A Network Element Based
Fault Tolerant Processor

by

Todd A. Abler
Submitted to the

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Science in

Electrical Engineering and Computer Science

and
Bachelor of Science in

Electrical Science and Engineering

at the

Massachusetts Institute of Technology

May 1988
©Todd A. Abler, 1988

The author hereby grants to M.I.T. permission to reproduce

Signature of Author

Certified by

Certified by

Accepted by

and to distribute copies of this thesis in whole or in part.

Department of Electrical Engnyeﬁng;a@omp;{tei ici;:gg;
a'- ?

William J. Dally
Thesis Supervisor

' chl;ard E. Harper

/Cﬁ;l_—; | SlMeyatory

= "'/Arthur C. Smith

Chairman, Departmental Committee on Graduate Ltudents

ASCACHUSETTS INSTITUTE
AR INGLOGY

UL 26 19€8
LIBRARIES
ARCRHIVFS

A Network Element Based
Fault Tolerant Processor

by
Todd A. Abler

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 1988 in partial fulfillment of the requirements for the degrees of
Master of Science
and
Bachelor of Science

Abstract

Fault tolerant computer architectures have typically increased reliability at the
cost of performance. An architecture is proposed herein which satisfies the require-
ments for Byzantine failure resilience in an efficient manner, such that high relia-
bility can be obtained at a higher performance level than that previously achieved.
The architecture is based on a network element (NE) which provides a solution to
the synchronization, communication and redundancy management requirements for
malicious failure resilience. The NE is relatively compact and efficient, substantially
reducing the performance cost of implementing fauit tolerance.

Thesis Supervisor: William J. Dally
Title: Professor of Electrical Engineering

Acknowledgments

This work was made possible by the expertise and support of the staff of the Systems
Architecture Division of the Charles Stark Draper Laboratory. In particular, special
thanks must be extended to Jay Lala, Richard Harper, Stuart Adams, and Steven
Friend who have all contributed significantly to the development of this thesis.
Additionally, I would like to thank Ross Dettmer for his aid in implementing and
evaluating the NEFTP. Finally, I thank my thesis advisor William Dally for his
assistance and direction.

This work was done at the Charles Stark Draper Laboratory under an internal
research and development grant.

Publication of this report does not constitute approval by the Draper Laboratory
of the findings or conclusions contained herein. It is published for the exchange and
stimulation of ideas.

I hereby assign my copyright of this thesis to the Charles Stark Draper Labora-
tory, Inc., Cambridge, Massachusetts.

Todd A. Abler

Charles Stark Draper Laboratory hereby grants permission to the Massachusetts
Institute of Technology to reproduce and to distribute this thesis in whole or in part.

To Newtowne Variety - an oasis of excellence.

Contents

1 Introduction 10
1.1 Problem Statement 10
1.2 Objective e e 10
1.3 Approach e 10

2 Fault Tolerance Fundamentals 12
2.1 Quantification of a System’s Fault Tolerance. 13
2.2 Motivation for Fault Tolerant Computing 13
2.3 Two Fundamental Approaches to Fault Tolerance 14

3 Byzantine Resilience 16
3.1 Rational of the Byzantine Resilience Requirements 17

3.1.1 Synchronization 17
3.1.2 Connectivity 17
3.1.3 Participants and Communication Rounds 18
3.2 Byzantine Resilient Architectures 21

3.2.1 The Software Implemented Fault Tolerance Computer (SIFT) 24
3.2.2 The AIPS Architecture Fault Tolerant Processor (AIPS FTP) 2§
3.2.3 The Multicomputer Architecture for Fault Tolerance (MAFT) 28

3.3 The Network Element Based Fault Tolerant Processor (NEFTP) .. 29

4 NEFTP: The Network Element Design 34
41 TheBasicNEcycle., 34
4.2 The NE Functional Sub-Sections 35
42.1 The PE/NE Interface 36

422 TheNEDataPaths 41

4.2.3 Inter-FCR Communication Links 48

4.2.4 The NE Fault Tolerant Clock 49

4.2.5 The NE Scoreboard 56

426 The NE Global Controller 60

4.3 Status of The NE Prototype 66

5 Evaluation of The NEFTP 68
5.1 Reliability Analysis, 68
5.1.1 Definitions and Assumptions 68

5.1.2 Simplex System Reliability Analysis 70

5.1.3 NEFTP Reliability Analysis 73

5.2 Performance Evaluation 81

52.1 NEFTP Analysis
5.3 NEFTP Evaluation Summary

Conclusions and Recommendations

NE Schematics

A.1 Sheet 1 e e e e e e e e e e e e
A.2 Sheet 2 e e e e e e e e e e e e
A3 Sheet 3 e e e e e e e e e
A4 Sheet 4 e e e e e e e
A5 Sheet 5 e e e e e e
A6 Sheet 6 e e e e e e e
AT Sheet 7 o v i i e e e e e e e e e e e
A8 Sheet 8 e
A9 Sheet 9 e e e e e
A10Sheet 10 i i e e e e e e e e e e e e e e e e
A.11Sheet 11 o o o e e e e e e e e e e e e e
A.12Sheet 12 e e e e e e e
A.13Sheet 13 e e e e e e e e e e e e

PLD Equations

B.1 VMEInterface,
B.1.1 AddressDecoding
B.1.2 VME Block Transfer Address Counter
B.1.3 Data Strobe Generator.
B.1.4 DTACK Generator v v v v v v v i vt et et et
B.1.5 VMEFIFOControll
B.1.6 VMEFIFOControl 2

B.2 Fault Tolerant Clock
B.2.1 MYFTC Generator. o...
B.2.2 Median Bound Voter and Clock Error Accumulator
B.23 Bound Generator
B.2.4 System Clock Generator

B3 DataPaths
B.3.1 Data Path Voter Slice
B.3.2 DebugRouter.
B.3.3 Synchronous Data Path Controller
B.3.4 Asynchronous Data Path Controller
B.3.5 Syndrome Accumulator
B.3.6 Link Error Accumulator P

B.4 Scoreboard
B.4.1 Scoreboard First Half
B.4.2 Scoreboard Second Half

B.5 Global Controller e 136

B.5.1
B.5.2
B.5.3
B.5.4
B.5.5
B.5.6
B.5.7

Muitiplexor First Half 136
Multiplexor Second Half 137
Next State Register 138
Controller Decoder 139
Mask, Size, and Debug Register 140
Data Path Voter Mask Register 143
Global Controller Event Counter 145

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2
5.3
5.4

Performability of Selected Architectures

FCRs Connected via Shared Link
Self Checking Pair Architecture
TMR Architecture e
TMR Architecture with Simplex Sensor
Canonical 1-Byzantine Resilient Architecture
AIPS Fault Tolerant Processor (Triplex)
MAFT Architecture,
NEFTP Architecture

BRVC Abstraction o
Basic NECycle
PE/NE Interface Block Diagram P
NE Exchange Types
NEMemoryMap f e e e e
NE Data Paths Block Diagram
NE Physical and Virtual Identifiers
Inter-FCR Communication Link Block Diagram
Basic Message Transmission Frame Signals of FTC
FTC Block Diagram
Self Normal FTC Timing Signalsof FTC
Self Ahead FTC Timing Signals of FTC
Self Behind FTC Timing Signalsof FTC
State Diagram of MYFTC Generator
Basic Message Transmission Frame; External Signals
SERP Packet Format.
Scoreboard Block Diagram
NE Operation Time Line
SERP Packet Delivered to Scoreboard: SERP 2
SERP Packet Delivered to Scoreboard: SERP 3.
NE Global Controller Block Diagram
Mask, Size and Debug Register Latch Functions.
Global Controller Control Qutputs

Simplex Processor Markov Model
Punsafe) Pshutdowny 30d Punsafe + Pshutdown For A Simplex Processor . .
Punsafe 8 ¢ For A Simplex Processor
Psysloss V8 ft For A Simplex Processor.

71

5.5
5.6

5.7
5.8

5.9
5.10

5.11
5.12
5.13
5.14
5.15

5.16

NEFTP Markov Model: Redundancy SchemeI
Punsafes Pshutdown, and Dunsafe + DPshutdown For NEFTP Redundancy
Scheme I e
Addition To NEFTP Markov Model For Redundancy Scheme II. . .
Punsafes Pshutdown and DPunsafe + Pshutdown For The NEFTP Redunda‘ncy
Scheme Il
Addition to NEFTP Markov Model For Redundancy Scheme III

Dunsafey Pshutdown, and Dunsafe +Pah.utdoum For The NEFTP Redundancy
Scheme III
Reliability Analysis Summary
Typical Control Loop
NE Data Exchange Times and Throughput
Processor Pre-Synchronization Skew as a Function of Synchroniza-
tion Frequency o oo
Fault Tolerance Related Data Exchange Overhead as a Percentage
of Control Loop Length
Breakdown of Fault Tolerance Related Data Exchange Overhead
When Using Maximum Packet Size

5

Chapter 1
Introduction

1.1 Problem Statement

A requirement for ultra-reliable computation has generated much research in
the area of fault tolerant computing. Several fault tolerant computer architectures
have been designed, implemented, and evaluated. These include the following;:

1. Software Implemented Fault Tolerance (SIFT) computer [WenT78].

2. Multi-Computer Architecture for Fault Tolerance (MAFT) [WKF85]
[KWEFTSS.

3. Advanced Information Processing system Fault Tolerant Processor (AIPS
FTP), and its derivatives [Lal84,Lal86,LAGD86,5mi83).

All such architectures have increased reliablility through use of component redun-
dancy. Typically this increased reliability has been accompanied by rigid program-
ming constraints, substantial computational overhead, and/or significant additional
hardware.

As will be shown later, many of the constraints imposed by the above archi-
tectures are not inherent in the theoretical requirements for failure resilience. The
problem, therefore, is to design a fault tolerant processor architecture with a mini-
mum loss of performance and flexibility.

1.2 Objective

The primary objective of this thesis is to design and develop a fault tolerant pro-
cessor which does not unnecessarily constrain the programming model, and which
has minimal computational and hardware overhead. Specifically, this involves un-
derstanding the necessary and sufficient requirements for failure resilience. An ar-
chitecture is developed which incorporates these requirements. An implementation
of this architecture is designed and fabricated. A secondary objective is to quan-
titatively illustrate the benefits of this architecture via performance and reliability
comparisons with prior fault tolerant processor designs.

1.3 Approach

This study begins with a discussion of the basics of fault tolerant computing.
Chapter 2 presents some of the background and terminology of fault tolerance.

10

Some examples motivating the necessity of fault tolerant computing are given. The
current state of research in fault tolerant computing demonstrates the existence of
two different fundamental approaches. Chapter 2 discusses the two approaches and
examines their differences. Only one of the approaches, known as Byzantine failure
resilience, is shown to be a viable solution to the problem. Byzantine resilience and
its theoretical requirements are discussed in Chapter 3. It is shown how existing
architectures, such as those mentioned above have satisfied these requirements; yet
in doing so have placed severe, and perhaps unnecessary, constraints on the prob-
lem. The Network Element (NE) is introduced as a facility which provides for the
requirements of Byzantine failure resilience in an efficient manner. The anticipated
advantages of this architecture are suggested. Chapter 4 gives a detailed discription
of the Network Element design that_has been-incorporated into.a Network Element

based Fault Tolerant Processor (NEFTP). The performance and reliability of the
NEFTP is investigated in Chapter 5. This thesis concludes with some discussion of
the actual performance and reliability measures of the NEFTP.

11

Chapter 2
Fault Tolerance Fundamentals

This chapter is presented as an introductory overview of fault tolerance, and as
such is not rigorously complete. It is hoped that the information presented herein
will be sufficient for the purposes of this thesis. For situations in which this is not
the case, more information may be found in the references.

Fault tolerant computing is defined as “the ability to execute specified algorithms
regardless of hardware failures, total system flaws or program fallacies [Kim?75].”
A collective term for “hardware failures, total system flaws or program fallacies”
is “faults.” As implied by the definition, faults can be of a hardware or software
nature. Hardware faults can either be permanent, intermittent or transient [SS82].
A fault may be active, currently manifesting erroneous behaviour in a part of the
system, or a fault may be latent, producing no erroneous behavior at the given
momment but having the potential to do so in the future.

Fault tolerance is achieved through the use of redundancy such that faults can
be detected and corrected prior to the entrance of the aggregate logical machine into
an erroneous state, or propagation of errors to the system outputs. This redundancy
can be of many forms. Informational redundancy, such as over-specified simultane-
ous equations and error-correcting codes, can be used to detect and correct faults in
a limited manner [Fri86]). However, informational redundancy schemes are difficult
to devise to detect and correct ALU faults [SS82]. Hence, informational redundancy
is ineffective against total system flaws since it cannot provide total system cover-
age. Temporal redundancy provides a means of tolerating transient hardware faults
by re-executing an instruction stream several times [LS88]. Clearly temporal redun-
dancy cannot tolerate permanent hardware failures. Hardware redundancy allows
tolerance of permanent and transient hardware faults which are uncorrelated be-
tween the redundant components (correlated hardware faults can affect redundant
elements simultaneously, and hence cannot be tolerated if redundant elements are
identical). Software redundancy may be employed to tolerate uncorrelated software
errors. Design deversity on behalf of redundant components is necessary (though
not necessarily sufficient [KLJ85,AK84]) to protect against correlated faults.

Fault tolerant computers can be differentiated in terms of the type of faults
tolerated, the definition and level of tolerance, and the architecture (type of redun-
dancy) employed to provide the tolerance. In order to compare the types of fault
tolerant computers there must exist some means of quantifying the fault tolerance
of a system.

Probublliy of Follum, pet baur

Figure 2.1: Performability of Selected Architectures

2.1 Quantification of a System’s Fault Tolerance

The fault tolerance of a system can be measured in terms of its reliability,
availability, and coverage. The reliability of a system is expressed in terms of the
probability that it functions correctly for a given duration. The less strict metric
availability is the probability that the system will be able to function correctly at a
given time (roughly corresponding to the ratio of the system failure rate to system
repair time). Coverage is expressed in terms of the probability that the system
will function correctly given the occurrence of an arbitrary fault. Recent study
has suggested an interesting new metric called performability which is useful as a
figure of merit of fault tolerant systems [Har87]. One way to express performability
involves mapping systems onto a cartesian coordinate system which has performance
(throughput) as the abscissa, and reliability as the ordinate. Figure 2.1 shows the
performability of selected systems [Har87).

2.2 Motivation for Fault Tolerant Computing

There exist many applications today that require significant computation critical
to the success of the task. A fault tolerant system must provide reliabulity at a level
commensurate with the computation’s criticality. Less stringent applications, such
as electronic banking and investment, may allow for operator intervention to repair

13

or replace failed components with a finite interruption in service. Some applications,
such as telephone swithching services, allow for operator intervention with no inter-
ruption in service. An area illustrating stringent requirements is in autonomous and
semi-autonomous vehicle control. Here no operator intervention may be possible
and the results of a system failure may be catastrophic. The reliability require-
ments of such a system are typically set at 2 failure rate 10~7 per hour for military
applications and 107! failures per hour for civilian applications, [Bro87,Wen78] . A
non-fault tolerant system composed of hundreds of typical VLSI components each
having a failure rate of 10”7 permanent failures per hour [Gol84], and other fail-
ure sources, is incapable of satisfying this reliability requirement. Therefore fault
tolerance must be incorporated into computer architectures which perform these
applications.

2.3 Two Fundamental Approaches to Fault Tolerance

Neither informational redundancy nor temporal rendundancy can satisfy the
reliability requirements mentioned above; this is a direct consequence of the fact
that these redundancy schemes are incapable of tolerating failures of any system
components with unity coverage. Hence, current efforts in ultra-reliable computing
employ hardware redundancy. There currently exist two fundamentally different
approaches to providing hardware redundancy for fault tolerance.

The approach taken by much of private industry is to use minimal hardware
redundancy in designing systems which provide tolerance of only those failure modes
which are predefined as “likely”. This approach is ad hoc in nature and thus will
be refered to as the ad hoc approach. The ad hoc approach is not based on any
theory. It involves performing some failure mode analysis of the target system to
determine the likelihood of a priori determined failure modes. Hardware redundancy
can then be designed in to provide coverage of those failure modes with a sufficiently
high probability of occurrence. System reliability is then related to the sum of the
probabilities of the uncovered failure modes. For example, suppose a failure modes
analysis of a given system yielded only three likely failure modes a, b, and ¢ with
probabilities of occurrence per unit time f,, fi, and f. respectively. If unity coverage
was provided for these modes, then, purportedly, the probability of system loss per
unit time would be no more then 1 — (f, + f5 + f.)-

The approach taken by the academic and defense research communities is that
sufficient hardware redundancy must be employed to provide tolerance of all failure
modes. Tolerance of arbitrary failure modes is known as Byzantine resilience. This
is the design philosophy of the NEFTP and of those architectures to which it is
compared. A detailed discussion of Byzantine resilience will be given in Chapter 3.

The validity of the ad hoc approach is seriously questioned when considering
the assumptions, human biases and impracticalities involved. There are serious
problems to validating or certifying such an architecture. To accurately assess the

14

reliability of such a system, lifetime testing is not possible. In other words, to know
if the system has a probability of failure of less than 10~ per hour, it is not feasible
to build 100 identical systems and test them for 10° hours. Therefore, the only way
to arrive at accurate reliability values using this approach would be to enumerate
all possible failure modes. Yet digital systems have infinitely many failure modes.
Pattern sensitive random access memory (RAM) failures evidence this fact. In fact,
the only way to certify and validate a fault tolerant architecture is via analytical
modeling coupled with empirical testing. Yet the ad hoc approach is not based on
any theory and hence is not amenable to analytical modeling. These are serious

problems. In addition to the above problems, most architectures produced by the
ad hoc approach provide no coverage for malicious failures. Malicious failures just
do not happen (almost). It is extremely foolhardy to dismiss malicious failures by
saying that they just do not happen. This is incorrect. In [MG78], an in-flight
failure of a non-Byzantine resilient architecture was recorded and attributed to lack
of safeguards against malicious failure. Though one cannot measure how likely
malicious failures are, one can estimate how unlikely they must be in order that a
non-Byzantine fault tolerant computer would successfully complete its application.
Such a calculation for a future space application illustrates that malicious processor
failures would have to have a likelihood of less than 1076 that of other processor
failures [Joh88| in order that sufficient reliability could be achieved in an architecture
with no safeguards against them.

For these reasons Byzantine resilience can be seen to be the only approach to
fault tolerance capable of meeting the reliability needs of life or mission critical
applications. In order to provide tolerance to abitrary failure modes, a systern must
satisfy some stringent theoretical constraints (illustrated in the next chapter). This
has typically 1esulted in architectures which have significantly increased cost and
decreased performance compared to their non fault tolerant peers. The NEFTP
architecture is anticipated to offer the high reliability of Byzantine resilience with
a lower cost and performance penalty.

15

Chapter 3
Byzantine Resilience

The notion of Byzantine resilience derives from the solution of a distributed
consensus protocol problem known as the Byzantine Generals Problem [LL82]. The
problem scenario is as follows: several generals of the Byzantine army (one or more
of whom may be traitors) are camped around an enemy city and can communicate
only via messenger; derive a protocol to ensure that all non-traitorous generals agree
on a common battle plan. This problem has been well studied, and theoretically
demonstrable prerequisites for a solution exist. For a given number of traitor gener-
als, the solution is constrained in the number of participating generals, the number
of generals through which a message must be relayed, and to whom each general
must relay the message. The prerequisites of a solution to the Byzantine generals
problem are stated formally below.

A deterministic consensus protocol which is capable of correctly functioning
in the presence of arbitrary behavior on behalf of f participants must meet the
following requirements:

1. There must be at least 3f + 1 participants [PSL80].

2. Each participant must be connected to at least 2f + 1 other participants .
through unique communication links. [Dol82].

3. The protocol must consist of a minimum of f+1 communication rounds among
participants [FL82].

4. The participants must be synchronized to within a known upper bound
[DDS84].

An architecture which meets the above requirements is said to be f~-Byzantine
B:silient. Such an architecture is capable of achieving near unity failure coverage.

A participant in the above protocol is known as a fault containment region
(FCR). A FCR is a region to which faults are contained to the extent that the
probabilities that faults occur in different FCRs are statistically independent. Fault
containment is provided by three architectural features:

o physical isolation
e electrical isolation, including independent power '

e independent clocking.

16

Many of the designs that will be discussed in this thesis take great liberties with
these architectual guides for sound fault containment region design. It is excusable
to the extent that it is merely a convenience for implementing the proof-of-concept
prototype. Occasions in which these guidelines are violated in prototype by design
decisions that make it impossible to remedy the situation in an actual production
version of the machine will merit some discussion.

3.1 Rational of the Byzantine Resilience Requirements

This section is included to lend some plausibility to the requirements of Byzan-
tine failure resilience and is in no way intended as proof, formal or otherwise (the
references listed by the requirements provide such proof). In dcing so, the failure
modes of some commercially popular non-Byzantine resilient architectures will be
used as counter examples, and the canonical 1-Byzantine resilient architecture will
be introduced.

3.1.1 Synchronization

Participating FCR's must be synchronized to within a known and bounded skew.
No asynchronous protocol is capable of achieving consensus in the presence of fail-
ures because each such protocol has the possibility of non-termination [FLP85].
The rational behind the synchronization constraint is two-fold. First, some tempo-
ral bound must be placed on the behavior of a FCR in order that an inert failure
in one FCR can be detected. Second, the mechanism used to compare values from
participating FCRs must know when valid data has arrived from all non-faulty
FCRs.

3.1.2 Connectivity

Unique communication links must be used to connect all participating FCRs.
Without such links, a non-faulty FCR is not guaranteed of receiving valid informa-
tion from all other non-faulty FCRs. This prohibits the participants from achieving
consensus regardless of the number of communication rounds employed. For exam-
ple, consider the situtation where two FCRs share a communication link to another
FCR (Figure 3.1). It is possible for one of the transmitting FCRs (B) to fail in
such a way as to corrupt messages from C to A. In this manner FCRs A and C
effectively cannot communicate with one another; hence they will never be able
to reach agreement on anything. Assuming for now that 3f + 1 participants are
required, then the constraint for unique communication links dictates that there be
2f + 1 such links.

Protocols employing authenticated commuiucation may be able to reduce the
connnectivity constraint. Such authentication must ensure that a failure on behalf
of a relaying node cannot corrupt message traffic through that node. Furthermcre,

17

Figure 3.1: FCRs Connected via Shared Link

sufficient connectivity must still be provided to withstand the physical failure of f
links.

3.1.3 Participants and Communication Rounds

The remaining two requirements can best be motivated by demonstrating the
existence of failure modes in architectures which do not satisfy them. Two non-
Byzantine resilient architectures will be used for this purpose: the self checking
pair, and the tripie modular redundancy (TMR) technique. Specifically, these ar-
chitectures will be shown to be incapable of achieving consensus in the presence
of arbitrary failures, whereas Byzantine resilient architectures are guaranteed to be
able to achieve consensus. Consensus of a singly sourced input is known as input
data consistency. Input data consistency necessitates the properties of agreement
and validity. Agreement means that all non-faulty FCRs will reach agreement on
the input value. Validity means that if the FCR which sources the input data is
non-faulty, then all non-faulty FCRs will agree on the value actual sent by the
source. Consensus of commonly sourced output is known as output consensus.

A typical self checking pair architecture (Figure 3.2) consists of two processors
with a comparator attached to their outputs for output data comparison. Such an
architecture clearly does not meet the requirments for minimal (f = 1) Byzantine
resilience. There exists only two FCRs (at most three, if the comparator resides in
its own FCR), when four are required. The requirement for number of participating
FCRs will henceforth be known as the cardirality requirement. Similarly, this -
architecture does not satisfy the connectivity requirement. The two channels of a
duplex cannot satisfy the property of agreement and hence cannot satisfy validity
as well. This is & result of the Two Generals Problem [Gra79] which demonstrates
that two generals who are isolated and initially undecided cannot reach consensus
on a battle plan via communication through unreliable messangers. It can be shown
that in «.der that consensus be reached at a given point in time, the generals must
have been in agreement initially. An additional problem of this duplex architecture
is that it is not capable of consensus of outputs, hence it is not fault masking. In the

18

Processor 1

Comparator T-»

Processor 2

Figure 3.2: Self Checking Pair Architecture

Figure 3.3: TMR Architecture

presence of a fault the comparator signals the discrepancy seen on its inputs; yet
valid output is not assured because the comparator has no way of knowing which
input is correct. Furthermore the comparator is a single point of failure; therefore,
even if the comparator had some reasonable method of determining which FCR
is correct, the comparator itself could fail and generate incorrect output. The
reliability of the comparator is obviously an upper bound of the system reliability.

The architecture used in the TMR technique consists of three inter-connected
processing sites (Figure 3.3). This architecture does not satisfy the cardinality and
connectivity requirements of minimal Byzantine failure resilience. This renders it
incapable of acheiving input data consistency. A TMR architecture with a sim-
plex sensor (Figure 3.4) is used to illustrate the input consistency protocol in two
sceparios.

Assume processor A hosts a simplex sensor, and the value of this sensor (r;z €
(0,1)) needs to be distributed. In the first s~~nario processor A is faulty. An initial
round of communication takes place and A sends a 0 to processor B and a 1 to
processor C. Another round of communication is required in order that B tell C
and A what A told it, and that C tell B and A what A told it. During this second

19

Figure 3.4: TMR Architecture with Simplex Sensor

round A does not source any data, because B and C have already heard what A
had to say in the first round. At the end of the second communication round A,
B and C have all the information that they can learn about the triad’s status,
hence no further communication rounds are required. At the end of the second
communication round A, B and C both have a copy of the data set (0,1). Both B
and C ‘vote’ this data set according to the following function

f(z1,22) =2, Vo

and arrive at the censistent result 1. The requirements for Byzantine failure re-
silience do not put any constraints on what happens in the faulty FCR A. The
property of agreement of non-faulty FCRs is satisfied. Validity is not required since
it is the source processor that is failed. This scenario evidences how an input con-
sistency protocol would work for a TMR. architecture. However, a second example
illustrates the failings of this architecture.

The second scenario is the same as the first except that the failed processor is
B, and that the actual sensor input is fixed as 0. The first exchange round takes
place and A sends a 0 to B and C. The second round takes place and B sends C a
1 and A a 0, while C sends A and B both a 0. At the end of the second round the
two non-faulty FCRs (A and C) have different data sets. A has the data set (0,0)
while C has the data set (0,1). Applying these data sets to the voting function
given above, A and C arrive at different results. Hence the properties of agreement
and validity are violated. This is a disastrous problem. The non-faulty FCRs do
not have a consistent view of the system status and subsequent computation in the
two will therefore diverge. Furthermore the failed FCR B may actually recover the

20

valid input value causing the systemn as a whole to view FCR C as the source of the
failure. An incorrect failure diagnosis has equally catastrophic ramifications for the
system. This illustrates why the TMR architecture is not Byzantine resilient.

It should be pointed out that a cardinality of three would be sufficient for output
consensus given input consistency. The output consensus protocol consists of a
single communication round in which all FCRs broadcast their output value to all
other FCRs. Thus in the presence of an arbitrary single fault all non-faulty FCRs
will have a data set of three values of which at most one is incorrect. Hence a
majority vote will yield agreement and validity of the output value among all non-
faulty FCRs. Since output consensus is achieved in the presence of a single failure
the TMR architecture is said to be a Fault Masking Group (FMG). The inherent
problem here is that input consistency is not guaranteed. Therefore if an input
(which is not guaranteed of being distributed consistently) is used to produce the
output, then output consensus is not guaranteed.

The TMR example provides insight into the requirements of Byzantine resilience.
The failure of the TMR architecture is in cardinality and connectivity. Two com-
munication rounds are indeed sufficient for input data consistency for a minimal
Byzantine resilient architecture. The problem is that at the end of the second
round each FCR has only two values, one of which may be incorrect. Replicating
sensors does not change this problem any. There will exist some finite skew be-
tween the sensor values from each FCR, and thus each must be exchanged through
an input consistency protocol. The processors would each perform some mean value
selection of their senor value set. As was shown in the example, no single sensor
value can be distributed consistently, therefore the set of values is not guaranteed
to be distributed consistently. The solution is to add another FCR such that each
FCR will have three values at the end of the communication. Since at most one
of the values can be incorrect, a majority vote function will guarantee agreement.
Hence the 4 FCR requirement for minimal Byzantine resilience. The canonical 1-
Byzantine resilient architecture is shown in Figure 3.5. This fourth FCR is not
constrained to be a processing site. Only three processing sites are required to
provide output consensus in the presence of a single fault. This fourth FCR can be
a minimal hardware data exchanger capable of participating in the communication
protocol.

3.2 Byzantine Resilient Architectures

Several architectures which satisfy the requirements for single Byzantine failure
resilience have been designed and implemented. This section will analyze several
of them in turn, illustrating how they meet the requirements of 1-Byzantine failure
resilience. This discussion will form the foundation for the presentation of the
NEFTP architecture. The NEFTP will be shown to have the property of Byzantine
failure resilience, though it uses a synchronization scheme uncommon to other fault

21

P4

FCRA FCRD

FCRB RCRC

Figure 3.5: Canonical 1-Byzantine Resilient Architecture

tolerant processors.

Much of the discussion below will focus on the synchronization schemes em-
ployed by the various architectures. The synchronization mechanism of the NEFTP
is seen to be the crucial ingredient in the reliability, flexibility, cost and performance
benefits which are anticipated. Indeed this is true of all such architectures. The
synchronization mechanism directly affects an architecture’s performance, reliabil-
ity and flexibility. To aid this discussion some issues of synchronization and the
necessary terminology are discussed here.

Granularity of action is a parameter of synchronization schemes indicating the
temporal difference between identical actions on behalf of different participants.
Schemes which achieve fine grain synchronization have a small temporal difference
among participants. Correspondingly, coarse grain synchronization schemes leave
a large temporal difference between participants. Another parameter of synchro-
nization schemes is post-synchronization skew. This refers to the minimum skew
that the participants can attain after execution of the synchronization task. Note
that post-synchronization skew is a fundamental lower bound on the skew between
FCRs. Granularity of action is affected by synchronization frequency - the rate at
which synchronizations take place. This is because skew builds up between FCRs,
due to the drift of their respective clocks, during the periods between synchroniza-
tions. Given a synchronization mechanism, granularity of action can be reduced by
synchronizing more frequently. This can be done until synchronizations are taking
place continuously, at which point the maximum possible skew will be no less than
the post-synchronization skew.

Why does granularity of action matter? As long as the participants are syn-
chronized to within a known and bounded skew, consensus can be achieved. The

22

catch is that granularity of action directly impacts performance and reliability. The
impact on performance is straightforward. The machine can output data no more
frequently than the rate at which data can be exchanged and compared. The time
required for data comparison cannot be shorter than the maximum possible skew
between FCRs, as any FCR must wait until it is guaranteed to have data from all
non-faulty FCRs in order to compare redundant copies. The impact of granular-
ity of action on reliability is more subtle, but nonetheless important. In the short
run the probability of system loss due to near simultaneous failures of redundant
components is linearly proportional to the mean fault latency time plus the time
it takes the system to reconfigure around the first fault (denote this sum as 1/pu).
For a Byzantine resilient system, reconfiguring involves identifying and isolating a
failed FCR by masking it out. This rate z cannot be faster than the rate at which
outputs from all participating FCRs can be compared. Outputs can be compared
no faster than the rate of 1/mazimumskew. Hence the granularity of action of
the synchronization mechanism directly affects the reliability; a finer granularity
increases system reliability.

The choice of synchronization mechanism may also affect the architecture by
imposing hardware and/or software constraints. These constraints are important
not for implementation flexibility alone; they also impact reliability. An architec-
ture which is free to employ design diversity in both the hardware and software of
participating FCRs is arguably less susceptible to common mode design failures,
hence more reliable. Design diversity in software may consists of scheduling tasks
in different orders on different FCRs, or it may entail coding difterently the versions
of a task which are run on different FCRs (called n-version programming). Design
diversity in hardware may consist of using single board computers from different
vendors in different FCR's.

Some synchronization mechanisms impose a hardware constraint known as clock
determinacy. This means that redundant processing sites must execute an identical
number of instructions in a given number of clock cycles. To illustrate the impor-
tance of such a constraint, consider that clock determinacy constrains the hardware
design of the processor tremendously, especially in light of the fact that commer-
cially available computers are not clock deterministic. Typical problems include
devices such as error correcting memories, floating point units, and memory man-
agment units; where a given operation can take a variable number of clock cycles
in the presence of a memory fault, overrun, or page fault. The system architect is
left to design a clock deterministic processor by forcing worst case scenarios of such
-operations.

