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ROUND COMPRESSION FOR PARALLEL MATCHING
ALGORITHMS\ast 

ARTUR CZUMAJ\dagger , JAKUB \L \c ACKI\ddagger , ALEKSANDER M \c ADRY\S , SLOBODAN MITROVI\'C\S ,

KRZYSZTOF ONAK\P , AND PIOTR SANKOWSKI\| 

Abstract. For over a decade now we have been witnessing the success of massive parallel
computation frameworks, such as MapReduce, Hadoop, Dryad, or Spark. Compared to the classic
distributed algorithms or PRAM models, these frameworks allow for much more local computation.
The fundamental question that arises however in this context is can we leverage this additional power
to obtain even faster parallel algorithms? A prominent example here is the maximum matching
problem. It is well known that in the PRAM model one can compute a 2-approximate maximum
matching in O(logn) rounds. Lattanzi et al. [SPAA, ACM, New York, 2011, pp. 85--94] showed that
if each machine has n1+\Omega (1) memory, this problem can also be solved 2-approximately in a constant
number of rounds. These techniques, as well as the approaches developed in the follow-up work,
seem though to get stuck in a fundamental way at roughly O(logn) rounds once we enter the (at
most) near-linear memory regime. In this paper, we break the above O(logn) round complexity
bound even in the case of slightly sublinear memory per machine. In fact, our improvement here is
almost exponential: we are able to deliver a (1 + \epsilon )-approximate maximum matching for any fixed
constant \epsilon > 0 in O((log logn)2) rounds. To establish our result we need to deviate from the previous
work in two important ways. First, we use vertex-based graph partitioning, instead of the edge-based
approaches that were utilized so far. Second, we develop a technique of round compression.
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1. Introduction. Over the last decade, massive parallelism became a major
paradigm in computing, and we have witnessed the deployment of a number of very
successful massively parallel computation frameworks, such as MapReduce [18, 19],
Hadoop [44], Dryad [29], and Spark [45]. This paradigm and the corresponding models
of computation are rather different from classical parallel algorithms models consid-
ered widely in literature, such as the PRAM model. In particular, in this paper, we
study the massive parallel computation (MPC) model (also known as the massively
parallel communication model) that was abstracted out of capabilities of existing sys-
tems, starting with the work of Karloff, Suri, and Vassilvitskii [33, 25, 8, 3, 9]. The
main difference between this model and the PRAM model is that the MPC model
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STOC18-2 CZUMAJ ET AL.

allows for much more (in principle, unbounded) local computation. This enables it
to capture a more ``coarse--grained"" and, thus, potentially, more meaningful aspect
of parallelism. It is often possible to simulate one clock step of PRAM in a constant
number of rounds on MPC [33, 25]. This implies that algorithms for the PRAM model
usually give rise to MPC algorithms without incurring any asymptotic blowup in the
number of parallel rounds. As a result, a vast body of work on PRAM algorithms
naturally translates to the new model.

It is thus natural to wonder, are the MPC parallel round bounds ``inherited"" from
the PRAM model tight? In particular, which problems can be solved in a significantly
smaller number of MPC rounds than what the lower bounds established for the PRAM
model suggest?

It is not hard to come up with an example of a problem for which indeed the
MPC parallel round number is much smaller than its PRAM round complexity. For
instance, computing the parity of n Boolean values takes only O(1) parallel rounds in
the MPC model when space per machine is n\Omega (1), while on PRAM it provably requires
\Omega (log n/ log log n) time [7] (as long as the total number of processors is polynomial).
However, the answer is typically less obvious for other problems. This is particularly
the case for graph problems, whose study in a variant of the MPC model was initiated
already by Karloff, Suri, and Vassilvitskii [33].

In this paper, we focus on one such problem, which is also one of the most cen-
tral graph problems both in sequential and parallel computations: maximum match-
ing. Maximum matchings have been the cornerstone of algorithmic research since the
1950s and their study inspired many important ideas, including the complexity class P
[20]. In the PRAM model we can compute (1 + \epsilon )-approximate matching in O(log n)
rounds [37] using randomization. Deterministically, a (2 + \epsilon )-approximation can be
computed in O(log2 n) rounds [22]. We note that these results hold in a distributed
message passing setting, where processors are located at graph nodes and can com-
municate only with neighbors. In such a distributed setting, an \Omega (

\sqrt{} 
log n/ log log n)

time lower bound is known for computing any constant approximation to maximum
matching [34].

So far, in the MPC setting, the prior results are due to Lattanzi et al. [35], Ahn
and Guha [1], and Assadi and Khanna [6]. Lattanzi et al. [35] put forth algorithms for
several graph problems, such as connected components, minimum spanning tree, and
maximum matching problem, that were based on a so-called filtering technique. In
particular, using this technique, they have obtained an algorithm that can compute
a 2-approximation to maximum matching in O(1/\delta ) MPC rounds, provided S, the
space per machine, is significantly larger than the total number of vertices n, that
is S = \Omega (n1+\delta ), for some constant \delta \in (0, 1). Later on, Ahn and Guha [1] provided
an improved algorithm that computes a (1 + \epsilon )-approximation in O(1/(\delta \epsilon )) rounds,
provided S = \Omega (n1+\delta ), for some constant \delta > 0. Both these results, however, crucially
require that space per machine is significantly superlinear in n, the number of vertices.
In fact, if the space S is linear in n, which is a very natural setting for massively parallel
graph algorithms, the performance of both these algorithms degrades to O(log n)
parallel rounds, which matches what was known for the PRAM model. Recently,
Assadi and Khanna [6] showed how to construct randomized composable coresets of
size \~O(n) that give an O(1)-approximation for maximum matching. Their techniques
apply to the MPC model only if the space per machine is \~O(n

\surd 
n).

We also note that the known PRAM maximal independent set and maximal
matching algorithms [38, 2, 30] can be used to find a maximal matching (i.e., 2-
approximation to maximum matching) in O(log n) MPC rounds as long as space per
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ROUND COMPRESSION STOC18-3

Table 1
Comparison of our results for computing approximate maximum size matchings to the previous

results for the MPC model.

Source Approx. Space Rounds Remarks

[35] 2
n1+\Omega (1) O(1)

Maximal matching
O(n) O(logn)

[1] 1 + \epsilon O
\bigl( 
n1+1/p

\bigr) 
O(p/\epsilon ) p > 1

2 n\Omega (1) O(logn)
Maximal matching
Simulate [38, 2, 30]

O(1)
O(n)

O
\bigl( 
(log logn)2

\bigr) 
2 + \epsilon O

\bigl( 
(log logn)2 \cdot log(1/\epsilon )

\bigr) 
\epsilon \in (0, 1/2)

here O(1)
O(n)/f(n)

O
\bigl( 
(log logn)2 + log f(n)

\bigr) 
2 \leq f(n) = O

\bigl( 
n1/2

\bigr) 
2 + \epsilon O

\bigl( 
(log logn)2 + log f(n)

\bigr) 
\cdot log(1/\epsilon )

machine is at least n\Omega (1) (i.e., S \geq nc for some constant c > 0). We omit further details
here, except mentioning that a more or less direct simulation of those algorithms is
possible via an O(1)-round sorting subroutine [25].

The above results give rise to the following fundamental question: can the max-
imum matching be (approximately) solved in o(log n) parallel rounds in O(n) space
per machine? The main result of this paper is an affirmative answer to that ques-
tion. We show that, for any S = \Omega (n), one can obtain an O(1)-approximation to
maximum matching using O((log logn)2) parallel MPC rounds. So, not only do we
break the existing \Omega (log n) barrier, but also provide an almost exponential improve-
ment over the previous work. Our algorithm can also provide a (2 + \epsilon )-, instead of
O(1)-approximation, at the expense of the number of parallel rounds increasing by
a factor of O(log(1/\epsilon )). Finally, our approach can also provide algorithms that have
o(log n) parallel round complexity also in the regime of S being (mildly) sublinear.
For instance, we obtain O((log logn)2) MPC rounds even if space per machine is
S = n/(log n)O(log logn). The exact comparison of our bounds with previous results is
given in Table 1.

1.1. The model. In this work, we adopt a version of the model introduced by
Karloff, Suri, and Vassilvitskii [33] and refined in later works [25, 8, 3]. We call it
MPC, which is a mutation of the name proposed by Beame, Koutris, and Suciu [8].

In the MPC model, we have m machines at our disposal and each of them has
S words of space. Initially, each machine receives its share of the input. In our case,
the input is a collection E of edges and each machine receives approximately | E| /m
of them.

The computation proceeds in rounds. During the round, each of the machines
processes its local data without communicating with other machines. At the end
of each round, machines exchange messages. Each message is sent only to a single
machine specified by the machine that is sending the message. All messages sent and
received by each machine in each round have to fit into the machine's local memory.
Hence, their total length is bounded by S.1 This in particular implies that the total

1This, for instance, allows a machine to send a single word to S/100 machines or S/100 words to
one machine, but not S/100 words to S/100 machines if S = \omega (1), even if the messages are identical.
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STOC18-4 CZUMAJ ET AL.

communication of the MPC model is bounded by m \cdot S in each round. The messages
are processed by recipients in the next round.

At the end of the computation, machines collectively output the solution. The
data output by each machine has to fit in its local memory. Hence, again, each
machine can output at most S words.

The range of values for S and m. If the input is of size N , one usually wants S
sublinear in the N , and the total space across all the machines to be at least N---so
the input fits onto the machines---and ideally not much larger. Formally, one usually
considers S \in \Theta (N1 - \epsilon ) for some \epsilon > 0.

In this paper, the focus is on graph algorithms. If n is the number of vertices in
the graph, the input size can be as large as \Theta (n2). Our parallel algorithm requires
\Theta (n) space per machine (or even slightly less), which is polynomially less than the
size of the input for dense graphs.

Sparse graphs. Many practical large graphs are believed to have only O(n) edges.
One natural example is social networks, in which most participants are likely to have
a bounded number of friends. The additional advantage of our approach is that it
allows for a small number of processing rounds even if a sparse input graph does not
fit onto a single machine. If a small number---say, f(n)---of machines is needed even
to store the graph, our algorithm still requires only O((log log n)2 + log f(n)) rounds
for O(n/f(n)) space per machine.

Communication versus computation complexity. The main focus of this work is
the number of (communication) rounds required to finish computation. Also, even
though we do not make an effort to explicitly bound it, it is apparent from the
design of our algorithms that every machine performs O(S polylogS) computation
steps locally. This in particular implies that the overall work across all the machines
is O(rN polylogS), where r is the number of rounds and N is the input size (i.e., the
number of edges).

The total communication during the computation is O(rN) words. This is at
most O(rn2) words and it is known that computing a (1 + \epsilon )-approximate matching
in the message passing model with \Theta (n) edges per player may require \Omega (n2/(1 + \epsilon )2)
bits of communication [28]. Since our value of r is O((log log n)2) when \Theta (n) edges
are assigned to each player, we lose a factor of \~\Theta (log n) compared to this lower bound
if words (and vertex identifiers) have \Theta (log n) bits.

1.2. Our results. In our work, we focus on computing an O(1)-approximate
maximum matching in the MPC model. We collect our results and compare them
to the previous work in Table 1. The table presents two interesting regimes for our
algorithms. On the one hand, when the space per machine is S = O(n), we obtain
an algorithm that requires O((log log n)2) rounds. This is the first known algorithm
that, with linear space per machine, breaks the O(log n) round barrier. On the other
hand, in the mildly sublinear regime of space per machine, i.e., when S = O(n/f(n)),
for some function f(n) that is no(1), we obtain an algorithm that still requires o(log n)
rounds. This, again, is the first such result in this regime. In particular, we prove the
following result.

Theorem 1.1. There exists an MPC algorithm that with constant probability con-
structs an O(1)-approximate maximum matching in O((log log n)2 + max (log n

S , 0))

rounds, where S = n\Omega (1) is the amount of space on each machine. This algorithm
requires a total space of O(| E| + n).

As a corollary, we obtain the following result that provides nearly 2-approximate
maximum matching.
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ROUND COMPRESSION STOC18-5

Corollary 1.2. For any \epsilon \in (0, 12 ), there exists an MPC algorithm that con-
structs a (2 + \epsilon )-approximation to maximum matching with constant probability in
O((log logn)2 + max (log n

S , 0)) \cdot log(1/\epsilon ) rounds, where S = n\Omega (1) is the amount of
space on each machine. This algorithm requires a total space of O(| E| + n).

Assadi et al. [5] observe that one can use a technique of McGregor [39] to extend
our algorithm to compute a (1+\epsilon )-approximation inO((log log n)2)\cdot (1/\epsilon )O(1/\epsilon ) rounds.

It should also be noted that (as pointed out to us by Pettie) any O(1)-approxima-
tion algorithm for unweighted matchings can be used to obtain a (2+\epsilon )-approximation
algorithm for weighted matchings (see section 4 of his paper with Lotker and Patt-
Shamir [37] for details). In our setting this implies that Theorem 1.1 yields an al-
gorithm that computes a (2 + \epsilon )-approximation to maximum weight matching in
O((log logn)2 \cdot (1/\epsilon )) rounds and O(n log n) space per machine.

Recently, by using the routing scheme of Lenzen [36], Behnezhad, Derakhshan,
and Hajiaghayi [10] showed that our algorithm is adaptable to the congested clique
model.

1.3. Related work. We note that there were efforts at modeling MapReduce
computation [21] before the work of Karloff, Suri, and Vassilvitskii. Also a recent
work [43] investigates the complexity of the MPC model.

In the filtering technique, introduced by Lattanzi et al. [35], the input graph is
iteratively sparsified until it can be stored on a single machine. For the matching
problem, the sparsification is achieved by first obtaining a small sample of edges, then
finding a maximal matching in the sample, and finally removing all the matched ver-
tices. Once a sufficiently small graph is obtained, a maximal matching is computed on
a single machine. In the S = \Theta (n) regime, the authors show that their approach re-
duces the number of edges by a constant factor in each iteration. Despite this guaran-
tee, until the very last step, each iteration may make little progress towards obtaining
even an approximate maximal matching, resulting in an O(log n) round complexity
of the algorithm. Similarly, the results of Ahn and Guha [1] require n1+\Omega (1) space per
machine to compute a O(1)-approximate maximum weight matching in a constant
number of rounds and do not imply a similar bound for the case of linear space.

We note that the algorithm of Lattanzi et al. [35] cannot be turned easily into a
fast approximation algorithm when space per machine is sublinear. Even with \Theta (n)
space, their method is able to remove only a constant fraction of edges from the
graph in each iteration, so \Omega (log n) rounds are needed until only a matching is left.
When S = \Theta (n), their algorithm works as follows: sample uniformly at random \Theta (n)
edges of the graph, find maximal matching on the sampled set, remove the matched
vertices, and repeat. We do not provide a formal proof here, but on the following
graph this algorithm requires \~\Omega (log n) rounds, even to discover a constant factor
approximation. Consider a graph consisting of t separate regular graphs of degree 2i

for 0 \leq i \leq t  - 1, each on 2t vertices. This graph has t2t nodes and the algorithm
requires \~\Omega (t) rounds even to find a constant approximate matching. The algorithm
chooses edges uniformly at random, and few edges are selected each round from all
but the densest remaining subgraphs. Thus, it takes multiple rounds until a matching
of significant size is constructed for sparser subgraphs. This example emphasizes the
weakness of direct edge sampling and motivates our vertex sampling scheme that we
introduce in this paper.

Similarly, Ahn and Guha [1] build on the filtering approach of Lattanzi et al. and
design a primal-dual method for computing a (1+\epsilon )-approximate weighted maximum
matching. They show that each iteration of their distributed algorithm either makes
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STOC18-6 CZUMAJ ET AL.

large progress in the dual, or they can construct a large approximate matching. Re-
gardless of their new insights, their approach is inherently edge-sampling based and
does not break the O(log n) round complexity barrier when S = O(n).

Despite the fact that the MPC model is rather new, computing matching is an
important problem in this model, as the above-mentioned two papers demonstrate.
This is further witnessed by the fact that the distributed and parallel complexity
of maximal matching has been studied for many years already. The best determin-
istic PRAM maximal matching algorithm, due to Israeli and Shiloach [31], runs in
O(log3 n) rounds. Israeli and Itai [30] gave a randomized algorithm for this problem
that runs in O(log n) rounds. Their algorithm works as well in CONGEST, a dis-
tributed message-passing model with a processor assigned to each vertex and a limit
on the amount of information sent along each edge per round. A more recent paper
by Lotker, Patt-Shamir, and Pettie [37] gives a (1 + \epsilon )-approximation to maximum
matching in O(log n) rounds also in the CONGEST model, for any constant \epsilon > 0.
On the deterministic front, in the LOCAL model, which is a relaxation of CONGEST
that allows for an arbitrary amount of data sent along each edge, a line of research
initiated by Ha\'n\'ckowiak, Karo\'nski, and Panconesi [26, 27] led to an O(log3 n)-round
algorithm by Fischer and Ghaffari [22].

On the negative side, Kuhn, Moscibroda, and Wattenhofer [34] showed that any
distributed algorithm, randomized or deterministic, that performs communication
only between neighbors requires \Omega (

\sqrt{} 
log n/ log log n) rounds to compute a constant

approximation to maximum matching. This lower bound applies to all distributed
algorithms that have been mentioned above. Our algorithm circumvents this lower
bound by loosening the only possible assumption there is to be loosened: single-hop
communication. In a sense, we assign subgraphs to multiple machines and allow
multihop communication between nodes in each subgraph.

