
NeuroNER: an easy-to-use program for named-
entity recognition based on neural networks

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation F Dernoncourt, et al. "NeuroNER: an easy-to-use program for
named-entity recognition based on neural networks." arXiv preprint
arXiv:1705.05487, 2017

As Published http://dx.doi.org/110.18653/v1/d17-2017

Publisher Association for Computational Linguistics

Version Original manuscript

Citable link https://hdl.handle.net/1721.1/133535

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133535
http://creativecommons.org/licenses/by-nc-sa/4.0/


NeuroNER: an easy-to-use program for
named-entity recognition based on neural networks

Franck Dernoncourt∗
MIT

francky@mit.edu

Ji Young Lee∗
MIT

jjylee@mit.edu

Peter Szolovits
MIT

psz@mit.edu

Abstract
Named-entity recognition (NER) aims at
identifying entities of interest in a text. Ar-
tificial neural networks (ANNs) have re-
cently been shown to outperform existing
NER systems. However, ANNs remain
challenging to use for non-expert users. In
this paper, we present NeuroNER, an easy-
to-use named-entity recognition tool based
on ANNs. Users can annotate entities us-
ing a graphical web-based user interface
(BRAT): the annotations are then used
to train an ANN, which in turn predict
entities’ locations and categories in new
texts. NeuroNER makes this annotation-
training-prediction flow smooth and ac-
cessible to anyone.

1 Introduction
Named-entity recognition (NER) aims at identify-
ing entities of interest in the text, such as location,
organization and temporal expression. Identified
entities can be used in various downstream appli-
cations such as patient note de-identification and
information extraction systems. They can also be
used as features for machine learning systems for
other natural language processing tasks.

Early systems for NER relied on rules de-
fined by humans. Rule-based systems are time-
consuming to develop, and cannot be easily trans-
ferred to new types of texts or entities. To address
these issues, researchers have developed machine-
learning-based algorithms for NER, using a vari-
ety of learning approaches, such as fully super-
vised learning, semi-supervised learning, unsuper-
vised learning, and active learning. NeuroNER
is based on a fully supervised learning algorithm,
which is the most studied approach (Nadeau and
Sekine, 2007).

∗ These authors contributed equally to this work.

Fully supervised approaches to NER include
support vector machines (SVM) (Asahara and
Matsumoto, 2003), maximum entropy mod-
els (Borthwick et al., 1998), decision trees (Sekine
et al., 1998) as well as sequential tagging meth-
ods such as hidden Markov models (Bikel et al.,
1997), Markov maximum entropy models (Kumar
and Bhattacharyya, 2006), and conditional ran-
dom fields (CRFs) (McCallum and Li, 2003; Tsai
et al., 2006; Benajiba and Rosso, 2008; Filannino
et al., 2013). Similar to rule-based systems, these
approaches rely on handcrafted features, which are
challenging and time-consuming to develop and
may not generalize well to new datasets.

More recently, artificial neural networks
(ANNs) have been shown to outperform other
supervised algorithms for NER (Collobert et al.,
2011; Lample et al., 2016; Lee et al., 2016;
Labeau et al., 2015; Dernoncourt et al., 2016).
The effectiveness of ANNs can be attributed to
their ability to learn effective features jointly
with model parameters directly from the training
dataset, instead of relying on handcrafted features
developed from a specific dataset. However,
ANNs remain challenging to use for non-expert
users.

Contributions NeuroNER makes state-of-the-
art named-entity recognition based on ANN avail-
able to anyone, by focusing on usability. To enable
users to create or modify annotations for a new
or existing corpus, NeuroNER interfaces with the
web-based annotation program BRAT (Stenetorp
et al., 2012). NeuroNER makes the annotation-
training-prediction flow smooth and accessible to
anyone, while leveraging the state-of-the-art pre-
diction capabilities of ANNs. NeuroNER is open
source and freely available online1 .

1NeuroNER can be found online at:
http://neuroner.com

ar
X

iv
:1

70
5.

