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ABSTRACT

A novel approach to mathematical programming is presented herewith
which is based on an analogy with electrical networks. Mathematical pro~
gramming concerns the minimization of a function of variables while satis-—
fying inequality constraints on other functions of the variables. It is
- shown that any direct current electrical network made up of voltage source:
diodes, resistors and ideal d-c transformers is equivalent to a pair of
dual quadratic programs —— a set of voltages and currents forming a solu-
tion of the network provides automatically the optimal vectors of the pair
of programming problems.

With this analogy as a foundation, several new developments in theory
and method are presented: i) The duality principle of linear programming
is extended to quadratic programming and concave programming (with linear
constraints), ii) A simple algorithm for solving networks constructed of
diodes and voltage and current sources is given. This versatile method is
applicable to the well-known transportation problem as well as capacity=-
1imited network flow problems. iii) The terminal characteristic (break-
point curve) of a source-diode-resistor=transformer network is derived and
an algebraic procedure for !'tracing'' the breakpoint curve is developed.
iv) Electrical models for general linear and quadratic programs are given.
The breakpoint tracing method is applied to these models yielding several
algorithms for obtaining optimal vectors to progremming problems. Some of
these are new interpretations of familiar methods -- others are new. An
adaptation of the method of steepest descent is prorosed as an efficient
means of solving general non-linear programming problems. Specifically
it is demonstrated that the direction of steepest descent for a non-linear
program may be determined by solving a quadratic program. & final chapter
traces the history of the ideas developed in the thesis and points out pos-
gible extensions of the work.

Thesis Supervisor: Dean N. Arden
Title: Assistant Professor of Electrical Engineering



ACKNOWLEDGEMENT

The author wishes to note with appreciation the contributions made
to the creation of this thesis from many sources.

Special acknowledgement goes to Associate Professor Samuel Mason
who was first at M.I.T. to observe the analogy between the network flow
problem and diode-source electrical networks. Since it was this discovery
which was the starting point and inspiration for the developments in the
thesis, it may truly be said that Professor Mason is largely responsible
for the success of the entire thesis project. To Assistant Professor Dean
Arden, who supervised the work and has given gladly of his time for en-
thusiastic discussion and encouragement, I want to express my utmost appre-
ciation. A special note of thanks goes to former Associaté Professor
William K. Linvill who introduced the author to the area of linear pro-
gramming and also to the author's coworker, Dr. William B. Jewell, who
gave helpful suggestions and consultation.

This thesis could not have been undertaken without the financial
support provided by the Union Carbide Corporation and the U.S. Army Office
of Ordnance Research through the M.I.T, Operations Research Project. The
generous use of facilities and freedom of action jgranted by Project Super-
visor Professor Philip M. Morse and Assistant Director Dr. Herbert P, Gal-
liher have been most helpful in stimulating the regsearch, Finally, a word
of thanks to Mrs. Beth Sutherland and Miss Betty Cullen whose careful work
shaped the thesis into its final form.



TABLE OF CONTENTS

Page

CHAPTER ONE - Preface
.l'—»l"Introductioni : ' ‘ 1-1
1l - 2 Synopsis of éhapters - | l1-3
i.— 3 Notation o : | 1-1L
CHAPTER TWO — The Nature of Programming Problems
2 - 1 The General Programming Problem 2 ; 1l
2-; 2 'Llnear and Quadratlc Programs é -
2 = 3 Network Problemsv .ol : 2 -5
.2 =) Local and Global Minima -~ ~ -
: Concavity and Convexity 2 ~1
2 = 5  Lagrange Multipliers e 2 -'lﬁ
2 = 6 The Generaiized Lagrangian Problem 2 - ll‘
2 = 7 Equivalent Formulations = Duality 2 ~-18
2 = 8 The Legendre Transformation 2 - 18
2 = 9. Duality in Constrained Minimization 2 =23
2 — 10 Duality in Mathematical Programming 2 - 25

. CHAPTER THREE - Properties and Equivalent Formulations
for Networks Contalnlng Dlodes

3 -1 vGraphs and Incldence-Mhtrices 3=-1
3 =2 Electrical Networks - Laws and Devices 3~-3

3-3 Equlvalent Problems for Dlode-Source-
: "Resistor Networks : : 3«7

3 =14 Reduced Networks ‘ 3 -10

3-5 Electrical Networks Containing
Transformers 3=-11

3 = 6 Non-Linear Devices , 3 =14



3 - 7 Terminal Solutions and Breakpoint
Curves 3=-16

CHAPTER FOUR - An Algorithm for Solving Diode Networks

L -1 Existence Condition and Reduced
o Networks Lot

L = 2 First Algorithm for Diode Source
Networks L -8

L = 3 Second Algorithm for Diode Source :
: Networks L - 23

L ~ L Altering Solution for New Parameter _
: Values L - 27

L - 5 An Application to Network Flow
Problens - L - 29

CHAPTER FIVE - A Breakpoint Tracing Procedure

5 = 1 The Electrical Model of the Temminal

Pair System 5-2

5 - 2 Basic Solutions ' 5=-5

5 = 3 Unit Solutions - Superposition 5«7
5‘ = 4 Computing the New Basis Inverse 5-12
' § -5 Tracing the Breakpoint Curve 5-1
5= 6 The Method in Case of Degeneracy 5=1
5 =7 The Method When Q is Null S -16
"5~ 8 The Case When Q and b or ¢ Are Null 5 =19

CHAPTER SIX - Breakpoint Tracing Methods for
: General Linear and Quadratic Programs

6 = 1 Electrical Models for General Linear
and Quadratic Programs , 6 -1

6 - 2 A Valve Algorithm for Solving the
Current Reduced Network 6 -5

6 - 3 A By-Pass Algorithm for Solving the
Current Reduced Network 6 -8



6 -, Solving the Voltage Reduced Network 6 - 11

6 -5 A Valve Algorithm for Linear
Programming ' 6 =12

6 - 6 A By=Pass Algorithm for Linear and :
Quadratic Programming 6 -1k

CHAFTLR SEVEN ~ An Application of Quadratic Programming
' to the General Programming Problem

7 =1 Gradient Methods of Minimization 7 -1
7 - 2 Minimization in the Presence of

Equality Constraints 7T =L
7 = 3 The Directions of Steepest Descent

with Inequality Constraints 7 -6
7 - L Equivalence with a Quadratic Program 7 -8

CHAPTER EIGHT - Historical Notes and Discussion

8 —1 On the Theoretical Developments 8 -2

8 - 2 Concerning the Methodology . 8 - U
8 = 3 On the General Programming Problem 8 -8
8 - 4 Conclusion 8 = 10

APPENDIX A — Geometrical Elements in Euclidian Space
APPENDIX B - A Fundamental Theorem on Linear Inequalities
APPENDIX C - The Theory of Non-Linear Programming

APPENDIX D = The Fundamental Theorems of Quadratic
Programming ‘

APPENDIX E - Some Properties of Concave Functions
APPENDIX‘ F -= Duality Relations in Concave Programming
APPENDIX G - Properties of Terminal Pair Solutions

APPENDIX H - The Generalized Breakpoint Stepping Method



LIST"

o
i
U

3=4

3-5

3-6
3-7
3-8

ILLUSTRATIONS

A network flow problem

Y'Illustrating a concave function of

a single variable

The convex set defined by a convex
function -

Illﬁstratingthe Lagrangian problem for
unconstrained minimization

Illustrating the Lagrangian problem
with constraint functions

 Geometric interpretation of the

Lagrangian problem

The Legendre trensformation
AAgraph and its incidence matrix
Branch polarity convention

Relations imposed by electrical
branch types

Non=linear resistive device

Network with observable terminal pair
Example of a breakpoint curve
Network with diodes separated

Demonstrating the continuity of the
set of terminal solutions

Network violéting the first non-redundancy

assumption

Network violating the second non-redundancy

assumpiion

Network violating the first existence
condition

Network violating the second existence
condition

Page
2 ~6

3=6

3-15
3=-15
3-19
3-19

3-21



L=7
L-8
L=9

L - 10

L -11
L =12

L~ 13

u-m

Diode-source-resistor network and its
associated reduced networks

Diode~source network with tree and :
potential distribution for starting phase I

The situation if node ¥ is labelled
The situation if node M is not labelled

Solution of voltage‘reduced network and
current distribution for starting phase II

Breakpoint curve of the solved subnetwork
viewed from the selected diode

The situation if node M is labelled
The situation if node M is not labelled

Iinear flow branch and its electrical |
analogue

Quadratic flow branch and its electrical

~analogue

Electrical model of the terminal pair
system

Simplified drawing of terminal pair
system model

Black box representation of the terminal
pair system

Unit incremental solutions of a terminal
pair system

A breakpoint and the superposition of
unit solutions

Possible breakpoint curves for a primal
reduced terminal pair system

Possible breakpoint curves for a completely
degenerate terminal pair system

-Electrical model of the dual pair of

quadratic programs

A more general quadratic programming
model

L - 10
L =13
L -13

L -17
L=-19

L-21

L=-21
L - 30

L - 30

5 =13
5~21
5 ~-21
6 - 2

6 -1



6 -3
6 -1

Second linear programming model

Valve method for solving the current

" reduced network

By-pass method for solving the current
reduced network '

Valve method for completing the solution
of the linear programming model

By-pass method for linear and quadratic
programming

The method of steepest descent

Flow diagram for the method of steepest
descent '

The method of steepest descent with
equality constraints

I1lustrating the direction of steepest
descent for three variables

The method of steepest descent with
inequality constraints

7 - 12



CHAPTER ONE

Preface

1 -1 Introduction -

This thesis is based on the idea that by viewing a subject from a new
direction one will gain insight into the subject and quite possibly dis-
cover new concepts'and broadef'principles which are not readily apparent
from the more heavily trodden paths of investigation. Here, the subject

ﬂis mathematical programming--the new viewpoint is based'on’the analogy of
these problems with the behavior of electrical networks.

The discipline of mathematical programming, although only a decade and
a half old, has been subject to intenéive study by many authors., Mathema-
tical programiing concerns the determination of values for a set of.vari-

ables such that an objective function of the variables is minimized (or

maximized) while a number of given constraint relations involving the vari=

ables are satisfied., Programming problems differ from minimization problem:
with constraint equations in that the constraint relations may also bengr
~99gélitiesb

| ﬁnfil the present, essentially all of the interest and research effort
in‘matheia#ical programming has stemmed from applicationsvtc_iﬁdustpial

operatipns and eeqngmic:Systems--the*fiéld of "operatibns research".

" Initially study was confined to limear programming in which the objective



and oonstralnt functions are assumed to be linear in the varlables, and an
exten31ve mathematlcal theory was developed. Also several algorlthms for
computing optimal solutions to llnear programs were formulated. Later, nse—'v
ful results were presented relating to general programming problems.lf0ur-
rently the theory and methodology of quadratic prog:amming are receivingd
»mncovattentiono | |
Quitevreoently it has been observed thatrcertain eimyle linearjpro-
grammlng problems oould be solved by settlng up an equxvalent eleotrloal
network_oontaln;ng‘voltage sources,Tourrentvsouroeo, and_d;odes.‘ If the
voltage andvcurreﬁt sources are set_to:valuos corresponding;to_the;data of
»the progfamming_pxoblem{%the optimal‘eolﬁxion’mayfbe.found by'simply ﬁea;
}guring ourrents and.vOIteges at appropriate roints in:the netyorke-the
‘eleoyrigal getwo:k'automatioally.establishes ourreﬂté_en@ #blfagee which,form
the optigalgsolqtion,of the progremming:probleﬁ. ”This_observation is the
,sta;tingvpointhof_the‘newAVieypoint:taken inltpis preeentatioﬁ._ ‘

, The two ajproaohes have,the fOllowing_important distinction—-the
operatlons analyst nearly always v1ews a programming problem as an extremum
;problem, that is, he thinks in terms of mlnlmlzatlon or maxlmlzatlen.k On the
,other hand, the eleotrloal sclentlst 1n solvlng a network thlnks 1n terms of
~finding a set of quantities whioh’seyisfy{the in@ividual‘devioes:of the net-,
”work‘end setiefy the;oogditionsnimposedibystheir,interoonneotion--he d°§5, »
not;hsualli}thiﬁk ig;@ermsfof mioimizetion.bzThis:difference in approach; is

;evident in the algorithms fhat have been developed for“solving.programming
_problems. f?herofiginal and_most widely;known method for»lineer programmipg,

_the simplex method, is closely tied to the concept of minimization. In



the new methods proposed by the author in this thesis the concept of minimi-
zation does not éhter° The idea here is that of starting with a.set of
 quantities which satlsfy the interconnection requirements of a network and
successively modifying this partial solution until all requirements of the
‘devices of the network have been satiéfiedo

1 - 2 Synopsis of Chapters

In the body of this thesis an attempt has been made to present the
pertinent concepts in as straightforward manner as possible. The proofs
- of well-kﬁown results and the more complicatgd original developments have
been relegated to appendices. |

In Chapter Two the theory of general mathematical programming is
developed, leading to the formulatlon of a general Lagranglan problem, The
concept of duality is imtroduced for ordinary mlnlmlzatlon problems and is
extended td yield duality properties for quadratic prqgramso From this the
central theorems of linear and quadratic programming are derived., The eX-
tensibn of the duality principle to a class:of concave programs is indicat

‘A sketch of the important concepts concerning’elecfrical networks is
given in Ghapter»Three,_ Then it is shown that the solution of any direct
current network made up of voltage and current sources, ideal d-c transfor
and ideal diodes is equivalent to a pair of dual linear programs. Also, 1
~is shown that a network made up of these elements plus linear resistors is
equivalent to a pair of dual quadratic programs. The concept of a break-
Eg;gj_gggzg, the voli-agpere characteriétic observed at a terminal pair of

a network containing diodes, is introduced. In Chapter Four a simple new



algorithm for solving d-c networks containing only sources and diodes is
described in electrical terms. This algorithm has the advantage that modi-
fications -of the solutioﬁ caused by changes in pamameter‘vqlues are easily
computed from a previous solution. In view of the equivalence demqnstrated 
in Chapter Three, this algorithm may be used to solve certain simplg linear
progfgms—-the well-known transportation problem, for instance. In Chapter
Five an algebraic method for "tracing" the breakpoint curve observed at the .
terminal pair of a netwo:k of sources, transformers, resistors and diodes is
given.'vThat electric network models may be constructed for any linear or
quadratic program is shown in Chépter S9ix. The breskpoint tracing algorithm
is then applied to these models yielding several algorithms for solving gen-
eral linear and quadratic programs. Some of these algorithms are simply dif-
ferent ways of interpreting well-known methods, Others are new contributions,
Chapter Seven treats a proposal for computing an optimal solution of a genenv
ral programming problem, Specifically it is shown that determining the direc-
tion of steepest descent for a general programming problem is equivalent to
solving a quadratic program. Finally an attempt is made in Chapter Eight to
trace the development of the ideas presented in the thesis aﬁd to give due
credit to those persons whose work is most r38ponsible for inspiring the con-

tributions reported here.

1=3 _Notation

The foilowing conventions apply throughout the thesis except in Chapter
Four where matrix notation is not employed.

Lower case letters x, y, ... will represent vector gquantities and will

be uniformly treated as column matrices. 4 vector inequality



X>»y ‘or x>y
always means that the indicated inequality relationship must hold between
each pair of éorresponding components of x and y., Rectangular matrices wil
be represented by capital letters. The individual components of a vector o
the columns or elements of a rectangular matrix ﬁill be distinguished by

numerical subscripts

The transpose of a matrix will be indicated by a superscript T. Hence the
dot product of two vectors
X°y = ZE x5 Ty

i .
will be written xT Y. OSometimes the notation x, y will also be used.

Occasionally it will be necessary to identify the submatrices of a parti-
tioned matrix or vector, This will be done with upper case subscripts,

for instance

Scalar quantities will be denoted by‘ldwer case Greek letters,
The letter designating a function will indicate whether it is a
scalar function or a vector function. Thus ¢(q) is a scalar function of a

scalar variable, £(£) is a vector function of s scalar, @#(x) is a scalar



function of a vector and f(x) maps vectors into vectors.
The gradient of a scalar function of a vector ¢(x) will be represented

by

I}

axl

)

g(x)

3¢
ox.
n

The differential of a map of vectors into vectors f(x) will be denoted by

afl afl . afl
ax1 ax2 .axn
af2 af2
af = oxp 9% .
afm. a:m
axl ° s ° ax )
n-J

In Chapter Two and in the proofs given in the appendices geometrical inter-
pretations will be made of the mathematical reasoning. As an introduction
to the concepts of geometry in many dimensional space Appendix A defines

some of the geometripal terms used here and in 6ther lite:ature on mathemati-

cal programming., -



'CHA?TER TWO

' The Nature of Programming Problems

2 = 1 The General Programming Problem
~ The most general type of problem that will be considered here and
in the rest of the thesis is the following: to select values of a number

of variables so that an objective function.is minimized among all choices

. of values that satisfy a group of inequality constraints on functions of the
variables. Mathematically the problem may be written as
General Programming Problem:
- Minimize the objective function
- #(x) | | (2 - 1a)
subject to the constraints
glx) » 0

x > 0. (2 = 1b)

In this statement, x is a column vector (matrix) of n components and g(x)

represents the caiuanvector of m functions of x
-31 (x) |
g,(x)
g(x) = N

- x| .



N
]
)]

To introduce somebterminology which will be used throughout the thesis,
any vector x which satisfies the constraints (2 - 1b) is called a feasible
vector of the programming problem. The set of all feasible vectors is termed

the constraint set of the problem. A feasible vector which produces as low

a value of the objective function as any other feasible vector is known as

an optimal vector. The constraint relations ( 2 - b) of a programming pro-

blem may take one of the following alternate forms.

B) g(x) = 0 C) g(x)zo
x > 0 x unrestricted

Simple considerations show that a problem expressed in any one of the three
forms can be expressed in the other two forms. The principles are: l)_an
equality constraint relation can be replaced by a pair of inequalities, and
2) an unrestricted variable can be replaced by the difference of'twq non-
negative variables., The precise relations between the three forms are given
in Table 2 = 1,

The usual analytic methods of solving minimization problems in the
presence of constraint equations--solving the constraint equations, sub-
stituting in the objective function and differentiating, or the Lagrange
multiplier technique——do not work with programming problems. These methods
do not take account of the inequality constraints which characterize mathe-
matical programming problems. It does not seem likely that the solution of
a programming problem will never be éxpressed in closed analytic form. How-
ever, the Lagrange multipliers, suitably generalized, play an important role

in the theoretical and computational aspects of programming. Moreover, the

generalized Lagrange multipliers have great physical significance as will be

evident in later chapters.



Formulation of New Problem in Terms of Old

01d New

| ®

M

c A g(x" = x7) 7' Blx* - ) . X

I = identity matrix of appropriate order

Table 2 - l—Relations between problem fornulations.



2 - 2 Linear and Quadratic Programs

A very important special case of the general programming problem is the
linear programming problem in which ¢(x) is simply a linear combination of
the variables and g(x) is a linear transformation.

Linear programming problem:

Minimize
#(x) = el x
with
A x Efb
x >0
Here the constant vector b of the linear transformation has been moved to
the right-hand side of the constraint relations,
A soméwhat more general case and undoubtably the simplest form of non-

linear program is the guadratic program in which the objective function is

a second degree form in the variables.

Quadratic programming problem:

Minimize

%-xT QX + cT x
with

Ax>b

These two special cases form the major subject matter of this thesis although

a technique for solving general programming problems is proposed in the last

chapter.



One reason for the importance of the two spécial cases is that there
are computational schemes which produce a solution in a small, finite number
of iterative steps. The last iteration produces an exact solution of the
linear or quadratic program. On the other hand, methods for solving genergl
- programming problems approach closer to the solution with each iteration, but
the exact solution is never attained in a finite number of steps although

convergence may be very rapid.

2 = 3 Network Problems

One important and interesting class of programming problems may be
stated in terms of flow in a network. An example of sﬁcﬂ a problem is the
following. One is concerned with a netwprk (which may be visualized as a
transportation system, for iﬁétahde) df}the form of Figure 2 = 1. With a
branch direéted from node i to node j é flow variable Xij is associated
which is not allowed to be negative. Each branch has a given maximum capa-
city for flow Mij and there is a cost Cij for each unit of flow in the branch.
At each node j of the network there is a stated demand Dj for flow which‘may
be positive, negative or zero. It is desired to findaflow distribution which
conserves flow at the nodes of the network, satisfies the restrictions imposed
by each branch and has the smallest total cost. In symbols this may be

written

Network flow problem:

Minimize

C.. X..
:Z ij 713

i,d



Figure 2 - }--A network flow problem.



with '
Z: X3 - <% = Dy
i i
and
0 < 0

It is evident that this is a linear programming problem. If a quadratic
component of cost were associated with each branch, this would become a pro-
blem in quadratic programming, Problems of this form have an elegant analogue
in electrical networks as will be seen in Chapter 4. The network flow prob-
lems are important because the coefficients of the variables in the constraint
relation are all either plus one, minus one or zero. This feature makes their
solution much easier than is the case with general linear or quadratic programs.

