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Abstract

Although metabolism plays an active role in antibiotic lethality, antibiotic resistance is generally 

associated with drug target modification, enzymatic inactivation, and/or transport rather than 

metabolic processes. Evolution experiments of Escherichia coli rely on growth-dependent 

selection, which may provide a limited view of the antibiotic resistance landscape. We sequenced 

and analyzed E. coli adapted to representative antibiotics at increasingly heightened metabolic 

states. This revealed various underappreciated noncanonical genes, such as those related to central 

carbon and energy metabolism, which are implicated in antibiotic resistance. These metabolic 

alterations lead to lower basal respiration, which prevents antibiotic-mediated induction of 

tricarboxylic acid cycle activity, thus avoiding metabolic toxicity and minimizing drug lethality. 

Several of the identified metabolism-specific mutations are overrepresented in the genomes of 

>3500 clinical E. coli pathogens, indicating clinical relevance.

INTRODUCTION: Despite the complexity of antibiotic lethality, canonical mechanisms of 

resistance are generally grouped into three broad categories: target modification, drug inactivation, 

and drug transport. Although metabolism has been shown to actively contribute to antibiotic 

lethality, antibiotic resistance mutations are infrequently identified in metabolic genes, and 

metabolic dysregulation is not a commonly cited mechanism of antibiotic resistance. One 

explanation is that previous approaches provide a limited view of the antibiotic resistance 

landscape. Indeed, laboratory evolutions paired with sequencing candidate genes and/or a small 

number of clonal isolates per condition highlight mutations that are either expected, or repeatedly 

occur, at high frequency. Moreover, antibiotic-mediated effects on bacterial metabolism involve 

numerous, complex, and coordinated biomolecular networks, which makes it challenging to 

predict candidates of likely resistance a priori. Additionally, the diversity of involved pathways 

increases the number of possible evolutionary outcomes, which reduces the likelihood for 

convergent mutations, and thus would be readily missed using previous methods. As a result, 

genetic mechanisms of antibiotic resistance related to metabolism are significantly understudied.

RATIONALE: The importance of population-level analyses for understanding the evolutionary 

landscape in response to drug treatment is becoming increasingly recognized. Low-frequency 

mutants make up most genetic diversity within a population, and in many cases, beneficial 

mutations may drift to extinction before becoming established. This is particularly relevant for 

genes involved in cellular metabolism, in which the diverse array of metabolic pathways can lead 

to a myriad of potential evolutionary outcomes compared with canonical drug targets. As such, we 

sought to use a more comprehensive view afforded by both population and clonal analyses to 

elucidate metabolic aspects of antibiotic resistance. Moreover, considering these constraints, 

typical laboratory evolution protocols and their analysis methods are not optimized to detect 

mutations in metabolism-related genes. Constant antibiotic exposure imposes growth-dependent 

selection, and a lack of metabolic-specific selection pressure further minimizes the likelihood of 

enriching for metabolic-specific pathways and processes. Thus, we reasoned that maximizing 

metabolic rather than growth adaptation would allow us to shift these dynamics and further tease 

out antibiotic-specific metabolic variants.

RESULTS: We sequenced and analyzed Escherichia coli adapted to three representative 

antibiotics at increasingly heightened metabolic states. Doing so revealed a variety of 

underappreciated noncanonical genes, such as those related to central carbon and energy 

Lopatkin et al. Page 2

Science. Author manuscript; available in PMC 2021 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism, which are implicated in antibiotic resistance. These mutations in metabolic genes 

often arose in multiple independent populations and/or in response to more than one drug. Several 

of the identified metabolism-specific mutations are overrepresented in the genomes of >3500 

clinical E. coli pathogens at levels similar to, and in some cases greater than, known resistance 

mutations indicating their clinical relevance. To evaluate whether these metabolic mutations confer 

resistance, we chose a representative subset of both genes related to metabolism and classic 

resistance on the basis of their prevalence and clinical significance. We expressed the wild-type 

and mutant variants of each gene from a medium-copy plasmid introduced into the corresponding 

chromosomal knockout strain. In all cases, metabolic mutations increased the minimum inhibitory 

concentration to at least one, and in many cases more than one, of the antibiotics. Finally, 

phenotypic and genotypic analyses of one representative mutation in the 2-oxoglutarate 

dehydrogenase (sucA) enzyme provides a preliminary picture of how altered metabolism gives rise 

to antibiotic resistance: Lower basal respiration prevents antibiotic-mediated induction of 

tricarboxylic acid cycle activity, thereby avoiding metabolic toxicity and minimizing lethality.

CONCLUSION: Our findings that metabolic mutations arise in response to antibiotic treatment, 

and that these mutations confer resistance and are highly prevalent in clinical pathogens, suggests 

that the three general antibiotic resistance categories may not be as representative, nor the 

mechanisms as comprehensive, as previously thought. Indeed, metabolic adaptation may represent 

a separate class of resistance mechanisms beyond conferring tolerance, whereby cells also alter 

their metabolic response to mitigate downstream toxic aspects of antibiotic lethality.