05
48

7v
1 

 [
cs

.C
L

] 
 1

6 
M

ay
 2

01
7

http://neuroner.com


2 Related Work

Existing publicly available NER systems geared
toward non-experts do not use ANNs. For
example, Stanford NER (Finkel et al., 2005),
ABNER (Settles, 2005), the MITRE Identifica-
tion Scrubber Toolkit (MIST) (Aberdeen et al.,
2010), (Boag et al., 2015), BANNER (Leaman
et al., 2008) and NERsuite (Cho et al., 2010) rely
on CRFs. GAPSCORE uses SVMs (Chang et al.,
2004). Apache cTAKES (Savova et al., 2010) and
Gate’s ANNIE (Cunningham et al., 1996; May-
nard and Cunningham, 2003) use mostly rules.
NeuroNER, the first ANN-based NER system for
non-experts, is more generalizable to new corpus
due to the ANNs’ capability to learn effective fea-
tures jointly with model parameters.

Furthermore, in many cases, the NER systems
assume that the user already has an annotated cor-
pus formatted in a specific data format. As a result,
users often have to connect their annotation tool
with the NER systems by reformatting annotated
data, which can be time-consuming and error-
prone. Moreover, if users want to manually im-
prove the annotations predicted by the NER sys-
tem (e.g., if they use the NER system to accelerate
the human annotations), they have to perform ad-
ditional data conversion. NeuroNER streamlines
this process by incorporating BRAT, a widely-
used and easy-to-use annotation tool.

3 System Description

NeuroNER comprises two main components: an
NER engine and an interface with BRAT. Neu-
roNER also comes with real-time monitoring tools
for training, and pre-trained models that can be
loaded to the NER engine in case the user does
not have access to labelled training data. Figure 1
presents an overview of the system.

3.1 NER engine

The NER engine takes as input three sets of data
with gold labels: the training set, the validation
set, and the test set. Additionally, it can also take
as input the deployment set, which refers to any
new text without gold labels that the user wishes
to label. The files that comprise each set of data
should be in the same format as used for the anno-
tation tool BRAT or the CoNLL-2003 NER shared
task dataset (Tjong Kim Sang and De Meulder,
2003), and organized in the corresponding folder.

The NER engine’s ANN contains three layers:

• Character-enhanced token-embedding layer,

• Label prediction layer,

• Label sequence optimization layer.

The character-enhanced token-embedding layer
maps each token to a vector representation. The
sequence of vector representations corresponding
to a sequence of tokens is then input to label pre-
diction layer, which outputs the sequence of vec-
tors containing the probability of each label for
each corresponding token. Lastly, the label se-
quence optimization layer outputs the most likely
sequence of predicted labels based on the se-
quence of probability vectors from the previous
layer. All layers are learned jointly.

The ANN as well as the training process
have several hyperparameters such as charac-
ter embedding dimension, character-based token-
embedding LSTM dimension, token embedding
dimension, and dropout probability. All hyperpa-
rameters may be specified in a configuration file
that is human-readable, so that the user does not
have to dive into any code. Listing 1 presents an
excerpt of the configuration file.

[dataset]
dataset_folder = dat/conll

[character_lstm]
using_character_lstm = True
char_embedding_dimension = 25
char_lstm_dimension = 50

[token_lstm]
token_emb_pretrained_file = glove.txt
token_embedding_dimension = 200
token_lstm_dimension = 300

[crf]
using_crf = True
random_initial_transitions = True

[training]
dropout = 0.5
patience = 10
maximum_number_of_epochs = 100
maximum_training_time = 10
number_of_cpu_threads = 8

Listing 1: Excerpt of the configuration file used
to define the ANN as well as the training process.
Only the dataset folder parameter needs to
be changed by the user: the other parameters have
reasonable default values, which the user may op-
tionally tune.