An example of a software constraint generated by the synchronization mecha-
nism is when the applications programmier is required to know the maximum ex-
ecution time of any task, and ensure that tasks are scheduled such that they ::2
guaranteed to complete by a given time. The programming model of such a machine
is quite more complex than a canonical simplex Von-Nueman machine. Correspond-

23

ingly the cost of code development is increased. However, this is a constraint that
is typically imposed by the real time nature of such systems anyway.

3.2.1 The Software Iinplemented Fault Tolerance Computer (SIFT)

The SIFT architecture consisted of six processors configured with a point-to-
point communication link between each pair of processors. This architecture obvi-
ously satisfies the cardinality and connectivity requirements. As will be explained
below,the mechanism for synchronization and data comparision (i.e. voting) is pro-
vided by software. Aside from the somewhat specialized communication ports, the
processors contain no hardware that is specific to fault tolerance.

The SIFT processors are synchronized by executing the synchronization task.
Tasks must be allocated to frames, where each frame denotes a specified number of
ticks of the local processors clock. Frames are approximately 100ms long, and are
divided into 33 sub-frames of 3.2ms duration {PB86]. Each 1.6ms the processor is
interrupted and decides whether to schedule a new task.

The synchronization task must be scheduled at the same hardware clock period
on each processor. The synchronization task involves a processor broadcasting the
value of its local clock to all processors during a set time window. Other windows
denote a time for the processor to listen for the clock values broadcast from other
participants. Upon receiving each value, the processor reads its local clock and notes
the difference between the two. After all time windows have passed, a processor has
a set of values representing the deviation of its local clock from all other processor
clocks. Each processor uses these values to compute an adjustment to its local
clock. A processor adjusts its local clock, and waits to begin the next frame when
its local clock reads some a priori determined value.

Synchronization is achieved by this algorithm because fast processors will adjust
their clocks such that they wait longer to begin the next frame than nominal proces-
sors. Correspondingly, slow processors will wait less time than nominal processors.
No computation can be performed in the adjustment periods, as not all partici-
pants require the same number of them. This type of synchronization is known
as framewise synchronization since adjustment is made at frame boundaries. The
implementation of this algorithm has some significant drawbacks. Synchronization
occurs with a low frequency (once a frame, or 100ms) due in part to the fact that
the synchronization task takes a long time to complete (2ms) [PB86]. Hence this
scheme has a large maximum skew, though indeed bounded (107us) [PB86). The
large possible maximum skew means that SIFT processors are loosely synchronized.
The SIFT scheme is thus a coarse grain synchonization scheme. The method used
by a SIFT processor to “read” another’s clock value involves polling a memory loca-
tion and waiting for the arrival of the broadcast clock value. This implementation
involves some significant “read error” (26us) [PB86]; the post-synchronization skew
is directly related to this quantization error of the synchronization task. Therefore
the post-synchronization skew is large.

The loose synchronization of SIFT causes both performance and reliability
penalties. Perhaps a more important penalty is the programming constraint im-
posed by this scheme. The applications programmer must ensure that tasks are
allocated to a frame such that the computation of a frame always takes an a priori
determined number of sub-frames. This is done to ensure that the synchroniza-
tion task can be scheduled at the identical sub-frame by each processor. The fault
tolerance is not transparent to the applications programmer, making the cost of
changing the application of the machine tremendous. This scheme does allow for
limited hardware diversity since no constraints are placed on the hardware other
than the (rather significant) constraint that it be possible to acheive bit-for-bit con-
sensus of processor outputs. The scheme also allows for limited software diversity.
Redundant sites are framewise congruent but they need not be functionally con-
gruent. Funtional congruency means that the processors are not only synchronized
as far as the number of tasks executed is concerned, but that the tasks executed
also are functionally equivalent. It is possible in SIFT for redundant processors
to schedule different functions in a given task slot, which arguably makes it less
susceptible to transient errors.

SIFT implements data comparison with the vote task. A processor receives data
from other processors in its memory-mapped mail box. The vote task then performs
a n-way, (4 < n < 6), bit-for-bit, maskable, majority vote on the redundant copies.
The vote task also provides vote error information identifying any processor in
disagreement. Such information is necessary to reconfigure around a permanently
failed processor. This mechanism has some serious performance problems. A 5-way
vote of a single data value (16 bit word) takes 413ps [PB86] in the absence of errors.
This means that fewer than 8 values can be voted in a sub-frame.

As can be seen here, much of the throughput of a SIFT processor is dedicated
to implementing the fault tolerance (1 sub-frame for synchronization, and many for
data comparison, per frame). More will be said about this in Chapter 5.

3.2.2 The AIPS Architecture Fault Tolerant Processor (AIPS FTP)

The AIPS FTP takes an approach different than that of SIF'T in two fundamen-
tal ways. First, a minimally Byzantine resilient configuration of the AIPS FTP con-
sists of three processors and three additional FCRs called interstages (Figure 3.6).
An interstage is a minimal hardware implementation of a Byzantine resilience mech-
anism. The motivation for interstages derives from the previously mentioned fact
that only three of the four FCRs required for 1-Byzantine failure resilience need
be processors. The three processors are required to form a fault masking group
for output data consensus, and the fourth FCR is required for correct input data
consistency. Given flexibility as to the implementation of the fourth FCR, .ne is-
sue ot reliability was considered. A minimal data exchanger requires less complex
hardware than a processor and therefore is less likely to fail. Choosing an interstage
design for the fourth FCR thus increases system reliability. The second fundamen-

25

To Processor A

From interstage A

_To Processor B

Processor A Interstage A

Tom Interstage C To Processor C

To Processor A

From Intersiage A

To Pmcassor B

3

To Processor C

To Processor A

From Interstzge A

From Intersta To Processor B

Processor C Interstago C

From Intersiage C To Processor C

Figure 3.6: AIPS Fault Tolerant Processor (Triplex)

tal difference is that the mechanisms for synchronization and data comparison are
provided in hardware in an attempt to reduce the overhead of implementing fault
tolerance.

Figure 3.6 illustrates how the FTP satisfies the requirements for cardinality and
connectivity. For clarification, the two rounds of the input consistency algorithm
occur as follows. In the first round, the source processor forwards its value to all
interstages. In the second round the interstages send what they received in the first
round to each processor. At this point the processors each have three values which
can be resolved to one by a 3-way, maskable, bit-for-bit, majority voter circuit. The
important observation must be made that in the presence of an arbitrary failure
on behalf of any single FCR (processor or interstage), at most one of the three
values received by any processor is different from the others. Agreement will thus
be reached. Given that the failure was not in the source processor FCR, then at
most one of the three values received by any processor will be incorrect. Agreement
and validity are thus ensured.

The FTP is synchronized by employing a digital phase lock loop circuit in each
processor to generate a clock signal, called FTC - Fault Tolerant Clock, which is
locked in phase in all FCRs. The local version of FTC, henceforth called LFTC,
is approximately a 888 kHz clock with a 50 percent duty cycle. Each processor
forwards its LFTC to the interstages and the interstages relay them (now denoted
ILFTC, for Interstage LFTC) back to the processors. Note that additional con-
nectivity is provided for these LF'TC and ILFTC signals. Each processor receives
three ILFTCs and generates FTC by selecting the median value. The phase of
FTC is compared with the phase of LFT'C, and the time until the next rising edge

26

of LFTC is adjusted depending on the deviation. Regardless of the adjustment,
all processors receive the same number of processor clock (SYSCLK) ticks during
a FTC period. If a FCR is fast it will wait longer till asserting LETC and slow
the frequency of SYSCLK accordingly so that no extra processor clock ticks are in-
curred. Synchronization is provided in that a tast processor will have its SYSCLK
frequency reduced during the adjustment period relative to a nominal processor.
Similarly a slow processor will have its SYSCLK frequency increased relative to a
nominal processor. The synchronization scheme imposes a constraint of clock deter-
minacy to guarantee that each processor executes the same number of instructions
per FTC cycle. This allows data exchanges to simply be controlled by the FTC
cycle. All processors execute the data exchange instruction at the same point in the
FTC cycle due to clock determinacy. Hence the data exchange can be controlled
by the phases of the FTC.

This is a fine grain synchronization mechanism. Synchronizations occur once
each FTC cycle, which corresponds to a rate of 888 kHz. The post-synchronization
skew is also very small, approximately 125ns. This translates directly into perfor-
mance and reliability improvements over SIFT, as will be illustrated in Chapter
5. However, there are some constraints imposed by this scheme. First is clock de-
terminacy, with its ramifications as previously discussed. Second, there exist some
software issues. The fault tolerance of the FTP has been made relatively transpar-
ent to the user. The programming model is essentially identical to a simplex Von
Neuman machine with some data exchange primitives mixed in. However, the clock
determinacy constraint precludes the use of n-version programming techniques in
the FTP core itself. A solution to the n-version programming problem has been
provided via the use of attached processors in each FCR which are not clock de-
terministic [LA88]. The processors of the FTP achieve what is called framewise
functional sycnhrony. They are sychronized to FTC frames, and because they are
clock deterministic they are performing the same functional operation in each frame.

The data exchange mechanism is elegantly simple due largely to the clock de-
terminacy constraint. A data exchange is performed by each processor during the
same F'TC cycle. For simplicity all data exchanges are two rounds. The data ex-
change is pipelined. A byte transaction between processor and interstage occurs
every quarter FTC cycle. Data is forwarded to the interstages on the rising edge
of FTC and sent back one quarter FTC cycle later. The duplicate copies received
at the processor are compared using a maskable, bit-for-bit, majority vote circuit
implemented in a programable logic device. The output of this circuit is guaranteed
to be valid and readable by the processor at the following falling edge of FTC. Error
information called voter syndrome, which indicates which processors, if any, were in
disagreement during a vote, is accumulated in error registers which are readable by
thL2 processor. The steady state throughput of this mechanism is 16 bits per FTC
cycle.

27

AP AP AP AP

Figure 3.7: MAFT Architecture

3.2.3 The Multicomputer Architecture for Fault Tolerance (MAFT)

The MAFT architecture is another attempt at removing the overhead of fault tol-
erance from the application domain in order to increase performance and flexibility.
The MAFT solution is to provide two entities per FCR, one handling the overhead of
fault tolerance, the other running the application. Each MAFT FCR consists of an
operations controller (OC), and an applications processor (AP) [WKF85,KWFT88).
The OC hosts the inter-FCR communication interface, and has two way communi-
cation with its AP. The OC is responsible for inter-FCR communication, synchro-
nization, data voting, error detection, task scheduling, and reconfiguration. The AP
is responsible for the application task and application dependent peripheral devices.
The result is the architecture shown in Figure 3.7.

The MAFT machine consists of “several” (several =4, Figure 3.7) FCRs fully
interconnected via broadcast buses. This configuration satisfies the cardinality and
connectivity requirements for 1-Byzantine failure resilience.

MAFT employs a framewise steady state synchronization scheme. A single it-
eration of this exchange involves broadcasting two versions of a synchronization
message. At an a priori determined time, the OC executes a “pre-sync” synchro-
nization exchange. The messages exchanged at this time are “time stamped” as
they are received. A voted value of the received time stamps is compared with
the local pre-sync time stamp and an adjustment is computed. The adjustment
affects the time waited until the second version of the synchronization message
(“sync”) is broadcast. Note that unlike SIFT, the actual time value is not sent,
rather reception of the pre-sync message implicitly generates timing information.
Additionally, unlike FTP, no extra connectivity need be provided for the timing
information; it can be sent over the data broadcast buses. The result is that the
FCRs of MAFT are loosely synchronized. The highest frequency of synchronization
is 357 Hz [KWFT88]. The maximum skew between FCRs is 18us [KWFT88].

Data comparisor. is performed in a unique manner in the MAFT architecture.
The data from the AP which is being exchanged is tagged to identify AP and task.
A “data flow”-like voter is implemented which votes values “on the fly”. Exact or
approximate agreement can be supported by the voter. The effective bandwidth

28

Processor Processor

A]
Notwork Element Network Element
A D
Network Element Natwork Elsment
8 c
Procsssor Processor
B c

Figure 3.8: NEFTP Architecture

of the data communication mechanisim is quoted at one Mbps (million bits per
second) [KWFT88|.

It is argued that these aspects of MAFT make it amenable to hardware and
software diversity [WKF85,KWFT88]. Implementation of approximate agreement
in the voting algorithm removes the bit-for-bit agreement constraint, which is a
stumbling block for n-version programming software diversity, and hardware diver-
sity. “On the fly” voting coupled with the synchronization mechanism remove the
need for tasks to be run in exact synchrony. However, there is the usual temporal
constraint on the execution time of tasks. The programmer must know the max-
imum possible execution time of a given tasks. The OC function of scheduling is
therefore dependent on the application. Furthermore, any software diversity must
be accounted for in the scheduler.

3.3 The Network Element Based Fault ‘Tolerant Processor
(NEFTP)

A new architecture known as the Network Element } sed Fault Tolerant Proces-
sor (NEFTP) has been developed (Figure 3.8). It consists of four FCRs connected
with fiber optic broadcast links. Figure 3.8 illustrates that the cardinality and
connnectivity requirements are satisfied. The design of the NEFTP employs some

29

of the advantageous features of both the FTP and the MAFT.

The fault containment regions of NEFTP look similar to those of MAFT. Each
FCR consists of a processing element (PE) and a network element (NE). The NE is a
hardware implementation of the fault tolerance related functions of synchronization,
data communication and data voting. The PE is a commercially available computer
which performs the application, scheduling and reconfiguration tasks. The motiva-
tion for this architecture is two-fold. First, it removes a significant portion of the
burden of fault tolerance from the processor. FTP achieved this by implementing
the fault tolerance algorithms in dedicated hardware. MAFT achieved this via the
operations controller. NEFTP also mitigates the overhead of fault tolerance by
implementing the fault tolerance algorithms with dedicated hardware in the NE.
Second, it provides for some flexibility in the implementation (both hardware and
software) of the processing element. NEFTP avoids the necessity of clock deter-
ministic processors by providing 2 means for the NEs to interactively arrive at a
consistent view of the data exchange status of the system.

The basic operation of the NEFTP is described here. The PE views the NE
as a memory-mapped, buffered I/O device resident on its PE/NE interface. The
PE/NE interface in this implementation is Motorola’s open architecture VMEbus.
The PEs use their NEs to send messages among themselves. These messages are
sent for the purposes of synchronization, output consensus, and interactive con-
sistency. If the PE wishes to perform a data exchange, it merely writes the data
(message) to its NE. Voted data from the exchange along with error information
is eventually available for the PE to read at its NE. The NE appears as a buffered
I/O device in that the processor may write many messages to its NE before reading
the results from the first exchange. The NEs synchronously perform an interactive
consistency exchange of the status of their PE/NE interfaces. Upon arriving at the
consensus that a PE message needs to be exchanged, this exchange, either one or
two rounds of communication, takes place. A two round exchange is required for
input data consistency, but a one round exchange is sufficient to achieve output
consistency. Upon completing the exchange, the NEs return to performing their
interactive consistency exchange of system status.

The NEs of the NEFTP are synchronized by message receptions. Since mes-
sage transmission is a functional characteristic of this system, this synchronization
scheme is known as functional synchronization. The NEs are clock deterministic,
and are continuously exchanging messages, either the status message or a message
from a PE. Each NE notes when it receives messages from the other NEs, and com-
pares the median reception event with the time it sent the corresponding message.
Based on the results of this comparison the NE will adjust the amount of time it
waits till it starts transmission of the next message. The network elements achieve
functional framewise synchrony. The NEs are seen to be framewise congruent (like
SIFT, FTP, and MAFT) by defining a frame to be a message transmission. A frame
is a variable size quantity in the NEFTP because variable message sizes are sup-

30

ported. The NEs are functionally congruent because they are clock deterministic
and the same functional operation is taking place in the same frame on all NEs.
The NEs are tightly synchronized because the frequency of synchronization is great,
and the post-synchronization skew is small. Synchronization events occur no less
frequently than the maximum message (or frame) size which is 30us (240 NE data
clock periods). The post-synchronization skew is no greater than three NE data
clock periods 375ns. What is the importance of a tightly synchronized NE? One
important point is that the granularity of action of the NEs will be a lower bound of
the granularity of action of the processors. Also the fact that message transmission
is used to synchronize the NEs and that the frequency of synchronization is great,
is indicative of the high bandwidth communication mechanism provided by the NE.

The PEs also use reception of messages for synchronization. In order to make
reception of a message a synchronizing act for the processor, it must suspend useful
computation pending arrival of the message (otherwise known as “busy waiting”).
The resultant post synchronization skew is quite small because the messages are
made available to the PEs synchronously oy the NEs. The post synchronization
skew is the NE skew plus the busy wait loop length. A PE need not busy wait for
every message, but clearly the frequency with which it does busy wait affects the
granularity of action of the system. The natural question to ask is, “... are the PEs,
and hence the system as a whole, tightly synchronized or loosely synchronized?”
The answer is “... well, it depends.” The frequency of synchronization can be varied
depending on the application. Applications requiring fine granularity of action can
execute the busy wait with each message sent and use the smallest message size
available. A mechanism is even provided for the processors to synchronize without
actually sending any data in an attempt to maximize the achievable frequency of
synchronization. The processor can send a SYNC message which must be enabled
by the NE interactive consistency task, but once enabled the exchange consists of
the NE writing some status information to the PE/NE interface. Busy waiting
for the reception of this status information will indeed be a synchronization event,
with the benefit of saving the time involved in sending a minimum length message.
Cleary repeated SYNC exchanges would result in the tightest synchronization, but
this is not sustainable, as a fault tolerant computer that never exchanges any data
will never output any data and is therefore of limited use. An application where
a high granularity of action may be desired is in a hardware and software design
diversity test. Of course the NE must know the maximum PE skew, hence it is
a programmable parameter (called the timeout) of the NE interactive consistency
algorithm. The NEFTP sychronization scheme allows the system to tailor the
granularity of action to the application.

Tlere exist hardware constraints. The data produced by all PEs must be com-
patible with bit-for-bit majority voting. The only other constraint is that some
common PE/NE interface be used. Currently it is the VMEbus, but could just as
easily be any other open bus architecture, standard serial interface, or LAN pro-

31

tocol. The existing software constraints are also minimal. The current processor
model is simplex Von Neuman with two additional primitives SEND and SCOOP'.
SEND enqueues a message for transmission in the PE/NE interface. If it is not
possible to enqueue a message because the NE is full, SEND will read messages
from the NE until it becomes clear to send. SCOOP will read all messages that
have been sent since the last SCOOP, busy waiting if data is not available at the
NE. SCOOP will then send a synchronization message and wait for its reception.
Thus upon completion of a SCOOP, all messages that have been sent prior to calling
SCOOP have been received and the PEs are synchronized. Tailoring the granularity
of action of the NEFTP simply involves programming the NE with a new timeout
and perhaps adjusting the ratio of SENDs to SCOOPs. For example, to make the
finest grain NEFTP set the NE timeout to the minimum value, and call SCOOP
after every SEND.

The data exchange mechanism provides for one and two round exchanges. The
results are voted by a 4-way, maskable, bit-for-bit, majority vote algorithm imple-
mented in a programmable logic device. The mechanism is ensured of voting the
redundant copies of the same data because the NE preserves the total ordering of
messages. The total ardering is preserved because of two reasons. First, the buffer-
ing in both directions at the PE/NE interface is implemented with first-in-first-out
memories (FIFOs). Second, the NEs continuously perform an interactive consis-
tency exchange of the status of their PE/NE interfaces; and they only enable a PE
message for exchange when all particpating PEs request the message, or when the
timeout period elapses after a majority of participating PEs request the message.
This ensures that a faulty PE cannot cause the total ordering of messages to be
violated as viewed by non-faulty PEs. Unlike the FTP not all exchanges take two
rounds. Regardless of the exchange, the completion of the exchange results in all
NEs having sufficient redundant copies of the data to satisfy agreement by voting.

The NEFTP has been shown to satisfy the requirements for 1-Byzantine failure
resilience. It does so with few constraints on other aspects of the architecture.
The architecture can be tailored to be tightly synchronized for applications where
fine granularity of action and high performance are required. Granularity of action
can be traded for design diversity in processing hardware and software. This will
have a corresponding detrimental impact on performance, however the impact on
reliability is less clear. Larger granularity of action will tend to lessen reliability, but
this may be compensated by increased resilience to common mode design failures in
the processing hardware and software. The NEFTP also incorporates sound fault
containment region design. The inter-FCR communication network employs fiber
optic links which are quite well suited for fault tolerant applications. No other
media has better isolation and attenuation properties. Fault containment regions
. can finally be truly isolated, both electrically and physically.

A prototype NEFTP has been built as part of this research. In the prototye the

!These message exchange primitives have been designed and implemented by Steven A. Friend

32

processing elements are commercially available 32 bit, 68020 based, single board
computers. The design of the network element is presented in Chapter 4.

33

Chapter 4
NEFTP: The Network Element Design

The Network Element (NE) is a hardware implementation of the fault tolerance
related functions of synchronization, data communication, and data voting. The NE
can be viewed as an abstract communication network. This abstract view of the
NE is a simple case of the Byzantine Resilient Virtual Circuit Abstraction (BRVC)
[Har87) The BRVC (Figure 4.1) has several interesting properties. It preserves the
total ordering and integrity of all valid messages. It provides the resources to cor-
rectly manage sufficient redundancy for one and two round consensus exchanges,
and allows for graceful degradation of this redundancy (i.e. it is Byzantine Re-
silient). The BRVC network is synchronizing. This means that if the input satisfies
the property that redundant copies of the input message arrive at the network
within some known ¢,;..in then this message will be cutput at all processors within
a known t,kewout ¢ (Bskewout maz < tskcwin maz). A desirable feature of such a network
is that it have very high bandwidth so as to not degrade the throughput of the
aggregate system. Also, it must be testable. The NE has been designed to satisfy
these properties.

4.1 The Basic NE cycle

In order to fulfill the network abstraction, the NE executes the basic cycle shown
in Figure 4.2. .

The processors of the NEFTP communicate via message exchanges. Message
exchanges are used for the purposes of synchronization, output consensus, and input
consistency. Each NE must tell all other NEs whether its associated processor has
an exchange request pending. The NEs will then have sufficient information to ar-
rive at a consensus regarding exchange requests. If an exchange request is valid (i.e.
all non-faulty processors have requested the exchange), then the exchange will be
honored. All NEs will perform the processor exchange and then return to exchang-
ing processor requests. Essentially four input consistency exchanges occur in the

2 1 2 1
S ————— —
PE A Byzantine PE A
PEB _2'_’. Resilient _2;_-_” PEB
2 3 Circult 2 1
PEC " Abstraction [PEC
PED 2 1 _p| (maskable) 2_ ' PE D

Figure 4.1: BRVC Abstraction

34

SERP EXCHANGE PEAFORM EXCHANGE IF

REQUESTED BY ALL NON-FAULTY

OF
EXCHANGE REQUEST PATTERN PROCESSORS

FROM NE A, NE 8, NE C, AND NE D.
R e

TO TSERP T SERP + TEXCHANGE

Figure 4.2: Basic NE Cycle

first half of this cycle. The data being input is an exchange request pattern. This
sequence of four input consistency exchanges has been somewhat optimized and
masquerades under the title system exchange request pattern (SERP!) exchange.
By executing the SERP exchange the NEs interactively arrive at a Byzantine re-
silient consistent view of the PEs’ exchange requests, from which each NE can make
the same decision about whether to perform the exchange. This SERP exchange
is fundamental to BRVC abstraction discussed above. It is what allows the NE
aggregate to be synchronizing and maintain total ordering of message transactions
without imposing the constraint of clock determinacy on the processors.

4.2 The NE Functional Sub-Sections

The NE can be considered to be composed of six sub-sections. They are the
following:

1. The processor/network element interface.
2. The network element data paths.

3. The inter-FCR communication links.

4. The network element fault tolerant clock.
5. The network element scoreboard.
6

. The network element controller.

The function performed by each subsection is depicted by its name (with the
exception of “scoreboard”). The functionality of each subsection will be made clear
below. Before beginning, some discussion of nomenclature is necessary. In general,
names in uppercase letters refer to a network element signal (to be found on the
schematic) or some acronym for a functional module of the NE (such as itself).
Names of NE functional modules which are not acronyms will be introduced in
slanted text. Also, signal names ending in “*” or “/” denote a low true signal.

ISERP concept and nomenclature courtesy of Stuart J. Adams.

35

Data Width Cerwerter

I E X LTIV IIIFY P

-
3tatus)
DOual-Pont
Reglotoer ggl gd | Ram gi
PE/NE toundary Jg
|
IMTI:ENSmmW "IIIII'IIIII¢LIIIII o
J ‘

Figure 4.3: PE/NE Interface Block Diagram

4.2.1 The PE/NE Interface

The PE/NE interface must provide for the efficient and ordered passing of vari-
able size messages between the PE and the NE. It must also insure that no valid
messages get overwritten.

The interface implementation is based on the industry standard VMEbus by
Motorola. The VMEbus was chosen for several reasons. As an industry standard, it
does not seriously constrain the choice of PE implementation. It also has reasonably
high bandwith, particularly considering the fact that it only hosts one processor in
the NEFTP configuration (Figure 4.3).

In the NEFTP configuration, the PE is a commercially available, 32 bit, single
board computer which acts as bus master. The NE is a bus slave. Specifically, the
NE is an A16, D32 slave. A16 implies that it is addressed with 16 bits, and D32
implies that it supports data transfers as wide as a full longword (32 bits). In fact
the NE can be viewed as a slave that has exactly 5 longword ports (Figure 4.3):

e a transmit FIFO
e a receive FIFO
» a class FIFO

e a status register

e a dual-ported RAM.

36

All of these ports are accessed via longword transactions by the processor; however
none of these ports are actually wider than 8 data bits, and only two of them actually
use all 32 bits of data. Therefore, all 5 ports are attached to the bus via a 32 bit
data width converter (Figure 4.3). The data width converter allows the processor
to deal only in longwords yet communicate with 8 bit wide ports. This decision was
made for several reasons. A narrow port implementation was chosen to preserve real-
estate on the NE board which is a 6U by 160 VME compatible Eurocard?. Longword
transactions were chosen to maximize communication bandwidth between the NE
and PE for critical transactions. Longword transactions were chosen for the non-
critical ports to provide for unified and simplified bus interface control (Figure 4.3).
The utilization of these ports is described below.

The processor writes messages to be exchanged with other processors to the
transmit FIFO (XMIT FIFO). It is conceptually a write only, longword port. It is
actually implemented with a 2K (2K = 2048) by 8 FIFO memory. It is a critical
port because the rate at which the PE can write messages to the NE affects the
overall NEFTP throughput; therefore, it is one of the two ports that uses all 32
bits of data. A write to the XMIT FIFO stores a longword in the data width
converter. The data is then transfered to the XMIT FIFO by four sequent‘al byte
write operations.

The processor reads the results of a message exchange with the other processors
from the receive FIFO (REC FIFO). It is conceptually a read only, longword port,
and is again implemented with a 2k by 8 FIFO memory. It is the second critical port
and thus uses all 32 bits of data. A read of the REC FIFO causes four sequential
byte reads of the FIFO memory to occur. These four bytes are packed in the data
width converter and then presented to the processor as a longword.

The processor writes its exchange request pattern, used in the SERP exchange,
to the class FIFO. The class FIFO is conceptually a write only longword port of
which only the least significant seven bits are used. It is physically a 64 by 8 FIFO
memory. The exchange request pattern is written after the corresponding message
has been written to the XMIT FIFQO. Writing the exchange request pattern signals
the NE that a message is resident in the XMIT FIFO. The value of the exchange
request pattern denotes the size and type (or class, hence the name class FIFO) of
the message. Four bits are used to denote the size of the message, and three bits
are used to denote the exchange type. There are currently seven exchange types
implemented in the NEFTP (Figure 4.4).

The SYNC exchange involves sending no data and is the minimal overhead
synchronizing act of the NE. The FromV and FromV with masks exchanges, are
single round output consensus exchanges. The latter additionally outputs the new
system configuration, or mask, byte to the NEs. The mask byte informs the NE
which NEs aud PEs in the system are thought to be non-faulty. The remaining
four (FromA, FromB, FromC, and FromD) exchanges are the four possible input

26U by 160 is one of the available sizes, perhaps the standard, for VMEbus cards.

37

Exchange
Requast
Pattern
Bits
s 6 4 Exchange Type
000 Not currently used.
601 SYNC. No data exchangsed. NE emor information
ietched at REC FIFO.
010 FromV. (From Vate). Output consencus exchange.
011 FromV wkh masks. Cuiput consonsus axchange.
NE configuration, or masi, byte is output 1o NE.
100 FromA. Input coneistency exchange from FCR A.
101 From8. Input comistency exchange from FCR B.
110 FromC. Input consistency exchange from FCR C.
1t 11 FromD. Input consistency exchange from FCR D.

Figure 4.4: NE Exchange Types

consistency exchanges. Each of these is a two round exchange.

All exchange types, except SYNC can accept messages of any allowable length
(in bytes) other than zero. The SYNC exchange is performed as part of the SERP
exchange that enables it. The current size decoding scheme is to simply multiply
the value of the exchange request pattern size field by 16.

The status register provides the processor with flow control status of the PE/NE
interface along with the NE identification (NEID). The status register is concep-
tually a read only, longword port. It is physically a 4 bit buffer, two bits for flow
control information, and two bits for NEID. The flow control allows the processor
to write several messages prior to reading any, or to block attempting to read a
message it has just sent, without destroying any valid messages. Therefore one bit
(CTS, for Clear To Send) is required to tell the processor that a message can be
written to the XMIT FIFQ, and another bit (DATAREADY) is required to tell the
processor that a message has arrived and can be read at the REC FIFO. CTS is set
whenever the XMIT FIFO is less than half full and the class FIFO is not full. This
conservatively insures that a maximum size packet can be successfully written to
the NE. DATAREADY is set whenever the REC FIFO is not empty. This insures
that a message is currently resident in the REC FIFO, or at least being delivered
by the NE to the REC FIFO. Iu either case the processor will be able to read the
message successfully. The simplicity of this flow control mechanism implies that
the processor’s data exchange primitives must maintain ordered queues of the size

38

of messages that have been written to the NE in order to know what size message
to read from the REC FIFO. The NEID field is driven by a two bit dip switch on

the NE which identifies the FCR.
The dual-ported RAM provides a debug interface between the processor and the

network element. It is conceptually a read/write longword port and is physically
a 2K by 8 dual-ported memory that arbitrates contention for a single location via
a BUSY flag. A NEFTP Interactive Debugger® has been constructed around this
dual-port interface. Upon power up, the PE and NE enter into debug mode. The
PE begins executing code which allows the user to run tests of the NEFTP. The
primitives of these tests are the commands of the Interactive Debug Command
Language which the processor can write to a location (the command register) in
the dual-port memory. In debug mode, the NE loops on the command register for a
debug command. Upon detecting a valid command, it executes the specified routine,
zeros the command register and loops for the next command. In this manner, the
user can exercise all facets of the NE hardware from a terminal. The Interactive
Debugger Command Language commands can also serve as the primitives for any
automatic NEFTP self test and diagnostic code. Aside from the command register,
dual-port memory locations are also used to specify various parameters of the NE
that are used in debug modes. The reader may wonder how the NE can be clock
deterministic with this dual-port. Since the PE/NE interface is asynchronous, at
any given time, one NE’s dual-port may be BUSY while another’s is not. Actually
the NEs need only be clock deterministic while they are operating in the redundant
fault tolerant configuration. So if the dual-port is strictly used in debug mode then
this is not a problem. However, it is desired not to constrain any future uses of
the dual-port. Therefore, the NE dual-port interface is made clock deterministic by
forcing the worst case wait with every NE access to the dual-port.

The processor’s memory map of the NE is shown in Figure 4.5. A simple address
decoding scheme was desired. The NE must decode at least 3 address bits to
uniquely access its five ports. A memory block size of 512 longwords was chosen.
This allows the entire 2K by 8 byte dual-port to be uniquely addressed by longword
transactions in 4 blocks. There are 4 blocks left over for the other 4 ports that
comprise the NE. Therefore, only three bits need be used for address decoding with
minimal waste of address space.

The schematics for the PE/NE interface are presented in Appendix A and will
be refered to by sheet number in the following discussion. Many of the schematics
include programmable logic devices (PLDs). The logic equations implemented in a
given PLD are included in the corresponding “file” in Appendix B. However, the
discussion below is intended to be understandable without reference to the Appendix

B.

3The NEFTP Interactive Debugger is essentially cloned in concept, and structure of implementa-
tion, from a similar interactive debugger developed for the CSDL Fault Tolerant Parallel Processor
by Stuart J. Adams.

39

PE ADDRESS

(words)
0100 0000
STATUS REGISTER
0100 0800
RECEIVE FFO
0100 1000
0100 1800 EXCHANGE CLASS FIFO | EACH BLOCK REPRESENTS 512
XMIT FIFO LONGWORDS.
0100 2000 (LE. THE TOTAL DUAL-PORT
SPACE IS 2K LONGWORDS)
M——
0100 4000

Figure 4.5: NE Memory Map

Sheet 1 illustrates the schematic for address decoding and bus interface control.
To understand the terminology used in this schematic, one must understand how
the basic VMEDbus read and write cycles are performed with the NE.

