
MIT Open Access Articles

An endoribonuclease-based feedforward controller for 
decoupling resource-limited genetic modules in mammalian cells

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1038/S41467-020-19126-9

Publisher: Springer Science and Business Media LLC

Persistent URL: https://hdl.handle.net/1721.1/133608

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133608
https://creativecommons.org/licenses/by/4.0/


ARTICLE

An endoribonuclease-based feedforward controller
for decoupling resource-limited genetic modules in
mammalian cells
Ross D. Jones 1,2, Yili Qian 2,3, Velia Siciliano 1,2,5, Breanna DiAndreth 1,2, Jin Huh1,2,

Ron Weiss 1,2,4✉ & Domitilla Del Vecchio 2,3✉

Synthetic biology has the potential to bring forth advanced genetic devices for applications in

healthcare and biotechnology. However, accurately predicting the behavior of engineered

genetic devices remains difficult due to lack of modularity, wherein a device’s output does not

depend only on its intended inputs but also on its context. One contributor to lack of

modularity is loading of transcriptional and translational resources, which can induce coupling

among otherwise independently-regulated genes. Here, we quantify the effects of resource

loading in engineered mammalian genetic systems and develop an endoribonuclease-based

feedforward controller that can adapt the expression level of a gene of interest to significant

resource loading in mammalian cells. Near-perfect adaptation to resource loads is facilitated

by high production and catalytic rates of the endoribonuclease. Our design is portable across

cell lines and enables predictable tuning of controller function. Ultimately, our controller is a

general-purpose device for predictable, robust, and context-independent control of gene

expression.
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A promising strategy for engineering complex genetic
devices is to compose together simpler systems that have
been characterized in isolation1–4. A critical assumption

of this modular design approach is that subsystems maintain their
input/output (i/o) behavior when assembled into larger systems.
However, this assumption often fails due to context dependence,
i.e., the behavior of a module depends on the surrounding
systems2,5. There are many sources of context dependence,
including unexpected off-target interactions between regulators
and their targets6–8, transcription factor (TF) loading by DNA
targets9,10, gene orientation11, and resource loading by expressed
genes12,13. To date, much effort has gone into identifying and
engineering gene regulators with unique binding specificity, e.g.,
between TFs and their DNA-binding sites, with the goal of
finding gene regulators that work orthogonally7,14–18. Never-
theless, even if subsystems are entirely composed of putatively
orthogonal regulators, their gene expression levels can still
become coupled to each other via competition for shared cellular
resources2,12,13,19,20. For example, it has been demonstrated in
prokaryotes that genes compete for ribosomes, such that
increased expression from one gene decreases expression from
others by sequestering, i.e., loading, ribosomes12,13. In mamma-
lian cells, several types of cellular resources not present in pro-
karyotes are shared among expressed genes and can be
overloaded, including transcription coactivator proteins (CoAs)
and general TFs (GTFs) needed for transcription21, splicing fac-
tors22, miRNA-processing factors23, RISC complexes24,25, and the
proteasome26.

In particular, eukaryotic transcriptional activators (TAs) are
known to apply a load to transcriptional resources by seques-
tering CoAs and/or GTFs from other genes, a phenomenon
referred to as squelching27–35. This resource loading leads to a
drop in the expression level of other genes, resulting in coupling
between independently expressed genes and more generally to
context-dependent gene expression. Moreover, squelching can be
toxic to cells34,36–38 and places a selective pressure against engi-
neered circuits and the host cell, thus affecting both on evolu-
tionary timelines39,40. As many established synthetic eukaryotic
gene-regulation systems utilize TAs14,17,41–44, squelching is
potentially a pervasive problem in eukaryotic synthetic biology.
Thus, we focus on characterizing the effects of resource loading
by TAs and develop an engineering solution to make the
expression level of a gene of interest (GOI) robust to resource
loading.

We first establish an experimental model system to compre-
hensively quantify the effects of resource loading by different TAs
on various human- and viral-derived constitutive promoters
driving a GOI in different cell lines. From this characterization,
we find that resource loading by the TAs substantially affects
expression levels of the GOI in nearly all combinations of pro-
moters, TAs, and cell lines tested. To provide a mechanistic
understanding of the trends observed in the data, we build a
mathematical model of eukaryotic gene expression which
accounts for resource loading, including squelching by TAs. To
solve the resource loading problem in mammalian cells, we
introduce a feedforward controller design based on enzymatic
regulation of the GOI to make its expression level robust to
resource loading (Fig. 1a–d). Through a mechanistic model, we
elucidate that the controller’s ability to rescue the expression of
the GOI back to the unperturbed level relies on fast catalytic and
production rates of the regulating enzyme. Based on these design
requirements, we chose the Cas6-family endoribonuclease
(endoRNase) CasE45,46 (EcoCas6e), as the regulating enzyme. In
our design, CasE cleaves a 20 nt target site in the 5′ untranslated
region (UTR) of the output mRNA, preventing translation. In a
number of different cell lines and in response to resource loading

by a variety of TAs, our controller can maintain the desired
expression level of the GOI, thereby demonstrating near-perfect
adaptation of ectopic gene expression levels to resource loading in
mammalian cells. Our controller thus represents a significant step
toward engineering genetic systems in mammalian cells that
function reliably regardless of their cellular context.

Results
Characterization of transcriptional resource sharing. We first
quantified the effect of resource sharing on the output levels of
genetic devices. Specifically, we define a genetic device as an
engineered gene that may take regulatory inputs (e.g., sequence-
specific TFs) and gives the gene’s expressed protein as output. We
further define a genetic module as one or more genetic devices
that are linked together by direct regulatory interactions.
Independently-regulated devices in separate modules can become
implicitly coupled through competition for shared gene expres-
sion resources: expression of a gene in one device “loads” the pool
of shared resources, thereby decreasing resource availability to
other devices in all modules (Fig. 1a). Because of this coupling,
the behavior of a genetic device or module becomes dependent on
the presence of devices in other modules in the cell.

We recapitulated resource sharing in mammalian cells using
the genetic model system shown in Fig. 1e. The Gal4 DNA-
binding domain (DBD) was fused to one of several activation
domains (ADs) of varying potency (Supplementary Fig. 1), the
strongest five of which were chosen for in-depth study: HSV-1
VP1647, VP6448, NF-κB p6549, EBV Rta50, and the tripartite
VP64-p65-Rta (VPR51). Our model system comprises two genetic
modules (Fig. 1e). Module 1 comprises a device for constitutive
expression (CMV:output1). Module 2 comprises two devices:
Gal4 TA expression (hEF1a:Gal4-{AD}) and Gal4-driven activa-
tion: UAS:output2. The output and marker proteins are
fluorescent reporters that we measured by flow cytometry.
Typically, transfection markers (TX markers) are used for
normalization of signals measured in transfection experiments;
however, such markers can become unreliable due to being
affected by resource loading33,35. To minimize the impact of
resource loading on the accuracy of measurements, we thus
measured reporter outputs as the median of cells gated positive
for either the reporter or the TX marker (see Supplementary
Note 1 for further discussion of gating strategies). To enable
conversion of Gal4 levels to fluorescence values, we co-titrated a
reporter (Gal4 marker) with the Gal4 TAs. Details about plasmid
dosages and transfection reagents used in each experiment are
provided in Source Data.

The resulting dose–response curves for activation of UAS:
output2 and knockdown of CMV:output1 via resource loading are
shown in Supplementary Fig. 2 and Fig. 1f, respectively (see also
Supplementary Fig. 3 for the corresponding distributions of
expression levels). At the highest dosage tested, all five Gal4 TAs
knocked down CMV:output1 by at least 30%, with Gal4-VPR
causing ~80% knockdown (Fig. 1f). Additional qPCR and flow-
cytometry measurements validated that the effect of Gal4 TAs on
CMV-driven expression is caused by the ADs and occurs
predominantly at the transcriptional level (Supplementary Fig. 4).
Consistent with prior studies29,31, the activation dose–response
curve of some Gal4 TAs (Gal4-Rta, Gal4-p65, and Gal4-VPR)
showed decreasing UAS:output2 at high dosages of the TAs,
presumably due to self-squelching (Supplementary Fig. 2a–c).