Finally, the ideas behind the peeling algorithm that is a starting point for this
paper can be traced back to the papers of Israeli and Itai [30] and Israeli and
Shiloach [31], which can be interpreted as matching high-degree vertices first in order
to reduce the maximum degree. A sample distributed algorithm given in a work of
Parnas and Ron [42] uses this idea to compute an O(log n) approximation for vertex
cover. Their algorithm was extended by Onak and Rubinfeld [41] in order to provide
an O(1)-approximation for vertex cover and maximum matching in a dynamic ver-
sion of the problems. This was achieved by randomly matching high-degree vertices
to their neighbors in consecutive phases while reducing the maximum degree in the
remaining graph. This approach was further developed in the dynamic graph setting
by a number of papers [15, 16, 17, 14]. Ideas similar to those in the paper of Par-
nas and Ron [42] were also used to compute a polylogarithmic approximation in the
streaming model by Kapralov, Khanna, and Sudan [32]. Our version of the peeling
algorithm was directly inspired by the work of Onak and Rubinfeld [41] and features
important modifications in order to make our analysis go through.

1.4. Future challenges. We show a parallel matching algorithm in the MPC
model by taking an algorithm that can be seen as a distributed algorithm in the so-
called LOCAL model. This algorithm requires \Theta (log n) rounds and can be simulated
in \Theta (log n) MPC rounds relatively easily with n\Omega (1) space per machine. We develop
an approximate version of the algorithm that uses much fewer rounds by repeatedly
compressing a superconstant number of rounds of the original algorithm to O(1)
rounds. It is a great question if this kind of speedup can be obtained for other---
either distributed or PRAM---algorithms.
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As for the specific problem considered in this paper, an obvious question is
whether our round complexity is optimal. We conjecture that there is a better al-
gorithm that requires O(log log n) rounds, the square root of our complexity. Unfor-
tunately, a factor of log n in one of our functions (see the logarithmic factor in \alpha , a
parameter defined later in the paper) propagates to the round complexity, where it
imposes a penalty of log log n.

Note also that as opposed to the paper of Onak and Rubinfeld [41], we do not
obtain an O(1)-approximation to vertex cover. This stems from the fact that we
discard so-called reference sets, which can be much bigger than the minimum vertex
cover. This is unfortunately necessary in our analysis. Is there a way to fix this
shortcoming of our approach?

Finally, we suspect that there is a simpler algorithm for the problem that avoids
the intricacies of our approach and proceeds by simply greedily matching high-degree
vertices on induced subgraphs without sophisticated sampling in every phase. Unfor-
tunately, we do not know how to analyze this kind of approach.

1.5. Recent developments. Since an earlier version of this work was shared
on arXiv, it has inspired a number of follow-up works. Assadi [4] applies the round
compression idea to the distributed O(log n)-approximation algorithm for vertex cover
of Parnas and Ron [42]. His algorithm uses techniques from his recent work with
Khanna [6]. It computes an O(log n)-approximation to minimum vertex cover in
O(log log n) rounds and with n/ polylog(n) space per machine.

The paper of Assadi et al. [5] addresses several open questions from this paper.
They give an MPC algorithm that computes an O(1)-approximation to both vertex
cover and maximum matching in O(log log n) rounds and O(n/polylog(n)) space per
machine (for maximum matching, the approximation factor is 1 + \epsilon for any fixed \epsilon ).
Their result builds on techniques developed originally for dynamic matching algo-
rithms [12, 13] and composable coresets [6]. The paper of Ghaffari et al. [23] obtains
similar results. They show how to compute a fractional matching and then apply a
clever rounding scheme to transform it into an integral matching. This paper also
gives an algorithm for computing a maximal independent set.

Finally, Behnezhad, Hajiaghayi, and Harris [11] address our question whether
there is a simple greedy algorithm that achieves similar results with the same amount
of computational resources. They give an algorithm that matches edges greedily in
random order within each subgraph induced by a random vertex partition. One of
the highlights of their approach is that it finds a maximal matching, which leads to a
2-approximation for vertex cover.

The n\delta space per machine regime, where \delta \in (0, 1), has also been investigated
more closely. A direct simulation of PRAM algorithms for problems mentioned in this
section leads to O(log n)-round algorithms. This has been improved to \~O(

\surd 
log n)

rounds by exponentially speeding up the local exploration of sparsified neighbor-
hoods [24, 40].

2. Overview. In this section we present the main ideas and techniques behind
our result. Our paper contains two main technical contributions.

First, our algorithm randomly partitions vertices across the machines, and on each
machine considers only the corresponding induced graph. We prove that it suffices
to consider these induced subgraphs to obtain an approximate maximum matching.
Note that this approach greatly deviates from previous works, that used edge based
partitioning.
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Second, we introduce a round compression technique. Namely, we start with
an algorithm that executes O(log n) phases and can be naturally implemented in
O(log n) MPC rounds and then demonstrate how to emulate this algorithm using
only o(log n) MPC rounds. The underlying idea is quite simple: each machine inde-
pendently runs multiple phases of the initial algorithm. This approach, however, has
obvious challenges since the machines cannot communicate in a single round of the
MPC algorithm. The rest of the section is devoted to describing our approach and
illustrating how to overcome these challenges.

2.1. Global algorithm. To design an algorithm executed on machines locally,
we start from a sequential peeling algorithm GlobalAlg (see Algorithm 1), which is a
modified version of an algorithm used by Onak and Rubinfeld [41]. The algorithm had
to be significantly adjusted in order to make our later analysis of a parallel version
possible.

Algorithm 1: GlobalAlg(G, \widetilde \Delta ).
Global matching algorithm.

Input: Graph G = (V,E) of maximum degree at most \widetilde \Delta 
Output: A matching in G

1 \Delta \leftarrow \widetilde \Delta , M \leftarrow \emptyset , V \prime \leftarrow V
2 while \Delta \geq 1 do

/* Invariant: the maximum degree in G[V \prime ] is at most \Delta */

3 Let H \subset V \prime be a set of vertices of degree at least \Delta /2 in G[V \prime ]. We call
vertices in H heavy.

4 Create a set F of friends by selecting each vertex v \in V \prime independently with
probability | N(v) \cap H| /4\Delta .

5 Compute a matching \widetilde M in G[H \cup F ] using MatchHeavy(H,F ) and add it to M .
6 V \prime \leftarrow V \prime \setminus (H \cup F ), \Delta \leftarrow \Delta /2

7 return M

The execution of GlobalAlg is divided into \Theta (log n) phases. In each phase, the
algorithm first computes a set H of high-degree vertices. Then it selects a set F of ver-
tices, which we call friends. Next the algorithm selects a matching \widetilde M between H and
F , using a simple randomized strategy (see Algorithm 2). F is carefully constructed

so that both F and \widetilde M are likely to be of order \Theta (| H| ). Finally, the algorithm removes
all vertices in H \cup F , hence, reducing the maximum vertex degree in the graph by a
constant factor, and proceeds to the next phase. The central property of GlobalAlg
is that it returns an O(1) approximation to maximum matching with constant prob-
ability (Corollary 3.4). A detailed discussion of GlobalAlg is given in section 3.

2.2. Parallel emulation of the global algorithm (section 4). The following
two ways could be used to execute GlobalAlg in the MPC model: (1) place the
whole graph on one machine and trivially execute all the phases of GlobalAlg in
a single round; or (2) simulate one phase of GlobalAlg in one MPC round while
using O(n) space per machine, by distributing vertices randomly onto machines (see
section 6.1 for details). However, each of these approaches has severe drawbacks. The
first approach requires \Theta (| E| ) space per machine, which is likely prohibitive for large
graphs. On the other hand, while the second approach uses O(n) space, it requires
\Theta (log n) rounds of MPC computation. We achieve the best of both worlds by showing
how to emulate the behavior of multiple phases of GlobalAlg in a single MPC round
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Algorithm 2: MatchHeavy(H,F ).
Computing a matching in G[H \cup F ].

Input: set H of heavy vertices and set F of friends
Output: a matching in G[H \cup F ]

1 For every vertex v \in F pick uniformly at random a heavy neighbor v \star in N(v) \cap H.
2 Independently at random color each vertex in H \cup F either red or blue.
3 Select the following subset of edges:

E \star \leftarrow \{ (v, v \star ) : v \in F \wedge v is red \wedge v \star \in H \wedge v \star is blue\} .
4 For every blue vertex w incident to an edge in E \star , select one such edge and add it

to \widetilde M .
5 return \widetilde M

with each machine using O(n) space, thus obtaining an MPC algorithm requiring
o(log n) rounds. More specifically, we show that it is possible to emulate the behavior
of GlobalAlg in O((log log n)2) rounds with each machine using O(n) (or even only
n/(log n)O(log logn)) space.

Before we provide more details about our multiphase emulation of GlobalAlg,
let us mention the main obstacle such an emulation encounters. At the beginning of
every phase, GlobalAlg has access to the full graph. Therefore, it can easily compute
the set of heavy vertices H. On the other hand, machines in our MPC algorithm use
O(n) space and thus have access only to a small subgraph of the input graph (when
| E| \gg n). In the first phase this is not a big issue, as, thanks to randomness, each
machine can estimate the degrees of high-degree vertices. However, the degrees of
vertices can significantly change from phase to phase. Therefore, after each phase it
is not clear how to select high-degree vertices in the next phase without inspecting
the entire graph again. Hence, one of the main challenges in designing a multiphase
emulation of GlobalAlg is to ensure that machines at the beginning of every phase can
estimate global degrees of vertices well enough to identify the set of heavy vertices,
with each machine still having access only to its local subgraph. This property is
achieved using a few modifications to the algorithm.

2.2.1. Vertex based sampling. The algorithms for computing a maximal
matching in PRAM and their simulations in the MPC model [38, 2, 31, 30] are de-
signed to, roughly speaking, either halve the number of edges or halve the maximum
degree in each round. Therefore, in the worst case, those algorithms inherently require
\Omega (log n) rounds to compute a maximal matching.

On the other hand, all the algorithm for the maximal matching problem in the
MPC model prior to ours [35, 1, 6] process the input graph by discarding edges,
and eventually aggregate the remaining edges on a single machine to decide which of
them are part of the final matching. It is not known how to design approaches similar
to [35, 1, 6] while avoiding a step in which the maximal matching computation is
performed on a single machine. This seems to be a barrier for improving upon O(log n)
rounds, if the space available on each machine is O(n).

The starting point of our new approach is alleviating this issue by resorting to a
more careful vertex based sampling. Specifically, at each round, we randomly partition
the vertex set into vertex sets V1, . . . , Vm and consider induced graphs on those subsets
independently. Such a sampling scheme has the following handy property: the union
of matchings obtained across the machines is still a matching. Furthermore, we show
that for the appropriate setting of parameters this sampling scheme allows us to handle
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vertices of a wide range of degrees in a single round, unlike handling only high-degree
vertices (that is, vertices with degree within a constant factor of the maximum degree)
as guaranteed by [30, 31].

2.2.2. Preserving randomness. Our algorithm partitions the vertex set into
m disjoint subsets Vi by assigning each vertex independently and uniformly at ran-
dom. Then the graph induced by each subset Vi is processed on a separate machine.
Each machine finds a set of heavy vertices, Hi, by estimating the global degree of
each vertex of Vi. It is not hard to argue (using a standard concentration bound) that
there is enough randomness in the initial partition so that local degrees in each in-
duced subgraph roughly correspond to the global degrees. Hence, after the described
partitioning, sets H and

\bigcup 
i\in [m]Hi have very similar properties. This observation

crucially relies on the fact that initially the vertices are distributed independently and
uniformly at random.

However, if the second phase of GlobalAlg is executed without randomly re-
assigning vertices to sets after the first phase, the remaining vertices are no longer
distributed independently and uniformly at random. In other words, after inspect-
ing the neighborhood of every vertex locally and making a decision based on it, the
randomness of the initial random partition may significantly decrease.

Let us now make the following thought experiment. Imagine for a moment that
there is an algorithm that emulates multiples phases of GlobalAlg in parallel and
in every phase inspects only the vertices that end up being matched. Then, from
the point of view of the algorithm, the vertices that are not matched so far are still
distributed independently and uniformly at random across the machines. Or, saying
this in a different way, if the randomness of some vertices is not inspected while
emulating a phase, then at the beginning of the next phase those vertices still have
the same distribution as in the beginning of that MPC round. But, how does an
algorithm learn about vertices that should be matched by inspecting no other vertex?
How does the algorithm learn even only about high-degree vertices without looking
at their neighborhood?

In the following we show how to design an algorithm that looks only ``slightly""
at the vertices that do not end up being matched. As we prove, that is sufficient to
design a multiphase emulation of GlobalAlg.

We now discuss in more detail how to preserve two crucial properties of our
vertex assignments throughout the execution of multiple phases: independent and
nearly uniform distribution.

2.2.3. Independence (Lemma 4.3). As noted above, it is not clear how to
compute vertex degrees without inspecting their local neighborhood. A key, and at
first sight counterintuitive, step in our approach is to estimate even local degrees of
vertices (in contrast to computing them exactly). To obtain the estimates, it suffices
to examine only small neighborhoods of vertices and in turn preserve the independent
distribution of the intact ones. More precisely, we sample a small set of vertices on
each machine, called reference sets, and use the set to estimate the local degrees of all
vertices assigned to this machine. Furthermore, we show that with a proper adjust-
ments of GlobalAlg these estimates are sufficient for capturing high-degree vertices.

Very crucially, all the vertices that are used in computing a matching in one
emulated phase (including the reference sets) are discarded at the end of the phase,
even if they do not participate in the obtained matching. In this way we disregard the
vertices whose position is fixed and, intuitively, secure an independent distribution of
the vertices across the machines in the next phase.
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11
2

1

1
2

µH(r)

r

Fig. 1. An idealized version of \mu H : \BbbR \rightarrow [0, 1].

We also note, without going into detail, that obtaining full independence required
modifying how the set of friends is selected, compared to the original approach of Onak
and Rubinfeld [41]. In their approach, each heavy vertex selected one friend at ran-
dom. However, as before, in order to select exactly one friend would require examining
the neighborhood of heavy vertices. This, however, introduces dependencies between
vertices that have not been selected. So instead, in our GlobalAlg, every vertex se-
lects itself as a friend independently and proportionally to the number of high-degree
vertices (found using the reference set), which again secures an independent distri-
bution of the remaining vertices. The final properties of the obtained sets in either
approach are very similar.

2.2.4. Uniformity (Lemma 4.4). A very convenient property in the task of
emulating multiple phases of GlobalAlg is a uniform distribution of vertices across all
the machines at every phase---for such a distribution, we know the expected number
of neighbors of each desired type assigned to the same machine. Obtaining perfect
uniformity seems difficult---if not impossible in our setting---and we therefore settle
for near uniformity of vertex assignments. The probability of the assignment of
each vertex to each machine is allowed to differ slightly from that in the uniform
distribution. Initially, the distribution of each vertex is uniform and with every phase
it can deviate more and more from the uniform distribution. We bound the rate of
the decay with high probability and execute multiple rounds as long as the deviation
from the uniform distribution is negligible. More precisely, in the execution of the
entire parallel algorithm, the sufficiently uniform distribution is on average kept over
\Omega ( logn

(log logn)2 ) phases of the emulation of GlobalAlg.

In order to achieve the near uniformity, we modify the procedure for selecting H,
the set of high-degree vertices. Instead of a hard threshold on the degrees of vertices
that are included in H as in the sequential algorithm, we randomize the selection by
using a carefully crafted threshold function \mu H . This function specifies the probability
with which a vertex is included in H. It takes as input the ratio of the vertex's degree
to the current maximum degree (or, more precisely, the current upper bound on the
maximum degree) and it smoothly transitions from 0 to 1 in the neighborhood of the
original hard threshold (see Figure 1). The main intuition behind the introduction of
this function is that we want to ensure that a vertex is not selected for H with almost
the same probability, independently of the machine on which it resides. Using a hard
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threshold instead of \mu H could result in the following deficiency. Consider a vertex v
that has slightly too few neighbors to qualify as a heavy vertex. Still, it could happen,
with a nonnegligible probability, that the reference set of some machine contains so
many neighbors of v that v would be considered heavy on this machine. However, if
v is not included in the set of heavy vertices on that machine, it becomes clear after
even a single phase that the vertex is not on the given machine, i.e., the vertex is on
the given machine with probability zero. At this point the distribution is clearly no
longer uniform.

Function \mu H has further useful properties that we extensively exploit in our anal-
ysis. We just note that in order to ensure near uniformity with high probability, we
also have to ensure that each vertex is selected for F , the set of friends, with roughly
the same probability on each machine.

2.3. Organization. We start by analyzing GlobalAlg in section 3. Section 4
describes how to emulate a single phase of GlobalAlg in the MPC model. Section 5
gives and analyzes our parallel algorithm by putting together components developed
in the previous sections. The resulting parallel algorithm can be implemented in the
MPC model in a fairly straightforward way by using the result of [25]. The details of
the implementation are given in section 6.

3. Global algorithm.

3.1. Overview. Our starting point is a peeling algorithm GlobalAlg that takes
as input a graph G, and removes from it vertices of lower and lower degree until no
edge is left. See Algorithm 1 for its pseudocode. We use the term phase to refer to
an iteration of the main loop in lines 2--6.

Each phase is associated with a threshold \Delta . Initially, \Delta equals \widetilde \Delta , the upper
bound on the maximum vertex degree. In every phase, \Delta is divided by two until
it becomes less than one and the algorithm stops. Since during the execution of the
algorithm we maintain the invariant that the maximum degree in the graph is at most
\Delta , the graph has no edge left when the algorithm terminates.

In each phase the algorithm matches, in expectation, a constant fraction of the
vertices it removes. We use this fact to prove that, across all the phases, the algorithm
computes a constant-factor approximate matching.

We now describe in more detail the execution of each phase. First, the algorithm
creates H, the set of vertices that have degree at least \Delta /2 (line 3). We call these
vertices heavy. Then, the algorithm uses randomness to create F , a set of friends
(line 4). Each vertex v is independently included in F with probability equal to the
number of its heavy neighbors divided by 4\Delta . We show that \BbbE [| F | ] = O(| H| ) and
G[H \cup F ] contains a matching of expected size \Omega (| H| ). This kind of matching is likely
found by MatchHeavy in line 5.