2 = 4 Local and Global Minima--Concavity and Convexity

An important question in mathematical programming is when is a local
minimum equivalent to a global minimum? To understand these terms, consider
the programming problem as being phrased in an n-dimensional space with one
coordinate axis for each variable. Then the constraint set of a programming

problem consists of a certain group of points in this space. A point yields

a local or relative minimum of the objective function if it is in the
constraint set and no "nearby point" in the constraint set gives a lower
value of the objective function. A point in the constraint set yields a

global minimum if no other point in the constraint set gives a lower value

of the objective.
Of course, someone looking for the solution of a particular programming

problem wants to find a global minimum. Unfortunately the common methods



for obtaining solutions are designed to find local minima. Hence it is
desirable to know .in which cases the two are equivalent. The ideas of con-
cavé functions anﬁ convex: sets yields a simple answer to this gquestion,

Let a function of n variables be represented by the n + lth coordinate
of points on a surface in an n + 1 - dimensional space in which the n + 1th
axis is "vertical". The function is concave if the surface representing
it is curved downward at no point. More precisely, the straight line seg-
ment joining any two points of this surface must be beneath the surface at
no point, This is illustrated in Figure 2 - 2. A function will be termed
strictly conca#e if the line segments mentioned above lie above the surface
- except for their end points. A function is convex if its negative is con-
cave. Note that according to these conventions, the linear function
¢(i) =‘ch, which is represented by a hyperplane in n + 1 - dimensional
space, is both concave and convex, but it is neither strictly concave nor
strictly convex,

A éonvex set is defined as a set of points in n-dimensional space which
contains all points on the line segment joining any two points in the set.
The set of points in n-space for which o(x) >0 is a convex set if © is a
convex function as is indicated in Figure 2 - 3, As an extension of this
property, the constraint set of a programming problem is a convex set if the
functions &) through 8, are convex since this set consists of.all points
common-to the convex sets determined by each of the 8; (Lemma C - 1),

The important result made possible by these concepts in connection
with mathematical prbgramming is the following property which is proved as

Theorem C - 1.
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Figure 2 - 2-—Illustrating a concave funcition of a single variable.

n-dimensional spacs

S | convex set of
P(x) = Q | points ¥ such that
e(x) >0

Figure 2 = 3--The convex set defined by a convex function.



2 - 10

For a programming problem with a concave objective function and a convex

constraint set, a relative minimum is also a global minimum,

In the case of the linear programming problem, the objective function
is always concave and the constraint functions are always convex. It fol-
lows that a relative minimum is always a global minimum in linear program-
ming., With quadratic programming the constraint set is likewise convex,
However, the objective function is concave if and only if the matrix Q is .

positive semi-definite, that is, if xT Q:x is non-negative for all choices

of x (Lemma D = 1). If this is so, then relative and global minima are

equivalent for quadratic programming.

2 = 5 Lagrange Multipliers

Consider the constrained minimization problem

Minimization Problem:

Minimize @(x)
with |
sx) = 0 (2 - 2b)
Following the Lagrange multiplier rule one multiplies each constraint func-
tion 83 by 2 multiplier - vy and adds the results to the objective function

to obtain the Lagrangian function

Vo(x, y) = #x) -5 &lx) .

Differentiating this expression and coupling the result with the constraints

(2 = 2b) one obtains the



2 =11

Lagrangian problem:

Find an x and y such that
g(x) = 0

of(x) - y° dg(x) = O

In this statement 3@ is the gradient of the objective function and dg is.
the differential of the transformation g. The Lagrange multiplier rule
- states:
i) If X yields a local minimum of @, then there is a vector y such
that (x, y) is a solution of the Lagrangian problem.
ii) If (%, y) is a solution of the Lagrangian problem, and @#(x) is
concave and the constraint set convex in the vicinity of x, then
X yields a relative minimum of {.
Thus the Lagrange multiplier rule gives a second equivalent formulation

of any ordinary minimization problem.,

2 = 6 The Generalized Lagrangian Problem

In this paragrabh the manner in which the Lagrange multiplier rule
generalizes to mathematical programming will be studied. A rigorous proof
of the result involves application of the theory of inequalities and is given
in:Appendix C. ‘However, the reasonablenéss of the result can be made clear |
through eonsideration of some simple cases,
Consider first the simple minimization problem
Minimize #(E)
with E,=>_0 o

As is indica@ed in Figure 2 - 4 two cases are possible. Either the minimum
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Figure 2 = L-—Illustrating the Lagrangian problem for

uncongtrained minimization.
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occurs for some £ > O at which point '%% () = 0, or the minimum is at
the point £ = 0. In the latter case-%g (0) must not be negative, Summing

up, a necessary condition that £ yield a minimum of @(E) subject to £ >0

is that
B = -
da (5) -w = 0
£>0 w>0 | (2 - 3b)
wE = 0, (2 = 3¢)

The relation (2 - 3c) requires that either E be zero or w be zero and hence
that only one of the inequalities (2 = 3b) can be_éatisfied in the strict
inequality semse., If £ is greater than zero, w must be zero and the first
case holds; if w is greater than zero, { must be zero and_the second case
holds. Because of thié relation between the original inequality restraint
and the new one obtained as a necessary condition for a minimum, the rela-

tion (2 - 3¢) is known as the complementary slackness condition. This con-

dition is related to the behavior of the diode circuit element in electri-
cal networké as.will be seen in the next chapter,
The exact same ideas generalize to the problem of minimizing a function
of several variables which are constrained to be non-negative.
Minimize @(x)
with X >0

The corresponding Lagrangian problem is to find vectors x and w such that

¢(x) -w = 0
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This simply repeats the condition of the single variable proBlem for eachb.
component of x in the many variable case. Note that the complementary
slackness relation xTw = 0 requires that X, W= O for all i when x and w
are constrained to be non-negative,

Next a more complicated case will be considered, namely the problem of

minimizing a function of two variables subject to a single equality constraint

and the condition that the variables be non-negative.
Minimize @(x) = ¢(xl, x2)
with
o(x) = O(xl, 12) =0

X >0, X, >0

If no inequality constraints were present oﬁe could find a necessary
condition for a minimum by forming the Lagrangian‘expression
VW (x, 1) = B(x) - n elx)
and differentiating to obtain
af(x) - 5 3(x) = O | (2 - 4a)
o(x) = 0.

This condition is illustratedvgeometrically in Figure 2 - 5a. It requires
‘that at thé point X, the gradient 6f the objective function must bevsome
multiple n of the gradient of the»constraint function,

In the presence of inequality constraints cases in which the minimizing
x lies on the boundary of the coﬁstraint set must be taken into account.
The generalized Lagrangian problem is to find vectors x and w and a scalar

n (the multiplier) such that
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a) AXZ’

, >
~g(x) = constaht

Figure 2 - S5--Illustrating the Lagrangian problem with constraint functions.
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n 36(x) - af(x) +v = O | (2 - 5a)
o(x) = O
x>0, v>0

v x = 0, (2"5d)

If the minimizing x is not on the boundary of the constraint set then X > o,
X5 > 0 and the complementary slackness condition (2 - 5d) requires vV, =V, = 0,
Then this problem becomes exactly (2 - 4). On the other hand, consider the
situation indicated in Figure 2 - 5b where the constrained minimum has x > 0,
X, = 0. According to the complementary slackness condition W, may be greater
than zero, but Wy ﬁust be equ;l to zero. Relation (2 ~ 5a) then states that

the Xy component of 3@ must be equal to some multiple of the X component of
3@ while thé X, component of a¢ must not be less than the same multiple of
the X, component of 9¢. This qondition_is evidently fulfilled for the case
illustrated in the figure;‘ If the condition were not.satisfied the situation
would be as in Figure 2 - 5c¢c where it is evident that x does not minimize ¢
subject to the conmstraints. Similar considerations verify the correciness
of the Lagrangian problem when the minimum lies on the 22 axis or at the
point X = xz‘- 0. |
For the case of minimizing a function of many variables subject to
many equality constraints
Minimize @(x)
with g(x) = O
x>0

The generalized Lagrangian problem is to find vectors x, y and v such that

¥ dg(x) - af(x) + v = 0 (2 - 6a)
g(x) =0
X > 0, v > 0
T
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These relationé have the same form as in the single constraint case with one
term for each constraint equation in (2 - 6a). The form of the Lagrangian
problem associated with the general programming problem in the form (2 - 1)

may be found by use of the relations given in Table 2 - 1, The result is

(Feneralized Lagrangian problem:

Find vectors x, v, u and y such that

i as(x) = Hx) 4 v om0 | 2 - 72)
g(x) ~u=0

vx=0 yT u=0 (2 = 7d)

The generalized Lagrange multiplier (the fundamental theorem for general

programming--Theorem D - 2) rule then states:

i) If x is a locally optimal solution of the general programming~
problem, then there exist vectors v, u and y such that (x, v, u, y)v
is a solution of the Lagrangian problem.

ii) If (x, v, u, y) is a solution of the Lagrangian problem and
¢(x) is concave and the‘constraint set convex in the vieinity of x,

then x yields a relative optimal solution of the programming problem.

. A geometric interpretation of the Lagrangian problem can be made if

(2 = 7a) is rewritten as

$(x) = ag®) y+1v. (2 - 8)

The Tows of the rectangular matrix dg(x) are vectors normal to the comstraint
surfaces gi(x) = O at the point x, and the columns of the .identity matrix
are vectors normal to the constraint surtaces X; = O. The relation (2 - 8)

requires that the gradient of the objective function be expressed as a
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positive linear combination of the normals of the constraint surface, The
complementary slackness conditions (2 = 7d) allow only normals to equality
satisfied constraints to participate in the linear combination. Figure 2 = 6

gives an jllustration of this principle,

2 = 7 Equivalent Formulations - Duality

The relation developed above between extremum problems on the one hand
and the systems of relations constituting the Lagrangian problems on the
other is often observed in the physical systems. Moreover, it frequently
happens that two distinctly different extremum formulations lead to the
very same Lagrangian problem. One group of physical examples where this
occurs is the electrical networks which are studied extensively in the next
few chapters. In such cases the two extremum formulations are equivalent in
the sense that they both give a complete description of the same physical
situation-<hence they are said to bear a dual relationship to each other,
The Legendre transformation hés a dominant role in this duality relation.,
Therefore a digression will be made to introduce it and its properties.
2 = 8 The Legendre Transformation |

In the study of geometry there is a strong dual relationship between
points and planes in three dimensional space or between points and hyper-
planes in a multidimensional space. The specification of a surface in a
mul tidimensional spéce(is one example of this duaiity principle., In an
n + 1 dimensional space the usual way of describing a surface is to state
the value of the n + 1th coordinate of the surface as a function of the
first n coordinates, i.e.,

E = @(x) .

This is the point description of the surface. There is an alternate meansJ

of describing the surface--in terms of its tangent planes. If the surface
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Figure 2 - 6—-Geometric interpretation of the Lagrangian problen.
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is strictly concave, then no two points on the surface can have tangent plénes
with identical normal vecﬁors. Thus, the surface may be described by stating
for each possible tangent vector the intercept of the corresponding tangent
plane with the n + 1th axis, Take the n + lth component of the tangent
vector to be always minus one and represent its first n components by the
vector y. Then if n is the value of the intercept along the n + 1-"-'h axis,
the tangent plane description is given by stating n as a function of y.
n = o(y) |

These two descriptions of the surface are illustrated by Figure 2 - 7.

| Let us consider the relation between these two descriptions. First,

recall that the normal vector of the tangent plane at the point X is

y g(x)

-1 -1
Hence the equation of the tangent plane to the surface at X is

(x - )7 (F) - (n-gR) =0, (2 - 9)
The intercept E of this plane with the n + 1th coordinate axis may bé found
be setting x = 0 in (2 - 9).

7= PR -1 gE 7‘ (2 - 10)

This expression for n can be put in terms of y provided that the relation
y = ag(x)
can be solved to give x in terms of y.
x= )
That this is possible when @ is strictly concave is a consequence of the
fact that there is a unique tangent plane for each point on the surface

(Theorem E = 2), Substituting this relation in (2 - 10), the functional
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ee
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’ /-
¢(x)/'/ tangent plane at x

\\ -1 (\{y} | [aﬁ(x)]
l .

: e(y) / 1

0

Figure 2 = 7=-The Legendre transformation.
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relation for the tangent plane description of the surface is obtained in
terms of the functional relation for the point description
-1 T -1,y
n=00) =8 [ )] - 5[ #70)] (2 - 11)

This function is the Legendre transformation of # and turns out to be

strictly convex (Theorems E - 1 and E - 3) if @ is strictly concave.
An important property of the Legendre transform is that its gradient
is the negative inverse of the gradient of ¢. Specifically.
38(y) = - ™ (y)
This is easily shown by application of the chain rule for differentiating
composite functions (see Appendix E). |
As an example of the Légendre transformation consider the case where
ﬂ is a positive definite quadratic form (and hence a strictly concave
function).
C#x) = TxPx
Then the gradient of @ is
M(x) = Px,
Since P is positive definite, its inverse exists aﬁd is also positive defi-
nite, Therefore |
3wy = Pl

The Legendre transform may now be evaluated using (2 =11).

oy) = 3 (e - [P'.lyay_.l

1. T -1
=-5y Py

The transform ©(y) is obviously a strictly convex function. Its gradient
is

=1
B(y) =-PFy

in agreement with the statement made above.
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2 = 9 Duglitz in Equality Constrained Miniiiz#éidn
In order to introduce the discussion of duality relationships in pro-

éramming,problem59 a simple prpblem will be used to illustrate duality in

an o;dinary equality constrained minimization problem. Consider the proble

of minimizing a positive definite quadratic form subject to a system of

linear constraints,

lQnadratic;minimnm problem:

- Minimize

L ijP X + cT X
1 2 S . .
with
A x ='b‘

Applying thé Lagrénge multiplier. rule, the following equivalent problem is

obtained,

Qu@gjatic Legrangian problem:

Find vectors x and z such that
jAsz -=Px=c
Ax=b0
Now, as was shownvabovevthexLegendre transform of ﬁ(x) =-l;xr‘Pux)is

2
1 7T =1
ey)==5y P

maximizatiqn‘of the transform.

Y. Consider a second extremum problem concerning the

Quadratic maximum problem:

‘Maximize

1.7

-5y Pt

y =»‘bT Z
with
AT Z =y =¢C

The corresponding result of use of the multiplier rule is the following.
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Quadratic Lagrangian problem:

Find an X, ¥ and z such that

AT Z =Yy =2¢C

x=P 7y
Ax=D.,
The two Lagrangian problems are identical except for the introduqtion Qf
the extra variables y in the latter §ase. This indicates that the two
extremum formulations are simply two different but equivalent ways of
stating the same problem. The close connection between the two extremum

problems is further brought out by the following property.

If x is an optimal vector of the minimum problem and (y, z) is an
optimal vector of the maximum problem, then the objective functions

are equal.

To demonstrate this let (x, y, z) be a solution of the Lagrangian problem.
It follows that x is an optimal solution of the minimization problem and
(y, z) is an optimal solution of the maximization problem. The following
relations are easily obtained from the Lagrangian problem.

T T,T T
CC X=X A z2-x Y%

bT ¥ = zT Ax = xT AT Z .

It follows that

T X -br zom - xr Yo (2 - 12)

The difference between the objective functions of the two extremum problems
is

As%xT P X+c x-= [-%yT P']'y+bT z]
or, using (2 - 12)

A-%xTPx—xTy+%}*TP-lY
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and finally, using the relation x = Py,

17 w1
A= SX y-X y+oyx= (O

Hence;the;objective functions take on the same value for the optimal solu-
tion; This principle of equality of objectivebfunctions carries over into
the duality re;ations in linear and quadratic programming which are present
»in the next section. H
2 - 10 Duality in Mathematical Programming

The duality relation established ahove for a simple quadratic minimum
problemlcan be generalized to a class of guadratic programming problems,

Congider the following pair of quadratic programs.

Primal quadratic program:

Minimize

1_ T T

2 % P«xQ tey ¥t ¥
with

B e e

xQ >0, xL.z 0

Dual guadratic program:

Maximize

R T
"2V F oYt oY,

'yL >0, va unrestricted
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Each of the obejctive functions consists of a positive definite quadratic.
form in one set of variables plus a linear combination of other variables and
the quadratic form in the dual problem is the Legendre transform of the
quadratic form in the primal. These two extremum problems have the same

gereralized Lagrangian problem, namely the following,

Generalized quadratic Lagrangian problem:

Find x, v, u and y such that

AQ xQ + AL 3 -u = b primal
xQ >0 xL >0 constraints
A T - + v = C
e YL "% g Q dual .
T —
AL YLtV 9 constraints
y;, =20
L=2
XQ = P yQ primal-dual coupling
th v, = O complementary
Q Q _ .
xLT v, = O ! slackness conditions
T
y,ou o= 0

The important properties of the dual pair of guadratic programs are sum-

marized in three fundamental theorems which are proved in Appendix D.

Duality Theorem: A feasible vector of the primal program is

optimal if and only if there is a feasible vector of the dual

program such that the primal and dual objective functions are equal.

A feasible vector of the dual progfam is optimal if and only if there
~1s a feasible vector of the primal program for which the objective

functions are equal.
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Existence Theorem: If both the primal and the dual program possess
' a feasible vector, then both have optimal vectors. If either of the
tWotprograms has no feasible vector,‘then neither haé an:optimal

- vector..

Complementary Slackness Principle: i) If (x,, xL) is an optimal
solution of the primal program.and'(yQ, yL) is an optimal solution
of the dual prdgrams.then (x» Xy Yoo ¥ ) is a solution of the

Q! X0 Yoo Y1/ 18 a solutio
Lagrangian problem., In particular the complementary slackness
conditions are satisfied. ii) The values of the variables xQ and

»yQ are unique in optimal solutions of the primal and dual, respectively.

An important point in connection with quadratic programming is that the

associated Lagrangian problem consists only of linear relations. This

feafure allows linear computations to be used in obtaining éptimal solutions,

and allows finite step algorithms to be designed. This would not be true

for any more general class of programming problems.

The pair of quadratic programs stated above beéome a dual pair of linear

programs if the matrices P, Aq, CQ’ IQ and yQ are omitted.

Primal linear program:
e T
Minimize c X

with Ax>b

Dual linear program:
Meximize bT ¥y
with AT y<¢

y >0
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On the other hand, the duality relationship can be extended by means

of the Legendre transformation to yield a pair of dual concave programs.

The primal concave program is obtained by replacing the positive definite

form of the primal quadratic program by a concave function ¢(xQ). The

dual convex program is obtained by substituting the Legendre transform of
¢(XQ) for the negative definite form of the dual quadratic program; The

pertinent theory is given in Appendix F.



CHAPTER THREE

v Eroper%iés and Edﬁivalent Formulations for

Electrical Nétworks Containing Diodes

Thevintimate connection between mathematical programming and the
behavior of electrical networks containing diode is the central topic of
this chapter. First the incidence métrixvis:introdﬁcedvéé a convenient
way of expressing the topology of é network.v Then:the Qonditionsffor the
solution of electrical networks are briefly reviewéd,aﬁd the_characteristics
of fhe idealized électrical devices whiéh will Qoncern'us are defined.

With fhe formal demonétration of the equivalence of matﬁematical pr9+
gramming and the solution of certain eiectgiCal nétﬁéfks, physidai inter-
pretation of»some of the main theoretical ideas of pfogrémminébthéory are
givén. Finally, the concepts of termiﬁal pair systems and breakpoint curves,
which are the basis for later developments, are introduced.,

3 = 1 Graphs‘and Incidence Matrices

A graph is a set of points which are called nodes connected by a set of
line segments known as branches. Each branch of the graph connects tﬁo
distinct nodes and has an‘associaﬁed_diréction'indicated by an arrowhead.

A graph is illustrated iﬁ Figure 3 - ia;’ We willvonly be concerned with
connected graphsbin whidh any node is connected to each{other node by some

sequence of branches of the graph. Generally when one is using the concept
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a)

brancheu
1 2 3 L 5 6
1 -1 {1
=1 1l -1
, b)
1
-1 1
[]
1 -1

'Figure 3 = 2==Branch polaﬁi&y convention.
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6f a graph, it is only the topology of the graph--the description of which
_branches.connect which nodes-~that is ;ﬁgortant.; This,information may be

conveniently given in a rectangular array having oﬁe row for each‘gode and
one column for each branch of the graph. In each column of the array a minus
one is placed in the row corresponding to the node on which the branch ori-
ginates--a plus one is placed in the row corresponding to the node on which
the branch terminates. The remaining positions in the cdlumn are zero, The

array so constructed is called the node incidence mﬁtrix of the graph.