Graphical Abstract

Altered metabolic state confers antibiotic resistance. Cells were exposed to high antibiotic 

concentrations (red) for short durations under incrementally increasing metabolic states (blue), 

separated by rounds of drug-free growth (small flasks). Left to right indicates evolutionary time. 

Initially, antibiotic-mediated metabolic stimulation partially contributes to cell lethality (sensitive 

cell). Evolved cells acquire resistance caused by decreased basal metabolic activity that avoids 

antibiotic-mediated stimulation and subsequent lethality (resistant cell).

Canonical mechanisms of antibiotic resistance are associated with drug target modification, 

transport, or enzymatic inactivation (1, 2). Antibiotic resistance mutations are infrequently 

identified in metabolic genes, and metabolic dysregulation is not a commonly cited 
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mechanism of antibiotic resistance, although metabolism has been shown to actively 

contribute to antibiotic lethality (3–5). Previous approaches may provide a limited view of 

the antibiotic resistance landscape (6–9) because they investigated candidate genes and/or a 

small number of clonal isolates (one to three) per condition (10–12) and highlighted 

mutations that are either expected or repeatedly occur at high frequency under these 

conditions (13, 14). Moreover, antibiotic-mediated effects on bacterial metabolism involve 

numerous, complex, and coordinated biomolecular networks, which makes it challenging to 

predict candidates of likely resistance a priori. Additionally, metabolic genes involved in 

antibiotic lethality are located downstream relative to primary drug targets, which may lead 

to a decreased likelihood of convergent mutations and therefore a higher probability of being 

overlooked with conventional methods (15, 16). Finally, because natural selection 

environments are more complex than their simplified experimental counterparts, in vitro 

mutation frequencies do not necessarily capture those present in the clinical setting.

The importance of population-level analyses for understanding the evolutionary landscape in 

response to drug treatment is becoming increasingly recognized (6, 17, 18). Low-frequency 

mutants make up most genetic diversity within a population, and in many cases, beneficial 

mutations may drift to extinction before becoming established (19). This is particularly 

relevant for genes involved in cellular metabolism, in which the diverse array of metabolic 

pathways can lead to a myriad of potential evolutionary outcomes compared with canonical 

drug targets.

The ubiquitous role of metabolism within the cellular context means that even mutations that 

confer resistance may result in comparatively small increases in overall fitness and therefore 

have a minimal likelihood of being identified. Indeed, application of a mathematical model 

revealed that the frequency of a metabolic mutant is expected to be far lower than that of a 

canonical one after multiple rounds of growth during antibiotic selection (fig. S1A) (20, 21). 

Considering these constraints, typical laboratory evolution protocols and their analysis 

methods are not optimized to detect mutations in metabolism-related genes. As such, we 

reasoned that a more comprehensive view afforded by both population and clonal analyses 

would elucidate metabolic aspects of antibiotic resistance (22).

Evolving antibiotic resistance using the classical approach

To test this idea, we first evolved the Escherichia coli strain BW25113 (table S1) to the three 

representative bactericidal drugs, streptomycin (strep), ciprofloxacin (Cipro), and 

carbenicillin (carb), along with an untreated control, using the classical approach (6, 23). 

Briefly, three replicate populations for each condition were inoculated in a 96-well plate and 

grown in MOPS EZ Rich Defined Medium (Teknova, #M2105; hereafter referred to as “rich 

medium”) at 37°C (Fig. 1A). Every 24 hours (~10 generations), the optical density at 600 

nm (OD600) was measured and populations were diluted 500× into fresh medium. After one 

cycle in the absence of antibiotic (24), the concentration was increased daily in fixed 

increments of 85%, starting at 0.085× the minimum inhibitory concentration required to 

inhibit 50% of cells (MIC50) on day 0, reaching 1× MIC50 on day 4, and ending at 40× 

MIC50 on day 10, consistent with previous reports (11) (table S2 and fig. S1B). We chose a 

strong concentration gradient to increase the likelihood of selecting for typical variants (25); 
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this gradient was expected to surpass the adaptation limit at higher concentrations. Indeed, 

extinction began on day 5 (1.85× MIC50), as indicated by the reduction in OD600 (Fig. 1B), 

at which point glycerol stocks were frozen daily. At the end of 10 days, all frozen samples 

were revived in antibiotic-free medium, and the end points were determined from the last 

day that each population was able to recover. This terminal day differed for each population 

depending on both the lineage and the drug (Fig. 1C); none of the drug-treated populations 

survived until day 10, whereas all control populations did.

To characterize trends across drug treatments, we selected the population that survived to the 

highest antibiotic concentrations and also had the highest cell density if more than one 

population reached the same antibiotic concentration from each drug group. From these 

populations, we isolated 41 total clones [n = 12 per drug, n = 4 per no-drug control, and n = 

1 wild-type (WT)] (Fig. 1C). Individual clones from all drug conditions displayed variability 

in growth rates and, on average, grew slower compared with both the untreated adapted 

control and WT strains (Fig. 1D, left, and fig. S1C). This is consistent with a stepwise 

evolution of resistance mutations that can impose a fitness cost (26). Moreover, on average, 

the 12 clones from each of the three terminal populations exhibited an increase in MIC (Fig. 