Note that GlobalAlg could as well compute a maximal matching in G[H \cup F ]
instead of calling MatchHeavy. However, for the purpose of the analysis, using
MatchHeavy is simpler, as we can directly relate the size of the obtained match-
ing to the size of H. In addition, we later give a parallel version of GlobalAlg, and
MatchHeavy is easy to parallelize.

At the end of the phase, vertices in both H and F are removed from the graph,
while the matching found in G[H \cup F ] is added to the global matching being con-
structed. It is easy to see, that by removing H, the algorithm ensures that no vertex
of degree larger than \Delta /2 remains in the graph and, therefore, the bound on the
maximum degree decreases by a factor of two.
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3.2. Analysis. We start our analysis of the algorithm by showing that the ex-
ecution of MatchHeavy in each phase of GlobalAlg finds a relatively large matching
in expectation.

Lemma 3.1. Consider one phase of GlobalAlg. Let H be the set of heavy vertices.

MatchHeavy finds a matching \widetilde M such that \BbbE [| \widetilde M | ] \geq 1
40 | H| .

Proof. Observe that the set E \star is a collection of vertex-disjoint stars: each edge
connects a red vertex with a blue vertex and the red vertices have degree 1. Thus,
a subset of E \star forms a valid matching as long as no blue vertex is incident to two
matched edges. Note that this is guaranteed by how edges are added to \widetilde M in line 4.

The size of the computed matching is the number of blue vertices in H that have
at least one incident edge in E \star . Let us now lower bound the number of such vertices.
Consider an arbitrary u \in H. It has the desired properties exactly when the following
three independent events happen: some v is selected in F and v selects u in line 1;
u is colored blue; and v is colored red. The joint probability of the two latter events
is exactly 1

4 . The probability that u is not selected by some its neighbor v (either
because v is not selected in F , or v is selected in F but v does not select u in line 1)
is \biggl( 

1 - 1

4\Delta 

\biggr) | N(u)\cap V \prime | 

\leq 
\biggl( 
1 - 1

4\Delta 

\biggr) \Delta /2

\leq exp

\biggl( 
 - 1

4\Delta 
\cdot \Delta 
2

\biggr) 
\leq exp

\biggl( 
 - 1

8

\biggr) 
\leq 9

10
.

This implies that u is selected by a neighbor v \in F with probability at least 1
10 .

Therefore, with probability at least 1
10 \cdot 1

4 = 1
40 , u is blue and incident to an edge in

E \star . Hence, \BbbE [| \widetilde M | ] \geq 1
40 | H| .

Next we show an upper bound on the expected size of F , the set of friends.

Lemma 3.2. Let H be the set of heavy vertices selected in a phase of GlobalAlg.
The following bound holds on the expected size of F , the set of friends, created in the
same phase: \BbbE [| F | ] \leq 1

4 | H| .
Proof. At the beginning of a phase, every vertex u \in V \prime ---including those in H---

has its degree, | N(u)\cap V \prime | , bounded by \Delta . Reversing the order of the summation and
applying this fact, we get

\BbbE [| F | ] =
\sum 
v\in V \prime 

| N(v) \cap H| 
4\Delta 

=
\sum 
u\in H

| N(u) \cap V \prime | 
4\Delta 

\leq | H| \cdot \Delta 
4\Delta 

=
| H| 
4
.

We combine the last two bounds to lower bound the expected size of the matching
computed by GlobalAlg.

Lemma 3.3. Consider an input graph G with an upper bound \widetilde \Delta on the maximum

vertex degree. Assume that GlobalAlg(G, \widetilde \Delta ) executes T
def
= \lfloor log \widetilde \Delta \rfloor + 1 phases. Let

Hi, Fi, and \widetilde Mi be the sets H, F , and \widetilde M constructed in phase i for i \in [T ]. The
following relationship holds on the expected sizes of these sets:

T\sum 
i=1

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] \geq 1

50

T\sum 
i=1

\BbbE [| Hi| + | Fi| ] .

Proof. For each phase i \in [T ], by applying the expectation over all possible set-
tings of the set Hi, we learn from Lemmas 3.1 and 3.2 that

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] \geq 1

40
\BbbE [| Hi| ] and \BbbE [| Fi| ] \leq 

1

4
\BbbE [| Hi| ] .
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It follows that

1

50
\BbbE [| Hi| + | Fi| ] \leq 

1

50
\BbbE [| Hi| ] +

1

200
\BbbE [| Hi| ] =

1

40
\BbbE [| Hi| ] \leq \BbbE 

\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] ,
and the statement of the lemma follows by summing over all phases.

We do not use this fact directly in our paper, but note that the last lemma can
be used to show that GlobalAlg can be used to find a large matching.

Corollary 3.4. GlobalAlg computes a constant factor approximation to the
maximum matching with \Omega (1) probability.

Proof. First, note that GlobalAlg finds a correct matching, i.e., no two different
edges in M share an endpoint. This is implied by the fact that M is extended in
every phase by a matching on a disjoint set of vertices.

Let T and sets Hi, Fi, and \widetilde Mi for i \in [T ] be defined as in the statement of
Lemma 3.3. Let MOPT be a maximum matching in the graph. Observe that at the
end of the algorithm execution, the remaining graph is empty. This implies that
the size of the maximum matching can be bounded by the total number of removed
vertices, because each removed vertex decreases the maximum matching size by at
most one:

T\sum 
i=1

| Hi| + | Fi| \geq | MOPT| .

Hence, using Lemma 3.3,

\BbbE [| M | ] =
T\sum 
i=1

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] \geq 1

50

T\sum 
i=1

\BbbE [| Hi| + | Fi| ] \geq 
1

50
| MOPT| .

Since | M | \leq | MOPT| , | M | \geq 1
100 | MOPT| with probability at least 1

100 . Otherwise,
\BbbE [| M | ] would be strictly less than 1

100 \cdot | MOPT| + 1 \cdot 1
100 | MOPT| = 1

50 | MOPT| , which
is not possible.

4. Emulation of a phase in a randomly partitioned graph. In this section,
we introduce a modified version of a single phase (one iteration of the main loop) of
GlobalAlg. Our modifications later allow for implementing the algorithm in the
MPC model. The pseudocode of the new procedure, EmulatePhase, is presented as
Algorithm 3. We partition the vertices of the current graph into m sets Vi, 1 \leq 
i \leq m. Each vertex is assigned independently and almost uniformly at random to
one of the sets. For each set Vi, we run a subroutine LocalPhase (presented as
Algorithm 4). This subroutine runs a carefully crafted approximate version of one
phase of GlobalAlg with an appropriately rescaled threshold \Delta . More precisely, the
threshold passed to the subroutine is scaled down by a factor of m, which corresponds
to how approximately vertex degrees decrease in subgraphs induced by each of the
sets. The main intuition behind this modification is that we hope to break the problem
up into smaller subproblems on disjoint induced subgraph, and obtain similar global
properties by solving the problem approximately on each smaller part. Later, in
section 5, we design an algorithm that assigns the subproblems to different machines
and solves them in parallel.

We now discuss LocalPhase (i.e., Algorithm 4) in more detail. Table 2 intro-
duces two parameters, \alpha and \mu R, and two functions, \mu H and \mu F , which are used in
LocalPhase. Note first that \alpha is a parameter used in the definition of \mu H but it is
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ROUND COMPRESSION STOC18-15

Algorithm 3: EmulatePhase(\Delta , G \star ,m,\scrD ).
Emulation of a single phase in a randomly partitioned graph.

Input:
\bullet threshold \Delta 
\bullet induced subgraph G \star = (V \star , E \star ) of maximum degree 3

2
\Delta 

\bullet number m of subgraphs
\bullet \epsilon -near uniform and independent distribution \scrD on assignments of V \star to [m]

Output: Remaining vertices and a matching

1 Pick a random assignment \Phi : V \star \rightarrow [m] from \scrD 
2 for i \in [m] do
3 Vi \leftarrow \{ v \in V \star : \Phi (v) = i\} 
4 (V \prime 

i ,Mi)\leftarrow LocalPhase(i, G \star [Vi],\Delta /m) /* LocalPhase = Algorithm 4

*/

5 return
\bigl( \bigcup m

i=1 V
\prime 
i ,
\bigcup m

i=1 Mi

\bigr) 

not used in the pseudocode of LocalPhase (or EmulatePhase) for anything else. It is,
however, a convenient abbreviation in the analysis and the later parallel algorithm.
The other three mathematical objects specify probabilities with which vertices are
included in sets that are created in an execution of LocalPhase.

Algorithm 4: LocalPhase(i, Gi,\Delta  \star ).
Emulation of a single phase on an induced subgraph.

Input:
\bullet induced subgraph number i (useful only for the analysis)
\bullet induced subgraph Gi = (Vi, Ei)
\bullet threshold \Delta  \star \in \BbbR +

Output: Remaining vertices and a matching on Vi

1 Create a reference set Ri by independently selecting each vertex in Vi with
probability \mu R.

2 For each v \in Vi, \widehat dv \leftarrow | N(v) \cap Ri| /\mu R.
3 Create a set Hi of heavy vertices by independently selecting each v \in Vi with

probability \mu H

\Bigl( \widehat dv/\Delta  \star 

\Bigr) 
.

4 Create a set Fi of friends by independently selecting each vertex in v \in Vi with
probability \mu F (| N(v) \cap Hi| /\Delta  \star ).

5 Compute a maximal matching Mi in G[Hi \cup Fi].
6 return (Vi \setminus (Ri \cup Hi \cup Fi),Mi)

Apart from creating its own versions of H, the set of heavy vertices, and F , the
set of friends, LocalPhase constructs also a set Ri, which we refer to as a reference
set. In line 1, the algorithm puts each vertex in Ri independently and with the same
probability \mu R. The reference set is used to estimate the degrees of other vertices in
the same induced subgraph in line 2. For each vertex vi, its estimate \widehat dv is defined
as the number of v's neighbors in Ri multiplied by \mu  - 1

R to compensate for sampling.
Next, in line 3, the algorithm uses the estimates to create Hi, the set of heavy vertices.
Recall that GlobalAlg uses a sharp threshold for selecting heavy vertices: all vertices
of degree at least \Delta /2 are placed in Hi. LocalPhase works differently. It divides
the degree estimate by the current threshold \Delta  \star and uses function \mu H to decide with
what probability the corresponding vertex is included in Hi. A sketch of the function
can be seen in Figure 1. The function transitions from almost 0 to almost 1 in the
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STOC18-16 CZUMAJ ET AL.

Table 2
Global parameters \alpha \in (1,\infty ) and \mu R \in (0, 1) and functions \mu H : \BbbR \rightarrow [0, 1] and \mu F : \BbbR \rightarrow [0, 1]

used in the parallel algorithm. \alpha , \mu R, and \mu H depend on n, the total number of vertices in the
graph.

A multiplicative constant used in the exponent of \mu H :

\alpha 
def
= 96 lnn.

The probability of the selection for a reference set:

\mu R
def
=

\bigl( 
106 \cdot logn

\bigr)  - 1
.

The probability of the selection for a heavy set (used with r equal to the ratio of the
estimated degree to the current threshold):

\mu H(r)
def
=

\Biggl\{ 
1
2
exp

\bigl( 
\alpha 
2
(r  - 1/2)

\bigr) 
if r \leq 1/2,

1 - 1
2
exp

\bigl( 
 - \alpha 

2
(r  - 1/2)

\bigr) 
if r > 1/2.

The probability of the selection for the set of friends (used with r equal to the ratio of
the number of heavy neighbors to the current threshold):

\mu F (r)
def
=

\Biggl\{ 
max\{ r/4, 0\} if r \leq 4,

1 if r > 4.

neighborhood of 1
2 at a limited pace. As a result vertices of degree smaller than, say,

1
4\Delta are very unlikely to be included in Hi and vertices of degree greater than 3

4\Delta are
very likely to be included in Hi. GlobalAlg can be seen as an algorithm that instead
of \mu H , uses a step function that equals 0 for arguments less than 1

2 and abruptly jumps
to 1 for larger arguments. Observe that without \mu H , the vertices whose degrees barely
qualify them as heavy could behave very differently depending on which set they were
assigned to. We use \mu H to guarantee a smooth behavior in such cases. That is one of
the key ingredients that we need for making sure that a set of vertices that remains
on one machine after a phase has almost the same statistical properties as a set of
vertices obtained by new random partitioning.

Finally, in line 4, LocalPhase creates a set of friends. This step is almost identical
to what happens in the global algorithm. The only difference is that this time we have
no upper bound on the number of heavy neighbors of a vertex. As a result that number
divided by 4\Delta  \star can be greater than 1, in which case we have to replace it with 1 in
order to obtain a proper probability. This is taken care of by function \mu F . Once
Hi and Fi have been created, the algorithm finds a maximal matching Mi in the
subgraph induced by the union of these two sets. The algorithm discards from the
further consideration not only Hi and Fi, but also Ri. This eliminates dependencies
in the possible distribution of assignments of vertices that have not been removed yet
if we condition this distribution on the configuration of sets that have been removed.
Intuitively, the probability of a vertex's inclusion in any of these sets depends only
on Ri and Hi but not on any other vertices. Hence, once we fix the sets of removed
vertices, the assignment of the remaining vertices to subgraphs is fully independent.2

2By way of comparison, consider observing an experiment in which we toss the same coin twice.
The bias of the coin is not fixed but comes from a random distribution. If we do not know the bias,
the outcomes of the coin tosses are not independent. However, if we do know the bias, the outcomes
are independent, even though they have the same bias.
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ROUND COMPRESSION STOC18-17

The output of LocalPhase is a subset of Vi to be considered in later phases and a
matching Mi, which is used to expand the matching that we construct for the entire
input graph. We now introduce additional concepts and notation. They are useful for
describing and analyzing properties of the algorithm. A configuration describes sets
Ri, Hi, and Fi for 1 \leq i \leq m, constructed in an execution of EmulatePhase. We use
it for conditioning a distribution of vertex assignments as described in the previous
paragraph. We also formally define two important properties of distributions of vertex
assignments: independence and near uniformity.

Configurations. Let m and V \star be the parameters to EmulatePhase: the number
of subgraphs and the set of vertices in the graph to be partitioned, respectively. We
say that

\scrC =
\bigl( 
\{ Ri\} i\in [m], \{ Hi\} i\in [m], \{ Fi\} i\in [m]

\bigr) 
is an m-configuration if it represents a configuration of sets Ri, Hi, and Fi created by
EmulatePhase in the simulation of a phase. Recall that for any i \in [m], Ri, Hi, and
Fi are the sets created (and removed) by the execution of LocalPhase for Vi, the ith
subset of vertices.

We say that a vertex v is fixed by \scrC if it belongs to one of the sets in the config-
uration, i.e.,

v \in 
\bigcup 
i\in [m]

(Ri \cup Hi \cup Fi) .

Conditional distribution. Let \scrD be a distribution on assignments \varphi : V \star \rightarrow [m].
Suppose that we execute EmulatePhase for \scrD and let \scrC be a nonzero probability m-
configuration---composed of sets Ri, Hi, and Fi for i \in [m]---that can be created in
this setting. Let V \prime 

 \star be the set of vertices in V \star that are not fixed by \scrC . We write
\scrD [\scrC ] to denote the conditional distribution of possible assignments of vertices in V \prime 

 \star 

to [m], given that for all i \in [m], Ri, Hi, and Fi in \scrC were the sets constructed by
LocalPhase for the ith induced subgraph.

Near uniformity and independence. Let \scrD be a distribution on assignments \varphi :\widetilde V \rightarrow [m] for some set \widetilde V and m. For each vertex v \in \widetilde V , let pv : [m] \rightarrow [0, 1] be
the probability mass function of the marginal distribution of v's assignment. For
any \epsilon \geq 0, we say that \scrD is \epsilon -near uniform if for every vertex v and every i \in [m],
pv(i) \in [(1  - \epsilon )/m, (1 + \epsilon )/m]. We say that \scrD is an independent distribution if the
probability of every assignment \varphi in \scrD equals exactly

\prod 
v\in \widetilde V pv(\varphi (v)).

Concentration inequality. We use the following version of the Chernoff bound
that depends on an upper bound on the expectation of the underlying independent
random variables. It can be shown by combining two applications of the more standard
version.

Lemma 4.1 (Chernoff bound). Let X1, . . . , Xk be independently distributed ran-

dom variables taking values in [0, 1]. Let X
def
= X1 + \cdot \cdot \cdot + Xk and let U \geq 0

be an upper bound on the expectation of X, i.e., \BbbE [X] \leq U . For any \delta \in [0, 1],
Pr(| X  - \BbbE [X]| > \delta U) \leq 2 exp( - \delta 2U/3).

Concise range notation. Multiple times throughout a paper, we want to denote
a range around some value. Instead of writing, say, [x  - \delta , x + \delta ], we introduce a
more concise notation. In this specific case, we would simply write Jx\pm \delta K. More
formally, let E be a numerical expression that apart from standard operations also
contains a single application of the binary or unary operator \pm . We create two
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STOC18-18 CZUMAJ ET AL.

standard numerical expressions from E: E - and E+ that replace \pm with  - and +,

respectively. Now we define JEK def
= [min\{ E - , E+\} ,max\{ E - , E+\} ].

As another example, consider E =
\surd 
101\pm 20. We have E - =

\surd 
101 - 20 = 9

and E+ =
\surd 
101 + 20 = 11. Hence

q\surd 
101\pm 20

y
= [min\{ 9, 11\} ,max\{ 9, 11\} ] = [9, 11].

We now show the properties of EmulatePhase that we use to obtain our final
parallel algorithm.