A read cycle has the following format. The processor presents the address and
address modifiers to the slave, in this case the NE. The processor then asserts its
control lines (LWORD* ,AS* DS0*,DS1*, and WRITE*) to specify the kind of cycle.
For a read of any port of the NE all these are asserted except WRITE*. A valid NE
address causes the address decoder to assert BOARD SEL/ . An active BOARD
SEL/, with the appropriate control signals causes the data strobe generator to
assert the data strobe for the correct port as decoded by A11-A13. This starts the
access of the data from the selected port. It also causes the DTACK (Data Transfer
ACKnowledge) generator to assert DTACK after a delay that ensures valid data is
presented to the processor first. The data strobe generator also asserts BOARDG/
which causes the bi-directional data width converter (sheet 3) to be turned on in
the direction appropriate for a read. When the processor sees DTACK asserted, it
can read the data and terminate the access by de-asserting the control signals.

A write cycle works in much the same way as a read cycle with some exceptions.
The processor presents the address, address modifiers and the data to the NE. The
processor then asserts all of the control signals. BOARD SEL/, BOARDG/, and
the appropriate data strobe are asserted. The data strobe generator asserts another
signal called CAB (Clock A to B) which immediately registers the data at the data
width converter (sheet 3) from the processor side (A) to the NE side (B). DTACK
will be generated after the NE has stored the data at the appropriate port. The
processor can then terminate the access.

Sheet 1 contuins another device (U0105) which is used as a latch for AQ7-A02 as
well as a counter for block transfer capability. According to VMEbus specifications,

40

a slave must locally increment the initially accessed address during a block transfer.
Block transfers cannot cross 256 word boundaries, so the NE need only increment
AT-A2. Block transfers are currently not used, but are implemented to provide a
means of future performance enhancement.

Sheet 2 shows 3 of the 5 ports that comprise the NE. These are the dual-port
RAM, the class FIFO, and the status register. All of the NE ports are attached to
the FIFO DATA bus which comprises the NE side of the data width converter.

Sheet 3 shows the data width converter along with the XMIT and REC FIFOs.
Also, there are two control PLDs (U1413 and U1417) which provide the control
signals to sequence the XMIT and REC FIFOs. When the XMIT FIFO is written
to, a longword is latched at the data width converter. RXMITFIFODS is asserted by
the data strobe generator. RXMITFIFODS causes U1417 to assert STARTXSHIFT
and begin shifting a byte at a time out of the data width converter and into the
XMIT FIFO. When all four such shifts have been completed WRDONE is asserted
to signal the DTACK generator that it is time to assert DTACK. A similar process
occurs on a read of the REC FIFQ. The interesting thing to notice is that due to
the simplified PE/NE interface flow control scheme, it may be possible for the REC
FIFO to become empty during a read of a single longword. This is possible because
the NE loads the REC FIFO one byte at a time, and the PE which reads longwords
only looks at the FIFO empty flag. If this were to happen, the NE must be in the
process of loading the REC FIFO, and the read would be delayed until the data
was available. However, this operation would be transparent to the PE because the
NE would be able to write 4 bytes to the REC FIFO before a bus error would result
from a timeout. This will never be a problem, regardless of the relative speeds of
the PE and NE so long as the bus timeout period is longer than three NE byte
times.

The VME interface subsection connects with the data paths subsection via two
buses. Data is sent into the NE data paths from the XMIT FIFO via the SOURCE
DATA bus; and data is delivered from the NE data paths’ voter to the REC FIFO
via the VOTED DATA bus. There exists a debug path which connects the XMIT
FIFO output with the REC FIFO input (Figure 4.3). This allows the PE/NE
interface to be somewhat isolated from the rest of the NE for testability.

4.2.2 The NE Data Paths

The NE data paths provide the resources to handle one and two round com-
munication exchanges, as well as the ability to resolve redundant data copies. To
provide this functionality the data paths of each NE include the following elements
(Figure 4.6):

e A link which connects the XMIT FIFO to the inter-FCR communication link
transmitter (the MY EXTERNAL DATA bus). This allows the NE to broad-
cast messages from its PE, through the XMIT FIFO, to the other NEs.

41

From)GAT FIFO ToRECAFO

b v 4 "llll”l:%"%”%ﬁ"’ll*"ll'l”l"‘
Subd-eeciion

NEFTP Data Paths

@ Tri-Statadle
Pipeine Register

> i
o éli §§ i
g e e —
E 5 ﬂLg 3
NEFTP Dan Pese tu-secrn TF

w o

Figure 4.6: NE Data Paths Block Diagram

e Intermediate storage for messages received from the other three NEs. This
storage is implemented in 3 FIFO memories, the LEFT, OPP, and RIGHT
FIFOs. More will be said about this nomenclature below.

e Intermediate storage for copies of messages sent by their local transmitters.
This storage is implemented in a FIFO memory, the MY FIFO.

e A means of rebroadcasting a message from any of the intermediate storage
FIFOs. This is performed by a multiplexor (MUX) which can route any of
the intermediate FIFO outputs to the NE’s transmitter.

e A PLD implementation of a 4-way, bit-for-bit, maskable, majority voter which
resolves redundant copies of a message in the intermediate stcrage FIFOs to
a single message.

e Error accumulators that record the occurrence of any transmission errors de-
tected in receiving a message from another FCR, or comparison errors detected
in voting the redundant copies of a message, These errors are accumulated
over the duration of the message as link error, and voter syndrome respec-
tively. The values of these accumulators are appended to each message as it

is del..ered to the REC FIFO.

e A debug router which allows any of the external (i.e. LEFT, OPP, RIGHT)
intermediate storage FIFOs to be driven by the MY EXTERNAL DATA bus.

42

FCR A FCA D
NEID = 00 NEID = 11
PORT POAT
RIGHT oPP oPP

PORT POAT

L e JE
§§<—>S§

TERE

FCR B FCRC
NEID = 01 NEID = 10

Figure 4.7: NE Physical and Virtual Identifiers

Testability of the data paths is thereby provided by allowing the data paths
to be isolated from the inter-FCR communication links.

The interaction of the various NE data path elements will be illustrated in the
explanations of one, two round and SERP exchanges below. Before continuing,
some mention must be made of the correlation between names identifying FCRs as
A, B, C, and D, and names identifying FCRs as MY, LEFT, OPP, and RIGHT. This
discussion is aided by a diagram of the FCR identifiers (Figure 4.7). The former
group of names are the virtual FCR identifiers. The latter group of names are the
physical FCR identifiers. The virtual identifiers remain constant across FCRs and
are set by the NEID switch (i.e. FCR A means identically the same thing to all
FCRs). Therefore the virtual identifiers are used by all processors so as to make
coding of the data communication primitives and FDIR primitives independent of
physical FCR. The physical identifiers are not constant across FCRs (e.g. FCR D
is the LEFT FCR as viewed by FCR A, whereas it is the RIGHT FCR as viewed by
FCR C). The physical identifiers are necessary to correctly track and route messages
through the NE data paths. Therefore, the NE must translate between virtual and
physical identifiers based on the value of its NEID. In the discussion below, this
translation will often be left up to the reader; a clear understanding of Figure 4.7
should make this task trivial.

In a one round exchange, each fault containment region sources a copy of the
message (e.g. the result of a computation). Each FCR sends its source message to
its transmitter which then broadcasts this message to all other FCRs. Each FCR
records what it sent in its MY FIFO while it receives a copy of the message from

43

each of the other FCRs. Each FCR then stores these copies in its LEFT, RIGHT,
and OPP FIFOs. Any link errors that are detected in this process are recorded
by the link error accumulator. At the end of this single round, four copies of the
message are resident in the four intermediate storage FIFOs. These copies are then
passed through the byte-wide voter which reduces them to a single copy and masks
out any single error. Any errors detected by the voter are recorded by the voter
syndrome accumnulator. The output of the voter is then delivered to the REC FIFO
where it is available for the processor to read. The information from the error
accumnulators is appended to the voter output as it is delivered.

In a two round exchange, only a single fault containment region sources valid
data (e.g. an input or interactive consistency exchange). The sourcing NE sends
the message from its XMIT FIFO to its transmitter, and records a copy of the
message in its MY FIFO. All other NEs source, and record in their MY FIFOs, a
null packet equal to the valid message size. At the end of the first round each NE has
a single valid copy of the message in one of its intermediate storage FIFOs, and null
packets in the others. In the second round, the contents of all intermediate storage
FIFOs are output to the MUX. The MUX selects the valid data and routes it to the
transmitter to be rebroadcast. Therefore, at the end of the second communication
round each NE has four copies of the original message in its intermediate FIFOs. All
NEs can now vote and deliver the redundant copies of the message as in the single
round exchange. However, to satisfy the input consistency requirements, all NEs
must not vote the copy of the message which they received in the second round from
the original source FCR [PSL80]. Otherwise the sourcing FCR would have a double
influence in the resulting four way vote and could corrupt the output. For example,
if the particular exchange is a FromA, NE A must mask out the message resident
in its MY FIFO at the end of the second communication round. Correspondingly,
NE B must mask out the message in its LEFT FIFO at the end of the second
communication round, and so on.

A SERP exchange is an optimized sequence of four two round exchanees of a
single byte. The “first round” consists of each FCR broadcasting its single . . -ange
request pattern as read from the class FIFO. The NEs wait until they have received
all four of these bytes; then the “second round” begins. During the second round
these bytes are rebroadcast in an ordered sequence. The byte that was initially
from FCR A is rebroadcast first, then the byte from FCR B, and so on. At the end
of the second round, each NE will have four copies of each exchange request byte,
and can vote them to arrive at a consistent value for each exchange request byte.

Sheets 5, 6 and 7 of Appendix A represent the NE data paths schematics. Sheet
5 shows the intermediate storage FIFOs. The input of the MY FIFO is driven by
the MY EXTERNAL DATA bus, thereby allowing it to capture anything sent to
the transmitter. The LEFT, OPP, and RIGHT FIFOs are driven 'y the outputs of
the debug router. The outputs of each FIFO pass through a pipeline register (sheet
5). These registers are necessary to satisfy the various data path timing constraints.

44

The outputs of the pipeline registers feed both the voter (sheet 5) and the MUX
(sheet 6).

The voter is conceptually a four channel, byte wide, maskable, bit-for-bit major-
ity voter. If a given bit is asserted by any two enabled (non-masked out) channels,
then the corresponding bit of the voter output (the VOTED DATA bus) is asserted.
There are four mask inputs (the VMASK signals), one for each channel. A mask
value of 1 indicates that the corresponding channel’s input is used in computing the
voted output. A mask value of 0 indicates that the corresponding channel’s input is
ignored in the voted output computation. More will be said about the mask signals
when discussing the NE controller.

Voter syndrome is generated with each byte that is clocked through the voter.
There are conceptualiy five voter syndrome bits:

o LERR. If this bit is asserted, the LEFT channel is in disagreement with the
voted value in at least one bit position.

e OERR. If this bit is asserted, the OPP channel is in disagreement with the
voted value in at least one bit position.

e RERR. If this bit is asserted, the RIGHT channel is in disagreement with the
voted value in at least one bit position.

e MERR. If this bit is asserted, the MY channel is in disagreement with the
voted value in at least one bit position.

e QERR. If this bit is asserted, there exists a two-two split over the value of
at least one bit. This actually represents a failure of the system in that the
validity of the voted output is no longer guaranteed. A QERR is therefore the
result of two simultaneous errors on at least one single bit value. It is possible
for all the other error bits to be asserted without causing a QERR, if no two
discrepancies occurred over the value of the same bit.

The mask values do not affect the syndrome generation. This is important when
considering how a faulty FCR is recovered by the non-faulty FCRs. All non-faulty
FCRs can tell when a faulty channel has stopped producing voter errors without
subjecting their voted output values to corruption.

The voter is acutally implemented as two 4-bit, pipelined “slices” via PLDs.
The pipeline is one stage deep. The output is the voted value of the previous
input,, while the syndrome corresponds to the current input. The majoiity voting
scheme requires that at least two channels must be enabled to assert any outputs.
However, the actual implementation allows the MY channel or the OPPOSITE
channel to decide the voted output alone if all other channels are masked out. Each
slice generates its own syndrome information. The conceptual QERR bit has been
broken up into three bits per slice due to lack of product terms in the PLDs.

45

The seven voter syndrome bits must be amalgamated somehow. This is accom-
plished via the syndrome accumulator (sheet 7). The sydrome accumulator produces
five bits of output, corresponding to the five conceptual syndrome bits presented
above, which can be appended to the voted message output via the VOTED DATA
bus. Accumulation involves logically “ORing” the values of the five syndrome bits
produced for each byte of the message. When the accumulator is read at the end
of voting a message, its values are cleared.

Sheet 6 shows the rest of the NE data paths. The MUX, shown on the left,
consists of four 2-bit, 4:1 multiplexors. The MUX allows the output of any one in-
termediate storage FIFO to be selected for reflection. Reflection is the name given
to the second round of communication of an input consistency exchange. During
reflection, one of the intermediate storage FIFOs on each NE holds a message that
needs to be rebroadcast to the other NEs. The MUX provides the capability for
routing this message to the transmitter via the MY EXTERNAL DATA bus. In
the upper left hand corner of sheet 6 there is a register which is used to connect
the output of the XMIT FIFO to the MY EXTERNAL DATA bus. This register
provides the correct pipeline staging and the tri-state capability necessary to have
source messages and reflected messages both drive the transmitter in an identical
fashion. The center of sheet 6 shows part of the inter-FCR communication link
and shall be discussed later. The debug router is shown on the right hand side of
sheet 6. It is also implemented as four 2-bit slices in four PLDs. The debug router
provides the same basic switching capability for each of inputs to the three exter-
nal (i.e. LEFT, RIGHT, and OPP) intermediate storage FIF'Os. The intermediate
storage FIFO input can be driven by the outputs of the corresponding inter-FCR
communication receiver (normal operation), or it can be driven by the MY EX-
TERNAL DATA bus (debug operation). The operational mode is selected by the
debug enable signal (LDBEN, ODBEN, or RDBEN). This provides the capability
to test the data paths of a single NE alone.

The intricate control of the NE data paths is somewhat isolated from the NE
global controller by the data path controller circuit (sheet 7). This local control of
the data paths is divided into two parts.

The synchronous controller controls those signals that occur synchronously with
respect to the local NE. These involve shifting data out of the intermediate storage
FIFOs, operating the voter, syndrome accumulator, and MUX, and shifting data
into the MY FIFO. The syiachronous controller is implemented in a PLD. The basic
operation of this controller is as follows. The NE global controller specifies the
function to be performed during the next message frame. This NE function tells
the synchronous controller what operation to perform (sheet 7) during the next
message frame. In the NEFTP a frame denotes a message transmission slot and
is therefore variable depending on the message .:ize. To perform a single round
exchange, or the first round of a two round exchange, the function selects are set
to 1, and reflection is disabled (i.e. the global controller sets REFENABLE to 0).

46

This causes data to be loaded into all intermediate storage FIFOs. To perform the
second round of a two round exchange (i.e. reflection), the function selects are set
to 2. Data is shifted out of, and into all intermediate storage FIFOs. The global
controller asserts REFENABLE and presents the synchronous controller with the
virtual ID of the FIFO which has the valid message. This virtual ID is translated
by the NEID to generate the physical ID. The MUX selects the channel to reflect
from based on this physical ID. Setting the function selects at 3 results in the
execution of the SERP exchange. More will be said about this when the scoreboard
is discussed. The NE function selects do not provide for the voting and delivery
operation of the data paths. Voting is controlled by the global controller’'s VOTEIN
signal. Asserting VOTEIN instructs the synchronous controller to shift data out of
all intermediate storage FIFOs and into the pipeline registers. To account for the
two stages of pipelining between the FIFO and voter outputs, VOTEIN creates two
more signals VOTEOUT1, and VOTEOUT which correspond to VOTEIN delayed
1 and 2 data clock periods, respectively. VOTEOUT1 signals valid data in the voter
and is used by the syndrome accumulator to denote when the voter syndrome is
valid. VOTEOUT denotes when valid data is output from the voter, and is used to
enable the voter output onto the VOTED DATA bus.

The asynchronous controller (sheet 7) controls those signals which are asyn-
chronous with respect to the local NE’s clock. Essentially, it is responsible for
loading data into the LEFT, RIGHT, and OPP FIFOs. It also performs the clear-
ing of all the intermediate storage FIFOs. In normal operation the data shifted
into the LEFT, RIGHT, and OPP FIFOs comes from the inter-FCR communica-
tion receivers, and the clock used to shift the data in is recovered from the same
receivers. However, when an external link is put into debug operation, the asyn-
chronous controller must use the local data clock to shift in the data from the
MY EXTERNAL DATA bus. To clear a given intermediate storage FIFO, the
global controller selects the FIFO with the CLEARDATAPSEL signals and then
asserts the CLEARDATAP. The asynchronous controller decodes the clear selects
and clears the selected FIFO as soon as all of its shift in activity has stopped.

Sheet 7 also shows the link error accumulator. Each inter-FCR communication
link has a violation flag associated with it that indicates that the communication
protocol has been violated. The link error accumulator takes these flags as inputs
and accumulates them in a manner identical to the syndrome accumulator. The
three accumulated results are appended to the delivery of voted data. Reading
the accumulator causes it to be cleared. The accumulated link error and voter
syndrome are combined to form the first of two NE error bytes that are appended
to each message delivery. The signal ERRORIREAD enables this byte onto the
VOTED DATA bus. Combined in the same PLD as the link error accumulator is a
scale counter (sheet 7) that is used to count the TIMEOUT used in the scoreboard.
This will be discussed in greater detail in the scoreboard sub-section.

47

d p—t—
TAXI |© FBER - FBEA ra BV
FCR A [xur| X @ REC .lrec | FCR B
E
o
3
r TAXI
— g R:cER 1 REC FCR C
P
F .
— RECE"] &”g 'FOR D
e/ : .

Figure 4.8: Inter-FCR Communication Link Block Diagram

4.2.3 Inter-FCR Communication Links

Each inter-FCR communication link consists of a transmitter broadcast circuit
and three receivers (Figure 4.8). This design uses the TAXI chip set by Advanced
Micro Devices Co. (sheet 6, center) to interface to a fiber optic broadcast link. The
- TAXI chipset is an efficient implementation of a high speed, encoded, serial data
link with a byte wide parallel interface to the user.

To send data, TTL level parallel data are strobed into the transmitter, encoded
into a ten bit word (in the current configuration) and output serially as comple-
mentary ECL signals. The ECL outputs drive a 200 Mbps (maximum) fiber optic
transmitter (sheet 11). The resulting optical signal is sent to the other three FCRs
via a 4 by 4 optical coupler (Figure 4.8). Each of the three receiver circuits con-
verts the optical output of the coupler to an ECL serial bit stream via a fiber optic
receiver. The maximum data rate of the fiber optic receiver is 200 (Mbps). These
ECL levels are input to a TAXI receiver chip. The encoding scheme is sufficient
for the TAXI receiver to recover a timing reference, sample the bit stream, and
package the output into a byte. The presence of a valid data byte is signaled by
a data strobe. If the receiver discovers an erroneous bit pattern it will assert its
viclation pin to indicate that the current output byte may be invalid.

Both the TAXI transmitter and receiver must be supplied with a reference byte
frequency. If no data is strobed into the transmitter during a byte time the trans-
mitter will send a pre-determined synchronization byte to keep the clock recovery
ciruit of the receiver locked in phase. The reception of this sync byte is denoted by
assertion of the command strobe by the receiver.

This inter-FCR communication link has several desirable properties. It provides
excellent isolation between FCRs, both physically and electrically [Sta85]. It is
high bandwidth, the maximum possible byte frequency being 12.5 MHz. As a
serial link, it minimizes the number of wircs between FCRs. To illustrate this
point consider that the NEFTP has only 12 inter-FCR links whereas the AIPS
FTP has 96 in a typical configuration [GADS88]. This arguably makes for a more

48

woane 773 [LU UL UL LU L e i
UYDOUND _i] J_’

MESSAGE FRAME g
e r———

Figure 4.9: Basic Message Transmission Frame Signals of FTC

reliable NE because communication ports are likely sources of failure [Har87]. As
a fortunate consequence of the TAXI chip design, it has very low cost in terms of
space. As will be shown in the fault tolerant clock discussion, it provides sufficient
information to realize a message frame synchronizing circuit. This obviates the need
to send separate timing references between FCRs, either as data or as clock signals
physically transmitted on other links.

Due to the pipelined architecture of the TAXI chipset, the transmission delay
over a minimal length link is approximately 4.5 byte times (562.5ns at 8 MHz).

4.2.4 The NE Fault Tolerant Clock

The NE fault tolerant clock (FTC) is the mecharism which synchronizes the
NEs. The synchronization events are message exchanges, thus the FTC design is
closely linked to the communication link design, and is fundamental to the operation
of the data paths. The basic operation of the FTC circuit is described below.

The FTC mechanism is told by the global controller the length in bytes of the
next message (or packet) frame. The FTC generates a signal called MYDATACLK
(the local message transmission byte clock) which will contain a number of pulses
at the fundamental byte frequency equal to the number of bytes in the packet. The
FTC mechanism will then hold MYDATACLK low for a nominal value of 4 byte
times before beginning the next frame (Figure 4.9). The pulses of the MYDAT-
ACLK waveform are framed by another signal called MYBOUND (Figure 4.9).
To synchronize the frame boundaries on the various FCRs, the FTC mechanism
compares the MYBOUND signal with the perceived BOUNDs of the other FCRs
(taking into account the normal propagation delay of the communication mecha-
nism) and adjusts the number of periods it waits before starting the next frame.
This is performed by recovering a BOUND signal from each of the external links,
selecting the median BOUND [KSB85] occurrence of all non-faulty external links,
and comparing the occurrence of a low to high transition of this median bound with
the same transition on MYBOUND. If the local NE perceives itself to be ahead of
the others, it will wait five byte times before beginning the next frame. If the local
NE perceives itself to be behind the others, it will wait three byte times before
beginning the next frame. Otherwise it will wait the nominal four byte times. In
this way the BOUND signals will be synchronized among the FCRs.

In addition to creating the synchronized MYBOUND and MYDATACLK sig-

49

CLKMASKS (3) .
EXTERNAL BOUNDS MEDWAN BOUND
EXTERNAL BOUNDS
NEBMAZ ERROR WINDOW DELAYED MEDIAN BOUND AND
MYFTC CLOCK BRAOR ACCUMULATED ERFORS (4)
TS S ey —— ey [FMRERt,
—————— Pemrer———— —
MYFTC
TEBAY
M 18v 160 N
OELAY UKE
YED EXTERNAL BOUNDS (3
A
mmmn BOUND GENEPATOR NE1SMHT
EXTERNAL VIOLATIONS Ia . -z
J m 2z Ao
= | [~EEm—
—W’
e ——

Figure 4.10: FTC Block Diagram

nals, the FTC mechanism is also responsible for generating the various fundamen-
tal timing references of the NE. These include both 16 MHz and 8 MHz and their
complements. These signals are used to run the global controller and the other
various parts of the NE. The 8 MHz signal is related to MYDATACLK in that
MYDATACLK is the 8 MHz signal with pulses deleted. However, the 8 MHz and
16 MHZ signals are not phase locked among FCRs. The synchronization between
FCRs occurs at the frame level (i.e. the BOUND signals are synchronized). The
functional synchronization of the NEs is ensured by providing the global controller
with a means of detecting transitions of a signal, MYFTC, which is related to MY-
BOUND via deterministic translation (i.e. MYBOUND is MYFTC delayed one
byte period, Figure 4.9). A high to low transition on MYFTC signals the global
controller of the emminent start of the next frame. The controller can then set the
correct NE function and packet size for the next frame. The resultant exchange will
begin on the rising edge of MYBOUND.

The block diagram of the FTC mechanism consists of four parts (Figure 4.10).
They are the following:

1. The clock generator circuit.
2. The MYFTC generator circuit.
3. The bound voter and «lock error circuit.

4. The external bound generator circuit.

50

The clock generator circuit is responsible for creating the fundamental frequen-
cies used in the NE. These are NE16MHZ, NE16MHZ/, NESMHZ and NESMHZ/.
These are created by dividing the output of a 32 MHz oscillator via a PLD, buffer-
ing and inverting the outputs of the divider to achieve good drive capability with
minimum skew between the signals. The circuit that does this is shown in the FTC
schematic (sheet 4). Part of the clock generator PLD is also used to condense the
multiple QERR signals from the voter into a single QERR signal to be used by the
syndrome accumulator.

The MYFTC generator circuit is a state machine implemented in a PLD. This
machine is responsible for generating the signals of Figure 4.9 based on the packet
size information from the global controller. The MYFTC generator must also cor-
rectly perform the adjustment of these signals based on the comparison of MY-
BOUND with the median of the external bounds (MEDIAN BOUND). In addition
to generating the signals MYFTC, MYBOUND, and MYDATACLK, this state ma-
chine also generates the signals ERRWIN, SAWIN, and SBWIN. These signals frame
windows that are used in the MEDIAN BOUND comparison. A rising edge on the
MEDIAN BOUND signal while ERRWIN (error window) is asserted denotes that
the local NE is in error, either too far ahead or behind of the median. The inactive
period of ERRWIN denotes the tolerable skew between the bound signals of the
NEs. In the current implementation it is three byte periods. Since the NEs use the
bound signals to maintain framewise functional congruence, the occurrence of an
identical event (such as delivery of a message to the REC FIFO) on different NEs
can be skewed at most three byte times. If the MEDIAN BOUND transition occurs
while SAWIN (self ahead window) is asserted, the local NE concludes it is ahead of
the others and will wait 5 byte times before beginning the next frame. If the ME-
DIAN BOUND transition occurs while SBWIN (self behind window) is asserted,
the local NE concludes it is behind the others and will wait 3 byte times before
beginning the next frame. If neither SAWIN nor SBWIN are asserted when the
MEIDAN BOUND transition is detected, the NE concludes it is in synchronization
with the others and will wait the nominal 4 byte times before beginning the next
frame. The timing of the important signals for these three scenarios are shown in
Figure 4.11, Figure 4.12, and Figure 4.13.

The minimum time that the MYBOUND can be low cannot be less than max-
imum possible skew between bound signals in order that the MEDIAN BOUND
detection ciruit work correctly. The positioning of these windows is not without
cause. The three period lapse in ERRWIN is centered about the time MEDIAN
BOUND would be seen to rise on the local fault containment region if it were
identically in phase with MYBOUND (i.e. the offset is the normal inter-FCR com-
munication link propagation delay). This three period region of tolerable inter-FCR
skev. overlaps the SAWIN and SBWIN each one period. There i~ also one period in
which none of the window signals are asserted. This period is the byte time centered
about the expected MEDIAN BOUND time and is called the self normal period.

51

COUNT | Inl||n||uInnlnllullnzlnnIlulu!'ualurl [] I [] ||u|||1 llulnoluolull

ERAIN r : : : c
samIN I . ;
SIMIN 1 [
i L FEENS -
MYFTC 1 I ;
Loa [T1 [

3 v 3 4 $ 4 3 4 4 3 » 4 i 3 b3
1 L} [1] " 67 t0 89 810 010 010 010 18 819 SI1 GI12 SIS s8 .0 (1] (1] (1]

Figure 4.11: Self Normal FTC Timing Signals of FTC

I:IINI’I Illllll‘llllllIIOIINIIIIIIIIIII’IIIOI IIIIII.III‘D' [} l [} Illllli‘llll.il..lli.llilillll

e SN Ry By N Ny g Ny Ny Ny N Ny By FuRuR il
ERRDIN J |
AWIN | : 1
SIWIN | i

-~ TR 4 %Lg .
MYFTC] ¢ ' L { ; r‘—__
Loas P ‘ [T L . I—é____

i3 § i S { LA A A S
[L] " 16 [} 9 (1] 818 8510 S10 618 S18 16 010 812 813 10 (1] [{] (1] [1] 83

Figure 4 12: Self Ahead FTC Timing Signals of FTC

52

MYDATACLKE] y—mmmmmmm_ﬂuﬁm , L
ERRWIN 3 1 I ; .
SAIN r : : .
SBWIN 1 : ¥
— o = n 3 N
MYFTC I r-
Loap ™M : i

84 23 18 7 10 s8 618 316 $18 $16 816 818 %12 1Y W [L] 10 L1 13

Figure 4.13: Self Behind FTC Timing Signals of FTC

The one period overlap of SAWIN and SBWIN approximately half way through the
frame is logically considered part of the SBWIN.

The result is that during steady state operation, a NE will consider itself synchro-
nized with the others if, accounting for propagation delay, its MYBOUND occurs
within +1.5 byte times of the MEDIAN BOUND. A NE will make a nominal 4 pe-
riod adjustment if, accounting for propagation delay, its MYBOUND occurs within
40.5 periods of the MEDIAN BGUND. The self ahead and self behind windows
are generated to split the entire frame equally such that the adjustment scheme can
provide for a convergent initial synchronization. Consider two FCRs that power up
with frames arbitrarily out of phase. A given NE will use the other’s MYBOUND
as its MEDIAN BOUND. In this scenario, positioning of SAWIN and SBWIN is
such that the two FCRs cannot repeatedly make the same conclusion about which
way to adjust (i.e. they will never both see themselves behind).

To generate the signals shown if Figure 4.11, Figure 4.12, and Figure 4.13, the
MYFTC generator is implemented as a state machine in a PLD with an additional
seven bit counter. There are 4 state bits, and the state transition diagram (Fig-
ure 4.14) illustrates the machine operation. The elementary operation is as follows,
the counter is loaded with a count based on the packet size when LD (load) is
high. The count is incremented with each 8 MHz clock, and predetermined count
values will cause state transition sequences. The other information affecting the
state transitions is the result of the MEDIAN BOUND comparison. This informa-
tion is generated by registering the state of the windows with MEDIAN BOUND.
This information consists of two bits, one indicating whether or not the FCR is self
ahead (SA), the other indicating whether or not the FCR is self behind (SB). All

this occupies a single PLD as shown in the schematic (sheet 4).

The external bound circuit is relatively straightforward. Based on the infor-

53

S0 (COUNT = 119)/ [10100) {SIZE > 0. AND BAY/ {10100

(COUNT o 127}/ 110104

nowr-m.mow /‘
s11 1 [$1010) {11010}

$10 S

COUNT = 127, AND 88
1 pr1o11)

(COUNT <> 118y (10110}

[11010)

(COUNT « 118, AND NOT 88)/ (10100

State transitions are labeled: (cond)/ [output vecior].
Ouiput vector Is of the form: [ERRWIN,SAWIN,SBWIN.MYFTC,LD]

Figure 4.14: State Diagram of MYFTC Generator

54

’
COMMAND 4
STROSE
M
e d— | ! f
A [l FRAME 4
Faa b}
/ 4

Figure 4.15: Basic Message Transmission Frame; External Signals

mation presented in the inter-FCR communication link section, the typical frame
should appear as in Figure 4.15. Therefore, an external bound signal (i.e. LBOUND,
RBOUND, cr OBOUND) is asserted whenever a data strobe follows a command
strobe, and is cleared whenever a command strobe follows a data strobe. The
external bound circuit is implemented in a single PLD (sheet 4). In addition to
generating the external bounds, this PLD also generates a version of each external
bound which is delayed 1.5 periods. These delayed bounds (i.e. DELLBOUND,
DELRBOUND, and DELOBOUND) are used in the clock error circuitry.

The final FTC component is the median bound voter and clock error detection
circuit. The signal MEDIAN BOUND, which is used to decide the local adjust-
ment, is created by a 3-way maskable voter. The voting function will assert ME-
DIAN BOUND whenever any two enabled bound signals are asserted. The mask
signals (LCLKMASK, RCLKMASK, and OCLKMASK) are generated by the global
controller and will be discussed in more detail in that section. The generation of
MEDIAN BOUND is required so that the FTC can have a valid reference to adjust
to. No single erroneous bound signal can corrupt MEDIAN BOUND [KSB85].

The clock error circuit accumulates clock error information in much the same
way as the syndrome accumulator and link error accumulator record syndrome aud
link errors. The clock error accumulator outputs four bits of the second NE error
byte read by ERROR2READ. The MACCERR bit is set whenever the MEDIAN
BOUND samples ERRWIN active. The accumulated error bit for a given external
clock is generated if any of three scenarios happen.

1. The delayed version of the external bound rises before MEDIAN BOUND
is asserted. This corresoponds to the external bound being more than 1.5
periods ahead of MEDIAN BOUND, and is called the ahead error condition.

2. DBELMEDBOUND, which is MEDIAN BOUND delayed by 1.5 periods, is
asserted before the external bound is. This corresponds to the external bound
being more than 1.5 periods behind MEDIAN BOUND, and is called the
behind error condition.