D
ep

lo
ym

en
t

Tr
ai

ni
ng

 &
 M

on
ito

rin
g

Train set

Validation set
TensorBoard graphs

Learning curve
Pr

ed
ic

tio
n 

&
 E

va
lu

at
io

n

Test set Test set with predicted entities

Confusion matrix Classification report

NeuroNER engine

NeuroNER engine

Deployment set

Deployment set with predicted entities

NeuroNER engine

Figure 1: NeuroNER system overview. In the NeuroNER engine, the training set is used to train the
parameters of the ANN, and the validation set is used to determine when to stop training. The user can
monitor the training process in real time via the learning curve and TensorBoard. To evaluate the trained
ANN, the labels are predicted for the test set: the performance metrics can be calculated and plotted by
comparing the predicted labels with the gold labels. The evaluation can be done at the same time as
the training if the test set is provided along with the training and validation sets, or separately after the
training or using a pre-trained model. Lastly, the NeuroNER engine can label the deployment set, i.e.
any new text without gold labels.



3.2 Real-time monitoring for training

As training an ANN may take many hours, or
even a few days on very large datasets, NeuroNER
provides the user with real-time feedback during
the training for monitoring purpose. Feedback is
given through two different means: plots gener-
ated by NeuroNER, and TensorBoard.

Plots NeuroNER generates several plots show-
ing the training progress and outcome at each
epoch. Plots include the evolution of the overall
F1-score over time, confusion matrices visualizing
the number of correct versus incorrect predictions
for each class, and classification reports showing
the F1-score, precision and recall for each class.

TensorBoard As NeuroNER is based on Ten-
sorFlow , it leverages the functionalities of Tensor-
Board. TensorBoard is a suite of web applications
for inspecting and understanding TensorFlow runs
and graphs. It allows to view in real time the per-
formances achieved by the ANN being trained.
Moreover, since it is web-based, these perfor-
mances can be conveniently shared with anyone
remotely. Lastly, since graphs generated by Ten-
sorBoard are interactive, the user may gain further
insights on the ANN performances.

3.3 Pre-trained models

Some users may prefer not to train any ANN
model, either due to time constraints or unavail-
able gold labels. For example, if the user wants to
tag protected health information, they might not be
able to have access to a labeled identifiable dataset.
To address this need, NeuroNER provides a set
of pre-trained models. Users are encouraged to
contribute by uploading their own trained models.
NeuroNER also comes with several pre-trained to-
ken embeddings, either with word2vec (Mikolov
et al., 2013a,b,c) or GloVe (Pennington et al.,
2014), which the NeuroNER engine can load eas-
ily once specified in the configuration file.

3.4 Annotations

NeuroNER is designed to smoothly integrate with
the freely available web-based annotation tool
BRAT, so that non-expert users may create or im-
prove annotations. Specifically, NeuroNER ad-
dresses two main use cases:

• creating new annotations from scratch, e.g. if
the goal is to annotate a dataset for which no
gold label is available,

• improving the annotations of an already la-
beled dataset: the annotations may have been
done by another human or by a previous run
of NeuroNER.

In the latter case, the user may use NeuroNER in-
teractively, by iterating between manually improv-
ing the annotations and running the NeuroNER en-
gine with the new annotations to obtain more ac-
curate annotations.

NeuroNER can take as input datasets in the
BRAT format, and outputs BRAT-formatted pre-
dictions, which makes it easy to start training di-
rectly from the annotations as well as visualize and
analyze the predictions. We chose BRAT for two
main reasons: it is easy to use, and it can be de-
ployed as a web application, which allows crowd-
sourcing. As a result, the user may quickly gather
a vast amount of annotations by using crowd-
sourcing marketplaces such as Amazon Mechan-
ical Turk (Buhrmester et al., 2011) and Crowd-
Flower (Finin et al., 2010).

3.5 System requirements

NeuroNER runs on Linux, Mac OS X, and Mi-
crosoft Windows. It requires Python 3.5, Tensor-
Flow 1.0 (Abadi et al., 2016), scikit-learn (Pe-
dregosa et al., 2011), and BRAT. A setup script is
provided to make the installation straightforward.
It can use the GPU if available, and the number of
CPU threads and GPUs to use can be specified in
the configuration file.