4.1. Outline of the section. We start by showing that EmulatePhase com-
putes a large matching as follows. Note that, each vertex belonging to Hi or Fi
that EmulatePhase removes in the calls to LocalPhase can decrease the maximum
matching size in the graph induced by the remaining vertices by one. We show that
the matching that EmulatePhase constructs in the process captures on average at
least a constant fraction of that loss. We also show that the effect of removing Ri is
negligible. More precisely, in section 4.2 we prove the following lemma.

Lemma 4.2. Let \Delta , G \star = (V \star , E \star ), m, and \scrD be parameters for EmulatePhase

such that
\bullet \scrD is an independent and \epsilon -near uniform distribution on assignments of ver-
tices V \star to [m] for \epsilon \in [0, 1/200];

\bullet \Delta 
m \geq 4000\mu  - 2

R ln2 n;
\bullet the maximum degree of a vertex in G \star is at most 3

2\Delta .
For each i \in [m], let Hi, Fi, and Mi be the sets constructed by LocalPhase for the
ith induced subgraph. Then, the following relationship holds for their expected sizes:\sum 

i\in [m]

\BbbE [| Hi \cup Fi| ] \leq n - 9 + 1200
\sum 
i\in [m]

\BbbE [| Mi| ] .

Note that Lemma 4.2 requires that the vertices are distributed independently and
near uniformly in the m sets. This is trivially the case right after the vertices are par-
titioned independently at random. However, in the final algorithm, after we partition
the vertices, we run multiple phases on each machine. In the rest of this section we
show that running a single phase preserves independence of vertex distribution and
only slightly disturbs the uniformity (Lemmas 4.3 and 4.4). As we have mentioned
before, independence stems from the fact that we use reference sets to estimate ver-
tex degrees. We discard them at the end and condition on them, which leads to the
independence of the distribution of vertices that are not removed.

Lemma 4.3. Let \scrD be an independent distribution of assignments of vertices in
V \star to [m]. Let \scrC be a nonzero probability m-configuration that can be constructed by
EmulatePhase for \scrD . Let V \prime 

 \star be the set of vertices of V \star that are not fixed by \scrC . Then
\scrD [\scrC ] is an independent distribution of vertices in V \prime 

 \star on [m].

Independence of the vertex assignment is a very handy feature that allows us
to use Chernoff-like concentration inequalities in the analysis of multiple phase em-
ulation. However, although the vertex assignment of nonremoved vertices remains
independent across machines from phase to phase, as stated by Lemma 4.3, their
distribution is not necessarily uniform. Fortunately, we can show it is near uniform.

The proof of near uniformity is the most involved proof in this paper. In a nutshell,
the proof is structured as follows. We pick an arbitrary vertex v that has not been
removed and show that with high probability it has the same number of neighbors in
all sets Ri. The same property holds for v's neighbors in all sets Hi. We use this to
show that the probability of a fixed configuration of sets removed in a single phase
is roughly the same for all assignments of v to subgraphs. In other words, if v was
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distributed nearly uniformly before the execution of EmulatePhase, it is distributed
only slightly less uniformly after the execution.

Lemma 4.4. Let \Delta , G \star = (V \star , E \star ), m, and \scrD be parameters for EmulatePhase

such that
\bullet \scrD is an independent and \epsilon -near uniform distribution on assignments of ver-
tices V \star to [m] for \epsilon \in [0, (200 lnn) - 1];

\bullet \Delta 
m \geq 4000\mu  - 2

R ln2 n.
Let \scrC be an m-configuration constructed by EmulatePhase. With probability at least
1 - n - 4 both the following properties hold:

\bullet The maximum degree in the graph induced by the vertices not fixed in \scrC is
bounded by 3

4\Delta .

\bullet \scrD [\scrC ] is 60\alpha ((\Delta m ) - 1/4 + \epsilon )-near uniform.

4.2. Expected matching size. Now we prove Lemma 4.2, i.e., we show that
EmulatePhase computes a large matching. In the proof we argue that the expected
total size of sets Hi and Fi is not significantly impacted by relatively low-degree
vertices classified as heavy or by an unlucky assignment of vertices to subgraphs
resulting in local vertex degrees not corresponding to global degrees. Namely, we
show that the expected number of friends a heavy vertex adds is O(1) and at the
same time the probability that the vertex gets matched is \Omega (1).

Lemma 4.5. Let \Delta , G \star = (V \star , E \star ), m, and \scrD be parameters for EmulatePhase

such that
\bullet \scrD is an independent and \epsilon -near uniform distribution on assignments of ver-

tices V \star to [m] for \epsilon \in [0, 1/200];
\bullet \Delta 

m \geq 4000\mu  - 2
R ln2 n;

\bullet the maximum degree of a vertex in G \star is at most 3
2\Delta .

For each i \in [m], let Hi, Fi, and Mi be the sets constructed by LocalPhase for the
ith induced subgraph. Then, the following relationship holds for their expected sizes:\sum 

i\in [m]

\BbbE [| Hi \cup Fi| ] \leq n - 9 + 1200
\sum 
i\in [m]

\BbbE [| Mi| ] .

Proof. We borrow more notation from EmulatePhase and the m executions of
LocalPhase initiated by it. For i \in [m], Vi is the set inducing the ith subgraph.
Value \Delta  \star = \Delta 

m is the rescaled threshold passed to the executions of LocalPhase. Ri
is the reference set created by LocalPhase for the ith induced subgraph.

For each induced subgraph, LocalPhase computes a maximal matching Mi in
line 5. While such a matching is large---its size is at least half the maximum matching
size---it is hard to relate its size directly to the sizes of Hi and Fi. Therefore, we first
analyze the size of a matching created by MatchHeavy(G \star [Hi \cup Fi], Hi, Fi). We refer

to this matching as \widetilde Mi and we later use a fact that | \widetilde Mi| \leq 2| Mi| .
We partition each Hi, i \in [m], into two sets: H \prime 

i and H \prime \prime 
i . H \prime 

i is the subset of

vertices in Hi of degree less than 1
8\Delta in G \star . H \prime \prime 

i,t+1 is its complement, i.e., H \prime \prime 
i

def
=

Hi \setminus H \prime 
i. We start by bounding the expected total size of sets H \prime 

i. What is the
probability that a given vertex v of degree less than 1

8\Delta is included in
\bigcup 
i\in [m]Hi?

Suppose that v \in Vk, where k \in [m]. The expected number of v's neighbors in Rk is
at most (1+ \epsilon ) \cdot \mu R \cdot 18\Delta /m \leq 3

16\mu R\Delta  \star due to the independence and \epsilon -near uniformity
of \scrD [\scrC ]. Using the independence, Lemma 4.1, and the lower bound on \Delta  \star , we obtain
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STOC18-20 CZUMAJ ET AL.

the following bound:

Pr

\biggl[ 
\mu R \widehat dv > 1

4
\mu R\Delta  \star 

\biggr] 
\leq 2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 
1

3

\biggr) 2

\cdot 3

16
\mu R\Delta  \star 

\Biggr) 
\leq 2 exp ( - 27 lnn) = 2n - 27.

If \widehat dv \leq 1
4\Delta  \star , the probability that v is selected to Hk is at most \mu H(\widehat dv/\Delta  \star ) \leq 

\mu H(1/4) \leq 1
2n

 - 12. Hence v is selected to Hk---and therefore to H \prime 
k---with probability

at most 2n - 27 + 1
2n

 - 12 \leq n - 12. This implies that
\sum 
i\in [m] \BbbE [| H \prime 

i| ] \leq n \cdot n - 12 = n - 11.

We also partition the sets of friends, Fi for i \in [m], into two sets each: F \prime 
i and

F \prime \prime 
i . This partition is based on the execution of MatchHeavy for the ith subgraph.

In line 1, this algorithm selects for every vertex v \in Fi a random heavy neighbor
v \star \in Hi. If v \star \in H \prime 

i, we assign v to F \prime 
i . Analogously, if v \star \in H \prime \prime 

i , we assign v to F \prime \prime 
i .

Obviously, a heavy vertex in H \prime 
i can be selected only if H \prime 

i is nonempty. By Markov's
inequality and the upper bound on

\sum 
i\in [m] \BbbE [| H \prime 

i| ], the probability that at least one

set H \prime 
i is nonempty is at most n - 11. Even if for all i \in [m], all vertices in Fi select a

heavy neighbor in H \prime 
i whenever it is available, the total expected number of vertices

in sets F \prime 
i is at most

\sum 
i\in [m] \BbbE [| F \prime 

i,t+1| ] \leq n \cdot n - 11 = n - 10.
Before we proceed to bounding sizes of the remaining sets, we prove that with

high probability, all vertices have a number of neighbors close to the expectation. Let
\varphi : V \star \rightarrow [m] be the assignment of vertices to subgraphs. We define \scrE as the event
that for all v \in V \star , \bigm| \bigm| \bigm| \bigm| 1m | N(v) \cap V \star |  - 

\bigm| \bigm| N(v) \cap V\varphi (v)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1

16
\Delta  \star .

Consider first one fixed v \in V \star . The degree of v in G \star is | N(v) \cap V \star | \leq 3
2\Delta . Due to

the near uniformity and independence,\bigm| \bigm| \bigm| \bigm| 1m | N(v) \cap V \star |  - \BbbE 
\bigl[ \bigm| \bigm| N(v) \cap V\varphi (v)

\bigm| \bigm| \bigr] \bigm| \bigm| \bigm| \bigm| \leq \epsilon \cdot 3
2

\Delta 

m
\leq 3

400
\Delta  \star .

This in particular implies that \BbbE [| N(v) \cap V\varphi (v)| ] \leq ( 32 + 3
400 )\Delta  \star \leq 2\Delta  \star . Using

the independence of \scrD , Lemma 4.1, and the lower bound on \Delta  \star (i.e., \Delta  \star = \Delta 
m \geq 

4000\mu  - 2
R ln2 n = 4 \cdot 1015 \cdot ln4 n),

Pr

\biggl[ \bigm| \bigm| \BbbE \bigl[ \bigm| \bigm| N(v) \cap V\varphi (v)
\bigm| \bigm| \bigr]  - \bigm| \bigm| N(v) \cap V\varphi (v)

\bigm| \bigm| \bigm| \bigm| > 1

20
\Delta  \star 

\biggr] 
\leq 2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 

1

20
\cdot 1
2

\biggr) 2

\cdot 2\Delta  \star 

\Biggr) 
\leq 2 exp

\bigl( 
 - (1012 + 3) lnn

\bigr) 
\leq n - (1012+2) \leq n - 12.

As a result, with this probability, we have\bigm| \bigm| \bigm| \bigm| 1m | N(v) \cap V \star |  - 
\bigm| \bigm| N(v) \cap V\varphi (v)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1

20
\Delta  \star +

3

400
\Delta  \star \leq 

1

16
\Delta  \star .

By the union bound, this bound holds for all vertices in V \star simultaneously---and hence
\scrE occurs---with probability at least 1 - n \cdot n - 12 = 1 - n - 11.

If \scrE does not occur, we can bound both
\sum 
i\in [m] | H \prime \prime 

i | and
\sum 
i\in [m] | F \prime \prime 

i | by n. This
contributes at most n - 11 \cdot n = n - 10 to the expected size of each of these quantities.
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Suppose now that \scrE occurs. Consider an arbitrary v \in H \prime \prime 
i for some i. The number

of neighbors of v in Vi lies in the range [ 18\Delta  \star  - 1
16\Delta  \star ,

3
2\Delta  \star +

1
16\Delta  \star ] \subseteq [ 1

16\Delta  \star , 2\Delta  \star ].
Moreover, the expected number of vertices w \in F \prime \prime 

i that select v in w \star in line 1 of
MatchHeavy is bounded by 2\Delta  \star \cdot 1

4\Delta  \star 
= 1

2 . It follows that \BbbE [| F \prime \prime 
i | ] \leq 1

2 \BbbE [| H
\prime \prime 
i | ], given

\scrE . We now lower bound the expected size of \widetilde Mi given \scrE . What is the probability
that some vertex w \in Fi selects v as w \star in MatchHeavy and (v, w) is added to \widetilde Mi?

This occurs if one of v's neighbors w is added to Fi and selects v as w \star and,
additionally, v and w are colored blue and red, respectively. The number of v's
neighbors is at least 1

16\Delta  \star . Since each vertex w in Vi has at most 2\Delta  \star neighbors,
the number of heavy neighbors of w is bounded by the same number. This implies
that in the process of selecting Fi, only the first branch in the definition of \mu F is
used and each vertex w is included with probability exactly equal to the number of
its neighbors in Hi divided by 4\Delta t+1. Then each heavy neighbor of w is selected as
w \star with probability one over the number of heavy neighbors of w. What this implies
is that each neighbor w of v is selected for Fi and selects v as w \star with probability
exactly (4\Delta  \star )

 - 1. Hence the probability that v is not selected as w \star by any of its at
least 1

16\Delta  \star neighbors w can be bounded by\biggl( 
1 - 1

4\Delta  \star 

\biggr) 1
16\Delta  \star 

\leq exp

\biggl( 
 - 1

4\Delta  \star 
\cdot 1

16
\Delta  \star 

\biggr) 
= e - 1/64.

Therefore the probability that v is selected by some vertex w \in Fi as w \star is at least
1  - e - 1/64 \geq 1/100. Then with probability 1/4, these two vertices have appropriate

colors and this or another edge incident to v with the same properties is added to \widetilde Mi.
In summary, the probability that an edge (v, w) for some w as described is added to\widetilde Mi is at least 1/400. Since we do not count any edge in the matching twice for two

heavy vertices, by the linearity of expectation \BbbE [| \widetilde Mi| ] \geq 1
400 \BbbE [| H

\prime \prime 
i | ] given \scrE . Overall,

given \scrE , we have\sum 
i\in [m]

\BbbE [| H \prime \prime 
i | + | F \prime \prime 

i | ] \leq 
3

2

\sum 
i\in [m]

\BbbE [| H \prime \prime 
i | ] \leq 600

\sum 
i\in [m]

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] .
In general, without conditioning on \scrE ,\sum 

i\in [m]

\BbbE [| H \prime \prime 
i | + | F \prime \prime 

i | ] \leq 2 \cdot n - 10 + 600
\sum 
i\in [m]

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] .
We now combine bounds on all terms to finish the proof of the lemma:\sum 

i\in [m]

\BbbE [| Hi \cup Fi| ] \leq 
\sum 
i\in [m]

\BbbE [| H \prime 
i| + | F \prime 

i | + | H \prime \prime 
i | + | F \prime \prime 

i | ]

\leq n - 11 + n - 10 + 2n - 10 + 600
\sum 
i\in [m]

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \widetilde Mi

\bigm| \bigm| \bigm| \Bigr] 
\leq n - 9 + 1200

\sum 
i\in [m]

\BbbE [| Mi| ] .

4.3. Independence. Next we prove Lemma 4.3. We start with an auxiliary
lemma that gives a simple criterion under which an independent distribution remains
independent after conditioning on a random event. Consider a random vector with
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STOC18-22 CZUMAJ ET AL.

independently distributed coordinates. Suppose that for any value of the vector,
a random event \scrE occurs when all coordinates ``cooperate,"" where each coordinate
cooperates independently with probability that depends only on the value of that
coordinate. We then show that the distribution of the vector's coordinates given \scrE 
remains independent.

Lemma 4.6. Let k be a positive integer and A an arbitrary finite set. Let X =
(X1, . . . , Xk) be a random vector in Ak with independently distributed coordinates. Let
\scrE be a random event of nonzero probability. If there exist functions pi : A\rightarrow [0, 1] for
i \in [k], such that for any x = (x1, . . . , xk) \in Ak appearing with nonzero probability,

Pr[\scrE | X = x] =

k\prod 
i=1

pi(xi),

then the conditional distribution of coordinates in X given \scrE is independent as well.

Proof. Since the distribution of coordinates in X is independent, there are k prob-
ability mass functions p\prime i : A \rightarrow [0, 1], i \in [k], such that for every x = (x1, . . . , xk) \in 
Ak, Pr[X = x] =

\prod k
i=1 p

\prime 
i(xi). The probability of \scrE can be expressed as

Pr[\scrE ] =
\sum 

x=(x1,...,xk)\in Ak

Pr[\scrE \wedge X = x] =
\sum 

x=(x1,...,xk)\in Ak

Pr[X=x]>0

Pr[\scrE | X = x] \cdot Pr[X = x]

=
\sum 

x=(x1,...,xk)\in Ak

k\prod 
i=1

pi(xi)p
\prime 
i(xi) =

k\prod 
i=1

\sum 
y\in A

pi(y)p
\prime 
i(y).

Note that, since the probability of \scrE is positive, each term
\sum 
y\in A pi(y)p

\prime 
i(y), i \in [k],

in the above expression is positive. We can express the probability of any vector
x = (x1, . . . , xk) \in Ak given \scrE as follows:

Pr[X = x| \scrE ] = Pr[\scrE \wedge X = x]

Pr[\scrE ]
=

Pr[\scrE | X = x] \cdot Pr[X = x]

Pr[\scrE ]

=

\prod k
i=1 pi(xi)p

\prime 
i(xi)\prod k

i=1

\sum 
y\in A pi(y)p

\prime 
i(y)

=

k\prod 
i=1

pi(xi)p
\prime 
i(xi)\sum 

y\in A pi(y)p
\prime 
i(y)

.

We define p\prime \prime i : A \rightarrow [0, 1] as p\prime \prime i (x)
def
= pi(xi)p

\prime 
i(xi)/

\sum 
y\in A pi(y)p

\prime 
i(y) for

each i \in [k]. Each p\prime \prime i is a valid probability mass function on A. As a result we

have Pr[X = x| \scrE ] =
\prod k
i=1 p

\prime \prime 
i (xi), which proves that the distribution of coordinates

in X given \scrE is still independent with each coordinate distributed according to its
probability mass function p\prime \prime i .