3. The external bound has not expe-iznced a low to high transition since the
error accumulator was last read. This corresponds to the external link being
failed or not connected, and is called the presence error condition.

55

Exchange Request Byte 3 Exchange Class{ Exchange Size Fiold
From PE A Fleld, 3 bits 4 bits

Exchange Resquest Byte 3 Exchange Classi Exchange Size Flald
From PE B Field, 3 bits 4 tite

Exchange Rsquest Byte 3 Exchange Classj Exchange Size Fleid
From PE C Fisid, 3 bits 4 bits

Exchange Fequest Byte a Exchange
From PE D

Exchange Size Fieid
Fleid, 3 ti 4 bits

i

o .

Figure 4.16: SurP® Packet Format

Reading the accumulator by asserting ERROR2READ will clear it. The bound
voter and error circuit occupy a single PLD (sheet 4) with the exception of DEL-
MEDBOUND generation. Since no timing reference synchronous to MEDIAN
BOUND is available, this 1.5 period delay must be done via a tapped delay line.

4.2.5 The NE Scoreboard

The NE scoreboard is the entity which consumes the result of the SERP (System
Exchange Request Pattern) exchange, and decides what processor exchange if any
can be performed. The scoreboard receives the voted SERP packet which consists
of an exchange request pattern byte from each FCR (Figure 4.16).

The exchange request pattern byte consists of 3 items. Three bits are used to
specify the exchange type (Figure 4.4). Four bits are used to specify the exchange
size. One bit is used to denote the “legitimacy and flow control” of the exchange
request byte. When this bit (named CTS for Clear To Send) is asserted the exchange
request byte is legitimate (i.e. the class FIFO was not empty when it was read), and
the NE flow control situation is satisfied (i.e. the corresponding NE's REC FIFO
is not greater than half full, enabling a maximum size message to be exchanged
with impunity). Given this information, the scoreboard must perform the two basic
functions discussed below.

The scoreboard must vote the exchange class and size fields from each of the
four exchange request pattern bytes. This is required to ensure that all NEs achieve
consensus concerning what exchange was requested by all non-faulty PEs. The
voting that is done by the data path voter merely provides each NE with a consistent
SERP packet (Figure 4.16). Recall that in the presence of a single arbitrary failure,
the data path voter will insure agreement among healthy NEs of the content of the
SeiRP packet. However, since the SERP packet is constructes of 4 input consistency
exchanges, the validity (read correctness) of any single exchange request pattern
byte is not required. Therefore an additional vote of the individual exchange request

56

SCORECP SET MMEOUT

SCOREBOND [YWESUTSEr o
1
OEGIOE ST HALF @ . SOOREDP
(SCORE 1) -!W TEBNY SOOREBOARD VOTED CLASS (3
e——————r— 4 ___-_»
CTS, VDATA 07 EPSOO ‘W’ CLASS Ill VDATA 08-0¢ 3 2ND HALF
READ ERROA 2 INTERMEDIATE D TMEDUTERFOR 2178 (4), VDATA 03-00 (SCORE R VOTED 8ZE (4)
——————
Coas e T <
DUPLEX MAJ INTERMEDIATE
MAY SIGNALS
UNANIMOUS 8081
DUPLEX UNANRMOUS B REGISTER
AOK BOKCOKDOKX C AEGISTER
7 BIT SCALE COUNTEH

Figure 4.17: Scoreboard Block Diagram

pattern bytes is required to produce a valid exchange class and size. This scoreboard
voting is performed by the “second half” of the scoreboard (Figure 4.17). The
voting is performed by a byte wide, maskable, serial, bit-for-bit majority voter?
implemented in a PLD (sheet 8). It is a serial voter in that it votes four bytes that
arrive at the byte wide input at successive byte times. The exchange request pattern
bytes are gated off the VOTED DATA bus via the SCOREOP control signal. This
voter temporarily stores the four bytes as they arrive and upon receiving the last,
votes them according to the same function used in the data path voter. The masks
used in this process are the PEMASKSs supplied by the global controller. More will
be said about these masks when discussing the global controller. It is interesting
to note that the scoreboard deals in virtual FCR identifiers. This is because the
exchange request bytes that are input to the scoreboard are identified in terms of
virtual identifiers. The scoreboard voter does not provide any syndrome information
due to lack of space in the PLD.

The second basic scoreboard function is te decide when all non-faulty PEs have
submitted an exchange request pattern byte. This is performed by the scoreboard
“first half” (Figure 4.17) by anlayzing the CTS bit. An exchange request pattern
is assumed to be legitimate when the CTS is set. Legitiruacy simply implies that it
was not the result of reading an empty class FIFO, and that sufficient room exists
in the REC FIFO to accept the result of the requested exchange. PEs are said
to have submitted an exchange request pattern byte when their CTS bits are set.
A PE is faulty, by definition, if its corresponding CTS bit is not set within an a
priori determined time after the majority of CTS bits are set. This time must be
at least as long as the maximum allowable processor skew. This time is measured
in terms of a number of SERP exchanges as a count called the TIMEOUT, and is
programmed via the timeout counter and the scale counter. If the CTS bits are
unanimously set at a given SERP erchange, the corresponding exchange output

4This scoreboard voter is identical to that designed and implemented by Stuart J. Adams for the
CSDL FTPP.

57

by the scoreboard voter will be performed during the next frame by all NEs. If a
majority of CTS bits are set the timeout process will be started. The message will
be enabled following the SERP exchange that causes either a unanimous assertion
of CTS bits, or the expiration of the timeout. The definitions of majority and
unanimous depend on the current configuration of the PEs (i.e. how many healthy
PEs are in operation). This information is specified via the PEMASK from the
global controller. When a message is enabled, the scoreboard records four bits of
error information denoting whether a given PE requested the exchange. These four
bits are called timeout error and comprise the remainder of the second NE error
byte that is read with ERROR2READ. A given PE’s timeout error flag is set if its
CTS was not set at the time the message was enabled. Operation of the scoreboard
“first half” is controlled by the signals SCOREOP and DECIDE. Data is gated into
this half of the scoreboard via SCOREQOP (sheet 8). The four CTS bits are stored
as they are input, and then compared. The global controller asserts the DECIDE
signal at the end of the SERP exchange. The DECIDE signal causes the scoreboard
to do one of the following:

1. Assert GO if the CTS bits are unanimously set. This informs the global
controller to execute the exchange as directed by the output of the scoreboard
voter.

2. Assert SET TO (set timeout) if a majority, but not all, of CTS bits are set,
and the timeout is not already set (TO SET = 0).

3. Assert TO SET if not already set and SET TO = 1. This will clear SET TO.

4. Assert GO if TO SET is set and TIMEOUT occurs. This informs the global
controller to execute the exchange as directed by the outputs of the scoreboard
voter. TIMEOUT is asserted when the scale counter and timeout counter
(which are clocked with DECIDE and thus count SERP exchanges) reach a
programmable value. Currently the minimum value is 2 and the maximum
value is 16,384. Given that a SERP exchange takes 58 byte times, this corre-
sponds to a maximum allowable processor skew of 0.12 seconds and a minimum
of 14us.

Asserting DECIDE always causes the scoreboard to latch any timeout errors. A
timeout error is asserted if GO is asserted and the corresponding PE’s CTS bit is
not.

A typical scenario is illustrated below (Figure 4.18). The time line shows pro-
cessor requests for a From Vote exchange of 16 bytes arriving at the NE aggregate.
In this scenario PE B writes an invalid request byte.

At time t,.,,1 the NEs read their class FIFOs and begin a SERP exchange.
The voted SERP packet sent to the scoreboard will have none of the CTS bits set,
hence at t4..4e; the NEs will decide that no exchange request can be performed.

o8

"ml ! decided "Oddoa

“—' "_mi. ’.‘ WH‘_
Do - MR
. ! Voot
teapt lpea lpga lpec tespz tpep loarps Vaat lvote_detivery Laepa
'acpn Time hat SEAP Exshange 0 begina.
("" Time C:al (30063 writnd enchangs request Byte. PEs A.C. ond D write O byte 3100001, whereus procossor B writse B byte x1000010.
'Mn Timo et HZe ssewrt e DECIOE signal éduring SERP cachange n.
e Time st exchangs f bogina.
Lote_sciver Time Mat NCs begin voling and . 0o frem 9o n.
Figure 4.18: NE Operation Time Line
3 E'Fldd. 3?1:. = 4::.M
Exch, ueetl B
uchange Request Brte 141 010 0001
Erchange ter e ™ 111 100 0010
e e ™™ |1i o10 0001
Exchongs Request Bve 10! 0K 00X

Figure 4.19: SERP Packet Delivered to Scoreboard: SERP 2

Another SERP exchange will begin with the NEs reading their class FIFOs at time
tserp2- The voted SERP packet will appear as shown in Figure 4.19. A majority
of processors have their corresponding CTS bits set. Therefore at time t4ciq.2 the
NEs will begin the timeout process by asserting SET TO.

Another SERP exchange will ensue. At time t,.,,; the NEs will read their class
FIFOs. The resultant voted SERP packet will appear as shown in Figure 4.20. All
the CTS bits are set, hence at time t4ecige3 the NEs will assert GO indicating that
a PE exchange can be honored.

The exchange class and size fields are voted across request bytes resulting in a
correct values. Scoreboard voter errors are not recorded. The From Vote exchange
will take place at tirme t.;.n;. Another FTC cycle is required to vote and deliver
this message to the REC FIFO. SERP cycles resume at time t,.,54.

59

3 Exchange Class Exchange Size Fleid
Fleid, 3 bits 4 bits

Exch t B
xchange Hequset By'» 111 o010 0001

Exchange Ren' ™™ l1! 100 0010

B e ™ |11 o10 0001

Exch Request Byte
e PE D 1} o010 0001

Figure 4.20: SERP Packet Delivered to Scoreboard: SERP 3

4.2.6—The NE Global Controller

The Global controller is the central micro-controller for the NE. The controller
consists of many parts (Figure 4.21) which will be introduced here, and discussed
in further detail below. The heart of the controller is a finite state machine imple-
mented by five, 2k by 8, registered, programmable, read only memories (RPROMs)?®.
The RPROM bank has 40 outputs and 11 inputs and is clocked at 16 MHz (twice
the byte frequency). Ten of the outputs form the CTL (control) bus which is used
to provide the state of the machine via the stack pass thru register. The stack
pass through register allows these ten bits to be passed back to the PROM inputs
to form the next state address. The stack pass thru register also provides for an
auto-incrementing, one deep subroutine register. This allows the CTL BUS lines
to be used as control outputs. The eleventh input to the state machine is driven
by the conditional multiplexor (MUX). The MUX allows important signals to be
sampled by the controller to specify control branches. Four RPROM outputs (called
SELECTS) are used to select the desired conditional bit. These SELECTs are also
used to control an output decoder. The output decoder enables the machine to as-
sert even more control outputs. The output decoder is clocked by the inverse of the
signal which clocks the RPROM bank (NE16MRZ/). Therefore, the output decoder
is useful for control actions which require RPROM outputs to have stabilized. The
global controller also has access to a port of the dual-port RAM. This is provided
by a more generalized 8 bit data-port access to the VOTED DATA bus. The global
controller’s port of the dual-port RAM is accessed via the VOTED DATA bus. The
global controller can access the VOTED DATA bus through a register connected
to the CTL bus. The address for the NE side of the dual-port is driven by the
external address (EXADDR) latch which is also resident on the CTL bus. There

5The design of the basic controller state machine is copied from an identical controller built for
the CSDL FTPP by Stuart J. Adams.

60

is another important controller entity resident on the VOTED DATA bus. This is
the mask, size, and debug register. In debug mode, this register allows the global
controller to set various parameters of the NE operation. These include the masks,
the packet (frame) size, the clear selects, and the data path debug enable signals.
In operational mode, this register is where the voted value of the masks will reside.
Finally, the controller also has access to a counter via the CTL bus. This eight bit
counter can be loaded in several modes. One important mode allows the counter to
be loaded with the packet size output by the scoreboard voter.

The stack pass thru register consists of two pieces (sheet 9). The first piece is a
latch which allows the next state of the controller to be determined by the value of
the CTL bus. The other piece is a PLD which implements the subroutine register
function of the stack pass thru register. The operation of the ensemble is controlled
by two RPROM outputs NSSELECT (Next State SELECT) and LADD (Latch
ADDress). Setting NSSELECT = 0 enables the ensemble in pass through mode.
To use the CTL bus as control outputs a subroutine must be entered. Asserting
LADD in state N will cause the value of the CTL bus + 1 to be stored in the
subroutine register. If the value of the CTL bus was N+1 in state N, the address
N+2 is latched at the subroutine register. The CTL bus still drives the next state
if NSSELECT = 0, hence the machine will move to state N+1. In state N +1, the
CTL bus lines may be used as outputs, and the next address can be specified as
N+2 by asserting NSSELECT. The subroutine register has an auto-incrementing
capability. Asserting LADD and NSSELECT together enables this mode. In this
mode the contents of the subroutine register will be automatically incremented and
used as the next state of the machine. This provides a means of implementing
extremely long sequential subroutines.

The conditional multiplexor also consists of two pieces (sheet 9). The first piece
is a straight forward registered multiplexor. Four RPROM outputs are used as
SELECTs, therefore 16 inputs are possible. Currently only six select modes are
used. The top half of the MUX handles four of these. They include the following:

1. COUNTDONE. This signals the counter value is zero.

2. MYFTC. This is generated by the FTC circuit and is used to synchronize the
controller to the frame boundaries.

3. DELNE8MHZ. This is a slightly delayed version of the byte clock. It is pro-
vided to enable the controller to sync to the rising edge of the byte clock.

4. GO. This is the scoreboard output which signals that a valid processor request
is ready to be exchanged.

Any of these inputs can be selected by the appropriate SELECT value and assert.on
of the signal SELECTMODE. SELECTMODE signals the MUX that the present
state of the SELECT lines represents a new condition request. The value of SE-
LECTSs will be saved as LATCHEDSELECTS. This enables the same SELECTs to

62

be used to drive the output decoder without changing the conditional input selected.
A conditional input is thus selected when the SELECTS are set to the corresponding
value and SELECTMODE is asserted, or when LATCHEDSELECTS are set to the
corresponding value. The MUX is registered, hence if selects are asserted in state
N, the branch cannot occur until state N42.

The second half of the MUX is used to select a sequence of a group of bits. Two
such groups are used. The first group consists of the low order 5 bits of the VOTED
DATA bus. These bits correspond to the debug command value when the controller
reads the debug command register. They also correspond to the voter syndrome.
A SELECT value of 14 selects this group of bits. The second half of the MUX then
sequences through these bits repeatedly until a new SELECT value is latched at the
MUX with SELECTMODE. The sequenc’ng is done with the help of an internal
three bit counter. In this way the global controller can parse the debug command
using the single condition input. Additionaly, the controller can sample the voter
syndrome, during the initial synchronization routine, to determine when there is no
voter errors. Using the MUX in this manner incurs an additional pipeline delay.
Therefore if the SELECT'Ss are asserted in state N, the first bit is available to branch
on at the controller in state N+3. The other group of bits provided by this part
of the MUX is the voted exchange class outputs of the scoreboard voter. These
are used by the controller to identify the exchange type to be performed following
assertion of GO.

The controller output decoder is implemented in a PLD (sheet 9). Output
selection is based on the value of the SELECTs when SELECTMODE = 0. Though
15 such outputs would be usable, only 10 will fit in the PLD. The primary motivation
for the decoder is to make use of the SELECT outputs when not using them to
specify conditional inputs. The control signals that are commanded by the decoder
cannot, of course, be asserted simultaneously. Not much luck was had finding
obvious candidates for the decoder. The reset signals for the various FIFO memories
of the data paths and the VME subsection were stuck there, though this proved to
be cumbersome later. One good match was found however. This was in the group
of signals that dealt with the CTL bus interface to the dual-port RAM and the
mask, size and debug register. In writing the code to access these appendages of
the controller it was useful to have the half a period for CTL bus signals to stabilize
before latching them at the VOTED DATA interface registers. This allowed for
such accesses to take only a single state instead of the two or three that might have
been required otherwise.

The global controller has an eight bit counter implemented in a PLD (sheet 10).
The counter clock strobe is a controller decoder output, and a COUNTDONE flag
signaling a count value of zero is a possible conditional input to the controller. This
makes it a fairly generic event counter. The counter has four modes _pecified by
the two GLOBALCTRLD bits. A clock pulse while the load mode is 0 causes the
counter to be decremented. Clocking the counter with a load mode of 1 causes the

63

PACKETSIZE output of the scoreboard voter to be multiplied by 16 and loaded.
Clocking the counter with a load mode of 2 causes the lower four bits of the counter
to be loaded with the lower four bits of the CTL bus. The upper four count bits
remain unaffected. Clocking the counter with a load mode of 3 causes the upper
four bits of the counter to be loaded with the lower four bits of the CTL bus.
The lower four count bits remain unaffected. The counter was implemented in this
fashion to remove the need for the controller to parse the exchange size information
as conditional input as it does the exchange class information.

The global controller’s port of the dual-port RAM will be discussed in con-
junction with the mask, size and debug register and the vote mask register. The
controller specifies the address to be used in a dual-port access by writing the value
to the EXADDR latch on the CTL bus (U2777, sheet 10). The controller can write
data to the dual-port over the VOTED DATA bus via the CTL bus (U2781, sheet
10). The controller only reads data from the dual-port in two scenarios. The first
is when it reads the debug command register. To do this, the controller commands
the dual-port to assert the value of the command register location onto the VOTED
DATA bus. The controller can then “read” these bits via the conditional MUX. The
second read scenario is when the controller changes some parameter stored in the
mask, size and debug register (sheet 10). To do this, the controller commands the
dual-port to assert the value of a given location onto the VOTED DATA bus, and
then latches this value at the mask, size and debug register.

The mask, size and debug register is a hodgepodge of logic which performs
two principle functions. The first is to specify the current configuration of the
NEFTP as reflected in the state of the various masks signals. To begin with, lets
discuss the normal operation of this register and the masks. The masks refer to the
four PEMASK signals and the four NEMASK signals that make up the NEFTP
mask byte. The mask byte uses the virtual FCR identifiers and represents the
configuration of the NEFTP. A mask bit value of 1 indicates that the corresponding
entity is operative, while a 0 indicates it is failed and is “masked out”. As an aside,
the PE is a subset of the NE in terms of fault containment. A NE whose PE has
failed is still of use to the aggregate system while the reverse is not. Hence a mask
byte which masks out the NE and not the PE is not logical. This situation is
prohibited by the mask, size and debug register. The mask byte is written to this
register by use of the FromV with masks exchange. This exchange type specifies
that the first byte of the message will be the new mask byte. The value of the mask
byte, the result of an output consensus exchange, is latched into the mask size and
debug register as it comes out of the voter. The value of the NEMASKs are as
specified on the lower half of the VOTED DATA bus, the value of the PEMASKs
are the logical AND of the two halfs of the VOTED DATA bus. From the NEFTP
mask byte, the mask, size and debug register, in conjunction with the voter mask
register, generates all the masks to be used in the NE. These include:

o the data path voter masks, which are physical masks,

64

e the FTC masks, which are physical masks,

e the scoreboard masks, which are virtual masks.

The masks used by the data paths voter depends on the exchange type. During
an output consistency exchange the VOTEMASKs are the logical AND of the PE-
MASKs and the NEMASKSs translated to physical terms by the NEID. During a two
round input consistency exchange, the VOTEMASKSs are the NEMASKSs translated
to physical terms by NEID minus the source channel. For example, when voting the
result of a FromA, the source channel (A) is masked out. The VOTEMASKSs are
generated by the vote mask register which implements the above function using the
NEMASKs and PEMASKSs from the mask, size and debug register, and the NEID.

The masks used in the FTC are generated in the mask, size and debug register.
These three CLKMASKSs are simply NEMASKs translated by the NEID less the
local FCR. This translation is performed in the mask, size and debug register.

The masks used in the scoreboard are exactly the PEMASKSs as latched in the
mask, size and debug register.

The second principle function of the mask, size and debug register is to register
the packet size information for the FTC mechanism. Therefore, the size information
output of the scoreboard (VSIZE) is input to the mask, size and debug register.
VSIZE can be registered to PACKETSIZE which is output from the mask, size and
debug register to the FTC mechanism, and the controller counter (sheet 10).

The mask, size and debug register has some secondary functions.

e It provides for the specification of the mask and size information in debug
mode. In debug mode, the source of this information can be either the dual-
port RAM, or the global controller. In this way, the mask and size information
can be user specified via the Interactive Debugger, or it can be coded into the
global controller debug routines.

o It provides for the specification of the DBEN signals which control the opera-
tion of the debug router. Again, these signals can be specified by the user via
the Interactive Debugger and the dual-port, or they can be specified by the
global controller.

e It provides the virtual to physical translation mechanism for the data path
FIFO clear select signals. To clear a specified data path FIFO, the controller
writes two bits of information to the mask, size and debug register which are
a virtually encoded identifier of the FIFO (e.g. “clear the data path FIFO
corresponding to FCR A"). This value is translated by the NEID and stored
in physical form as the CLEARDATAPSEL signals. The CLEARDATAPSEL
signals tell the asynchronous controller what physical FIFO (i.e. the FIFO
corresponding to the LEFT FCR) to clear whe:. the CLEARDATAP signal is
asserted. This was done so that the microcode for the NE global controller
could be FCR-independent.

65

LATCH CTL_DATA
EUNCTION Z-5 EUNCTION
(] X Taich vinual PE and NE maske. Operational mode.
1 001 Latch clock mask. Debug modo.
1 010 Latch siza. Opsrational mode.
1 o1 Latch size. Debug modo.
1 100 Latch DBENs. Debug mods.
1 101 Latch Data Path FIFO Clear Selects. Elther moda.

Figure 4.22: Mask, Size and Debug Register Latch Functions

The mask, size and debug register is shown in sheet 10, and a table reviewing
its funcitons is shown in Figure 4.22. A listing of all the global controller control
outputs and their functions is presented in Figure 4.23.

4.3 Status of The NE Prototype

The design presented in this chapter has been implemented in a wirewrap pro-
totype version. The entire NE fits on a single 6U by 160 VME wirewrap panel (see
board layout Appendix A, sheet 13). Four such NEs have been built and all phases
of operation tested in stand alone mode. These include:

1. debug mode,
2. initial synchronization mode,
3. and operational mode.

A NEFTP has been constructed using these NEs and commercially available 32
bit single board computers, and is currently undergoing testing. The NEFTP is
housed in a single 19” VME subrack. The subrack is physically divided into four
FCRs in that there exists four independent backplanes. However, all FCRs are
powered with a single switching power supply for laboratory demonstration. The
current NEFTP provides rcom in each FCR for an additional wirewrap card or an
independent power supply.

66

CONTEOL GUTPUT NAME CONTROL OUTPUT FUNCTION
(AFBOM QUTPUTI {RPROM OQUTPUTR)
DPRAMCE/ Chip enable for NE socees of Dual Port.
DPRAMAVY/ Read, write conirol for NE access of Dual Port
DPRAMOE Ouput enabis for NE acooss of Dual Port.
CTL_VDATA_G/ Enabie for VOTED DATA / CTL buc interface ragister.
VMEDBEN Enable for VME INTERFACE subasction debug wrap rogister.
QLOBALCTRLD1 Firat load function select iine for giobal controller cocunter.
GLOBALCTRLDO Sacond loed funciion select line for global controller counter.
MOLATCHFUN Latch function bit for Masi, Sizo and Debug register.
XATRFORS Read strebe for XMIT FIFO.
RECFFOWS Wrie strobe for REC FIFD.
CLASBRAFOOE Output onabie for class FIFO.
CLASSFFOR0O Shit out signal for class FIFO
SCOREDP Scoreboard control signal
ERRORIREAD/ Read strobe for first of two NE emror bytes.
ERROR2READ/ Road sirobs for second of two ME error bytes.
REFENABLE Data path control signal which enables refisctod meesages to the MY EXTERNAL DATA bus.
REFSELY First of two zolect bits apecilying the virtual iD of the data path FIFO to reflect from.
REFBELD Second of two Geloct bits specitying the virtua! 10 of the data path FIFO to rsflect from.
NEFUNCTIONt First of the two NE function seisct bits.
NERUNCTIOND Second of the two NE function eelect bits.
VOTINGSERP Sigral identllying thet a SERP packet is being voied. Uoed by SYNDROME ACCUMULATOR to suspend accumuiation
VOTEN Signal controling deta path voter operation.
LADD Latch acddrees at Stack Pass Thiu Register.
NSSELECT Solect for Stack Pass Thru Registar.
SELECTMODE Select whethor Mux or Output Dacoder intemprets SELECTe.
SELECTY Salect signel for Mux or Output Corkroler.
SELECT2 Select algnal for Mux or Output Controller.
SELECT1 Seiect signal for Mux or Output Controller.
SELECTO Salect signal for Mux or Output Controller.
CONTRO!, QUTPUT MAME CONTROL OUTPUT FUNCTION
(DECORER QUTPUTS) (RECODER QUYPUTE)

GLOBALCTRCLK Clock for the gicbal controlier counter.

CLEARDATAP Daza path FIFO clear sircbe.

RESETXMIT/ XMIT FIFO ciear signal.

RESETREC/ REC FIFO clear signal.

DECDE Sirobe which terminates SERP exchange. Used to latch results &t Scoreboard

KICKDOG/ Strobe to restart Watch Dog timer.

CTL_VDATA_C Clock for the register which Interfacss the VOTED DATA and CTL buses.

[AOLATCH Latch sircbe for the Mask, Size and Dobug register.

EXADORLATCH Latch for the Extemal Address registar.

VMASKLATCH Latch for the Vote Mask ragisier.

Figure 4.23: Global Controller Control OQutputs

67

Chapter 5
Evaluation of The NEFTP

5.1 Reliability Analysis

This section investigates the reliability of the NEFTP architecture and compares
it with that of a conventional simplex processor. The approach is to use a continuous
time, discrete state Markov model to calculate the state cccupancy probabilities of
the two systems. Several probabilities pertinent to reliability are recorded. The
main probability of interest is the probability of system 1088, Pyysioss, 8t time t given
that the system was operational at time ¢ = 0. Reliability can thus be defined
as 1 — Pyysioss- The probability of system loss is the sum of the state occupancy
probabilities (p;) of all states i where the system is assumed to have failed. The
system is considered to have failed when it suffers an uncovered failure of any of its
components. The probability of system loss will also include the probabilities (p;)
of all states where the system is assumed to have been shutdown if such shutdown
is tantamount to failure. In systems employing redundancy, system shutdown is
a function of the redundancy management scheme. The two state probabilities of
interest are denoted pynsafe a0d Psautdown; their relationship to p,y.i... is dependent
upon the application. For example, consider an application such as a nuclear reactor
power plant control. High reliability is required because the cost of unsafe failure
is horrific. A controlled shutdown would not have the same consequences due to
the existence of backup methods of power generation. For such an application,
Psysioss Would be equal to pynsase. However, in applications such as autonomous
space vehicle control, the shutdown of the control computer may likely be just as
catastrophic as an unsafe failure. This is because the shutdown of the control of
an autonomous spacecraft may make it uncontrollable trash floating in space, no
less a catastrophic event than an unsafe control failure, which rockets the vehicle
out of the solar system. For this application, p,y.0ss Would be equal to the sum
of Punsase B0d Purutdown. Applications of the former type will be called critical,
and applications of the latter type will be called ultra-critical. Systems employing
redundancy have some flexibility in how to manage that redundancy to minimize
Paysioss- For such systems, the choice of redundancy scheme will be influenced by
the criticality of the application.

5.1.1 Definitions and Assumptions

Several assumptions have been made in formulating the Markov models used
in the analysis. These assumptions, along with corresponding terminology, are
discussed below.

68

Component failures, such as processor or network element failures are assumed
to be independent, and to occur at a fixed rate (A,. and A,., respectively), expressed
in failures per hour. Numerical values for A, have previously been estimated ex-
tensively. A typical value for A, is 10~* [Wen78]. A value for A,. is not readily
obtainable. However, the NE implementation is significantly less complex than
that of the PE, measured in terms of number of transistors. Hence, a realistic
Ane is arguably less than A,.. Reliability analysis of a more complex NE architec-
ture intended for hosting multiple PEs [Har87] estimated Ap. at 1.4 x 20~°. This
value should be an overestimate of the A\,. for the NEFTP. As this will make for
conservative results, the analysis of the NEFTP uses this value of A,..

Reconfigurations are assumed to take place in both the simplex processor and
the NEFTP. Reconfiguration in the simplex processor is assumed to consist of some
rollback or retry strategy. In the NEFTP architecture, reconfiguration involves
isolating and masking out the failed component in the case of a permanent or in-
termittent fault; or realigning and resynchronizing a component in the case of a
transient error. The rate at which reconfigurations can take place may be differ-
ent when reconfiguring around a failed processor than when reconfiguring around a
failed network element. These two reconfiguration rates, expressed in terms of re-
configurations per hour, are p, and pn., respectively. The reconfiguration time 1/u
includes the fault latency time [SL84]. For simplicity y,. and p,. are assumed to be
identical and equal to 10® per hour in the subsequent analysis [HSL78]. Empirically
determined values of up. and un. would yield more accurate resuits; however, such
empirical analysis must await the final definition and implementation of the fault
detection, isolation and recovery (FDIR) software.

All temporal categories of faults are intended to be included in the above men-
tioned component failure rates. Again, these categories are transient, intermittent,
and permanent. In the analysis below, the occurrence of intermittent and perma-
nent faults will result in the same state transitions. This is a result of the mechanism
used to detect and isolate faults. In most fault tolerant computers, failure diagnos-
tic information is continually recorded. Failures that are seen to occur a sufficiently
large number of times are denoted permanent, otherwise they are transient. Thus
the only distinction that need be made in the following analysis is that of permanent
vs transient failures. Earlier studies [SS82] have suggested that transient faults com-
prise 80 to 90 percent of all hardware failures. The models used below incorporate
this fact in the parameter f;, the probability that a failure is transient. The default
value, f, = 0.5, will yield quite conservative results. As the analysis will show, a
smaller f, results in a larger p,ys0ss; permanent failures are more detrimental to
system reliability than transient ones.

All models used below incorporate the parameter ¢ which denotes the probability
that a given fault is covered! by the system. A simplex processor can achieve a
certain degree of fault coverage through use of self tests, timeouts, retry and rollback

1Gee definition of coverage in chapter 2.

69

techniques and others. The corresponding value of c is realistically between 0.8
and 0.95 [SS82). The NEFTP is a 1-Byzantine resilient architecture and therefore
has unity coverage of a single failure. It may be desired to continue operating the
NEFTP after the occurrence of the first permanent failure, although with a reduced
reliability, rather than shut it down. In such a case, the model must be adjusted to
account for non-unity coverage of subsequent faults.

5.1.2 Simplex System Reliability Analysis

The Markov model of a conventional simplex processor is shown in Figure 5.1.
The first state is the zero failure state. The occurrence of a covered processor
failure moves the system to state 2 which is the retry/rollback state. Successful
retry is accomplished if the fault is transient. Thus, the system moves back to
state 1 with the probability A, * f;. However, a permanent failure results in an
unsuccessful retry. Therefore, the system moves from state 2 to state 3 with a
probability of pp. * (1 — fi). In state 3 the system knows that it is faulty, though
the fault has been covered, and decides to shut itself down. State 3 is therefore
called the shutdown state. Finally, from state 1, the occurrence of an uncovered
processor failure, transient or permanent, moves the processor to state 4. In state 4
a failure has gone uncovered, which is equated with system failure. State 4 is thus
the unsafe system failure state. Figure 5.2 plots punsafe; Pshutdown, and their sum
for the simplex model. In this plot and following plots of probabilities, the default
parameters have been used unless otherwise mentioned, and the time axis is in units
of hours.

Figure 5.2 illustrates two very important points. First, the suggestion in Chapter
2 that a simpiex processor is inadequate for high reliability applications is affirmed.
The probability of system loss at the end of a 10 hour mission for an ultra-critical
application is approximately 0.6 # 10~3. The probability of system loss at the end
of a 10 hour mission for a critical application is approximately 0.2 + 1073, In either
case this is clearly unsatisfactory for the applications presented in Chapter 2 which
require values of p,y,10ss On the order of 10~7 to 10~° for a 10 hour mission.

These results illustrate why current efforts in fault tolerant computing employ
harware redundancy. The probabilities cited above “improve” (i.e. are reduced)
as the parameters ¢ and f, are increased. Figure 5.3 illustrates how py,,qse varies
with ¢. The ordinate of Figure 5.3 is a linear scale to illustrate the affect of c. Note
that ¢ merely affects the ratio of psputdown tO Punsafe; ¢ cannot improve their sum.
Figure 5.4 demonstrates how p,y0ss varies with f;. Note that f; does not affect
the ratio of Pshutdown tO Punsafe; fe does however affect p,y,i0.s- A larger value of f,
means fewer permanent failures, and therefore a lower value of p,ys0.. However
such improvements are insufficient to attain the necessary reliability levels.