1E); however, as with growth rates, individual MICs also appeared variable, likely 

dependent on the specific genotype.

To test how representative these 12 clones were of their evolved lineages, we also 

characterized the population samples; these experiments were initiated using a 500× dilution 

from partially thawed glycerol stocks to ensure consistency between replicates. Population-

level measurements generally supported the average phenotypes of all 12 clones. Each 

population grew more slowly (Fig. 1D, right) and their MIC increased between four- and 10-

fold compared with the WT for all drug conditions (Fig. 1E). Population MICs were overall 

higher than MICs of individual clones (27).

Identifying genetic changes associated with antibiotic resistance

We next sought to determine the genetic changes that contributed to the observed 

phenotypes. To do so, we sequenced all replicate populations from day 5, which 

corresponded to populations evolved to concentrations of MIC50, as well as the terminal 

population from each lineage if that corresponded to a different concentration, making up 20 

total populations. We also sequenced the 41 clones as described above (Fig. 1F and table 

S3). Pilon (28) was used to identify genetic changes in each population down to frequencies 

of 2% with a minimum threshold of five reads; this strict threshold requires greater coverage 

to detect lower-frequency changes at a similar confidence level (table S4).

We tabulated the total number of genomic changes per sample [large indels and single 

nucleotide polymorphisms (SNPs) at various frequency levels]. SNPs were grouped into 

categories by Pilon as either passing or midlevel (i.e., >~90% or ~25 to 90%, respectively) 

and low frequency (~2 to 25%). Overall, total genomic changes per sample increased over 

time, from 28 on day 5 to 64.5 at the final time point (Fig. 1G), consistent with our 

expectations.
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Further evaluation of these samples by treatment group revealed that both individual clones 

and populations had a similar number of average mutations per sample (Fig. 1H, left). 

However, populations had a greater number of unique mutations per sample compared with 

the clonal isolates (Fig. 1H, right) regardless of whether SNPs in the control group or SNPs 

at lower frequencies were included in the clonal analysis (fig. S2, A and B). This finding 

highlights the overrepresentation of high-frequency variants, and the resulting loss of 

information, from clonal analysis alone.

Examination of passing SNPs from the clonal isolates revealed that high-frequency 

mutations (e.g., those present in >90% of clones) were consistent with known resistance 

mechanisms (Fig. 1I). For example, 92% of Cipro-treated clones had mutations in the drug’s 

target (encoded by gyrA or gyrB) and 100% had acquired mutations in rob, which encodes 

for a known global transcriptional regulator of multidrug resistance and stress response. 

However, a subset of clones acquired mutations that were noncanonical and, in several cases, 

related to central metabolic processes. For example, two clones (16.7%) had mutations in 

icd, which encodes for a core metabolic enzyme involved in oxidizing isocitrate during the 

tricarboxylic acid (TCA) cycle. Other genes that appeared in only one of 12 clones were also 

involved in core metabolic processes (e.g., purH and fre). We observed similar results for 

strep; most high-frequency mutations were related to drug targets [e.g., tufA, which encodes 

the elongation factor Tu (29, 30)]. However, others were directly involved in cellular 

metabolism; for example, 100% of the clones had mutations in fre encoding the electron 

carrier flavin reductase, which is critical for sensitivity to reactive species in the cell (31). 

Treatment with carb appeared to result in less diverse clonal variants because the 12 isolates 

carried mutations in only three genes; of those with known function, both were canonical 

(the multidrug efflux transporter encoded by acrD and the sensory histidine kinase encoded 

by envZ).

Several high-frequency mutations from clonal isolates were present in replicate populations 

as well, consistent with highly constrained evolutionary trajectories associated with classic 

resistance mechanisms (fig. S3) (14). By contrast, metabolic mutations from the clonal 

isolates were not necessarily present in all populations, even in cases where they became 

fixed in a single one. Moreover, although populations revealed additional metabolic genes of 

interest, these mutations still occurred at low frequency. Using KEGG Orthology combined 

with BRITE hierarchies, we classified the function of all gene hits from clonal and 

population samples into the broad categories of (i) “Genetic processing,” (ii) 

“Environmental processing,” (iii) “metabolism,” and/or (iv) “(signaling and) Cellular 

processes” (table S5). Note that not all genes are annotated with these databases. However, 

antibiotic- and metabolism-specific processes are highly represented, and ~80% (48) of all 

genes could be classified in this way. Genetic processing accounted for the largest 

percentage of all mutations (~36%) in 11 genes. This was expected because this category 

includes classic mechanisms of resistance that occurred at high frequency (Fig. 1J). By 

contrast, “Metabolism” only accounted for ~29% of mutations despite occurring in 24 total 

genes because of the lower frequency of each.
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Evolving antibiotic resistance using a metabolic-dependent approach

