7 Objective Maximize CL as final objective, only consider patterns with CL ≥ CLmin

then PPO [47]. PPO is observed as sample inefficient
compared to its companion, deep Q-learning [6], since it
discards previous experiences after updating the surrogate
every F timesteps (i.e. no replay memory). Neverthe-
less, this sacrifice allows PPO to have simpler implemen-
tation, faster training, easier hyperparameter tuning, and
efficient parallel calculations [47], which are all of high
importance to this work.

The PPO algorithm used in this work is shown in Algo-
rithm 1, which can be summarised in two steps. In the
first step, transitions (i.e. sequence of states, rewards,
and actions) are collected based on old policy (πθold ) in-
teractions with the environment for a full time horizon F.
In parallel calculations, F = NT , where N is number of
agents/processors running in parallel, and T is the time
horizon of each agent.

In the second step, the old policy is updated by optimis-
ing the neural network model, i.e. commonly known as
the “surrogate” by running gradient descent over the sur-
rogate objective LPPO, defined below, with learning rate
lr, mini-batch of size B, and for number of supervised
epochs optepochs. First, we can write the clipped PPO sur-
rogate loss function as [47]

LCLIP(θ) = Et[min( Rt(θ)At︸  ︷︷  ︸
Modified PG Objective

,

clip(Rt(θ), 1 − ωclip, 1 + ωclip)At)︸                                     ︷︷                                     ︸
Clipped Objective

],
(4)

where Rt(θ) =
πθ(at |st)
πθold (at |st )

is the probability ratio between
the new and old policies, and ωclip is the clip range. The
first term in the min function is the modified PG objec-
tive after including the trust-region [48], while the second
term modifies the objective by clipping the probability ra-
tio to remove the incentive for moving Rt outside of the
interval [1 - ωclip, 1 + ωclip]. Two additional improve-
ments have been added to the clipped PPO objective to
improve the performance, see [47] for more details. First,
PPO stability is enhanced through adding a value func-
tion (VF) loss term (LVF

t ), controlled by the coefficient
ωv f . Second, PPO exploration is enhanced through an en-
tropy term (S [πθ]), controlled by the coefficient ωs. The

three parameters, ωclip, ωv f , ωs should be tuned for bet-
ter performance. By combining the three terms, the PPO
final loss function can be written as follows [47]

LPPO(θ) = Et[ LCLIP
t (θ)︸   ︷︷   ︸

Clipping Term

− ωv f · LVF
t (θ)︸         ︷︷         ︸

Value Function Loss

+ ωs · S [πθ](st)].︸            ︷︷            ︸
Entropy Term

(5)

Algorithm 1 Reinforcement Learning Proximal Policy
Optimization [47]
1: •Set hyperparameters: γ, λ, ωclip, ωv f , ωs, lr, B, optepochs
2: •Initialize policy πθold with random weights
3: for Epoch i = 1 to EPOCH do
4: for Agent j = 1 to Ncores do
5: •Run policy πθold in the environment for time horizon T
6: •Compute rewards and advantage estimates A1, ..., AT

7: •Optimise surrogate LPPO(θ) in Eq.(5) with respect to θ using:
8: •Running gradient descent with learning rate lr, mini-batch B ≤

NT , for optepochs
9: •Set θold ←− θ

10: •Calculate mean reward for the current epoch and save the agent
if performance improved

The mapping of RL to the optimization problem in-
volves defining a discrete action space of size 8, which
includes all fuel choices in Fset and Pset. The action space
can be defined using the Discrete type of OpenAI gym.
The state space is a vector of size 32, where each entry
highlights the current fuel type in each of the 32 posi-
tions in Figure 1. The state space can be defined using
the discrete Box type of OpenAI gym. The Box type al-
lows defining multiple entries with minimum and maxi-
mum limits, where for this study, the 32 entries represent-
ing the positions are restricted between 1 to 8 to represent
the current fuel type in each position. The agent randomly
visits each rod location, picks an action (i.e. fuel choice)
from the action space, observes the reward (based on rules
r1−r7 and Eq.(2)), updates the state space (Box), and then
moves to the next position. This process is repeated until
all 32 positions are visited, then the episode is terminated.
The process is repeated for specific number of time steps,
until satisfactory learning or reward is achieved. For the
two problems in Appendices A - B, since they are contin-
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Table 2. RL/EA hyperparameters and their tuning range
Parameter Method(s) Range

γ PPO Fixed to 0.99
B PPO 2n, n = 2, 3, ..., 10
lr PPO Fixed to 2.5 × 10−4

T PPO 400-5000 (N=20 cores)
λ PPO 0.9-1.0
ωclip PPO 0.1-0.3
ωv f PPO 0.5-1.0
ωs PPO 0-0.03
optepochs PPO Fixed to 15
χ GA/SA/RL-guided GA/SA 0.005-0.2
Npop GA/NES/DE and RL-guided GA/NES/DE 20-80
CX GA/RL-guided GA 0.3-0.9
MUT GA/RL-guided GA 0.025-0.4
F DE/RL-guided DE 0-2.0
C DE/RL-guided DE 0.5-1.0
ηµ NES/RL-guided NES Fixed to 1.0
ηB NES/RL-guided NES 0.05-0.3
ησ NES/RL-guided NES 0.05-0.3
Nparticles PSO/RL-guided PSO 50-150
c1/c2 PSO/RL-guided PSO 2.01 − 2.2
Nrl RL-guided GA/PSO/DE/NES [0.02-0.3] × Npop or Nparticles
Tmax SA/RL-guided SA 1000-150000
Tmin SA/RL-guided SA Fixed to 1
Cooling SA/RL-guided SA Fast, Boltzmann, Cauchy, Eqs.(6)-(8)
χrl RL-guided SA 0.01-0.2

uous in nature, both the action and state spaces are of type
Box, where the minimum and maximum limits are set to
the ranges of the design variables of each problem.

As stable-baselines [49] provides a modern implemen-
tation of PPO based upon the algorithm proposed by [47],
stable-baselines-2.10.0 package is used for PPO imple-
mentation in our work. According to the previous descrip-
tions, we tune the following PPO hyperparameters: {T ,
λ, ωclip, ωv f , ωs, B}, while other parameters {γ = 0.99,
lr = 2.5 × 10−4, optepochs = 15} are fixed to standard
values due to their less sensitivity. PPO hyperparameters
and their reasonable range are listed in Table 2 (based on
some RL packages [49] and our preliminary tests). We
did not change the value function settings than what are
implemented in stable-baselines-2.10.0, we only tuned
the value function loss parameter ωv f for optimal perfor-
mance. Also, the policy network architecture is set to
the default, which is a feedforward neural network with
two layers, 64 nodes each. In general, the default pol-
icy network and value function settings seem adequate for
this work. Lastly and fortunately, as stable-baselines and
OpenAI gym platforms are very compatible, the coupling
of the nuclear assembly, speed reducer, and welded beam
environments with PPO algorithm to perform RL is very
straightforward.

3.2. RL-guided Genetic Algorithm
Genetic algorithms (GA) [50] are inspired by the the-

ory of natural evolution, where the fittest individuals are
selected to produce offspring of the next generation. GA

is one of the widely used algorithms in nuclear power
plant optimization; therefore it is selected as an evolu-
tionary candidate for the combinatorial optimisation part
of this work. Different versions of GA have been used to
solve various optimization problems in pressurized and
boiling water reactors [36, 51, 52, 53]. For a specific
generation, GA performs the following processes: (1) se-
lect individuals for mating/crossover with probability CX,
(2) select individuals for mutation with small probabil-
ity MUT , (3) generate the next offspring (Npop) based on
steps 1 and 2, (4) fitness evaluation of the offspring, and
(5) select the top individuals based on their fitness value
to participate in the next generation. The initial popula-
tion is generated randomly from the search space, while
GA fitness function follows the rules described in sec-
tion 2. The crossover operation is the classical two-point
crossover, where two random individuals are selected for
mating with probability CX. Two points are selected ran-
domly from the individual attributes. The attributes in
between the two points are swapped between the indi-
viduals, resulting in two new individuals. Additionally,
some of the population individuals may be selected for
mutation with probability MUT . Since the problem to be
solved is of combinatorial nature (i.e. nuclear assembly),
the attributes of the selected individual are mutated with
probability χ with an integer uniformly drawn between
the lower and upper bounds of each attribute. The inte-
gers in this work are used to encode the fuel types in Fset
and Pset.