We developed a mathematical model of gene expression
that accounts for transcriptional and translational resources
shared among genes (described in detail in Supplementary
Note 2 and Supplementary Fig. 5). This model recapitulates the
trends of both non-target gene knockdown (Fig. 1f) and on-target
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Fig. 1 Feedforward control strategy to decouple modules that share limited resources. a A genetic module comprising a single constitutive transcription
unit. Other competing modules place a load (indicated by the dashed red arrow) on the free cellular resources, affecting the expression of the module of
interest (resource-coupled module). The module of interest also applies a load to the resources (indicated by the dashed blue arrow). b An incoherent
feedforward loop (iFFL) device within the module of interest decouples the module’s output from resource variability. An endoribonuclease (endoRNase/
ERN), produced by an identical promoter as that of the output, represses the output by binding to a specific target site in its 5′ untranslated region (UTR)
and cutting the mRNA. c A simplified schematic of the iFFL showing cellular resources (R) as a disturbance input to the iFFL. d The expected behavior of the
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system to recapitulate resource loading. The module of interest comprises a constitutively expressed protein (output1, mKate2). In a competitor module,
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iRFP720. f Dose-dependent effect of Gal4 TAs on output1 for different ADs (VP64, VP16, Rta, p65, VPR). The markers indicate median expression levels
from three experimental repeats. The lines represent fits of our resource competition model (equation (50), see Supplementary Note 2 and Supplementary
Fig. 5). Dose–response curves and model fits for output2 are shown in Supplementary Fig. 2. The CV(RMSE) is the root-mean-square error between the
model and data, normalized by the mean of the data. All data were measured by flow cytometry at 48 h post transfection in HEK-293FT cells. All
measurements were made on cells gated positive for the transfection marker (TX marker) or output1, and are shown separately for each of three
experimental repeats. MEFLs are calibrated flow-cytometry units as described in “Methods”. Median values and fit parameters are provided in Source Data.
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self-squelching by TAs observed in the experiments (Supplemen-
tary Fig. 2b). For further discussion of model fitting and
validation, see Supplementary Note 3 and Supplementary Figs. 6–
8. Importantly, the qualitative trends displayed by the model were
also predictive of circuit behavior in lentiviral-integrated contexts
(Supplementary Figs. 9 and 10), indicating that the qualitative
effect of resource loading by TAs, i.e., decrease in the expression
of non-TA target genes, apply to genes located in both plasmids

and chromosomes (for further discussion, see Supplementary
Note 4).

To determine how resource loading affects different constitu-
tive promoters and whether the cellular host modulates these
effects, we carried out the experiment shown in Fig. 2a and
Supplementary Fig. 11. In particular, we extended our model
system from Fig. 1e to test the effect of different Gal4 TAs on a
library of non-target constitutive promoters in Module 1 ({P}:
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output1—see Supplementary Table 1 for more details) when
transfected into various commonly-used cell lines. Figure 2b
shows the nominal expression levels (i.e., the median expression
level in the absence of resource loading, measured in this
experiment using samples co-transfected with the Gal4 DBD (no
AD)—see “Methods”) of {P}:output1 in Module 1 for each
constitutive promoter in each cell line tested. We then computed
fold changes in response to each Gal4 TA by normalizing the
median expression level of {P}:output1 in each combination of a
constitutive promoter, TA, cell line to the nominal expression
level of the same constitutive promoter in the given cell line and
in the absence of the TA (Fig. 2c).

From the {P}:output1 fold changes, we can extract patterns that
help guide design choices for genetic circuits. Decreased
expression of {P}:output1 was observed in the majority of
combinations, with viral promoters being generally more
negatively affected by resource loading than human promoters
(see also Supplementary Fig. 12). While the relative effects of Gal4
TAs on each constitutive promoter were reasonably correlated
between cell lines (0.5 < r < 0.9), the exact fold changes were
poorly predictable between one cell line and another (Supple-
mentary Fig. 13). The differences among cell lines may result
from the promoters utilizing distinct subsets of transcriptional
resources52–55 that are differentially loaded by each TA and
differentially expressed within each cell line. We observed
appreciable increases in output for three of the twelve promoters
tested (hUBC, hMDM2, and hMDM2c— Fig. 2c). Several of the
TAs including Gal4-Rta, -p65, and -VPR were observed to cause
reductions in cell division rate as measured by Ki-67 staining
(Supplementary Fig. 14). Accounting for changes in growth rates
in simulations, along with analysis of cell density in the
experimental data, suggest that decreases in cell division rate
due to toxicity of the TAs may explain the increase in expression
of hUBC and hMDM2c promoters (see Supplementary Note 2
and Supplementary Figs. 15 and 16). However, the increase in
output expression for the full-length hMDM2 promoter appears
to be Gal4-specific and not correlated with changes in cell density
(Supplementary Figs. 16 and 17). The presence of two consensus
Gal4-binding sites in the hMDM2 promoter sequence (see the
sequence in Source Data) suggests that Gal4 TAs can bind and
activate transcription of hMDM2 (Supplementary Note 3).

While we saw widespread reductions and in some cases
increases in {P}:output1 in response to the Gal4 TAs, there were
some combinations of promoters and Gal4 TAs in each cell line
that had little to no effect. The five promoter–TA combinations
with either the strongest knockdown of or least effect on output1
are reported in Fig. 2d (see Supplementary Fig. 18 for all
combinations). In particular, the hUBC and hPGK promoter
variants were frequently found to be unaffected by the Gal4 TAs.
However, individual combinations of constitutive promoters and
Gal4 TAs that are relatively uncoupled in one cell line are not
generally uncoupled in different cell lines. Only three combina-
tions that showed the least coupling in one cell line (VP64/hEF1a,
VP64/hUBCs, and p65/hUBCs) were shared among at least two
different cell lines. Therefore, while in individual cell lines it is
possible to find combinations of genetic parts that result in
reduced coupling due to resource sharing, a general method that
is agnostic of the specific genetic parts used and is applicable to
any given cell lines is needed to decouple gene expression from
competition for shared resources.

Design of an endoRNase-based feedforward controller. In order
to mitigate the effect of resource loading on any genetic module’s
output, we designed a resource-decoupled genetic module by
augmenting Module 1 with a feedforward controller (Fig. 1b).

The feedforward path of the controller is obtained by expressing
an endoRNase that targets the output protein’s mRNA for
degradation. The promoter expressing the endoRNase is identical
to that expressing the output, ensuring that the expression of both
genes depends on the same transcriptional and translational
resources. This controller architecture leads to an incoherent
feedforward loop (iFFL) motif (Fig. 1c). Qualitatively, with
reference to Fig. 3a, as the availability of transcriptional or
translational resources (R) decreases, such as due to loading by
TAs, the level of the endoRNase (x) also decreases, de-repressing
the output protein (y). If the system is properly designed, this
action should compensate for the decrease in output production
caused by a decrease in available resources, thus enabling the level
of the output protein to remain unchanged for a range of per-
turbations in the resource amount R.

The extent to which the output level remains unchanged (i.e.,
the robustness of the iFFL design) is dependent on a number of
biochemical parameters. To extract the key tunable parameters
dictating the robustness of this iFFL design, we use a
mathematical model based on mass-action kinetics (see “Meth-
ods” and Supplementary Note 5 for derivation). According to this
model, the steady-state output protein level y of the iFFL is given
by:

y ¼ Vy �
D � R

1þ D � R=ϵ ; ð1Þ

where R ≔ RTX ⋅ RTL lumps together the free concentrations of
transcriptional (RTX) and translational (RTL) resources, and D is
the concentration of the DNA plasmid that encodes both the
output and the endoRNase. The lumped parameters Vy and ϵ are
defined as:

Vy :¼
φyβy

γykκyδy
; and ϵ :¼ γxkδxδyKM

φxβxθ
� κx; ð2Þ

where, for i= x (endoRNase) or i= y (output), φi is the
transcription initiation rate constant; δi is the decay rate constant
of the mRNA transcript mi; γi is the decay rate constant of protein
i; βi is the translation initiation rate constant; and κi is the
dissociation constant describing the binding between transla-
tional resource (i.e., ribosome) and the mRNA transcript mi, and
thus governs translation initiation. The parameter θ is the
catalytic rate constant of the endoRNase cleaving my, KM is the
Michaelis–Menten constant describing the binding of the
endoRNase with my, and k is the dissociation constant describing
binding of transcriptional resource with the two identical
promoters driving the expression of both endoRNase x and
output y. Overall, changing the biochemical parameters govern-
ing the production, decay, and enzymatic reactions of the
endoRNase only changes the lumped parameter ϵ, while the
lumped parameter Vy is entirely determined by biochemical
parameters of the output gene. The derivation of Eq. (1) is
independent of the resource sharing model developed in
Supplementary Note 2 and is only based on the assumption that
the endoRNase (x) and the output protein (y) are using the same
pool of resources for transcription and translation (Supplemen-
tary Note 5). According to Eq. (1), if D ⋅ R ≫ ϵ, then
y � Ymax :¼ Vy � ϵ, which is independent of R and therefore
independent of the free concentrations of both transcriptional
and translational resources. We call the lumped parameter ϵ
feedforward impedance because as ϵ → 0, the condition D ⋅ R ≫ ϵ
can be more easily satisfied (i.e., it is satisfied for a wider range of
D ⋅ R). As a consequence, the feedforward control action exactly
cancels out the effect of a change in resource availability (R) on
the output, although with the trade-off of a lower output level
Ymax (Fig. 3b). The experimentally quantifiable value Z50= Vz ⋅ ϵ
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is the TX marker (z) level above which the output is at least
50% of Ymax. Z50 can thus be regarded as an inverse measure of
the iFFL’s robustness to changes in resource availability
(Fig. 3a, b).

To achieve a system with low feedforward impedance, we
implemented the controller with Cas6-family CRISPR endoR-
Nases46. These endoRNases bind to and cleave specific ~20–30
bp-long hairpins in RNA sequences (independent of guide
RNAs), yielding between ~50-fold and 250-fold knockdown of
target proteins46, indicating a high catalytic rate θ to reduce ϵ
according to Eq. (2). Of these, we chose CasE45, one of the
endoRNases with the highest gene knockdowns that we have
evaluated46. We placed the target site for CasE in the 5′ UTR of
the output gene’s transcript because Cas6-family endoRNases
more strongly knock down gene expression when targeting the 5′
UTR than when targeting the 3′ UTR46,56. To construct a library
of CasE iFFLs with different feedforward impedance (ϵ), we
placed variable numbers of upstream open-reading frames
(uORFs)57 in the 5′ UTR of the CasE transcription unit, thereby

varying the translation rate of CasE (Fig. 3c). This method of
tuning the feedforward impedance, as opposed to using different-
strength promoters, allows the promoters driving CasE and the
output to be identical, ensuring that both genes use the same pool
of transcriptional resources. In this scheme, increasing the
number of uORFs (n) effectively increases the dissociation
constant κx between the ribosome and mx

57 to decrease ϵ
(Fig. 3c).