The presence of metabolic mutations suggests their potential, and heretofore 

underappreciated, involvement in the adaptive response to antibiotic treatment. However, 

these mutations were challenging to interpret because they occurred at relatively low 

frequencies and with greater diversity than those associated with canonical resistance 

mechanisms. Indeed, classical evolution experiments are not necessarily designed to isolate 

metabolic variants: Constant antibiotic exposure imposes growth-dependent selection, 

whereas a lack of metabolic-specific selection pressure further minimizes the likelihood of 

enriching for metabolic-specific pathways and/or processes. We reasoned that maximizing 

metabolic rather than growth adaptation would allow us to shift these dynamics and further 

tease out antibiotic-specific metabolic variants. To test this idea, we designed and 

implemented an alternative evolution protocol consisting of short-term drug exposure at 

incrementally increasing metabolic activities, separated by rounds of drug-free growth, to 

minimize growth-dependent selection and lineage extinction (Fig. 2A). Indeed, unlike in the 

classic protocol, the OD600 remained stable throughout the experiments (Fig. 2B). We chose 

1 hour for the treatment duration because survival over this time window was sufficient to 

discriminate resistant from sensitive populations (Fig. 2C) while minimizing growth during 

treatment. As a proof-of-concept, temperature was used to control metabolic activity during 

antibiotic exposure because it is an established modulator of basal metabolic activities. The 

temperature was fixed 30 min before and throughout the duration of the treatment (control 

and each antibiotic); 30 min was sufficient for transcriptional adaptation (32). Temperature 

was increased daily in increments of 1°C (20 to 30°C from day 0 to day 10). After treatment, 

cells were washed 2× in phosphate-buffered saline (PBS) and grown overnight for 22 hours 

at 37°C. Otherwise, this protocol remained identical to that shown in Fig. 1A.

We implemented this evolutionary experiment with rich medium, as with the previous 

evolution trajectory, and MOPS Minimal Medium (Teknova#M2106; hereafter referred to as 

“minimal medium”) supplemented with 0.04% glucose to further constrain metabolism. The 

terminal populations from both conditions exhibited increased survival over the 1-hour 

killing window at 30°C, suggesting either acquired resistance or tolerance (Fig. 2D). These 

evolved populations exhibited no reduction in exponential growth rates (P > 0.1, Student’s t 
test; Fig. 2E), ruling out tolerance caused by slow growth (33). Moreover, using a method 

analogous to ScanLag (34), single-colony analysis revealed no significant increase in lag 

time (P > 0.1, Student’s t test; Fig. 2F). These results suggest that the increased survival was 

due to acquired resistance and not to tolerance by lag. Indeed, populations grew faster at 

antibiotic concentrations of MIC50 for both medium conditions compared with the WT (Fig. 

2G), indicating acquired resistance. Populations adapted to rich medium exhibited increases 

in their MIC (fig. S4A); although the MIC did not increase at the population level for 

minimal medium, analysis of 96 individual clones revealed that, on average, isolates 

exhibited an increase in MIC compared with the ancestral strain (fig. S4B).
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Identifying genetic changes associated with metabolic-dependent antibiotic 

adaptation

We sequenced all terminal populations from each drug group, along with the midpoint 

populations and 12 clonal isolates per antibiotic (rich medium) (fig. S5A). The data were 

analyzed with the same previous pipeline (table S6). Overall, clonal isolates had fewer fixed 

mutations and more low-frequency mutations compared with the classic evolution 

experiments (Fig. 2H and fig. S5B). Combined, the samples exhibited a rich diversity of 

metabolic mutations, and unlike the previous results, several of these mutations occurred 

across multiple conditions (population and/or drug) (fig. S5C). For example, all three carb-

treated populations accumulated mutations in the gene encoding for glutamate synthase, 

gltB, and one of three also acquired mutations in gltD and/or gltA. Similarly, two of the 

three Cipro-treated populations acquired mutations in icd, consistent with earlier 

observations. Fewer canonical mutations occurred.

Our metabolic evolution protocol was specifically designed to ensure equivalent selection 

dynamics (e.g., growth or no-growth cycles) for all conditions: At low metabolic activity 

(e.g., 20°C), growth was minimal, whereas at high metabolic activity (e.g., 30°C), all four 

conditions exhibited similar increases in biomass caused by either normal growth (control) 

or acquired resistance (drug-treated) (fig. S5, D and E). Despite the minimal growth 

observed, there remains a possibility that growth-based selection occurs during this cyclic 

treatment. To further validate whether mutations in metabolic genes arose from the cycling 

protocol rather than from the antibiotic treatment, we implemented a second metabolic 

evolution experiment in which temperature was maintained at 20°C for each treatment 

(referred to as TStat) but was otherwise identical to the original protocol (TInc) (fig. S6, A 

and B). Any overlap in mutations between TStat control and TInc drug-treated groups, 

would suggest adaptation caused by growth cycles rather than antibiotic treatment. 

Sequencing the three terminal populations revealed mutations in 19 unique genes: two from 

the control, seven from Cipro, eight from strep, and four from carb treatment (table S7). One 

control gene also occurred in the TInc control and thus was already excluded from analysis, 

whereas the other was not found in any TInc condition. Moreover, ~77% (13) of genes from 

the antibiotic-treated groups were identical to those identified from TInc treatment, although 

at lower frequency. This result was likely due to the reduced metabolic selective pressure. 

These results further confirm that mutations identified using this approach are specific to the 

antibiotic treatment under this unique protocol.