We now prove Lemma 4.3 by applying Lemma 4.6 thrice. We refer to functions
pi, which describe the probability of each coordinate cooperating, as cooperation prob-
ability functions.

Lemma 4.7. Let \scrD be an independent distribution of assignments of vertices in
V \star to [m]. Let \scrC be a nonzero probability m-configuration that can be constructed by
EmulatePhase for \scrD . Let V \prime 

 \star be the set of vertices of V \star that are not fixed by \scrC . Then
\scrD [\scrC ] is an independent distribution of vertices in V \prime 

 \star on [m].

Proof. \scrC can be expressed as

\scrC =
\bigl( 
\{ R \star i \} i\in [m], \{ H \star 

i \} i\in [m], \{ F  \star i \} i\in [m]

\bigr) 
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ROUND COMPRESSION STOC18-23

for some subsets R \star i , H
 \star 
i , and F  \star i of V \star , where i \in [m]. We write \Phi to denote the

random assignment of vertices to sets selected in line 1 of EmulatePhase. \Phi is a
random variable distributed according to \scrD .

Let \scrE R be the event that for all i \in [m], the reference set Ri generated for the
ith induced subgraph by LocalPhase equals exactly R \star i . A vertex v that is assigned
to a set Vi is included in Ri with probability exactly \mu R, independently of other
vertices. Hence once we fix an assignment \varphi : V \star \rightarrow [m] of vertices to sets Vi, we can
express the probability of \scrE R as a product of probabilities that each vertex cooperates.
More formally, Pr[\scrE R| \Phi = \varphi ] =

\prod 
v\in V \star 

qv(\varphi (v)) for cooperation probability functions
qv : [m] \rightarrow [0, 1] defined as follows.

\bullet If v \in 
\bigcup 
i\in [m]R

 \star 
i , there is exactly one i \in [m] such that v \in R \star i . If v is not

assigned to Vi, \scrE R cannot occur. If it is, v cooperates with \scrE R with probability
exactly \mu R, i.e., the probability of the selection for Ri. For this kind of v, the
cooperation probability function is

qv(i)
def
=

\Biggl\{ 
\mu R if v \in R \star i ,

0 if v \not \in R \star i .

\bullet If v \not \in 
\bigcup 
i\in [m]R

 \star 
i , v cooperates with \scrE R if it is not selected for R\varphi (v), indepen-

dently of its assignment \varphi (v), which happens with probability exactly 1 - \mu R.
Therefore, the cooperation probability can be defined as qv(i)

def
= 1  - \mu R for

all i \in [m].
We invoke Lemma 4.6 to conclude that the conditional distribution of values of \Phi 
given \scrE R is independent as well.

We now define an event \scrE H where both \scrE R occurs and for all i \in [m], Hi, the set
of heavy vertices constructed for the ith subgraph equals exactly H \star 

i . We want to
show that the conditional distribution of values of \Phi given \scrE H is independent. Note
that if \Phi is selected from the conditional distribution given \scrE R (i.e., all sets Ri are
as expected) and we fix the assignment \phi : V \star \rightarrow [m] of vertices to sets Vi, then
each vertex v \in V \star is assigned to H\phi (v)---this the only set Hi to which it can be
assigned---independently of other vertices. As a result, we can express the probability
of \scrE H given \scrE R and \varphi being the assignment as a product of cooperation probabilities
for each vertex. More precisely, Pr[\scrE H | \Phi = \varphi , \scrE R] =

\prod 
v\in V \star 

q\prime v(\varphi (v)) for cooperation
probability functions q\prime v : [m] \rightarrow [0, 1] defined as follows, where \Delta  \star is the threshold
used in the m executions of LocalPhase.

\bullet If v \in 
\bigcup 
i\in [m]H

 \star 
i , then there is exactly one i such that v \in H \star 

i . \scrE H can only
occur if v is included in the corresponding Hi. This cannot happen if v is not
assigned to the corresponding Vi by \varphi . If v is assigned to this Vi, it has to be
selected for Hi, which happens with probability \mu H (| N(v) \cap R \star i | /(\mu R\Delta  \star )).
The cooperation probability function can be written in this case as

q\prime v(i)
def
=

\Biggl\{ 
\mu H(| N(v) \cap R \star i | /(\mu R\Delta  \star )) if v \in H \star 

i ,

0 if v \not \in H \star 
i .

\bullet If v \not \in 
\bigcup 
i\in [m]H

 \star 
i , v cannot be included in Hi corresponding to the set Vi

to which it is assigned for \scrE H to occur. This happens with probability 1  - 
\mu H(| N(v) \cap R \star i | /(\mu R\Delta  \star )). Hence, we can define

q\prime v(i)
def
= 1 - \mu H(| N(v) \cap R \star i | /(\mu R\Delta  \star )) for all i \in [m].
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STOC18-24 CZUMAJ ET AL.

We can now invoke Lemma 4.6 to conclude that the distribution of values of \Phi given
\scrE H is independent.

Finally, we define \scrE F to be the event where both \scrE H occurs and for each i \in [m],
Fi, the set of friends selected for the ith induced subgraph, equals exactly F  \star i . We
observe that once \Phi is fixed to a specific assignment \varphi : V \star \rightarrow [m] and \scrE H occurs (i.e.,
all sets Ri and Hi are as in \scrC ), then each vertex is independently included in F\varphi (v)
with some specific probability that depends only on H\varphi (v), which is already fixed. In
this setting, we can therefore express the probability of \scrE F , which exactly specifies the
composition of sets Fi, as a product of values provided by some cooperation probability
functions q\prime \prime v : [m] \rightarrow [0, 1]. More precisely, Pr[\scrE F | \Phi = \varphi , \scrE H ] =

\prod 
v\in V \star 

q\prime \prime v (\varphi (v)) for q
\prime \prime 
v

that we define next.
\bullet If v \in 

\bigcup 
i\in [m] F

 \star 
i , then there is exactly one i such that v \in F  \star i . \scrE F cannot

occur if v is not assigned to Vi and selected for Fi. Hence, the cooperation
probability function for v is

q\prime \prime v (i)
def
=

\Biggl\{ 
\mu F (| N(v) \cap H \star 

i | /\Delta  \star ) if v \in F  \star i ,

0 if v \not \in F  \star i .

\bullet If v \not \in 
\bigcup 
i\in [m] F

 \star 
i , to whichever set Vi vertex v is assigned, it should not be

included in Fi in order for \scrE F to occur. Hence,

q\prime \prime v (i)
def
= 1 - \mu F (| N(v) \cap H \star 

i \star ,t| /\Delta t).

We invoke Lemma 4.6 to conclude that the distribution of values of \Phi given \scrE F is
independent as well. This is a distribution on assignments for the entire set V \star . If we
restrict it to assignments of V \prime 

 \star \subseteq V \star , we obtain a distribution that first, is independent
as well and, second, equals exactly \scrD [\scrC ].

4.4. Near uniformity. In this section we prove Lemma 4.4. We begin by show-
ing a useful property of \mu H (see Table 2 for the definition). Recall that GlobalAlg
selects H, the set of heavy vertices, by taking all vertices of degree at least \Delta /2. In
LocalPhase the degree estimate of each vertex depends on the number of neighbors
in the reference set in the vertex's induced subgraph. We want the decision taken
for each vertex to be approximately the same, independently of which subgraph it
is assigned to. Therefore, we use \mu H , a function that specifies the probability of
the inclusion in the set of heavy vertices and is relatively insensitive to small argu-
ment changes. The next lemma proves that this is indeed the case. Small additive
changes to the parameter x to \mu H have small multiplicative impact on both \mu H(x)
and 1 - \mu H(x).

Lemma 4.8 (insensitivity of \mu H). Let \delta \in [0, (\alpha /2) - 1] = [0, (48 lnn) - 1]. For any
pair x and x\prime of real numbers such that | x - x\prime | \leq \delta ,

\mu H(x\prime ) \in J\mu H(x)(1\pm \alpha \delta )K

and
1 - \mu H(x\prime ) \in J(1 - \mu H(x))(1\pm \alpha \delta )K .

Proof. We define an auxiliary function f : \BbbR \rightarrow [0, 1]:

f(r)
def
=

\Biggl\{ 
1
2 exp

\bigl( 
\alpha 
2 r
\bigr) 

if r \leq 0,

1 - 1
2 exp

\bigl( 
 - \alpha 

2 r
\bigr) 

if r > 0.
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It is easy to verify that for all r \in \BbbR , \mu H(r) = f(r - 1/2) and 1 - \mu H(r) = f( - (r - 1/2)).
Therefore, in order to prove the lemma, it suffices to prove that for any r and r\prime such
that | r  - r\prime | \leq \delta ,

(4.1) f(r)(1 - \alpha \delta ) \leq f(r\prime ) \leq f(r)(1 + \alpha \delta ),

i.e., a small additive change to the argument of f has a limited multiplicative impact
on the value of f .

Note that f is differentiable in both ( - \infty , 0) and (0,\infty ). Additionally, it is
continuous in the entire range---the left and right branch of the function meet at
0---and both the left and right derivatives at 0 are equal. This implies that it is
differentiable at 0 as well. Its derivative is

f \prime (r) =

\Biggl\{ 
\alpha 
4 \cdot exp

\bigl( 
\alpha 
2 r
\bigr) 

if r \leq 0,
\alpha 
4 \cdot exp

\bigl( 
 - \alpha 

2 r
\bigr) 

if r > 0,

which is positive for all r and, therefore, f is strictly increasing. Note that f \prime is
increasing in ( - \infty , 0] and decreasing in [0,\infty ). Hence the global maximum of f \prime 

equals f \prime (0) = \alpha /4.
In order to prove inequality 4.1 for all r and r\prime such that | r - r\prime | \leq \delta , we consider

two cases. Suppose first that r \geq 0. By the upper bound on the derivative of f ,

f(r) - \alpha 

4
\cdot | r  - r\prime | \leq f(r\prime ) \leq f(r) +

\alpha 

4
\cdot | r  - r\prime | .

Since r \geq 0, f(r) \geq 1/2. This leads to

f(r) - f(r) \cdot \alpha 
2
\cdot | r  - r\prime | \leq f(r\prime ) \leq f(r) + f(r) \cdot \alpha 

2
\cdot | r  - r\prime | .

By the bound on | r  - r\prime | ,

f(r)(1 - \alpha \delta ) \leq f(r\prime ) \leq f(r)(1 + \alpha \delta ),

which finishes the proof in the first case.
Suppose now that r < 0. Since f is increasing, it suffices to bound the value of f

from below at r  - \delta and from above at r + \delta . For r  - \delta , we obtain

f(r  - \delta ) =
1

2
exp

\Bigl( \alpha 
2
(r  - \delta )

\Bigr) 
= f(r) exp

\Bigl( 
 - \alpha 
2
\delta 
\Bigr) 

\geq f(r)
\Bigl( 
1 - \alpha 

2
\delta 
\Bigr) 
\geq f(r)(1 - \alpha \delta ).

For r + \delta , let us first define a function g : \BbbR \rightarrow \BbbR as

g(y)
def
=

1

2
exp

\Bigl( \alpha 
2
y
\Bigr) 
.

For y \leq 0, f(y) = g(y). For y > 0, g\prime (y) \geq f \prime (y) and, hence, for any y \in \BbbR ,
g(y) \geq f(y). As a result, we obtain

f(r + \delta ) \leq g(r + \delta ) =
1

2
exp

\Bigl( \alpha 
2
(r + \delta )

\Bigr) 
= f(r) \cdot exp

\Bigl( \alpha 
2
\delta 
\Bigr) 
.

By the bound on \delta in the lemma statement, \alpha 2 \delta \leq 1. It follows from the convexity of
the exponential function that for any y \in [0, 1], exp(y) \leq y \cdot exp(1)+(1 - y) \cdot exp(0) \leq 
3y + (1 - y) = 1 + 2y. Continuing the reasoning,

f(r + \delta ) \leq f(r) \cdot 
\Bigl( 
1 + 2 \cdot \alpha 

2
\delta 
\Bigr) 
= f(r)(1 + \alpha \delta ),

which finishes the proof of inequality (4.1).
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The main result of this section is Lemma 4.4 that states that if a distribution \scrD 
of vertex assignments is near uniform, then EmulatePhase constructs a configuration
\scrC such that \scrD [\scrC ] is near uniform as well and, also, the maximum degree in the graph
induced by the vertices not removed by EmulatePhase is bounded.

Lemma 4.9. Let \Delta , G \star = (V \star , E \star ), m, and \scrD be parameters for EmulatePhase

such that
\bullet \scrD is an independent and \epsilon -near uniform distribution on assignments of ver-
tices V \star to [m] for \epsilon \in [0, (200 lnn) - 1];

\bullet \Delta 
m \geq 4000\mu  - 2

R ln2 n.
Let \scrC be an m-configuration constructed by EmulatePhase. With probability at least
1 - n - 4 both the following properties hold:

\bullet The maximum degree in the graph induced by the vertices not fixed in \scrC is
bounded by 3

4\Delta .

\bullet \scrD [\scrC ] is 60\alpha ((\Delta m ) - 1/4 + \epsilon )-near uniform.

Proof overview (of Lemma 4.4). This is the most intricate proof of the entire
paper. We therefore provide a short overview. First, we list again the variables in
EmulatePhase and LocalPhase to which we refer in the proof and define additional
convenient symbols. Then we introduce five simple random events (Events 1--5) that
capture properties needed to prove Lemma 4.4. In Claim 4.10, we show that the
probability of all these events occurring simultaneously is high. The proof of the
claim follows mostly from a repetitive application of the Chernoff bound. In the
next claim, Claim 4.11, we show that the occurrence of all the events has a few
helpful consequences. First, high-degree vertices get removed in the execution of
EmulatePhase (which is one of our final desired properties). Second, each vertex v
that is not fixed in \scrC has a very similar number of neighbors in all sets Ri and it has
a very similar number of neighbors in all sets Hi. In the final proof of Lemma 4.4,
we use the fact that this implies that to whichever set Vi vertex v was assigned in
EmulatePhase, the probability of its removal in EmulatePhase was more or less the
same. This leads to the conclusion that if v was distributed nearly uniformly in \scrD , it
is distributed only slightly less uniformly in \scrD [\scrC ].

Notation. To simplify the presentation, for the rest of section 4.4 we assume that
\Delta , G \star = (V \star , E \star ), m, and \scrD are the parameters to EmulatePhase as in the statement
of Lemma 4.4. Additionally, for each i \in [m], Ri, Hi, and Fi are the sets constructed
by LocalPhase for the ith subgraph in the execution of EmulatePhase. We write \scrC to
denote the corresponding m-configuration, i.e., \scrC =

\bigl( 
\{ Ri\} i\in [m], \{ Hi\} i\in [m], \{ Fi\} i\in [m]

\bigr) 
.

Furthermore, for each v \in V \star , \widehat dv is the estimate of v's degree in the subgraph to which
it was assigned. This estimate is computed in line 2 of LocalPhase. We also use \Delta  \star 

to denote the rescaled threshold passed in all calls to LocalPhase, i.e., \Delta  \star =
\Delta 
m .

We also introduce additional notation, that is not present in EmulatePhase or

LocalPhase. For each v \in V \star , dv
def
= | N(v) \cap V \star | , i.e., dv is the degree of v in G \star . For

each vertex v \in V \star , we also introduce a notion of its weight : wv
def
= \mu H(dv/\Delta ), which

can be seen as a very rough approximation of v's probability of being selected for the
set of heavy vertices. For any v \in V \star and U \subseteq V \star , we also introduce notation for the
total weight of v's neighbors in U :

Wv(U)
def
=

\sum 
u\in N(v)\cap U

wu.

Finally, for all i \in [m] and v \in V \star , we also introduce a slightly less intuitive notion
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of the expected number of heavy neighbors of v in the ith subgraph after the degree
estimates are fixed in line 2 of LocalPhase and before vertices are assigned to the
heavy set in line 3:

hv,i
def
=

\sum 
u\in N(v)\cap Vi

\mu H

\Bigl( \widehat du/\Delta  \star 

\Bigr) 
.

Obviously, each hv,i is a random variable.
Convenient random events. We now list five random events that we hope all

occur simultaneously with high probability. The first event intuitively is the event
that high-degree vertices are likely to be included in the set of heavy vertices in line 3
of LocalPhase.

Event 1. For each vertex v \in V \star such that dv \geq 3
4\Delta ,

\mu H

\Bigl( \widehat dv/\Delta  \star 

\Bigr) 
\geq 1 - 1

2
n - 6.

Another way to define this event would be to state that \widehat dv for such vertices v is
high, but this form is more suitable for our applications later. The next event is the
event that all such vertices are in fact classified as heavy.

Event 2. Each vertex v \in V \star such that dv \geq 3
4\Delta belongs to

\bigcup 
i\in [m]Hi.

The next event is the event that low-degree vertices have a number of neighbors in
each set Ri close to the mean. This implies that if we were able to move a low-degree
vertex v to Vi for any i \in [m], its estimated degree \widehat dv would not change significantly.

Event 3. For each vertex v \in V \star such that dv <
3
4\Delta and each i \in [m],\bigm| \bigm| \bigm| \bigm| 1

\mu R
| N(v) \cap Ri|  - 

dv
m

\bigm| \bigm| \bigm| \bigm| \leq \Delta 
3/4
 \star +

3

4
\epsilon \Delta  \star .

As a reminder, we useWv(U) to denote the expected number of vertices in N(v)\cap 
U that are selected as heavy, where every vertex u is selected with respect to its global
degree du. The next event shows that Wv(Vi) does not deviate much from its mean.

Event 4. For each vertex v \in V \star such that dv <
3
4\Delta and each i \in [m],

| Wv(Vi) - Wv(V \star )/m| \leq \Delta 
3/4
 \star +

3

4
\epsilon \Delta  \star .