3.6 Performances

To assess the quality of NeuroNER’s predictions,
we use two publicly and freely available datasets
for named-entity recognition: CoNLL 2003 and
i2b2 2014. CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) is a widely studied dataset with
4 usual types of entity: persons, organizations, lo-
cations and miscellaneous names. We use the En-
glish version.

Model CoNLL 2003 i2b2 2014
Best published 90.9 97.9
NeuroNER 90.5 97.7

Table 1: F1-scores (%) on the test set compar-
ing NeuroNER with the best published methods in
the literature, viz. (Passos et al., 2014) for CoNLL
2003, (Dernoncourt et al., 2016) for i2b2 2014.



The i2b2 2014 dataset (Stubbs et al., 2015)
was released as part of the 2014 i2b2/UTHealth
shared task Track 1. It is the largest publicly avail-
able dataset for de-identification, which is a form
of named-entity recognition where the entities
are protected health information such as patients’
names and patients’ phone numbers. 22 systems
were submitted for this shared task.

Table 1 compares NeuroNER with state-of-the-
art systems on CoNLL 2003 and i2b2 2014. Al-
though the hyperparameters of NeuroNER were
not optimized for these datasets (the default hyper-
parameters were used), the performances of Neu-
roNER are on par with the state-of-the-art sys-
tems.

4 Conclusions

In this article we have presented NeuroNER, an
ANN-based NER tool that is accessible to non-
expert users and yields state-of-the-art results. Ad-
dressing the need of many users who want to cre-
ate or improve annotations, NeuroNER smoothly
integrates with the web-based annotation tool
BRAT.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

John Aberdeen, Samuel Bayer, Reyyan Yeniterzi, Ben
Wellner, Cheryl Clark, David Hanauer, Bradley Ma-
lin, and Lynette Hirschman. 2010. The mitre identi-
fication scrubber toolkit: design, training, and as-
sessment. International journal of medical infor-
matics 79(12):849–859.

Masayuki Asahara and Yuji Matsumoto. 2003.
Japanese named entity extraction with redundant
morphological analysis. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1. Association
for Computational Linguistics, pages 8–15.

Yassine Benajiba and Paolo Rosso. 2008. Arabic
named entity recognition using conditional random
fields. In Proc. of Workshop on HLT & NLP within
the Arabic World, LREC. Citeseer, volume 8, pages
143–153.

Daniel M Bikel, Scott Miller, Richard Schwartz,
and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings

of the fifth conference on Applied natural language
processing. Association for Computational Linguis-
tics, pages 194–201.

William Boag, Kevin Wacome, Tristan Naumann, and
Anna Rumshisky. 2015. Cliner: A lightweight tool
for clinical named entity recognition. American
Medical Informatics Association (AMIA) Joint Sum-
mits on Clinical Research Informatics (poster) .

Andrew Borthwick, John Sterling, Eugene Agichtein,
and Ralph Grishman. 1998. Nyu: Description of the
mene named entity system as used in muc-7. In In
Proceedings of the Seventh Message Understanding
Conference (MUC-7).

Michael Buhrmester, Tracy Kwang, and Samuel D
Gosling. 2011. Amazon’s mechanical turk a new
source of inexpensive, yet high-quality, data? Per-
spectives on psychological science 6(1):3–5.

Jeffrey T Chang, Hinrich Schütze, and Russ B Altman.
2004. Gapscore: finding gene and protein names
one word at a time. Bioinformatics 20(2):216–225.