70

Shuldown
sfer pamanent
cavered fadure.

fallure.

Figure 5.1: Simplex Processor Markov Model

Simplex: Coverage = 0.8

10

@ sum

=
2 4
_§10
|
-

-~ punsafe
< pshutdown

10'8 BB wman o s al L mman el L ansiaa . meanaa]

10° 10!

102 T;o’ 10 100 10°
ime

Figufe 5.2: Punsafes Pshutdown) and Dunsafe + Dshutdown For A Slmplex Processor

71

0.4 1
0.3
& 1
4% punsafe c=0.9
g -6~ punsafa c=0.8
d-’_' <+ punsafe c=1.0
109 10" 102 103 10* 105 108
Time
Figure 5.3: punsase vs ¢ For A Simplex Processor
10°
10"
§ 10-2 2 ft=03
E 10° & ft=08
- ft=0.99
10*
10°

109 10" 102 103 10 105 10°
Time

Figure 5.4: pyysi0ss v8 fi For A Simplex Processor

72

5.1.3 NEFTP Reliability Analysis
The Markov model for the NEFTP behavior depends on the redundacy scheme

employed. Ve begin the analysis by assuming that the most conservative scheme
is employed. Such a scheme, henceforth known as redundancy scheme I, would
result in system shutdown after the first permanent NE failure. Since the NEFTP
is a 1-Byzantine resilient architecture, any single failure can be covered with unity
probability. Therefore, the parameter c is equal to 1.0 in the resulting model (Fig-
ure 5.5). The model consists of essentially two sub-groups of operative states, plus
a shutdown and an unsafe failure state.

The first sub-group consists of states 1, 2, 3, and 5. State 1 is the initial zero
fault state. A PE failure moves the system to state 2, the PFE failure reconfiguration
state, with unity coverage. Correspondingly there is a NE failure reconfiguration
state, state 3. From state 1, any single NE failure will move the system to state 3
with unity coverage. If these failures are transient, the system will reconfigure back
to state 1. If a second failure occurs in either reconfiguration state, a transition to
the unsafe system failure state (state 10) occurs. The exception is if these “near-
simultaneous” failures occur on behalf of the PE/NE pair that make up a single
fault containment region. Such an occurrence moves the system to state 5, and
does not result in unsafe failure. In state 5 there exists both a NE and a PE failure;
it is assurned that the reconfiguration procedure will be such that the system will
attempt to reconfigure the NE failure first. From either state 3 or 5, reconfiguration
of a permanent NE failure results in transition to the shutdown state, state 11. This
is because loss of a NE logically denotes loss of the corresponding FCR, and the
resulting number of FCRs is insufficient to satisfy the cardinality requirement for
minimal Byzantine resilience. From state 5, reconfiguration of a transient NE failure
yields a transition back to state 2. If the processor failure that put the system into
state 2 is permanent, the system will reconfigure to state 4.

State 4 begins the second sub-group (states 4, 6, 7 ,8, and 9) of the model.
In state 4 there exist 3 working PEs and 4 working NEs. The system is still a
1-Byzantine resilient, fault masking architecture at this point; therefore a single,
arbitrarily malicious failure can still be tolerated. The three processors provide the
fault masking capability, and the 4 NEs provide the cardinality, connectivity, and
synchronization for 1-Byzantine resilience. This is an optional initial state for a
“reduced” NEFTP, hence the second sub-group of the model is similar to the first.

From state 4, a processor failure causes a transition to state 6. If this failure
is transient, the system will reconfigure back to state 4. If it is permanent, the
system will reconfigure to the shutdown state. While in state 6, another component
failure would cause unsafe system failure to occur, again with the exception of
a corresponding NE/PE pair failure. Such a failure would cause a transition t:
state 9. Fiom state 4, a failure of any NE which still hosts a PE would result in
a transition to state 8. If the failure is temporary, reconfiguration back to state
4 occurs, otherwise, reconfiguration to the shutdown state occurs. Occurrence of

73

NEFTP Redundancy Scheme I: ¢=0.8

103 @ sum
-~ punsafe
<42 pshutdown

Probability

10 10t 102 100 10t 100 10°
Time

Figure 5.6: Punsafe, Pshutdowns 30d Punsafe+ Pohutdowmn For NEFTP Redundancy Scheme
I

another failure while in state 8 would result in unsafe system failure except in the
case of a corresponding NE/PE pair failure which would result in transition to state
9. From state 4, failure of the NE which does not host a PE results in transition
to state 7. The analysis from state 7 is very similar to that of state 8 except that
a corresponding NE/PE failure mode is not possible. The analysis from state 9 is
very similar to that of state 5. In state 9, a NE and a PE failure exist. The system
must try to recover the NE first. Successful recovery results in transition back to
state 6, otherwise shutdown results. Any additional failures while in state 9 result
in unsafe system failure.

In Figure 5.5 punsase = P10 80d Prhutdown = Pu1- A plot of these probabilities and
their sum is shown in Figure 5.6.

Some interesting observations arise when viewing this plot. pupsay. is 5 orders
of magnitude less than p,sutdoun. In Figure 5.6 the plot of p,putdown is coincident
with the plot of the sum of p,sutdown + Punsase- This redundancy managment scheme
is obviously inappropriate for appiications of the ultra-critical category. For such
an application the probability of system loss is not substantially less than that of
the simplex processor; p,ysos at the end of a 10 hour mission is approximately
0.28 #1073, This is four orders of magnitude below the low end of the target reli-
ability range. However, this redundancy managment scheme is suitable for critical
applications where a backup to the computer is available. For such an application,
Dsysioss 18 0.15%1078 at the end of a 10 hour mission which is within the target range.

For ultra-critical applications a different redundancy scheme must be chosen

75

Figure 5.7: Addition To NEFTP Markov Model For Redundancy Scheme II

to reduce p,nutdown. For redundancy scheme I, the transition sequence state 1=
state 3=> state 11 (Figure 5.5) is the principal cause of this high probability of
shutdown. It is NE “attrition” which results in the high value of p,sutdown- An
ultra-critical application must utilize the substantial resources still functionning
aftcr one permanent NE failure.

As suggested above, a less conservative redundancy managment technique could
be employed. Instead of shutdown occurring at state 11 (Figure 5.5), the system
could automatically degrade to a simplex processor and continue operation. A
model of this redundancy management scheme, henceforth known as redundancy
scheme II, could be obtained by replacing state 11 of Figure 5.5 with the sub-model
shown in Figure 5.7. Figure 5.7 is identical to the simplex processor model (Fig-
ure 5.1), except that the states have been renumbered. The interesting probabilities
map onto this new aggregate model as follows: pynsas. is equal to pyo + p1s, and
Pshutdowr. 18 €qual to py3. These probabilities along with their sum are plotted in
Figure 5.8.

Figure 5.8 demonstrates several interesting points about this new redundancy
management scheme. For ultra-critical applications p,ys1.,, is equal to 0.85 * 10~7
at the end of a ten hour mission. This is within the range of target reliability
requirements. However, for critical applications p,y0ss is 0.29 % 107, This is an
increase of almost an order of magnitude over that of redundancy scheme I. This
is due to the fact that redundancy scheme II allows operation of the system in a
non-Byzantine resilient mode. Operation in a non-Byzantine resilient mode recults
in a decrease of p,sutdown aNd an increase in Pynsafe-

76

NEFTP Redundancy Scheme IT: ¢=0.8

& sum
-6~ punsafe
& pshutdown

Probability
<

10° 100 12 108 10* 10° 10°
Time

Figure 5.8: Punsafe; Pshutdown, 804 Punsase + Pshutdown For The NEFTP Redundancy
Scheme 11

Yet another redundancy managment scheme could be employed to achieve satis-
factory results for beth ultra-critical and critical applications. The desired strategy
would attempt to use all the NEFTP resources left at the time the system enters
the shutdown state of Figure 5.5. To do this the NEFTP would continue running at
the maximum possible redundancy level until the occurrence of the next permanent
NE failure, henceforth known as redundancy scheme III. A model for this scenario
can be made by replacing state 11 of Figure 5.5 with the sub-model shown in Fig-
ure 5.9. State 11 (Figure 5.9) is one entry point of the sub-model, and is the state in
which 3 FCRs are fully operative. It is possible to get to state 11 (Figure 5.9) from
either state 3, 5, 7, or 8 of Figure 5.5. From state 11, covered NE failures move the
system to state 13, a NE failure reconfiguration state. In state 11, the only type of
uncovered NE failure which could occur is a Byzantine failure. Therefore the value
for coverage that ought to be used for the transition from state 11 to state 13 is
one minus the probability that the fault is Byzantine. This value would be very
near unity. However, the same value for coverage will be used here that is used
in the rest of the anaylsis, resulting in quite conservative results. If the failure is
transient the system moves back to state 11. If the failure is permanent the system
moves on to state 17, the shutdown state. Occurrence of another failure while in
state 13 results in transition to the unsafe system failure state, state 18. From state
11, a PE failure moves the system to state 14, a PE failur: reconfiguration state.
All PE failures which occur in state 11 will be covered since it is impossible for a
faulty PE to lie inconsistently through an operative NE. If the failure is transient

7

the system moves back to state 11. If the failure is permanent, the system moves
on to the shutdown state. Occurrence of another failure while in state 14 causes
the system to move to the system fail state. From state 11, uncovered NE failures
result in transition to the unsafe system failure state. Another entry point is state
12 in which all NEs are operative, but only two PEs are operative. It is possible
to get to state 12 from state 6 of Figure 5.5. From state 12, PE failures failures
cannot be handled with unity coverage, though NE failures can. From state 12,
NE failures move the system to state 15, a NE failure reconfiguration state. If the
failure is transient the system moves back to state 12. If the failure is permanent
the system moves on to state 17, the shutdown state. Occurrence of another failure
while in state 15 results in transition to the system fail state, state 18. From state
12, a covered PE failure moves the system to state 16, a PE failure reconfiguration
state. If the failure is transient the system moves back to state 12. If the failure
i1s permanent, the system moves on to the shutdown state. Occurrence of another
failure while in state 15 causes the system to move to the unsafe system failure
state. From state 12, uncovered PE failures result in a transition to the unsafe
system failure state.

It must be pointed out that certain aspects of the NE must be modified as
the redundancy level is decreased. For example the current implementation of two
round exchanges must be modified to tolerate a single non-Byzantine fault when
only three NEs are operative. Currently the value received in the second round from
the initial source FCR is not voted. Given a scenario where a From A exchange is
performed by three NEs (A, B, and C), a single passive failure by NE B may result
in each of the two NEs A and C voting two copies of the message - one of which
is corrupted. The voter output will not be guaranteed. A modification to alleviate
this problem would be to remove the second round source constraint when the NE
redundancy level drops below 4.

For redundancy scheme III, pypsas. is equal to p1g + Pis. Pihutdown is equal to
p7. These probabilities along with their sum are plotted with respect to time
(Figure 5.10). Upon viewing the plot, the desired results appear to have been
achieved. Considering ultra-critical applications, the probability of system loss is
low, Pyysicss = 0.24 ¥ 107° at the end of a 10 hour mission. This value of Dsysloss 15
about three times as large as that resulting from redundancy scheme II. This can
be explained by comparing the sub-model for redundancy scheme III (Figure 5.9)
with that of redundancy scheme II (Figure 5.7). Due to the greater number of
resources employed in redundancy scheme III, transitions to either the shutdown
state or the unsafe system failure state (Figure 5.7) occur with three times the
likelihood of tranisitons to either of those states in Figure 5.7. Because pyhutdown
dominates pynsqfe, increasing the value of coverage used does not help the ultra-
critical case. Increasing the coverage will increase pyhutdcwn and thus p,ysi0ss for uliva-
critical applications. Considering critical applications, p,ysioss is equal to 0.14 +10~7
at the end of a 10 hour mission.

78

2ed 00 10)

leilure

Figure 5.9: Addition to NEFTP Markov Model For Redundancy Scheme III

79

NEFTP Redundancy Scheme III: c=0.8

10° & sum
-6~ punsafe
& pshutdown

Probability
c-is

100 100 100 100 10t 100 10°

Time

Figure 5.10: Punsafe, Pshutdowns 30d Punsafe + Pahutdown For The NEFTP Redundancy
Scheme III

What is the best that can be done? There are still resources available in the
shutdown state of this last scenario. Will the reliability improve if one decides to
continue running at this point instead of shutting down? To answer these ques-
tions, one must understand the relationship between pupsase and pyputdown. Contin-
ued operation beyond the second permanent failure decreases p,sy¢down but increases
Punsaje- For critical applications where backups are available p,, 1.5, €quals pun,age-
Hence maximum reliability is achieved when pynsase is minimized. Such applica-
tions would choose reliability managment scheme I. For ultra-critical applications
where no backup exists p,y.i0ss 18 equal to the sum of p,autdown and punsas.. Hence
maximum reliability .is achieved when their sum is minimized. However, the choice
of redundancy managment schemes affects the two in opposite manners. In the
three redundancy schemes considered, p,putdown dominates in all cases. Continued
operation beyond the second permanent failure will reduce pshutdown 2nd increase
Punsafe- The value of pynsase for scheme III is therefore a lower bound of the best
Punsase that will be achieved by continued operation. Thus for ultra-critical appli-
cations, p,y.i0e 18 lower bounded by 0.14 # 10-7 at the end of a 10 hour missiton.
It must be noted that this lower bound for ultra-critical applications is better than
that which is achieved in scheme II. Scheme II had a lower value of pysutdown than
did scheme III, but scheme II had a higher value of punsas.. Therefore, use of avail-
able redundancy may achieve a lower p,y.1,,, for ultra-critical applications than is
achieved by immediate reconfiguration to a simplex processor. A summary of the
important probabilities for the various scenarios is shown in Figure 5.11.

80

NEFTP Redundancy

NEFTP Redundancy

NEFTP Redundancy

Processor Schems | Schewe Il Schaeme il

Probabliity of .4 .9 .. "
Unsafe Fallure 200 x 10 156 x 10 266 x 10 1,36 x 10

Probabliity of -4 -4 -8 .7
Shutdown 4.00 x 10 2.81 x 10 5.62 x 10 294 x 10

Figure 5.11: Reliability Analysis Summary

5.2 Performance Evaluation

This section investigates the performance cost associated with the fault tolerance
aspects of the NEFTP relative to that of other Byzantine resilient architectures such
as SIFT, MAFT, and the AIPS FTP. The focus of this analysis will take the context
of a typical fault tolerant computer application, namely flight control. In such an
application both performance and reliability are critical. To understand the areas
in which fault tolerance impacts performance, ignore for the moment reliability, and
consider a flight control application implemented on both a fault tolerant processor
and a simplex processor. Utilized as a flight control computer, a fault tolerant
processor must perform several tasks. Among these are the tasks of self tests,
scheduling, FDIR (Fault Detection, Isolation and Reconfiguration), and the control
task itself. Given no reliability constraints, a simplex processor would perform only
scheduling and the control task.

Self tests are motivated by a desire for reliability. Self tests are run for the pur-
pose of uncovering latent faults in the system, and for the purposes of this discussion
can be viewed as a cost of fault tolerance. The performance cost of self tests is de-
pendent on the processor throughput and the complexity of the tests. The issue of
processor throughput affects all aspects of performance. This illustrates the advan-
tage of the NEFTP in utilization of off-the-shelf processors. As advances in industry
increase the throughput of single board processors, the processors of the NEFTP
can be readily upgraded to take advantage of the performance increase. However,
this also illustrates the inherent advantage of parallel processing fault tolerant ar-
chitectures such as MAFT. The design of a NE based architecture incorporating
parallel processing is under development {Har87). Another factor of interest here is
the complexity of the tests, which depend on the complexity of the hardware being
tested. All fault tolerant architectures must be designed for minimum hardware
complexity and maximum testability. Realistic measures of the complexity of the
hardware of varying fault tolerant architectures are difficult to achieve due to the
lack of information in the literature. The NEFTP has been successful in this regard.
The Debug Command Language of the [TEFTP is intended to form the basis of self
tests with very high coverage and resolution?. The NEFTP is designed for efficient

2Work is currently being performed on the self test capability of the NE with moderate success.

81

Overhead * 1 . T,

Ta Ts

S Pr— Iy —Pre—Dr— PP — P —————Pi——
£3 : |85
SRR IR .
HE]
£ | 3238 [3E |38 |38 il

Figure 5.12: Typical Control Loop
testability.

Scheduling must be done whether the architecture is fault tolerant or not. The
author is not convinced that fault tolerance necessarily impacts the complexity of
scheduling in a seriously negative fashion. As a real-time system, a flight control
computer must implement context switching in an efficient manner. A simplex
machine could implement a clock based, interrupt driven rate group scheduler, or
a task driven scheduler. The AIPS FTP implements a rate group scheduler. The
essential increase in complexity required is that the interrupts be exchanged among
FCRs. The NEFTP implements a task driven scheduler with no inherent increase
in complexity over a similar scheduler for a simplex machine. The MAFT schedulet
is significantly more complex, but this is due, in part, to the fact that it is a true
multiprocessor and not simply because it is Byzantine resilient. Therefore in this
analysis, scheduling is not viewed as a cost of fault tolerance.

FDIR is clearly a cost of fault tolerant architectures which allow reconfiguration
around permanent failures. FDIR is typically either passive or active. Passive FDIR
involves analyzing the syndrome information generated from the data exchanges
required of the application. However this information need not be identical on all
FCRs and hence must be distributed via an interactive consistency exchange before
analysis may begin. Active FDIR involves executing additional data exchanges
designed to generate syndrome information that will help isolate the fault. The
important factor here (aside from processor throughput) is the throughput of the
Byzantine resilient data exchange mechanism.

Fault tolerance impacts the performance of the application control task as well.
A typical flight control application involves a loop of reading sensor input, perform-
ing computation on this input to determine actuator commands, and then writing
the output to the actuator. A fault tolerant flight control system typically uses
redundant sensors and actuators. Consider the case where there are four FCRs,

82

four sensors, and four actuators. The control loop implemented on such an archi-
tecture would consist of four interactive consistency exchanges of the sensor input,
followed by computation, followed by an output consensus exchange of the actuator
commands. Such a loop, described in NEFTP terminology, is shown above (Fig-
ure 5.12). The overhead induced by the favlt tolerance is again the time required
for the data exchange.

The throughput of the Byzantine resilient data exchange mechanism is an im-
portant factor affecting the performance cost of fault tolerance. Given architectures
of comparable testability and processor throughput, relative efficiency is determined
by the throughput of the fault tolerant data exchange mechanism. The following
is an effort to compare the data exchange throughput of some Byzantine resilient
architectures.

5.2.1 NEFTP Analysis

The following are measurements of the NEFTP system and sub-systems cur-
rently under test’. The NE of the system is operating with a nominal data link
speed of 64 Mbps. The PE of the system is a Motorola 68020/68881 combination
with a 12.5 MHz system clock. All PE code is written in C using the Green Hills’
C compiler.

The Data Exchange Parameters

The time the NE requires to perform the various message exchanges is funda-
mental to the overall NE data exchange throughput. This time will be refered to as
NE time (Figure 5.13). The NE time for a given exchange is considered to be the
time between the processor’s write to the class FIFO and the last of the NE's writes
to the REC FIFO. This time, as viewed from any PE in the system, i8 dependent
on three factors. ' ,

1. The exchange class.
9. The length of the message being exchanged.
3. The processor skew.

The processor skew is a function of synchronization frequency and will be discussed
later. The NE times have been measured from the slowest processor’s class FIFO
write and reflect the true NE times for the case of zero processor skew. Once
processor skew is known (see below) it can be added to these NE times to arrive at
the NE times as viewed from the fastest PE. Even in the case of zero PE skew, the
NE requires between one and two SERP exchange times before a message exchange
will be honored. This is what accounts for the high, low and medium times listed

3The measurements below are the results of tests currently being conducted by Ross Dettmer.

83

Exchange Times (ps)
[Throughput] (Mbps)
Size :

Exchange Type (Bytes)

2 Round

Figure 5.13: NE Data Exchange Times and Throughput

(Figure 5.13). In the high case, the class FIFO access occurs immediately preceeding
the start of a SERP exchange; in the low case, it occurs immediately after the start
of a SERP exchange.

Figure 5.13 also lists a throughput measure for each entry in the exchange time
table. This throughput corresponds to the amount of PE data exchanged per unit
time if the given exchange was performed repeatedly.

Processor Skew

The issue of processor skew is critical to many aspects of the NE. PE skew is
reduced by periodic synchronization. PEs synchronize by sending a message and
then busy waiting until it is returned by the NE. The maximum processor skew is
a function of the frequency of synchroniz: lion and the post-synchronization skew.
The PE post-synchronization skew is a function of the NE post-synchronization skew
plus the busy wait loop length. The post-synchronization skew of the NEs is no

84

&

200 L
0

10 20
U[frequency of synchronization] (secs)

Pre-Sync Skew (micro-secs)

Figure 5.14: Processor Pre-Synchronization Skew as a Function, of Synchronization
Frequency

greater than 375ns as dictated by the FTC design. The PE pre-synchronization and
post-synchronization skew are measur. . for various frequencies of synchronization.

The PE post-synchronization skew is measured as the difference in time between
the REC FIFO reads of the synchronization message of different PEs. The PE pre-
synchronization skew is measured as the difference in time between the class FIFQ
writes of the synchronization class byte of different PEs. The frequency of syn-
chronization is varied by delayin; a programmable time between synchronization
exchanges. The post-synchronization skew is independent of frequency, with a max-
imum value of 2us. Pre-synchronization skew is plotted as a function of frequency
(Figure 5.14).

The pre-synchronization skew should equal the post-synchronization skew plus
the processor drift. For the large values of pre-synchronization skew, the post-
synchronization skew is insignificant. Thus the pre-synchronization skew is effec-
tively the rrocessor drift. Processor drift develops because of their oscillator drift
and non-clock determinacies in the PE hardware. The program utilized in this ex-
periment does not exercise any area of non-clock determinacy other than the case
of ram accesses involving parity errors. Therefore the skew should be dominated
b, oscillator drift. The value of drift computed from Figure 5.14 is approximately
2 +107® which is plausible for commercial oscillators and the accuracy of the tests.
Figure £.14 provides the information necessary to determine what value of score-
board timeout is applicable given the frequency of synchronization. The maximum
scoreboard timeout in the current NE is 120 ms. Clearly very low frequency of

85

o y

0.20

0.15
-=- Data Size = 16
<~ Data Size = 240

0.10

0.05

Data Exchange Overhead

0.00
100 101 102
Iteration Rate (Hz)

Figure 5.15: Fault Tolerence Related Data Exchange Overhead as a Percentage of
Control Loop Length

synchronization can be tolerated in the current architecture.

Control Loop

A control loop like that shown in Figure 5.12 was programmed using simplified
versions of the data exchange primitives. The primitives were simplified in that the
ability to handle variable packet sizes and multiple packet messages was removed.
The message queuing structures and error checking were also removed. The “com-
putation” performed was merely a busy wait. A measure of data exchange overhead
was computed as follows: overhead = (data exchange time)/(total loop time). Val-
ues of this overhead were computed for several different “computation” times and
two different packet sizes. The results are plotted in Figure 5.15.

In the current implementation, the overhead is comprised almost entirely of
processor time. A control loop that uses a packet size of 16 bytes spends 386us
performing the fault tolerance related exchanges. An identical loop that uses the
packet size of 240 bytes requires 2.2ms to perform the data exchanges. The data
exchange time for the latter case can be broken down as shown in Figure 5.16. The
time spent waiting for NE is 70us (on average), which is roughly 3% of the time
required for the data exchanges.

The conclusion to be drawn is that the NE is too fast for the current PE. The
current implementations of the data exchange primitives require 3.5us to perform
a longword write to the NE. Enhancing the functionality of the data exchange

86

© g

r\
EveNT Insoumsn (ss)

PE urites From_A Exchange
to the NE. 213
PE writes From_B Exchange 213
to the NE.
PE wrios From_C Exchange 213
to the NE.
PE writes From_D Exchenge 213
to the NE.
PE reads the resuits of the 882
exchanges above.
PE writea SYNC Exchange to e
the NE.
PE walts for the NE 10 procsss ‘0
SYNC Exchange.
PE reads the results of 8
the SYNC Exchange.
PE performs control law
calculations. Variadle
PE writes From_Vote Exchangs 201
o tho NE.
PE wults for the NE 10 process 80
From_Vote Ezchange.
PE reads the reaul of the 213
From_Veote Exchange.
PE writes SYNC Exchenge. (]
PE waits for the NE to .
process 8YNC Exchange.
PE reads the resulls . s
of the SYNC Exchange.
PE 1o0ps back o begining. 12
Total Data Exchangs. 2.222

PE wake lor NE 70

Figure 5.16: Breakdown of Fault Tolerance Related Data Exchange Overhead When
Using Maximum Packet Size

87

primitives wiil further increase PE/NE transaction times. Clearly the data exchange
primitives need to be fully optimized to take advantage of the NE throughput. For
example, the time required to write the four interacive consistency exchanges could
be quartered if the PEs were not required to write null packets for the exchanges
they did not source. This would necessitate a minor change in the NE global
controller code which implements the two round exchanges. However, it may also
require that packet sizes used in these exchanges be identical. The efficiency of
the data exchange primitives is currently the limiting factor in the data exchange
throughput of the NEFTP ensemble.

Comparison of Data Exchange Throughputs of Various Byzantine Re-
silient Architectures

The performance cost of implementing fault tolerance in the SIFT architecture
is large [PB86]. The nominal speed of the inter-FCR communication link for SIFT
is 4 Mbps. The corresponding number for the NEFTP is 64 Mbps. A single word
broadcast can take anywhere from 8.6 to 18.2us. A 5-way vote takes 413us in the
absence of errors. The resultant single round exchange throughput is 38.7 Kbps
(thousand bits per second). The NEFTP single round exchange throughput ranges
from 7.11 Mbps to 28.7 Mbps (Figure 5.13). SIFT requires 12.9ms to perform an
interactive consistency exchange of 21 words - a throughput of 3.25 Kbps. The
two round exchange throughput for the NEFTP ranges from 6.24 Mbps to 19.6
Mbps. This illustrates the severe penalty of irnplementing fault tolerance related
data exchange via software tasks. The data exchange throughput of the NEFTP is
considerably faster.

Little information is available concerning the throughput of the MAFT data ex-
change. The “effective” bandwidth of the MAFT data exchange network is 1 Mbps
[(KWFT88]. This would correspond to the data rate for single round exchanges, with
two round exchanges occurring at half this rate, generously assuming the effective
bandwidth includes the time required to vote values. The figures for the NEFTP
compare favorably. The NEFTP data exchange throughputs are approximately an
order of magnitude faster.

The latest AIPS architecture FTP has a data exchange throughput of 14 Mbps
for two round exchanges. All exchanges are two round exchanges. Considering a
control loop application like that of Figure 5.12, two round exchanges occur 4 times
as often as one round exchanges. Weighting the NEFTP data exchange throughputs
in this manner the resulting throughput would range from 6.41 Mbps to 19.8 Mbps.
The NEFTP can be faster than the AIPS FTP if the maximum packet size can be
used. In worst case, the NEFTP is 0.45 times as fast as the AIPS FTP.

88

5.3 NEFTP Evaluation Summary

Analytical modelling of the NEFTP demonstrates that it can provide the reli-
ability required for critical and ultra-critical applications (approximately 10~% and
10~8, respectively). Performance evaluations of the NEFTP demonstrate that the
data exchange overhead of fault tolerance is low compared to that of other Byzantine
resilient architectures.

89

Chapter 6
Conclusions and Recommendations

The primary conclusion of the above analysis is that the NEFTP architecture
does indeed meet the reliability requirements in an efficient manner. The NEFTP is
reliable and efficient!. The compact design of the NEFTP, minimal interconnect, low
power dissipation?, and flexibility of processor implementation make the NEFTP
an appealing architecture.

There is much future investigation relating to the NEFTP that should be con-
sidered. Substantial improvements over the current implementation can no doubt
be realized. These areas of future work are discussed below.

The NEFTP is capable of performing simplified control applications at very high
iteration rates. However, in order to demonstrate the legitimacy of the NEFTP a
more realistic workload must be constructed including self tests, the FDIR mecha-
nism, and a scheduler. Development of these must be an area of future work if the
architecture is to be taken seriously.

In the current implementation of the NEFTP the processor is too slow to utilize
the full bandwidth of the NE data exchange mechanism. As processor efficiency
is increased, the NE data exchange throughput may need to be increased. There
is opportunity for such improvements in the current implementation of the NE.
The nominal bandwidth of the inter-FCR communication links is 64 Mbps, but the
NE data exchange utilizes only between 9% and 45% of this. Without the SERP
overhead, and the overhead of voting the data exchange bandwidth would be 50%
to 100% of the nominal communication link bandwidth. It is plausible that a 30%
reduction in the SERP overhead could be achieved by optimizing the corresponding
global controller code. The current version of the SERP exchange code uses a
frame size of 48 bytes, most of which is idle time. However, a previous version
was coded that used to 16 byte frames back to back. This earlier version did not
work correctly in the case were the minimum FTC wait occurred between frames;
nonetheless, it illustrates that a minor improvement in SERP code effeciency may
yield big gains. Additionally, for single round exchanges, the time required to vote
and deliver messages could be substantially overlapped with the exchange of the
message through a slight increase in complexity of the global controller. Currently
voting of a message does not begin until after the entire message has been received.
The minimal requirement is that voting not begin until after the first byte of the
message has been received from all FCRs. Since voting and message exchanges occur
at the same rate, the integrity of data would be maintained. The result would

1The efficiency of the NEFTP compares favorably to other fault tolerant uni-processors.
2The proiotype NEFTP consumes approximately 200 Watts.

90

be that single round exchanges would take on the order of one FTC frame (not
including SERP overhead) for exchange, voting and delivery instead of the current
two. This would be an appreciable increase in throughput. The cost would be
the complication of the global controller required to perform message exchange and
voting and delivery simultaneously for single round exchanges. This optimization
is not possible for two round exchanges due to the physical constraints imposed by
the data path FIFOs.

Current efforts investigating the feasibility of reducing the WE functionality
into a chip set or wafer scale project should be continued. The indicated dis-
parity between the NE throughput and the efficiency of the PE data exchange
primitives prove to be interesting in this context. In particular, this informaticn
impacts the utility of the multi-packet capability of the current NE. The multi-
packet functionality was provided in order that PE/NE exchange overhead couid
be overlapped to some extent with the NE data exchange overhead. A multi-
packet NE would allow the PE to write many packets before reading any, like
[WriteWriteWriteReadReadRead | A single packet NE would require the proces-
sor to read each packet after it was written, like [WriteRead WriteRead WriteRead |
Measurement of the speedup provided by the multi-packet NE {inds it to be minimal
in the current system. This is due to the fact that the time required by the PE to
transition from completing a write to initiating a read in the single packet scenario
is comparable to the time required by the NE to perform the exchange. This implies
that even in the single packet scenario the PE is not delayed significantly by the
NE data exchange time. Interestingly enough the PE/NE exchange overhead must
be substantially reduced before a multi-packet NE produces a substantial speedup
over a single packet NE. The important realization is that the multi-packet func-
tionality of the NE can be removed without adversly affecting the performance of
the current NEFTP. In fact some NE throughput could be sacrificed by reducing
the width of the NE data paths, resulting in a more balanced PE/NE pair with no
great performance loss. All this is good news when considering how to reduce the
NE physical size. Efforts to reduce the NE should concentrate on a single packet
NE with narrow data paths.

The NEFTP provides an interesting opportunity to perform experiments in de-
sign diversity. Hardware and software design diversity should be explored. To
the extent that such diversity satisfies the constraint of bit for bit congruence, the
NEFTP provides a very amenable test-bed for experimentation. The NEFTP can
also be utilized for design diversity experiments which do not satisfy the bit for bit
congruence constraint. The NEFTP is albeit less well suited for such experiments
than architectures that employ approximate agreement voting algorithms in hard-
ware like MAFT. However, the NEFTP is certainly capable of implementing design
diversity that necessitates approximate agreement. Such an experiment would not
use the From Vote exchange. All data must be exchanged via interactive consistency
exchanges. The approximate agreement “voting” algorithm could be implemented

91

in software in the PEs. The overhead increase would be large. A “vote” exchange
would require four interactive consistency exchanges plus considerable PE computa-
tion time instead of merely a single round exchange. Conducting such experiments
will help determine if reliability is increased sufficiently (if at all) to balance the
performance cost and/or increased hardware cost of approximate agreement.