Recall that hv,i intuitively expresses the expected number of v's neighbors in the
ith induced subgraph at some specific stage in the execution of LocalPhase for the ith
induced subgraph. The final event is the event that for all bounded hv,i, the actual
number of v's neighbors in Hi does not deviate significantly from hv,i.

Event 5. For each vertex v \in V \star and each i \in [m], if hv,i \leq 2\Delta  \star , then

| | N(v) \cap Hi|  - hv,i| \leq \Delta 
3/4
 \star .

High probability of the random events. We now show that the probability of all
the events occurring is high. The proof follows mostly via elementary applications of
the Chernoff bound.

Claim 4.10. If \epsilon \in [0, 1/100] and \Delta 
m \geq 4000\mu  - 2

R ln2 n, then Events 1--5 occur
simultaneously with probability at least 1 - n - 4.
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STOC18-28 CZUMAJ ET AL.

Proof. We consider all events in order and later show by the union bound that
all of them hold simultaneously with high probability. In the proof of the lemma, we
extensively use the fact that \Delta  \star =

\Delta 
m \geq 4000\mu  - 2

R ln2 n = 4 \cdot 1015 \cdot ln4 n.
First, we consider Events 1 and 2, which we handle together. Consider a vertex v

such that dv \geq 3
4\Delta . Let i \star be the index of the set to which it is assigned. Since \scrD is

\epsilon -near uniform, the expectation of | N(v) \cap Ri \star | , the number of v's neighbors in Ri \star ,
is at least (1  - \epsilon ) 34\mu R

\Delta 
m \geq 297

400\mu R\Delta  \star . Since vertices are both assigned to machines
independently and included in the reference set independently as well, we can apply
Lemma 4.1 to bound the deviation with high probability. The probability that the
number of neighbors is smaller than 9

10 \cdot 297
400\mu R\Delta  \star \geq 5

8\mu R\Delta  \star is at most

2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 

1

10

\biggr) 2

\cdot 297
400

\mu R\Delta  \star 

\Biggr) 
\leq 2 exp

\biggl( 
 - 1

405
\mu R\Delta  \star 

\biggr) 
\leq 2n - 9 \leq 1

2
n - 6.

Hence with probability at least 1 - 1
2n

 - 6, \widehat dv \geq 5
8\Delta  \star and \mu H(\widehat dv/\Delta  \star ) \geq 1 - 1

2n
 - 6. If

this is the case, v is not included in the set of heavy vertices in line 3 of LocalPhase
with probability at most 1

2n
 - 6. Therefore, v has the desired value of \mu H(\widehat dv/\Delta  \star ) and

belongs to Hi \star with probability at least 1 - n - 6. By the union bound, this occurs for
all high-degree vertices with probability at least 1  - n - 5, in which case both Events
1 and 2 occur.

We now show that Event 3 occurs with high probability. Let v be an arbitrary

vertex such that dv <
3
4\Delta and let i \in [m]. Let Xv,i

def
= | N(v) \cap Ri| . Xv,i is a random

variable. Since \scrD is \epsilon -near uniform, \BbbE [Xv,i] \in J(1\pm \epsilon )\mu Rdv/mK. In particular, due
to the bounds on dv and \epsilon , E[Xv,i] \leq \mu R\Delta  \star . Due to the independence, we can use
Lemma 4.1 to bound the deviation of Xv,i from its expectation. We have

Pr
\Bigl( 
| Xv,i  - \BbbE [Xv,i]| > \mu R\Delta 

3/4
 \star 

\Bigr) 
\leq 2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 

1

\Delta 
1/4
 \star 

\biggr) 2

\cdot \mu R\Delta  \star 

\Biggr) 

= 2 exp

\biggl( 
 - 1

3
\mu R\Delta 

1/2
 \star 

\biggr) 
\leq 2n - 21.

Hence with probability 1 - 2n - 21, we have\bigm| \bigm| \bigm| \bigm| Xv,i  - \mu R
dv
m

\bigm| \bigm| \bigm| \bigm| \leq | Xv,i  - \BbbE [Xv,i]| +
\bigm| \bigm| \bigm| \bigm| \BbbE [Xv,i] - \mu R

dv
m

\bigm| \bigm| \bigm| \bigm| \leq \mu R\Delta 
3/4
 \star + \epsilon \mu R

dv
m

\leq \mu R\Delta 
3/4
 \star +

3

4
\epsilon \mu R\Delta  \star .

By dividing both sides by \mu R, we obtain the desired bound\bigm| \bigm| \bigm| \bigm| Xv,i

\mu R
 - dv
m

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 1

\mu R
| N(v) \cap Ri|  - 

dv
m

\bigm| \bigm| \bigm| \bigm| \leq \Delta 
3/4
 \star +

3

4
\epsilon \Delta  \star .

By the union bound, this holds for all v and i of interest---and, therefore, Event 3
occurs---with probability at least 1 - | V \star | \cdot m \cdot 2n - 21 \geq 1 - n - 5.

We now move on to Event 4. Consider a vertex v such that dv < 3
4\Delta and

i \in [m]. Note that since the weight of every vertex is at most 1, Wv(V \star )/m \leq dv/m <
3
4\Delta  \star . Since \scrD [\scrC ] is \epsilon -near uniform, \BbbE [Wv(Vi)] \in J(1\pm \epsilon )Wv(V \star )/mK. In particular,
\BbbE [Wv(Vi)] \leq 101

100Wv(V \star )/m \leq 101
100 \cdot 

3
4\Delta  \star \leq \Delta  \star . Since vertices are assigned to machines
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ROUND COMPRESSION STOC18-29

independently, we can apply Lemma 4.1 to bound the deviation of Wv(Vi) from the
expectation:

Pr
\Bigl( 
| Wv(Vi) - \BbbE [Wv(Vi)]| > \Delta 

3/4
 \star 

\Bigr) 
\leq 2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 

1

\Delta 
1/4
 \star 

\biggr) 2

\cdot \Delta  \star 

\Biggr) 

= 2 exp

\biggl( 
 - 1

3
\Delta 

1/2
 \star 

\biggr) 
\leq 2n - 21.

As a result, with probability at least 1 - 2n - 21,

| Wv(Vi) - Wv(V \star )/m| \leq | Wv(Vi) - \BbbE [Wv(Vi)]| + | \BbbE [Wv(Vi)] - Wv(V \star )/m| 

\leq \Delta 
3/4
 \star + \epsilon Wv(V \star )/m \leq \Delta 

3/4
 \star + \epsilon dv/m \leq \Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star .

By the union bound, this holds for all v and i of interest---and therefore, Event 4
occurs---with probability at least 1 - | V \star | \cdot m \cdot 2n - 21 \geq 1 - n - 5.

To show that Event 5 occurs with high probability, recall first that hv,i is the
expected number of v's neighbors to be added in line 3 to Hi in the execution of
LocalPhase for the ith subgraph. Note that the decision of adding a vertex to Hi

is made independently for each neighbor of v. Fix a v \in V \star and i \in [m] such that
hv,i \leq 2\Delta  \star . We apply Lemma 4.1 to bound the probability of a large deviation from
the expectation:

Pr
\Bigl( 
| | N(v) \cap Hi|  - hv,i| > \Delta 

3/4
 \star 

\Bigr) 
\leq 2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 

1

2\Delta 
1/4
 \star 

\biggr) 2

\cdot 2\Delta  \star 

\Biggr) 

= 2 exp

\biggl( 
 - 1

6
\Delta 

1/2
 \star 

\biggr) 
\leq 2n - 10.

By the union bound the probability that this bound does not hold for some v and i
such that hv,i \leq 2\Delta  \star is by the union bound at most | V \star | \cdot m \cdot 2n - 10 \leq n - 5. Hence,
Event 5 occurs with probability at least 1 - n - 5.

In summary, Evemts 1--5 occur simultaneously with probability at least 1  - 4 \cdot 
n - 5 \geq 1 - n - 4 by another application of the union bound.

Consequences of the random events. We now show that if all the random events
occur, then a few helpful properties hold for every vertex v that is not fixed by the
constructed configuration \scrC . Namely, v's degree is at most 3

4\Delta , the number of v's
neighbors is similar in all sets Ri is approximately the same, and the number of v's
neighbors is similar in all sets Hi.

Claim 4.11. If Events 1--5 occur for \epsilon \in [0, (200 lnn) - 1] and \Delta 
m \geq 4000\mu  - 2

R ln2 n,
then the following properties hold for every vertex v \in V \star that is not fixed by \scrC :

1. dv <
3
4\Delta .

2. There exists \chi v such that for all i \in [m],

| N(v) \cap Ri| /\mu R \in 
s
\chi v \pm 

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) {
.

3. There exists \psi v \in 
\bigl[ 
0, 34\Delta  \star 

\bigr] 
such that for all i \in [m],

| N(v) \cap Hi| \in 
r
\psi v \pm \alpha 

\Bigl( 
\Delta 

3/4
 \star + \epsilon \Delta  \star 

\Bigr) z
.
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STOC18-30 CZUMAJ ET AL.

Proof. We use in the proof of the claim the fact that \Delta  \star =
\Delta 
m \geq 4000\mu  - 2

R ln2 n =

4 \cdot 1015 \cdot ln4 n. To prove the lemma, we fix a vertex v that is not fixed by \scrC . The first
property is directly implied by Event 2. Suppose that dv \geq 3

4\Delta . Then v is included
in the Hi corresponding to the subgraph to which it has been assigned and v is fixed
by \scrC . We obtain a contradiction that implies that dv <

3
4\Delta .

For the second property, we now know that dv <
3
4\Delta . The property follows then

directly from Event 3 with \chi v
def
= dv/m.

The last property requires a more complicated reasoning. We set

\psi v
def
= Wv(V \star )/m <

3

4
\Delta  \star .

Consider any i \in [m]. By Event 4,

(4.2) Wv(Vi) \in 
s
\psi v \pm 

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) {
.

Consider now an arbitrary u \in V \star . We bound the difference between wu = \mu H(du/\Delta ),
which can be seen as the ideal probability of the inclusion in the set of heavy vertices,
and \mu H(\widehat du/\Delta  \star ), the actual probability of this event in line 3 of the appropriate

execution of LocalPhase. Let \delta  \star 
def
= \alpha (\Delta 

 - 1/4
 \star + 3

4\epsilon ). We consider two cases.
\bullet If du <

3
4\Delta , by Event 3, the monotonicity of \mu H , and Lemma 4.8,

\mu H

\Bigl( \widehat du/\Delta  \star 

\Bigr) 
\in 

s
\mu H

\biggl( 
du
\Delta 

\pm 
\biggl( 
\Delta 

 - 1/4
 \star +

3

4
\epsilon 

\biggr) \biggr) {

\subseteq Jwu \cdot (1\pm \delta  \star )K .

Note that Lemma 4.8 is applied properly because \Delta 
 - 1/4
 \star + 3

4\epsilon \leq (200 lnn) - 1+
(200 lnn) - 1 \leq (48 lnn) - 1.

\bullet If du \geq 3
4\Delta , by Event 1, \mu H(\widehat du/\Delta  \star ) \in [1  - 1

2n
 - 6, 1]. Concurrently, wu \in 

[\mu H(3/4), 1] = [1 - 1
2n

 - 12, 1]. Because \Delta  \star is relatively small, i.e., \Delta  \star \leq n,

\mu H

\Bigl( \widehat du/\Delta  \star 

\Bigr) 
\in 

r
wu

\Bigl( 
1\pm \Delta 

 - 1/4
 \star 

\Bigr) z
\subseteq Jwu \cdot (1\pm \delta  \star )K ,

which is the same bound as in the previous case.
It follows from the bound that we just obtained and the definitions of Wv and hv,i
that

hv,i =
\sum 

u\in N(v)\cap Vi

\mu H

\Bigl( \widehat du/\Delta  \star 

\Bigr) 
\in 

u

v(1\pm \delta  \star ) \cdot 
\sum 

u\in N(v)\cap Vi

wu

}

~

= JWv (Vi) \cdot (1\pm \delta  \star )K .(4.3)

We now combine bounds (4.2) and (4.3):

hv,i

\in 
\biggl[ 
\psi v (1 - \delta  \star ) - 

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) 
(1 + \delta  \star ) , \psi v (1 + \delta  \star ) +

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) 
(1 + \delta  \star )

\biggr] 
\subseteq 

s
\psi v \pm 

\biggl( 
\psi v\delta  \star +

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) 
(1 + \delta  \star )

\biggr) {
.
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Due to the lower bound on \Delta  \star , we obtain \delta  \star \leq \alpha ((200 lnn) - 1 + (200 lnn) - 1) \leq 1.
This enables us to simplify and further transform the bound on hv,i:

hv,i \in 
s
\psi v \pm 

\biggl( 
\psi v\delta  \star + 2

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) \biggr) {

\subseteq 
s
\psi v \pm 

\biggl( 
3

4
\alpha \Delta 

3/4
 \star +

9

16
\alpha \epsilon \Delta  \star + 2\Delta 

3/4
 \star +

3

2
\epsilon \Delta  \star 

\biggr) {

\subseteq 
s
\psi v \pm \alpha 

\biggl( 
4

5
\Delta 

3/4
 \star + \epsilon \Delta  \star 

\biggr) {
.

By applying the bound on \Delta  \star again, we obtain a bound on the magnitude of the
second term in the above bound:

\alpha 

\biggl( 
4

5
\Delta 

3/4
 \star + \epsilon \Delta  \star 

\biggr) 
= \alpha 

\biggl( 
4

5
\Delta 

 - 1/4
 \star + \epsilon 

\biggr) 
\Delta  \star 

\leq 96 lnn

\biggl( 
1

200 lnn
+

1

200 lnn

\biggr) 
\Delta  \star 

\leq \Delta  \star .

This implies that hv,i \leq \psi v + \Delta  \star \leq 2\Delta  \star . The condition in Event 5 holds and,

therefore, | | N(v) \cap Hi|  - hv,i| \leq \Delta 
3/4
 \star . We combine this with the bound on hv,i to

obtain

| N(v) \cap Hi| \in 
s
\psi v \pm 

\biggl( 
\alpha 
4

5
\Delta 

3/4
 \star + \alpha \epsilon \Delta  \star +\Delta 

3/4
 \star 

\biggr) {
\subseteq 

r
\psi v \pm \alpha 

\Bigl( 
\Delta 

3/4
 \star + \epsilon \Delta  \star 

\Bigr) z
.

Wrapping up the proof of near uniformity. We now finally prove Lemma 4.4.
Recall that it states that an \epsilon -near uniform \scrD is very likely to result in a near uniform
\scrD [\scrC ] with a slightly worse parameter and that all vertices not fixed by \scrC have bounded
degree. The proof combines the last two claims: Claims 4.10 and 4.11. We learn
that \scrC , the m-configuration constructed in the process, is very likely to have the
properties listed in Claim 4.11. One of those properties is exactly the property that
all vertices not fixed by \scrC have bounded degree. Hence we have to prove only the near
uniformity property. We accomplish this by observing that the probability of \scrC equal
to a specific m-configuration \scrC  \star with good properties---those in Claim 4.11---does not
depend significantly on which induced subgraph a given vertex v not fixed in \scrC  \star is
assigned. This can be used to show that the conditional distribution of v given that
\scrC = \scrC  \star is near uniform as desired.

Proof of Lemma 4.4. By combining Claims 4.10 and 4.11, we learn that with
probability at least 1 - n - 4, all properties listed in the statement of Claim 4.11 hold
for \scrC , the configuration constructed by EmulatePhase. Since one of the properties is
exactly the same as in the statement of Lemma 4.4, it suffices to prove the other one:

that \scrD [\scrC ] is 60\alpha (\Delta  - 1/4
 \star + \epsilon )-near uniform for \scrC with this set of properties.

Fix \widetilde \scrC = (\{ \widetilde Ri\} i\in [m], \{ \widetilde Hi\} i\in [m], \{ \widetilde Fi\} i\in [m]) to be anm-configuration that has nonzero
probability when EmulatePhase is run for \scrD and has the properties specified by
Claim 4.11. Consider an arbitrary vertex v \in V \star . In order to prove the near uni-
formity of \scrD [\widetilde \scrC ], we show that v is assigned by it almost uniformly to [m]. Let \scrE be

the event that EmulatePhase constructs \widetilde \scrC , i.e., \scrC = \widetilde \scrC . For each i \in [m], let \scrE \rightarrow i be
the event that v is assigned to the ith induced subgraph. Let p : [m] \rightarrow [0, 1] be the

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 1

8.
30

.8
.2

15
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC18-32 CZUMAJ ET AL.

probability mass function describing the probability of the assignment of v to each of
the m subgraphs in \scrD . Obviously, p(i) = Pr[\scrE \rightarrow i] for all i \in [m]. Due to the \epsilon -near
uniformity of \scrD , p(i) =

q
1
m (1\pm \epsilon )

y
.

For each i \in [m], let qi
def
= Pr[\scrE | \scrE \rightarrow i]. In order to express all qi's in a suitable form,

we conduct a thought experiment. Suppose v were not present in the graph, but the
distribution of all the other vertices in the modified \scrD remained the same. Let q \star be
the probability of \scrE , i.e., \scrC = \widetilde \scrC , in this modified scenario. How does the probability
of \scrE change if we add v back and condition on its assignment to a machine i? Note
first that conditioning on \scrE \rightarrow i does not impact the distribution of the other vertices,
because vertices are assigned to machines independently in \scrD . In order for \scrE still to
occur in this scenario, v cannot be assigned to any of \widetilde Ri, \widetilde Hi, or \widetilde Fi for which it is
considered. Additionally, as long as this is the case, v does not impact the behavior
of other vertices, which only depends on the content of these sets and independent
randomized decisions to include vertices. As a result we can express qi as a product
of q \star and three probabilities: of v not being included in sets \widetilde Ri, \widetilde Hi, or \widetilde Fi.
(4.4)

qi = q \star \cdot (1 - \mu R) \cdot 

\left(  1 - \mu H

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Ri\bigm| \bigm| \bigm| /\mu R

\Delta  \star 

\right)  \right)  \cdot 

\left(  1 - \mu F

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Hi

\bigm| \bigm| \bigm| 
\Delta  \star 

\right)  \right)  .