In this work, additional hyperparameter called Nrl ∈
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[1,Npop] is introduced to improve GA, which represents
the number of individuals introduced into the population
from external source, in this case, a pre-trained RL/PPO
model. RL individuals can be perceived as elite foreign
children imported from other generations to enrich the
GA generation. Nrl is a fraction of Npop introduced into
the population before applying crossover and mutation to
all individuals, and it can be tuned for desirable perfor-
mance. Beside blending RL individuals into the popula-
tion in every generation, the RL model is used to initialize
the first population of GA. The RL-guided GA algorithm
is described in Algorithm 2. Notice that only two modifi-
cations are done on GA to form RL-guided GA, and only
one new hyperparameter (Nrl) is introduced (i.e. hyper-
parameter tuning is not an issue for RL-guided GA). In
addition, in Algorithm 2, only RL is used to update GA
during the RL-guided GA search, while GA does not af-
fect RL search. This would facilitate the extension of the
RL-guided concept to other EA algorithms as no changes
in RL are needed. In summary, for GA or RL-guided
GA, the hyperparameters to tune are: {Npop, MUT , CX,
χ, Nrl}, and their reasonable values are listed in Table 2.
Lastly, DEAP-1.3.0 [54], which is an evolutionary com-
putation framework, is used to build GA and our RL-
guided GA algorithms. Significant changes have to be
performed to couple RL with GA under the DEAP frame-
work.

The mapping of GA and RL-guided GA to the opti-
mization problem involves defining individuals, which are
vectors of size 32. Each entry represents a fuel choice
from Fset or Pset. Each individual is evaluated based on
the rules r1 − r7 to determine the fitness value and the
validity of this individual.

As GA was originally developed for combinatorial op-
timisation, several variants of genetic-based algorithms
are developed for continuous optimisation. Since we will
explore the RL guidance effect on continuous optimisa-
tion in section 4.1, Appendix A, and Appendix B, we
briefly highlight two genetic-based continuous algorithms
relevant to this work. Differential evolution (DE) [55]
is a common algorithm that also relies on maintaining a
population of size Npop by combining existing individ-
uals with mutation and crossover operations. The main
difference is that DE draws three individuals (a, b, c) ran-
domly from the population with recombination probabil-
ity C ∈ [0.5 − 1.0]. DE then subtracts the individual c
from b, multiply the difference with the mutation factor
F ∈ [0, 2], then adds the result to a. This process is re-
peated until convergence. Similar to GA, DE guidance is
provided at the beginning of every generation before mix-
ing, where Nrl individuals replace the worst individuals
from the previous generation. In summary, for DE or RL-
guided DE, the hyperparameters to tune are: {Npop, F, C,
Nrl} and their reasonable values are listed in Table 2.

Natural evolution strategies (NES) [56] are inspired
from the genetic-based evolution strategies [57], however,

NES iteratively updates a continuous search distribution
by following the natural gradient to achieve better fit-
ness (without crossover/mutation operations). We use the
implementation of [58] for the exponential NES in this
work. Exponential NES has multiple improvements over
its NES predecessors by parameterizing the positive def-
inite covariance matrix using the exponential map, which
helps in avoiding the computation of the inverse Fisher
information matrix. We typically start NES search with
a random guess and identity covariance matrix. NES has
three main strategy parameters: µ (the update of the cen-
ter of the search distribution), σ (the update of the step
size), B (the update of the transformation matrix), which
are adapted to improve a population of size Npop. These
strategy parameters are controlled by three learning rates:
ηµ, ησ, ηB, where in this work we use the default value for
ηµ = 1, as suggested by the authors [58], and we tune ησ
and ηB. Similar to GA, NES guidance is provided at the
beginning of every generation before adapting the strategy
parameters, where Nrl individuals enter the population to
replace the worst individuals from the previous genera-
tion. In summary, for NES or RL-guided NES, the hy-
perparameters to tune are: {Npop, ηB, ησ, Nrl} and their
reasonable values are listed in Table 2. As the concept
of RL guidance in DE/NES is identical to GA, full RL-
guided NES/RL-guided DE algorithms are not presented
for brevity. Also, we have used our own implementation
for DE, NES, RL-guided DE, and RL-guided NES.

Algorithm 2 RL-guided Genetic Algorithm
1: •Set hyperparameters: Npop, Nrl, CX, MUT , χ
2: •Load a pre-trained RL model
3: for GEN i = 1 to Ngen do
4: •Run the RL model for few epochs and store candidate solutions
5: if i = 1 (First Generation) then
6: •Initialize the population with Npop using RL candidates
7: else
8: •Feed the population with Nrl using RL candidates
9: •Apply crossover to population with probability CX

10: •Apply mutation to population with probability MUT
11: •For the selected mutated individuals, mutate attributes with

probability χ
12: •Evaluate the reward/fitness for all population
13: •Select the individuals with highest reward/fitness for next gen-

eration

3.3. RL-guided Simulated Annealing
Simulated Annealing (SA) [59] is inspired from the

concept of annealing in physics to reduce defects in crys-
tals through heating followed by controlled cooling. Like-
wise GA, SA has been an active algorithm in nuclear re-
actor optimization research, as can be inferred from sev-
eral studies utilizing SA for nuclear assembly and core
optimization [35, 60, 61]. Therefore, SA is selected as
another candidate to test the effect of RL guidance on its
performance. SA relies on random walk to generate a can-
didate solution, followed by fitness evaluation of this can-
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didate. Next, a neighboring solution is generated, and its
fitness is calculated. The old and new fitness evaluations
are compared, if improvement is achieved, continue with
the new solution, if no improvement is seen, accept the
old solution with probability α = e−∆E/T , where ∆E is
the difference between the two fitness evaluations, and T
is the annealing temperature. The previous steps are re-
peated until convergence. The temperature T is annealed
between Tmax and Tmin over the annealing period of length
Nsteps. In this work, we include three different tempera-
ture annealing schedules when tuning SA hyperparame-
ters, which are commonly used in SA. The fast annealing
schedule is defined as

TFast = Tmax · exp
[
−log(Tmax/Tmin)k

Nsteps

]
, (6)

where k is the current annealing step, which builds up
from 1 to Nsteps. The Boltzmann schedule is expressed
by

TBoltzmann =
Tmax

log(k + 1)
, (7)

while the Cauchy schedule is given by

TCauchy =
Tmax

k + 1
. (8)

The mode of random-walk for SA is similar to GA muta-
tion. All input attributes are subjected to perturbation with
a small probability χ, if rand ∼ U[0, 1] < χ is satisfied,
the corresponding attribute is replaced with an integer uni-
formly drawn between the lower and upper bounds. The
integers represent the fuel choices in Fset and Pset.

Similar to RL-guided GA, in this work, an additional
hyperparameter called χrl ∈ [0, 1] is introduced to SA,
which represents a probability to replace a random-walk
individual with a RL individual. RL-based individuals
help SA to avoid falling in local optima and reduce SA
randomness by providing quality solutions periodically
during annealing. χrl = 0 refers to a pure random-walk
SA, while for χrl = 1, the SA chain will completely use
RL-based samples. Therefore, χrl should be tuned for op-
timal performance to avoid complete bias to RL or insuf-
ficient guidance from RL. RL-guided SA is described in
Algorithm 3. Similar to RL-guided GA, in Algorithm 3,
only RL is used to update SA during the RL-guided SA
search, while SA does not affect RL search, as this would
facilitate the implementation. The two-way data transfer
between RL/EA is kept for future work. In summary, for
SA or RL-guided SA, the hyperparameters to tune are: {χ,
χrl, Tmax, Cooling}, and their reasonable values are listed
in Table 2. Tmin is fixed to 1. We have used our own im-
plementation for SA and RL-guided SA as described in
this section and Algorithm 3.