An example is given in Figure 3 - 1b for the graph in Figure 3 = la., The node
.incidence matrix descriptioﬁ of a éraph will be used in all’mathematical
formulations?deVeloped in this chapter, An alternate topological descrip-
tion may be obtained by listing the incidence of ‘branches on loops and leads
a network dval development. However this will not be uSed.inﬂthe.present
work;

3 -2 Electrical Networks--Laws and Devices

An eléctrical network is a graph in which various electrical devices
are associated with the branches., With each branch i of the graph is as-
sociated a voltage ey and a current ii°. The»sense chosen for these vari-

ables is 1nd1cated in Flgure 3 = 2 It is such that the product e; ii is

kthe power dellvered to the network by the branch. With each node j is as=

soclated a node potentlal uJu In order that a gigen set of values of e, i0

11 and uJ be. a solutlon of the network it is necessary and suff1c1ent that

. three condltlons be satlsfled. They are

1) (Kirchoff's node law) The branch currents must satisfy a continu-

ity condition at the nodes,



i covers all branches directed toward node J.

J covers all branches directed away from node j.

Using the node incidence matrix N this may be written as
Ni=20

where i is the column matrix of branch currents.

2) (Kirchoff's loop Law) The difference between potentials of the
nodes on which a branch is incident must equal the branch voltage,
This requires

uj-uisek
if branch k is directed from node i to node j. This may be written,

using the node incidence matrix, as

NT u = €

in which u and e are the column matrices of node potentials and
voltages, respectively. This condition is clearly equivalent to the
requirement that the sum of the branch voltages around any loop

equal zero,

3) Each branch current-branch voltage pair must satisfy any conditions
imposed by the electrical device associated with that branch of the

graph.

There are five different types of electrical devices that will be con=-

sidered in this chapter. Their symbols and the conditions which they impose
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on the branch voltage-branch current pair are shown in Figure 3 = 3. The

current source maintains a constant branch current regafdleés‘qf‘what may

happen to tﬁé 5rahbh'%dltage.;fSimilarly the voltage source maintains a con-
sfant branch voltage. The g;ggg_acts like a switch. It maiﬁfaiﬁs-éero volt-
age as long as the current is;greater than zero, and zero current if the
voltage is greater than zerg,‘,The diode requirements may be stated concisely

as

The last of these relations states that a diode always delivers zero power
to the network. A diode will be considered as having three mutually exclu-

sive states:

open ' - eq .d
breakpointv'ved = O,, id = 0
closed ey = 0, id >0

The resistor imposes a linear relation between branch current and voltage.

The power delivered by the resistor is

e i = = =—=— = =1i"r

which is a guadratic function of the branch voltage or current; The ideal
d = ¢ transformer is a device associated with two branches of the graph of
a network. One branch is associated with the primary winding of the trans-
former and has current ip and voltage ep; The other branqh is associatéd
with the seéondary windigg with current is and voltage ege From the condi=
tions imposed byxthe transformer,

e, = t eﬁ, iP = =t is’
it follows that

#
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a) i, |
o v | | _ tant
- e = constan
- ) | l | + , /_
§ ——— | v v
v
by  voltage source i

. .
' ; ‘\" i = constant .

P

ic-——*‘—_ current source %
c) | i, | ‘ |
: , | d closed: e = 0, 1> 0
€4 » )//'breakpoint: e =0, 1= 0
-— . + . =
l[>|| ° /(open.e>0,i 0.
i, — ideal diode ; ®q
d) .
‘ 1.4
r
L e, . : . ¥~ glope = 1/r
i —— ‘ : . e
r linear resistor : : r
o+ e, = t e
e,
i = <t
P

ideal d-¢ transformer

Figure 3 - 3--Relations imposed by .electrical branch types.
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that is, a tfénsforméf‘délivers zero power to a network, although it may
transfer it from one branch o another.

3 - 3 Bquivalent Problems forAQ;ode-Source-Resistqr Networks

“In this section electrical networks containing voltage and current
sources; diodes and resistors will be considered, The vectors e and i repre-
Seﬁtihg the BraHCh‘vdltégesfénd currents will be partitioned according'to

‘type of branch (by possibly renumbering the branches).

°y iy
ec | iG
€ = e i= i
D
| °R | | | "R |

" The rows of the node incidence matrix will be similarly partitioned so that
N =[NV N, N NR] .

The network laws as applied to a diode-source-resistor network may now be

written down.

Diode-source-resistor lagrangian problem

Find e, i and u such that

s . s oo . . .
NV i. + N lD + Nﬁ 1R N, i Kirchoff node law

v D C °C
T ™
NV u = ev %
!
T i
ND u = eD = 0 \
I3 .
NRm u-e =90 . Kirchoff loop law
R ; .
T
HC u = ec = 0



eR -“R»iR ' o Resistor iequirements
e. >0 i. >0 e T il = O'. Diode requirements
D=-"° D -7 D D ,

Here R is the diagonal matrix of resistance values. The terms NC ic and ey
have been put on the right as they are given constants. The important point
is that this problem is exactly the Lagrangian problem associated with the

following pair of dual quadratic programs,

Diode=-source-resistor primal problem:

Find an i that minimizes

%’iRT R iR - eVT iv
subject to
NV iV + Nb iD + NR iR = - NC iC
iD >0

Diode~source-resistor dual problem:

Find an e and u that maximizes

n-% eRT G eR + iC eq
subject to
E%? u= ey
NbT u = ey = 0
NRT u=ep = 0
NCT._u -ey = 0
ey >0
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In the dUal'problem, G = R‘l'is the diagonal matrix of conductance values of

the resistance branches. In the primal formulation the variables are branch
currents and the node potentials are the Lagrange multipliers, Conversely,

the dual problem concerns volfage quantities and the branch currents are the
Lagrange multipliersa‘ The coupling relation of the Lagrangian problem is a
consequence‘of the resistor requirements. If the network contains no resis=-
tors, the coupling relation disappears and the problem statements reduce to
a pair of dual linear programs. The above two problems have the following

corresponding statements in words:

Primal: Find a feasible current distribution in the network which
minimizes the sum of the power absorbed by the voltage sources and

one half the power absorbed by the resistors.

Dual: Find a feasible voltage distribution in the network which
maximizes the power delivered to the network by the current sources

minus one half the power absorbed by the resistors.

If there are no diodes or voltage sources in the network the abové primal
problem becomes the well=known rule that the solution of a source-Qesistor
network is th;t.current distribution which minimizes the power dissipated in
the resistors among all current distributions satisfying Kirchoff's node law,
With voltage sources but no diodes, the primal statement is a more general
ruie given by Maxwell,

This correspondence between programning problzms and electrical network
problems yields some very nice physical interpretatiqns of the mathematical
principles oprrogI'-amming°

l>, The inequality constraints invthe programming problem are

embodied in the diode requirements in the electirical network.
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2) The complementary slackness principle cérrespohds to the reéuiro-
ment that diodes deliver zero power to an electrica1>network.

3) The duality theorem states that the objective functions in the
primal and dual formulations are equal at the soclution point., In the
,eiectrical network problem this requires

S 1. T . 1 T T .
ev lV -5 lR R lR -3 e Ge, + e i

R gt i = O

which is clearly a statement of the principle of conservation of

energy.

3 - 4 Reduced Networks

An interpretation of the existence theorem of mathematical programming

can be given in terms of the reduced networks associated with a given source-

diode-resistor network.

The equations'for the voltage reduced network are obtained by setting i

equal to zero and replacing the resistor conditions with i

The voltage reduced network associated with a given source-diode

resistor network is obtained by replacing each resistor or current

source of the original network with an open circuit,

The current reduced network associated with a given source-diode

resistor network is obtained by replacing each resistor or voltage

source of the original network with a short circuit.

C

R = 0 in the La-

grangian problem., It is‘evident by inspection that if (i, e, u) is a solu~

tion of the voltage reduced network, then i satisfies the constraints of the

primal programming formulation. Conversely, if i satisfies the primal con-

straints, then (i, e = 0, u = 0) is evidently a solution of the voltage re-

duced network. Heﬁce, the primel constraints are feasible if and only if

the voltage reduced network has a solution. The eguations for the current
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mreducéd network are obtained by setting e, equal to zero ané replacing the

Vv
resistor conditions with ep = 0 in the Lagrangian problem. As above one
concludes that the constraints of the dual programming formulation are
feasible if and only if the‘cﬁrient rédﬁéed'nétwork'posseéses;é solution,
The existence theorem of quadratic (of'linear) programming (Theofem D . 3)

then has the'fpllowing physical statement in terms of electrical networks.,

" An electrical network made up of sources, diodes and resistors
possesses a solution if and only if the associated voltage reduced

~and current reduced networks both possess solutions,

The fact that the voltage reduced network has a solution apparently
guaranteés that none of the voltage sources are "shorted out" in the ori-
ginal network., The fact that the current reduced network has a solution
guarantees that all the current produced by the current éources has a
“"place %o go";v_

The correspondence between network problems and programming problems
also yields>niCeAphyéical interpretations of algorithms for solving linear
~and quadrafic programs as will be seen in the following chapters,

3 = 5 Electrical Networks Containing Transformers

The géneral case of a network made up of voltage and current sources,
diodes, resistors and ideal d-c¢ transformers will be considered next., In

this case the current vector i will be partitioned to include also i and i

P s’
the primary and secondary transformer currents. The branch voltage vector e

will also contain ep and eS“ the primary and secondary transformer: voltages.

The incidence matrix is expanded %o include HP and NS giving the incidence

of  transformer pfimary and secondary windings on nodes., The diagonal matrix
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T gives the turns ratios of the transformers. Expressing the network laws

in these terms gives the Lagrangian problem.

Transformer network Lazransian problem:

, Find e, 1 and u such that

- T e . 3 - = - I3 0 |
NV iy + ND iy + NR i + NP ip + Né lS Nc lC Kirchoff's
node law
T
NV u = ev
T
ND u - eD = 0
T
NR u = eR = 0
Kirchoff's loop law
N T u = e = 0
°p P
T
NS m - eS = 0
eR + R iR = 0 resistor conditions
eq - T ep = 0, iP + T iS = 0 transformer conditions
. T
> . - . .
ep2 0, ipz o, ey ip 0 diode conditions

This is the Lagrangian problem corresponding to the following pair of

duzl quadratic programs.



' Transformer network primal problem:

" Find an i that minimizes

LiTRi -eli
2% "R YW

subject to

v Hv 1Y,f'Nb,iD f Ny i fVNP ?P + NSAls = - N, i,

;‘Dg 0

Tréﬁsférmer network dual problem:

" 'Pind an e and u that maximizes

1T, .®
-3 eR G eR:+ lC,‘eC
‘subject to
T
NVY u = ey
T u - e
R
T
Nﬁ u - ep = o}
T
NP u - ep = 0
N, T u - eg = 0

313
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‘fhus every electrical network containing the five types ofvdevices'
treated here is equivalent to a palr of dual quadratlc programs. It will be
shown later (in Chapter 311) that the reverse is also true--every quadratic
(or linear) program can be represented by an electrical network containing
only these five types of elements., All of the remarks made above concerning
the physical interpretation of the principles of mathe@atical programming
apply without modification when transformers are included;

The importanf poiht of difference between networks without transformers
and networks with transformers is the following; In the former, the coeffi-

. cients in the constraint relatlons of the primal and dual formulatlons are
all either plus one, minus one or zero. Indeed, they are the elements of an
incidence matrix., In linear programming this fagt allows algpfithms to be
devised in which the arithmetic iﬁvolfes'bni& additibéé.andkéﬁﬁtractions.
The importance of this will be seen in thg next chapter where such an algo-
rithm is developed. With transformers indluded,vthe‘ﬁurns ratio matrix T
appears in the constraint relations and the coefficients therefore need not
even be integers, |

3 -6 Non-Linear Devices:.

The correspondence between programming problems and network problems
can be carried even one step further. In place of the linear resistors in-
cluded in the networks discussed above, a general class of non-linear resis-
tors will be allowed. The voltage-current relation of-the device will be
required to be a "strictly decreasing" curve. Precisely, if (ir’ er) and
(ir” Er) are any two points on the curve, then

i< {r‘ if an only if e, > 5r°'
Otherwise, the curve is arbitrary; The characteristics of such a device

are illustrated in Pigure 3 - 4. Obviously the linear resistor is a
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A i

r

e_>e_ if and if T_<i
e. > e. if - only if 1. r

Figure 3 - L~-Non-linear resistive device.

é network
PO— .
N containing
& sources, diodes
- | resistors and
M O———
transformers

Figﬁré 3 - 5— Network with observable terminal pair.
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special case of this device. For Ehis class of devices the relation between
current-and voltage is one-to-one.

For a network containing voltage and curfent sources, diodes, trans-
formers and the general resistive devices, the Lagrangian problem is the same
as for the transformer network above except that the non-linear resistors
are described by a relation

ep = f(ip)
where f ié a one-to-one transformation. As a coﬁsequence we may also Wriﬁe
i = £ (e) = - alep).
From the properties of convex functions (Appendix E) one concludes that f
is the differential of some concave function @ and g is the differential
of some convex function ©, -The net result is that the solution of a network
of this type is equivalent to a pair of dual concave programming problems
which are identical to the quadratic programs stated above except that the
quadratic forms are replaced by ¢(iR) in the ﬁrimal formulation and by
O(eR) in the dual formulation.

3 - 7 Terminal Solutions and Breakpoint Curyes

The concepts of terminal solutions and breakpdiht curve are of utmost
importance in the algor;thms which will be descriﬁed in succeeding chapters.
Hence, these ideas will be‘introduqed here,

- Consider an arbitrary network containing Sources, diodes, resistors and

transformers in which one pair of nodes (the terminal pair) is available for

external observation (See Figure 3 = 5). The current and voltage at the
terminal pair will be represented by 6 and €, respectively. The nodes
which comprise the terminal pair will be indicated by the one.column

incidence matrix I, which contains a minus one in the position corresponding
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to node M and a plus one 1n the p051tlon correspondlng to node P By a

termlnal solutlon is meant a palr of values of 6 and € whlch corre3ponds

to some solution of the network.

Termlnal.palr.solutlons thus corresponds

to solutions of the terminal pair system of relations given below,

Terminal Pair System

Ni+ngés= © Kirchoff's node law
N u=e
Kirchoff's loop law
T o
T u = [
ep = - R ip resistor conditions
eq = T eP, ;P_= -T %S_ j.ﬁ;ggsfgrmer con@ltléns
. T . . s
i > O?‘-eD.> 0, ey ip = 0. diode conditions

This éyéfeﬁ of félatiéﬂs'ﬁaj also be set down in tabular form as

follo&éi;:

T T T T B L S T
Vp My Ny Ny Fg ) omp Ny g
=I =T 0
‘R N 0
A “
w1 o
B . o
o a| o
ny o
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The line joining the vector variables iD abd e indicates that these vari-

D
gbles’are required to satisfy the "diode conditions". 'The,system above is

a special case of the general terminal pair system
| I |

n x & ¥y v

- A e b
-Q ATV I |c
1 ok 0

An electrical model for this mathematical system will bé'given in Chapter
Fivé. Its properties are sﬁudied in Appeﬂdix G.
A breakpoint curve is a continuous curve made up of straight line

segments noné 6f‘ﬁhich has negétive slope. An exaﬁple is givén in

Figure 3 = 6, In;Appendix'G it is demonstrated that the set of values

of (&, n) whichvcorrespond>to solutions of the general terminal pair

system form a breakpoint curve in the g - n plane. In the following

an attempt will be made to make this plausible by means of physical

arguments relating to electrical networks. For this purpose it is

helpful to view the network as in Figure 3 - 7, separating the diodes from

the network by placing each one at its own terminal pair. For any.solution

of.the~terminal bairfs&sfem-eadh:diode is either‘"oben" and it has zero

current and behaves.as an open circuit, or.it is "closed", has zero

voltage and behaves as a short circuit. (disregarding the breakpoint state

for the present); For a given state of each diode (open or closed) it is

clear physically that since the network contains oniy linear devices, there
 will be a unique incrementél resistance observed at the terminal pair.

This incremental resistance may be zero or it might be an open circuit.



O—
g ; + ' 1 -
—_— network
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+ containing _ ’
sources =
O— registors o
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formers , | ZS
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Figure 3 -~ 7—Network with diodei separated.
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Figure 3 - 6——An example of a breakpoint curve.

"
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However, it can never by négative. Suppose there is more than one terminal
solution of the system for a giVeh staté éf the diodes. Then all points
on the line 301n1ng these two solutions must also be termlnal solutions
because the system is a set of linear equatlons for any given configuration
of diode states. The slope of the line segment must be equal to the incre-
mental resistance. Since there are only a finite numbér of possible choices
of diode states, the set of terminal solutions must consist of a finite
nﬁmber of straight line segments,

Now consider connecting a variable voltage source and one-ohm
resistor to the terminal pair, as shown in Figure 3 - 8, and suppose that
the voltage has been adjusted so that fhé network has a solution. As the
variable voltage « is raised the terminal solution will move along the
line segment corfespéﬁding‘to fﬁé present state of the diodés. At some
point a diode current or voltage will reach zero and tﬁe diode will shift
from the open state, through the breakpoint state to the closed state, and
the terminai solution will be on a new line segment., As the variable
voltage is further increased, the stateé of the diodes will changev
generating the successive line segments of the breakpoint curve. Eventu-
ally, since there are only a fin?te number of cqmbinations of diode states,
a state will be reached where no amount Qf increase in the voltage o will
cause any diode to shift to a new statQ, Thﬁs’the last segment of the break-
point curve must extend indefinitely toward positive terminal voltage and
current.‘ The same arguments apply regarding the negative portion of the
set of terminal solutions. This is a physical description of the mathe-
matical technigue used to prove the corresponding properties of the general

termlnal bair system in a rigorous manner in Appendlx G.
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~ Network .
“containing
" diodes,

sources,

resistors. .

transformers

‘——’ff‘;”._':

81\ set of
terminal

solutions

points satisfying
the terminal
condition

.~ Figure 3 - 8--Demongtrating the continuity of the set of terminal solutions.
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Al couple of special cases of the terminal pair system are sufficiently

important to be worth speciallcomment. Firat, if the network contains no
resistors, the 1ncremental resistance observed at the terminal pair must

(.alwaye be elther Zero or anuopen.circuzt. Henoe the breakp01nt curve would
contain only horizontal and vertioal line segmente.' Moreover,.if the
voltage sourcee of the network are set to zero or removed, all ‘horizontal
line segments must be coincident with the-ourrent~axieu~»This‘is true
because the vertlcai positions of such line segments are. determined by the
voltage sources, blmilurly, all vertioal line segments of the breakpoint
ourve collapse to the voltage exis if all current sources are set to zero.
These reuulte are demonstrated for the general torminal po.:.r eystem as

'I!heorems G -2 and G - 5



CEAPTER FOUR

‘An. Algorithm for Solving Diode-Source Networks

:In thdsvchabter sn“algorlbhm for flndlng a solutlon of an&>e1eotr1cai
netﬁorh contalnlng 1deal dlodes, current ‘sources and voltage souroes 1s
developed A necessary and suff1c1ent condltlon for the ex1stence of ‘d
solutlons is glven and the algorlthm 1s shown to yleld a solutlon for eny
network satlsfylng the condltlon. The reasoning used 1n thls development
is based in its entirety on the ideas and concepts of electrloal engineer:

In the presentatlon the terms path loop and tree w111'be used to

desorlbe certaln groups of branches in the Jraph of a network Their

definitions are:

path between node 1 and node j:-a sequence of branches and nodes

in the graph startlng w1th node i and termlnatlng w1th node 3.
;QQB--a.paﬁh'whioh starbsmenddterminates.on #he seneinode:‘
. tree-- a set of branches and nodes of the graph which contains a
path between each pair of nodes in the set, but contains no loops
4W£E;;‘Egggegs;tree_whioh,oontains,every-node of the-grabh.

4 -1 Existerice Gonditions and Reducéd’ Networks

For the purpose-of*the“preSénﬁ'disoussion it will bedsupposed that
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certain redundant branches have been removed from any network considered.

Specifically, the following assumptions will be made.

First non-redundancy assumption:

.The nodes of the network cannot be divided into two groups such
‘that the only branches connecting members of the two groups are

current sources.

In particular, this means that no single node of the network may have
ourrent sources only incident on it. lf thie eseumption were not valid,
then eithef the #alﬁes of’fhese ourfent sources do not add‘up to zero and
the network posseSEes'no solution, or, the values of the current souroes
cancel, and the two seotlons of the network may be solved separately.

(See Figure 4 -1).

Second non-redundanoy assumption ,

The network has no loop on which only voltage sources are

1n01dent

If this assumptlon did not hold, one of the voltage sources could be
removed‘w1thout affectlng solutlons except for an arbltrary current in the
loop. (See Flgure 4 - 2) |

The following statement giﬁes e necessary and suffioient condition
for the existence of solutions for an‘eleetrical network oonstrocted'of

voltage and current sources, ideal diodes and resistors.

An electrical network whose branches are voltage and current
sources, diodes and4resistors possesses a solution if and only

/if the following two conditions are both satisfied.



Figure L - l--Network violating the first non-redundancy assumption.