Gene Ontology differs between evolution experiments

Having confirmed the antibiotic specificity of these mutations, we next used Gene Ontology 

(GO) enrichment analysis to compare the biological processes that were significantly 

affected between the classic and metabolic evolutions. We combined all unique genes across 

both media from the temperature-increasing metabolic evolution to enable statistical 

comparisons (Fig. 3A). Among the genes identified from the classic evolution, “response to 

antibiotics” was the most significantly enriched biological process (n = 9, P =4× 10−5, 

Fisher’s exact test), as expected (Fig. 3B). From the metabolic evolution, the most 
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significantly enriched biological process was “generation of precursor metabolites and 

energy” (n = 11, P = 1 × 10−4, Fisher’s exact test) (Fig. 3C). Almost all other significantly 

enriched processes (P < 0.01, Fisher’s exact test) from the metabolic evolution were also 

directly related to cellular metabolism, including but not limited to glutamate synthesis, 

respiration, and electron transport chain (table S8). Overall, and consistent with both our 

hypothesis and literature, the occurrence of parallel metabolic mutations suggests the 

importance of modulating metabolism as an adaptive strategy against antibiotic stress.

It is unsurprising that each protocol enriched different functional classes of mutations. 

However, because neither protocol necessarily reflects realistic clinical environments, the 

prevalence of these mutations in clinical strains is a better indicator of their relevance. To 

investigate this, we analyzed a library of 7243 E. coli genomes from NCBI Pathogen 

Detection (table S9). Specifically, we calculated the total abundance of each of 109 coding 

sequence mutations identified from both evolution experiments and compared the frequency 

in isolates classified as clinical (n = 3700) with those classified as environmental or other (n 
= 3543) (fig. S7A). Variation in gyrA S83 and D87 was used as the baseline for comparison 

because the clinical prevalence of these nine variants is well established (35, 36). Overall, 

~20% of strains had at least one mutation in S83 (~18% gyrA S83L and 1.5% gyrA S83A), 

and ~12% of the strains had at least one mutation in D87 (gyrA D87N) (table S10). Only 

two of the six gyrA loci were statistically overrepresented in clinical isolates. For example, 

S83L is one of the most common variants associated with quinolone resistance (37). 

However, despite occurring in 1332 f 7319 strains, only 673 were designated as clinical (P = 

0.23, Fisher’s exact test; Fig. 4A). This highlights that the NCBI clinical or environmental 

strain designation likely does not distinguish between strains based on previous antibiotic 

exposure. Rather, the known importance of gyrA suggests that mutation prevalence alone 

indicates a potential clinical impact, and further enrichment in clinical isolates highlights a 

potent subset of clinically relevant mutations; this was consistent with canonical mutations 

identified in our study (e.g., ompF and acrD). Overall, 67 of the 109 mutations were not 

identified in any of the 7234 genomes. The remaining 42 were present in at least one, and up 

to 7068, of the isolates (fig. S7B). Several mutations in metabolic genes were abundantly 

present at levels similar to, and in some cases greater than, gyrA (Fig. 4A). As with gyrA, 

some were statistically enriched in clinical isolates (P < 0.01, Fisher’s exact test), suggesting 

their clinical relevance.

Knockout and overexpression confirm genetic underpinnings of antibiotic 

resistance

To evaluate whether these metabolic mutations confer resistance, we chose a representative 

subset of both genes related to metabolism (sucA, gltD, ushA, icd, ycgG, and yidA) and 

classic resistance (ompF, acrD, and gyrA) on the basis of their prevalence and clinical 

significance (Fig. 4A, stars). We expressed the WT and mutant variants of each gene from a 

medium-copy plasmid (pAB) introduced into the corresponding chromosomal knockout 

strain; these MICs were compared with the WT carrying pAB191, which expresses the 

innocuous gene lacZ to account for any plasmid-specific effects. In all cases, metabolic 

mutations increased the MIC to at least one, and in many cases more than one, of the 
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antibiotics (Fig. 4B). These trends were confirmed by measuring growth inhibition (fig. S8); 

in all cases, metabolic mutants were resistant to at least one of the antibiotics, consistent 

with corresponding MIC levels. The plasmid-expressed WT metabolic genes in many cases 

also increased resistance, whereas the knockout strain carrying pAB191 exhibited 

heightened drug sensitivity (fig. S9, top); this is in contrast to the classic genes, in which 

expression of the WT gene from the plasmid often increased sensitivity compared with the 

knockout strain carrying pAB191 (fig. S9, bottom). This suggests that metabolic mutations 

may influence expression levels and/or catalytic activity rather than protein structure or 

function, although such mechanistic effects remain to be tested. Overall, these results 

indicate that these clinically relevant metabolic variants indeed confer resistance.

Because both canonical and metabolic mutation types confer, on average, similar levels of 

resistance and neither one introduces significant fitness burdens in these experimental 

conditions, it is possible they each may be selected for independently. Moreover, fluctuation 

tests revealed that the WT strain mutation rate was statistically identical to that of the 

representative canonical and metabolic mutants ompF and sucA (fig. S10), respectively, 

suggesting that neither mutation type made a strain more likely to acquire additional 

mutations. In addition, bioinformatic analysis revealed that mutation acquisition (canonical 

or metabolic) did not preferentially predispose strains to acquire an additional mutation of 

either type (table S11). Thus, although there may indeed be a temporal relationship between 

the emergence of mutation types, these findings indicate that neither one necessarily favors 

the occurrence of the other.