We experimentally verified this model prediction for n=
0, 1, 2, 4, 8, and 12. Regardless of the number of uORFs, the
shapes of the experimentally measured TX marker vs output
dose–response curves match our model well (see Fig. 3d for select
samples). Variants of the iFFL with fewer uORFs yield a smaller
fit value of Z50, suggesting that they will be more robust to
changes in R (Fig. 3d, e). Furthermore, our model predicts that
Z50 and Ymax are both proportional to ϵ and, hence, κx (Fig. 3b).
Indeed, the fit values of both Z50 and Ymax are linear to the
expected changes in κx based on values from Gam et al.44

(Fig. 3e). This implies that the number of uORFs placed on 5′
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Fig. 3 Model-guided design and tuning of the endoRNase-based feedforward controller. a A schematic of the endoRNase-based feedforward controller.
The expression of endoRNase (x), output (y), and TX marker (z) all use the same pool of transcriptional and translational resources (R). Parameters Vy and
ϵ are defined in Eq. (2). Parameter Vz is defined in Eq. (85) in Supplementary Note 5. b The TX marker (z) vs output (y) dose–response curve computed
from the model in Eq. (1). See “Methods” for derivation. The shape of this curve can be characterized by Ymax and Z50, both of which are proportional to the
feedforward impedance ϵ. c An increase in the number of upstream open-reading frames (uORFs) in the 5′ UTR of the endoRNase transcript leads to a
decrease in its translation initiation rate. We model it as an increase in the dissociation constant between the ribosome and the endoRNase’s mRNA
transcript (κx), which increases ϵ. The relationship between the number of uORFs and the fold decrease in translation initiation (i.e., parameter κx in the
model) is summarized in the table using previously-published experimental data by Gam et al.44. d Sample experimental data (scatterplot) corresponding
to n= 2, 4, 8 overlaid with TX marker vs output model fitting (red solid line). n is the number of uORFs in the 5′ UTR of the Cas6-family endoRNase CasE
(EcoCas6e). Experimental data are excerpted from Fig. 6b. e Comparison between experimentally measured Z50 and Ymax and the relative difference in
ribosome–mRNA dissociation constant (κx) for different numbers of uORFs in the 5′ UTR of the endoRNase. The experimental data are fit to Eq. (3) to
extract Z50 and Ymax (see “Methods”). Fit parameters are provided in Source Data.
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UTR of the CasE transcript can quantitatively shape the input/
output response of the iFFL.

The iFFL output adapts to resource loading. In our genetic
implementation of the iFFL, we used the CMVi promoter to drive
the expression of both CasE and the output (Fig. 4a). We chose
the CMVi promoter because it is strongly knocked down by Gal4
TAs across cell lines (Fig. 2), thus providing an ideal test bed for
assessing the controller performance. To evaluate the benefit of
the iFFL design, we made an unregulated (UR) variant of Module
1 (Fig. 4a) that replaces CasE with the luminescent protein Fluc2,
thus breaking the feedforward path. To measure the response of
the iFFL and UR modules to resource loading, we co-transfected
plasmids encoding variants of them along with plasmids
expressing a TX marker and hEF1a:Gal4-VPR into HEK-293FT
cells. To account for differences in protein expression levels
between the UR and iFFL modules, we transfected cells with
equimolar, 1:4, 1:16, or 1:64 dilutions of the UR plasmid relative
to the amount of iFFL plasmid used for iFFL variants.

As predicted by the model, our experimental results show that
variants of the iFFL with fewer uORFs are more robust to changes
in resource availability (Fig. 4b, c and Supplementary Fig. 19).
Fold changes and robustness scores were computed relative to the
samples without Gal4-VPR for each UR and iFFL device
independently (see “Methods”); the maximum robustness score
is 100%. At the highest dosage of Gal4-VPR tested (30 ng), the
output of the UR samples decreased between twofold and
threefold, whereas the iFFL variants with 4× or 2× uORFs were
nearly unaffected (Fig. 4b). In terms of robustness scores, most
UR samples had a score of ~30–50% regardless of the nominal
output level, whereas iFFL variants with 4× or 2× uORFs had a
score of ~70–90% (Fig. 4c). iFFL variants with increasing
numbers of uORFs (up to 12×) have robustness scores that
approach those of the UR samples. To ensure that the superior
performance of iFFL variants with fewer uORFs did not result
from reduced sensitivity to measuring lower output levels, we
directly compared UR and iFFL variants with similar nominal
output levels (1:64 diluted and 4× uORFs, respectively). Whereas
the UR/64 output decreases by ~60% and its distribution clearly
shifts down in response to resource loading by Gal4-VPR, the
iFFL output is nearly unchanged and its distribution retains
approximately the same median with comparable variance
(Fig. 4d, e). Overall, these data validate the model prediction
that decreasing ϵ increases robustness to resource loading, but has
a trade-off in reducing the output level.

According to the model of our iFFL, Ymax ¼ Vyϵ; thus, in
order to increase the iFFL output level without changing
robustness (ϵ), we can increase Vy. This can be achieved by
increasing the transcription or translation rates or by decreasing
the decay rate of the output protein. To validate this prediction,
we measured the iFFL output at various ratios of CasE and output
plasmids using poly-transfection44. Indeed, increasing the output
DNA dosage (and thus transcription rate) relative to that of CasE
increases the fit value of Ymax while maintaining an approxi-
mately constant fit value of Z50 (Supplementary Fig. 20).

We next tested whether the iFFL module functions in other cell
lines and whether its output expression is robust to resource
loading by different Gal4 TAs (Fig. 5a and Supplementary
Fig. 21). In these experiments, we added higher dosages of Gal4
TAs than in Fig. 4 to challenge the iFFL with high loading
conditions (see Source Data for transfection tables). Overall, we
found that fold changes in output of the iFFLs in response to
resource loading are much lower than those in comparable UR
systems for nearly all combinations of Gal4 TAs and cell lines
tested (Fig. 5b, c and Supplementary Figs. 22–24). Directly

comparing UR and iFFL variants with similar nominal output
levels (UR/10 vs 8xU-CasE and UR/100 vs 4xU-CasE) in each cell
line, we observed that the iFFL is able to maintain the desired
output level even when the UR output is strongly reduced
(Fig. 5d). Specifically, in situations where the UR device’s output
was affected by more than 30% (−0.5log2 fold-Δ output1), the
iFFL device’s output was typically unaffected and rarely affected
to the same degree. Moreover, in combinations where the output
of the UR device was highly affected (up to 70% in HeLa and
U2OS), that of the iFFL was only slightly affected (unappreciable
change in the 4xU variant and less than 30% in the 8xU variant
with larger ϵ and higher output). Across cell lines, the robustness
scores of the iFFL variants were nearly always higher than those
of the UR variants (Supplementary Fig. 22a–d). Most strikingly,
the percent of samples with robustness scores over 80% in HeLa,
CHO-K1, and U2OS cells increased from 31%, 8.9%, and 20% for
UR variants to 100%, 84%, and 93% for iFFL variants, respectively
(Supplementary Fig. 22e). Thus, even in cell lines in which
unregulated genetic devices exhibit high sensitivity to resource
loading (Fig. 2), our iFFL design can substantially reduce the
effects of resource loading on gene expression.

To ensure that our results were not specific to the CMVi
promoter, we repeated the experiments above using a version of
the iFFL that replaces the CMVi promoters with the hEF1a
promoter (Supplementary Figs. 25–29). As in the CMVi iFFL,
variants of the hEF1a iFFL with fewer uORFs/lower output
generally showed reduced fold changes and higher robustness
scores in response to Gal4 TAs than UR variants with comparable
nominal outputs (Supplementary Figs. 25 and 27). Compared to
the CMVi iFFL, the hEF1a iFFL generally showed higher fold
changes and lower robustness scores, especially in U2OS and
HeLa cells co-transfected with Gal4-Rta (Supplementary Figs. 27–
29). For hEF1a iFFL variants with 4x or fewer uORFs, the output
level was increased by the Gal4 TAs in HEK-293 and HEK-293FT
cells. This increase can be attributed to the toxicity of the Gal4
TAs that can be lessened by using a less toxic transfection reagent
(see Supplementary Note 5 and Supplementary Figs. 5, 30–33).
Notably, for both the CMVi and hEF1a iFFLs, the nominal output
levels for variants with different numbers of uORFs were highly
correlated across cell lines (Supplementary Figs. 34 and 35),
suggesting that the iFFL also generally mitigates the effects of
contextual differences between cell lines, such as the overall
abundance of gene expression resources.