The mapping of SA and RL-guided SA to the optimiza-
tion problem is exactly similar to GA. Each individual in
the SA chain is a vector of size 32. Each entry represents

a fuel choice from Fset or Pset. Each individual is evalu-
ated based on the rules r1 − r7 in section 2 to determine
the fitness value and the validity of this individual.

Algorithm 3 RL-guided Simulated Annealing
1: •Set hyperparameters: Nsteps, Tmax, Tmin, χ, χrl, Cooling
2: •Load a pre-trained RL model
3: •Initialize the chain with a random candidate and set T ←− Tmax
4: •Evaluate fitness Eprev for the random candidate
5: for Steps i = 1 to Nsteps do
6: if α1 ∼ U[0,1] > χrl then
7: •Do a random-walk with probability χ
8: else
9: •Run the RL model for few epochs and store a candidate

solution
10: •Use the RL candidate
11: •Evaluate fitness E for the new candidate
12: •Calculate ∆E = E − Eprev
13: if ∆E > 0 and exp(−∆E/T ) < α2 ∼ U[0,1] then
14: •Reject the candidate and restore the previous state
15: else
16: •Accept the candidate and set Eprev ←− E
17: •Anneal T between Tmax and Tmin (if any) according to Cooling

3.4. RL-guided Particle Swarm Optimisation
Particle swarm optimization (PSO) [62] is a popular

evolutionary algorithm for continuous optimisation. Each
particle in the swarm experiences position update (xt+1

i =

xt
i +vt+1

i ), where i is the attribute index and v is the velocity
value for that attribute. We implement the constriction
approach by Clerc and Kennedy [63] for velocity update
in this study, which can be expressed as follows

vt+1
i = K[vt

i + c1r1(pbestt
i − xt

i) + c2r2(gbestt − xt
i)], (9)

K =
2

|2 − φ −
√
φ2 − 4φ|

, (10)

φ = c1 + c2, φ > 4, (11)

where c1, c2 are the cognitive and social speed constants,
respectively, r1, r2 are independent uniform random num-
bers between [0,1], and pbest, gbest are the local best po-
sition for each particle and the global best position of the
swarm, respectively. Lastly, K is the constriction coeffi-
cient introduced to balance PSO exploration/exploitation
and improve stability. Typically, when c1 = c2 = 2.05,
then K = 0.73. Another advantage of using constriction
is it exempts us from using velocity clamping; therefore
there is no need to specify minimum and maximum veloc-
ities, which reduces PSO hyperparameters. The number
of particles in the swarm is given by Nparticles.

Similar to RL-guided GA/DE/NES, in this work, ad-
ditional hyperparameter called Nrl ∈ [1,Nparticles] is in-
troduced to improve PSO, which represents the number
of individuals introduced into the swarm from an external
source, in this case, a pre-trained RL/PPO model. Nrl is
a fraction of Nparticles introduced into the population be-
fore applying velocity update to all particles, and it can
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be tuned for desirable performance. Unlike RL-guided
GA, we noticed that starting the swarm with random par-
ticles has better performance for RL-guided PSO than
when starting with RL candidates. The RL-guided PSO
algorithm is described in Algorithm 4. Notice that only
one new hyperparameter (Nrl) is introduced (i.e. hyper-
parameter tuning is not an issue for RL-guided PSO). In
addition, in Algorithm 4, only RL is used to update PSO
during RL-guided PSO search, while PSO does not af-
fect RL search. In summary, for PSO or RL-guided PSO,
the hyperparameters to tune are: {Nparticles, c1, c2, Nrl},
and their reasonable values are listed in Table 2. Lastly,
DEAP-1.3.0 [54], which is an evolutionary computation
framework, is used to build PSO and our RL-guided PSO
algorithms. Significant changes have to be performed to
couple RL with PSO under the DEAP framework.

As PSO in this work is restricted to the continuous
problems, described in Appendices A - B, the mapping of
PSO and RL-guided PSO to the optimization problem de-
pends on the range of the design variables. For the speed
reducer, each particle position in the swarm is a vector of
size 7 with ranges given in Eq.(24), while for the welded
beam, each particle position in the swarm is a vector of
size 4 with ranges given in Eq.(33). The particle veloc-
ity/speed vector has same size as the position vector, and it
is initialized randomly between the prescribed ranges, af-
terward, the constriction coefficient controls velocity up-
dates.

Algorithm 4 RL-guided Particle Swarm Optimisation
1: •Set hyperparameters: Nparticles, Nrl, c1, c2
2: •Load a pre-trained RL model
3: for GEN i = 1 to Ngen do
4: •Run the RL model for few epochs and store candidate solutions
5: •Feed the swarm with Nrl by replacing the worst Nrl particles

with RL candidates
6: •Update velocity of swarm particles (Nparticles + Nrl) with con-

striction coefficient Eq.(9)-(11).
7: •Generate a new swarm by updating all particle positions.
8: •Evaluate the reward/fitness of the swarm

4. Results

In this section, we describe the results of the three en-
gineering problems analyzed in this work. As the nuclear
problem is more complex and of the authors’ interest,
more results and discussions in sections 4.2 and section
5 are presented for this problem. For the speed reducer
and welded beam problems, brief results and discussion
are presented to demonstrate the RL-guided concept in
PSO/DE/NES, as these problems are well-known optimi-
sation benchmarks.

It is worth mentioning that grid search is used in this
work to tune the hyperparameters of all the investigated
algorithms (RL-guided and standalone algorithms). Grid
search is advantageous when the analyst is aware of a

certain range of the hyperparameters based on experi-
ence and literature suggestions (see Table 2). In addition
to the easier implementation and parallelization of grid
search, we noticed that this tuning approach is sufficient
to achieve satisfactory performance by all algorithms.

4.1. Benchmarking Results

The objective of this benchmarking section, detailed
in Appendices A - B, is to demonstrate the RL-guided
methodology in low-dimensional engineering applica-
tions with many constraints. The main goal of introduc-
ing these benchmarks is to demonstrate the concept on
how RL solutions can improve the algorithm search in
continuous optimisation, which are for this case the PSO,
DE, and NES algorithms. Therefore, this section is by
no mean claiming improvement of the state-of-the-art of
these benchmark optimal solutions or their state-of-the-
art algorithms, instead, is better perceived as a proof-of-
concept effort. Also, the tests and conclusions are sub-
jected to the PSO/NES/DE forms described in section 3.

The results in Appendix A are for the speed reducer
problem, while Appendix B results are for the welded
beam design. Both cases clearly demonstrate that RL-
guided algorithms can improve the search capabilities of
standalone algorithms under these simplified problems,
with results seem to be in good agreement with the lit-
erature reported findings. In both problems, standalone
PSO with constriction is able to escape all constraints
with the predefined tolerance, however, PSO hangs in a
local optima early on without converging to a competi-
tive solution. On the other hand, RL-guided PSO with
constriction is able to converge to a competitive solution
for these problems after introducing RL solutions in the
swarm that learn fraction of the rules/constraints. Stan-
dalone DE shows competitive performance in both prob-
lems, therefore, RL-guided DE shows marginal improve-
ment in the performance. For NES, RL guidance success-
fully helped NES to achieve better performance in both
problems.