Additionally, the arena of multi-processing can be explored to a limited extent
using the NEFTP. In particular 2 two processor per FCR architecture, as currently
utilized in the AIPS design, may be interesting. The “processor” of an AIPS FTP
FCR is really two processors. One is the control processor (CP) and the other is the
I/0 processor (IOP), both of which communicate via a shared bus that hosts shared
resources including the data exchange mechanism. Ordered communication between
the CP and IOP is maintained via interrupts. In the current implementation, the
CP runs the application task and the IOP performs sensor and actuator I/O as well
as fault tolerance related data exchange. Such an architectual modification may
prove beneficial to the NEFTP when real sensor/actuator I/O becomes an issue.
Such a modification is planned as a logical expansion of the NEFTP. Each FCR
has room for an additional processor. Polling must be used instead of interrupts to
coordinate the communication between the two processors.

A NE is currently being developed for a full parallel processing architecture -
the Fault Tolerant Parallel Processor (FTPP). This NE is significantly larger and
more complex than that of the NEFTP. By utilizing the NE of the NEFTP as a
single packet NE, it may be possible to support parallel processing with minimal
modification. The modification would invlove redefining the PE/NE flow control
information generated by the NE. Altering the meaning of Clear To Send to “NE
Available” may be sufficient. A NE would be available if both its XMIT and REC
FIFOs were empty. This must be accompanied by the constraint that a given
PEs access of the NE must be separated by more than the maximum allowable
processor skew in order to maintain the ordering of messages into the NE. The
effective throughput of the NE as seen from any processing ensemble will decrease,
perhaps tremendously. However, this may be offset by the increase in processing
throughput.

Finally, the reliability of the NEFTP could be boosted by utilizing the avail-
able space in each FCR for standby redundancy. Modelling can be conducted to
determine if the spares should take the form of NEs or PEs. Another question is
should the spares be running and waiting to take over operation (i.e. hot spares),
or powered off (i.e. cold spares)? Again, analysis should be conducted to determine
how each scenario affects reliability. Implementing stand by redundancy creates en-
gineering difficulties. For example, how do cold spares get powered on? Can a stand
by element fail in such a way as to corrupt the primary element? Furthermore, how
is the faileu element disabled so that it does not interfere with a rec~ntly activated
spare? The NEFTP is amenable to such experiments since it has the space available
in each FCR and at least spare PE should be easy to acquire.

92

In the author’s opinion, the NEFTP succeeds as a useful vehicle to further
explore many aspects of fault tolerant computing. '

93

Appendix A
NE Schematics

A.1 Sheetl

any _ms] |10 1

i
I3 B3HTH I

EltiRe) E]

94

—a

[d

WITE) OATR

FIFO (ATR

STATUS REGISTER

8
5
& §
alalels g]
!
RNiA || _ M
[EEEBE | m MM 3
9lzugg. ¢ mm
I R A'EN"
il
mmmmm
13
AdAalbAd
3
F'y

10T 713 X X 8 OLAL POAT

A.2 Sheet 2

nz|x|x[a|e|an|z|z|a|ra|z]z|a|nln|a]a]ax]x]s 1
R
5 43.!.-4.£g.nmmmmﬁwﬁma mm&.
alslnln
3 u..iug;nnguﬁﬁﬁﬁmﬁmﬁu T
B .rwuuﬁuurraiss-asimﬁm mmwuu :

CLASS? [FO9]

A.3 Sheet 3

T S0~

|

[] ~

m::mmm»ﬁv

mmnn.mau&c
AaMRARAR

au?

V..

mw 3

o[s[=]z]a]c

E
B

glajuje|alslaie

mITIrea
A STARTASHIFT
7]
‘ [
]
o
STRATXSH IFT

Rejatie|e

2

FILES:FIFOCINT1

TINE

V€ FEC,XMIT FIFGS

012

| €T

NIEER
04/17/88

lnlﬂu-nn_n.onm;sn mmnnunnqacn_u.cmn-n u.n.uuxanl_m.nmruau g L
RAANME el lele]efa[~TnIn]-[n]~ Y 1 O I P Y A Y I P -|m}e
&|8|8(3|a|a|&|8 d(z|3[a|als|n(8
§ X g
L:_a 5 E E._n : ; Ele ﬁm B
R 1 h 5 Frkt A

96

A.4 Sheet 4

BOUND VOTER AND OLODK EFRCA ACCUFULATOR EPS00

MIFTC GENEFATOR EP900

alnls

8|k

Bl E

- I
LACCEM I8 |3

LACCEML

jodE
™ |&

QRCCEONIL
ARCLERAL

D areywy
as

w:

;ﬁ LNEDBRNS

IAED

3
td

AR

™2

Cl

m
m
[« J0]

s

Onr127
M1

oniie
ot 118

min

Al

mix
L)

Al/

almm ovay

ENITFIFOF/

CLRIIFIFOF/
s cs

=
&
A

as

on?

e ——

PACNETS I IO

2lm s

|81 &R0

AESET/

P

aaaaTWﬁj

[ELNEDBoU

a|3|2[5]e]o|

_wxmxmtm
mn_._xm.um

Il

MED 1 RSOND

44 A4

nT

e
TRPS-180w3

PAL20MALD

XN

cRz-NmaXRURC AR
-

CALIE L AL AL a{]

LOATRSTARE
ROATASTRGRE
OOR TRSTROBT
LCOwITRONE
PLOWS TROBE
OCORSTAORE
mm
AIGHTVLTIe
OPPALTN

ME164T/

MTORTRACLK/

Ny
| 2
: [:>c
001
F TLES: MTF TO0EN, F1C2, B0

4 0F 12

[3er

FRULT TOLERRNT CLOOX

04/17/88

[Lid

RS
NN
NES1/
27

>

MTOATAOLK

ut?
AL SUN-1

Blnﬂ_u

13

saacgcel

oNaIaec

517

QLK GENTFHTCR

»

wio|~ o |e

L A krkr;ﬁ;r

AQERAD
AOEMAL
[

[ias]
L

»nm

oo ax

97

51 &1) T b m
E gz g ; 3 Ll el 5 g "
JHHE I : : E(E|E[E|5|8}2 -
>9-9-0 -0 :
8ls[y¥l8 g|8|a|s m m
‘I|~ el88;3) 3|8l8|8B|8BIBIE|0|8]0] Iﬂ m. alalalz| =lala|vie|e|=|=|a|=|a =] IB| m v
e 22|R| IZ|2(R|RZIR|RIE8 2z (@ 2 [v)z] lalzz]2] [z]2|2|zlz]z|2z]elelz] |2 3 > w
Ele|d|e i 8ls|y|z m £ w :
- R3S) —~ |3 o« 3
-lele| [e1eie| Islelsles(Bl|siE(E 3| lols| [elelels| [6le|6(ElsBEEEE 3 Bl P
8 N z
. 2 | e
£
“13(8] [E(EZ2| |s|slela| lelelele| [s]ole 8| |ele| [B(BIBIE| |alalsls| |elelele| |als|als| lslelele| (5
3| la|u|ele| |zelele| |e|z|z]e| |2|2|a 2| B3] |alxle|el |zlelzla! |zlzlala| |2lelal| |a]ale]s| |2
AR AL u_am 8(s|8 8la|3|a8 L] F1C1EIEEIE1E] g(clals] azjala] ~irlis|lN] =
Bl8/8/8] B|5[HIB 8|A[H g)8]8 Bla|glE| &|sl8ls] a&/8|8|5; &/8)8(B
[=] el - 8 2 Q 2 8 =
. . a i . . i A i
EIBE BiEE(E
AAAA fiL— 1)
=3
=]
2
H
|
o)]]] &
L . £ |1 i : £
CIEIEIEIELES : , g] EBEIBIBIBIBl ¥ g ¥
m J 8|5 1 | CHE]] i\
~
.n_..\l.u alR]=|uln|= n_whak_uan_v. ala a_a._.aa_..an_, alala nusnnmun‘rz_. ola|ala nu_u._.na_,a._»
mumuuucau?m_v munamaawm_.»m_-. mnemmsswa_wm_s mammwcmwm_ﬁm_s
- a3 £ TR tk
p ..mmammmmma_!u_mm_n wmummmsmuLn_un—m mmummmsmmmfh_um_u mmummmmmmm_n_u_%m_u]
< - JN]R]~ T-TRTA))= aaaaz_slf,‘advﬂv - aﬁ..,a_.nV
t 5
El= : z x|z Zly
= < clE g
g mumm. mmm HHE]E: HE]H
5 5 : m)
e .. | |
A AdA) AAAA AAdL d 9y

A.6 Sheet 6

99

m%%wm mmﬁjm | m%mrm m mhwm m - :
Big|8|8[8|a T EEEE HEEEEE CIEEEEE « -
n—n.ru BHEMED annnsk_,.uzn B_B._.WBEDNEB B_nnB:E..-.M ajn W -
dleegeegesg |y dleeseeese |3 dleegrReEcs® |g @BRERESse g 61 2 8
MHHEBNBHUHD 2 Mnnﬂaﬂﬁlnlﬂ M MNHEBNEEFJBB 3 mm"EENEMﬂBm = m m |
M MRNERCORE =T~[=[=TeT=]~ = [=[=] —Ie[m[=w =]~ == [=] —I~[m[=[o]z [~ [=]=]= .
mmmwmmm_m mmnEnEnm mm-.nEnunE n_m_nm»nmum. _ J |8 g
B m 1 m 4 4 _m W 3
B :
- 2 - |-
ellglsl . . ELEE E| gl Y
5| 5| 5| & T 5555l v 555 Y
¥ 1 m e gl 4] «
11 F.m. E F 4 & nm i1 m
Bl&i8(&[5}8 B|& B|8|B(B gl8|8 8
La nlnlznln|a]rlals]xlela wlrleln aF_a alrlalas|slal alslialz aln]s|e]a|e]=|s]a alr el a_ﬂ_ﬂa_m_uf&n_m_s_
mmmmmmmmu:ummm munnmu:mmu@uu@ muunmu:mmunmn@m muunm?nmmunmmn
f cetunoUseaRass | |||eannssovsaekbs P |*lovsessouenshhs * |*lapeessenaesblsz
.._z:us#_e_snu_nun |z:u5_s_7_a_9wu2nu - us_s_.,_o_snunuu ..z_._us_a_.,_m_soup_nu
g(3ls(B B(Ylg|8
Iv
3 HF Eluls Eluls
i Blgl AHE HH
i mmm . bl Jmn U
ive Yey] IVERAZ, il vvy
3 % _ 4
; : g gl
5 5] 5
¥ E i ¥
—y .

8] 8| # B B m..lu% nllm.
ZlnRA9RABAQA o & sa 2 1n sa , dl o 1n sz b 1n 9a
muamnmmnu?\,m wmnmmmnunas_a_nm mmnmnunmasm_u_em mmmmnunmams_m_em wmmmmmnmum:_n_e

ala|s]e olalalzlslo][o]z]e]-T0] w|2[w[=][8]o[=[=]~[-Te] ol2lwl=l[a]oln]z]]-ToT olglulzls]o]nl2]z]c]-Ta

glB|als nmnmmﬁmn q_w R] num_mmnﬂ_ E S R E ,E

3

ftTRE TEe (11 1 IR " B v' 1 1

A.7T Sheet 7

ASYNCRONOLS ORTA PATH CONTRAOLLER EPI00

AOOMULATCR
T w2 SNFOE
1 00 G) L
— - Cou oed
NTATACLE 2[70 MOATRGK Rl W3 [—. 2l w2 e
e AL L » Lo Ulg m|B e
— - o) 5 @
REFURCTIONG 2 © TERl W [3 1w
P CTION alm R T A TR TIFTIRLEFT WED(AM 02 81,0 1018 Lol
” TR E] MIFTINALGHT > o Sl vl o
_ e a3 we 3gr W & MIPTINGDP » an 8 s 1m|B L tail
- @28 w0 > _— e : " w% -
. s 2| 28 [CMELD NS |3 CLADATRPSELD m
> B[6w ORIl MW [& CGRIAPSrLL —4 > e Slie 2 w2
> 2w . MmO amwed B8 |2 « -« Do 1|2 ERAOR | RERD/
> 3|20 am QRMY 36 |27
> AmeTAmE - - Al M B ——~ | -owes— W & - " - - (e,
S R ATRITAGBE YL Ghel B8 | 2
SORTASTAOBE 3| o afm N2 o S T : -t :
. LCOSTRE allTl s OFWA__ B0 |3 CLOWAIGHT/ 4 LINK ERACR ACCLMRLATCR AND SCOPEBORFD
g ACONSTROBE E| 2n (=] QB0 [THE] CLERROPP/ ~
. OCONSTAORE 2| 28 o s N |2 CLERMNINE/ = SCOFEBOFFD SCALE COLNTER
PN D2 wum > L
PRI L > et L] ou oegl CECIOE
e Dl e oAm > LEFTALTH 2w w |3 SrPALTH
e alas __ am we [TRE] cLERDATR p NMGHLIN Gfp g B ERFOAIRERD/
— -« L IrEPAOn Ty B XAt
ALINERACR v wo|B smeom
OLINGEARGA Slpe ol ScALEDNT2
05 6|y B XALEOM
STNCHRONOUS DATA PATH CONTRALLER 05 7|y, pn| B SCREONN
: I \CTED (TR ! an_e D .LALECNTS
1o SETTineaut 9 : :E SCALECNTB
o e Tt ser p- ojn DoTE scmecuion
20 w[® SHIFTINAIRE > —
— g o [&R =]
TP p o (B, reEm
e VIEX Sin @ |B PAEFLECTSELO >
PN OG0 8ly @ [N NEFLECTSELL >
T ErecTion s w [B (] >
o PEFSELO 8lg w|¥ 101 P
; REFSEL1 Sip & "7 <
wIs
FILES: ITHCOATACONT, ASTNCOATACONT
STNACC, L INKERRACC
TINE

OATA PATH CONTADL AND EFRCR RCOLM

SEE | (ME | WreR AV
B @
OE o/17/6 | s€n 7 0F 12

100

FILES

SOOFE L SORE2

e

mm

s & 12

| s&Ei

owile

101

A.8 Sheet 8

Y4 4 Y Y Y ry I'YYYVYY)
RO
e | ; R
alalsls _muﬂm L i d L d
mmmm_nm “muam “m_mmn_mum”_m q i alalale] [Rfelalalele] [FERiERlEe
Em.m_wm mmmm _mlmmmjmmnmr 8 Wn#u mmﬁ_s elelz|eje|eie
” g
il
2 mmsmoaum_.m. mmmm mmme_w 3 Mmm mmmm Jsunlnnn
(B[||njels|s|s|ajale ma_mn_milm_m B Wm alalxla| |slelelsls|ele 2i8zl2| |2
apmm[ne]ealain m_:._.ﬁ.._ w[Hs[Rln] = alnlwlo| mis[s[als{ns s[wjw[e] =
. Blgig|8(ai8]8
m e e
A Akl " hdAd

YYY VYY)

»
»

ERAGALRERD/
ERAONZRERQ/
MDY
4%>&7wmm1
I

GLOBALCTACLK
CLEARCATAP

CLAYIFIFOSO

SCOfECP
CTL_YOATA_C

GPARCE/
PRAARY
OPRAMOE/
CTL_YOATAG/
WVEBEN/
GLOSALLTRDI
QLOSALLTRLOD
MOLATO#UN
LNUSDI
YMITFIFGAS
RECF [FOWY
CLASSF | FOOE/
RESETIMIT/
RESETAEC/
KICKD0G/
MOLATCH
EXADORLATCH
VMASKLATCH

CT7X245

FILES: CONTMUX1, CONTMUX, NSFEG

o |~

A.9 Sheet 9

2v10

NEFENPOLE

ee m_o_m u.

10
>

o
R
o
N
5
B
o
B
B

1o

nne

90F 12

| ser1

IR |

ov11/8

GO

0

0
u
o
H
s
E
T
0

[0
I
[
N
5
5
[

G.CBAL CONTROLLER OECOCER

a
F
a
)
S
[
4
B
5

MO
ML 8 o
N2
N3 4
N
iﬂ'ﬁi‘a

=¢>:¢: mmmmmm
AhdAAA
- o -
*dl L ERE 3G
I R[5[3[&| ow
mummwmm B8
olal={a|z|u]ai »jalz|ofa|a]als
CsuBZEEBD GueB3BESD weeuoaeEes
m W_ m . _ﬂ m a [
umnnuusuwannhomu SlezwezeeeeerSn|ES |5 mumnmmanmnm_Lm’u
076-.&!21828!4\3{8 l_”n.suaZIa!lﬂJnafn_ o|rjo|n|r|n|n]-|0|H|e |2 [RIR
|- ClEEI T EL) B|8|B|8|8|8IB|2(8|8 8i8|8|B(3[8(8(8(8]8

OnTA
—
- e
—»>
LATCHEDSELD
TATCHEDSELT
ATCHEDSEL2
TCHEDSELY
NE18mL
»-
FEET/
F

INICNTO

CONOLTION
YOTED DArR
MY INPUT
ar00

E
g8
aas_nnnsun

£E8EEE5888€E =

I
ElS

~
3
2
5

a_n_s_n_n_n z|a
§EE88REEEESE

aNpMIURCED

NI EX LR

$1]
um
GLUBRL CONTAOLLER AUX
Qo

—uo
wmn
PUSHED STATE REGISTER
@210

102

QINTHL B5

T el | “eleflel | | |
B & clelel 7 .
wl e 1 wl
: R £
>.ﬁ L4 __ﬁ kﬁ A A AAdA A

WMAGKREG, GLOBINT

GLOBAL CONTRALLER 2

MG

10 OF 12

| s€ET

ov11/88

MASK,SIZE AND DEBIUG REGISTER EPSO0

A.10 Sheet 10

FILES: MASHFEG,

TIME
SIE | OXE | MABER

103

m
149

[

MNEMASKA

Add AALA AAA
DR Biee BRRR ERGE obed .
85|58 glejB|B] s|yix|8| 3|88 3|3(8 m
mm Aig(8] |o|8 44| |a|8a(8] (B(R|8|8 Aim(d
ls B
o|o| [BER| e RRRE :
RI9SRAS ARG =
. MMnnnmsona_ﬁm
5F mm 8| lelelalel [slelelelelelels| sle| |2 ¥ 3[a[ee[s[elefs] |
Bl oo bl hpee baemsean b0l g i2
CIEEEIEG G E
gmm M ;fr
g £ mim THE
LA & F.:; A v oA
4
4 A YYVAAAL
L HEGlEEN
n|w|s|R|a]e|=|s]a|z|a] m alnlnialalei=(=
. mwmmwmmmmwmu g [sssssesse
m . onnanmcaad mm m PRLLEL LY
Blalle =
. m 3
8 5 8 2 Bl apEgEd 2
8 i |l |2 IR
b B eldp el
F A p Ad A AAAAAAL AhAAAdL/

NEMASKC
NENASKD

NEHASKB

A.11 Sheet 11

Yy

RE 10 SNITCH

WA

iy §in jr i ihe
IR
H H 5 5
L L 4 L 4 4
AA A
Y.
5ie]
e 3
wn_m.m.s m mnﬂ.m? m
| !
e m v|S m
| L

ns_x_m_n_z_n_ls_’
mw SEEEE

¥
nmmuume

= o I_S_B_.I_

fo »

PHIEH

FIBER (PTIC INTERFRCE

FESET AUFS A\D SPAFES

TME

mm

ovive | s

§E 8
HEEBucEY
“FPFFFTT

> 151t ie D
Blb
%:

104

A.12 Sheet 12

MNolulslale -u_a_a_m_m—m

P uasaaauamv

8
L]

m? |mS
a8
;a7
ma
EN
CH
®L
<)
&
=
=]
.14
®8
(&5 |
80
£
=

olslels|olsle elslslslslslolslslsls]s s lalelalel]
elojaie|e(e|ofelelele|z|ejele] ,
Ay} ¥
9 .._n 8lale --u e n_m_mm_m_m_m_m m_m_m 8
P £12 8 B(O
mmmmmmm::.mL
8
v
o[Jelelelelelelelelelelelzlelelellz | |6 lsle|sls olsls (s lalele el
8|s((elals|als|c oo 88 Efele g A%
o 1
& B b B¢ B g
¥ Yy k v 8
) ¥
¥ A\

12 OF 12

fEY

| ST

BUS INTEFFRCE

/17788

RTE

105

A.13 Sheet 13

T [Fee V] [fEE %] (€€ 9]
" [8de__¥] [ees ¥ [ae__*] [sE8 "]
N ETT LN N ET TN N T B .
—[S8e__V] [s€er Y] [seex %] _
_[(xer "] [EE_TJ[=][B[Eze "]
[(xxe v EE")[z "8] [ke__*] —
_ e "] EE_TIE "] 1 5] —
(—Ceee_ ¥l [ee "] _*] |§ i gl —
Ex"Es_®Es__*]8] m@ B B =
e TiEE_®][eee v _
H g= ER glle e 7] =
= mmmmm EEef ° mmmmm mmm : e
=awe g|8. 6| 5 gl Bs m.mmmmmw
=THII Ak mmm Ee _*] =
=1 [T I F TR I LE N =
M S CnE Hl L
Y e ﬂlﬂ: : 8 | —
_[Ege ¥ [e 7] [T U _
_ e ") [exe,][" [Ex "] _
_[ee "] [¥ee. ") [¥y ¥] [gEz "] _
(e Y] [Bet.] 8 "] ["] _
1 1 - 11 Tl _
- v ,s A

|

1 S D B & &5 » 3 O § 9 $ ®@ &6 D B D &

106

Appendix B
PLD Equations

B.1 VME Interface
B.1.1 Address Decoding

MODULE ADDDECODE
TITLE ’VME ADDRESS DECODER, 22 OCT 87’

DECODE DEVICE ’E0310°’;

AMOO,AMO3, AMO4, AMOS PIN 2,3,4,5;
A23,A22,A21,A20,A19,A18,A17 PIN 6,7,8,9,11,12,13;
A16,A15,A14 PIN 14,15,16;

'LWORD PIN 17;

'BOARDSEL PIN 18;

AMOD = [AMO5,AM04,AM03, AMOO] ;

ADD = [A23,A22,A21,A20,A19,A18,A17,A16,A15,A14];
VALID = [0,0,0,0,0,0,0,0,0,0];
A18,A17,A16,A15,A14 ISTYPE ’feed_pin’;

'LWORD ISTYPE ’FEED_PIN’;

'BOARDSEL ISTYPE ’NEG,COM’;

EQUATIONS

BOARDSEL = (ADD == VALID) & (AMOD == “HF) & LWORD;

END ADDDECODE

B.1.2 VME Block Transfer Address Counter

MODULE VMECOUNTER FLAG ’-R3’
TITLE ’VME BLOCK XFER ADDRESS COUNTER, 4 DEC 87’

107

VMECNT DEVICE ’P1i6R6’;

CTRCLK PIN 1;

!CTRLOAD,GND PIN 2,11;

A02,A03,A04,A05,A06,A07 PIN 3,4,5,6,7,8;
PAC2,PA03,PAO4,PAO5,PAC6,PAO7 PIN 13,14,15,16,17,18;

COUNT = [PAO7,PA06,PAOS,PA04,PAC3,PAO2];
INPUT = [AO7,A06,A05,A04,A03,A02] ;

EQUATIONS

COUNT := (COUNT + 1) & !CTRLOAD
INPUT & CTRLOAD;

END VMECOUNTER

B.1.3 Data Strobe Generator

MODULE DSGEN
TITLE °’VME DATA STROBE GENEREATOR, 22 OCT 87’

DSGN DEVICE ’E0600’ ;

'BSEL, 'AS, !DSO, !DS1, !WRITE PIN 2,3,4,5,6;
A13,A12,A11 PIN 14,11,10;
RXMITFIFODS,RECFIFODSH,CLASSFIFODS PIN 21,20,19;
CAB, !STATUSREGDSL, !DPRAMDS PIN 18,17,16;
!CTLOAD,CTRCLK PIN 7,9;

!DPRAMWRITE, WRDORE PIN 22,23;

!BOARDG PIN 15;

!CTLOAD ISTYPE ’NEG,REG_D,FEED_REG’;

GO = [BSEL,AS,DS0,DS1];

SELECT = [A13,A12,A11];

RXDS,RDS,CDS = RXMITFIFODS,RECFIFODSH,CLASSFIFODS;
SDL,DDS = STATUSREGDSL , DPRAMDS ;

CL,CC = CTLOAD,CTRCLK;

WD = WRDONE;

X= .X.;

108

EQUATIONS

RXMITFIFODS :=1;

RXMITFIFODS.C = (GO == 15) & (SELECT == 3) & WRITE;
RXMITFIFODS.RE = !WRDONE;

RECFIFODSH = (GO == 15) & (SELECT == 1) & !WRITE;
CLASSFIFODS = (GO == 15) & (SELECT == 2) & WRITE;
STATUSREGDSL = (GO == 15) & (SELECT == 0) & !WRITE;
DPRAMDS = (GO ==15) & A13;

DPRAMWRITE = (GO == 15) & A13 & WRITE;

CAB = DSO & DS1 & WRITE;

BOARDG = (GO == 15);

CTLOAD :=0;

CTLOAD.C = CTRCLK;

CTLOAD.RE = !AS;

CTRCLK = (AS & DSO);

FUSES

6461 = 1;

6406 = 1;

END DSGEN

B.1.4 DTACK Generator

MODULE DTACKGEN
TITLE ’VME DTACK GENERATOR PAL, 20 OCT 87’

DTCK DEVICE ’E0600°;
NE16MHZ PIN 1;

109

!STATUSREGDS, !DPRAMDS,CLASSFIFODS PIN 2,11,14;
XMITFIFODS,RECFIFODS,RDDONE, WRDONE PIN 23,22,21,20;
SCRDTACKA,SCRDTACK PIN 3,4;
XMITFIFODTACK,RECFIFODTACK PIN §5,6;
RRECFIFODS,DTACK PIN 18,7;

'BUSY,NE8MHZ ,DELNESMHZ PIN 9,10,8;
RESETPE,RESETNE,RESETPROC PIN 17,16,15;

CLASSSI PIN 19;

X= X.;

XDT,RDT = XMITFIFODTACK,RECFIFODTACK;

RRDS = RRECFIFODS;

XDS,RDS = XMITFIFODS,RECFIFQODS;

FUSES

6451 = 1;

6456 = 1;

6421 = {1;

EQUATIONS

SCRDTACKA := STATUSREGDS # CLASSFIFODS # (DPRAMDS & !BUSY);
SCRDTACK := (SCRDTACKA & !'BUSY) # (SCRDTACK & DPRAMDS) ;
XMITFIFODTACK :=1;

XMITFIFODTACK.C = WRDONE;

XMITFIFODTACK.RE = !XMITFIFQODS;

RECFIFODTACK := 1;

RECFIFODTACK.C = RDDONE;

RECFIFODTACK.RE = !RECFIFODS;

RRECFIFODS := 1;

RRECFIFODS.C = RECFIFODS;

RRECFIFODS.RE = !RDDONE;

DTACK = SCRDTACK # XMITFIFODTACK # RECFIFODTACK;
RESETPROC = RESETPE # RESETNE;

DELNESMHZ = NESBMHZ;

110

CLASSSI = SCRDTACK & CLASSFIFODS;

END DTACKGEN

B.1.5 VME FIFO Control 1

MODULE FIFOCONT1 FLAG ’-R3’
TITLE ’VME FIFO CONTROLLER PAL 1ST HALF, 19 OCT 87’

FIFO1 DEVICE ’P20R6’;
NES8MHZ_BAR ,NES8MHZA_BAR,RDDONE, !RESETREC PIN 1,6,8,9;
RXMITFIFODS,RRECFIFODS, !RESETXMIT,WRDONE, !CBA3 PIN 2,3,4,5,7;
1G0,!G1,!'G2,!G3 PIN 20,19,18,17;
'BOARDSEL ,RECFIFODS,STARTRECSHIFT,STARTXMITSHIFT,GND

PIN 10,11,21,16,13;
XMITFIFOWS PIN 22;

N8,RXDS,RRDS = !NESMHZ_BAR,RXMITFIFQODS,RRECFIFODS;
RX,RR,WRD,RD = RESETXMIT,RESETREC, WRDONE, RDDONE;
SXS,SRS = STARTXMITSHIFT,STARTRECSHIFT,;

N8A,WS,RDS = !NESMHZA_BAR,XMITFIFOWS,RECFIFQODS;

BS = BOARDSEL;

c,X=.C.,.X.;

EQUATIONS

STARTXMITSHIFT := (RXMITFIFODS & !G2 & WRDONE)
(STARTXMITSHIFT & !G2 & !RESETXMIT) ;

STARTRECSHIFT := (RRECFIFODS & RDDOKE)
(STARTRECSHIFT & !CBA3 & !RESETREC) ;

GO := STARTXMITSHIFT & !GO & 'G1 & 'G2 & !'RESETXMIT

RECFIFODS & !'RESETREC;
Gl := GO & 'WRDONE & !'RESETXNIT # (RECFIFODS & !RESETREC);
G2 := G1 & !WRDONE & !'RESETXMIT # (RECFIFODS & !'RESETREC) ;
G3 := G2 & !WRDONE & 'RESETXMIT # (RECFIFODS & !RESETREC)
(BOARDSEL & !'STARTXMITSHIFT);

XMITFIFOWS = !NESMHZA_BAR # WRDONE # RESETXMIT;

111

END FIFOCONT1

B.1.6 VME FIFO Control 2

MODULE FIFOCONT2
TITLE ’VME FIFO CONTROLLER PAL 2ND HALF, 19 OCT 87’

FIF02 DEVICE 'P16R6’;
READCLK,READCLKO ,RECFIFORS,GND PIN 1,19,12,11;
STARTRECSHIFT, !RESETREC, VME16MHZ _BAR, STARTXMITSHIFT PIN 2,3,4,5;

'RECFIFOEMPTY PIN 7;
1CBAO, !CBA1, !CBA2, ! CBA3,RDDONE, WRDONE PIN 18,17,16,15,14,13;

c,Xx=.C.,.X.;

SRS = STARTRECSHIFT;

E = RECFIFOEMPTY;

RCLK,VCLK = READCLK, ! VME16MHZ__BAR;
RREC,RHRS,RCLKO = RESETREC,RECFIFORS,READCLKO;
EQUATIONS

WRDONE := !STARTXMITSHIFT;
RDDONE := !STARTRECSHIFT;

CBAO := STARTRECSHIFT & !CBAO & !CBA1 & !CBA2 & iCBA3 & !RESETREC;
CBA1 := CBAO & !'RESETREC;

CBA2 := CBA1 & !'RESETREC;

CBA3 := CBA2 & !RESETREC;

RECFIFORS = READCLKO # RDDONE # RESETREC;

READCLKO = !VME16MHZ_BAR & (!RECFIFOEMPTY # RDDONE) ;

END FIFOCONT2

- B.2 Fault Tolerant Clock
B.2.1 MYFTC Generator

112

MODULE MYFTCGEN
TITLE *MYFTC GENERATOR PAL, 29 OCT 87’

MYFTCGN DEVICE ’E0900°’;

NES8MHZ ,NES8MHZ2 PIN 1,21;

ST3,ST2,ST1,STO PIN 5,6,7,8;

EW,SAW,SBW,MYFTC,LD PIN 9,10,11,12,13;
COUNT.119,COUNT_116,COUNT_127 PIN 14,15,16;
{RI,SB,SB1,SA,SA1 PIN 25,26,27,28,29;
FTCLATCH,SIZE3,SIZE2,SIZE1,SIZEO PIN 38,39,2,3,4;
c6,c5,C4,C3,C2,C1,C0 PIN 36,35,34,33,32,31,30;
MEDBKD, !RE PIN 17,18;

SB,SB1,SA,SA1 ISTYPE ’*FEED_REG’;
COUNT_119,COUNT_116,COUNT_127 ISTYPE ’FEED_REG’;

CURRENT_STATE = [ST3,ST2,ST1,STC];
S0,S1,52,S3 = “B0000, "B0010,~B1110,"B1111;
S4,S5,S6,S7 = “B1101,°B1100,"B1010,“B1011;
$8,5S9,510,S11 = “B1001,~B0001,~B0011,~B0110;
S12,513,5S14,5S15 = “B0101,~B0111,B1000,~B0100;
OUTPUTS = [EW,SAW,SBW,MYFTC];

COUNT = [C6,C5,C4,C3,C2,C1,C0];

SIZE = [SIZE3,SIZE2,SIZE1,SIZEO];

L0AD = (LD,LD,LD,LD,LD,LD,LD];

RESETI = {RI,RI,RI,RI,RI,RI,RI];

RESET = [RE,RE,RE,RE,RE,RE,RE];

CK1,CK2 = NESMHZ,NESMHZ2;

C= .C.;

X=.X.;

STATE_DIAGRAM CURRENT_STATE

STATE SO: IF (!COUNT.119)
THEN SO
WITH OUTPUTS:="B1010;
ENDWITH
ELSE S1
WITH OUTPUTS:="B1010;
ENDWITH;
STATE S1: IF (SIZE == 0)