The iFFL output adapts to plasmid DNA copy number varia-
tion. Following from previous work with miRNA- and tran-
scriptional repressor-based iFFLs58–60 and from the model of our
endoRNase-based iFFL design (Fig. 3), we predicted that the
output level of our iFFL module would also be robust to variation
in its DNA copy number (see “Methods”). We thus tested whe-
ther, absent resource loading, output expression of the hEF1a
iFFL could adapt to the multiple log decades of variation in
plasmid uptake between individual cells seen in transient trans-
fections (Fig. 6a). As the level of a TX marker is proportional to
DNA copy number58, we were able to use the TX marker vs iFFL
output curves to fit Eq. (3) (see “Methods”), and found good
agreement between the data and model (Fig. 6b). Binning of cells
at different TX marker levels (and thus DNA dosages) shows that
the level of iFFL output indeed becomes insensitive to the plasmid
copy number of the iFFL above a minimal amount of DNA input
(Fig. 6b). Similar binning analysis for UR variants indicates that
simply decreasing output expression does not cause adaptation to
DNA copy number (Supplementary Fig. 36a). To quantify the
extent of iFFL output adaptation to DNA copy number, we
compared the median expression of cells in TX marker-delineated
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bins to the fit value of the iFFL model parameter Ymax (Supple-
mentary Fig. 36b). We considered a bin to be adapted to DNA
copy number variation if log10(output) was within 5% of
log10(Ymax) (i.e., the log-scale robustness score was above 95%).
As predicted from the model, increasing the number of uORFs

(and thus increasing the output level) decreases the range of DNA
copy numbers over which the iFFL output adapts to DNA copy
number variation (Fig. 6c). We repeated these experiments and
analyses with the CMVi-driven CasE iFFL and found similar
results (Supplementary Fig. 37).
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in the 5' UTR of the output mRNA. The unregulated (UR) version of Module 1 replaces CasE with Fluc2, has no uORFs, and retains the CasE target site in the
output mRNA. Samples with reduced UR plasmid copy numbers (‘UR/#’: # ≡ reduction factor) are provided to compare UR and iFFL variants with similar
output levels. The output reporter is EYFP; not shown are two constitutive reporters (CMVi:TagBFP, hEF1a:mKO2). b Response of iFFL module to resource
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represent error on the log-scale76. The bottom plots show the mean ± s.d. of fold changes (fold-Δs). Fold-Δs are computed by dividing the median level of
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and iFFL variants shown in panel (d), for all three experimental repeats (R#). The lines on the histograms denote the 5th, 25th, 50th, 75th, and 95th percentiles.
All data were measured by flow cytometry at 72 h post transfection in HEK-293FT cells. All measurements were made on cells gated positive for output.
Measurements on cells gated positive for either output or TX marker are shown in Supplementary Fig. 19. iFFL samples with 0 or 1 uORFs are not shown
because most or all of the cells in those samples did not express output above the autofluorescence background and their median expression levels were much
lower than that of any UR variants. Median values for each sample and the number of cells plotted per histogram are provided in Source Data.
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Previously, miRNA-based iFFLs58,59,61 placed the miRNA
target sites in the 3′ UTR, whereas we placed the CasE target
site in the 5′ UTR. To test whether the choice of target site
placement affects iFFL performance, we compared variants of our
CasE iFFL, and a miR-FF4 iFFL based on the design by Bleris
et al.58, with either 5′ or 3′ target sites (Supplementary Fig. 38a).
We found that for both the miRNA- and endoRNase-based iFFLs,
variants with 5′ target sites show substantially improved
robustness to DNA copy number variability compared to variants
with 3′ target sites (Supplementary Fig. 38b, c). Thus, the location
of the target site an important design choice for iFFLs with
mRNA-targeting regulators.

We further investigated whether the iFFL could also adapt to
temporal variation in DNA copy number. This problem occurs
during transient transfections because plasmids are diluted out
with cell division, causing output expression to decrease with time
and complicating measurements. Our model suggested that the

iFFL module could maintain the output expression level for a
longer period of time compared to UR samples (see “Methods”
and Supplementary Note 5). Indeed, variants of the iFFL with
fewer uORFs (and thus smaller ϵ) exhibited decreasing changes in
median expression over the time period of 120 h post transfection
(Fig. 6d, see Supplementary Fig. 39 for full distributions at each
time point). To provide a reference for our iFFL’s dynamics, we
compared it to the miR-FF4 iFFL with 5′ target sites. Even though
the maximum output level of the miR-FF4 iFFL was similar to
that of the 4x-uORF CasE iFFL, the output level of the former
varied substantially more over time (Fig. 6d). Specifically, the
output level of the miRNA-based iFFL initially increases by
~50% from 12 to 24 h and then decreases by ~85% from 24 to
120 h, whereas that of the best performing endoRNase-based iFFL
(1xU-CasE) does not change from 12 to 24 h and decreases by
only ~50% from 24 to 120 h. Simulations of the iFFL during
transient transfection indicate that the ability of the iFFL to adapt
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to plasmid dilution depends on fast production and decay rates of
the endoRNase (Supplementary Fig. 40). Overall, these data
demonstrate that the CasE iFFL can also accurately set gene
expression levels regardless of DNA dosage to cells and in the face
of dynamic transcriptional disturbances such as plasmid dilution.

Discussion
Context dependence of genetic circuits due to factors such as
resource loading is a pervasive problem that hampers our ability
to engineer systems that behave as intended5. Therefore,
approaches that aid robust, predictable, and reliable engineering
of genetic circuits across various contexts are needed2,4. In this
paper, we have demonstrated that resource loading affects many
common cell lines used in mammalian synthetic biology across
nearly all combinations of routinely used promoters and TAs
tested (Figs. 1 and 2), pinpointing resource variability as a culprit

of circuit malfunction in mammalian cells. We designed a feed-
forward controller that can make a GOI’s expression level robust
to resource variability. Specifically, in situations where resource
loading by TAs knocked down the expression level of an unre-
gulated GOI (UR module) by up to 70%, the expression level of
the feedforward-controlled GOI (iFFL module) did not show the
appreciable change (Fig. 4). This indicates that our iFFL design
can achieve near-perfect adaptation of ectopic gene expression in
mammalian cells to changes in the intracellular context. Across
combinations of six cell lines and five TAs that we tested, the
output of the iFFL was consistently less affected by the TAs than
that of the UR system (Fig. 5). This demonstrates that the con-
troller is portable across cell lines and provides robustness to
various resource competitors.

Near-perfect adaptation of our iFFL output to resource loading
relies on decreasing the feedforward impedance ϵ (Fig. 3). In turn,
reducing ϵ causes a reduction of the output level, highlighting a
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Fig. 6 Adaptation of the iFFL output level to DNA copy number variation. a Genetic diagram of the iFFL with hEF1a promoters, showing DNA as the input.
No resource competitor was added in this experiment. The output is mNeonGreen. The constitutive TX marker (TagBFP) reports the plasmid dosage
delivered to each cell. b Top row: TX marker vs output levels for each sample, overlaid with fits of the iFFL model. For the UR samples, the output is
proportional to the TX marker, so we fit with a simple linear formula: output=m ⋅ TX marker. The CV(RMSE) is the root-mean-square error between the
model and non-binned data, normalized by the mean of the data (log10-transformed first since the cell-to-cell variance is approximately log-normally
distributed). To facilitate better comparability among plots, each bin was sub-sampled with the same number of cells (n= 3000). Bottom row: histograms
of the output levels for cells within each color-coded bin (as indicated in the scatters). Data are representative and taken from the first of three
experimental repeats. c Correlation between the range of DNA copy numbers over which the output of an iFFL variant is adapted and the number of uORFs
in the 5′ UTR of CasE’s transcription unit. The adaptation range is defined as the largest sum of the log widths of contiguous adapted bins in a sample
(individual bins shown in Supplementary Fig. 36). Individual experimental repeats are shown separately. d Median expression over time for UR and iFFL
variants (including a 5′ UTR-targeted miRNA-based iFFL for comparison— see Supplementary Fig. 38). The absolute accumulated change is the sum of the
absolute values of the log2 changes in median expression between time points, summed from 12 to 120 h. The results are from populations of cells gated
positive for either output or TX marker. The iFFL variant with 0x-uORFs is omitted from panels (c, d) because its output level is nearly undetectable.
Median values and fit parameters are provided in Source Data.
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trade-off between robustness and output expression (Fig. 4c). It is
possible to increase the level of the iFFL output without com-
promising robustness by increasing the production rate of the
output protein (Supplementary Fig. 20). In future designs, this
may be accomplished by using expression-boosting sequences like
WPRE62,63 for the output gene. In this work, we tuned ϵ by
tuning the production rate of CasE via uORFs, which reduce
translation initiation57. According to the model, it is also possible
to tune ϵ by tuning the transcription rate, catalytic efficiency
(θ/KM), or degradation rate of CasE. However, tuning ϵ with
uORFs is preferable to these options. Changing the promoter of
the endoRNase may decouple the resource pool used by the
endoRNase gene from that used by the output gene, thereby
potentially reducing the ability to offset changes in resource
availability. Mutating either the target site or endoRNase to
reduce their binding affinity or the catalytic rate of the endoR-
Nase does not yield easily-predictable outcomes. In addition,
mutations of the target site may alter the spontaneous degrada-
tion rate of the output mRNA, thus affecting system performance.
Finally, tuning the degradation rate of the endoRNase can also
affect the dynamics of its expression and thus the dynamics of the
iFFL output (Supplementary Fig. 40). By contrast, the use of
uORFs retains resource coupling between the endoRNase and
output, enables predictable tuning of the model parameters
(Fig. 3), and does not directly affect the output mRNA or
endoRNase dynamics.