Finally, we sought to gain insights into the mechanism(s) by which altered metabolism may 

confer antibiotic resistance. It is known that antibiotic-stimulated metabolic activity results 

in the formation of toxic metabolic species that contribute to drug lethality (5, 38). We thus 

reasoned that resistance could arise from one of multiple strategies, including decreased 

sensitivity to oxidative stress or prevention of antibiotic-induced stimulation of the 

tricarboxylic acid (TCA) cycle. To investigate these possibilities, we focused on the 

metabolic mutation in sucA (sucAM), which confers high levels of protection against carb. 

We used RNA sequencing to compare gene expression differences between sucAM and WT 

in the presence or absence of carb treatment (tables S12 and S13). Compared with WT cells, 

which exhibited a distinct transcriptional shift in response to carb and almost 300 

differentially expressed genes (DEGs), sucAM was indistinguishable from its untreated 

control, with only 17 DEGs (fig. S11, A and B). Hierarchical clustering and KEGG-based 

pathway analysis revealed two clear phenotypes: significant up-regulation in WT metabolic 

genes in response to carb (P < 0.05, Fisher’s exact test) and overall down-regulated activity 

in core metabolic pathways such as central and energy metabolism in sucAM compared with 

WT regardless of the treatment (Fig. 4C and table S14). Combined, these results suggest that 

sucAM resistance may occur by bypassing carb-mediated TCA activation, presumably linked 

to lower overall basal respiration rates. Indeed, both the oxygen consumption rate and ATP 

levels were significantly lower for sucAM compared with WT (fig. S11, C and D), consistent 

with reduced respiration. Moreover, unlike the WT strain, sucAM did not exhibit elevated 

NAD+/NADH levels after carb treatment, a hallmark of hyperactive TCA cycle activity 

during oxidative stress (fig. S11E). This combination of phenotypic and genotypic analyses 

provides a preliminary picture of sucAM-mediated carb resistance: Lower basal respiration 
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prevents antibiotic-mediated induction of TCA cycle activity, thereby avoiding metabolic 

toxicity and minimizing lethality. Given the diversity and abundance of metabolic resistance 

mechanisms, focused approaches are needed to determine the generality of this and other 

metabolic resistance strategies.

Discussion

Despite the complexity of antibiotic lethality, canonical mechanisms of resistance are 

generally grouped into only three broad categories: target modification, drug inactivation, 

and drug transport (39, 40). Our findings that metabolic mutations arise in response to 

antibiotic treatment, and that these mutations confer resistance and are highly prevalent in 

clinical pathogens, suggests that these three distinct categories may not be as representative, 

nor the mechanisms as comprehensive, as previously thought. Indeed, metabolic adaptation 

may represent a class of resistance mechanisms whereby, beyond conferring tolerance, cells 

alter their metabolic response to mitigate downstream toxic aspects of antibiotic lethality. 

This is consistent with previous works in which metabolic constraints limit the evolution of 

antibiotic resistance (41, 42). Along these lines, even mutations considered canonical, such 

as those in regulatory elements or efflux systems, appeared in both the classic and metabolic 

evolutions; whether these mutations arise because they reduce the concentration of bound 

target or minimize the stress response that follows remains unclear. What is known, 

however, is that antibiotic dynamics in vivo are widely variable and rarely if ever follow a 

simple continuous gradient. Thus, implementing new protocols to increase the accessible 

evolutionary pathways could facilitate the discovery of new resistance mechanisms and 

thereby enhance our ability to limit the development and spread of antibiotic resistance.

Materials and Methods

A detailed description of all experimental and computational methods, including the 

evolution protocols, strain characterization, mutant validation, sample preparation for next-

generation sequencing, modeling, and bioinformatics, can be found in the supplementary 

materials (21).

Evolution protocol and strain characterization

All evolutions used the E. coli strain BW25113. Briefly, a single colony was picked from a 

streaked agar plate and grown in 3 ml of rich medium overnight with shaking at 250 rpm. 

After 16 hours, cells were diluted 500× into fresh rich medium and aliquoted into one row 

(12 wells) of a 96-well plate for each evolution. Plates were sealed with an AeraSeal film 

(Sigma-Aldrich, #A9224), covered with a fitted plastic cover, and grown for 24 hours at 

37°C with shaking at 450 rpm. For the classic evolution, after the first cycle of pregrowth, 

cells were diluted 500× into fresh rich medium daily; antibiotic was added to all treatment 

wells and sterile water was added to the control at the concentrations shown in table S2. For 

the metabolic evolution, the protocol was identical, with the following modifications. After 

the first cycle of pregrowth and dilution into fresh medium, cells were equilibrated to the 

daily temperature for 30 min, followed by 1 hour of drug treatment. After 1 hour of 

treatment, cells were washed 2× with PBS, resuspended in the corresponding medium, 

sealed as described above, and grown at 37°C for the remaining 22 hours with 450 rpm 
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agitation. Every day thereafter, the equilibration and/or treatment temperature increased in 

1°C increments until day 10, which ended at 30°C. In both cases, before the dilution every 

morning, OD600 measurements were obtained and a control row of blank medium was 

included; no cell growth was observed in these control wells throughout any evolution. The 

static metabolic evolution was performed similarly to the first metabolic evolution, with the 

following changes: minimal medium was used and during every antibiotic treatment 

window, the temperature was maintained at 20°C. Otherwise, the protocol remained 

identical. In all cases, samples were saved daily starting on day 5 and for every day 

thereafter until day 10. Detailed protocols for quantifying the MIC, growth rates, and 

survival after 1 hour can be found in the supplementary materials (21).