Using the properties listed in Claim 4.11, we have\bigm| \bigm| \bigm| N(v) \cap \widetilde Ri\bigm| \bigm| \bigm| /\mu R \in 
s
\chi v \pm 

\biggl( 
\Delta 

3/4
 \star +

3

4
\epsilon \Delta  \star 

\biggr) {
,

and \bigm| \bigm| \bigm| N(v) \cap \widetilde Hi

\bigm| \bigm| \bigm| \in r
\psi v \pm \alpha 

\Bigl( 
\Delta 

3/4
 \star + \epsilon \Delta  \star 

\Bigr) z
,

where \chi v and \psi v are constants independent of machine i to which v has been assigned
and \psi \leq 3

4\Delta  \star . In the next step, we use these bounds to derive bounds on the
multiplicative terms in (4.4) that may depend on i. We also repeatedly use the
bounds \Delta  \star = \Delta 

m \geq 4000\mu  - 2
R ln2 n = 4 \cdot 1015 \cdot ln4 n and \epsilon \leq (200 lnn) - 1 from the

lemma statement. First, due to Lemma 4.8,

1 - \mu H

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Ri\bigm| \bigm| \bigm| /\mu R

\Delta  \star 

\right)  \in 
s
1 - \mu H

\biggl( 
\chi v
\Delta  \star 

\pm 
\biggl( 
\Delta 

 - 1/4
 \star +

3

4
\epsilon 

\biggr) \biggr) {

\subseteq 
s\biggl( 

1 - \mu H

\biggl( 
\chi v
\Delta  \star 

\biggr) \biggr) 
\cdot 
\biggl( 
1\pm \alpha 

\biggl( 
\Delta 

 - 1/4
 \star +

3

4
\epsilon 

\biggr) \biggr) {
.

(Note that the application of Lemma 4.8 was correct, because we have that \Delta 
 - 1/4
 \star +

3
4\epsilon \leq (200 lnn) - 1 + (200 lnn) - 1 < (96 lnn) - 1.) Second,

1 - \mu F

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Hi

\bigm| \bigm| \bigm| 
\Delta  \star 

\right)  \in 
s
1 - \mu F

\biggl( 
\psi v
\Delta  \star 

\pm \alpha 
\Bigl( 
\Delta 

 - 1/4
 \star + \epsilon 

\Bigr) \biggr) {
.

Since \psi v/\Delta  \star \leq 3
4 and \alpha (\Delta 

 - 1/4
 \star + \epsilon ) \leq (96 lnn) \cdot ((200 lnn) - 1 + (200 lnn) - 1) < 1, the

argument to \mu F in the above bound is always less than 4, and therefore, only one
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branch of \mu F 's definitions gets applied. Hence, we can eliminate \mu F :

1 - \mu F

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Hi

\bigm| \bigm| \bigm| 
\Delta  \star 

\right)  \in 
s
1 - \psi v

4\Delta  \star 
\pm \alpha 

4

\Bigl( 
\Delta 

 - 1/4
 \star + \epsilon 

\Bigr) {
.

Since 1 - \psi v

4\Delta  \star 
\geq 3

4 , we can further transform the bound to

1 - \mu F

\left(  
\bigm| \bigm| \bigm| N(v) \cap \widetilde Hi

\bigm| \bigm| \bigm| 
\Delta  \star 

\right)  \in 
s\biggl( 

1 - \psi v
4\Delta  \star 

\biggr) \Bigl( 
1\pm \alpha 

3

\Bigl( 
\Delta 

 - 1/4
 \star + \epsilon 

\Bigr) \Bigr) {
.

Let \delta 1
def
= \alpha (\Delta 

 - 1/4
 \star + 3

4\epsilon ) and \delta 2
def
= \alpha 

3 (\Delta 
 - 1/4
 \star + \epsilon ). As a result, every qi can be

expressed as qi = \eta v\lambda i\lambda 
\prime 
i, where \eta v is a constant independent of i, \lambda i \in J1\pm \delta 1K, and

\lambda \prime i \in J1\pm \delta 2K. For every i, we can also write

Pr[\scrE \wedge \scrE \rightarrow i] = Pr[\scrE | \scrE \rightarrow i] \cdot Pr[\scrE \rightarrow i] = \eta v\lambda i\lambda 
\prime 
i \cdot p(i) =

\eta v
m
\lambda i\lambda 

\prime 
i\lambda 

\prime \prime 
i ,

where \lambda \prime \prime i \in J1\pm \epsilon K. We now express the conditional probability of v being assigned
to the ith subgraph in \scrD given \scrE :

Pr[\scrE \rightarrow i| \scrE ] =
Pr[\scrE \wedge \scrE \rightarrow i]\sum m
j=1 Pr[\scrE \wedge \scrE \rightarrow j ]

=
\lambda i\lambda 

\prime 
i\lambda 

\prime \prime 
i\sum m

j=1 \lambda j\lambda 
\prime 
j\lambda 

\prime \prime 
j

.

Note that for any i, this implies that

(4.5)
1

m
\cdot (1 - \delta 1)(1 - \delta 2)(1 - \epsilon )

(1 + \delta 1)(1 + \delta 2)(1 + \epsilon )
\leq Pr[\scrE \rightarrow i| \scrE ] \leq 

1

m
\cdot (1 + \delta 1)(1 + \delta 2)(1 + \epsilon )

(1 - \delta 1)(1 - \delta 2)(1 - \epsilon )
.

Observe that

\delta 1 \leq (96 lnn) \cdot 
\bigl( 
(7000 lnn) - 1 + (250 lnn) - 1

\bigr) 
< 1/2

and

\delta 2 \leq 1

3
\cdot (96 lnn) \cdot 

\bigl( 
(7000 lnn) - 1 + (200 lnn) - 1

\bigr) 
< 1/2.

Hence all of \delta 1, \delta 2, and \epsilon are at most 1/2. We can therefore transform (4.5) to

1

m
\cdot (1 - \delta 1)

2(1 - \delta 2)
2(1 - \epsilon )2

\leq Pr[\scrE \rightarrow i| \scrE ]

\leq 1

m
\cdot (1 + \delta 1)(1 + \delta 2)(1 + \epsilon )(1 + 2\delta 1)(1 + 2\delta 2)(1 + 2\epsilon )

and, then,

1

m
\cdot (1 - 2\delta 1  - 2\delta 2  - 2\epsilon ) \leq Pr[\scrE \rightarrow i| \scrE ] \leq 

1

m
\cdot (1 + 45\delta 1 + 45\delta 2 + 45\epsilon ).

Hence

Pr[\scrE \rightarrow i| \scrE ] \in 
s
1

m
\cdot (1\pm 45(\delta 1 + \delta 2 + \epsilon ))

{
\subseteq 

s
1

m
\cdot 
\Bigl( 
1\pm 60\alpha 

\Bigl( 
\Delta 

 - 1/4
 \star + \epsilon 

\Bigr) \Bigr) {
,

which finishes the proof that \scrD [\widetilde \scrC ] is 60\alpha (\Delta  - 1/4
 \star + \epsilon )-near uniform.
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5. Parallel algorithm. In this section, we introduce our main parallel algo-
rithm. It builds on the ideas introduced in EmulatePhase. EmulatePhase randomly
partitions the graph into m induced subgraphs and runs LocalPhase on each of them,
which resembles a phase of GlobalAlg. As we have seen, the algorithm performs well
even if vertices are assigned to subgraphs not exactly uniformly so long as the as-
signment is fully independent. Additionally, with high probability, if we condition
on the configuration of sets Ri, Hi, and Fi that were removed, the distribution of
assignments of the remaining vertices is still nearly uniform and also independent.

These properties allow for the main idea behind the final parallel algorithm. We
partition vertices randomly into m induced subgraphs and then run LocalPhase mul-
tiple times on each of them with no repartitioning in the meantime. In each iteration,
for a given subgraph, we halve the local threshold \Delta  \star . This corresponds to multiple
phases of the original global algorithm. As long as we can show that this approach
leads to finding a large matching, the obvious gain is that multiple phases of the
original algorithm translate to O(1) parallel rounds. This approach enables our main
result: the parallel round complexity reduction from O(log n) to O((log log n)2).

Algorithm 5: ParallelAlg(G,S).
The final parallel matching algorithm.

Input:
\bullet graph G = (V,E) on n vertices
\bullet parameter S \in \BbbZ + such that S \leq n and S = n\Omega (1) (each machine uses O(S)

space)
Output: matching in G

1 \Delta \leftarrow n, V \prime \leftarrow V , M \leftarrow \emptyset 
2 while \Delta \geq n

S
(200 lnn)32 do

/* High-probability invariant: maximum degree in G[V \prime ] bounded by
3
2
\Delta */

3 m\leftarrow 
\biggl\lfloor \sqrt{} 

n\Delta 
S

\biggr\rfloor 
/* number of machines used */

4 \tau \leftarrow 
\bigl\lceil 

1
16

log120\alpha (\Delta /m)
\bigr\rceil 

/* number of phases to emulate */

5 Partition V \prime into m sets V1, . . . , Vm by assigning each vertex independently
uniformly at random.

6 foreach i \in [m] do in parallel
7 If the number of edges in G[Vi] is greater than 8S, Vi \leftarrow \emptyset .
8 for j \in [\tau ] do (Vi,Mi,j)\leftarrow LocalPhase

\bigl( 
i, G[Vi],\Delta /

\bigl( 
2j - 1m

\bigr) \bigr) 
9 V \prime \leftarrow 

\bigcup m
i=1 Vi

10 M \leftarrow M \cup 
\bigcup m

i=1

\bigcup \tau 
j=1 Mi,j

11 \Delta \leftarrow \Delta /2\tau 

12 Compute degrees of vertices V \prime in G[V \prime ] and remove from V \prime vertices of degree at
least 2\Delta .

13 Directly simulate M \prime \leftarrow GlobalAlg(G[V \prime ], 2\Delta ), using O(1) rounds per phase.
14 return M \cup M \prime 

We present ParallelAlg, our parallel algorithm, as Algorithm 5. We write S to
denote a parameter specifying the amount of space per machine. After the initial-
ization of variables, the algorithm enters the main loop in lines 2--11. The loop is
executed as long as \Delta , an approximate upper bound on the maximum degree in the
remaining graph, is large enough. The loop implements the idea of running multiple
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iterations of LocalPhase on each induced subgraph in a random partition. At the
beginning of the loop, the algorithm decides on m, the number of machines, and \tau ,
the number of phases to be emulated. Then it creates a random partition of the cur-
rent set of vertices that results in m induced subgraphs. Next for each subgraph, the
algorithm first runs a security check that the set of edges fits onto a single machine
(see line 7). If it does not, which is highly unlikely, the entire subgraph is removed
from the graph. Otherwise, the entire subgraph is sent to a single machine that runs
\tau consecutive iterations of LocalPhase. Then the vertices not removed in the execu-
tions of LocalPhase are collected for further computation and new matching edges
are added to the matching being constructed. During the execution of the loop, the
maximum degree in the graph induced by V \prime , the set of vertices to be considered,
is bounded by 3

2\Delta with high probability. Once the loop finishes, we remove from
the graph vertices of degree higher than 2\Delta ---there should be none---and we directly
simulate GlobalAlg on the remaining graph, using O(1) rounds per phase.

5.1. Some properties of thresholds. Before we analyze the behavior of the
algorithm, we observe that the value of \Delta 

m inside the main loop is at least polyloga-
rithmic and that the same property holds for the rescaled threshold that is passed to
LocalPhase.

Lemma 5.1. Consider a single iteration of the main loop of ParallelAlg (i.e.,
lines 2--11). Let \Delta and m be set as in this iteration. The following two properties
hold:

\bullet \Delta /m \geq (200 log n)16.
\bullet The threshold \Delta /(2j - 1m) passed to LocalPhase in line 8 is always at least
(\Delta /m)15/16 \geq 4000\mu  - 2

R ln2 n.

Proof. Let \tau be also as in this iteration of the loop. The smallest threshold

passed to LocalPhase is \Delta /(2\tau  - 1m). Let \lambda 
def
= S\Delta /n, where S is the parameter to

ParallelAlg. Due to the condition in line 2, \lambda \geq (200 lnn)32. Note that \Delta = \lambda n/S.
Hence m \leq 

\sqrt{} 
n\Delta /S = n

S

\surd 
\lambda . This implies that \Delta /m \geq 

\surd 
\lambda \geq (200 lnn)16, which

proves the first claim. Due to the definition of \tau ,

2\tau  - 1 \leq (120\alpha )\tau  - 1 \leq (\Delta /m)1/16.

This implies that

\Delta /(2\tau  - 1m) \geq (\Delta /m)15/16 \geq (200 lnn)15 > 4 \cdot 1015 \cdot ln4 n = 4000\mu  - 2
R ln2 n.

We also observe that the probability of any set of vertices deleted by the security
check in line 7 of ParallelAlg is low as long as the maximum degree in the graph
induced by the remaining vertices is bounded.

Lemma 5.2. Consider a single iteration of the main loop of ParallelAlg and let
\Delta and V \prime be as in that iteration. If the maximum degree in G[V \prime ] is bounded by 3

2\Delta ,
then the probability of any subset of vertices deleted in line 7 is n - 8.

Proof. Let m be as in the same iteration of the main loop of ParallelAlg. Con-
sider a single vertex v \in V \prime . The expected number of v's neighbors assigned to the
same subgraph is at most 3

2\Delta /m. Recall that due to Lemma 5.1, \Delta 
m \geq 200 lnn. Since

the assignment of vertices to machines is fully independent, by Lemma 4.1 (i.e., the
Chernoff bound), the probability that v has more than 2\Delta /m neighbors is bounded
by

2 exp

\Biggl( 
 - 1

3
\cdot 
\biggl( 
1

3

\biggr) 2

\cdot 3
2
\cdot \Delta 
m

\Biggr) 
\leq 2 exp

\biggl( 
 - 1

18
\cdot 200 lnn

\biggr) 
\leq n - 10.

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 1

8.
30

.8
.2

15
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC18-36 CZUMAJ ET AL.

Therefore, by the union bound, with probability 1  - n - 9, no vertex has more than
2\Delta neighbors in the same induced subgraph. As | V \prime | \leq n, the expected number of
vertices in each set Vi constructed in the iteration of the main loop is at most n/m \geq 
\Delta /m \geq 200 lnn. What is the probability that | Vi| > 2n/m? By the independence of
vertex assignments and Lemma 4.1, the probability of such event is at most

2 exp

\biggl( 
 - 1

3
\cdot n
m

\biggr) 
\leq 2 exp

\biggl( 
 - 1

3
\cdot 200 lnn

\biggr) 
\leq n - 10.

Again by the union bound, the event | Vi| \leq 2n/m, for all i simultaneously, occurs
with probability at least 1 - n - 9. Combining both bounds, with probability at least
1 - 2n - 9 \geq 1 - n - 8, all induced subgraphs have at most 2n/m vertices and the degree
of every vertex is bounded by 2\Delta /m. Hence the number of edges in one induced
subgraph is at most 1

2 \cdot 2n
m \cdot 2\Delta 

m = 2n\Delta 
m2 . By the definition of m and the setting of

parameters in the algorithm, m \geq 1
2

\surd 
n\Delta 
S , where S is the parameter to ParallelAlg.

This implies that the number of edges is at most 2n\Delta /( 12

\surd 
n\Delta 
S )2 = 8S in every

induced subgraph with probability 1 - n - 8, in which case no set Vi is deleted in line 7
of ParallelAlg.

5.2. Matching size analysis. The parallel algorithm runs multiple iterations of
LocalPhase on each induced subgraph, without repartitioning. A single iteration on
all subgraphs corresponds to running EmulatePhase once. We now show that in most
cases, the global algorithm simulates EmulatePhase on a well behaved distribution
with independently assigned vertices and all vertices distributed nearly uniformly
conditioned on the configurations of the previously removed sets Ri, Hi, and Fi.
We also show that the maximum degree in the remaining graph is likely to decrease
gracefully during the process.

Lemma 5.3. With probability at least 1 - n - 3,
\bullet all parallel iterations of LocalPhase in ParallelAlg on each induced sub-

graph correspond to running EmulatePhase on independent and (200 lnn) - 1-
near uniform distributions of assignments;

\bullet the maximum degree of the graph induced by the remaining vertices after the
kth simulation of EmulatePhase is 3

2\Delta /2
k.