/

Figure N - 2V—-1_\Ietwork‘ violating the second .npn-redundancy 'assumption.



First Existence Condition: For each loop of the ﬁetwork 0n~whi§h only
dipdes and voltagg sources are incident, and all diodes are alligned
in the same way with the loop, the sum of values of the voltage’
sources alligned with the diodes must not be greater than the sum

of values of voltage sources alligned against the diodes.

.Second E;istence Condition: Divide the nodes into two groups in any
manner. For any such division in which all branches comnecting nodes
of both groups are diodes and current sourceé, and all diodes are
directed fowards the same’grbup of nodes, the sum of values of the
current sources directed toward this group must not exceed the sum
of values of the current sources directed away.

These conditions are simply a restatement of the interpretation of the
existence,theqrem of quadratic programming given in section 3 = 4. The
nécessity of these conditions is readily apparent. If the first condition = -
were violated for some loop, then no assignment of potentials to the nodes.
of the loop cduld satisfy the branches of’the loop. If the second condi-
tion were violated for some division of nodes, then no permissible assign-
ment of currents to the diodes could produce a net current between the
two groups of nodes equal o zero. For examples see Figures 4 -3 and
4 - 4.

The sufficiency of these conditions for a diode;séurce network will
be evident when the algorithm is described as it will be shown to yield é
solution whenever the two existence conditions are satisfied. Of course,
the sufficiency is also followed from the existence theorem.

Suppose it is required that a certain network N of voltage and current

sourceé, diodes‘and resiétbrs be'sblfed. From this nefwork a new network V

may be obtained by removing all current sources and resistors. This network



Figui'e_ } = L--Network violating the second existence condition.
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' will be called the voltage reduced network associated with N, The voltage
reduced network for the network in Figure 4 - 5a is shown in Figure 4 - 5b,
Now every loop in the original network N whiéh contained only voltage sources
and diodes, appears unaltered in the reduced network V. In fact, V contains
only those 1obps. Hence a_netwdrk N satisfiés the first existence condition
if and only if the associated reduced nequrk V satisfies that condition.
Note that the reduced network V always satisfies the second condition be-
cause it contains no current sources.

éimilarly, we may form the current reduced network C from N by re-

placing all voltage sources and resistors in N by short circuits. The current

reduced netwdrk for the network in Figure:5a is shown in Figure éba Then for

any division of the nodes of N in which only:diodes and current souiceg

comnect the two groups of nodes, the corresponding division of the nodes of

C will yield the same situation. In féct, every division of the nodes of

C corresponds t0 some such division of the nodes of N, Thus a network N

satisfies the second existence condition if and only if the associated

reduced network C satisfies that condition. Again, the réduced network C

always satisfies the first coﬁdition because it contains no voltage sources,
Thus we have reached on the basis of electrical reasoning the conclusion

stated in Chapter Three:

‘A network made up of voltage and current sources, diodes and
resistors possesses a solution if aﬁd only if the associated ‘
voltage reduced network and current reduced network both possess

solutions,



a)

S

Figure L - 5—-Diode—source-resistor network and its associated
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4 -2 First Algorithm for Diode-Sdurce‘HEtworks

‘ in this section’the’algorithm for solving any diode-source network
bsatisfying the non-redundancy and existenéé conditions will'ﬁe preseﬁtedr
Before describing the algofithm in step by step detail the equivalent
operations performed on a real network will be discussed. This‘should give
a good physical picture of how the algorithm proceeds. The method involves
two distinct phases: In the first phase a solution of the voltage reduced .
network is found. In the second phase, the result of phase I is used as a
starting point to form a complete solution of the network. In terms of‘linear
programming, a feasible vector is found for the primal problem and is then
modified until it is optimal. Physically, the algorithm amounts to assemb-

ling the components of the network in a rather particular manner as follows,

Phase I
l) Start with only the voltage sources.
2) Add the diodes one at a time,

Phase II |
3) Short circuit sufficient diodes so that the short circuits
and the voltage sources form a full tree of the complete network.
4) Add the current sources one at a time
5) Restore the diodeé whiéh’Were shortsﬂrcuited in step three

one at a time.

In the followiné,descriptiOn, the network consisting of those components
which have already been "assembled" according to the above procedure will be

called the solved subnetwork. Thus at each step in the‘algorithm one has a

set of branch currents and voltages which form a solution of the pertinent

solved subnetwork. By following the order of assembly given above it is
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alwayé possible, as will be demonstrated below, to find a solution for the
comblnatlon of the solved subnetwork and the next component to be added. This
statement is true, of course, only 1f the. network to be solved satlsfles the
the non-redundancy and,exlstence condltlons glven abové. '»
In the figures the letters c, B and 0 w1ll be used to 1nd1cate that a

diode is in the closed breakp01nt or open state resPectlvely.

“”reducéd network

Step 1) Selé"c‘::t\aus.afthé initial solved network a full tree of
the network being solved'by |

a) including all voltage source branches

b) adding sufficient diode branches so that every node

is covered while producing no loops.

/

It is readily apparent that such a tree exists. First, according to the
first non-redundancy assumption, there is no possible division of the nodes )
of the network into two groups such that only current sources connect mem-
bers of the two groups. This aSéﬁres.that there is.a tree of the netwsrk
contalnlng only voltage sources and dlodes.f The second non-redundancy
assumption state that there are no loops contalnlng only voltage sources.
This assures the ex;gtence of a full tree contalnlng-d;ngsiand'all voltage
sources. A diode-source network and a”full tree for it with a potential

distribution are shown in Figure 4 - 6.

Step 2) Consider each diode of the initial solved network as
being in the breakpoint state (zero voltage, zero current),
Compute a donsistent set of node potentials for this network

‘o (t:ge)ﬁ¢209n§ider all diodes whose voltage is zerpvor_greater.ﬁhan
zero as part of theJSleédfdubnétwork and in the breakpoint or open

state, respectively.
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Figure L — 6—Diocde—source network with tres and potential distributien
' for starting phase I.



4 - 11

This may be done by setting the potential of an arbitrarily chosen initial

node -equal to zero.*iThen'computetthe potentials of those nodes ‘connected to
the initial node by a branch of the tree, This will allowvthe‘potentials of
other nodes to be evaluated from values previously computed. Continuance of
the prpcesg‘will lead to the assignment of a potential value to each nbde of
the network.. Since‘by definitioﬁ a tree‘contains no loops, no inconsistency
can ever gpise--that is,,if is always ppssible to compute the required set of

node pgtentials,

Step 3) Select a diode mnot-in the solved subnetwork. If there

is none Phase I is complete and the present set of node potentials
form a solution of the volfage reduced network. Proceed with
Phase lI. If there is such a diode, designate the nodes on which
its plus and minus terminals are incident by ‘P and M, respectively.
~Let E be ‘the magnitude of the (negative) voltage of the selected

.. diode."

In Siepé 4, 5; S"énd-7 a solution will be'found for a new subnetwork
consiSting of the solved subﬁetwak'plﬁs the diode chosen in Step thrée°
The method ihvblveé "labelliﬁgﬁ‘thoée nodes at which current is "available"
over some péth from node P. At the termination of the labelling; a new
solution is indicated which is nearer to satisfying the diode selected in

3‘Step15.

tep 4) Label ﬁoae P.
Step 5) Label node J 1f node i is labelled and there is a branch
'of the subnetwork connectlng nodes i and J which is
1) a voltage source

11) a dlode in the breakp01nt state directed from node i

to node j.



4 - 12

‘Repeat until no more nodes can be labelled. If node M is not
labelled proceed with Step 6. If node M is labelled, the network

possesses no solution,

In the latter case there is a path between the plus and minus terminals of .
the chosen diode containing only voltage sources and breakpoint diodes

(See Figure 4 - 7). Together with the selected diode the branches of this
path form a loop containing only voltage sources and similarly alligned
diodes with the total loop voltage equal to E. The first existence condition
is thereby violated and the network has no solution.

If node M is not labelled, then the nodes of the network can be divided
into two groups--labelled and unlabelled. Any branch running from a labelled
node i to an unlabelled node j must be

i) a diode in the open state
ii) e breakpoint diode directed from node i to node J.
The situation is illustrated in Figure 4 - 8. If this were not true the
labelling operation, Step 5, was not completed. Remember that in Phase I
there are no diodes in the closed state because all currents are zero.

Now visualize similtaneously raising the values of the potentials on all
of the labelled nodes by the amount AU, The new set of potentials will con~
stitute a solution for the solved subnetwork as long as it is consistent
with the demands of the individual branches. Those branches which join a pair
of labelled nodes or join a pair of unlabelled nodes will be unaffected by.
the change. There are two classes of branches which connect labelled nodes
with uniabelled nodes--breakpoint diodes and open diodes. In the case of
the breakpoint diodeé, they will change to the open stafe for any value of

Au greater than zero, and will be satisfied no matter how large AT is,
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selected
diode

selected
diocde

Figure i = 8The situation if node M is not lsbelled.
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Open diodes directed from unlabelled nodes to labelled nodes will remain

satisfied for any positive value of AU. For each open diode directed toward

an unlabelled node, however, there is a limit on the allowable increase in the

potential of the labelled node. The amount of this limit is equal to the

voltage for the particular diode. Since, by our convention, the voltage for

an open diode is never zero, there will always be some amount AU by which the

potentials of the labelled nodes may be raised which will yield a new solution

of the solved subnetwork. This increase of potentials will make the voltage

of the chosen diode more positive and bring it nearer to being satisfied.

The precise operations are as follows:

Step 6) Consider thoée diodes in the subnetwork which are in the
open state and‘directed from a labelled node to an unlabelled
node. Let AV be the smallest voltage for any of these diodes.
If AV is gregter thap E or there are no open diodes directed to-

ward unlabelled nodes, set Ay = E, otherwise set AU = AV,

Step 7) Increase the potentials of the labelled nodes by Au.

Every breakpoint diode connecting & labelled node with an un-
labelled node switches to the open state. Some open diodes direc-
$ed toward‘unlabelled node from labelled ones enter the breakpoint
state. All other diodes éf the subnetwork retain their former
state. After the ﬁotential change some dicdes not in the solved
subnetwofklmay no longer have negative,voltages. Consider these
diodes as part of the solved subnetwork in future steps. If AU = E

a solution has been obtained for a new subnetwork consisting of

the old subnetwork plus the selected diode. Remove all labels and

go back to Step 3. Otherwise set E = E - AU and return to Step 5. .
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.. Each time a potential change is executed in Steps 6 and 7, either a
solution is found satisfying the selected diode, or one of the open diodes
Jjoining a labelled node to an unlabelled node moves to the breakpoint state.,
If the latter is the'caée*énother nddeACan:aIWays be labelled in Step 5.
Therefore, for each diode chosen in Step 3, the number of labelling opera-
tions before the diode can belsatisfiea can never exceed the number of nodes

in the network. Thus Phase I must terminate in a finite nﬁmber of steps.

Phase II - The completion of the solution

Step 1) Consider any division of the modes of the voltage reduced
network into two groups such that the only branches joining mem-
bers of the two groups are open diodes. Raise or lower the
potentials of one of groups of nodes until at least one of the
open diodes. changes to the breakpoint state. Repeat until no
division of theée nodes as above is possible.
The object of Step 1 is to insure that it is possible to find a tfée'ﬁith
the properties requested in‘Step 2, It is clear that each changéxbf'pgten-
tiaIS’inuS£ep~l gives a new set of potential values which is a solution of
theroltage'reduced network. For each change of potentials at least one
~diode changes from the Qpen‘to the breakpoint state. While all breakpoint
dicdes remain at breakpoint. Hence Step-one must terminate in a number of
" repetitions not greater than the initial number of open diodeé°
”Step'é) Select from the vo1£ége redﬁcedzﬁétwork aifﬁll tree
consistingl6ﬁiy;of‘v613ag§:séﬁrcés and Ereékpoint diodes. Assign
- a current distribution to the branches of this tree which

" satisfies the continuity condition and meets the requirements -
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of the current sources. Identify those diodes of the tree which
have currents greater than zero as being in the closed state.
Short ci:cuit those diodes in the tree which have current less
than zero. The resulting netwbrk (with the current sources) is
the solved subnetwork used as thé starting point for the itera-

tions of Phase I1I.

The process of assigning thé current distribgtion to the tree might be
carried out as follows. Select a cu;rent source and a path from the tree
connecting the pair of nodes on which the current source is incident. Add
the current demanded by the current source to the current in each branche
alligned with the path. Subtract this current from the other branches in
the path. Repeat for‘each current source. This method also shows that such
an assignment is always possible., Figure 4 - 9a shows a solution of the
voltage reduced network obtained from the network of Figure 4.- ba. Figuré
4 - 9b shows a tree satisfying the requirements of Step 2 with a current

distribution satisfying the current source requirements.

Step_é)' Select one of the diodes which is short circuited. If
all of the short circuits have been removed, the present set of
branch currents and voltages constitutes a solution of the network
and Phase II of the algorithm has been completed. Otherwise,
designate the nodes on which the plus and minus terminals of the
diode are incident by P and M respectively. Denote the magnitude

of the (reverse) current through this diode by I.

In Steps 4 through 9 a solution will be produced for a new network con-
sisting of the solved subnetwork with the short circuit removed from the

diode selected in Step three. Again nodes are labelled for which current is



0

Pgure L ~ g=—Solution of voltage reduced network and current
‘ - distribution for starting phase II,
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available over paths from node P. As a consequence of the labelling one of
the following two resulféioécur; Either a path is produced connecting nodes
P and M over which an increment of current can flow bringihg the current
between these nodes closer to zero. Otherwise a means of changing the node
potentials_is iﬁdicatédvsuch that such a pa£h will eventually be found. The
meaning of these statements will be clearer if one considers nodes P and M
as terminals of a diode-source network and examines the possible combinations
of current and voltage at thisAterminal pair. As was indicated in Chapter
Three, the set of terminal solutions of the solved subnetwork constitutes a
breakpoint curve. Also, since the network contains no resistors, the break-
point curve contains only horizontalAand vertical line segments as is il-
lustrated in Figure 4 - 10, 1Initially terminals P and M are short circuited
and the network stands at point a in the figure. Point b is the intersection
of the curves describing the relations imposed by the diode and by the net-
work. Steps 4 through 9 move the solution of the solved netwqu from point
a to point b by "tracingﬂ the breakpoint curve. The potential changes éor-
respond to veftical motions on thétcurve-yeach‘increﬁent of current along a

path corresponds to a horizontal movement;

Step 4) Lébei node P. Label hode j if node i is labelled and
there is a branch connecting i and j which is
i) a voltage soufce
ii) a diode in the closed state
iii) a breakpoint diode directeé toward node j
iv) a short circuit.
‘Repeat until no more nodes can be labelled, Ifcnode M:is.labelled,
proceed with Step 5.. If not, go to Step 8.

If node M is labelled the situation is as shown in Figure 1l.
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network
- selected . containing
.. diode dioc}es and
sources
E
breakpoint

curve

characteristic of

gelected diode

Figure L - 10—Breakpoint. curve of the solved subnetwork viewed
~ from the selected diode.. '
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Step 5) Select a pafh running from node P to node M which confains
only voltage sources, closed diodes, and breakpoint diodes al-
ligned with the directioﬁ of the path.
Such a path must exist or else node M could never have been labelled, Hoi
consider increasing the current through the branches of the path by the
amount AJ. If the potentials are held constant, only the branches of the
path will be affected by this change. Thus the new current distribution will
still be a éolution together with the brahch voltages so long as the branches.
of the path remain sétisfied. The voltage sources in the path will allow an
arbitrary amouﬁt of current to flow, hence they impose no restriction on 4d.
The bfeakpoint diodes and the closed diodes alligned with the direction
of the path alsoc allow an arBi?rary increase in current. On the other hand,
each closed diode oriented against the path places a limit on the amount of
increase in current along the path. Each of these diodes will allow an amount
of increase equal to the present current thrdugh the diode. The algoritim

proceeds as follows:

Step 6) Consider those diodes of the path selected in $tép 5 which
are in the closed state and are oriented against the direction of
the path. Le£ AH be the smallest current for any of these diodes.
If AH is greater than I, or there are no closed diodes oriented.

against the direction of the path, set AJ = I. Otherwise set AJ = AH.

Step 7) For each branch of the path, increase the current by AJ if

it is alligned with the path--decrease the current by AJ if,it is npﬁ
alligned. Bach breakpoint diode in_the path shifts to the closed
state., OSome of the closed diodes may move to the breakpoint state.
If AJ = I a solution of the subnetwork has been found which satisfies

the selected diode. Consider a new subnetwqu in which this diode
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selected .
diode '

Figure L —‘llé—Theﬁsituatioﬁ 1f node M is labelled.
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selacted
- @i ode

Figure l = 12-~The situation if node M is not labelled.
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is no longer short circuited. Remove all labels and return to
Step 3., Otherwise set I = I - AJ, remove all labels and return

to Step 4.

If node M is not labelled the situation is as indicated in Figure 12. Again
consider raising the‘potentials of the labelled nodes by the amounf AV as
in Steps 6 and 7 of Phase I. This time each branch joining a labelled node

i to an unlabelled node j must be

i) a diode in the open state
ii) a breakpoint diode directed from node i to node j

iii) a current source,

Otherwise node j should have been labelled. As before the open diodes dir- .
ected toward unlabelled nodes determine the amount by which the potentials
may be raised and still constitute, with the branch currents, a solution of

the solved subnetwork.

Step 8) Consider those open diodes of the solved subnetwork
which are directed towards unlabelled nodes. If there are none
the problem possesses no solution. Let AV be the smallest voltage

| for any of these open diodes.’i

if there are no open diodeé directed %oward unlabelled nodes, then_éll’diodes
joining labelled nodes with unlabelled nodes are directed toward the labelled
nodes. Also thé sum of values of the current sources connecting labelled
with unlabelled nﬁdes must be exactly‘i, that is, gréater than zero and
direoted agaiﬁst the conduction direction of the diodes. The second existence

condition is therefore violated and no solution of the network exists,
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Step 9) Increase the potential of each labelled node by AV. Each
‘breakpoint diode connecting a labelled node to an unlabelled node
will switch to the open state. At least one open diode will move

. to its breakpoint. Remove all labels and return to Step 4.

For each change in either the potential dist;ibution or the branch
current distribution during Steps 4 through- 9 of Phase II, at least one
dio@e of the solved subnetwork changes state. Also each change in potentials
or currents moves the solution point uniformly upward or to the right along
the breakpoint curve. Therefore no given combination of diode states can
ever be repeated. This assures that the iterationsterminate in a finite
number of steps--with either a solution or a demonstration that no solutions
exist.

4 - 3 Second Algorithm for Diode-Source Networks

The algorithm described in the previous section first produced a
solution of the voltage reduced netwérk corresponding to a given diode-source
network. In this section a second algorithm will be described which first
obtaigs a solution of the associated current reduced network. 1In mathematical
programming terminology, a feasible vector is found for the dual linear pro-
gram and is modified until it becomes optimal.

The second algqrithm is equivalent to performing the following opera-

tions on the physical diode-source network.

Phase I ~ Solving the current reduced network

1) Replace all diodes and voltage sources of the network by
shqrt circuits. Thus the starting network contains only current
sources,

2) Ekchange each diode with the corresponding short circuit,

one at a time until all diodes have been repositioned in the



Phase II - Completlng the solutlon

5) Remove all dlodes from the netﬁork whlch have zero current
through them. | |

) Exchange the voltage soﬁfces fof their corresﬁondlng short
circuits one ata time. - |

5) Restore the diodes that were removed in (3), one at a time.

The pre01se procedure is glven below. The descrlptlon has been
ghortoned as the Ur1n01ples are essentially the same as in the flrst algorl-
thm.

Phase I -~ Solving the current reduced network

Steps 1 and 2) Select a2 tree from the current reduced network

which conteinsenone;of the:guﬁrent sources., Assign a current
~.distribution to this tree which satisfies the current source
-requirements.  Short circuit those diodes of the tree which have
_reverse (negative) current. The resulting network_is;the'initiEI‘
.-80lved subnetwork for Phase I,

Step 3) Select one of the short circuited diodes., If ‘none,

Phase I is complete and the present current distribution is a -
solution of the current reduced network. Proceed with Phase II.

If there is, let P and M represent the plus and minus nodes fTor.

this diodee Let AI be the current throu h this dlode.
- Step 4) ' Label node P,

Sfeﬁ‘i) Label node §7if node i is labelled and there is a branch

joining nodes i and j which is
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i)' .a diode in.the closed state
ii) a breakpoint diode directed toward ncde j

iii) a short circuit.

Repeat until no more nodes can be labelled. If node M is labelled,

,wproceed;with>8tep 6,» If not the network possesses no solution.
If M is not labelled, then the second existence condition is violated.