In addition to resource loading, our endoRNase-based iFFL
design enables robustness of gene expression with respect to both
DNA dosage and dilution of plasmid DNA during transient
transfection (Fig. 6). The number of actively-transcribed plasmids
per cell delivered by transfection has been estimated to range
between 1 and 100 by Bleris et al.58. However, the three orders of
magnitude of fluorescence variation of the TX marker in most of
our experiments suggest a potentially larger range of copy
numbers in our systems. In the face of this variability, our iFFL
output can adapt to variation in DNA dosage over ~1–2 log
decades, depending on the number of uORFs in the 5′ UTR of
CasE. This range of adaptation is comparable to the TALER-
based iFFL implemented by Segall-Shapiro et al. in bacteria60 and
is a substantial improvement compared to the current standard of
miRNA-based iFFLs in mammalian cells58. Previous miRNA-
based iFFL designs placed the miRNA target site(s) in the 3′ UTR
of the output gene, rather than the 5′ UTR as we did with CasE.
Our experiments show that the position of the target site is critical
for both endoRNase- and miRNA-based iFFLs, with 5′ target sites
yielding markedly improved adaptation to changes in DNA copy
number (Supplementary Fig. 38). Our iFFL models assume that
the output mRNA species is completely destroyed when cleaved
by an endoRNase/miRNA. However, whereas 5′ cleavage removes
the 5′ cap, which is detrimental to translation initiation64, 3′
cleavage may leave the transcript competent for continued
translation. In addition, Cas6-family endoRNases like CasE can
remain tightly bound to the sequence of RNA to the 5′ side of
their cleavage site and protect the bound strand from 3′ exonu-
cleases56. However, this protective mechanism is not likely to be
the sole cause for the observed differences, as for miRNAs, the
RISC complex instead retains a moderate affinity for the sequence
to the 3′ side of the cleavage site65. Although we did not perform
a systematic experimental investigation, our mathematical model
indicates that resource loading reduces the robustness of the iFFL
to variability in DNA copy number. This is because loading
effectively decreases z for a given DNA copy number D (z=
Vz ⋅ D ⋅ R, see Fig. 3), thereby moving the iFFL operation towards
the regime where the output is more sensitive to changes in D.
Consistent with this model analysis, in Supplementary Fig. 19e, f,
we observe a shift of points on the CMVi TX marker (z) vs

iFFL output curve towards the origin in response to resource
loading.

Comparing an optimized miR-FF4 iFFL with 5′ target sites to
our CasE iFFL variants, we found that the output level of the
CasE iFFL variants was more resistant to changes in plasmid copy
number over time during transient transfection (Fig. 6d and
Supplementary Fig. 39). Simulations with an ordinary differential
equation model of the endoRNase-based iFFL indicate that
robustness to DNA dilution during transient transfection can be
achieved with high production and decay rates of the endoRNase
(see Supplementary Note 5 and Supplementary Fig. 40a, b),
consistent with previous theoretical studies of iFFL dynamics in
other contexts66–68. For our endoRNase-based iFFL, we observed
near-perfect adaptation of output levels to resource loading for
samples measured at 72 h (Figs. 4 and 5), indicating that 72 h is a
conservative upper bound for the adaptation time of the circuit to
perturbations. Moreover, the distribution of output levels for the
endoRNase-based iFFL variants with 0–2× uORFs are consistent
between 24 and 48 h post transfection (Supplementary Fig. 39),
suggesting adaptation takes much less than 72 h. More detailed
temporal studies will be required to accurately assess the adap-
tation time of our endoRNase-based feedforward controller.

Based on our results in both plasmid (Figs. 1 and 4) and len-
tiviral (Supplementary Fig. 9) contexts, we estimate that a gene
dosage of ~3–10 DNA copies with a strong promoter will pro-
duce sufficient TA protein (depending on its AD) to cause
appreciable knockdown of non-target genes. Consequently, a
feedforward controller of gene expression may be required in
such contexts. Because of the observed resource loading effects on
lentiviral-integrated genes (Supplementary Note 4), future work
will investigate the use of our iFFL in genomically-integrated
contexts such as lentiviruses and landing pads69,70.

In our experiments, we found that transcriptional and not
translational resources were significant contributors to the
observed loading effects (Supplementary Fig. 4). Among tran-
scriptional resources, it was previously shown that only addition
of extra mediator and not RNA polymerase or GTFs was able to
rescue the effects of squelching in in vitro transcription reac-
tions29, indicating that CoAs, such as the mediator, are the major
limiting resource for TA-driven gene expression. Our mathema-
tical model of resource loading takes this into account (Supple-
mentary Note 2) and reproduces the trends observed in
experimental data in most combinations of cell lines and Gal4
TAs (Supplementary Note 3). Nevertheless, the resource loading
model can be improved in several directions. First, our
mechanistic model does not account for changes in cell growth
rates caused by TAs (Supplementary Fig. 13). This is important
because we observed that several TAs (especially Gal4-Rta, -p65,
and -VPR) caused measurable reductions in cell density, in part
due to their effects on cell growth (Supplementary Figs. 15, 16,
and 30). Reduction of cell growth decreases the dilution rate of
the output protein, leading to an increase in output that can
potentially offset the decreased protein production rate caused by
resource loading (Supplementary Note 2 and Supplementary
Figs. 14 and 15). These effects should be considered in future
models of resource loading along with accurate measurements of
cell growth rates. Second, our resource loading model assumes
that the same resource limits expression of all genes. In reality,
there are hundreds of transcriptional cofactors (including CoAs
and subunits of the mediator complex) that interact with native
and synthetic TFs52,53, which could be limiting for different
genes. Future work may identify the transcriptional and transla-
tional resources used by specific genetic devices and the differ-
ential availability of these resources in distinct cell lines. Finally,
several samples associated with three out of twelve promoters
tested (hUBC, hMDM2, and hMDM2c) showed relatively
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consistent increases in output levels in response to resource
loading by Gal4 TAs (Fig. 2). While for the hUBC and hMDM2c
promoters we could observe some correlation between the
increase in output level and reduction in cell density by the TAs,
we could not observe definite correlation in the case of hMDM2
(Supplementary Fig. 15). Instead, the increase caused by the
hMDM2 promoter may result from direct binding of Gal4 to
consensus UAS sequences in the hMDM2 promoter and activa-
tion of the normally p53-activated minimal promoter. Thus,
while the observed increases in output for these promoters may
be partially explained by changes in growth rate (Supplementary
Note 2 and Supplementary Fig. 14), other phenomena such as off-
target binding and stress-responses to the TAs may be at play (see
Supplementary Note 3). Detailed investigation of how these
specific promoters respond to stress inflicted by TAs is another
avenue of future research that can contribute to the predictive
power of the resource sharing model for specific promoters.

To decrease the knockdown in a GOI’s expression level due to
expression of a TA, the expression of the TA could be limited to
the minimal level that provides the desired TA-driven output
activation61 (Supplementary Fig. 2c, d). While reducing the
concentration of a resource competitor is a viable approach to
reduce loading effects, expressing sufficient amounts of TA to
maximize TA-driven gene expression will typically lead to sub-
stantial resource loading and hence to knockdown of non-target
genes (Supplementary Fig. 2d). Our iFFL decouples GOI
expression from the levels of TAs, thereby eliminating the need to
simultaneously optimize the expression of both target and non-
target TA genes by scanning levels of the TA. Instead, the TA can
be set to any desired level to achieve a given amount of TA-driven
output expression without consequence for non-target feedfor-
ward-regulated GOIs.

While methods to make a GOI’s expression level robust to the
variability of gene expression resources have been demonstrated
in bacterial cells using feedback control71–73, no previous reports
have solved this problem in eukaryotic cells. Our feedforward
controller and a miRNA-based device described in a concurrent
report74 represent the first eukaryotic solutions to decouple
expression of a GOI from variable gene expression resources.
Among the cited existing bacterial solutions, only the sRNA-
based feedback controller developed by Huang et al. in
E. coli72 has achieved near-perfect adaptation to resource loading,
similar to our feedforward controller in mammalian cells. How-
ever, the bacterial solution of Huang et al.72 is not transportable
to mammalian cells because it uses prokaryotic-specific parts
(sRNA and sigma factors) and is designed to adapt to loads in
translational but not transcriptional resources, which are the
major contributors to resource variability in mammalian cells
(Supplementary Fig. 4). Compared to miRNA-based imple-
mentations, such as in the concurrent report74, both miRNA-
based and endoRNase-based iFFL can mitigate effects of resource
loading on the expression level of a GOI. However, due to
translational amplification, endoRNase-based iFFLs benefit from
a higher production rate of the effector molecule. This contributes
to smaller a feedforward impedance ϵ and thus enhanced
robustness of the endoRNase-based iFFLs (see Supplementary
Note 5 and Supplementary Fig. 40). Furthermore, expression of
endoRNases but not of miRNAs directly requires translational
resources. As a consequence, iFFLs utilizing endoRNases can, in
principle, also adapt to changes in the availability of translational
resources (see Supplementary Note 5).