For the speed reducer problem, RL-guided PSO best
solution is within 0.07% from [64] and better than [65] by
about 0.006%, RL-guided DE is better than [65] by 0.02%
and within 0.05% from [64], while RL-guided NES is
within 0.1% and 0.18% from [65] and [64], respectively.
For the welded beam, RL-guided PSO best solution is
within 0.1% from [66] and better than [67] by about 28%,
RL-guided DE is better than [66] and [67] by 1% and
29%, respectively, while RL-guided NES is better than
[66] and [67] by 1.3% and 29.1%, respectively. In sum-
mary, in terms of the performance for the welded beam
problem, RL-guided NES with objective value 1.72490 is
the best algorithmic performance over all our proposed
algorithms, while for the speed reducer problem, RL-
guided DE achieves the best performance with objective
value 2996.33574.
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4.2. Nuclear Assembly Results

The results in this section are presented in two subsec-
tions. In section 4.2.1, training results of RL/PPO to learn
some of the rules presented in section 2 are described,
which yield a pre-trained RL model. In section 4.2.2, we
present the RL-guided EA results (mainly GA and SA) in
form of two main cases, defined in an appropriate place.

4.2.1. RL Results of Learning Rules 1-4
After applying grid search, the following hyperparam-

eters yielded an optimal performance for PPO when run-
ning N = 20 cores: {T = 2000 timesteps, λ = 1,
ωclip = 0.2, ωv f = 0.5, ωs = 0, B = 4}, while other
hyperparameters are fixed to {γ = 0.99, lr = 2.5 × 10−4,
optepochs = 15}. The results are plotted in Figure 2, where
(a) shows the convergence of the total reward based on the
sum of four selected rules r1−r4, and (b) shows the learn-
ing curve of each individual rule (V1−V4), forming the to-
tal reward. There is one main reason for selecting r1 − r4
for RL, which is problem-specific. The rules r1 − r4 are
initially displaced since they are considered as constraints
on the input space. Therefore, learning them does not re-
quire computer simulation via CASMO4, which leads to
a significant speedup in RL training. However, the selec-
tion is always up to the analyst depending on the problem
of interest and computational power availability.

Clearly in Figure 2, the RL agent is able to learn all
4 rules as can be seen from (a) the convergence of total
reward to almost zero and (b) the decrease of each rule
violation to values close to zero, which both imply very
limited mistakes by the agent. Total reward is basically
−

∑4
i=1 Vi, where negative sign is used to convert violation

to reward, as RL logic is built on maximizing rewards.
Rule 1 seems to be the easiest to learn, followed by rule
3, while both rules 2 and 4 require additional time to mas-
ter them. After about 40 epochs of training, all rules con-
verged, where each epoch involves 115,200 time steps of
training. The shaded error bars represent 1-σ standard
deviation of the quantity in each epoch, which seem to be
very small for our case, implying a stable learning by the
RL agent. In Figure 2(b), the rule violation does not reach
to zero exactly. Each epoch is average of large number
of time steps (115,200), and the policy may make wrong
actions occasionally. The wrong action is reflected in vi-
olating one or more rules, and these violated patterns are
automatically discarded by the fitness function and are not
passed to the stochastic algorithms. We will explore the
impact of learning these rules using RL on the overall op-
timization performance in the upcoming section 4.2.2.

4.2.2. RL-guided EA Results
Two cases are explored in this section to investigate the

performance of RL-guided algorithms, which can be de-
fined as follows:

• Case 1: this case features meeting all rules r1 − r7,
however, with relaxed thresholds for r5 − r7: k∞ ≤
1.12000, PPF ≤ 1.55, CL ≥ 42.0.

After applying grid search, the following hyperpa-
rameters yielded an optimal performance for SA
{χ = 0.01, Tmax = 10000, Cooling = Cauchy}.
These hyperparameters are preserved in RL-guided
SA to isolate their effect, while χrl = 0.075 is used
for the RL-guided SA special parameter. Similarly
for GA, optimal hyperparameters are {Npop = 50,
MUT = 0.25, CX = 0.8, χ = 0.025}. These hyper-
parameters are preserved in RL-guided GA to iso-
late their effect, while Nrl = 6 is used for the RL-
guided GA special parameter, meaning that 6 out of
Npop = 50 individuals are supplied by the RL agent.
The RL hyperparameters are similar to what was de-
scribed before in the previous section 4.2.1.

• Case 2: this case features meeting all rules r1 − r7,
however, with more confined and realistic thresholds
for r5 − r7: k∞ ≤ 1.11000, PPF ≤ 1.4, CL ≥ 43.0.
Although of the small numerical changes on the
thresholds, these changes are indeed significant as
will be reflected later on the performance of all algo-
rithms. Solving Case 2 is the end-goal for the nuclear
assembly optimization as these thresholds represent
desirable conditions, as nuclear industry has relied
on expert input due to limited ability of standalone
RL/EA techniques.

For hyperparameters, grid search revealed that using
χrl = 0.125 in RL-guided SA and Nrl = 7 in RL-
guided GA can yield better performance compared
to χrl = 0.075 and Nrl = 6 in Case 1. All other
hyperparameters remain as defined for Case 1 above.

For Case 1, all algorithms are executed for 100 epochs,
each epoch involves 100 fitness calculations (CASMO4
simulations), leaving us with a total of 10,000 fitness eval-
uations for all algorithms. Lastly, it is worth highlighting
that we gave standalone RL additional boost to allow PPO
to shape useful gradients. PPO policy is very stochastic by
the beginning of the training process, thus most of the ini-
tial samples are of low quality and random nature, making
the comparison of standalone RL meaningless. Alterna-
tively, a warmup period of about 20 epochs is given to al-
low PPO to find some candidate patterns and be prepared,
once that occurs, the effective 10,000 iterations and candi-
date pattern counter start real counting from zero. We will
verify later to see if this boosting causes any bias toward
RL in the performance.

The results of Case 1 are presented in Figure 3 for
RL-guided GA/SA. Notice that we present three different
forms of RL-guided GA/SA to capture the effect of grad-
ual guidance. RLr1−→r2 represents a RL agent learning the
rules r1 − r2, RLr1−→r3 represents a RL agent learning the
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Fig. 2. RL/PPO convergence plots for (a) total reward (−
∑4

i=1 Vi) and (b) rule violation. Each epoch consists of 115,200 time steps of training

rules r1 − r3, while RLr1−→r4 represents a RL agent learn-
ing all rules from r1−r4. It is worth mentioning that Rules
1-4 aim to focus the search in areas where expert knowl-
edge has demonstrated its merit from physics perspective,
therefore, they do not directly affect the calculation of the
remaining Rules 5-7, and vise versa.

The comparison of RL-guided GA in Figure 3(a)
against standalone GA and RL shows how RL-guided
GA leveraged its performance after obtaining additional
guidance from RL. RLr1−→r4-guided GA found 988 solu-
tions, followed by RLr1−→r3-guided GA (585 solutions),
and then RLr1−→r2-guided GA (506 solutions). All RL-
guided GA forms outperform standalone GA and RL,
which found 402 and 36 solutions, respectively, see Fig-
ure 3(a). Similar results for RL-guided SA are presented
in Figure 3(b). Unlike standalone GA (402 solutions),
standalone SA found only 8 candidate patterns, which
are indeed less than standalone RL (36 solutions). Again,
RL-guided SA excels over standalone algorithms through
finding many more candidate patterns as RLr1−→r4-guided
SA found 723 solutions, followed by RLr1−→r3-guided SA
(435 solutions), and then RLr1−→r2-guided SA (381 so-
lutions), see Figure 3(b). In both cases for RL-guided
GA/SA, we can see that the warmup boost given to stan-
dalone RL did not change the conclusion, as standalone
RL (36 solutions) is still far from competing with RL-
guided GA/SA (988 and 723 solutions).

To determine the computational efficiency of RL-
guided EA, we present the computational time savings
achieved by RL-guided GA against standalone GA and
RL in Table 3, while the results for RL-guided SA against
standalone SA and RL are presented in Table 4. The com-
putational saving is defined as “how many fitness evalua-
tions can be saved by a RL-guided EA algorithm to find
similar number of candidate patterns as a standalone al-
gorithm”. Evaluations are converted to time by assuming

each fitness evaluation requires about 1.5 minutes in av-
erage for CASMO4 execution to complete. For example,
if standalone SA found 8 candidate patterns over 10,000
fitness evaluations, RLr1−→r4-guided SA needed only 332
fitness evaluations to find 8 candidate patterns, which cor-
respond to a saving of (10000−332)∗1.5

60 = 242 hours (or 10
days) of serial computing time. Similarly, Table 3 shows
that RLr1−→r4-guided GA can achieve about 120 hrs (5
days) of computational savings compared to standalone
GA, and up to 230 hours (9.5 days) compared to stan-
dalone RL.