"Step 6) Select a path from node P to node M made up éf closed
'diodes and breakpoint diodes alligned with the path. Let AH be
$he smallest current of the closed diodes alligned against the

" ‘path. If AH  AI or there are no such closed diodes, set AJ = AI,
'Otherﬁise'set AT ‘= AH. |
tep Z) For each branch of the path 1ncrease the branch current
by AJ if it is alligned w1th the path decrease by AJ if it is
not. Each breakpoint diode in the path will become closed. Some
of the closed diodes alligned against the path may move to the

'bréakﬁﬁiﬁt staté. After the change in the current distribution

some of the short circuited diodes may no longer have negative

"curréﬁfs..’Réﬁbve>the short circuits from these diodes and
consider them paff of tﬁénsolved subnetwork., Remove all labels,
If AT = §I5:gonback.to Steﬁ 34 otherwise return to Step 4.

Phase II 4>édmplé€ing thé'Sdlﬁtion’
tep 1) Con51der any loop of the current reduced network which,

w1th the current dlstrlbutlon glven by Phase I, contains only
dlodes in the closed state. If there are none, proceed with Step 2.

Modify the currents in the branches of the loop by adding an incre-

ment AI to each branch alligned with the loop and subtracting AI
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from each branch alligned ageinst the loop, so that one of the
diodes moves to the breakpoint state. Repeat Stép l‘qntil all

such loops are eliminated.
This assures that a tree as required in Step two does exist.

'Step 2) Select a full tree for the current reduced network by

:a) including all closed diodés and short cifcuits

b) adding sufficient breakpoint diodes to form a full tree.
Reinsert the voltage sources which were rgplaced by short circuits
in forming the current reduced network. Compute é set of node
potentials which satisfies the voltagg_sources_and the other
branches of the tree.‘vThis tree plus the cur;ent sources forms
‘the initial solved subnetwork fqr'Phaée II. Add to and comsider
as part of_the solved subnetwork any diodes not in the tree which

do rot have negative voltage.

Step 3) Select a diode not in ﬁhe solved subnetwork., If there
are none_thevpresent branch»currents and vpltages form a solution
of the entire netwofkland'Phase II has been completed. If there
is such a dipde, let E‘and M,deéigﬁate the node §n which its plus
and minus terminals areﬂincident. Denote by AE the magnitude of

the (negative) voltage of this diode.

In Steps 4 through 9 of the second algorithm a solution is produced for
a new subnetwork consisting of the solved subnetwork plus the diode seleéted
in Step three. The method, as in the first aiéorithm is by t%racing the
breakp01nt curve observed between nodes P and M. The steps are identical to'

those in Phase II of the first algorithm except for the followlng alterations,
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» a) In flgurlng the change in current in a path from node P to
‘ node M in Step 6 AJ 1s always set equal to AH. lf the;e are no
closed dlodes directed agalnst the path,vphe netwerk hae no solu-
~ tions by v1olatlon of the flrst ex1stence condltlon.“‘ |
b) In flgurlng the amount of potentlal change in Step 8, set AV
~equal to AE if AV is greater than AE or there are no open diodes
dlrected from labelled nodes to unlabelled nodes. dfter peffqrm-

ing Step 9, 8o back to Step 3 1f AV 1s equal to AE.

Similar arguments to those given in the previous section demonstrate
that this procedure also will terminate in a finite number of steps..

4 - 4 Altering Solution for New Parameter Values

One appropriate question concerning any.algorithm,for;solving_diodef
source ne&Works“is this: Given a solution for some diode-source network,

how easy is it to find a solution for the same network but with different

- values of the current and voltage sources? Does one have to start over from

~ the beginning of»tne.algprithm‘or.can one make use of the previous solution?
In the case of the algorithms described above  the previous solution is

readily used as a starting point for foiming a new solution. Three cases

. are evident depending on whether the current sources, the voltage sources,

or both take on new values.

lCase'I) Suppose that only current source values differ between the new
and previous networks. - Select a full tree of the network which, for the
current and voltage values for the old solution, contains all voltage sources
and all closed diodes, plus sufficient breeakpoint diodes to form a complete
- $ree. Assign a current distribution %o -the tfee such that the new current

source requirements are met. Keep the old set of node potentials. Some
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diodes of the tree may now haﬁe'negative currents. vUée the procedure of
Phase II of the first algorithm to satisfy these diodes and thus obtain the
new solution of the network.

Case II) Suppose that oﬁly voltage source values differ between the new
and previoﬁé networks. Select a fuli tree of thevnetwork'which, for the
current ahd voltage values of the oldlsolution, containsball voltage sources
| énd‘all closed diddés, plﬁs éﬂfficient breakpoint diodes to complete the tree,
‘Keep the previous distribution of branch currents But dompute a set of node
potentials-thétvsatisfies.the branches of' the tree for the new voltége source
values. Some diodes not in the tree may not have negative vdltége; Apply
the method of Phase II of the second algorithm to satisfy these diodes and
produce the solution of the new network.

‘That a full tree with the right properties to start these procedures
can always be found is assured by the non-redundancy assumptipns. Suppose
thétﬁgge nodes of the network could be divided into two groups such tﬁat any
branches connecting nodes in both groups is either an open diode or a current
ssource. This situation could prohibit the existence of the required tree.
The first ndn-redundancy assumption assures that not all of thése*branches
are current sources., Therefore the potentials of one of the grgups of nodes
could be altéred so that one of the open diodes moves to the breakpoint
stéte. On the other hand, suppose that the set of branches containing all
of the_voltage-sources and all closed diodes contained a loop, This also
could prohibit the construction of the required tree."Howevef the second nen-
‘redundancy assumption assures that such a loop dQes‘not contain voltage sources
only. Therefore the gurrents in the branches of the loop can be altfered so
that a closed diode moves to the breakpoint state, These considerations in-

sures that given a diode-source neiwork and a solution, either a full tree
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containing all of the voltage sources and‘all closed diodes, plus sufficient
breakpoint diodes .can be-selected, or the solution can bo easily_modlfied so
that ouch a tree oanﬁberselected. ' SR T e

Case III) Sﬁoposelooth voltagersouroe'and current.source values are
differenf in the new network. Consider an intermediate network in which only
the current SQﬁrce values have been changed from those in the previous net-
work. Solve this netﬁork»biﬂthe method indicated under Case I. Now'ohange
the voltage source values and prooeeﬂ'as underlgésejilﬁv The intermediate
network is always solvable if the new.oetwork haé ; solution. This is true
. because the voltage reduced networﬁ;for rhé‘intermediate problem is identical
to that of the prev1ous problem while the current reduced network for the
1ntermed1ate problem is 1dentlcal to the one for the new problem. The former
-must possess solution if the previous network was solvable--the latter must
possess solutions if the new network io solvable. Hence the intermediate
network must-also be solvable.

An alternate’way of handling Case III problémé‘isuto'SOlﬁé'an'iﬁtermediat
network in whichJonly the voltage source values are changed and subsequently
to modify this solution for the new current source values, As above the
intermediate network willtélwéys be solvable.

4 - 5 An Application to Neﬁwork Flow: Problems

The network flow proﬁlém describé& in paragraph~2~-f§_60ncerns finding
the least cost pattern of flow through a network of branches of the type

shown in Figure 4 - l3a. The problem statement is (from Chapter Two)

Network flow problem:

" Minimize T/_ Ciy Xy
i3 o
with

E Z X = D ; continuity

at nodes’
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C, M S ~ cost = CX
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\__Figure:h - 13eéLinear flow branch and its electrical analogue.

a) | . ,
C, Q M cost = cX + %jQ 12‘

0 < X < M

X =

v) - 5

. E . R-a —6”—

Figure li - 1L--Quadratic flow branChuahd iis.electficallﬁnalogue.
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0<X,.< M. branch conditions
- 1) - i) _

Now consider the electrical branch shown in Figure 4 - 13b. Suppose an
electrical network is made up of branches of this type and a current source
of value l-I'j is associated with each‘node; The primal programming probiem for
this network as given by the principlé stated in sectidn 3 ~-3is

Minimize : Eij Iij

J=1]

>, -2
I - I.. = H
T il ramr J

Thus a complete analogy holds between the two problems and the variables

are related in the follbwing manner,

Flow variable X I Cc l M l D
H

Electrical variable I | E l J |

Therefore the algorithms presented in this chapter can be applied diréctly
to the-flow‘netWOrk problem.

This analogy .can be extended to'flow networks in which a quadratic cost
is associated with each branch. The corresponding electrical branch then

intludes a resistor as indicated in Figure 4 - 14,



CHAPTER FIVE

A Breakpoint Traéing,Procedure

At the end of Chapter Three the terminal pair system of equations

N ]

t S vy v
A e b
(5 = 1a)
-Q A I c
1 ’eT, 0

in which the variables x and v are required to satisfy the complementary
slackness condition

x>0, v>0, vx=0 (5 - 1b)

was discussed. It was poiﬁted out (and proved in Appendix G) that the solu-
tions of such a system formed a breakpoint curve in the §'-T\ plane. In this
chapter an algebraic method will be developed for t'tracing ' the breakpoint
curve corresponding to a terminal pair'syétem. In Chapter Six this method
will be applied to general linear and quadraiic programs.

A second form of terminal pair system



g ¥ h b.d v
AT_ e I c .
(5~ 2)
-Q A b
1 eT 0

and several other variations vof (5 :;‘1)" w:.ll bais‘o"i)-é' émployed in connection
with the methods presented in Chapter Six. The sets of terminal solutions

for all these variations .have thg same properties as are demonstrated in Appen-
dix G for (5 - 1). T—he. breakpoiht t;f;cing élgéfithm is fornmiated bhe're.w:‘i.th
reference to the system (5 - 1). However, the method applies with little modi-

fication to any of the variations. The reader‘mai eésily work out the details.

S -1 The Electrical Model of the Terminal Pair System

Again, the electrical analogy will be employed to giﬁe a physical inter—

pretation of the method. The terminal pair system 5 = 1 has the electrical

model shown in Figure 5 -~ 1. The primal variables ¢ and x are represented by

currents 1n the model w_hil‘g 1§he_ dfﬁa;L variables ‘y‘, y andtv are represented by

voltages. The m,.A:ny- n rectangular matrix 4 becomes a rectangular array of ideal
dec transformers and @ becomes an array of resistors in the electrical analvg.
The column matrix e"Aappe.a."';'s as-a colmﬁn of transformers with their secondaries
connected in series. Voltage and currén% gources form the analog of the right
hand side of the terminal pair system. In Figure S — 2 the diagram has been
repeated, simplified by the use of symbols ¢ Pepresent arrays of transformers,
registors, diodes and sources. Heavy lines in the figure mean that many elec-
trical eircuits are represented =~ a light line means omly ome circuit is re-

, .
presented. These same comssniions will be used im Chapter Six where electrical
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Figure 5 = l=--klectrical model of the terminal pair system.
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Figﬁre 5 - 2-=Simplified drawing of tefminal pair system modei.
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models are constrﬁcfed‘for general linear and gquadratic programs.

The "ngég box '' representation of the electrical model shown in Figure
5 -3 will be emplojed‘iﬁ deveiﬁping the breakpoint tracing scheme. Here:all
circuit elements with the excéption{of the n diodes are represented by a
Vplack box ' withn + 1 terminal pairs. One of the terminal pa{rs ié the
terminal pair of the original network with current § and voltage Y . fhe di~
odes appear at the remaining n terminal pairs and have curremts X,, «.., X,
and voltages Vs eees v, .Theavariables:y must.naw-be regarded as unobservable

voltages inside the black box.

5 - 2 Basic Solutions
For convenience the letter P will be used in this chapter to designate

the matrix of a terminéi pair sysfem

‘ 0 A e 0 0
‘ . T
1 0 o eT 0

and the column vectors of variables and constants of the system will be de-

noted-by
n
b b
a= | €] and d= lel| .
N ¥ 0
. . |

The equations of the terminal pair system become, with this notation,

Pz=d. B 7_ ' (5 - 3)
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The pair of variables (xi, vi-‘) aaspciabte‘d with_the ith diode of Athe electrical

model will be called a conjugate vaﬁable pair. Certain solutions of a termi-

nal pair system called bas:ic solutions are particularly important in the ._;_e.racing

procedure. These solutions ‘a-cor‘regpon'd ‘bp-the‘dﬁs.nges in slope or bi'e'akp oints

of the bresipeint curve. Specifically:
¢ ‘

A basis of a terminal pair system is a set Bofm+n+ 1 linearly

indépendent columns of P which includes P, P§ and all’ the PV s but
T , ¥s
does fot contain both Pxi and P for any i.

A ba:s.ic golution of a terminal pair system is a solution."iﬂi*-%‘rhich

the only non~zero components of X and ¥ correspo"nd‘ to vg-\c:'l',ors" in some

basis of the sy‘stem.
Since the vgaw!'s E’l’ Pg and -Pyi are in every basis, exactly n - 1 of the vec—
tors P x.:l. and Pv-~i must be membe;-s of each basis. vIn terms of the electrical
model, this means fﬁﬁia‘t' in gﬂgﬂb.a'sicgolu‘biun at least one of the diodes must
have both x, = 0 and v, 0, Lhat is, must be in the breakpoint state, and we |
will say that this conjugate variable pair is at breakpoint. For the present
it will be agsumed that any basie solution has only one diode (conjugate vari-
able pair) at breakpoint. The contrary is a possible situation. It is an
"accidental ' Qegenerate condition and will be discussed later.

The columns of a basis form aam + n * lt’h

~order squere matrix. Since it
-was stipulated that the basis vectors were linearly independent, this matrix
possesses an inverse. Let the row of the inverse matrix corresponding to the

column P, of the basis be represented by the column vector S,. Then

Pl ' i3 (5 - 1)
L8, = > i, Jin B CEmn
i3 o, i3

because the product of a matrix with its inverse is the identity matrix.
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By méans of the vectors of the basis inverse, any column of P not in the

basis may be expressed as a linear combination of basis vectors, namely

- ) 7
Pj =1 P3 [ EE Pi si ] Pj

i in B
(5 -5)
= ;;Ei_. (s.T P.) P, .
iinB 1 J

5~-3 Unit Solutions ~ Superposition

Let b indicate the diode which is at breakpoint for the basic solution Z

with basis B. Consider the two variable vectors

I
|

RO

and 3 =

"
40 <o WMo Mo =o
4k sk Mk Mk ik

[
|
|

F

‘associated with the non-basic variables X and vy respectively. These vectors

are defined by

f-Si Pk 3 i in B
o) : ‘ . ‘
Zi= 1, » i=k (5—6)
o, other i ,
and
——SiT P, iin B
* | '
z= |1, i=h (5-17)

o, -other i .
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ﬁhere P and P,_ are the columns of P associated with_xb and-V’, respectively.

k h
=Z%. P,
A N 1

It follows that
1 .
P - E ' (sTP/)P o (5 - 8)
k " —="1 kL | _

N0

]

iinB
=0
by relation‘(s - 5), and similarly
Pz=0.
Thus z and z are solutions ofthehterminal’pair gystem equationé with the con-
stant terms on the right set to werp. »In terms of the electrical modei 2 and

2 are incremental solutions of the network in the black box. That is, they

~are solutions of the black box’whenithe'current and voltage sources are M1dead 't
Moreover, if the diodés which are in the open state for the basic Solu&ionli
"are replaced by open éiréuité and the'closéd diodesreplaéed by a shor£ circﬁit,
then 2 is an incremental solution of this network in which a current of oné,gﬁ—
pere is forced in the terminal pair of the breakpoint diode while the voltage

is maintaine& equal to zero by prdper choice of'g and gt' This is illustfate&
in Figure 5 - La. Similarly, % is an incremental solution in which a unit vol~
ﬁage is applied to the breakpoint terminal pair whilg g and ﬁlare selected so
that the current X is zero. See Figure 5 - Lb. The incremental solutions g

‘and % are therefore called the unit solutions associated with the basic solu-

tion z and the variables x gnd vbi o
Now consider the variable vector formed by superimposing a positive mul—

tiple 6 of the unit solution 2 on the basic solution z

o o (5-9)
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Figure 5 = lj—Unit incremental solutions of a terminal pair systemd
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Then, by using (5:- 3) and (5 -8)

P z(g§;= P Z +aP2=4d.

Hence z is a solutionlbfmthe:terminal pair system equations. But also

T

,Zi_-a-si P s iin B
2,(0) = e,  i-=k (5 - 10)

0, other i .

'Since z is a basic solution, it satiéfies the complementary slackness
cénditions (5 - 1b). - The on}y*non—zéro}variable'in-z(a)'which was not zero
in 2z is zk(a) =x = c. But tpis"algo satisfigs the complementary condition
because ﬁhe‘variablééypair (xb, VB) was at breakpoint in z, E;b is not in the:
basis and therefore A (a) = 0, ﬁnder the assumption that orly one diode is
ever at 1ts breakp01nt each ba51c x; or vl must be areater than zero. ks a

consequence each xl of v, or the sum z(a) is greater that or equal to zero for

some value of @ greater than zero as 1ong as it is not too large. Thus
z(a) =z +af (5 - 11)
in a solutlon of the terminal pair aystem.as 1ong as @ is less than some 1i—-

miting value @ which is greater than zero. This limiting value is given by

P i éorrésponding to : “
g = Min = 1 y  columms of Pyor By (5 - 12)
8% K  inBwith TR > 0.

If there is no index i satisfying the condition. given above, it follows that
(5 - 10) gives a solution of the terminal pair system for all positive values
of @. This would mean that t@ellast breakpoint of the system had_beén passed.

Otherwise, for the value of & given by (5 = 12) ome of the basic variables X
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or v, will become zero. Demote the column of P‘aSséciated with this variable
by P . Then for the solution z(a) dlode b has moved away from 1ts breakpoint,
while some other diode has reached its breakpo:.nt state. There z(8)is a new
basic solution in which the vector Pk has been added t6 the old basis and P '

dropped. The values of the basic variables in the new basic solution are given

by the formulae

_ SiT Pk - : -
23 T LT Zp 1Ak
S P
- r 'k
2y = o o , 1inB (5 - 13)
1 -
T L i=k
Sr Pk

where B contains the vectors in the new basis.
In the same way
a(a) = & + a1 (5 - 1)
is found to be a solution of the terminal ?pair system for 0 <& < E, where &
is given by (5 = 12) with Pk replaced'by Ph' Again z(§) is a new basic solu-
tion.

On the breakpoint curve of the terminal pair system the two classes of
solutﬁ'.ons formed by (5 = 6) and (5 = 7) correspond to motion along the break-
point curve in the direc’o‘ionsr away from the breakpoint associated‘ with the ba=-
sic solution z. It _is‘ shown in Lemma Gv- 7 that the unit incremental solutions
2 and z must satisfy the reiaﬁion | |

o * #* 0 L )
Sho>fn L (5 - 15)
0 0 '
Two points are made by this relation. Both‘§ and n cannot be zero, nor can -both
g ahd_ {. This means that the superposition (s - 11) or (5 - 1) always
moves the solutibn away from the breakpo:.nt in the § —\1 plaﬁe. Al so,

the slope of the line segment produced by superimposing the unit solution §
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in which vy, > O must be gre-a'be:.r‘than the_—310pe'ofv’the segment fo;‘ggc} yith ‘the
unit solution £ in which x > 0. This is illustrated inm F:.gure 5- S. In |
terms of the electrical model, diode b which is at b-reakpoiaj:_ on‘rﬂ":_’t,he basic .
solution z shifts to the closed state when 2 is added to & — or shifts to

the open state when ; is added. ‘Naturally the secomd case produces the greater
incremental resistance as seen at the g — M terminal pair, and hence the greater

slope in the breakpoint curve.

5 = L Computing the New Ba,sis Inverse

The basis for ‘the new "pagﬁ.\c"'_"-‘solﬁjbi‘on (5 - 13) differs from the previous
one in that the vector Pk ’appea'rs in the new pasis while Pr does not. The rows
of the inverse of the' new basis Si ‘may beﬂicalcu’lat.'e'd from the rows of the pre-
vious inverse §'i by means of the formulae | |

5. P

31 §Tp— Sr, ifk

r 'k , .
5 = | (5 -16)

1 -

S_, i=k
T r
gr'Pkf '

This calculation can élways be performed because § rT Pk is always greater
than zero. That the Si formed this ‘way ‘actually are the imverse of the new

basis may be verif:—ied by multiplying by the vec‘bors. of the new basis B.

If i £k,
5.7p 1, i=]
T i 'k =T ?
s, P,=8 P,- —=— S5 P = :
173 LT gTp r 7 {:o , 1A
. ‘ r 'k
Ifdi =k |
3" P, 1, j=k ,
skT PJ = :_r_T_.ll ;= ;{ .' C - ) i, j in BJ ' ‘
- 3. P 0, JAk

T

(Note that §i Pj =0 if j #k.)
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Figure 5 = 5--A breakpeint and the superposition ef unit solutions.
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5=5 ha.cinithe Breakpoint Curve
Suppose that one is interested in -tracing'the breakpoint curve of a termi-

nal pair system P and has at hand a basic solution of the system z and the cor—

responding .inverse vectors S‘i. Then the steps involved are the following:

_ Step 1) Two unit incremental solutions are available at the given
basic solution. Select as the first vector P to éui;s‘titui:e in the
basis t.he column -éasscfb'ijated"with-'t;he incremental solution wh:.ch pro-

ceeds in the desired direction along the breakpoint curve. .