In summary, the performance of genetic devices across various
cell types and changing cellular conditions is greatly affected by
the cellular environment, and in large part, depends on the
available gene expression resources. The availability of these
resources, in turn, becomes highly variable when gene expression

changes during a circuit’s operation. The endoRNase-based
feedforward controller provides a readily-usable solution to
maintain robust gene expression, despite variable levels of
resources. Since the controller is highly portable, it can be easily
implemented to enable robust control of gene expression across a
number of mammalian synthetic biology applications, such as
cell-based therapies, gene therapies, and organoids. More gen-
erally, the endoRNase-based feedforward controller enables pre-
dictable modular composition of engineered genetic systems in
mammalian cells and can function as a general-purpose tool for
the design of sophisticated systems that perform as predicted
across variable contexts.

Methods
A mathematical model to guide iFFL design. We first define the TX marker vs
output dose–response curve. The steady-state concentration of z, the TX marker,
can be written as z= Vz ⋅ D ⋅ R, where Vz is a lumped parameter independent of D
and R, and defined similarly to Vy in Eq. (2) (see Supplementary Note 5 for details).
Substituting D ⋅ R= z/Vz into Eq. (1), we obtain the output level as a function of
the experimentally measurable quantity z:

y ¼ Vy �
z=Vz

1þ z=ðVzϵÞ
: ð3Þ

This TX marker vs output dose–response curve is shown in Fig. 3b. Its shape can be
characterized by two metrics Z50 and Ymax. Specifically, as z → ∞, Ymax ¼ Vyϵ. Z50
is the TX marker’s fluorescence level at which the iFFL module’s output is half of
Ymax, which can be computed as Z50 ≔ Vzϵ by Eq. (3).

We next quantified the feedforward impedance ϵ for iFFL modules with
different numbers of uORFs in the 5′ UTR of the CasE transcription unit. With
reference to Fig. 3c, the relationship between n and κx has been experimentally
characterized in Gam et al.44, where the authors measured the expression of a
constitutive fluorescent protein p with different numbers of uORFs in the 5′ UTR
of its transcript. Since the expression level of a constitutive gene is inversely
proportional to the dissociation constant between ribosomes and its transcript
(i.e., p ∝ 1/κx, see Supplementary Note 5), we have

relative κx ¼ ð relative κxÞðnÞ :¼
κxðnÞ
κxð0Þ

¼ pð0Þ
pðnÞ ; ð4Þ

where p(n) and κx(n) are the steady-state expressions of p and the dissociation
constant between ribosomes and protein p’s mRNA transcript in the presence of n
uORFs, respectively. Since we have derived from Eq. (3) that (i) Ymax and Z50 both
are proportional to ϵ and hence proportional to κx and that (ii) κx(n)= (relative κx)
(n) × κx(0) according to Eq. (4), our model predicts that Ymax ¼ YmaxðnÞ and
Z50= Z50(n) are both proportional to relative κx.

In addition to robustness to variation in free transcriptional and translational
resource concentrations, the iFFL can also attenuate the effect of DNA copy
number variation (i.e., changes in D) on the module’s output. Since D and R are
clustered together in Eq. (1), our analysis on the module’s robustness to R carries
over directly when analyzing its robustness to D: when DR≫ ϵ, we have y ≈Vyϵ
according to Eq. (1), which is independent of D. Robustness to variations in D also
includes temporal variability of DNA concentration, which is present in transient
transfection experiments due to dilution of DNA plasmids as cells grow and divide.
As one decreases the number of uORFs in the endoRNase’s transcript, our model
predicts that the iFFL module becomes more robust to DNA copy number
variability in the sense that it’s output remains the same for a wider range of DNA
copy numbers (i.e., smaller Z50). This allows the module’s output to maintain Ymax
for a longer period of time as DNA concentration gradually decreases, a
phenomenon we observed both experimentally (see Fig. 6d and Supplementary
Fig. 39) and numerically (see Supplementary Fig. 40).

Modular plasmid-cloning scheme. Plasmids were constructed using a modular
Golden Gate strategy similar to previous work in our lab44,69. Briefly, basic parts
(insulators, promoters, 5′ UTRs, coding sequences, 3′ UTRs, and terminators—
termed level 0s (pL0s)) were created via standard cloning techniques. Typically,
pL0s were generated via PCR (Q5 or OneTaq hot-start polymerases, New England
BioLabs (NEB)) followed by In-Fusion (Takara Bio) or digestion/ligation with the
pL0 backbones; in addition, we also utilized direct synthesis of shorter inserts
followed by ligation with T4 ligase into pL0 backbones. Oligonucleotides were
synthesized by Integrated DNA Technologies (IDT) or SGI-DNA. pL0s were
assembled into transcription units (TUs—termed level 1s (pL1s)) using BsaI
Golden Gate reactions (10–20 cycles between 16 °C and 37 °C, T4 DNA ligase).
TUs were assembled into multi-TU plasmids using SapI Golden Gate reactions. To
make lentivirus transfer plasmids, pL0s or pL1s were cloned into a new vector
(pLV-RJ v4F) derived from pFUGW (AddGene plasmid #14883) using either BsaI
or SapI Golden Gate, respectively. All restriction enzymes and T4 ligase were
obtained from NEB. Plasmids were transformed into Stellar E. coli competent cells
(Takara Bio). Transformed Stellar cells were plated on LB agar (VWR) and
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propagated in TB media (Sigma-Aldrich). Carbenicillin (100 μg/mL), kanamycin
(50 μg/mL), and/or spectinomycin (100 μg/mL) were added to the plates or media
in accordance with the resistance gene(s) on each plasmid. All plasmids were
extracted from cells with QIAprep Spin Miniprep and QIAGEN Plasmid Plus
Midiprep Kits. Plasmid sequences were verified by Sanger sequencing at Quintara
Biosciences. Genbank files for each plasmid and vector backbone used in this study,
as well as primers and cloning details, are provided in Source Data. Plasmid
sequences were created and annotated using Geneious (Biomatters). New plasmids
used in this study are available on Addgene (http://www.addgene.org/Ron_Weiss/).

Estimation of CpG island size in plasmids. The size of CpG islands in con-
stitutive promoters (see Supplementary Fig. 12) were estimated using the CpG
Islands v1.1 tool in Geneious (Thobias Thierer & Biomatters). The number of bases
classified as part of a CpG island (not necessarily contiguous) were summed and
presented in the figure. Plasmid maps are annotated with the highest-confidence
bases of the CpG islands.

Cell culture. HEK-293 cells (ATCC), HEK-293FT cells (Thermo Fisher), HeLa
cells (ATCC), and Vero 2.2 cells (Massachusetts General Hospital) were main-
tained in Dulbecco’s modified Eagle media (DMEM) containing 4.5 g/L glucose, L-
glutamine, and sodium pyruvate (Corning) supplemented with 10% fetal bovine
serum (FBS, from VWR). CHO-K1 cells (ATCC) were grown in F12-K media
containing 2 mM L-glutamine and 1500 mn/L sodium bicarbonate (ATCC) sup-
plemented with 10% FBS. U2OS cells (ATCC) were grown in McCoy’s 5A media
with high glucose, L-glutamine, and bacto-peptone (Gibco) supplemented with
10% FBS. All cell lines used in the study were grown in a humidified incubator at
37 °C and 5% CO2. All cell lines tested negative for mycoplasma.

Transfections. Cells were cultured to 90% confluency on the day of transfection,
trypsinized, and added to new plates simultaneously with the addition of plasmid-
transfection reagent mixtures (reverse transfection). Transfections were performed
in 24-well or 96-well pre-treated tissue culture plates (Costar). Following are the
volumes, number of cells, and concentrations of reagents used for 96-well trans-
fections; for 24-well transfections, all values were scaled up by a factor of 5. In total,
120 ng of total DNA was diluted into 10 μL Opti-MEM (Gibco) and lightly vor-
texed. The transfection reagent was then added, and samples were lightly vortexed
again. The DNA–reagent mixtures were incubated for 10–30 min, while cells were
trypsinized and counted. After depositing the transfection mixtures into appro-
priate wells, 40,000 HEK-293, 40,000 HEK-293FT, 10,000 HeLa, 20,000 CHO-K1,
20,000 Vero 2.2, or 10,000 U2OS cells suspended in 100 μL of media were added.
The reagent used in each experiment along with plasmid quantities per sample and
other experimental details are provided in Source Data. Lipofectamine LTX
(ThermoFischer) was used at a ratio of 1 μL of PLUS reagent and 4 μL of LTX per
1 μg of DNA. PEI MAX (Polysciences VWR) was used at a ratio of 3 μL of PEI per
1 μg of DNA. Viafect (Promega) was used at a ratio of 3 μL Viafect per 1 μg of
DNA. Lipofectamine 3000 was used at a ratio of 2 μL P3000 and 2 μL Lipo 300 per
1 μg of DNA. Attractene (Qiagen) was used at a ratio of 5 μL of attractene per 1 μg
of DNA. For experiments with measurement windows between 12–72 h (as indi-
cated on the figures or in their captions), the media of the transfected cells was not
replaced between transfection and data collection. For experiments with mea-
surements at longer time points, the transfected cells were passaged at 72 h in fresh
media on a new plate. In order to maintain a similar number of cells for data
collection at longer time points, transfected cells were split at ratios of 1:2 or 1:4 for
samples being collected at 96 or 120 h, respectively. For all transfections with
doxycycline (Dox, Sigma-Aldrich), Dox was added immediately after transfection;
an exception is an experiment shown in Supplementary Fig. 9, in which Dox was
added 24 h after transfection.