113

THEN S1
WITH OUTPUTS:="B1010;
ENDWITH

ELSE IF !SA
THEN S3
WITH OUTPUTS:="B1011;
ENDWITH

ELSE S2
WITH OUTPUTS:="B1010;
ENDWITH;
STATE S2: GOTO S3
WITH OUTPUTS:="B1011;
ENDWITH;
STATE S3: GOTO S4
WITH QUTPUTS:="B1011;
ENDWITH;
STATE S4: GOTO S5
WITH OUTPUTS:="B1011;
ENDWITH;
STATE S5: GOTO S6
WITH OUTPUTS:="B1011;
ENDWITH;
STATE S6: GOTO S7
WITH OUTPUTS:="B0011;
ENDWITH;
STATE S7: GOTO S8
WITH OUTPUTS:="B0001;
ENDWITH;
STATE S8: GOTO S9
WITH OUTPUTS:="B0101;
ENDWITH;
STATE S9: GOTO S10
WITH OUTPUTS:="B1101;
ENDWITH;
STATE S10: IF (!COUNT.127)
THEN S10
WITH OUTPUTS:="B1101;
ENDWITH

ELSE IF (SB1)
THEN S12
WITH OUTPUTS:="B1101;
ENDWITH

114

ELSE Si1
WITH QUTPUTS:="B1101;
ENDWITH;
STATE S11: GOTO S12
WITH QUTPUTS:="B1101;
ENDWITH;
STATE S12: GOTO S13
WITH OUTPUTS:="B1101;
ENDWITH;
STATE S13: IF (!COUNT_116)
THEN S14
WITH OUTPUTS:="B1111;
ENDWITH

ELSE IF (SB)
THEN SO
WITH OUTPUTS:="B1ii1;
ENDWITH

ELSE SO
WITH OUTPUTS:="B1110;
ENDWITH;
STATE S14: IF (!COUNT_116)
THEN S14
WITH OUTPUTS:="B1011;.
FNDWITH

ELSE IF (SB)
THEN SO
VITH QUTPUTS:="B1011;
ENDWITH

ELSE SO
WITH OUTPUTS:="B1010;
ENDWITH;
STATE S15: GOTO SO;

EQUATIONS

LD := IST3 & !ST2 & ST1 & !STO & ! (SIZE == 0) & !SA
ST3 & ST2 & ST1 & !STO

!ST3 & !ST2 & ST1 & STO & COUNT_127 & SB1

!ST3 & ST2 & ST1 & !STO;

COUNT := (COUNT + 1) & 'LOAD
[!SIZE3,!SIZE2,!SIZE1,!SIZE0,1,0,0] & LOAD;

115

C6.RE = RE;
C5.RE = RE;
C4.RE = RE;
C3.RE = RE;
C2.RE = RE;
C1.RE = RE;
CC.RE = RE;

COUNT_119 := (COUNT == 118);

COUNT_127 := (COUNT == 126);

COUNT_116 := (COUNT == 115) # (LD & (SIZE == 1));
RI = (SIZE == 0);

SA1 := SAW & !SBW;
SA1.C = MEDBND;
SA1.RE = RE;

SA :=SA1 & !ST3 & !ST2 & ST1 & STO
SA & '(!ST3 & !ST2 & ST1 & STO) ;
SA.RE = RE;

SB1 := SBW;
SB1.C := MEDBND;
SB1.RE = RE;

SB := SB1 & !ST3 & !ST2 & ST1 & STO
#SB& !'(!ST3 & !ST2 & ST1 & STO) ;
SB.RE = RE;

ST3.RE = RE;
ST2.RE = RE;
ST1.RE = RE;
STO.RE = RE;

FUSES
17316 = 1;
17326 = 1;

END MYFTCGEN

116

B.2.2 Median Bound Voter and Clock Error Accumulator

MODULE FTC2
TITLE ’BOUND VOTER AND ERROR ACCUMULATION, 4 NOV 87°

FTC DEVICE ’*E0900’;

LBOUND,RBOUND,0BOUND , MEDBOUND PIN 2,3,4,5;
MYFTC,HOLDMEDBND, PRESWINDOW PIN 6,7,14;
tXFULL, !CLASSFULL,CTS PIN 8,9,10;
LMASK,OMASK,RMASK PIN 17,18,19;
DELMEDBND, EW, ! ERR2READ PIN 22,23,24;
MACCERR,MERR PIN 36,35;

DLB,DOB,DRB PIN 39,38,37;
LBERR,LAERR,LPRES,LACCERR PIN 34,33,32,31;
RBERR,RAERR,RPRES ,RACCERR PIN 30,29,28,27;
OBERR,OAERR,OPRES,0ACCERR PIN 26,25,16,15;
NES8MHZ ,NES8MHZA PIN 1,21;

LERR,OERR,RERR PIN 11,12,13;

ERROR = [MACCERR,LACCERR,RACCERR,DACCERR] ;

LBERR,LAERR,LPRES ISTYPE ’POS,REG,FEED_REG’;
RBERR,RAERR,RPRES ISTYPE ’POS,REG,FEED_REG’;
OBERR,OAERR,OPRES ISTYPE ’POS,REG,FEED_REG’;
MERR,LACCERR,RACCERR,0ACCERR ,MACCERR ISTYPE ’POS,REG,FEED_REG’;
DLB,DOB,DRB, LBOUND,RBOUND,OBOUND ISTYPE ’FEED_PIN’;

DELMEDBND ,MEDBOUND, MYFTC,HOLDMEDBND ISTYPE ’FEED_PIN’;
PRESWINDOW ISTYPE ’,POS,REG,FEED_REG’;
XFULL,CLASSFULL,CTS ISTYPE ’FEED_PIN’;

FUSES

"FOR LERR,RERR,OERR,MERR ACCUMULATED
17286 = 1;

17291 = 1;

17296 = 1;

17301 = 1;

17311 =1;

17316 = 1;

17321 = 1;

117

17331 =1,
17336 = 1;
17396 = 1;
17386 = 1;

EQUATIONS

MEDBOUND = LBOUND & LMASK & RBOUND & RMASK
#LBOUND & LMASK & OBOUND & OMASK
#RBOUND & RMASK & OBOUND & OMASK
#LBOUND & LMASK & !'RMASK & !'0MASK
#RBOUND & RMASK & !'LMASK & !0OMASK
#0BOUND & OMASK & !LMASK & !RMASK
HOLDMEDBND;

HOLDMEDBND = MEDBOUND & LMASK & OMASK & !'RMASK & ! (!LBOUND & !0BQUND)
MEDBOUND & LMASK & RMASK & !OMASK & ! (!LBOUND & !'RBOUND)
MEDBOUND & RMASK & OMASK & !LMASK & ! (!RBOUND & !0BOUND) ;

LBERR := !LBOUND;
LBERR.C = DELMEDBND;
LBERR.RE = ERR2READ;

LAERR := !MEDBOUND;
LAERR.C = DLB;
LAERR.RE = ERR2READ;

LPRES := 1;

LPRES.C = LBOUND;

LPRES.RE = 'MYFTC;

LACCERR := (LACCERR # (!'LPRES & PRESWINDOW) # LBERR # LAERR) & !'ERR2READ;
RBERR := !RBOUND;

RBERR.C = DELMEDBND;

RBERR.RE = ERR2READ;

RAERR := !MEDBOUND;

RAERR.C = DRB;

RAERR.RE = ERR2READ;

RPRES := 1;

118

RPRES.C = RBOUND;
RPRES.RE = !MYFTC;

RACCERR := (RACCERR # (!'RPRES & PRESWINDOW) # RBERR # RAERR) & !ERR2READ;
OBERR := !'OQBOUND;

OBERR.C = DELMEDBND;

OBERR.RE = ERR2READ;

OAERR := !MEDBOUND;

OAERR.C = DOB;

OAERR.RE = ERR2READ;

OPRES :=1;

OPRES.C = OBOUND;

OPRES.RE = !MYFTC;

OACCERR := (OACCERR # (!OPRES & PRESWINDOW) # OBERR # OAERR) & !ERR2READ;
PRESWINDOW := 1;

PRESWINDOW.C = DELMEDBND;

PRESWINDOW.RE = !MYFTC;

MERR := EW;
MERR.C = MEDBOUND;

MACCERR := (MACCERR # MERR) & !'ERR2READ;
ENABLE ERROR = ERR2READ; |

CTS = !XFULL & !CLASSFULL;

LERR = LACCERR;

RERR = RACCERR;

OERR = OACCERR;

END FTC2

119

B.2.3 Bound Generator

MODULE BOUNDGEN
TITLE ’EXTERNAL BOUND GENERATOR PAL, 5 NOV 87’

BNDGEN DEVICE ’P20RA10’;

LDs,RDS,0DS,LCS,RCS,0CS PIN 2,3,4,5,6,7;
LVLTN,RVLTN,OVLTN PIN 8,9,10;

GND,PUP PIN 13,1;

LBOUND,RBOUND,0BOUND PIN 23,22,21;
LBOUND1,RBOUND1,0BOUND1 PIN 20,19,18;
DELLBOUND,DELRBOUND,DELOBOUND PIN 17,16,15;

DS = [LDS,RDS,0DS];

cs = [LCS,RCS,0CS];

BOUND = [LBOUND,RBOUKD,OBOUND] ;
VLTN = [LVLTN,RVLTN,OVLTN];

X= .X.;

EQUATIOA4S

LBOUND :=1;

LBOUND.C = LDS;
LBOUND.PR = LCS & !LVLTN;
LBOUND.RE = LCS & LVLTN;

LBOUND1 := LBOUND;
LBOUND1.C = LDS;
LBOUND1.PR = LCS & !LVLTN;

DELLBOUND := LBOUND1;
DELLBOUND.C = !LDS;
DELLBOUND.PR = LCS & !LVLTN;

RBOUND :=1;

RBOUND.C = RDS;
RBOUND.PR = RCS & 'RVLTN;
RBOUND.RE = RCS & RVLTN;

RBOUND1 := RBGUND;

120

RBOUND1.C = RDS;
RBOUND1.PR = RCS & !RVLIN;

DELRBOUND := RBOUND1;
DELRBOUND.C = !RDS;
DELRBOUND.PR = RCS & !'RVLTN;

OBOUND := 1;

OBOUND.C = ODS;
OBOUND.PR = OCS & !'0OVLTN;
OBOUND.RE = 0CS & OVLTN;

OBOUND1 := OBOUND;
OBOUND1.C = ODS;
OBOUND1.PR = OCS & !OVLTN;

DELOBOURD := OBOUND1;
DELOBOUND.C = !0DS;
DELOBOUND.PR = OCS & 'OVLTN;

END BOUNDGEN

B.2.4 System Clock Generator

MODULE CLOCKGEN FLAG ’-R3’
TITLE ’SYSTEM CLOCK GENERATOR PAL, 11 NOV 87’

CLKGEN DEVICE ’P16R4’;

C32MHZ,GND PIN 1,11;

MYFTC, 'RESET PIN 2,3;

C16MHZ ,C8MHZ ,MB1,MB PIN 17,16,14,15;

AQERR, AQERRO, AQERR1,BQERR,BQERRO,BQERR1 PIN 4,5,6,7,8,9;
MYDATACLK , !MYDATCLK PIN 13,12;

QERR PIN 19;

COUNT = [!C8MHZ, !C16MHZ] :
MDC,MC = MYDATACLK,MYDATCLK;
C32 = C32MHZ;

c=.C.,;

121

EQUATIONS

COUNT := (COUNT + 1);
MYDATACLK = MB & C8MHZ;
MYDATCLK = MB & C8MHZ;

MB := MYFTC & 'C8MHZ & !C16MHZ & {RESET
MB & (CBMHZ # C16MHZ) & 'RESET;

MB1 := MB;
QERR = AQERR # AQERRO # AQERR1 # BQERR # BQERRO # BQERR1;

END CLOCKGEN

B.3 Data Paths

B.3.1 Data Path Voter Slice

MODULE VOTER
"MODULE VOTER FLAG ’-R3°"
TITLE ’VOTER PAL, 30 DEC 87’

VOTE DEVICE ’E0900’;

LVMASK,OVMASK,RVMASK ,MVMASK PIN 2,3,4,39;
Lbo,LD1,LD2,LD3,0D0,0D1,0D2,0D3 PIN 5,6,7,8,9,10,11,12;
RDO,RD1,RD2,RD3,MDO,MD1,MD2,MD3 PIN 16,17,18,19,22,23,24,37;
vDo,VD1,VD2,VD3 PIN 36,35,34,33;
LERR,RERR,MERR,OERR,QERRO,QERR1 PIN 32,31,30,29,28,27;
VOTEOUT, QERR PIN 38,13;

Ccvpo,CvD1,CVD2,CVD3 PIN 25,26,15,14;

NES8MHZ PIN 21;

LEFT = [LD3,LD2,LD1,LDO];
RIGHT = [RD3,RD2,RD1,RDO];
OPP = [0D3,0D2,0D1,0D0] ;
MINE = [MD3,MD2,MD1,MDO] ;

122

VOTED = [VD3,VD2,VD1,VDO];

CVOTED = [CVD3,CVD2,CVD1,CVDO] ;

MASK = [LVMASK,RVMASK,OVMASK,MVMASK] ;
MASKL = [LVMASK, LVMASK, LVMASK, LVMASK];
MASKR = [RVMASK, RVMASK, RVMASK, RVMASK] ;
MASKO = [OVMASK, OVMASK, OVMASK, OVMASK] ;
MASKM = [MVMASK, MVMASK, MVMASK, MVMASK] ;

ERRORS = [LERR,RERR,OERR,MERR] ;

QUADS = [QERRO, QERR1, QERR];

V0 = VOTEQUT;

CcvVDo,CvD1,CVD2,CVD3 ISTYPE ’POS,COM,FEED_PIN’;
VDO, VD1, VD2, VD3 istype ’feed _REG’;
LERR,RERR,MERR,OERR istype ’com’;

QERRO,QERR1 istype ’COM,feed_pin’;

QERR istype 'COM,feed_pin’;

EQUATIONS

CVOTED = (LEFT & MASKL & RIGHT & MASKR)
(LEFT & MASKL & MINE & MASKM)
(LEFT & MASKL & OPP & MASKO)
(RIGHT & MASKR & MINE & MASKM)
(RIGHT & MASKR & OPP & MASKO)
(OPP & MASKO & MINE & MASKM)
(MINE & MASKM & 'MASKL & !'MASKO & !'MASKR)
(OPP & MASKO & 'MASKM & 'MASKL & !MASKR) ;

VOTED := CVOTED;

ENABLE VOTED = VOTEQUT;
ENABLE ERRORS = 15;
ENABLE QUADS = 7;
ENABLE CVOTED = 15;

QERR = (

{LDO & RDO & !MDO & !0DO)
('LDO & 'RDO & MDO & ODO)
(LDO & 'RDO & MDO & '0DO)
('LDO & RDO & !MDO & 0DO)
(LDO & !RDO & 'MDO & 0DO)
('LDO & RDO & MDO & 10DO)

123

(LD3 & RD3 & !MD3 & '0D3)
('LD3 & 'RD3 & MD3 & OD3)

)
& (LVMASK & RVMASK & OVMASK & MVMASK) ;

QERRO = (LD1 & RD1 & 'MD1 & !'0D1 & LVMASK & RVMASK & OVMASK & MVMASK)
('\LD1 & 'RD1 & MD1 & OD1 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD1 & 'RD1 & MD1 & '0D1 & LVMASK & RVMASK & OVMASK & MVMASK)
('LD1 & RD1 & 'MD1 & OD1 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD1 & 'RD1 & !'MD1 & OD1 & LVMASK & RVMASK & OVMASK & MVMASK)
('LD1 & RD1 & MD1 & '0OD1 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD3 & 'RD3 & MD3 & !0D3 & LVMASK & RVMASK & OVMASK & MVMASK)
('LD3 & RD3 & !'MD3 & OD3 & LVMASK & RVMASK & OVMASK & MVMASK) ;

QERR1 = (LD2 & RD2 & 'MD2 & !'0D2 & LVMASK & RVMASK & OVMASK & MVMASK)
(\LD2 & 'RD2 & MD2 & OD2 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD2 & 'RD2 & MD2 & '0D2 & LVMASK & RVMASK & OVMASK & MVMASK)
('\LD2 & RD2 & !MD2 & OD2 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD2 & 'RD2 & 'MD2 & 0D2 & LVMASK & RVMASK & OVMASK & MVMASK)
('LD2 & RD2 & MD2 & !0D2 & LVMASK & RVMASK & OVMASK & MVMASK)
(LD3 & 'RD3 & !MD3 & OD3 & LVMASK & RVMASK & OVMASK & MVMASK)
('LD3 & RD3 & MD3 & !'0D3 & LVMASK & RVMASK & OVMASK & MVMASK) ;

LERR = (LEFT != CVOTED) & !QERR & !QERRO & !QERR1;
RERR = (RIGHT != CVOTED) & !QERR & !QERRO & !QERR1;
OERR = (OPP != CVOTED) & !QERR & !QERRO & !QERR1;
MERR = (MINE != CVOTED) & !QERR & !QERRO & !QERR1;

END VOTER

B.3.2 Debug Router

MODULE ROUTER
TITLE *DATAP DEBUG ROUTER, 10 OCT 87’

ROUTE DEVICE ’P16L8’;

MIO, MI1, LIO, LIi, RIO, RI1, OIO, OI1PIN1i,2,3,4,5,6,7,8;
Loo, LO1, ROO, RO1, 00O, 0OO1 PIN 18,17,14,12,16,15;
LDBEN,RDBEN,ODBEN PIN 9,11,13;

MI = [MI1,MIO];

124

LI = [LI1,LIO0];
RI = [RI1,RIO0];
0I = [0I1,010];
Lo = [LO1,L00];
RO = [RO1,R00];
00 = [001,000];
LD = [LDBEN,LDBEN];
RD = [RDBEN,RDBEN] ;
0D = [ODBEN,ODBEN];

EQUATIONS

LO= MI&LD
LI & 'LD;

RO = MI &RD
RI & !RD;

00 = MI &£0D
0I & '0D;

END ROUTER

B.3.3 Synchronous Data Path Controller

MODULE SYNCDATACONT FLAG ’-R3’
TITLE ’SYNCHRONQUS DATA FATH CONTROLLER, 9 OCT 87’

SYNC DEVICE 'P16R4’;

CK8MHZ ,NESMHZ PIN 1,2;

MYBOUND,MYFTC PIN 3,4;

VOTEIN,FO,F1 PIN 5,6,7;

REFSELO,REFSEL1 ,REFSELECTO0,REFSELECT1 PIN 8,9,15,14;
NEIDO,NEID1,REGFO,REGF1 PIN 13,12,17,16;

'S0, !SIMINE,GND PIN 19,18,11;

REFSEL = [REFSEL1,REFSELO];
REFSELECT = [REFSELECTO,REFSELECT1];
NEID = [NEID1,NEIDO];
A,B,C,D=3,2,1,0;

125

EQUATIONS

REGFC := FO & !MYFTC
REGFO & MYFTC;

REGF1 := F1 & !MYFTC
REGF1 & MYFTC;

S0 = ! (MYBOUND & NESMHZ) & MYFTC & REGF1 & 'REGFO & !VOTEIR
VOTEIN & !NESMHZ
% F1 & FO & !'VOTEIN;

SIMIKE = ! (YREGF1 & 'REGFC) & (MYBOUND & NES8MHZ) & MYBOUND;
REFSELECT := (NEID + REFSEL);

END SYNCDATACONT

B.3.4 Asynchronous Data Path Controller

MODULE ASYNCDATACONT
TITLE ’ASYNCHRONOUS DATA PATH CONTROLLER, 9 OCT 87’

ASYXX DEVICE ’E0900’;
C8MHZ PIN 1;
SERP PIN 7;
MYDATACLK,MYBOUND,FO,F1,CLEARDATAP PIN 2,3,4,5,21;
RBOUND, LBOUND, OBOUND,RDBEN, LDBER ,0DBEN PIN 39,38,37,36,35,34;
RDS,LDS,0DS,RCS,LCS,0CS,RVLTN,LVLTN,OVLTY

PIN 33,32,31,30,29,24,17,18,19;
CLEARDATAPSELO,CLEARDATAPSEL1 PIN 23,22;
CLEARMREQ,CLEARLREQ,CLEARRREQ,CLEAROREQ PIN 28,27,26,25;
{CLEARMINE, !CLEARRIGHT, ! CLEARLEFT, 'CLEAROPP PIN 6,14,15,16;
RREGSHIFTIN,LREGSHIFTIN,OREGSHIFTIN PIN 11,12,13;
{SIRIGHT, ! SILEFT, !SIOPP PIN 8,9,10;

CLEAR = [CLEARDATAPSEL?,CLEARDATAPSELO] ;
CLEARMREQ ISTYPE ’'P0S,REG,FEED_REG’;
CLEARLREQ ISTYPE ’POS,REG,FEED_REG’;
CLEARRREQ ISTYPE ’POS,REG,FEED_REG’;

126

CLEAROREQ ISTYPE ’POS,REG,FEED_REG’;
CLEARMINE,CLEARRIGHT,CLEARLEFT,CLEAROPP ISTYPE ’NEG,COM,FEED_PIN’;
SIRIGHT,SILEFT,SIOPP ISTYPE ’NEG,COM,FEED_PIN’;
LREGSHIFTIN,RREGSHIFTIN,OREGSHIFTIN ISTYPE ’POS,REG,FEED_REG’;
LDBEN ,RDBEN,ODBEN ISTYPE ’FEED_PIN’;

EQUATIONS

SERP := (FO & F1) & !MYBOUND
SERP & MYBOUND;

LREGSHIFTIN := (FO # F1) & (!LBOUND & !LDBEN)

LREGSHIFTIN & (LBOUND & !LDBEN) & !'CLEARLREQ & SERP
LREGSHIFTIN & (LBOUND & !LDBEN) & !SERP

(FO # F1) & ('MYBOUND & LDBEN)

LREGSRIFTIN & (MYBOUND & LDBEN);

RREGSHIFTIN := (FO # F1) & ('RBOUND & !RDBEN)

RREGSHIFTIN & (RBOUND & 'RDBEN) & !CLEARRREQ & SERP
RREGSHIFTIN & (RBOUND & 'RDBEN) & !SERP

(FO # F1) & (!MYBOUND & RDBEN)

RREGSHIFTIN & (MYBOUND & RDBEN);

OREGSHIFTIN := (FO # F1) & (!0BQUND & !ODBEN)

OREGSHIFTIN & (OBOUND & 'ODBEN) & !CLEAROREQ & SERP
OREGSHIFTIN & (OBOUND & '0ODBEN) & !SERP

(FO # F1) & (YMYBOUND & ODBEN)

OREGSHIFTIN & (MYBOUND & ODBEN) ;

SILEFT = LDS & LBOUND & LREGSHIFTIN & !LDBEN
(LCS & LVLTN) & LBOUND & LREGSHIFTIN & !LDBEN
MYDATACLK & MYBOUND & LREGSEIFTIN & LDBEN;

SIRIGHT BOUN

(RCS & RVLTN) & RBOUND & RREGSHIFTIN & !RDBEN
MYDATACLK & MYBOUND & RREGSHIFTIN & RDBEN;

BOUND & RRECSHIFTIN & 'RDBEN

- N
= RDS

~’ fp
(-]

SIOPP = ODS & OBOUND & OREGSHIFTIN & !ODBEN
(OCS & OVLTN) & OBOUND & OREGSHIFTIN & !ODBEN
MYDATACLK % MYBOUND & OREGSHIFTIN & ODBEN;

127

CLEARMINE = (CLEARMREQ & !MYBOUND) ;

CLEARMREQ := (CLEAR == 0) # (CLEARMREQ & ! (CLEAR == 0)) ;
CLEARMREQ.RE = CLEARMINE;

CLEARLEFT = (CLEARLREQ & !MYBOUND & LDBEN)
(CLEARLREQ & 'LBOUND & !LDBEN)
(CLEARLREQ & !'LREGSHIFTIN & !LDBEN);

CLEARLREQ := (CLEAR == 1) # (CLEARLREQ & {(CLEAR == 1)) ;
CLEARLREQ.RE = CLEARLEFT;

CLEARRIGHT = (CLEARRREQ & !MYBOUND & RDBEN)
(CLEARRREQ & 'RBOURD & 'RDBEN)
(CLEARRREQ & !'RREGSHIFTIN & !RDBEN);

CLEARRREQ := (CLEAR == 2) # (CLEARRREQ & ! (CLEAR == 2));
CLEARRREQ.RE = CLEARRIGHT;

CLEAROPP = (CLEAROREQ & !MYBOUND & ODBEN)
(CLEAROREQ & '0BOUND & !0DBEN)
(CLEAROREQ & !'OREGSHIFTIN & !0DBEN);

CLEAROREQ := (CLEAR == 3) # (CLEAROREQ & ! (CLEAR == 3));
CLEAROREQ.RE = CLEAROPP;

END ASYNCDATACONT

B.3.5 Syndrome Accumulator

MODULE SYNACC
TITLE ’SYNDROME ACCUMULATOR PAL, 8 OCT 1987’

SYN DEVICE ’'E0600’;

NESMHZ PIN 1;

LERRO,LERR1,RERRO,RERR1,0ERRO,OERR1 PIN 2,11,23,14, 15,16;
MERRO,MERR1,QERR PIN 17, 18, 20;

VOTEIN, VOTEOUT1, VOTEOUT PIN 8, 9, 10;

NERROR1READ PIN 22;

ACCLERR, ACCRERR , ACCOERR, ACCMERR, ACCQERR PIN 3, 4, 5, 7, 6;
VOTINGSERP PIN 21;

128

OUTPUTS = [ACCLERR, ACCRERR, ACCOERR , ACCMERR, ACCQERR] ;

LERR = [LERRi,LERRO];

RERR = [RERR1,RERRO];

OERR = [OERR1,0ERRO];

MERR = [MERR1,MERRO];

CLK,VS,VI,Vv01,V0 = NESMHZ, VOTINGSERP, VOTEIN, VOTEOUT1, VOTEOUT;

NER = NERROR1READ;
ERROR1READ = !NERRORiREAD;
ER = ERROR1READ;

EQUATIONS

ACCLERR := (((LERRO # LERR1) & VOTEOUT1 & ! VOTINGSERP)
ACCLERR) & NERROR1READ;

ACCRERR := (((RERRO # RERR1) & VOTEOUT1 & !VOTINGSERP)
ACCRERR) & NERROR1READ;

ACCOERR := (((OERRO # OERR1) & VOTEOUT1 & !VOTINGSERP)
ACCOERR) & NERROR1READ;

ACCMERR := (((MERRO # MERR1) & VOTEOUTi & !VOTINGSERP)
ACCMERR) & NERROR1READ;

ACCQERR := ((QERR & VOTEOUT1 & ! VOTINGSERP)
ACCQERR) & NERROR1READ;

ENABLE QUTPUTS = ERROR1READ;

ENABLE VOTEOUT1 = 1;

VOTEOUT1 := VOTEIN;

VOTEOUT :=VOTEOUT1;

END SYNACC

B.3.6 Link Error Accumulator

MODULE LINKERRORACC

129

TITLE ’LINK ERROR ACCUMULATOR, 13 OCT 87’

LIN DEVICE ’E0600’;

NESMHZ PIN 1;

LEFTVLTN,RIGHTVLTN,OPPVLTN, !ERROR1READ PIN 2,11,23,14;
LLINKERROR,RLINKERROR,OLINKERROR PIN 3,4,5;
ACCLLINKERR, ACCRLINKERR,ACCOLINKERR PIN 6,7,8;

SET_TIMEOUT PIN 9;
SCORECNTCLK PIN 22;
SCALECNTO PIN 15;
SCALECHNT1 PIN 16;
SCALECNT2 PIN 17;
SCALECNT3 PIN 18;
SCALECNT4 PIN 19;
SCALECNTS5 PIN 20;
SCALECNT6 PIK 21;
DECIDE PIN 13;

OUTPUTS = [ACCLLINKERR,ACCRLINKERR,ACCOLINKERR] ;

COUNT = [SCALECNTS,
SCALECNTS,
SCALECNT4,
SCALECNT3,
SCALECNT2,
SCALECNT1,
SCALECNTO] ;

VLTNS = [LEFTVLTN, RIGHTVLTN, OPPVLTN];
FUSES

"SET FUSE FOR LLINKERROR"

6441 = 1;

"SET FUSE FOR RLINKERROR"

6446 = 1;

“WSET FUSE FOR OLINKERROR"

6451 = 1;

EQUATIONS

130

LLINKERROR := 1;
LLIKKERROR.C = LEFTVLIN;
ACCLLINKERR := LLINKERRCR;
LLINKERROR.RE = ERROR1READ;

RLINKERROR := 1;
RLINKERROR.C = RIGHTVLTN;
ACCRLINKERR := RLINKERROR;
RLINKERROR.RE = ERRORIREAD;

OLINKERROR := 1;
OLINKERROR.C = OPPVLTN;
ACCOLINKERR := OLINKERROR;
OLINKERROR.RE = ERRORIREAD;

ENABLE QOUTPUTS = ERROR1READ;

COUNT := COUNT+1;

SCALECNT6.RE = SET_TIMEQUT;
SCALECNTS.RE = SET_TIMEOUT;
SCALECNT4.RE = SET_TIMEQUT;
SCALECNT3.RE = SET_TIMEOUT;
SCALECNT2.RE = SET_TIMEOUT;
SCALECNT1.RE = SET_TIMEOQUT;
SCALECNTO.RE = SET_TIMEQUT;
SCORECNTCLK = (COUNT == “B00000001);

END LINKERRORACC

B.4 Scoreboard
B.4.1 Scoreboard First Half

MODULE SCORE1
TITLE ’SCOREBOARD iST HALF, 25 OCT 87’

SCRE1 DEVICE ’E0900’;

SCALECNT,DECIDE PIN 1,21;

131

PEAMASK , PEBMASK , PECMASK, PEDMASK PIN 39,2,3,4;
CLASS2,CLASS1,CLASSO,CTS PIN 17,18,19,22;
TIMEOUT, !READERROR2 PIN 29,23;

SCOREOP,NESMHZ PIN 37,38;
DUPLEX,MAJ,DUPLEX_MAJ,UNANIMOUS,DUPLEX_UNANIMOUS PIN 5,6,7,8,9;
AOK,BOK,COK,DOK PIK 25,26,27,28;
SET_TIMEOUT,TIMEOUT_SET,GO PIN 36,35,34;
A_TIMEOUT_ERR,B_TIMEOUT_ERR PIN 33,32;
C_TIMEGUT_ERR,D_TIMEOUT_ERR PIN 31,30;
co,c1,c2,c3,Cc4,C5,C6 PI¥ 10,11,12,13,14,15,16;
TO_ENABLED PIN 24;

TIMEOUT_ERRS = [A_TIMEOUT.ERR,B_TIMEOUT_ERR,
C_TIMEOUT_ERR,D_TIMEOUT_ERR];
COUNT = [C6,C5,C4,C3,C2,C1];

co0,C1,Cc2,¢3,C4,C5,C6 ISTYPE ’REG,FEED_REG’;
AOK,BOK,COK,DOK ISTYPE ’REG,FEED_REG’;
MAJ,DUPLEX,DUPLEX_MAJ,UNANIMOUS,DUPLEX_UNANIMOUS

ISTYPE °COM,FEED_PIN’;
SET_TIMEOUT,TIMEOUT_SET,GO ISTYPE 'REG,FEED_REG’;
TIMEOUT ISTYPE ’COM,FEED_PIN’;

FUSES

17321 = 1;

17326 = 1;

17331 = 1;

17336 = 1;

"FUSE FOR TO_ENABLED

EQUATIONS

AOK := BOK;
AOK.C := SCOREOP & 'NESMHZ;

BOK := COK;
BOK.C := SCOREQOP & !'NESMHZ;

COK := DOK;
COK.C := SCOREOP & !'NESMHZ;

132

DOK := CTS;
DOK.C := SCOREQOP & !NESMHZ;

MAJ = (AOK & BOK & PEAMASK & PEBMASK
#ACK & COK & PEAMASK & PECMASK

#AOK & DOK & PEAMASK & PEDMASK

#BOX & COK & PEBMASK & PECMASK

#BOK & DOK & PEBMASK & PEDMASK

#COK & DOK & PECMASK & PEDMASK) ;

DUPLEX = PEAMASK & PEBMASK & !PECMASK & !PEDMASK
#PEAMASK & PECMASK & !PEBMASK & !PEDMASK
#PEAMASK & PEDMASK & !PEBMASK & !PECMASK
#PEBMASK & PECMASK & !PEAMASK & ! PEDMASK
#PEBMASK & PEDMASK & !PEAMASK & ! PECMASK
#PECMASK & PEDMASK & !PEAMASK & !PEBMASK;