Step 2) Determine the .vect.‘or ‘Pr which §ropa from the-bas-:i.sy by applying
the rule (5 = 12). If there is no.i cofrjesponding to a ved%bor from PX
or .Pv with S__iT P, >0, the last bz?eakpoiﬁﬁ' has been reached: and the al-
gorithm terminates.

Step 3) Coﬁpute the values of the mew basic variables using (5 = 13)

and comstruct the new vectors of the basis imverse by meams of (5 = 16).

Step L) The next vectgﬁbr-ka to be s_ub-st)if-.tuted- in the basis is the con-

‘-,j_u.gat.e of P;‘.-" Return to Step 2. -

S - 6 The Method in Case of Degeneracy

8o far only one diode in the breakpoint state has been allowed for any
basic ‘solu‘bion. By means of this condition :Lt is iﬁsured that there will be
a uniqu_e‘vectof"_‘PI', selected to drop from the basis in each iteration. In
Ajapendix H the mathematicalldev‘elopment is generalized by embedding the ter-
minal pair system in a larger systemi im which, in a sense, each basic sélution
. has only ome pair of conjugate variables at bfeakpoint. It is shown there

that the quantity corresponding to § + N increases strictly with each step of
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the method. The only place where the procedure of the'prev1ous paragraph
breaka down is in Step 2 where the vector to'be dropped from the basls may
not be unlouely determlned.' The development in Appendlx H demonstrates that
this procedure stlll works prov1d1ng the rule (5 - 14) for determining the
vector to be droPped in Step 2 is modlfled as follows:

Step 2) 1) COmputedik}e qbuan'bities

i corresponding to vectors from

“i = ;—%;r re Px and Pv wgich are in the basis
ik . and have Si Pk >0 .

If there are mo such vectors;ethe last breakpoimt has been reached.

- The vector | |
| z =12 + og

is then a solution of thevterminal pair system for all positive values

of d;?:

iiﬁ:LepdE have the value of the smallest 6, computed above, and let R

be‘the set of all i such that a; = a. If R contains only onefmember,.
then Pi is.ﬁhé‘corresponding vector., Otherwise take j ='l and proceed.

jii) Evaluate the quantities

S..
J8.°FP
1k

for each i in R, Let Ej'be the smallest of these.

iv) Remove from R all i except those for which aij = Ej . If only one
member remains in R, the corresponding: vector is Pr' Otherwise repeat
(iii) with J incremented by one unit. ;Aﬁy ties are always resolved by

the time j =m + n + 1.
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S = 7 The Method When Q Is Nuli

Mthough the method developed in ﬁhe prgceding section#’will work for any
terminal pair system, the-"me‘bhed ‘simpij.fieg sﬁﬁieiently in '_certain important
special cases to warrant special cénsiderat:i;.on._n_ First,} the case whe-re thé ;ﬁa—
trix @ is null will be considered. As was pointed out in secti‘on 3’- 7 the |

breakpoint curve will then consist of only horizontal and vertical line seg-

ments. The terminal pair system becomes the uncoupled system

}[. ——

n £ v ~
A e | b
A I c
1 eT. 0

Congider the properties of a basis for this system. A basis must contain pre-
cisely m + n + 1 columns of the system matrix P (where A has m rows and n columns).
However, a basis can con_t;in no more than m linearly independent veétors from
[x‘ PE] because ea_ch of these is zero »ex‘Cep‘t. ;‘or the first m ‘comp'onents. Sim~

ilarly, a basis can contain no more than n + 1 vectors from t Pn » PY PV]‘ It

follows that:
Any basis for a terminal pair system in which Q is null must contain
exactly m vectors from [PX P.] and exactly n + 1 vectors from

| §
(B Py Pyl |
Thus such a basisha-s the i:dfm'
B 0
B = : . .- -

°© %

It is made up of a primal basis BP containing m linearly independent columns



from o
(A el

and 2 dual basis BDVcontatning n + 1 linearly independeﬁt’coluhns from -

‘An immediate result of the special structure of the basis inverse concerns the

unit solution associated with a non-basic vector Pk:

T iinB

- Si _Pk,
8‘1}- 1, : im=k
0, other 1

if Pk is a coiumn of PX’ then‘%_-; = 3 . 0; if»Pk is a column of Py, then
% = § = 0. Therefore on a step of the algorithm in which a column of Px is
substituted in the basis, only g and x may change while )y, y and Vv must remain
fixed. Hence the vector which drops from the basis must also be & colurn of
Pi. Likewise, on a step in which a column of P is introduced, n, y and v may
vchange but § and x are fixed. The vector dropped must be from Pv Since the-
yector introduced on one step is the conjugate - of the vector dropped on the
previots step, it"follows that the-a;gorithm alternately selects the vector tc
‘be introdgced_from Px and PV' Furthermore the primal basis BP_st#ys fixed on
aﬁstép in which the dual veriables jj, ¥ and v are changed while the dual basis

remains the same when the primal variables change.
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Next it will be shown. that it is only necessary to employ one of the im="

verses B or BD 1n t.he breakpo:.nt trac:mg computatlon. Suppose there ié

at hand a basic solutlon z = (».1, x, g, y, v) m.th corresponda:ng basis -

BP 0

(oc])
]

o %,
but only the inverse vectors (§P)i of EP' let (PP)i,‘.'i in 'BP. be the columns

of Py = [A e] which are in the primal basis BP' Then

) Ty (1, i=3 =
(8L).T (Pp)i =y s i, Jin By
P’i ‘TP'] 0 iy ’ P

s

Suppose also that the basic solution % has been reached by a primal step in

which the primal vector (P ) dropped from the. ba51s. Now note that the vec-

tor (Pp)c = & is always a member oszP, and consider 'l:hew quanjtij;ies
> .

; = - (§P)-§" :
By (Sp); = Wy
* é*eT( P)l’5= - .eT ; .
One has
§i'- z (PP)T (sl,)‘5 if x, is in By,
and N

It is appare-ht“‘th'at ‘zr ='.s(::-, 0,7 0; ¥y $)1s a unit jj;.‘ncremen@el. As;olupji.env»ef the
terminal pair system. - | . | |

Since a primal step has. Just been completed, the unlt solut.lon : 1n which
all primal variables are zero:must be the.unit solut.lon to be super:_mposed on

#*
z to accompln.sh the dual step. Since 7\ > 0, z should be added to z if the
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breakpﬁint cufve isg being tra;ed'tdward positive'§ and/or‘ﬁ7and‘shou1d be
subtracﬁéd if the opposite course ig being followed. In the former case the
dual step of the tracing method is given by the formulae

y(@) = § - o(3p);

vi(a) =V x; in BP

- - T -
vi(a) v, - (PP)vi (SP g, X, not in Bp
')\(E) = ‘)‘1 +a 3

where
v

-~ . i
a = Min : 3

G —
) (PP)"i, Sp);
i such that x, is not in EP.

.ks presented above, the specialization of the breakpoint tracing algorithm
does not have provision to handle the problem of degeneracy. Unfortunately, the
author has been unable to specialize the rule given in gection.’® ~ 6 so that the
information in the primal basis alone is sufficient to make all of the required
decisions. For more discussion on this point, see Chapter kight.

The method described in this section can also be farmulated seo as to make

un¢ of information contained in the dual basis BD only.

S ~ 8 The Case When Q and b or ¢ Are Null
The second special case of interest is when one of the sets of constants
b or ¢ is null ac well as Q. In the electrical model ¢ being null is equiva-

lent to replacing the voltage sources with short circuits. The resulting sys-—

tem will be called a primal reduced terminal rair system. It has a breakpoint
curve in which (Theorem G - 3) all horizontal line segﬁgﬁ%s are coincident with
the horizontul axis, and therefore must have one of the forms shown in Yigure

5 -« 6, ts a consequence ail breakpoints must lie on the vertical axis. S8ince
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this case is a further specialisation of the uncoupled aystam discuaued in
the previous section, the results obtained there also apply to the preaent
case. In particular, for any basis B of the aystem, the dual portion BD must
contain exactly n + 1 linearly independent columns from

o AT 1

1 eT‘ 01

The correaponding basic solution s must be such that

Z 's_,.. (P

i'in‘QD

This can only be true 1f all of the dual variableah, ¥ and v are gero. This
means that'the dual step of the tracing method does not change the values of
- the dual variables at all, but merely indioateq which primal vector ia to be

entered 1nxo tha vasis next.

Similar remarks hold for the gué; reduced terminal pair gystemninﬁwhiqh

‘both Q and b are null. fn that case, the primal variables x end € are gero
for any basic solution. If Q, b and ¢ are all zero, then the terminal pair

system is completely degenerate and all breakpoints are at the origin of the

~ §~7 plane. ‘Then the breakpoint curve must hgvé one of the simple forms
' shown in Figure 5 - 7. Note that this is sn extremely degenerate case for all

pairs of conjugate variables are at}erAkpoint'fOr each basic solution.
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Figure 5 - 6——Péssibie breakpdint curves for a primal reduced

terminal pair system.
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Figure 5 — 7—Possible breakpoint curves for a completely degenerate
terminal pair system,
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CHAPTER SIX

Breakpoint Tracing Methods for
General Linear and Quadratic Programs

The breakpoint stepping procedure developed in Chapter Five will be
employed here %6 éonstfuct several algorithms for obpaining optimal solu-~
tions to general‘linear and quadratic programs. To accomplish this, elec-
trical network models of the genergl linear and quadratic programs will be
formulated.A Termiﬁal péirbsystems)will.be constructed around these’models
in such a manner that i) a basic solution and the vectors of the basis in-
verse areobvioué;iand ii) tracing the resultingvbfeakpoint curve le;ds to

a solution of the nétwo;k and hence to the optimal vectors of the dual pro-

grams.

6 = 1 Electrical Models for General Linear and Quadratic Programs

In order to simplify the drawings of networks in which banks of similar
elements appear, tﬁe symbols_employed.in Chapter Five to simplify the model
of the terminal pair system will also be used here. An electrical model of
the dual pair of quédraticuprbgrams discussed in section 2 - 10 is shown in
Figure 6 - 1. The primal variables x and u ére reﬁresénted by currents and
the dual variables y and v by voltages. By inspecting the figure it is evi-

dent that. any. solution of the network model is also a solution of the Lagran-



- R  Primal:
c?:__ L _— minimize

) 7R PRt Rty

ith

K ~["Q ol i TR
AN 'L Zl hp¥g t Ay 3y mu=b
- - Xq 20, x >0
+ +

Dual: -
B 1 T -1 - .T.
maximige = 5 ¥ P g * b YL,
; T o ,
with AQ yL-yQ*vQ--c:Q
AT '

AR A )
’ yL =0 Vo = 0, v, >0

P positive definite

Figure 6 = l--Klectrical model of “the dual pair of ‘quadratic prograns.



- gian problem associated with the dual programs.

In correspondence with the physical interpretations given in Chapter
Three, the electrical sources represent the constant vectors of the constraint
inequalities, the diodes embody the principle of complementary slackness and
the primal-dual'couﬁling'relation appears as the resistance array P. The con-
servation of electrical power iS’equivalent‘to the equality of objective func-
tions reqliired by the duality theorem.

The voltage reduced network associated with the model is obtained by
"opep~circuiting"~the resistance array P (setting'xQ = 0) and setting the
the current source values fo zero. Its significance, as was mentioned in Chap-
ter Three, is that (xQ'= o, X = o, yq,-yL)'is a golution of the voltage re-
duced network if and only if (yQ,‘yL) is a feasible vector of the dual pro-
gramming problem. Similarly, the current reduced network is obtained by
i short.circuiting" the resistance array and setting the voltage source
values to zero, and it has a solution (xQ? X ¥g = 0, ¥y, = 0) if and only
if (xq, xL) is a feasible vector of the primal program.

Note that for any quadratic program stated in the form.given in Figure
6 = 1, the ﬁuality principle shows that any method for solving the primal
formulation is in reality two methods, for it could also be applied to the
* dual formulation. This is not the case for the more general quadratic pro-
gramming formulation stated and modelled in Figure 6 — 2. There the primal
programiyields a Lagrangian problem which gives the correct conditions for a
solution of the network model. However, it is not clear how to construct a
dual formulation for this more genefal probiem. (It is possible by means 6f3
a change of variables to put any quadratic program with a positive semidefi-
nite objective function into the formulation of Figure 6 — 1. But a neater

resolution of the question is to be desired.)



: .= Quadratic program:
- L 1T T
c T ‘ . minimige 37X Qx+c x
+ ' with AxX=-u=>p
v oL N Tx - x>0, u>0
.

L z&tu§>lb |

Q positive semidefinite

Figure 6 - 2-—A more gemeral quadratic

programming model.

\/ - Primal: Dual:
4—-ch minimize cT X maximize bTy
e : —] .  wth with .
. ! Ax-u=b ATy*-v-c
v : __l—*- X>0, u>0 yz0, v>0
AN .
+
+
ATy A y

Figure 6 - 3—SéCbnd linear programﬁing model:
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Figure 6 — 1 becomes a model of the dual pair of linear programs when
the left side is discarded. A second model of the dual linear programs is
formed by replacing the banks of voltage and current sources with transformer
banks (Figure é — 3). This produces a model with just one voltage source and
one current source. This device will enable us‘to deéign one algorithm for
linear programming which apparently has no counterpart in quadratic programming.
In the following sections two types of algorithms for solving the network
models will be discussed. In the first type the sources of theunetwork are
initially set to zero where the network has the obvious solution of zero cur-
‘rent and voltage. The methods proceed by gradually increasing the source value
to their assigned levels while keeping the network laws satisfied. It is as
if one gradually ''turned on the juice ' with a potentiometer. They will there-

fore be called valve algorithms. In the second type the sources are maintained

at the assigned values, but the effect of the sources is kept from the network
by being shunted through a by-pass. The algorithm then gradually transfers the
effect of the sources from the by-pass to the network. These will be called

by-pass algorithms. The valve algorithms are based on the second electrical

model for the general linear program —- the by-pass algorithms are based on the

model of Figure 6 ~ 1.

6 — 2 A Valve Algorithm for Solving the Current Beduced Network

First the breakpoint tracing method will be applied to determining a solu-
tion of the current reduced network associated with the network model of a
quadratic or linear program. In programming terminology this is equivalent

to forming a feasible vector for the primal constraints

Ax=1u = Db
(6 - 1)
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Consider the terminal pair system shown in Figure 6 - L. Since the
model dontains‘nb‘valtage or*curf%ﬁfgsbur595, this system is.complete&y‘ae-
generate and all its breskpoinmts are at the origin of the € - v plane. Now
suppoée that the constraimt relations (6 - 1) are feasible, that is, there is
Sohe‘(i, ) saﬁisfying (6 =1). Then (WM =0, E;IE =31, y=0, 1, v=20)is
a solubion of the terminal pair system with the terminal solution (§ = 1,7=0).
Converéeiy, if the system has a terminal solution (2, 0), then the correspond-
ing x and u form a feasible vector of (6 = 1). It follows that
| The constraint relations (6 - 1) are feasible if and only 4if the
breakpoint curve of the terminal pair system din Figure 6 - L passes
" through the point (1, 0).
~A c;nvenien£vba§ié soiutidn'bf the~términaa'pair system is available by
'inspectioﬁ, namely:with‘tﬁé basiefvariabies }L= 0, u= O,‘v = 0., With this |

choice the basis vectors Bvare”tﬁe unit'vectors of them + n +1th

order iden~—
tity matrix énd the basgis inierse”s likewise consists of'unit veétors,' Noﬁe
that the vec'borzf‘g is not in the basis as was required by the development in
ChapﬁefrFiveo In all other respects this is a proper basic solution. The

one objection will be mﬁt By cHobSing PS as the vector to be substituted

into the basis to initiate tﬁe“breakpoint'tracing process. -Note that the unit

golution
-5 P 4 in B
o< = 3 : 3 =
‘i,» ' 1, i 5
0, other i

0
corresponding to this substitution has €=1 and therefore automatically
starts the tracing in the correct direction along the breakpoint curve. Of

course;, because of the degenerate nature of the terminal pair system the
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Figuré 6 = L—=Valve method for solving the current reduced network.



6 -8
generalized procedure given in section 5 - 6 must be used.

The tracing process is carried on until Step 2 fails to indicate a vec-
tor to be dropped from the basis and a basic solution z = O and unit solution
§ are available such that

z=E+GZ 6 - 2)
is a solution of the system for all ¢ > O. There are two possibilities —
since the terminal pair system is completely,degeneraie, the ray (6 - 2) is
either the posit.iﬁe §-axis or the ppsitj\.v.,eﬂ h—axis. If 1*1:> O the latter case
holds, the breakpoint curve does:not;pass through the point (1, O) and there
is no feasible vector for (6 - 1). If §'>~ 0, then (%/ S* Vi g‘ ) is the desired
feasible vector. | | '

Recall that a basis for a system in which Q is null must have the form

As a consequence the primal basis B? associated with the basic solution z
must consist of m linearly independent vectors from the primal vector set
a4 11

The fact that this prlmal basis and its inverse SP are available at the con=-
clusion of the trac1ng process w1ll be utilized in‘initiating the algorithms

 described in sections 5 = 5 and 5 ~ 6.

6 - 3 A By-Pass Algorithm for Solving the Current Reduced Network

A second way of employlng the breakpoint tra01ng technlque 1n solvmng
the current reduced network is illustrated in Figure 6 - 5. In thls ‘terminal

pair system T is a diagonal matrix consisting of plus and minus ones such



§ m x w v 3 u
T Z I 0
P .
A T -1 b
1 o I 0

Figure 6 - S-F-By-pia:

method for solving the current reduced network.
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that

i i*l if bizo

i1 -1 if b, <0

i
In the electrical model T is represented by a diagonal bank of one-to-one d-c
transfox‘-n‘:ersu. ‘EaclAl component of the special column vector Z is one so that
ZT w is the sum of the cbmponents of w.. Here the transformer bank repre-
sen‘bing Z has its secondaries ‘connected in parallel since currents are being
summed. |
The terminal pair system is of ﬁhe primal reduce;d form as it contains cur-

rent sources bﬁt. no: voltage sources. Therefore its terminal solution set hasr all
its bi'eakpoints along the §—axis. By inspection of the terminal pair system

it is evident that:

The‘constr'ain‘b relations (6 - 1) are feasible if and only if the
system has a solution with w = O, which is true if and only if the
breakpoint curve of the system passes through the origin.
A convenient basic solution with which to start the breakpoint tracing
method has as basic variables
v=0, 'z =0, w= Tb, §' Z‘T w

The basis associated with this choice of basic variables is

Although the inverse ofBDis not readily apparent, it is easily verified

that



6-11

and is trivially calculable from BD.

With the bésic solutibﬁ éﬁ&“i;vérse.givéﬁ above, the breakpoint tracing
is set in motion ?yhiptroduqing’?ﬁé Ye?for P_ intb the basis. Since g cannot
be greater than zero, the breakboint curve must terminate with a basic solu-
tion z and a ray of solutions

- +*
2 =2 %+ 032

where § <0, n =0 and E”= 0.,_; > ), Therefore tracing is continued
until a basic sglution z is attaingd with § = 0, or until a ray of solutions
is obt;inéd éarallel to the'h-axis. in the first case, x and u constitute
the desired feasible vector. Otherwise the constraints are infeasible.

As in the valve algorithm the final basis contains as its dual portion

m linearly independent vectors from
(A ~-11]

(If it contained a vector associated with some w, this could be replaced

with the vector associated with ui.)

6 - L4 Solving the Voltage Reduced Network

Exactly the same techniques as were used in the previous two sections
cari be employed in solving the voltage reduced network of the linear or qua-
dratic programming model. The mathematical form of the terminal bair systems
for a valve algorithm and ‘a by-pass algorithm are the same as before except

for a 'switch of letters. They are

E y W o ¥ u
AT,” -cl - (- ... -0
A -1 0
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for the valve algorithm and

hoox E ¥ IT——;T—_—l é
A ~-I 0
T | 2 -1 0
AT T 1| o
1 0o = 0

for tﬁe byhpass algori£hm. Either method will yield a feasible solution
(y, v) for the dﬁal constraints
| LTy'+ v=oc
y>»0, v>0
together with a corresponding basis of n linearly ‘independent vectors from

T

1)

and its inverse.

6 -5 A Valve Algorithm for linear Programming

. Onee a solution»(x, u) of the corresponding current reduced network has
been. found, a complete solutionvofitﬁe linear programming model may be con-
structed by tracing the breakpoint curve of the terminal pair system shown in
Figure 6 — 6. It will be necessary to utilize the partial basis M of m line-
arly independent vectors from [A =I] and its inverse which are available
from the solution of the current reduced network. The terminal pair system
in the figure contains no voltage sources. It is therefore a dual reduced
system and all its breakpoints lie on the giaxisa By considering the figure

it is evident that:
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Figure 6 - 6--Valve method for completing the solution of the

linear pro gramm:.ng model.
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A solution exists for the network model if ‘an only if the break—

point curve contains a point with W=1 .~

As an initial basie solution we may take for the basic variables

T

v=0, u=u, x=x, £ =c'%x,

The corresponding basig is

0 B | & 2
where d contains the elements of | = corresponding to columns of [A I ]
o E

in M. The inverse of By is found to be

, 1 0
1.
D L

The tracing of the breakpoint curve is started by'introduc-ing Ph.into the basis.