Table 3. Case 1 - computational time savings in hours achieved by
RL-guided GA compared to standalone GA and RL

Case Versus GA* Versus RL**

RLr1−→r2-guided GA 44.9 hrs 204.0 hrs
RLr1−→r3-guided GA 76.7 hrs 205.8 hrs
RLr1−→r4-guided GA 119.8 hrs 230.1 hrs

*Savings are calculated based on the time needed by RL-guided
GA
to find 402 candidate patterns (total found by standalone GA)
**Savings are calculated based on the time needed by RL-guided
GA
to find 36 candidate patterns (total found by standalone RL)

Given the difficulty of Case 2, we give all algo-
rithms twice computational costs compared to Case 1
(i.e. 20,000 iterations or 200 epochs of search). After
moving to Case 2, Figure 4 shows that space confine-
ment causes standalone algorithms to significantly suf-
fer to find a single candidate solution, as standalone SA,
GA, and RL could not find any candidate pattern over
200 epochs of search. However, RL-guided GA/SA main-
tain their outstanding performance, where RL-guided GA
found about 1000 candidate patterns, while RL-guided
SA found about 30 candidate patterns, after 200 epochs
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Fig. 3. Case 1 - number of cumulative candidate patterns found by different algorithms for (a) RL-guided GA and (b) RL-guided SA (k∞ ≤
1.12000, PPF ≤ 1.55, CL ≥ 42.0). 1 epoch = 100 fitness evaluations for all algorithms

Table 4. Case 1 - computational time savings in hours achieved by
RL-guided SA compared to standalone SA and RL

Case Versus SA* Versus RL**

RLr1−→r2-guided SA 173.9 hrs 156.4 hrs
RLr1−→r3-guided SA 200.9 hrs 192.8 hrs
RLr1−→r4-guided SA 241.7 hrs 229.8 hrs

*Savings are calculated based on the time needed by RL-guided
SA
to find 8 candidate patterns (total found by standalone SA)
**Savings are calculated based on the time needed by RL-guided
SA
to find 36 candidate patterns (total found by standalone RL)

of search. Notice that a simplified notation is used for
convenience for RL-guided GA/SA in Figure 4, as the
RLr1−→r4 agent is used, since it proved to be the best in
Figure 3. Due to the inability of standalone algorithms to
find a single solution, definition of computational savings
does not exist for Case 2 as no reference point can be ob-
tained to determine the speedup as in Case 1 (Tables 3-4).
Alternatively, based upon Figure 4 and assuming fuel de-
signers or analysts have access to 20 processors (like we
have used in this work), then RL-guided GA can provide
100 candidate solutions in about 7.5 hrs, and RL-guided
SA can provide 10 candidate solutions in about 10 hrs.
These numbers are feasible times in nuclear design and
practice.

5. Discussion

In the previous section along with appendices A - B,
we noticed that using RL in form of policy gradient to in-
form stochastic algorithms can improve their search capa-
bilities by introducing the neural gradient-based solutions

Fig. 4. Case 2 - number of cumulative candidate patterns found by
different algorithms (k∞ ≤ 1.11000, PPF ≤ 1.4, CL ≥ 43.0). RL-
guided GA/SA use the RLr1−→r4 agent, 1 epoch = 100 fitness evalua-
tions for all algorithms

into the stochastic population with one-way coupling (i.e.
no data transfer back to RL). The RL solutions feature
matching fraction of the problem rules/constraints to fo-
cus the search into regions close to the feasible regions
(e.g. expert knowledge, no constraint violation). We ob-
served significant speedup and improvement in PSO con-
tinuous optimisation after implementing RL-guided PSO,
while we observed a small improvement in NSE/DE af-
ter using RL guidance. Nevertheless, the improvements
by RL-guided NES and RL-guided DE are still notice-
able and within the range of significance for the presented
benchmark engineering problems based on existing pub-
lications. In general, more practical value is observed for
the nuclear assembly problem, which is much more ex-
pensive and high-dimensional, where RL gradient solu-
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tions demonstrate more merit after applying RL-guided
GA and RL-guided SA.

During the tuning process of RL-guided
GA/SA/PSO/NES/DE hyperparameters, we observed
that lower values of χrl in RL-guided SA and Nrl in
RL-guided GA/PSO/NES/DE are preferred for better per-
formance. Lower values are preferred to avoid restricting
the inherent search capabilities of evolutionary/stochastic
algorithms, since otherwise the search will be dictated
mainly by RL, which is inadequate as standalone as we
observed before.

By the end of section 1, we mentioned that the suc-
cess of our approach on the nuclear assembly optimisa-
tion problem is motivated by at least one of the following
reasons: (1) effective exploration of heavily-constrained
search spaces, (2) computational efficiency of RL-guided
EA, (3) handling the problem complexity, and (4) the
practical value of optimization.

In Figures 3-4, RL-guided GA/SA clearly show out-
standing ability in exploring the search space despite the
hard constraints, matching all 7 rules and discovering
many more candidate patterns than their standalone coun-
terparts. In particular, for Case 1, RLr1−→r4-guided GA
found more candidate patterns by factors of 2.5 and 28
compared to standalone GA and RL, respectively. Also,
RLr1−→r4-guided SA found more candidate patterns by
factors of 90 and 20 compared to standalone SA and RL,
respectively. For Case 2 when the constraints become
more confined, standalone algorithms did not compete,
while RL-guided GA/SA maintained their excellent ex-
ploration by finding hundreds of candidate patterns.

In Figure 3, it was shown how RL guidance can
help making EA more efficient through ensuring GA/SA
search is conducted in feasible regions. For example, in
Figure 3, we can see that standalone GA, SA, and RL
needed about 20 epochs or more to start discovering pat-
terns, compared to RL-guided algorithms, which can start
after 2 or 3 epochs. In terms of computational complexity
of the algorithms, obviously, RL-guided EA is more ex-
pensive than standalone EA, due to the fact of having neu-
ral networks trained in PPO to learn the rules before guid-
ing EA algorithms. However, this increase in RL-guided
algorithm cost is compensated by the incredible time sav-
ings in the fitness evaluation as presented in Tables 3-4,
which can reach as high as 10 days of serial computing
time. In addition, for Case 2, we noticed that standalone
EA algorithms could not find a candidate solution com-
pared to RL-guided EA, where in this case, the optimi-
sation performance takes priority over algorithm cost and
complexity.

As discussed before in section 2, the nuclear optimiza-
tion problem is described as multi-objective, combinato-
rial, constrained, high-dimensional, and expensive (i.e.
requires computer simulation). All previous challenges,
and in particular the last two, result in having nuclear
utilities to rely on domain and expert knowledge to opti-

mise the nuclear assembly. The problem is also character-
ized by many local optima, where it is likely to find hun-
dreds of patterns having exact same fitness value. These
local optima solutions could be neighbours (resembling
each other), and can be even far from each other, which
add additional difficulties. This issue is problematic for
standalone GA and SA, as without guidance, the GA/SA
searches are likely to hang in those local optima for a
while before moving to a new region. On the other hand,
the heavily-constrained nature of the problem was mostly
problematic to standalone RL. Despite the ability of RL to
learn r1 − r4 as in Figure 2, RL started to struggle as ad-
ditional rules are added, and became even worse once the
constraints become more confined in Case 2. It is known
that RL/PPO directly learns by gradient descent from the
collected experiences, which are likely to be of lower
quality when exploring more confined spaces. Therefore,
due to the hard constraints, the standalone RL agent was
not able to leverage competitive gradients even with the
additional training boosts we offered. Previous complex-
ities were handled efficiently by RL-guided algorithms
through taking advantage of RL gradients for rule-making
of r1 − r4. Then, the population-based and random-walk
nature of GA/SA handled the remaining rules, resulting in
more effective optimization.