Genomic DNA extraction, library prep, high-throughput sequencing, and bioinformatics

For all evolutions, populations were revived by thawing the tops of frozen samples and 

diluting 1000× into 1.5 ml of fresh rich medium in a deep 96-well plate. To determine the 

terminal populations in the case of the classic evolution, cells were diluted such that the top 

row corresponded to the populations saved on day 5 and the bottom row corresponded to the 

populations saved on day 10. OD600 measurements were taken the following morning to 

determine the terminal population (Fig. 1C). Cells from each terminal population were 

streaked directly onto blank agar to acquire individual clones. One milliliter of this overnight 

culture was pelleted and frozen at −80°C for 48 hours to be used directly for genomic DNA 

(gDNA) extraction (21). Clonal plates were grown at 37°C for 16 hours; all colonies were 

grown as described for subsequent gDNA extraction in parallel with the frozen population 

samples. gDNA from individual clones, populations, and the WT strain was extracted using 

the PureLink Pro 96 Genomic DNA Kit (#K182104). Pooled libraries were prepared using 

the plexWell 384 kit supplied from SeqWell; whole-genome sequencing was performed on a 

HiSeq 2500 Rapid Run flow cell with 150 base paired-end reads with an average read depth 

of 100× at the Broad Institute. All bioinformatic analysis details, along with the comparative 

analysis of variants to published E. coli genomes, can be found in the supplementary 

materials (21).

Mutation validation

The plasmid backbone (pAB) used for all constructs consists of a strong constitutive 

synthetic promoter proD, chloramphenicol resistance, and a p15A origin of replication. The 

control plasmid, pAB191, contains the innocuous gene lacZ under the control of proD. All 

WT genes were obtained from the E. coli genome using polymerase chain reaction (PCR) 

and cloned into the pAB backbone using either Gibson assembly or USER cloning. All 

mutant variants were generated with USER cloning. All final constructs were fully 

sequenced for validation. The corresponding knockout strains for each relevant gene were 

obtained from the Keio collection. Each strain was validated using PCR, and kanamycin 

resistance (kanR) was removed with FLP recombinase (pCP20). All plasmids expressing 

either the WT or mutant variants were introduced into the strain with the corresponding gene 

chromosomally deleted, except for gyrA, which was introduced into the WT strain 

BW25113 because this gene is essential. All experiments that used these strains were 

conducted in the presence of 100 µg/ml chloramphenicol.
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RNA sequencing, analysis, and strain validation

Strains were grown overnight as previously described. After 16 hours, all strains were 

diluted 500× into rich medium. Cells were treated with MIC50 concentrations of the control 

strain and incubated at 37°C with 250 rpm agitation for 1 hour. After 1 hour, cells were 

flash-frozen and submitted to Medgenomics for RNA extraction and sequencing. RNA 

sequencing was performed using NovaSeq 150 base paired-end reads with 25 M total reads 

per sample. All bioinformatic analysis details can be found in the supplementary materials 

(21).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Classic evolution schematic and characterization.
(A) Evolution schematic. Triplicate populations were treated with no antibiotic, strep, carb, 

or Cipro at increasing concentrations from 0.08× to 40× MIC50 over 11 days (days 0 to 10). 

(B) Daily OD600 measurements. Shaded color represents SD of three population replicates. 

The colors yellow, green, blue, and red indicate control, strep, Cipro, and carb, respectively. 

(C) Frozen samples of all populations starting on day 5 until day 10 were revived in drug-

free medium to identify the terminal population per condition (highlighted square). Heatmap 

shading from purple to orange indicates OD600 levels from low to high, respectively. (D) 

Growth rates of 12 individual clones (left) or whole populations (right). Growth rates were 

normalized to the average growth rate of the untreated control (dashed black line for 

reference). Bars represent average of either 12 clones (left) or three biological replicates 

(right), and error bars indicate SD. (E) MICs of clones and populations. Bolded gray, 

orange, and purple lines indicate averages of three WT strain replicates, 12 clones, or three 
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terminal population replicates, respectively. The 12 individual clones are shown in thin 

orange lines, and shading indicates the SD for WT and population samples. (F) Sequencing 

sample overview. Each number corresponds to the number of samples sequenced for 

population (P) or clonal (C) samples. (G) Mutations summary. Mutations include indels and 

SNPs at frequencies determined by Pilon (passing >~90%; midlevel ~25 to 90%; low ~0.2 to 