The tracing is terminated when a ray of solutions

Z =z + Q%2 : (6 - 3)
+*
of the terminal pair system has been found. If >0 (6~ 3) gives the
. * ; '
solution of the network with ¢ = 1/ ﬁ . If g > 0 then the network has no
solution.

The algorithm can equally well be applied to the dual formulation of

the general linear program,

6 —6 A By-Pass Algorithm for Linear and Quadratic Programming

The terminal i)air 'sfstem'=for"a by-pass method of solving the -lihear Pro=:
gramming network model is shown in Figure 6 - 7.. To imitiate the aﬁlgorfa'.tlm

it is necessary to have a solution (X, U) of the current reduced network and
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n X § y 2 u w v
A 0 -1 b
T Z - ~I 0
P 7
-0 AT T I c
1 o 2 0

Figure 6 = 7-—By-pass method for linear and quadratic programming.
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the associated b,asisvinverse M-:]" ag in the previous section. In the terminal
pair system all éil.e.mén'ts are present and it therefore has the most -general
form of breakpoint curve. The elements of the diagonal matrix T are chosen
so that

{+1 if (Qx+c¢), >0
T, = i

-1 if (Qx+ c); <0.

and the value of d is given by d = Tx .

It is evident that:

The model network poséess:es & solution if and only if the terminal
pair system has a solution with z = 0. This is true if and only if

there is a2 point on the breakpoint curve with M=0.
The breakpoint tracing procedure is started with the basic solution
- - - ' T
X=X, u=u, z="TQx+c¢c), M==-2z.

From the construction of T, z > 0, Also’h\ < 0.. The corresponding basis

matrix is

where R contains the colums of [-Q@ 0] associated with the columns of

(4 =-1I) contained ‘in, L The q:i.nverse of‘ BD is readily found to be

1 bt
B Lo &
D

-7l 1 |,
which is easily calculated. as Ifg' is available from the solution of the
current reduced network.

The first vector to be substituted into this basis is P,§ which starts
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the tracing in the positive direction along the breakpoint curve. The algo-
rithm is terminated when either a basic solution is found for which z = O

and the network has been solved, or when a ray of solutions

- # * .o . . .
has been found with.g <0, m>0, g = 0, indicating that no solution exists.

With the most general formulation of the quadratic programming problem,

this method is only applicable to the primal formulation as there is nc simple

dual. However, if the matrix Q has the form

then the problem has a dual formulation and the above method could be used
either on the primal as described above, or on the dual starting with a solu-
tion of the voltage reduced network. Of course, in the special case of linear

programming the method can always be used either way.



CHAPTER SEVEN

An Application of Quadratic Programming to the

General Programming Problem

In this chapter an iterative method is presénted for solving the general
programming problem fprmulated in Chapter One, It is an extension of the
gradient methods ffequently employed to compute the unconstrained minimum
of a function of many variables. Specifically it will be shown that the
problem of finding the direction of steepest descent for a general program-
ming problem is itself a quadratic programming problem. Pirst, however,
the gradient methods are applied to unconstrained and equation constrained
minimization problems will be reviewed.

7 = 1 Gradient Methods of Minimization

For illustration consider the two variable minimization problem

Minimize ¢ (xl, xz),

It is desired to find a point in the X =X plane for which ¢(xl,_x2) takes
on its smallest value. Let X in Figure 7 - 1 be the point at which @ takes
on its minimum. It follows that near x the lines along which ¢ is constant
must be closed curves encircling this point. Suppose that the point x° is

chosen as an initial guesé as to the location of the minimum, A-betfer ap-

proximation to the location of the minimum can be found by moving from the



| =,
*2
[
X2
0 - ) -
o X1 1
Figure 7 = l=~The method of steepest descent:
Initialize:
set k = 0 Evaluate - Take a step in direction
Select ;nltial | gradient - of steepest descent:
. point x : k ,
and initial PT) . Lok o)
step size 2°
|> Stop
‘ ) o ' k#+1 .
Adjust size Evaluate g(x* ) and
Iterate: ‘ '
K ——> k,* 1 xk —> xk*l . criterien

Figure 7 = 2--Flow diagram for method of steepest descent.
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the initial point in the direction which»yields the greatest rate of decrease
in ¢° This direction, the direction of steepest descent, is directly oppo~
site to the gradient of @ and is perpendicular to the line of constant @

passing through the initial point. Thus, the new point is given by
= x® -2 3PEO) (7 -1)

where A is a positive constant. One step in this manner, of course, will
not in general take one to the minimum a$ X. Hence the gradient step defined
by (7 - 1) should be repeated until some criterion is satisfied indicating
that the minimum has been reached. A suitable criterion is that the change
in # on the last step be less than some chosen value. The value of the con-
;tant A must be controlled carefully to avoi@ so large a value that the Pro=
cess does not converge or so small a value that an excessive number of ite-
rations are required. dné possible method of controlling A is by observing
the angle © between successive evaluations of the gradient vector. If this
angle becomes too large A is decreased; if it is too small A is inc;eased.
In addition A is never allowed to be so large that ¢ is increased. The method
will work with functions of any number of variables with only the loss of the
simple geometric interpretation given above., A flow diagram of the computa—‘
tion is given in Figure 7 - 2, :

There are several drawbacks to gradient methods of miﬁimizétionn One
is that the method only finds a local minimum of the objective function ¢°
If this function is concave the local minimum will also Ee a giobél minimum ‘
. as pointed out in Chapter Two. Otherwise the initial point x° mﬁst be
chosen so that the "nearest" relative minimum is the desired solutionm.
A second difficﬁlty is that the method is not invariant with respect to é

change in scale of the variables., If the scale or metric is'pborly chosen’
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the method may converge to the minimum at a very slow rate.

7 - 2 Minimization in;jgg Presence of Equality Constraints
The gradient technique may be extended to problems in which the vari=
ables must satisfy equality or inequality constraints by modifying the notion
of the direcﬁion of steepest descent.,
A vector u will be called an allowable direction at a point x in the
constraint set of a general programming problem, if it is possible
‘to move g small distance away from X in the direction u without
leaving the constraint set. For a general programming problem the

direction of steepest descent at a point x in the constraint set is

the direction, among all allowable directions, for which the rate of

decease of @ is greatest.

First the case of equality constraints will be considered.

Equality constrained minimization problem:

Minimize @(x)
with g(x) =0
Suppose X is a point in the constraint set obtained at some point in the iter-
aﬁive procedure. Let the negative gradient of the objective function
be represented by
v = - ¢(x)

and let A, be the gradient of the i'" constraint function

Ai = gi(x)
This is a vector normal to the tangent plane of the constraint surface at
X. Then a vector u wili be allowable if it lies in the tangent plane to

each of the constraint surfaces at X. This will be true if u is orthogonal

$o the normal vector of each conmstraint surface at X.
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A u‘ ; 0 | S B . (7 - 2)

The direction of steepest desééht:ié then given by the allowable vector
of uhit magnitude u which has tﬁé greatest component along the negaﬁive
gradient'df g. Thus the proﬁleﬁ of finding the direction ofvsteefest descent
is to | |
| Maximize tT u
with u? us=1
AT u=0,
Employihg‘multipliers v and - 6/2, the Lagrangian expression for this
problem is - |

o nxf/(U, vA)= 8w+ ve AT u - 8/2 uu .

The corresponding Lagrangian problem is found by differentiation to be

Find u, v and & such that

uTusl A | | (7'33)
AT -0 (7 - 3b)
t+Av-Au=0 | (7 - 30)

This system of relations can be.solved by substituting (7 - 3¢) in (7 - 3b)
to obtain
1 ,T 1

iy A" A v = Y A" ¢
or

v=-utaly
where M = ATA. Finally

uai[I—A_M-lAT]t o (7 - 4)

The matrix M is positive semi-definité because
xTiM X = xT'AT*A X

- [A x, A x] 0, all x.-
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If the columns of A are 11nearly independent, M is p051t1ve deflnlte and the
1nverse M -1 can be computed and a unique Au obtalned. If the columns of A
‘are llnearly dependent, one of the normal vectors is alllnear comblnatlon

of the others and the correspondlng constralnt is redundant at x. The ‘
multiplier & in (7 - 4) must be chosen so that the magnltude of u is unlty |
.‘ and (7 - 3%a) is satlsfled.

A flow diagram'for minimizing a function subject to eéuality constraints
- is‘shoWn in Fig@re 7 - 3. Besides the difficulties' mentioned in connection
with the unconstralned case, there is the problem of keeplng the constralntSu
‘satlsfleda The fact that the direction of movement satlsfles (7 - 2) only
guarantees that the constra;nts are not violated for an 1nf1n1tesmal motion
on the’cirectioh of steepest descent, whereas finite size steps wili actual-
iy Be'tekeh; Hence it ie-ﬁeceesary to‘provide a bleck in the-flow diegfemf “
which moves the point back 1nto the constralnt surfaces. Also there.is the
problem of determlnlnv the 1n1tlal point x0 in the constralnt set. These |

problems will not be further discussed here,

7 -»vaThe ﬁireetidn of Steepest‘Descent‘with‘Inequelify'Constrainfs

I the'casejof'ineqﬁeiity:eoestrainte a fedsible point x does not
necessarily lie in any particular constraint surface. If X dees not lie in
a constraint surface gi(x) = 0, then this constraint has no effect on the
direcﬁion of steepest descent at X. ‘On the other hand if gi(i) = 0, the
.directicn of steepest deScent may lie in the coﬁstrain£ surface or it may
‘point into the interior of the‘constraint set, 'In order to be an aliowable'
direction:df-motion away from i, u must nbﬁ'have a‘negefife component along
-the normal to any copstraint surface. The direction of steepest>deseentlis
again the unit vector in an allowable‘direction?ﬁhiqh.has,the greatesi com-
ponent along the negative_gradient:of g. ;ﬁ_I is the set of constraint

relations which are equality satisfied at the point i, the direction
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K == k+1 , &= 1 -4
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Step ' of steepest descent:
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Figure 7 = 3=—The ﬁethed of steepest deseent
with equality constrainte.
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of steepest descent is given by the programming problem

- Maximize tT u (7 - 4a)
with uT u=1 ' R o (7 = 4D)
AiT u>0,iinI, (T - 4e)

This is illustrated in Figure 7 - 4 for the threé‘dimension'Case; Because
ofithe non-iineaf équality constraint (7f- 4b), this prograﬁ does not have
a convex constraint set and the,developmént in Chapter Two does not guarantee
that a relaﬁive minimum is a global minimuﬁ. Ho§é§er, in tﬁé next section
this éfobiem.will bé»shoﬁﬁ equivalent $0 a quadratic program which does have

a unique solution,

7 - 4 Equivalence with a Qua&;atic Program
~The Lagrangian problem associated with the program (7 - 4) is, using
the result given in Chapter One,

Find v, u, z and & such that

Ev - du+t=0 ' ; e - (7 - 58)
Lo -1 S ¢ S
atuxo, - (7 - 5¢)

. R S (7 - 54)

where I is the matrix consisting of those”¢01ﬁﬁn5'oflﬁ Cﬁfrésponding to
equality satisfigd constraint surfaces. ‘
This statement may be simplified ifi(7'1 5&)”ié“ébl?e§“fbr & u 
Su=t+dv |
and the result subétituted in (7 - 5¢). Then the Lagrangian problem becomes,

for & >0,



Figure 7 — L=--Illustrating the direetiocn of steepest descent

for three variables.
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Find v, z such that

-Mv+zs= AT ¢ : (7 - 6a)
z2>0, v>0 (7 - 6b)
zT v =0

where M = AT A as before,

Now (7 - 6) is exactly the Lagrangian problem associated with the fol-

lowing quadratic program.
Maximize -% vT Mv + tT A v
subject to v >0 4 (7-17)
As was shown previously, M is a positive definite matrix if the columns of
A are linearly independent., Hence the objective function is always hounded
from below. Since the constraint set of the quadratic program is obviously
feasible, the theory of quadratic programming (Theorem D - 4) shows that
(7 - 7) always has a unique optimal solution.
Next we will show that if (¥, Z) is a solutien of (7 - 5) with T3 >0,
then no other allowable unit vector u has as great a component along %, i.e.,

£ u < T

for all u not equal to U such that

wu=1 and A'u+z=0, z>0. (7 - 8)

From relations (7 - 5) we have

selz-tTa = a2

FTaTa =¥ 220

<1

and therefore, since Fa=1,
§ = ti@»O.

Let u be any vector not equal %o 3 and satisfying (7 - 8). Then from (7 - 5a)
Fuld = thu+ WA

7aTw-=%2>0,
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and therefore
tT 4= (tT u) (uT u) - 7T 2.

Since u and u are not identical, u? u must be less than 1, and it follows

that +° u < t° @

From this discussion it is seen that if(7 = 5) has a solution (8,u,v)

with § = ¢7 4 >0, then u is the direction of steepest descent. But then

Fandz = At + M7 form a solution of (7 - 6). It follows that v is the
unique optimal solution of the quadratic program (7 - 7). Conversely, if

v is the optimal solution of (7 - 7) and

§ = tT t + tT

then v, u = Ih:gé—z- and § form a solution of (7 - 5) with t* u > O.

Av >0,

Therefore we have the following principle.

If the optimal vector (¥,z) of the quadratic program has Tt o+
tTSA ¥ >0, then the vector u = t + A v is in the direction of
steepest descent for the general programming problem at x, If the
optimal veétor of the quadratic program has tT t + tT AV <0,

then X is a local minimum of the general progrém.

One of the algorithms for solving quadratic programs presented in
Chapter Six may be used to compute the direction of steepest desbent for the
general programming problem. A flow diagram of the steps in solving a gene-
ral program is given in Figure 7 - 5. Since the quadratic program which
must be sdlved at one step of the method of steepest descent is nearly the
same as thie one solved for the previous step, a very good starting solution
is always available for the new solution. If an algorithm is employed which

'takes advantage of this fact, the amount of computation required to determine

the new direction of steepest descent should be quite small.
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Initialize: Evaluate:
Set k = O, Select initial -
feasible point x°, initial ™t = - af(x")
set of equality satisfied
' o A, = ag, (x5)
constraints I” and initial 5 & ’
step size A° v_ ‘ iin IK

Stop
Iterate: : —D

k =—>k + 1 Y Y
A
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steepest .descent:

Adjust size
i) Solve:

+1 Mex Ve My + T T v

with v > 0

of step:
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ii)
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Is termination '
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, : - .. -k
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T —
- Take a step in direction
hvaluiti. _ Qf steepest descent:
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gt | x T = x o+ M
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Figure 7 - 5--The method of steepest descent with inequality constraints.



CHAPTER EIGHT

Historical Notes and Discussion

It was pointed out in Chapter One that essentially all of the effort in
the area of mathematical programming has been concerned withindustrial opera-
tions and economic systems. It is therefore no surprising that a different
approach to the subject should yield significant results. A new viewpoint on
~the genéral area  of mathematical proéramming was introduced to the author when
Samuel J. Mason, Associate Professor of Electrical Engineering at ¥.I.T.,
pointed out the simple and elegant relation between network flow problems and
electrical networks containing diodes and sources given in section 4 - 5. It
was this observation that inspired the contributions to the theory and method-
ology of mathematical programming contained in this thesis.

In the following sections, the history of these contributions is briefly
sketched., Those papers and other references from programming literature which
were most responsible for guiding the anthor's work are acknowledged and seve-
ral directions in which the work could be carried further are indicated,

First the author would like to acknowledge the sources fof the theoretical
background presented in the first three appendices. The theorem on linear in-
equalities (Theorem B - 1) which forms the foundation of the entire theory of

mathematical programming was first given by Farkas (12) half a century ago.
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The proof given in Appendix B is a relatively new one due to David Gale (2k ).
The development of the theory of non-linear programming in Appendix C is based

on the work of Kuhn ard Tucker (20).

7 =1 On the Theoretical Developments

It has long been known that there are several equivalent formulations for
the problem of solving 2 network of resistors and sources. Maxwell noted in
1873 (23) that the current distribution in a network of resistors and current
sources which produced the least ''heating'' was the one which satisfiéd the
Kirchoff loop condition. However, the present author knows of no place in the
literature where extremum formulations for electrical networks containing di-
odes are discussed. Noting the observation of Professor Mason, the author was
able to write down a pair of dual linear programs for an arbitrary network of
diodes and sources. Being familiar with the extremum principle of Maxwell,
this led to the formulation of the diode=source-resistor network probiem as
the dual pair of quadratic programs given in section 3 — 3. This result raised
the qﬁerie: Is there 2 more general duality formulation for quadratic program-
ming? Further investigation produced the dual pair of quadratic programs pre-
sented in Chapter One. This duality relation bridges the gap between the prin-
ciple stated by Courant and Hilbert (5) for equ#lity constrained minimization
problems and the familiar duality relation of iinear programming. The equi-
valent problems for quadratic programming presented by Frank and Wolfe (15)
and especially Hildreth (18) gave valuable clues to the formulation of this
duality relation.

Unfortunately, the duality principle as stated here is notAapplicable to
the most general class of quadratic programming problems because of the condi-

tion on the form of the matrix Q.‘ It seems that it should be pessible to



formulate a dual problem for any quadratic program:

minimize

xTQx+bTx
with
Ax>D
x>0,

The dual problem would have a number of constraint inequalities equal ton = r
where n is the number of primal variables and r is the rank of Q, The manner
of determining what thesevconstraiﬁts should be, and what form the dual objec=
tive function would take is not clear, however.

The further extension of the: duality principle to concave programmeing
was inspired by acqueintance with the Legendre transformation din its applica-
tions to thermodynamics. The development in Appendix E is a slight generali-
gzation of the transformation presented by Courant and Hilbert (6). While their
formulation requires that the initial function be twice differentiable, the
author's development, by utilizing the concavity property, requires only first
differentiability. The application of the Legendre transformation to the con-
cave programming problem yields the duality principle derived in Appendix F.

The fact that the existence theorem of linear programming also applies
in the quadratic case was observed by the aﬁthor while experimenting with me=
thods for solving diode-source-resistor networks as will be noted later. The
method of proof used in Appendix D was based partially on the existence condif
tion stated by Barankin and Dorfman (2). The reader will notice that no cor-
responding theorem has been included for the concave preogramming case. It
.appears that more stringent conditions than the simple concavity requirement
must be met by the objective function in erder to guarantee the applicability

of the corresponding existence theorem. It seems that a suitable condition



8 ~-L

is that the primal objective function must not be "assymptoticélly linear"‘
on any ray contained in the primal constraint set and similarly for the dual
objective function.

Unknown to the author at the time of his own developments, Fenchel (1l)
has demonstrated the following very general duality principie: Given a con=
cave function @ defined on an arbitrary convex set C, there is (subject to very
slight qualification) a convex set D and a convex function 8 defined on D such
that @ takes on a minimum over C if and only if © takes on a maximum over D,
and these two extrema are the same. The rules given for the construction of
D and © when C and @ are given make this the ultimate generalization of the
Legendre transformation. In theory at least this is a duality principle appli-
cable to the general programming problem. However, it is expressed only in
terms of a éeneral notion of convex sets. ‘In order to apply the principle to
practical problems it would be desirable to know, given the objective and con-
straint functions of a general programming problem, how to construct the'ob-
jective function of the dual problem and the convex functions defining the dual
constraint set. This the present author has at least partially done for the

case of quadratic programming.

8 - 2 Concerning the Methodology

The fundamental idea on which the methodological contributions of this
thesis are based also arose from the study of electrical networks. By con-
sidering the problem of finding a solution of a network containing diedes,
sources, and resistors, the author almost immediately conceived the idea of

i) assuming an arbitrary state (opén or closed) for each diode of the
network. |

ii) replacing the diodes by open circuits and short circuits.
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iii) solving the resulting source=resistance network (a set of simul=-
taneous equations)
iv) successively replacing each diode in the network by tracing the

breakpeint curve observed at its terminai pair.

It was noted that the tracing could be accomplished by the superposition of
unit incremental solutions as is described in Chapter Five. Also it was sus-
pected and confirmed that the recursion fofmulae of the simplex method (10)
could be used to obtain the new unit solutions as the tracing process‘progressedc

It was soon evident, however, that this approach could not be guaranteed
‘o work for all situations — the observed breakpoint curves do not necessarily
intersect with the diode characteristics. Eventually, the author realized that
the way to avoid the difficulty was to find first a feasible solution for one
of the corresponding dual programs. This led to the develepment of the reduced
network concept and the electricalfinterpretétion of the existence theorem of
linear programming. It also indicated that the existence theorem wag valid for
quadrétic programming.