In each transfection sample, we included a hEF1a-driven transfection marker to
indicate the dosage of DNA delivered to each cell and to facilitate consistent gating
of transfected cells. Of the strong promoters we tested (CMV, CMVi, and hEF1a),
the hEF1a promoter gave the most consistent expression across cell lines and was
generally less affected by resource loading by Gal4 TAs (Supplementary Figs. 1, 11,
12, and 16). The data in Supplementary Fig. 20 used CMV promoters for all
transcription units (including the transfection marker).

Lentivirus production and infection. Lentivirus production was performed using
HEK-293FT cells and second-generation helper plasmids MD2.G (Addgene plas-
mid #12259) and psPax2 (Addgene plasmid #12260). HEK-293FT cells were grown
to 90% confluency, trypsinized, and added to new pre-treated 10-cm tissue culture
plates (Falcon) simultaneously with the addition of plasmid-transfection reagent
mixtures. Four hours before transfection, the media on the HEK-293FT cells was
replaced. To make the mixtures, first 3 μg psPax2, 3 μg pMD2.g, and 6 μg of the
transfer vector were diluted into 600 μL Opti-MEM and lightly vortexed. In total,
72 μL of FuGENE6 (Promega) was then added, and the solution was lightly vor-
texed again. The DNA-FuGENE mixtures were incubated for 30 min, while cells
were trypsinized and counted. After depositing the transfection mixtures into
appropriate plates, 6 × 106 HEK-293FT cells suspended in 10 mL of media were
added. Sixteen hours after transfection, the media was replaced. Forty-eight hours

after transfection, the supernatant was collected and filtered through a 0.45 PES
filter (VWR).

For infections, HEK-293FT cells were grown to 90% confluency, trypsinized,
and 1 × 106 cells were resuspended in 1 mL of media. The cell suspension was
mixed with 1 mL of viral supernatant, then the mixture was added to a pre-treated
six-well tissue culture plate (Costar). To facilitate viral uptake, polybrene
(Millipore-Sigma) was added to a final concentration of 8 μg/mL. Cells infected by
lentiviruses were expanded, and cultured for at least 2 weeks before use in
experiments using the same conditions for culturing HEK-293FT cells as
described above.

RT-qPCR. Transfections for qPCR were conducted in 24-well plates (Costar). RNA
was collected 48 h after transfection with the RNeasy Mini kit (Qiagen). Reverse
transcription was performed using the Superscript III kit (Invitrogen) following the
manufacturer’s recommendations. Real-time qPCR was performed using the
KAPA SYBR FAST qPCR 2X master mix (Kapa Biosystems) on a Mastercycler ep
Realplex (Eppendorf) following the manufacturer’s recommended protocol. Pri-
mers for the CMV-driven output (mKate) targeted the coding sequence. Primers
for 18S rRNA were used as an internal control for normalization. The qPCR
calculations are provided in Source Data.

Primers:
mKate (CMV:output) forward: GGTGTCTAAGGGCGAAGAGC
mKate (CMV:output) reverse: GCTGGTAGCCAGGATGTCGA
18S forward: GTAACCCGTTGAACCCCATT
18S reverse: CCATCCAATCGGTAGTAGCG.

Flow cytometry. To prepare samples in 96-well plates for flow cytometry, the
following procedure was followed: media was aspirated, 50 μL PBS (Corning) was
added to wash the cells and remove FBS, the PBS was aspirated, and 40 μL Trypsin-
EDTA (Corning) was added. The cells were incubated for 5–10 min at 37 °C to
allow for detachment and separation. Following incubation, 80 μL of DMEM
without phenol red (Gibco) with 10% FBS was added to inactivate the trypsin. Cells
were thoroughly mixed to separate and suspend individual cells. The plate(s) were
then spun down at 400 × g for 4 min, and the leftover media was aspirated. Cells
were resuspended in 170 μL flow buffer (PBS supplemented with 1% BSA (Thermo
Fisher), 5 mM EDTA (VWR), and 0.1% sodium azide (Sigma-Aldrich) to prevent
clumping). For prepping plates of cells with larger surface areas, all volumes were
scaled up in proportion to surface area and samples were transferred to 5-mL
polystyrene FACS tubes (Falcon) after trypsinization. For standard co-transfec-
tions, 10,000–50,000 cells were collected per sample. For the poly-transfection
experiment and transfections into cells harboring an existing lentiviral integration,
100,000–200,000 cells were collected per sample.

For the experiments shown in Fig. 1 and Supplementary Figs. 2, 3, 6, and 8,
samples were collected on a BD LSR II cytometer located in the Koch Institute Flow
Cytometry Core equipped with a 405-nm laser with 450/50-nm filter (“Pacific
Blue”) for measuring TagBFP or EBFP2, 488 laser with 515/20 filter (“FITC”) for
measuring EYFP or mNeonGreen, 561-nm laser with 582/42-nm filter (“PE”) or
610/20-nm filter (“PE-Texas Red”) for measuring mKate2 or mKO2, and 640 laser
with 780/60-nm filter (“APC-Cy7”) for measuring iRFP720. For all other
experiments, samples were collected on a BD LSR Fortessa located in the MIT
Synthetic Biology Center equipped with a 405-nm laser with 450/50-nm filter
(“Pacific Blue”) for measuring TagBFP or EBFP2, 488 laser with 530/30 filter
(“FITC”) for measuring EYFP or mNeonGreen, 561-nm laser with 582/15-nm filter
(“PE”) or 610/20-nm filter (“PE-Texas Red”) for measuring mKate2 or mKO2, and
640 laser with 780/60-nm filter (“APC-Cy7”) for measuring iRFP720. In all,
500–2000 events/s were collected either in tubes via the collection port or in 96-well
plates via the high-throughput sampler (HTS). All events were recorded, and
compensation was not applied until processing the data (see below).

Intracellular antibody staining. HA-tagged Gal4 TAs were stained with anti-
HA.11 directly conjugated to Alexa Fluor 594 (BioLegend catalogue #901511, clone
16B12, isotype IgG1 κ). As a control for non-specific anti-HA binding, untrans-
fected cells were stained with the same antibody. Cellular Ki-67 was stained with
anti-Ki-67 directly conjugated to PE/Dazzle 594 (BioLegend catalogue #350533,
isotype IgG1 κ). As a control for non-specific anti-Ki-67 binding, cells were stained
with an IgG1 κ isotype control directly conjugated to PE/Dazzle 594 (BioLegend
catalogue #400177).

Staining was performed on cells grown in 96-well plates. Cells were washed with
PBS, trypsinized, and separated into individual cells as described above for
preparing samples for flow cytometry. After quenching the trypsin reaction and
mixing into a single-cell suspension, cells were transferred to U-bottom plates and
pelleted. All centrifugation steps with plates occurred at 400 × g for 4 min. After
pelleting, the media–trypsin mix was aspirated, and the cells were fixed via
incubation in 50 μL of 4% formaldehyde (BioLegend) for 20 min at room
temperature. After fixation, the cells were pelleted, the fixation buffer was removed,
and the cells were resuspended in 50 μL Intracellular Staining Permeabilization
Wash Buffer (BioLegend). Antibodies were added to each well using the
manufacturer’s recommended volumes; then plates were placed on a nutator in the
dark in a cold room (4 °C) overnight. After incubation with the antibody, the cells
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were washed three times with 50 μL permeabilization buffer, then resuspended in
170 μL of flow buffer (see above for formulation).

Flow-cytometry data analysis. Analysis of flow-cytometry data was performed
using our MATLAB-based flow-cytometry analysis pipeline (https://github.com/
Weiss-Lab/MATLAB_Flow_Analysis). Basic processing steps with example data
are shown in Supplementary Fig. 41. Briefly, single cells were isolated by drawing
morphological gates based on cellular side-scatter and forward-scatter. Arbitrary
fluorescence units were converted to standardized molecules of equivalent fluor-
escein (MEFL) units using RCP-30-5A beads (Spherotech) and the TASBE pipeline
process75. Fluorescence compensation was performed by subtracting auto-
fluorescence (computed from wild-type cells), computing linear fits between
channels in single-color transfected cells, then using the fit slopes as matrix coef-
ficients for matrix-based signal de-convolution. Threshold gates were manually
drawn for each channel based on the fluorescence of untransfected cells. Generally,
transfected cells within a sample were identified by selecting cells that pass either
the gate for the output of interest (output+) or the gate for the transfection marker
(TX marker+). Binning was performed by defining bin edges, then sorting cells into
a bin if the expression of the reporter used for binning was less than or equal to the
high-bin edge and greater than the low-bin edge. Median fluorescence levels were
used for summary statistics so as not to make any assumptions about the
expression distributions. In order to avoid the artefact of negative fold changes,
non-positive fluorescence values were discarded prior to making measurements on
binned or gated populations.

The density of cells in scatterplots was estimated by sorting the cells into 25
evenly spaced bins in each dimension (for N dimensions, 25N total bins), finding
the number of cells in each bin, then linearly interpolating the density for each
individual cell using the bin centers as the interpolation nodes. Density was
calculated with either the log- or biexponentially-transformed data (see plot axes)
because the dominant variance is approximately log-distributed. The outer
boundaries of the bins in each dimension were automatically found by taking the
minimum and maximum values of the data, then respectively subtracting and
adding 5% of the log/biexponential range between min and max.