HC Cho, N Okazaki, M Miwa, and J Tsujii. 2010.
Nersuite: a named entity recognition toolkit. Tsu-
jii Laboratory, Department of Information Science,
University of Tokyo, Tokyo, Japan .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Hamish Cunningham, Yorick Wilks, and Robert J
Gaizauskas. 1996. Gate: a general architecture for
text engineering. In Proceedings of the 16th confer-
ence on Computational linguistics-Volume 2. Asso-
ciation for Computational Linguistics, pages 1057–
1060.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner, and
Peter Szolovits. 2016. De-identification of patient
notes with recurrent neural networks. Journal of the
American Medical Informatics Association .

Michele Filannino, Gavin Brown, and Goran Nenadic.
2013. Mantime: Temporal expression identifica-
tion and normalization in the tempeval-3 challenge.
arXiv preprint arXiv:1304.7942 .

Tim Finin, Will Murnane, Anand Karandikar, Nicholas
Keller, Justin Martineau, and Mark Dredze. 2010.
Annotating named entities in twitter data with
crowdsourcing. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk. Association
for Computational Linguistics, pages 80–88.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs



sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics. As-
sociation for Computational Linguistics, pages 363–
370.

N Kumar and Pushpak Bhattacharyya. 2006. Named
entity recognition in Hindi using MEMM. Techbical
Report, IIT Mumbai .

Matthieu Labeau, Kevin Löser, and Alexandre Al-
lauzen. 2015. Non-lexical neural architecture for
fine-grained POS tagging. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 232–237.
http://aclweb.org/anthology/D15-1025.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Robert Leaman, Graciela Gonzalez, et al. 2008. Ban-
ner: an executable survey of advances in biomedical
named entity recognition. In Pacific symposium on
biocomputing. volume 13, pages 652–663.

Ji Young Lee, Franck Dernoncourt, Ozlem Uzuner, and
Peter Szolovits. 2016. Feature-augmented neural
networks for patient note de-identification. COL-
ING Clinical NLP .

Diana Maynard and Hamish Cunningham. 2003. Mul-
tilingual adaptations of annie, a reusable informa-
tion extraction tool. In Proceedings of the tenth
conference on European chapter of the Association
for Computational Linguistics-Volume 2. Associa-
tion for Computational Linguistics, pages 219–222.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natu-
ral language learning at HLT-NAACL 2003-Volume
4. Association for Computational Linguistics, pages
188–191.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In HLT-NAACL. pages 746–
751.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes 30(1):3–26.

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embeddings
for named entity resolution. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning. Association for Computational
Linguistics, Ann Arbor, Michigan, pages 78–86.
http://www.aclweb.org/anthology/W14-1609.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: global vectors for word
representation. Proceedings of the Empiricial Meth-
ods in Natural Language Processing (EMNLP 2014)
12:1532–1543.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association 17(5):507–513.

Satoshi Sekine et al. 1998. Nyu: Description of the
japanese ne system used for met-2. In Proc. Mes-
sage Understanding Conference.

Burr Settles. 2005. ABNER: An open source tool
for automatically tagging genes, proteins, and other
entity names in text. Bioinformatics 21(14):3191–
3192.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations at
the 13th Conference of the European Chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 102–107.

Amber Stubbs, Christopher Kotfila, and Özlem Uzuner.
2015. Automated systems for the de-identification
of longitudinal clinical narratives: Overview of
2014 i2b2/uthealth shared task track 1. Journal of
biomedical informatics 58:S11–S19.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Association for Computational Linguistics, pages
142–147.

Richard Tzong-Han Tsai, Cheng-Lung Sung, Hong-Jie
Dai, Hsieh-Chuan Hung, Ting-Yi Sung, and Wen-
Lian Hsu. 2006. Nerbio: using selected word con-
junctions, term normalization, and global patterns to
improve biomedical named entity recognition. BMC
bioinformatics 7(5):S11.

http://aclweb.org/anthology/D15-1025
http://aclweb.org/anthology/D15-1025
http://aclweb.org/anthology/D15-1025
http://www.aclweb.org/anthology/W14-1609
http://www.aclweb.org/anthology/W14-1609
http://www.aclweb.org/anthology/W14-1609