On the practical aspects of this work, we present the
layout of two selected candidate assembly patterns as
found by RL-guided GA/SA in Figure 5. The two patterns
respect all rules described before where: (r1) number of
poison rods is low, (r2) number of poison rods belongs
to the range [16,18], (r3) average enrichment E in both
patterns belongs to the desired range [4.25%, 4.36%],
(r4) poison rods do not neighbour each other, (r5) k∞ =

1.10541/1.09490 ≤ 1.11000, (r6) PPF = 1.38/1.4 ≤ 1.4,
and (r7) CL = 43.55/43.32 ≥ 43.0. As mentioned be-
fore, the choices of the bounds and thresholds for the
constraints were not arbitrary, but guided by the literature
and Exelon corporation (the funding agency). Therefore,
we know beforehand that these thresholds can be satis-
fied and candidate patterns exist in the space. This im-
plies that in the cases of high-dimensional combinatorial
search of expensive engineering problems, realistic con-
straints/thresholds should be carefully determined by the
analysts, as blind guess may lead to unphysical search,
where candidate patterns do not exist.

For the continuous problems (speed reducer and
welded beam) in appendices A - B, we should reiterate
that our goal of adding these benchmark problems is to
demonstrate that the RL guidance may improve the search
capabilities of evolutionary/stochastic algorithms in con-
strained continuous optimisation, rather than proving that
RL-guided EA is better than standalone EA or vise versa.
As there are large number of varieties of PSO/DE/NES
algorithms, that are effective in solving these bench-
mark problems very accurately, our conclusions on these
benchmarks are subjective to the PSO/DE/NES forms and
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Fig. 5. Case 2 - samples of the best patterns found by RL-guided GA (left) and RL-guided SA (right). Boxes with black numbers refer to fuel
rods in Fset . Boxes with blue numbers refer to poison rods in Pset , where the top value is the UO2 enrichment and the bottom value is the
poison enrichment

the hyperparameter ranges we have used here. Despite the
improvement observed for the standalone PSO and NES,
the RL-guided concept is justifiable and recommended
for high-dimensional and expensive problems like the nu-
clear assembly case, rather than low-dimensional bench-
mark problems. Obviously, the computational gain from
RL guidance is negligible for the benchmark problems, as
their physics is very simple to model and their dimension-
ality is low.

In this work, RL guidance for GA was in forming the
initial population as well as blending Nrl individuals in the
population every generation before crossover/mutation.
The latter RL-guided change was also applicable to DE
and NES. For SA, the RL guidance was through provid-
ing a single solution periodically with rate controlled by
χrl. For PSO, RL guidance was in replacing the worst
Nrl particles in the swarm by RL individuals every gen-
eration. However, these are not the only approaches that
we can try. For example, providing RL solutions after GA
crossover/mutation (after offspring), or providing RL so-
lutions before and after the offspring could be reasonable
alternatives. These are also applicable to PSO before and
after velocity updates. Instead of relying on a single RL
solution for SA, multiple chains can be initialized in par-
allel to test multiple RL solutions before selecting the best
for SA. In addition, for RL-guided SA, the RL solution
was completely replacing the SA solution once the RL
condition is satisfied. Alternatively, the analyst could mix
the RL and SA solutions in that stage, which also mim-

ics the crossover effect in RL-guided GA. For PSO, the
RL-guidance concept can be tested and improved on more
high-dimensional, expensive, and constrained continuous
optimisation problems, where different PSO forms (e.g.
discrete, velocity clamping, inertia weighting) can be ex-
plored [68, 69]. Furthermore, making the values of χrl
and Nrl adaptive rather than fixed during search is an-
other interesting idea. When EA optimization is losing
track, more RL guidance is used to bring the search back
to relevant areas, while when EA optimization is doing
well, RL guidance can be minimized. Similar extensions
can be performed for DE and NES. Indeed, since we
already have observed outstanding improvement in RL-
guided EA with our current contributions, we left the pre-
vious advanced ideas for the reader to explore, opening
multiple doors for future work.

In this work, the selection of evolutionary/stochastic al-
gorithm candidates was dictated mainly by the popular-
ity of GA, SA, PSO, NES, and DE in the optimization
area in general, and for the analyzed applications in spe-
cific. Nevertheless, the methodology can be extended to
investigate the effect of RL guidance on other evolution-
ary or stochastic algorithms such as tabu search or other
evolution strategies, in which RL can provide guidance to
these algorithms in continuous optimization with confined
search spaces. Similarly, the RL component can be re-
placed with other RL techniques such as deep Q learning
or asynchronous actor-critic strategy (A3C), which may
perform better than PPO in other applications. Therefore,
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the flexibility of the approach and the rooms for additional
investigations are widely open.

Last but not least, the optimised patterns in Figure 5
by our proposed RL-guided algorithms can lead to an im-
provement in nuclear fuel efficiency through extended cy-
cle operation, cost reduction, and nuclear safety assur-
ance. This is in addition to provide an intelligent deci-
sion support system by saving a lot of human and compu-
tational efforts to perform manual optimization through
expert knowledge. The implication of this study to non-
nuclear applications features using RL as a tool to train
an agent that learns how to match certain rules and con-
straints from expert knowledge or design constraints for
a high-dimensional and computationally expensive prob-
lem. The trained agent is then used to guide EA for final
optimization by ensuring the search is taking place in fea-
sible regions.

6. Conclusions

In constrained optimization, analysts are interested in
narrow regions of the search space that match all im-
posed rules/constraints. As constrained optimization is
very common in engineering, we demonstrated a rule-
based reinforcement learning (RL) methodology to effec-
tively search in heavily-constrained spaces. A real-world
engineering problem, featuring nuclear fuel assembly op-
timization in nuclear power plants, is used to demon-
strate the concept on discrete optimisation. The prob-
lem is described as multi-objective, combinatorial, con-
strained, high-dimensional, and expensive (i.e. requires
computer simulation), with a total of seven rules to meet.
Two engineering benchmark problems, the speed reducer
and welded beam, are used to demonstrate the concept on
continuous optimisation. RL agents trained by proximal
policy optimization are used to learn some of the problem
rules/constraints. Next, we developed RL-guided GA,
RL-guided SA algorithms for combinatorial optimisation,
and RL-guided PSO, RL-guided DE, and RL-guided NES
for continuous optimisation. The pre-trained RL agents
are used to inject experiences to guide standalone algo-
rithms during optimization. RL experiences were able to
maintain GA/SA/PSO/DE/NES search in the feasible re-
gions, allowing them to effectively search in those regions
instead of relying on random-walk, which is inefficient.

Despite small guidance from RL and under same hy-
perparameter and fitness settings, RL-guided GA/SA al-
gorithms demonstrate excellent performance compared to
their standalone counterparts (SA, GA, RL), outperform-
ing them by a wide margin for the nuclear assembly prob-
lem. RL-guided GA/SA found many more candidate pat-
terns than standalone algorithms with an improvement
factor between 2.5 and up to 90, implying much better ex-
ploration capabilities. Moreover, RL-guided GA/SA fea-
tured higher computational efficiency than standalone al-
gorithms, as RL-guided GA/SA achieved computational

time savings up to 230 hours and 242 hours of serial com-
puting time, respectively. Under more confined spaces
(k∞ ≤ 1.11000, PPF ≤ 1.4,CL ≥ 43.0), which are
more realistic, but difficult to solve, standalone algorithms
struggle to find even a single candidate solution, while
RL-guided GA and RL-guided SA excel, finding respec-
tively about 1000 and 30 candidate patterns.