25%). SNPs per sample are summed across all samples at each time point. (H) Total SNPs 

per population compared with clonal samples (left). Unique SNPs per population compared 

with clonal samples (right). (I) Passing SNPs per gene in sequenced clones. (J) KEGG 

Orthology and BRITE hierarchy classification for broad functional categories; n is the 

number of genes per category, and the y-axis is the percentage of all genes grouped into the 

corresponding category.
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Fig. 2. Metabolic evolution leads to acquired resistance with no obvious growth defect.
(A) Evolution schematic. Triplicate populations were treated with no antibiotic, strep, carb, 

or Cipro for a total of 11 days at 40× MIC50 for 1 hour at increasing metabolic states. Thirty 

minutes before antibiotic treatment, cells were equilibrated to a temperature that increased 

daily in 1°C increments beginning on day 0 at 20°C and concluding on day 10 at 30°C. After 

antibiotic treatment, cells were washed 2× in PBS and grown analogously to the classic 

evolution. (B) OD600 measurements were obtained before daily dilutions and are shown for 

both rich medium (left) and minimal medium with 0.04% glucose (right) conditions. (C) 

Survival over the 1-hour treatment for the WT compared with terminal populations evolved 

through the classic evolution protocol. All experiments were performed at 30°C. Bars 

represent average of three biological replicates, and error bars indicate SD. (D) Survival over 

the 1-hour treatment for the WT compared with terminal populations evolved through the 

metabolic evolution protocol for rich medium (left) and minimal medium (right) conditions. 

All experiments were performed at 30°C. Bars represent average of three biological 

replicates, and error bars indicate SD. (E) Growth rates of each terminal population from 

rich medium (left) and minimal medium (right) conditions. One population per treatment 

group was tested in three independent biological replicates. Results are normalized to the 
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untreated control (black dashed line). Bars represent the average of three biological 

replicates, and error bars indicate SD. (F) Lag times of individual clones evolved in either 

rich medium (left) or minimal medium (right). Lag times were calculated analogously to 

ScanLag. At least 65 clones were measured for each condition. Violin plots are shown for 

each distribution; black dotted line indicates the median, and solid line is the mean of the 

samples. (G) Growth rates for populations evolved in either rich medium (left) or minimal 

medium (right). OD600 (y-axis) is shown over time in hours (x-axis) obtained at intervals of 

15 min for 18 hours. Lines are the average of three biological replicates, and error bars are 

the SD. Black lines are the WT strain. (H) Mutations summary. Mutations include indels and 

SNPs at frequencies determined by Pilon (passing >~90%; midlevel ~25 to 90%; low ~0.2 to 

25%). SNPs per sample are summed across all samples at each time point.

Lopatkin et al. Page 19

Science. Author manuscript; available in PMC 2021 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Gene Ontology (GO) enrichment analysis differs between evolutions.
(A) Pooling metabolic mutations across medium type yielded an equivalent number of 

unique mutations from both evolutions. Black and gray color represents genes from rich and 

minimal (min) medium, respectively. (B) GO enrichment of biological processes for all 

unique mutations from the classic evolution. (C) GO enrichment of biological processes for 

all unique mutations from the metabolic evolution. Dark to light shading indicates P values 

from low to high, respectively.
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Fig. 4. Metabolic mutations are highly prevalent in clinical E. coli genomes and confer resistance.
(A) Mutations in coding sequences were searched for in a database of 7243 genomes 

downloaded from NCBI. Bars indicate the number of strains with the specific mutation from 

our dataset (gray, total number; red, clinical strains). The significance and P values of the 

overrepresentation of each mutation within the subset of clinical strains is colored in varying 

degrees of red, from highly to not significant (dark to light red, respectively). Stars denote 

mutations tested in (B). The y-axis labels consist of gene name, codon position, reference 

allele, and nucleotide position, respectively. (B) MIC fold change of mutants compared with 

WT. Mutant sequences of a representative subset of metabolic (sucA, icd, gltD, ushA, yidA, 

and ycgG) and classic (ompF, acrD, and gyrA) genes were integrated onto the plasmid pAB 

downstream of the strong constitutive promoter proD. Each plasmid was introduced into the 

corresponding knockout strain, except for gyrA, which was introduced into the WT strain 

BW25113 because this gene is essential, and ycgG, which is compared with the knockout 

Lopatkin et al. Page 21

Science. Author manuscript; available in PMC 2021 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strain only because this mutation disrupted the gene. Control strain is BW25113 carrying 

pAB191 (black dashed line). Two biological replicates are represented by the circles; bars 

represent the average of both. MICs for all three drugs (strep, Cipro, and carb; green, blue, 

and red, respectively) were obtained after 10 hours. (C) Hierarchical clustering of DEGs in 

the presence and absence of carb treatment. All down-regulated DEGs between carb-treated 

WT and sucAM were enriched for overrepresented pathways in Ecocyc. Read counts were 

converted into counts per million (CPM). Heatmap color represents the log-2–transformed, 

trimmed mean of M values (TMM)–normalized CPM values. Functional categories are 

defined from MultiFun ontologies from Ecocyc. The y-axis includes all genes that were 

significantly enriched. The ordered list of genes can be found in table S14.
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