In Fig. 2, our library of constitutive promoters had different nominal expression
levels and were variably affected by resource loading. We thus include a discussion
and examples of how fluorescent gating strategies affect the measurements of
expression and fold changes in Supplementary Note 1 and Supplementary Fig. 42.
Some promoters drove expression that was nearly undetectable (Supplementary
Fig. 43). In order to limit the bias in our reporting of minimally affected promoters
by the proximity of {P}:output1 expression to autofluorescence, our analysis of this
data incorporates an additional autofluorescence subtraction step described in
Supplementary Note 1. A comparison of the differences in fold changes with and
without this additional autofluorescence subtraction is shown in Supplementary
Fig. 44a. This step reduced the correlation between the nominal output levels of
{P}:output1 and the fold changes in response to resource loading by Gal4 TAs
(Supplementary Fig. 44b).

When first analyzing the data in Fig. 4, we found that the measurements of fold
changes and robustness for the UR variants with diluted output plasmid DNA were
sensitive to the fluorescent gating strategy used in the analysis. Our typical gating
routine of selecting cells positive for either the output or the transfection marker
yielded fold changes of the diluted UR variants that were much larger than when
gating on cells positive for just the output. Conversely, both gating strategies
yielded similar fold changes for the iFFL variants regardless of their nominal
output. We suspect that the difference in measurements for the diluted UR variants
may result from (i) reduced UR plasmid uptake when forming lipid–DNA
complexes for co-transfection with the Gal4-VPR plasmid (which is larger than the
DNA-mass-offsetting plasmid Gal4-None) and/or (ii) repression of UR output
expression below the autofluorescence threshold. Since these confounding factors
could not be distinguished, we report the results for the cells gated positive for just
the output (which more conservatively estimates fold changes in the output of the
UR system) in the main figures and include results for gating cells positive for
either the output or the transfection marker in Supplementary Figs. 19 and 23 for
comparison. For the hEF1a iFFL, we also include comparisons of results with both
gating strategies in Supplementary Figs. 25–28.

Calculation of fold changes and robustness scores. For quantifying the effects of
resource loading, we measured fold changes by dividing the median output level of
each sample by that of the equivalent sample in the absence of resource loading
(i.e., the nominal output level of the module of interest). The nominal output is
defined as the level of output in the presence of either Gal4-None (Gal4 DBD only,
used directly when comparing Gal4 TAs) or 0 ng Gal4-{AD} (used in dose-
responses).

Fold-ΔðGal4-fADgÞ ¼ OutputðGal4-fADgÞ
OutputðGal4-NoneÞ ð5Þ

Fold-ΔðGal4-fADg ¼ xÞ ¼ OutputðGal4-fADg ¼ xÞ
OutputðGal4-fADg ¼ 0Þ ; ð6Þ

where log2-transformed fold changes are shown for experiments with multiple
repeats, the values shown are the mean of the log2-transformed fold changes, rather

than the log2-transformation of the mean of the fold changes. This order of
operations ensures that standard deviations of the fold changes can be computed
directly on the log2-transformed scale.

For comparing UR and iFFL variants, we also computed robustness scores from
the fold changes using the formulae below:

RobustnessðGal4-fADgÞ ¼ 100 � 1� j1� Fold-ΔðGal4-NoneÞjð Þ ð7Þ

RobustnessðGal4-fADg ¼ xÞ ¼ 100 � 1� j1� Fold-ΔðGal4-fADg ¼ xÞjð Þ: ð8Þ

Estimation of cell density by flow cytometry. As a post-hoc method of mea-
suring the effects of toxicity in samples transfected with resource competitors, we
estimated the cell density observed at the time of fluorescence measurements.
When collecting flow-cytometry data, we typically constrained the number of
events collected, making the count of cells per sample not representative of the total
number of cells per well. We thus instead estimated cell density in a given sample
with the following formula:

½Cells � ð cells � μL�1Þ ¼ Eventrate ð cells � s�1Þ
Flowrate ðμL � s�1Þ :

To compute the event rate, we estimated the number of cells (i.e., events passing
morphological gating) collected per second in each sample. The length of time
between the measurements of individual cells in flow cytometry approximately
follows an exponential distribution. We thus fit an exponential distribution using
the MATLAB function “fitdist()” (https://www.mathworks.com/help/stats/fitdist.
html) to the differences between time-stamps of sequentially collected cells. Before
fitting, we removed inter-cell times larger than the 99.9th percentile to prevent
biasing by large outliers. The characteristic parameter of the exponential
distribution λ is the inverse of the average time between events. Thus, the event rate
is given by 1

λ, which is also the mean of the exponential distribution.
To ensure a known and controlled flow rate, any samples with concentration

measured were collected via the HTS attached to the flow cytometer. The flow rate of
the HTS can be set through the FACSDiva Software (BD) controlling the instrument.
The flow rate of each sample was recorded and input into the calculation.

Because changes in the overall density of cells in a sample depends both on the
potency of growth inhibition by transfected genes as well on the fraction of cells
transfected, we only analyzed in-depth and reported values for samples from HEK
cell lines. The other cell lines (HeLa, CHO-K1, Vero 2.2, and U2OS) were generally
too poorly transfected to achieve reliable and sensitive measurements of changes in
cell density as a function of transfected toxic genes.

Model fitting. Where possible, fluorescent reporters were used to estimate the
concentration of a molecular species for the purpose of model fitting. For fitting the
Gal4 TA dose–response curves (both on-target activation and off-target resource
loading) in Fig. 1 and Supplementary Fig. 2, we used a fluorescent marker co-
titrated with the Gal4 activators (Gal4 marker) to approximate the amount of Gal4
delivered per cell. The Gal4 marker correlated with the DNA dosage with an R2

value of 0.86 or better for each experimental repeat (Supplementary Fig. 3a).
However, the sensitivity of activation to Gal4 levels made the measurements as a
function of Gal4 DNA dosage relatively noisy between experimental repeats
(Supplementary Fig. 3b–e). Thus, the marker levels could more accurately estimate
the amount of Gal4 expressed in the median cell than the DNA dosages.

For fitting both the resource sharing and iFFL models, we used the MATLAB
function “lsqcurvefit()” (https://www.mathworks.com/help/optim/ug/lsqcurvefit.
html), which minimizes the sum of the squares of the residuals between the model
and the data. As the function input values, we used the level of either the Gal4 TA (in
the case of resource sharing—as measured by Gal4 marker) or the transfection marker
(in the case of the iFFL). For fitting the Gal4 TA dose–response data, the residuals
were computed between the median CMV:output1 or UAS:output2 levels and
function outputs directly. In addition, all median values computed from different
experimental repeats were pooled together before fitting. For fitting iFFL and UR
models, the residuals were computed between the log10- and biexponentially-
transformed levels of the output protein of interest and the log10- and biexponentially-
transformed function outputs, respectively. In experiments with the hEF1a iFFL being
tested only in HEK-293FT cells, the entire morphologically gated population of cells
was used for fitting. In hEF1a iFFL experiments containing multiple cell types, to
prevent the model from over-fitting the untransfected population in more difficult-to-
transfect cells, the cells in each sample were analytically binned into half-log-decade-
width bins based on the transfection marker, and an equivalent number of cells from
each bin were extracted, combined, and used for fitting. In samples with the CMVi
iFFL, the relatively high expression of the CMVi promoter compared to the hEF1a
promoter (which is used as a transfection marker and proxy for DNA/resource input
level z) in most cell lines imposes nonlinearity in the transfection marker vs output
curve at low plasmid DNA copy numbers per cell. This nonlinearity led us to gate
cells positive for either the iFFL output or the transfection marker for fitting. For the
resource sharing models, all parameters for all Gal4 TAs were fit simultaneously using
a custom function, “lsqmultifit()”, that was created based on “nlinmultifit()” on the
MATLAB file exchange (https://www.mathworks.com/matlabcentral/fileexchange/
40613-multiple-curve-fitting-with-common-parameters-using-nlinfit).
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The goodness of fit was measured by computing the normalized root-mean-
square error CV(RMSE) using the following formula:

CV ðRMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
�y

P

iðyðxiÞ � f ðxiÞÞ2
q

�y
;

where y(xi) is the value of the data at the input value xi, �y is the mean of y for all
values of x, and f(xi) is the function output at input value xi.

Resource loading characterization data were fit with the following equations
(see Supplementary Note 3 for more details):

Output1 ¼ α1 �
RTX
k12

1þ RTX
k12

; ð9Þ

Output2 ¼ α2 �
RTX
k22

� u2
k21

� �2

1þ u2
k21

� �2
� 1þ RTX

k22

� �

; ð10Þ

iFFL data were fit with Eq. (3) above, which is reproduced here for convenience:

y ¼ Vy �
z=Vz

1þ z=ðVzϵÞ
:

For other comparisons where we present values of r or R2, the former is the
Pearson’s correlation computed with the MATLAB function “regression()” (https://
www.mathworks.com/help/deeplearning/ref/regression.html), and the latter is the
coefficient of determination between predicted and actual values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
New plasmids used in this study are available for distribution from Addgene (http://
www.addgene.org/Ron_Weiss/). Raw .fcs files are available from the corresponding
authors upon reasonable request. Source data are provided with this paper.

Code availability
General MATLAB code for use in .fcs file processing and analysis are available under an
open-source license in our GitHub repository at https://github.com/Weiss-Lab/
MATLAB_Flow_Analysis. Specific .m scripts for each experiment are available from the
corresponding authors upon reasonable request.
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