The tests on continuous optimisation problems through
RL-guided PSO/NES/DE demonstrate excellent perfor-
mance as RL-guided DE and RL-guided NES found com-
petitive solutions of the engineering benchmark prob-
lems. Compared to the literature, RL-guided DE achieved
the best result for the speed reducer problem with 11
constraints, while RL-guided NES achieved the best re-
sult for the welded beam problem with 7 constraints.
Nevertheless, these engineering applications are of low-
dimensional and simple physics nature, therefore, the
computational gain from RL guidance is not significant.
Also, the conclusions are subjected to the PSO/NES/DE
forms and the hyperparameter ranges we used in this
work.

In summary, the results of this work made another step
forward toward thinking of additional ways on hybridiz-
ing deep RL with evolutionary and/or stochastic algo-
rithms. As this work focused on RL sending information
to EA, but no information is sent back to RL, our future
work will focus on developing an efficient and novel algo-
rithm that involves two-way coupling between RL and EA
with parallel capabilities, to allow scaling to expensive
large-scale optimization problems. The coupled approach
will take advantage of the gradient-based and gradient-
free properties of RL and EA, respectively, to achieve
better optimization. Additionally, the RL policy gradi-
ent approach used in this work can be compared in future
to other evolutionary and Q-learning algorithms in terms
of their performance on guiding and improving the search
performance in constrained/unconstrained stochastic op-
timisation.
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Appendix A Speed reducer design benchmark

The speed reducer problem was originally introduced
by Golinski [70], which aims on the minimization of the
weight of a speed reducer, formulated as

min
~x

W(~x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+ 0.7854(x4x2
6 + x5x2

7)
(12)

where the seven design variables are: the face width
(x1), module of teeth (x2), number of pinion teeth (x3),
length of first shaft between the bearings (x4), length of
the second shaft between the bearings (x5), diameter of
the first shaft (x6), and the diameter of the second shaft
(x7). The problem has eleven rules/constraints related to
bending stress of the gear teeth, surface stress, transverse
deflections of the shafts, and stresses in the shafts, formu-
lated as follows:

r1(~x) =
27

x1x2
2x3
− 1 ≤ 0 (13)

r2(~x) =
397.5
x1x2

2x2
3

− 1 ≤ 0 (14)

r3(~x) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0 (15)

r4(~x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0 (16)

r5(~x) =
1

110x3
6

√(
745x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0 (17)

r6(~x) =
1

85x3
7

√(
745x5

x2x3

)2

+ 157.5 × 106 − 1 ≤ 0 (18)

r7(~x) =
x2x3

40
− 1 ≤ 0 (19)

r8(~x) =
x1

12x2
− 1 ≤ 0 (20)

r9(~x) =
5x2

x1
− 1 ≤ 0 (21)

r10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0 (22)

r11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0 (23)

while the ranges of the design variables are:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5.

(24)

As this work focuses on demonstrating the RL-guided
concept on a continuous optimisation problem, the design
variable x3 is of discrete nature. Therefore, we rounded
x3 to the nearest integer during optimisation. Also, the
penalty factor approach is used to handle the constraints
above, where the fitness function is penalized once any
constraint is violated.

For this problem, the hyperparameters of standalone
and RL-guided algorithms are tuned with grid search,
where +100 hyperparameter configurations are tested.
The optimal hyperparameters of PSO are as follows:
Nparticles = 62, c1 = 2.05, c2 = 2.05, while for RL-guided
PSO, the optimal hyperparameters are Nparticles = 90,
c1 = 2.1, c2 = 2.1, Nrl = 9. The hyperparameters of
DE/RL-guided DE are as follows: F = 0.4, C = 0.6,
Nrl = 3, while for NES/RL-guided NES: ησ = 0.15,
ηB = 0.07, Npop = 50, Nrl = 6. The tolerance to es-
cape all constraints is set to 10−5, and we round all results
in Table 5 and Figure 6(a) to the nearest fifth significant
digit. Figure 6(a) shows the convergence of the speed re-
ducer weight function for all algorithms, while a desired
optimal limit is plotted based on what the literature have
reported for this problem. RL learns the rules r1 − r8
in Eqs.(13)-(20) with PPO, then the samples that satisfy
these rules are supplied to PSO/DE/NES at every gen-
eration with rate Nrl. Therefore, we refer to RL-guided
PSO/DE/NES as RLr1−→r8-guided PSO/DE/NES.

Notice that standalone RL/PPO is excluded from the
results and the comparison, as it is not competitive to the
other evolutionary algorithms due to the sensitive toler-
ance we apply and the allowed number of function evalu-
ations. Standalone RL is able to find solutions that match
some of the rules to inform PSO/NES/DE, but could not
match all rules with the predetermined tolerance to opti-
mise the weight function in Eq.(12). PPO tries to learn
a policy that can take proper actions, which alone re-
quires a lot of function evaluations due to the exces-
sive constraints of the speed reducer problem. Table 5
presents the optimal design variables and the constraint
values obtained using all standalone and RLr1−→r8-guided
algorithms along with two reference cases for compari-
son with the literature. The best weight value of the speed
reducer obtained using RLr1−→r8-guided PSO/NES/DE is
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Table 5. Optimum results for minimization of the speed reducer weight

Item PSO RL-PSOa DE RL-DEa NES RL-NESa ABCb [65] SACc [64]

W(~x) 3198.96072 2996.85284 2996.33796 2996.33574 3012.24244 3000.15554 2997.05841 2994.74420
x1 3.50000 3.50000 3.49997 3.49997 3.51290 3.50511 3.50000 3.50001
x2 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000
x3 17 17 17 17 17 17 17 17
x4 8.06702 7.30000 7.30000 7.30000 8.03800 7.30000 7.30000 7.32760
x5 8.08681 7.80000 7.80000 7.80002 7.83952 7.82925 7.80000 7.71532
x6 3.90000 3.35205 3.35022 3.35022 3.35261 3.35044 3.35022 3.35027
x7 5.32240 5.28674 5.28669 5.28668 5.29114 5.28841 5.28780 5.28665
r1 -0.07392 -0.07392 -0.07391 -0.07391 -0.07732 -0.07527 -0.07392 -0.07392
r2 -0.19800 -0.19800 -0.19799 -0.19799 -0.20094 -0.19917 -0.19800 -0.19800
r3 -0.63196 -0.50027 -0.49918 -0.49917 -0.33331 -0.49931 -0.49917 -0.49350
r4 -0.89312 -0.90148 -0.90147 -0.90147 -0.90030 -0.90049 -0.90156 -0.90464
r5 -0.36524 -0.00165 -0.00001 0.00000 -0.00085 -0.00020 0.00000 0.00000
r6 -0.01994 -0.00003 0.00000 0.00000 -0.00252 -0.00098 -0.00063 0.00000
r7 -0.70250 -0.70250 -0.70250 -0.70250 -0.70250 -0.70250 -0.70250 -0.70250
r8 0.00000 0.00000 0.00001 0.00001 -0.00367 -0.00146 0.00000 0.00000
r9 -0.58333 -0.58333 -0.58334 -0.58334 -0.58180 -0.58273 -0.58333 -0.58333
r10 -0.03930 -0.05095 -0.05132 -0.05133 -0.13798 -0.05128 -0.05133 -0.05489
r11 -0.04108 -0.01084 -0.01085 -0.01086 -0.01521 -0.01430 -0.01070 0.00000

a RLr1−→r8-guided PSO/DE/NES
b Artificial bee colony
c Society And Civilization

close to the reference cases, all constraints are met, and
with function evaluations range varies between 5000-
25000 depending on the algorithm to achieve good ac-
curacy. For example, RLr1−→r8-guided PSO best solution
is within 0.07% from [64] and better than [65] by about
0.006%. Standalone PSO is able to escape the constraint
region, however, it is not able to minimize the weight
function to satisfactory value as RLr1−→r8-guided PSO or
the reported literature values [64, 65]. Obviously, stan-
dalone PSO hangs in a local optima in the sixth epoch of
search compared to RL-guided PSO, which obtains help
from RL solutions to diversify the search and converge to
a satisfactory weight value. The results again show signif-
icant improvement in the same PSO algorithm after some
guidance from RL.