DUPLEX_MAJ = (AOK & PEAMASK
BOK & PEBMASK

COK & PECMASK

DOK & PEDMASK) & DUPLEX;

UNANIMOUS = AOK & BOK & COK & DOK & PEAMASK & PEBMASK & PECMASK & PEDMASK
#AOK & BOK & COK & PEAMASK & PEBMASK & PECMASK & !PEDMASK
#AOK & BOK & !PECMASK & DOK & PEAMASK & PEBMASK & PEDMASK
#AOK & !'PEBMASK & COK & DOK & PEAMASK & PECMASK & PEDMASK
#!PEAMASK & BOK & COK & DOK & PEBMASK & PECMASK & PEDMASK;

DUPLEX_UNANIMOUS = AOK & BOK & !PECMASK & !PEDMASK & PEAMASK & PEBMASK
#AOK & !'PEBMASK & !PECMASK & DOK & PEAMASK & PEDMASK
#!PEAMASK & !PEBMASK & COK & DOK & PECMASK & PEDMASK
#'PEAMASK & BOK & COK & !PEDMASK & PEBMASK & PECMASK
#AOK & !'PEBMASK & COK & !PEDMASK & PEAMASK & PECMASK
#!PEAMASK & BOK & !PECMASK & DOK & PEBMASK & PEDMASK;

SET_TIMEQOUT := ((MAJ & !'DUPLEX) # (DUPLEX_MAJ & DUPLEX))
& (! (UNANIMOUS & !DUPLEX) # ! (DUPLEX_UNANIMOUS & DUPLEX)) & ! TIMEQUT_SET;

TIMEOUT_SET := SET_TIMEOUT # (TIMEOUT_SET & !TIMEOUT & !GO);

COUNT := (COUNT + 1) & TIMEOUT_SET
0 & 'TIMEOUT_SET;

133

TIMEQUT = 0;
w TIMEOUT = (COUNT==1) & TIMEOUT_SET;

GO := (UNANIMOUS & 'DUPLEX) # (DUPLEX & DUPLEX_UNANIMOUS)
(TIMEOUT & TIMEOUT_SET);

ENABLEGO = 1;

A_TIMEOUT_ERR := !'AOK & TIMEOUT;

B_TIMEOUT_ERR := !BOK & TIMEOUT;

C_TIMEQUT_ERR := !COK & TIMEOUT;

D_TIMEQUT_ERR := !DOK & TIMEOUT;

ENABLE TIMEOUT_ERRS = READERROR2;

" TO_ENABLE :=1;
" TO_ENABLE.C = GO;
" TO_ENABLE.RE = ;

END SCOREL

B.4.2 Scoreboard Second Half

MODULE SCORE2
TITLE ’SCOREBOARD 2ND HALF, 27 OCT 87’

SCRE2 DEVICE ’E0900°’;

SCOREOP,NESMHZ PIN 37,38;

PEAMASK , PEBMASK , PECMASK, PEDMASK PIN 39, 2,3,4;
10,11,12,13,14,I5,16 PIN 17,18,19,22,23,24,25;
AO,A1,A2,A3,A4,A5,A6 PIN 5,6,7,8,9,10,11;
BO,B1,B2,B3,B4,B5,B6 PIN 12,13,14,15,16,26,27;
co,Cc1,c2,C3,C4,C5,C6 PIN 28,29,30,31,32,33,34;
S0,S1 PIN 35,36;

s = [S1,50];
A= [A6,A5,A4,A3,A2,A1,AO];

134

B = [B6,B5,B4,B3,B2,B1,B0];
¢ = [c6,C5,C4,C3,C2,C1,C0];
I=[(I6,15,14,13,I2,11,10];
AMASK = [PEAMASK,PEAMASK, PEAMASK, PEAMASK, PEAMASK, PEAMASK , PEAMASK] ;
BMASK = [PEBMASK, PEBMASK, PEBMASK, PEBMASK, PEBMASK, PEBMASK, PEBMASK] ;
CMASK = [PECMASK,PECMASK, PECMASK,PECMASK, PECMASK, PECMASK, PECMASK] ;
DMASK = [PEDMASK, PEDMASK, PEDMASK, PEDMASK , PEDMASK , PEDMASK , PEDMASK] ;

FUSES
17341 = 1;
17346 = 1;
17351 = 1;
17356 = 1;
17361 =1;
17366 = 1;
17371 = 1;
17376 =
17381 =
17386 =
17391 =
17396 =
17331 =
17326 =
17321 =
17316 =
17311 =
17306 =
17301 =
17296 =
17291 =
17286 =
17281 =

L O O T S T T e e S e o e
-

EQUATIONS

S :=(S+1);
S1.C = SCOREQP & 'NESMHZ;
S0.C = SCOREQOP & 'NESMHZ;

C:=1I;
C6.C = SCOREQOP & 'NESMHZ;
C5.C = SCOREOP & !NESMHZ;

135

C4.C = SCOREOP & !NESMHZ;
C3.C = SCOREQOP & !NESMHZ;
C2.C = SCOREOP & !'NESBMHZ;
C1.C = SCOREOP & !NES8MHZ;
C0.C = SCOREQOP & !NES8MHZ;

B :=C,

B6.C = SCOREQOP & !NESMHZ;
BS.C = SCOREOP & !NEBMHZ;
B4.C = SCOREQOP & !NESMHZ;
B3.C = SCOREOP & !NESMHZ;
B2.C = SCOREOP & !KESMHZ;
B1.C = SCOREOP & !NESBMHZ;
B0O.C = SCCREOP & !'NESMHZ;

A:=(B&!(S==3))
#(((A & AMASK & B & BMASK)
#(A & AMASK & C & CMASK)
#(A & AMASK & I & DMASK)
#(B & BMASK & C & CMASK)
#(B & BMASK & I & DMASK)
#(C & CMASK & I & DMASK))
& (S==3));
A6.C = SCOREOP & 'NESMHZ;
A5.C = SCOREQOP & !'NESMHZ;
A4.C = SCOREQP & !NESMHZ;
A3.C = SCOREOP & !'NESMHZ;
A2.C = SCOREOP & !NESMHZ;
A1.C = SCORECP & !NESMHZ;
A0.C = SCOREQOP & !NESMHZ;
END SCORE2

B.5 Global Controller

B.5.1 Multiplexor First Half

- MODULE CONTMUX1
TITLE ’'GLOBAL CONTROLLER CONDITIGJNAL MUX UPPER HALF, 19 NOV 87’

MUX1 DEVICE ’P22V10’;

136

NE16MHZ PIN 1;

CDONE,MYFTC,NESBMHZDEL PIN 2,3,4;
Go,vpo,vpi,vb2,VD3,VD4 PIN 5,6,7,13,20,21;
SELO,SEL1,SEL2,SEL3 PIN 8,9,10,11;
LSELO,LSEL1,LSEL2,LSEL3 PIN 23,22,15,14;
SELMODE, MYINPUT PIN 16,17;

CONDITION PIN 18;

SEL = [SELO,SEL1,SEL2,SEL3];
LSEL = [LSELO,LSEL1,LSEL2,LSEL3];

EQUATIONS

CONDITION := CDONE & (SEL == 0) & SELMODE
CDONE & (LSEL == 0) & !SELMODE
MYFTC & (SEL == 1) & SELMODE
MYFTC & (LSEL == 1) & !SELMODE
NESMHZDEL & (SEL == 2) & SELMODE

NESMHZDEL & (LSEL == 2) & !SELMODE

GO & (SEL == 3) & SELMODE
GO & (LSEL == 3) & !SELMODE
VDO & (LSEL == 4) & !SELMODE
VD1 & (LSEL == 5) & !SELMODE
VD2 & (LSEL == 6) & !SELMODE
VD3 & (LSEL == 7) & !SELMODE
VD4 & (LSEL == 8) & !SELMODE
MYINPUT & ((LSEL == 14) # (LSEL == 15)) & !SELMODE;

LSEL := SEL & SELMODE
LSEL & !SELMODE;

END CONTMUX1

B.5.2 Multiplexor Second Half

MODULE CONTMUX2
TITLE ’GLOBAL CONTROLLER CODITIONAL MUX LOWER HALF, 19 NOV 87’

MUX2 DEVICE ’'P22V10’;

137

NE16MHZ PIN 1;

vDo,VD1,VD2,VD3,VD4 PIN 2,3,4,5,6;

EXCLASSO ,EXCLASS1,EXCLASS2 PIN 7,8,9;
LADD,DLADD,D2LADD, AUTOINCREMENT PIN 10,17,18,11;
LSELO,LSEL1,LSEL2,LSEL3 PIN 16,15,14,13;
MYINPUT,CLADD PIN 23,22;

ICNT2,ICNT1,ICHTO PIN 159,20,21;

COUNT = [ICNT2,ICNT1,ICNTO];
LATCHEDSEL = [LSELO,LSEL1,LSEL2,LSEL3];

EQUATIONS

MYINPUT = VD4 & (COUNT == 0) & (LATCEEDSEL == 14)
VD3 & (COUNT == 1) & (LATCHEDSEL == 14)

VD2 & (COUNT == 2) & (LATCHEDSEL == 14)

VD1 & (COUNT == 3) & (LATCHEDSEL == 14)

VDO & (COUNT == 4) & (LATCHEDSEL == 14)

EXCLASS2 & (COUNT == 0) & (LATCHEDSEL == 15)

EXCLASS1 & (COUNT == 1) & (LATCHEDSEL == 15)

EXCLASSO & (COUNT == 2) & (LATCHEDSEL == 15);

COUNT := (COUNT + 1) & (LATCHEDSEL == 14) & (COUNT != 4)
#(COUNT + 1) & (LATCHEDSEL == 15) & (COUNT != 2);

DLADD := LADD;
D2LADD := DLADD;

CLADD = LADD & ‘DLADD & !NE16MHZ
LADD & D2LADD & NE16MHZ;

END CONTMUX2
B.5.3 Next State Register

MODULE KSREG
TITLE ’GLOBAL CONTROLLER NEXT STATE REGISTER, 19 NOV 87’

NSTATEREG DEVICE ’P22V10’;

138

CLADD,NSSELECT PIN 1,13;

¢T0,CT1,CT2,CT3,CT4 PIN 2,3,4,5,6;
CcT5,CT6,CT7,CT8,CT9 PIN 7,8,9,10,11;
NSO,NS1,NS2,NS3,N8S4 PIN 23,22,21,20,15;
NS5,NS6,NS7,NS8,NS9 PIN 16,17,18,19,14;

CT = [cT8,CT7,CT6,CT5,CT4,CT3,CT2,CT1,CTO] ;

NS = [Ns8,NS7,KS6,NS5,8S4,NS3,8S2,NS1,NS0] ;

SNS = [NS7,4S6,NS5,8S4,NS3,KS2,NS1,NS0];
EQUATIONS

NS := (CT + 1) & !NSSELECT;

SHS := (SNS + 1) & NSSELECT;

NS8 := NS7 & NS6 & NS5 & NS4 & NS3 & NS2 & NS1 & NSO
& !'HS8 & NSSELECT

NS8 & NSSELECT;

ENABLE NS = NSSELECT;

NS9 := CT8 & CT7 & CT6 & CT5 & CT4 & CT3 & CT2 & CT1 & CTO & !CT9 & NSSELECT
CT9 & !'NSSELECT

NS9O & NSSELECT;

ENABLE NS9 = NSSELECT;

END NSREG

B.5.4 Controller Decoder

MODULE DECODE
TITLE ’GLOBAL CONTROLLER OUTPUT DECODER, 5 JAN 88°;

CDECODE DEVICE °*P22V10’;

NE16MHZBAR PIN 1;
SELO,SEL1,SEL2,SEL3,SELMODE PIN 2,3,4,5,6;

139

VMASKLATCH , EXADDRLATCH , MDLATCH,CTLVDATAC PIN 14,15,16,17;
1KICKDOG,DECIDE, ! RESETREC, 'RESETXMIT PIN 18,19,20,21;
CLEARDATAP,CTLCTRCLK PIK 22,23;

SEL = [SELO,SEL1,SEL2,SEL3];

EQUATIONS

EXADDRLATCH := !SELMODE & (SEL == 3);

MDLATCH := !SELMODE & (SEL == 4);

CTLVDATAC := !SELMODE & (SEL == 2);

KICKDOG := iSELMODE & (SEL == 1);

DECIDE := !SELMODE & (SEL == 6) ;

RESETREC := !SELMODE & (SEL == 7);

RESETXMIT := !SELMODE & (SEL == 8);

CLEARDATAP := !SELMODE & (SEL == 9);

CTLCTRCLK := !SELMODE & (SEL == 5);

VMASKLATCH := !SELMODE & (SEL == 10);

END DECODE

B.5.5 Mask, Size, and Debug Register

MODULE MASKREG FLAG ’-R3’
TITLE ’'GLOBAL CONTROLLER MASK REGISTER/XLATER, 11 NOV 87’

MREG DEVICE ’E0900’;
NEIDO,NEID1,REGLATCH,REGLATCHA,LFO PIN 2,3,1,21,4;
vDo,VD1,VDz,vD3,VD4,VD5,VD6,VD7 PIN 17,18,19,22,23,24,37,38;

CMASKL ,CMASKR ,CMASKOD PIN 25,26,27;
NEMASKA ,NEMASKB , NEMASKC , NEMASKD PIN 33,34,35,36;

140

PEMASKA , PEMASKB , PEMASKC , PEMASKD PIN 5,6,7,8;
LDBEN,RDBEN,ODBEN, VDBEN PIN 9,10,11,12;
PSIZE3,PSIZE2,PSIZE1,PSIZEO PIN 13,14,15,16;
SIZE3,SIZE2,SI2E1,SIZEO PIN 30,31,32,39;
CLRSELO,CLRSEL1 PIN 29,28;

DEBUGINFO = [LDBEN,RDBEN,ODBEN, VDBEN] ;
VDATAU = [VD7,VD6,VD5,VD4] ;

VDATAL = [VD3,VD2,VD1,VDO] ;
LF = [LFO,VD7,VD6,VD5];
PSIZE = [PSIZE3,PSIZE2,PSIZE1,PSIZEO];
SIZE = (SIZE3,SIZE2,SIZE1,SIZEO];
PEMASK = [PEMASKA,PEMASKB, PEMASKC, PEMASKD] ;
NEMASK = [NEMASKA,NEMASKB,NEMASKC,NEMASKD] ;
NEID = [NEID1,NEIDO];
CLEARREQ = [VD1,VDO];

EQUATIONS

DEBUGINFO := VDATAL & (LF == 12)
DEBUGINFO & ! (LF == 12);

CMASKL := VD3 & (LF == 9)
VD3 & (NEID == 1) & (!LF0)
VD2 & (NEID == 2) & ('LFO0)
VD1 & (NEID == 3) & (!LFO0)
VDO & (NEID == 0) & ('LF0)
CMASKL & ! (LF == 9) & LFO;

CMASKR := VD2 & (LF == 9)
VD3 & (NEID == 3) & (!LFO)
VD2 & (NEID == 0) & (!LFO0)
VD1 & (NEID == 1) & (!LF0)
VDO & (NEID == 2) & (!LF0)
CMASKR & ! (LF == 9) & LFO;

CMASKO := VD1 & (LF == Q)
VD3 & (NEID == 2) & (!LF0)
VD2 & (NEID == 3) & ('LFO)
VD1 & (NEID == 0) & (!LFO)
VDO & (NEID == 1) & (!LF9)

141

CMASKO & ! (LF == 9) & LFO;

PSIZE := VDATAL & (LF == 11)
SIZE & (LF == 10)
PSIZE & ' (LF == 11) & ! (LF == 10);

PEMASK := VDATAU & VDATAL & !LFO
PEMASK & LFO;

NEMASK := VDATAL & !LFO
NEMASK & LFO;

CLRSELO :» 0 & (NEID == 0) & (CLEARREQ == 0) & (LF == 13)
0 & (NEID == 0) & (CLEARREQ == 1) & (LF == 13)
1 & (NEID == 0) & (CLEARREQ == 2) & (LF == 13)
1 & (NEID == 0) & (CLEARREQ == 3) & (LF == 13)
1 & (NEID == 1) & (CLEARREQ == 0) & (LF == 13)
#0 & (NEID == 1) & (CLEARREQ == 1) & (LF == 13)
0 & (NEID == 1) & (CLEARREQ == 2) & (LF == 13)
1 & (NEID == 1) & (CLEARREQ == 3) & (LF == 13)
1 & (NEID == 2) & (CLEARREQ == 0) & (LF == 13)
1 & (NEID == 2) & (CLEARREQ == 1) & (LF == 13)
0 & (NEID == 2) & (CLEARREQ == 2) & (LF == 13)
0 & (FEID == 2) & (CLEARREQ == 3) & (LF == 13)
0 & (NEID == 3) & (CLEARREQ == 0) & (LF == 13)
1 & (NEID == 3) & (CLEARREQ == 1) & (LF == 13)
1 & (NEID == 3) & (CLEARREQ == 2) & (LF == 13)
0 & (NEID == 3) & (CLEARREQ == 3) & (LF == 13);

CLRSEL1 := 0 & (NEID == 0) & (CLEARREQ == 0) & (LF == 13)
1 & (NEID == 0) & (CLEARREQ == 1) & (LF == 13)
1 & (NEID == 0) & (CLEARREQ == 2) & (LF == 13)
0 & (NEID == 0) & (CLEARREQ == 3) & (LF == 13)
#0 & (NEID »= 1) & (CLEARREQ == 0) & (LF == 13)
0 & (NEID == 1) & (CLEARREQ == 1) & (LF == 13)
1 & (NEID == 1) & (CLEARREQ == 2) & (LF == 13)
#1 & (NEID == 1) & (CLEARREQ == 3) & (LF == 13)
1 & (NEID == 2) & (CLEARREQ == Q) & (LF == 13)
#0& (NE.D == 2) & (CLEARREQ == 1) & (LF == 13)
0 & (NEID == 2) & (CLEARREQ == 2) & (LF == 13)
1 & (NEID == 2) & (CLEARREQ == 3) & (LF == 13)

142

1 & (NEID == 3) & (CLEARREQ == 0) & (LF == 13)
1 & (NEID == 3) & (CLEARREQ == 1) & (LF == 13)
0 & (NEID == 3) & (CLEARREQ == 2) & (LF == 13)
0 & (NEID == 3) & (CLEARREQ == 3) & (LF == 13);

END MASKREG

B.5.6 Data Path Voter Mask Register

MODULE VOTEMASK FLAG ’-R3’
TITLE ’GLOBAL CONTROLLER VOTER MASK REGISTER, 12 NOV 87’ ;

VMASK DEVICE ’P22V10’;

VMASKLATCH PIN 1;

NEIDO,NEID1 PIN 2,3;

PEMASKA , PEMASKB, PEMASKC, PEMASKD PIN 4,5,6,7;
NEMASKA ,NEMASKB , NEMASKC , NEMASKD PIN 8,9,10,11;
CTLBUS2,CTLBUS1,CTLBUSO PIN 13,i4,15;

VMASKL , VMASKR , VMASKO, VMASKM PINW 17,18,19,20;
{CLASSFIFOOE,CLASSFIFOOR, !RECE PIN 23,22,21;
SDO7 PIN 16;

NEID = [NEID1,REIDO];
LF = [CTLBUS2,CTLBUS1,CTLBUSO];

EQUATIONS

VMASKL := NEMASKA & (NEID == 1) & (LF == 4) “1ROUND AM B
NEMASKB & (NEID == 2) & (LF == 4) "1ROUKD AMC
NEMASKC & (NEID == 3) & (LF == 4) "1ROUND AM D
NEMASKD & (NEID == 0) & (LF == 4) "1ROUND AM A
#0& (NEID == 1) & (LF == 0) "FROM A AMB

(NEMASKB) & (NEID == 2) & (LF == 0) "FROMA AMC
(NEMASKC) & (NEID == 3) & (LF == 0) "FROMA AMD
(NEMASKD) & (NEID == 0) & (LF == 0) "FROMA AM A
(NEMASKA) & (NEID == 1) & (LF == 1) "FROMB AM B
#0 & (NEID == 2) & (LF == 1) "FROMB AM C

(NEMASKC) & (NEID == 3) & (LF == 1) "FROMB AMD
(NEMASKD) & (NEID == 0) & (LF == 1) "FROMB AM A
(NEMASKA) & (NEID == 1) & (LF == 2) "FROMC AM B

143

(NEMASKB) & (NEID == 2) & (LF == 2) "FROMC AMC
0 & (NEID == 3) & (LF == 2) "FROMC AMC

(NEMASKD) & (NEID == 0) & (LF == 2) "FROMC AM A
(NEMASKA) & (NEID == 1) & (LF == 3) "FROMD AM B
(NEMASKB) & (NEID == 2) & (LF == 3) "FROMD AM C
(NEMASKC) & (KEID == 3) & (LF == 3) "FROMD AMD
#0 & (NEID == 0) & (LF == 3); "FROMD AM A

VMASKR := NEMASKA & (NEID == 3) & (LF == 4) "1ROUND AM D
NEMASKB & (NEID == 0) & (LF == 4) "1ROUND AM A
NEMASKC & (NEID == 1) & (LF == 4) “1ROUND AM B
NEMASKD & (NEID == 2) & (LF == 4) "1ROUND AM C
#0 & (NEID == 3) & (LF == 0) "FROM A AMD

(NEMASKB) & (NEID == 0) & (LF == 0) "FROMA AM A
(NEMASKC) & (NEID == 1) & (LF == 0) "FROMA AM B
(NEMASKD) & (NEID == 2) & (LF == 0) "FROMA AM C
(NEMASKA) & (NEID == 3) & (LF == 1) "FROMB AM D
2 0 & (NEID == 0) & (LF == 1) "FROMB AM A

(NEMASKC) & (NEID == 1) & (LF == 1) "FROMB AM B
(NEMASKD) & (HEID == 2) & (LF == 1) "FROMB AM C
(NEMASKA) & (NEID == 3) & (LF == 2) "FROMC AMD
(NEMASKB) & (NEID == 0) & (LF == 2) "FROMC AM A
20 & (NEID == 1) & (LF == 2) "FROMC AM B

(NEMASKD) & (NEID == 2) & (LF == 2) "FROMC AMC
(NEMASKA) & (NEID == 3) & (LF == 3) "FROMD AMD
(NEMASKB) & (NEID == 0) & (LF == 3) "FROMD AM A
(NEMASKC) & (NEID == 1) & (LF == 3) "FROMD AM B
0 & (NEID == 2) & (LF == 3); "FROMD AMC

VMASKO := NEMASKA & (NEID == 2) & (LF == 4) "1ROUND AM C
NEMASKB & (NEID == 3) & (LF == 4) "1ROUND AM D
NEMASKC & (NEID == 0) & (LF == 4) "1ROUHND AM A
NEMASKD & (NEID == 1) & (LF == 4) "1ROUND AM B
#0& (NEID == 2) & (LF == 0) "FROM A AMC

(NEMASKB) & (NEID == 3) & (LF == 0) "FROMA AMD
(HEMASKC) & (REID == 0) & (LF == 0) "FROMA AM A
(NEMASKD) & (NEID == 1) & (LF == 0) "FROMA AM B
(NEMASKA) & (NEID == 2) & (LF == 1) "FROMB AMC
#0 & (HEID == 3) & (LF == 1) "FROMB AMD

(NEMASKC) & (NEID == 0) & (LF == 1) "FROMB AM A
(NEMASKD) & (NEID == 1) & (LF == 1) "FROMB AM B

144

(NEMASKA) & (NEID == 2) & (LF == 2) "FRUMC AM C
(NEMASKB) & (NEID == 3) & (LF == 2) "FROMC AM D
0 & (NEID == 0) & (LF == 2) "FROMC AM A

(NEMASKD) & (NEID == 1) & (LF == 2) "FROMC AM B
(NEMASKA) & (NEID == 2) & (LF == 3) “FROMD AMC
(NEMASKB) & (NEID == 3) & (LF == 3) "FROMD AMD
(NEMASKC) & (NEID == Q) & (LF == 3) "FROMD AM A
#0& (NEID == 1) & (LF == 3); "FROMD AM B

VMASKM := NEMASKA & (NEID == 0) & (LF == 4) “1ROUND AM A
NEMASKB & (NEID == 1) & (LF == 4) “1ROUND AM B
NEMASKC & (NEID == 2) & (LF == 4) "1ROUND AMC
NEMASKD & (NEID == 3) & (LF == 4) "1ROUND AM D
#0 & (NEID == 0) & (LF == 0) "FROM A AM A

(NEMASKB) & (NEID == 1) & (LF == 0) "FROMA AM B
(NEMASKC) & (NEID == 2) & (LF == 0) "FROMA AM C
(NEMASKD) & (NEID == 3) & (LF == 0) "FROMA AM D
(NEMASKA) & (NEID == 0) & (LF == 1) "FROMB AM A
#0& (NEID == 1) & (LF == 1) "FROMB AM B

(NEMASKC) & (NEID == 2) & (LF == 1) "FROMB AM C
(NEMASKD) & (NEID == 3) & (LF == 1) "FROMB AM D
(KEMASKA) & (NEID == 0) & (LF == 2) "FROMC AM A
(NEMASKB) & (NEID == 1) & (LF == 2) "FROMC AM B
#0 & (KEID == 2) & (LF == 2) "FROMC AM C

(NEMASKD) & (NEID == 3) & (LF == 2) "FROMC AMD
(NEMASKA) & (NEID == 0) & (LF == 3) "FROMD AM A
(NEMASKB) & (NEID == 1) & (LF == 3) "FROMD AM B
(NEMASKC) & (NEID == 2) & (LF == 3) "FROMD AM C
0 & (REID == 3) & (LF == 3); "FROMD AM D

SDO7 = 'RECE & CLASSFIFQOR;
ENABLE SDO7 = CLASSFIFOQE;

END VOTEMASK

B.5.7 Global Controller Event Counter

MODULE GLOBCKT FLAG ’~-R3°’
TITLE ’GLOBAL CONTROLLER COUNTER, 11 KOV 87’

145

COUNTER DEVICE ’P22V10’;

CNTCLK PIN 1;

CTLBUSO,CTLBUS1,CTLBUS2,CTLBUS3 PIN 2,3,4,5;
SIZE0,SIZE1,SIZE2,SIZE3 PIN 6,7,8,9;

LOADO,LOAD1 PIN 10,11;

c7,c6,C5,C4,€3,C2,C1,C0 PIN 19,22,21,20,23,18,17,16;
COUNTDONE PIK 15;

COUNTU = [C7,C6,C5,C4];

COUNTL = [C3,C2,C1,C0];

LOAD = [LOAD1,LOADO];

CTL = [CTLBUS3,CTLBUS2,CTLBUS1,CTLBUSO] ;
SIZE = [SIZE3,SIZE2,SIZE1,SIZE0];

ZERO = [0,0,0,0];

EQUATIORS

COUNTL := (COUNTL - 1) & (LOAD == Q)
ZERO & (LOAD == 1)

CTL & (LOAD == 2)

COUNTL & (LOAD == 3);

COUNTU := COUNTU & ! (COUNTL == 0) & (LOAD == 0)
(COUNTU - 1) & (COUNTL == 0) & (LOAD == Q)

SIZE & (LOAD == 1)

COUNTU & (LOAD == 2)

CTL & (LOAD == 3);

COUNTDORE = (COUNTU == 0) & (COUNTL == 0);

END GLOBCNT

146

Bibliography

[AK84]
[Bro87]

[DDS84]

[Dol82]

[FL82]

[FLP85]

[Fri86]

[GADSSS]

[Gol84]

[Gra79]

[Har87)

[HSL78]

A. Avizienis and J. Kelly. Fault tolerance by design diversity: concepts
and experiments. IEEE Computer, August 1984.

L. Brock. Obliqgue Wing Flight Control System. Technical Report, C.
S. Draper Laboratory, August 1987.

D. Dolev, C. Dwork, and L. Stockmeyer. On the Minimal Synchro-
nism Needed for Distributed Consensus. IBM Research Report RJ
4292(46990), IBM, May 1984.

D. Dolev. The Byzantine generals strike again. Journal of Algorithms,
3:14-30, 1982.

M. Fischer and N. A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 14(4):183-186,
June 1982.

M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374-382, April 1985.

S. A. Friend. Process Synchronization Within a Loosely Coupled Fault
Tolerant Parallel Processing System. Master’s thesis, Northeastern Uni-
versity, December 1986.

R. J. Gauthier, L. S. Alger, M. J. Dzwonczyk, and J. T. Sims. System
Architecture Evaluation and Design and Mission Management Func-
tional Development. Technical Report, C. S. Draper Laboratory, March
1988.

J. Goldberg. Development and Analysis of the SIFT Computer. NASA
Contract Report 172146, SRI International, February 1984.

J. N. Gray. Notes on database operating systems. In Operating Sys-
tems: An Advanced Course, pages 393—481, Springer-Verlag, 1979.

R. E. Harper. Critical Issues in Ultra- Reliable Parallel Processing. PhD
thesis, Massachusetts Institute of Technology, June 1987.

A. L. Hopkins, T. B. Smith, and J. H. Lala. FTMP - a highly reli
able fault-tolerant multiprocessor for aircraft. Proceedings of the IEEE,
66(10), October 1978.

147

[Johgsg]

[Kim75]

[KLJI85]

[KSBS8S5]

[KWFTSS]

[LASS]

[LAGDS6]

[Lal84]

[Lalgs)

[LL82]

[LS88]

S. C. Johnson. A methodology for reliability analysis of fault-tolerant
parallel processor architectures over long space missions. to be pub-
lished, February 1988.

C. R. Kime. Fault tolerant computing: an introduction and perspective.

IEEE Trans. Computers, C-24(5):457-460, May 1975.

J. Knight, N. Leveson, and L. St. Jean. A large scale experiment in N-
version progremming. In Digest of Papers FTCS-15, The 15th Annual
International Symposium on Fault Tolerant Computing, Ann Arbor
Michigan, June 1985.

C. M. Krishna, K. G. Shin, and R. W. Butler. Ensuring fault toler-
ance of phase locked clocks. IEEE Trans. Computers, C-34(8):752-756,
August 1985.

R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai.
The MAFT architecture for distributed fault tolerance. IEEE Trans.
Computers, 37(4):398-405, April 1988.

J. H. Lala and L. S. Alger. Hardware and software fault tolerance:
a unified architectural approach. In Digest of Papers FTCS-18, The-
18th Annual International Symposium on Fault Tolerant Computing,
Tokoyo Japan, June 1988.

J. H. Lala, L. S. Alger, R. J. Gauthier, and M. J. Dzwonczyk. A
fault tolerant processor to meet rigorous failure requirements. In Dsigest
of Papers, IEEE/AIAA Tth Digital Avionics System Conference, Fort
Worth Texas, October 1986.

J. H. Lala. Advanced Information Processing System (AIPS) System
Specification. Technical Report, C. S. Draper Laboratory, May 1984.

J. H. Lala. A byzantine resilient fault tolerant computer for nuclear
power plant applications. In Digest of Papers, 16th Annual Interna-
tional Symosium on Fault Tolerant Computing Systems, Vienna Aus-
tria, July 1986.

M. Pease L. Lamport, S. Shostak. The Byzantine generals problem.
ACM Trans. Programmig Languages and Systems, 4(3):382—401, July
1982.

Y-H. Lee and K. G. Shin. Optimal design and use of retry i.. fault-
tolerant computer systems. Journal of the ACM, 35(1):45-69, January
1988.

148

[MGT78]

[PB86]

[PSL80]

[SL84]

[Smi83]

[5S82]

[Sta85]

[Wen78]

[WKF85]

D. L. Martin and D. Gangsas. Testing of the YC-14 flight control system
software. ATAA Journal of Guidance and Control, 1(4), July-August
1978.

D. L. Palumbo and R. W. Butler. A performance evaluation of the soft-
ware impemented fault-tolerance computer. Jet Guidance, 9(2):175-
180, March-A pril 1986.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228-234, April 1980.

K. G. Shin and Y-H. Lee. Error detection process-mode, design, and
its impact on performance. IEEE Trans. Computers, C-33(6):529-540,
June 1984.

T. B. Smith. Fault Tolerant Processor Concepts and Operation. Tech-
nical Report CSDL-P-1727, C. S. Draper Laboratory, May 1983.

D. P. Siewiorek and R. S. Swarz. The Theory and Practice of Reliable
System Design. Digital Press, Bedford MA, 1982.

W. Stallings. Data and Computer Communications. Macmillan Pub-
lishing, New York NY, 1985.

J. Wensey. SIFT: the design and analysis of a fault-tolerant computer
for aircraft control. Proc IEEE, 66:1240-1255, October 1978.

C. J. Walter, R. M. Kieckhafer, and A. M. Finn. MAFT: a multicom-
puter architecture for fault-tolerance in real-time systems. Proc. IEEE

- Real Time Systems Symposium, December 1985.

149