Proof. We first consider a single iteration of the main loop in ParallelAlg. Let

\Delta , \tau , and m be set as in this iteration of the loop. For j \in [\tau ], let \Delta j
def
= \Delta /(2j - 1m)

be the threshold passed to LocalPhase for the jth iteration of LocalPhase on each
of the induced subgraphs. The parallel algorithm assigns vertices to subgraphs and
then iteratively runs LocalPhase on each of them. In this analysis we ignore the
exact assignment of vertices to subgraphs until they get removed as a member of one
of sets Ri, Hi, or Fi. Instead we look at the conditional distribution on assignments
given the configurations of sets Ri, Hi, and Fi removed in the previous iterations
corresponding to EmulatePhase. We write \scrD j , 1 \leq j \leq \tau , to denote this distribution
of assignments before the execution of the jth iteration of LocalPhase on the induced
subgraphs, which corresponds to the jth iteration of EmulatePhase for this iteration
of the main loop of ParallelAlg. Additionally, we write \scrD \tau +1 to denote the same
distribution after the \tau th iteration, i.e., at the end of the execution of the parallel block
in lines 6--8 of ParallelAlg. Due to Lemma 4.3, the distributions of assignments are
all independent. We define \epsilon j , j \in [\tau +1], to be the minimum positive value such that
\scrD j is \epsilon j-near uniform. Obviously, \epsilon 1 = 0, since the first distribution corresponds to a
perfectly uniform assignment. We want to apply Lemma 4.4 inductively to bound the
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value of \epsilon j+1 as a function of \epsilon j with high probability. The lemma lists two conditions:
\epsilon j must be at most (200 lnn) - 1 and the threshold passed to EmulatePhase has to be
at least 4000\mu  - 2

H ln2 n. The latter condition holds due to Lemma 5.1. Hence as long
as \epsilon j is sufficiently small, Lemma 4.4 implies that with probability at least 1 - n - 4,

\epsilon j+1 \leq 60\alpha 

\Biggl( \biggl( 
\Delta 

2\tau  - 1m

\biggr)  - 1/4

+ \epsilon j

\Biggr) 
\leq 60\alpha 

\Biggl( \biggl( 
\Delta 

m

\biggr)  - 15/64

+ \epsilon j

\Biggr) 
,

and no high-degree vertex survives in the remaining graph. One can easily show by
induction that if this recursion is satisfied for all 1 \leq j \leq \tau , then \epsilon j \leq (120\alpha )j - 1 \cdot 
(\Delta m ) - 15/64 for all j \in [\tau + 1]. In particular, by the definition of \tau and Lemma 5.1, for
any j \in [\tau ],

\epsilon j \leq (120\alpha )\tau  - 1 \cdot 
\biggl( 
\Delta 

m

\biggr)  - 15/64

\leq 
\biggl( 
\Delta 

m

\biggr) 1/16

\cdot 
\biggl( 
\Delta 

m

\biggr)  - 15/64

\leq 
\biggl( 
\Delta 

m

\biggr)  - 11/64

\leq (200 lnn) - 1.

This implies that as long as the unlikely events specified in Lemma 4.4 do not occur
for any phase in any iteration of the main loop of ParallelAlg, we obtain the desired
properties: all intermediate distributions of possible assignments are (200 lnn) - 1-
near uniform and the maximum degree in the graph decreases at the expected rate.
It remains to bound the probability of those unlikely events occurring for any phase.
By the union bound, their total probability is at most log n \cdot n - 4 \leq n - 3.

We now prove that the algorithm finds a large matching with constant probability.

Theorem 5.4. LetMOPT be an arbitrary maximum matching in a graph G. With
\Omega (1) probability, ParallelAlg constructs a matching of size \Omega (| MOPT| ).

Proof. By combining Lemmas 5.2 and 5.3, we learn that with probability at least
1  - n \cdot n - 8  - n - 3 \geq 1  - 2n - 3, we obtain a few useful properties. First, all rele-
vant distributions corresponding to iterations of EmulatePhase are independent and
(200 lnn) - 1-near uniform. Second, the maximum degree in the graph induced by ver-
tices still under consideration is upper-bounded by 3

2\Delta before and by 3
4\Delta after every

simulated execution of EmulatePhase, where \Delta is the corresponding input threshold.
As a result, no vertex is deleted in lines 7 or 12 due to the security checks.

We now use Lemma 4.2 to lower bound the expected size of the matching created
in every EmulatePhase simulation. Let \tau  \star be the number of phases we simulate this
way. We have \tau  \star \leq log n. Let Hj , Fj , and Mj be random variables equal to the total
size of sets Hi, Fi, and Mi created in the jth phase. If the corresponding distribution
in the jth phase is near uniform and the maximum is bounded, Lemma 4.2 yields

\BbbE [Hj + Fj ] \leq n - 9 + 1200 \cdot \BbbE [Mj ] ,

i.e.,

\BbbE [Mj ] \geq 
1

1200

\bigl( 
\BbbE [Hj + Fj ] - n - 9

\bigr) 
.

Overall, without the assumption that the conditions of Lemma 4.2 are always met,
we obtain a lower bound\sum 

j\in [\tau  \star ]

\BbbE [Mj ] \geq 
\sum 
j\in [\tau  \star ]

1

1200

\bigl( 
\BbbE [Hj + Fj ] - n - 9

\bigr) 
 - 2n - 3 \cdot n

2
,

in which we consider the worst case scenario that we lose as much as n/2 edges
in the size of the constructed matching when the unlikely negative events happen.
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ParallelAlg continues the construction of a matching by directly simulating the
global algorithm. Let \tau \prime  \star be the number of phases in that part of the algorithm. We
define H\prime 

j , F
\prime 
j , and M\prime 

j , for j \in [\tau \prime  \star ], to be random variables equal to the size of sets

H, F , and \widetilde M in GlobalAlg in the jth phase of the simulation. By Lemma 3.3, we
have \sum 

j\in [\tau \prime 
 \star ]

\BbbE 
\bigl[ 
M\prime 

j

\bigr] 
\geq 
\sum 
j\in [\tau \prime 

 \star ]

1

50

\bigl( 
\BbbE 
\bigl[ 
H\prime 
j + F\prime 

j

\bigr] \bigr) 
.

By combining both bounds we obtain a lower bound on the size of the constructed
matching. Let

M \star 
def
=
\sum 
j\in [\tau  \star ]

\BbbE [Mj ] +
\sum 
j\in [\tau \prime 

 \star ]

\BbbE 
\bigl[ 
M\prime 

j

\bigr] 
be the expected matching size, and let

V \star 
def
=
\sum 
j\in [\tau  \star ]

\BbbE [Hj + Fj ] +
\sum 
j\in [\tau \prime 

 \star ]

\BbbE 
\bigl[ 
H\prime 
j + F\prime 

j

\bigr] 
.

We have

M \star \geq 
1

1200
V \star  - 

1

n2
.

Consider a maximum matching MOPT. At the end of the algorithm, the graph is
empty. The expected number of edges in MOPT incident to a vertex in one of the
reference sets is bounded by | MOPT| \cdot 2\mu R \cdot log n \leq 10 - 5| MOPT| . The expected number
of edges removed by the security checks is bounded by n

2 \cdot n - 3. Hence the expected
number of edges in MOPT deleted as incident to vertices that are heavy or are friends
is at least (1  - 10 - 5)| MOPT|  - 1/(2n2). Since we can assume without the loss of
generality that the graph is nonempty, it is at least 1

2 | MOPT| . Hence V \star \geq 1
2 | MOPT| 

and M \star \geq 1
2400 | MOPT|  - 1

n2 . For sufficiently large n (say, n \geq 50), M \star \geq \Omega (| MOPT| )
and by an averaging argument, ParallelAlg has to output an O(1)-multiplicative
approximation to the maximum matching with \Omega (1) probability. For smaller n, it is
not difficult to show that at least one edge is output by the algorithm with constant
probability as long as it is not empty.

Finally, we want to argue that the above procedure can be used to compute a
(2+\epsilon )-approximation to maximum matching at the cost of increasing the running time
by a factor of log(1/\epsilon ). The idea is to execute algorithm ParallelAlg to compute
constant approximate matching; remove this matching from the graph; and repeat.

Corollary 5.5. Let MOPT be an arbitrary maximum matching in a graph G.
For any \epsilon > 0, executing ParallelAlg on G and removing a constructed matching
repetitively, O(log(1/\epsilon )) times, finds a multiplicative (2 + \epsilon )-approximation to maxi-
mum matching, with \Omega (1) probability.

Proof. Assume that the ParallelAlg succeeds with probability p and computes
c-approximate matching. Observe that each successful execution of ParallelAlg finds
a matching Mc of size at least 1

c | MOPT| . Removal of Mc from the graph decreases
the size of optimal matching by at least 1

c | MOPT| and at most by 2
c | MOPT| , because

each edge of Mc can be incident to at most two edges of MOPT. Hence, when the size
of the remaining matching drops to at most \epsilon | MOPT| , we have a (2+ \epsilon )-multiplicative
approximation to maximum matching constructed. The number t of successful appli-
cations of ParallelAlg needs to satisfy\biggl( 

1 - 1

c

\biggr) t
\leq \epsilon .
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This gives t = O(log(1/\epsilon )). In \lceil t/p\rceil = O(log(1/\epsilon )) executions, we have t successes
with probability at least 1/2 by the properties of the median of the binomial distri-
bution.

6. MPC implementation details. In this section we present details of an
MPC implementation of our algorithm. We also analyze its round and space com-
plexity. In the description we heavily use some of the subroutines described in [25].
While the model used there is different, the properties of the distributed model used
in [25] also hold in the MPC model. Thus, the results carry over to the MPC
model.

The results of [25] allow us to sort a set A of O(N) key-value pairs of size O(1)
and for every element of a sorted list, compute its index. Moreover, we can also do a
parallel search: given a collection A of O(N) key-value pairs and a collection of O(N)
queries, each containing a key of an element of A, we can annotate each query with
the corresponding key-value pair from A. Note that multiple queries may ask for the
same key, which is nontrivial to parallelize. If S = n\Omega (1), all the above operations can
be implemented in O(1) rounds.

The search operation allows us to broadcast information from vertices to their
incident edges. Namely, we can build a collection of key-value pairs, where each key
is a vertex and the value is the corresponding information. Then, each edge \{ u, v\} 
may issue two queries to obtain the information associated with u and v.

6.1. GlobalAlg. We first show how to implement GlobalAlg, which is called in
line 13 of ParallelAlg.

Lemma 6.1. Let S = n\Omega (1). There exists an implementation of GlobalAlg in the
MPC model, which with high probability executes O(ln \widetilde \Delta ) rounds and uses O(S) space
per machine.

Proof. We first describe how to solve the following subproblem. Given a set X of
marked vertices, for each vertex v compute | N(v)\cap X| . When all vertices are marked,
this just computes the degree of every vertex.

The subproblem can be solved as follows. Create a set

AX = \{ (u, v) | u \in V, v \in X, \{ u, v\} \in E\} \cup \{ (v, - \infty ), (v,\infty ) | v \in V \} ,

and sort its elements lexicographically. Denote the sorted sequence by QX . Then, for
each element of AX compute its index in QA.

Note that | N(v)\cap X| is equal to the number of elements in QX between (v, - \infty )
and (v,\infty ). Thus, having computed the indices of these two elements, we can compute
| N(v) \cap X| .

Let us now describe how to implement GlobalAlg. We can compute the degrees
of all vertices, as described above. Once we know the degrees, we can trivially mark
the vertices in H. The next step is to compute F and for that we need to obtain
| N(v) \cap H| , which can be done as described above.

After that, GlobalAlg computes a matching in G[H \cup F ] by calling MatchHeavy

(see Algorithm 2). In the first step, MatchHeavy assigns to every v \in F a random
neighbor v \star in H. This can again be easily done by using the sequence QH (i.e., QX
build for X = H). Note that for each v \in F we know the number of neighbors of
v that belong to H. Thus, each vertex v can pick an integer rv \in [1, | N(v) \cap H| ]
uniformly at random. Then, by adding rv and the index of (v, - \infty ) in QH , we
obtain the index in QH , which corresponds to an edge between v and its random
neighbor in H. The remaining lines of MatchHeavy are straightforward to implement.
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The vertices can trivially pick their colors. After that, the set E \star can be easily
computed by transmitting data from vertices to their adjacent edges. Implementing
the following steps of MatchHeavy is straightforward. Finally, picking the edges to be
matched is analogous to the step, when for each v \in F we picked a random neighbor
in H.

Overall, each phase of GlobalAlg (that is, iteration of the main loop) is executed

in O(1) rounds. Thus, by Lemma 3.3, GlobalAlg can be simulated in O(ln \widetilde \Delta ) rounds
as advertised.

6.2. Vertex and edge partitioning. We now show how to implement line 5
and compute the set of edges that are used in each call to LocalPhase in line 8
of ParallelAlg. Our goal is to annotate each edge with the machine number it is
supposed to go to. To that end, once the vertices pick their machine numbers, we
broadcast them to their adjacent edges. Every edge that receives two equal numbers
x is assigned to machine x.

In the implementation we do not check whether a machine is assigned too many
edges (line 7), but rather show in Lemma 5.2 that not too many edges are assigned
with high probability.

6.3. LocalPhase. We now discuss the implementation of LocalPhase. Observe
that LocalPhase is executed locally. Therefore, the for loop at line 8 of ParallelAlg
can also be executed locally on each machine. Thus, we only explain how to process
the output of LocalPhase.

Instead of returning the set of vertices and matched edges at line 6 of the algorithm
LocalPhase, each vertex that should be returned is marked as discarded, and each
matched edge is marked as matched. After that, we need to discard edges, whose at
least one endpoint has been discarded. This can be done by broadcasting information
from vertices to adjacent edges. Note that some of the discarded edges might be also
marked as matched.

6.4. Total space. Our algorithm keeps the edge- and the vertex-set of the input
graph, and maintains certain flags for each vertex and each edge, e.g., which vertices
are discarded and which edges are matched. Also, when an edge e is assigned to a
machine x (as described in section 6.2), the algorithm creates a copy of e and sends
the copy to x. After that round, the copy of e is destroyed. Hence, the algorithm
maintains O(| E| + n) many elements throughout the execution.

Moreover, for S \in n\Omega (1), the results of [25] that we use as subroutines require the
overhead in total space of only O(1). Therefore, our algorithm requires a total space
of O(| E| + n).

6.5. Putting all together. Lines 5, 7, and 8 can be implemented as described
in sections 6.2 and 6.3. Lines 9 and 10 do not need an actual implementation, as by
that point all the vertices that are not marked as discarded constitute V \prime , and all the
edges incident to V \setminus V \prime will be marked as discarded. Similarly, all the matched edges
will be marked as matched by the implementation of LocalPhase. All the edges and
vertices that are marked as discarded will be ignored in further processing. After all
the rounds are over, the matching consists of the edges marked as matched.

Let \Delta  \star be the value of \Delta at line 12, and hence the value of \Delta at the end of
the last while loop iteration. Let \Delta \prime be the value of \Delta just before the last iteration,
i.e., \Delta  \star = \Delta \prime /2\tau , for the corresponding \tau . Now consider the last call of LocalPhase
at line 8. The last invocation has \Delta \prime /(2\tau  - 1) as a parameter. On the other hand,
by Claims 4.10 and 4.11 we know that after the last invocation of LocalPhase with
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high probability there is no vertex that has degree greater then 3
4\Delta 

\prime /(2\tau  - 1) < 2\Delta  \star .
Therefore, with high probability there is no vertex that should be removed at line 12,
and hence we do not implement that line either.

An implementation of line 13 is described in section 6.1. As explained in sec-
tion 6.4, our algorithm requires a total space of O(| E| + n). Finally, we can state the
following result.

Lemma 6.2. There exists an implementation of ParallelAlg in the MPC model
that with high probability executes O((log log n)2 +max (log n

S , 0)) rounds.

Proof. In the proof we analyze the case S \leq n. Otherwise, for the case S > n, we
think of each machine being split into \lfloor S/n\rfloor ``smaller"" machines, each of the smaller
machines having space n.

We will analyze the number of iterations of the while loop ParallelAlg performs.
Let \Delta i and \tau i be the value of \Delta and \tau at the end of iteration i, respectively. Then,
from lines 3 and 4 we have

\tau i =

\biggl\lceil 
1

16
log120\alpha (\Delta i - 1/m)

\biggr\rceil 
\geq 1

16
log120\alpha (\Delta i - 1/m) \geq 1

16
log120\alpha 

\sqrt{} 
S\Delta i - 1

n
.

Define \gamma := 1
32 log2 120\alpha . By plugging in the above bound on \tau i, from line 11, we derive

(6.1)

\Delta i = \Delta i - 1 \cdot 2\tau i \leq \Delta i - 1 \cdot 2 - 
1
16 log120\alpha 

\sqrt{} 
S\Delta i - 1

n = \Delta i - 1 \cdot 2 - 
log2

S\Delta i - 1
n

32 log2 120\alpha = \Delta 1 - \gamma 
i - 1

\Bigl( n
S

\Bigr) \gamma 
.

To obtain the number of iterations the while loop of ParallelAlg performs, we
derive for which i \geq 1 the condition at line 2 does not hold.

Unraveling \Delta i - 1 further from (6.1) gives
(6.2)

\Delta i \leq \Delta 
(1 - \gamma )i
0

\Bigl( n
S

\Bigr) \gamma \sum i - 1
j=0(1 - \gamma )

j

\leq n(1 - \gamma )
i
\Bigl( n
S

\Bigr) \gamma 1 - (1 - \gamma )i

1 - (1 - \gamma )

= n(1 - \gamma )
i
\Bigl( n
S

\Bigr) 1 - (1 - \gamma )i

.

Observe that (c log log n) - 1 \leq \gamma \leq (32 log log n) - 1 < 1/2, for an absolute constant c
and n \geq 4.

For S \leq n and as \gamma < 1/2 we have

(6.3)
\Bigl( n
S

\Bigr) 1 - (1 - \gamma )i

\leq n

S
.

On the other hand, for i \star =
log logn

\gamma \leq c(log log n)2 we have

(6.4) n(1 - \gamma )
i \star 
< log n.

Now putting together (6.2), (6.3), and (6.4) we conclude that

\Delta i \star <
n

S
lnn.

Hence, the while loop of ParallelAlg performs O((log log n)2) iterations.
Total round complexity. Every iteration of the while loop can be executed in

O(1) MPC rounds with probability at least 1 - 1/n3. Since there are O((log log n)2)
iterations, all the iterations of the loop can be performed in O((log log n)2) many
rounds with probability at least 1 - 1/n2.
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On the other hand, by Lemma 6.1 and the condition at line 2 of ParallelAlg,
the computation of line 13 of ParallelAlg can be performed in O(log (nS (lnn)

32))
rounds. Putting both bounds together we conclude that the round complexity of
ParallelAlg is O((log log n)2 + log n

S ) for the case S \leq n. For the case S > n (recall
that in this regime we assume that each machine is divided into machines of space n)
the round complexity is O((log log n)2).
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