For NES, the performance of RLr1−→r8-guided NES is
also better than NES as can be told from Table 5 and Fig-
ure 6(a). Under similar computational settings, the opti-
mal (minimal) objective value (i.e. speed reducer weight)
achieved by RLr1−→r8-guided NES is 3000.15 compared
to 3012.24 by NES, accompanied by better convergence
behaviour. The performance of the standalone DE algo-
rithm is already competitive for the speed reducer prob-
lem, as can be inferred from the identical performance
with RLr1−→r8-guided DE, see Table 5 and Figure 6(a).
Therefore, a marginal improvement is achieved by RL
guidance. In summary, in terms of the performance for
the speed reducer problem, RLr1−→r8-guided DE with ob-
jective value 2996.33574 is the best algorithmic perfor-
mance over all our proposed algorithms in terms of agree-
ment with the literature.

Appendix B Welded beam design benchmark

The welded beam was originally introduced by Deb
[67], with an objective to find an optimal set of the di-
mensions h (x1), l (x2), t (x3), and b (x4) such that the
fabrication cost of the beam is minimized. See Figure 1
of [67] for graphical details of the beam dimensions (h, l,
t, b). The cost of the welded beam is formulated as

min
~x

C(~x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2), (25)

subject to 7 rules/constraints, the first on the shear
stress (τ)

r1(~x) = τ(~x) − τmax ≤ 0, (26)

the second on the bending stress (σ)

r2(~x) = σ(~x) − σmax ≤ 0, (27)

three side constraints

r3(~x) = x1 − x4 ≤ 0, (28)

r4(~x) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0, (29)

r5(~x) = 0.125 − x1 ≤ 0, (30)

the sixth on the end deflection of the beam (δ)
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Fig. 6. Convergence of the fitness function with number of epochs for different algorithms for: (a) speed reducer weight and (b) welded beam
cost (1 epoch = population size of each algorithm)

r6(~x) = δ(~x) − δmax ≤ 0, (31)

and the last on the buckling load on the bar (Pc)

r7(~x) = P − Pc(~x) ≤ 0, (32)

while the ranges of the design variables are:

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2.

(33)

The derived variables and their related constants are ex-
pressed as follows [66]:

τ(~x) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′)2, (34)

τ′ =
P

√
2x1x2

, τ′′ =
MR
J
,M = P(L + x2/2), (35)

R =

√
x2

2

4
+

(x1 + x3)2

4
, (36)

J = 2
[
√

2x1x2

(
x2

2

12
+

(x1 + x3)2

4

)]
, (37)

σ(~x) =
6PL
x4x2

3

, (38)

δ(~x) =
4PL3

Ex3
3x4

, (39)

Pc(~x) =
4.013E

√
x2

3 x6
4

36

L2

(
1 −

x3

2L

√
E

4G

)
, (40)

P = 6000 lb, L = 14 in, E = 30 × 106 psi,

G = 12 × 106 psi,
τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in

(41)

For this problem, the penalty factor approach is used
to handle the constraints above, where the fitness func-
tion is penalized once any constraint is violated. The hy-
perparameters of standalone and RL-guided algorithms
are tuned with grid search, where +100 hyperparame-
ter configurations are tested. The optimal hyperparame-
ters of PSO are as follows: Nparticles = 69, c1 = 2.05,
c2 = 2.05, while for RL-guided PSO, the optimal hy-
perparameters are Nparticles = 95, c1 = 2.05, c2 = 2.05,
Nrl = 9. The hyperparameters of DE/RL-guided DE are
as follows: F = 0.4, C = 0.7, Nrl = 4, while for NES/RL-
guided NES: ησ = 0.1, ηB = 0.04, Npop = 40, Nrl = 7.

The tolerance to escape all constraints is set to 10−5,
and we round all results in Table 6 and Figure 6(b) to the
nearest fifth significant digit. Figure 6(b) shows the con-
vergence of the welded beam cost function for all stan-
dalone and RL-guided algorithms, while a desired optimal
limit is plotted based on what the literature have reported
for this problem. RL learns the rules r1 − r5 in Eqs.(26)-
(30) with PPO, then the samples that satisfy these rules
are supplied to PSO/DE/NES at every generation with rate
Nrl. Therefore, we refer to RL-guided PSO/DE/NES as
RLr1−→r5-guided PSO/DE/NES.

Notice that standalone RL/PPO is excluded from the
results and the comparison for similar reasons as we de-
scribed in Appendix A for the speed reducer problem. Ta-
ble 6 presents the optimal design variables and the con-
straint values obtained using both standalone and RL-
guided algorithms along with two reference cases for
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Table 6. Optimum results for minimization of the welded beam cost

Item PSO RL-PSOa DE RL-DEa NES RL-NESa SAPb [66] GAc [67]

C(~x) 3.21561 1.75005 1.72998 1.72755 1.76032 1.72490 1.74831 2.43312
x1 0.27517 0.19953 0.20565 0.20452 0.20124 0.20573 0.20880 0.24890
x2 4.31304 3.64491 3.49023 3.49873 3.59411 3.47053 3.42050 6.17300
x3 9.25129 9.02337 9.03131 9.04054 9.07596 9.03657 8.99750 8.17390
x4 0.35025 0.20754 0.20619 0.20574 0.20821 0.20574 0.21000 0.25330
r1 -5236.15894 -90.07913 -49.67424 -10.69933 -120.05018 -0.17094 -0.33781 -5758.60378
r2 -13187.02019 -174.30163 -31.43584 -27.93511 -613.38600 -0.55127 -353.90260 -255.57690
r3 -0.07508 -0.00801 -0.00054 -0.00123 -0.00697 0.00000 -0.00120 -0.00440
r4 -2.13725 -3.40609 -3.42866 -3.42973 -3.39624 -3.43294 -3.41187 -2.98287
r5 -0.15017 -0.07453 -0.08065 -0.07952 -0.07624 -0.08073 -0.08380 -0.12390
r6 -0.24208 -0.23560 -0.23555 -0.23556 -0.23590 -0.23554 -0.23565 -0.23416
r7 -24064.46402 -153.88119 -37.86002 -2.86378 -237.14030 -0.50646 -363.23238 -4465.27093

a RLr1−→r5-guided PSO/DE/NES
b Self-adaptive penalty
c Genetic algorithms

comparison with the literature [67, 66]. The best cost
value of the welded beam obtained using RLr1−→r5-guided
PSO/DE/NES is close to or better than the reference cases,
where all constraints are met. RLr1−→r5-guided PSO best
solution is within 0.09% from [66] and better than [67]
by about 28%. Similar to the speed reducer problem,
standalone PSO is able to escape the constraint region to
find feasible solutions, however again, the converged cost
value in Figure 6(b) is not as low as what is achieved by
RLr1−→r5-guided PSO and the two reported values by the
literature [67, 66]. Obviously, standalone PSO hangs in
a local optima in the seventh epoch of search compared
to RL-guided PSO, which obtains help from RL solutions
to diversify the search and converge to a satisfactory cost
value. The results again show significant improvement in
the same PSO algorithm after some guidance from RL.

For NES, the performance of RLr1−→r5-guided NES is
again better than NES as can be told from Table 6 and
Figure 6(b). Under similar computational settings, the
minimal beam cost achieved by RLr1−→r5-guided NES is
1.72490 compared to 1.76032 by NES, which is also bet-
ter than the two reported literature values. Similar to the
speed reducer problem, the performance of the standalone
DE algorithm is already competitive for the welded beam
in terms of the best solution found, as marginal im-
provement is achieved by RLr1−→r5-guided DE. However,
RLr1−→r5-guided DE saved about 200 function evaluations
compared to DE in finding its best solution in Table 6.
In summary, in terms of the performance for the welded
beam problem, RLr1−→r5-guided NES with objective value
1.72490 is the best algorithmic performance over all our
proposed algorithms in terms of the agreement with the
literature.
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