The network flow type of probleﬁ formulated in section 2 - 3 is impertant
because it appears to be nearly the most genmeral type of linear program which
can be solved with the arithmetic operations of addition and subtraction alone.
As a result it is possible to construct methods for solving them which do not
require carrying an inverse matrix along with the computatien. The original
example of such a methed is the ‘'stepping stone '* specialization of the sim-
plex method (8) used to solve the familiar transportation problem. Recently
Ford and Fulkerson (16) have presented a new algorithm for solving this prob-
lem. The basis for the eitension of the method to apply to the network flow
problem has been laid down by the same writers (17). They have not given the

details of the complete algorithm, but these are stated in the doctoral ‘thesis
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of Jewell (19). It was observed by Professor Mason and this writer that the
latter method is equivalent to tracing the breakpoint curve of a certain diode~
gource network, This observation led to the method for solving an arbitrary
diode-source network given in Chapter Four.

| The next objective was to apply the same idea of aatisfying one diode at
a time to the general fermulation of linear and quadratic programming. Elec—
tircal models of these problems were constructed using another circuit element,
the ddeal d=c transformer. If was easily demonstrated that simplex change of
basis formulae would apply equally well to tracing breakpeint curves for net-
works containing transformers. The question remained concerning the problem
of degeneracy: What does one do if more than one diode moves to the breakpoint
state simultaneously? In the case of the simplex method it is known that de-
generacy can cause perpetual cycling without ever reaching an optimal vector.
In the breakpoint tracing algorithm, the danger of degeneracy is that the pro-
cedure might ""turn around'' and proceed in the reverse direction along the
breakpoint curve. The degeneracy question was resolved in the case of the sim-
plex method by Charmes (L) who gave a rule for choosing the vector to leave
the basis which would insure that cycling did not occur. 4 more elegant mathe-
matical treatment of the matter has since been formulated by Welfe (10). The
same mathematical principles as are empleyed by Wolfe are used in Appendix H
to resolve the degeneracy question for the breakpeint stepping algorithm.

The author's valve algorithm for linear programming (Figure 6 = 5) is
similar to the simplex method of Dantzig. In the simplex method only the dual
basis inverse BD==1 from the author's terminal pair system is used in the com=
putation. The vector to enter this basis is selected so that § = cT x:ﬁill
increase, while it is determined by the dual step in the author's me thod. In

Dantzig’s procedure there is no dual step; for this terminal pair system the
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dual step of the breakpeint tracing methed does not change the values of any
variables, but merely indicates which vector should be entered in the primal
basis next. In a somewhat similar mamnner Lemke's dual gimplex method (»E%L)‘
goes through the same steps, but uses only the primal basis inverae "BP'%L from
the author's algorithm. The relation between these three methods is not com=
.plefghely clear and further study of the matter would seem warranted.

The author's by-pass algorithm as Aapplied to linear programming is nearly
equivalent to the general primal-dual method of Ford and Fulkerseh (9) as ap-
plied to the dual problem. The primal-dual method differs in that dual steps
~are takén until N attains its highest pessible value for the curi‘ent values
of the primal variables. At this point, a primal step is indicated which moves
the solutien poeint in the g-directien along the breakpeint curve. The author's
me'bhbd aiways alternates between primal and dual steps. In the mon-degemerate
case h'ea'.s always maximized in one step of the pr:itnavl-duai methed and the two
algorithms are identical. Thus they differ only in the way in which degeneracy
4is handled. In the Ford-Fulkersen methed aniy infermation contained in the
dual basis inverse BD'Fl is needed to aveid the cycles pessible 111 degenerate
cases, whereas the by-pass algorithm appears o require knowledge of beth BP
and BD $o aveid degeneracy problems. It is evident that the primal-dual al-
 gorithm could be phrased in a form utilizing By = only— primal steps would
‘be taken until g is maximized whereupen a dual step is indicated which would
increase 7[ o

The author's by-pass algemthm -as applied to quadratic pregramming is
equivalent t@ a generaliszatien of the method recently developed by Wolfe (25)
Wolfe's method t;races the breakpeint curve of the terminal pair system of
-Ffiigure 6 — 7 by successively superimpesing umit incremental selutions which

increase ')L until ne further such‘ umit solution can be feund. Thus the methed
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will terminate when it reaches any horizental segment of the breakpeint curve.
As a consequence it is only applicable in the form stated by Wblfe to problems
where the breakpeint curve has no horizontal segment except at the seolutien
point ﬁ_= 0, i.e., when Q is positive definite. The method could be generalized
by employing a dual step as in the primal-dual methed whenever ) has been maxi-
mized but is net yet zero. An obvious variant to this method would be to super-
impose unit solutiens which increase g until it is maximized and follow with a
pure primal step to traverse vertical segments of the breakpeint curve. On the
other hand the author's by-pass method avoids all mention of maximizatien and
yields an algorithm in which all steps are executed in the same manner. All
three of the methods would take precisely the same steps —— at least in the
n@nndegeneraté case — while using quite dissimilar decision rules. This dis-
cussion shows, moreover, the clese relation between Wolfe's methed for quadra=-
tic programming and the linear programming methed of Ford and Fulkerson.

The quadratic programming procedure proposed by Markowitz (22) can also
be interpreted as a scheme for tracing a breskpoint curve. However, the al=
gorithm developed by Frank and Wolfe (15) and a method given by Hildreth (18)
do not fit iﬁ this category.

A third manner of employing the breakpoint stepping procedure would be to
satisfy the dicdes of the network model ome at a time by successively tracing
the breakpoint curves 6bserved at their terminal pairs. This would be the
generalization of the diode-source algorithm presented in Chapter Four. Time

and space limitations prohibited its inclusion in the thesis.

8 = 3 On the General Programming Problem

The author's interest in non-linear programming was sparked by problems

in the optimization of the design of electrical machinery. As a means of
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compubing optimum designs, the application of the method of steepest descent
(7) to the minimization of a function of n variables subject to m constraints
was investigated. In the original method proposed by the author (11) m of the
variables were considered as dependent and the gradiemt with respect o the re-
maining n - m variables was computed giving the direction of ste‘epest‘descent’ao
‘The employment of Iagrange multipliers in deriving the direction of steepest
descent as given in section 7 = 2 avoids the necessity of choosing a set of
dependent variables. This idea was also given by Feder in connection with the
solution of non-linear equationms (13). |

Thé formulation for the direction of steepest descent given in Chapter
Seven for the general programming problem was originally obtained through geo-
metric considerations: The surface of the umit sphere centered at the feasible
point x is projected onto a hyperplane perpendicular to the gradiemnt of the
objective function. The problem is to find the point on the surface of the
sphere with the greatest component along the gradient and on the correct side
of the tangent planes to the constraint surfaces passing through x. In the
hyperplane this is equivalent to finding the point nearest the intersection
of the gradient and the hyperplane which is on the correct side of the inter-
sections of the hyperplane with the tangent planes.

Other proposals for computing solutions %o general programs include the
method of Arrow and Hurwicz (1) im which the probaearis first cdnverted,into
a saddle-value problem and a gradient procedure is used to search for the sad~
dle point. Also Browa has investigated (3) the comversion of the imequality
constraints to equality constraints by the addition of squared slack vari-
ables. Both of these methods have the disadvantage of introducing extra vari-
ables which would complicate and lengthem the computational procedure. In

the former method it also appears troublesome to guarantee the convergence
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of the steps to a solution point. On the other hand Brown's approach has

the disadvantage of introducing extraneous saddle-points near which a grad-
dient procedure is likely to proceed at a very slow rate. The direct steepest
descent approach appears to offer an efficient and straightforward approach
to the problem. However, many details need to be worked out if it is to be

applied with success.

8 = L4 Conclusion
In the author's view this thesis makes four contributions to the disci-
pline of mathematical programming:

1) The extension of the duality principle to quadratic and concave
programming..

2) A versatile algorithm for solving diode-source networks which is
a;;;plicab.le to the transportation problem and capacity limited
network flow problems.

3) The generaliged breakpoint tracing method and particularly its
application to quadratic programming.

L) The demonstration that the directioﬁ of steepest descent for a
general programminrg problem can be determined as the solution
of a quadratic program.

In all but the last of these the electrical analogy has been largely respon=-
sible. Hence it might be said that the most valuable contribution is the-
demonstration of how the concepts. and scientific kmowledge in onme field
(electrical networks) cam aid in understanding the principles of amother

discipline (mathematical programming).



APPENDIX A

Geometrical Elements in Euclidian Space

In this section, geometric concepts are presented which will be used

in interpretation of algebraic develdpments, especially in Appendix B.

Definition: The Euclidian space of n dimensions is the set R of

all n-tuples of real numbers. An element of R? may be thought of
as a point whose coordinates are the n real numbers or as a vector
emanating from the origin whose components along the coordinate axes

are the n real numbers. A point or vector x in Rp'will be repre~

sented by the column matrix

el

n °

We will say that a vector y in i is greéter than a vector x in R™

and write y > x if each component of y is greater than the corres-

ponding components of x, that is,

¥ > x implies Yy > %5 i=1, 2, ..., n.



Similarly we will write y > x if the relation holds for each com-

ponent;

y :x implies yi : X i = 1, 2’ ceooy ne.

i 14

Two vectors x and y are orthogonal if their dot product
T n ,
Xy= E X,y
i, 171

is equal to zero.

Ne will have occasion to consider the product of an m by n matrix AT by a
rector y. Geometrically this product 1s to be interpreted as the column
rector whose components are the dot products of y with the corresponding

:olumns of A.

o

.
y

T

T by

m the other hand, if we are concerned with the product of an n by m matrix
. and a vector y having m components, we can visualize this in R" as the vec—
or sum of the columns of & each weighted by the corresponding component of

Ax = x Al - X, A2 * ...+ X Am

oth of these interpretations will be useful in subsequent proofs.

Definition: A line in K" is a set of all points x that satisfy a

relation



where a and b are members of R°. The line includes the point a and

is parallel to the direction vector b.

Definition: A hyperplane in R is a set of all points x in R® that

satisfy a relation

where a, a member of EP, is the normal vector of the hyperplane and

B is scalar.

Note that a hyperplane aT x = 0 contains the origin and is the union (the set

- of all points in any) of all lines containing the origin whose direction vec—

tors are orthogonal to a.

Definition: A halfaspace in R® is the set of all points x that satis-

fy a relation

aT x>p

where a is a member of R' and B is a scalar. The hyperplane aTx = B

is called the bounding hyperplane of the half-space.

It is reasonable to call such a set a half-space because for each point

X strictly on one side of the bounding hyperplane, aTx-< B, we can produce a

point y strictly on the other side

aTx-‘ﬁ a

|2] |al

y=x=2

aTy=- aTx-2aTx+2ﬁ

=B-(alx-p) sothat a'y=>p,
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and this is a one=to~-one correspondence between x ard y.

Definition: A ray or hali=line in R is a set conﬁaining all points x

such that
x=a+Xb

for some X\ >0, Here a and b are fixed members of RP,

Definition: A cone is a set of points in R® such that if x is in the

set then
y=AX

is also in the set for any non-negative number Ao
Note that by this definition a cone always has its apex at the origin.

Definition: 4 convex set in K" is one in which, given any two points,
x and y in the set, all points on the line segment joining x and y are

also in the set, that is
z = (1 =-a)x +@&y

is in the set for any number a between zero and one. The convex hull
of a given set is the ''smallest'' convex set containing the given
set. More preCiSely,fit is ‘the intersection of (a2ll poiﬁts common to)
all convex sets which contain the given set. An extreme point of a
convex set is a point in the convex set which does not lie on a line

segment joining two distinct points of the set.

' A polyhedron is a convex set. It is the convex hull of its extreme points

which are its vertices.
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Definition: A convex polyhedral set in " is the intersection of a

finite number of half-spaces. It is thus the set of points x which

satisfy the relations.

b oxzby

T x>b

A

2 2

or
A? x>b
where A is the n by m matrix whose columns are Al, cocy Am and b is

the m=component column vector

In particular, the set of points x which satisfy the constraints of a linear

program is a convex polyhedral set. A convex polyhedral set may contain points

at an arbitrarily large distance from the origin, that is, it may not be
bounded., This is why the term polyhedron is not used for such a set.

In order to justify the above définition we should show that any such set

is actually convex.

Proposition: A convex polyhedral set is convex.

Proof: Suppose x and y are points in a convex polyhedral set. Then



we have
A" x>D
AT y>b

Consider the point on the line segmefzt joining x ard y.
z = (1-a)x +ay

We have

Alz=(0-a)ATx+an’y

>(l-a)b+ab="b

Thus z is also in the convex polyhedral set, and the set is therefore

conveXo.

Definition:- A convex polyhedral cone is the intersection of a finite

number of half-spaces whose bounding hyperplanes contain the origin.

It is the set of points x'which satisfy a relation of the form

Asz 0 .

Any convex polyhedral cone.is a convex polyhedral setand, hence, is convex..

We must show however that such a set is really a cone.

Proposition: A convex polyhedral cone is a cone.
‘Proof: Suppose x is a point of a convex polyhedral cone. Then

AT x>0,
But then
AT(kx) =2 A x >0

for all A > 0. Thus it is a cone,



, / AT
Mn important theorem of convex geometry demonstrates the equivalence of the

above definition and a second definition of a convex polyhedral cone which

we give now.

Definition: A convex polyhedral cone is the convex hull of a finite

number of rays which emanate from the origin., If Al, Az, asey Am are

vectors having the direction of the rays, then the cone is precisely

all positive linear combinations of these vectors, that is all points
z =4Ax

where b4 3-0 °

That any convex polyhedral cone in a three dimensional space is consistent
with both of these definitions is fairly obvious. In higher dimensional spaces,
though the statement is correct, it is moderately difficult to prove. Since
these geometric ideas will be used for illustration only, they are not essential

to the rigor of the proofs and we will not give the proof of equivalence here.



APPENDIX B

A Fundamental Theorem on Linear Inequalities

In the foilow-ing a famous theorem on homogeneous linear inequalities
is proved which is the basis for the fundamental theorem of the general pro-—

gramming problem. The theorem asserts that there exist vectors x and y which

satisfy the system of relations

ATyg—O (B = 1la)
Ax =0 (B = 1b)

x >0 (B = 1¢)
ﬁTY‘“‘i’O" (B - 1d)

where A is an arbitrary m by n matrix.
It is easy to show that there are two mutually exclusive cases for this

systems:

Property B = 1: Any solution (x, y) of the system (B = 1) is such

that either -
T
1) Al y=0, x > 0
or

2) .l.lTy;-o, x =0



Proof: From (B = 1la) and (B - 1b)
T , .
Ai y>0, alli

x, >0, alli.
L 2

Therefore each term of the sum
Z x, ALy | (B - 2)
i7i
i
is non—'negatiireo But
E x, AiT y = X AT y = yT(Ax) =0,

=z __

i
where the fact has been used that the transpose of 2 matrix product
is the product of the transposes in reirerse order. Hence each term

of (B~ 2) must be zero. In particular
T
x Al y=0.
This requires that one of X and L_LT Yy be equal to zero. Relation

(B = 1d) prohibits both being zero.simultaneously. Thus the only

possibilities are those stated above.

With this property, a nice geometrical interpretation of the theorem may

~be given, First write the system (B - 1) in the expanded form

T o
Alyzo O—x1A1+x2A2+.e,,-+x!nAm (B = 1b)
AZTy?-O X 20 (B = 1c)
(B = 1a) '
T , : T o
Am yzo Al y+x1>0 _(Béld)

in line with the two interpretations for the product of a matrix and a vector
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given in Appendix A. Then (b = la) requires a hyperplane with normal vector
y such that each Ai is either ip the hyperplane or has a positive compgnent
along the normal vector y. Hence no point of the cone spanned by the Ai"s can
have a component along y of less than zero. The relations (B = 1b) and (B - 1c)
require that the origin be expressed as a positive linear combination of the
Ai“so Clearly tﬁese_demands may be met for any matrix & by choosing x = O,
y = 0. Thus the relation (B = 1d) is what makes the ‘theorem interesting and
significant.

The geometric statement of the theorem is

, either

‘Given a set of vectors AZ’ Ay cooy Am and a single vector - A

3 1
1) There exists a hyperplane which separates »-Al from the cone
determined by A, AB cooy Ah;~specifically, there exists a ﬁy—
perplane such that —-Ai is striétly on one side and all points
of the cone are in or to the other side of the hyperplane.
or
2) The vector -.Al is an element of the cone determined by 42, A,

000y Am‘*

This interpretation of the theorem is depicted in Figure B - 1.

Theorem B = 1: The system of relations

A? y>0, AX=0, x>0, AIT ¥+ X >0

possesses a solution.

Proof: According to the propertykproved above any solution to the
system must“h;ve either 1) h1¢ y=0 x >0 or 2) AlT y > 0,

x; = 0. -Note that in the first case, if (x, y) =(x, ¥) is a solution
with the required property, then (x, y) = (x, 0) also is. Similarly

for the second case, if (E, ;) is a solution, so is (o, ¥). Our proof



Either - Al is a positive linear

corbination of Ae,...,ﬁh

., =x?!‘12+...+ann
A\l x -
1
X > 0,
that is, Al‘is in the ccne spanned
by Aé,..., A,

or, there is a hyperplanelpTy =0
such that Bpyevesh are all in it
or to one side of it, and - Al is
strictly on the other side.

Figure B - 1--I1lustrating the statement of Theorem B = 1.
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will demonstrate the existence of a solution having one of these two
forms.

The proof is by induction on the number m of columms in the matrix
Ao

A) We first consider the base where A contains one column. Then
either

1) A= 0 and (y =0, XxX=1)
is a suitable solution; or
2) A, #0 and (7 = A, X=0)
"~ is a suitable .solution.

B) Next we assume that the theorem is true for a matrix A of m
columns and demonstrate that it is true for a matrix Z = [A, Am+1] of
mn+ 1l columns.

1) Suppose we have a solution (O, x) for the matrix A. Then

the same solution with xm = 0 is a solution forz°

+1

Geometrically the solution (O, x) for A means that - Al is contained in
the convex cone determined by Az, 43, ceey Am. Clearly if the cone is enlarged
by the addition of an extra member to the set of generating rays; = Al will

still be a member of the new cone.

2) 3?pp°seewe have a solution (¥, 0) for the matrix A. Here
there are two cases to consider.
a) Suppose Aﬁzl ¥y >0. Then (y, 0) is still a suitable

solution.

In this case we are given a hyperplane with normal vector ¥ which sepa-

rates = AI from the cone determined by the other columns of A.  The new vector
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iy | is on the same side of the hyperplane as the cone, hence the same hyper-

m+1
plane will seﬁe o geparate - Al from the cone defined by the enlarged set of

rays.
b) Suppose Am'fl y < 0. In this case a solution for A

cannot be constructed from the solution (y, 0) for A. We proceed

by forming the matrix

B=lA + A As A v 0 B wees A v N A

= [le 32! eocy B] ’

m
where
ATy
X.‘=‘-’ J >O-
J R § =
Am-*ly

This matrix has the property that
T T T
By y—A-J- TN ALY

T T
= & bl A. = o .
s

Thus the vectors Bj lie in the hyperplane with normal vector y. This
situation is illustrated in Figure B - 2a. Each Bj is obtained from the cor-
responding Aj by adding sufficient amount of the vector "m*-l to place the re-

sult in the hyperplane.

Since B is a matrix of m columns and for the induction we have assumed
the theorem valid for such a matrix, we are assured of the existence

of two vectors v and u such that

BTV-:O, Bu=0 u>0 BlTv+u1>v0'



Figure B - 2~—Illustrations for proof of Thecrem B - 1.



We may take the solution for B to have one of the two forms
o T :

1) BlT v=0, u > 0 and (0, u) is also a solution

2) BlT v>0, u=0 and (v, 0) is also a solution

i) Suppose (0, u) is a solution for B with w <0 " We show that

¥y =0, x= (11,:'. X, u.))
jT" J . J
is a solution for A. Certainly

ITYZOT
x >0 because u >0 and kao,
T - .
hy=0, ®-uw>o0.
Now

Ix=x1 A YX, A . *x Am-t-xm_._l Amﬂ'

=u111v+u2A2+.;,*um4m+. X,’uj Am+1
J

B ul(Al * L.L Am-ﬁl) ¥ u2(,&2 * XZ ‘Am+l) Fooeo ¥ um(Am+ )‘m‘aﬁﬂ)

=Bu=0

go that all requirements are satisfied.

The geometry of this case is shown in Figure B - 2a. Here - Bl lies in
the cone defined by B,s B3, cees B - Hence - B, may be expresged as a ﬁositive
linear combination of B2, B3. ceog Bm._ By summing A2, k3, cooy Am with the..
same weight and adding a sufficient multiple Of'Am-!-l We can express - Al as a
positive linear combination of the other columns of A. Hence — Al lies in the’

cone defined by A2, A, uoa'émﬂ'

ii) Finally, suppose (v, O) is a solution for matrix B with BlTv > 0.



We show that

(5"‘7"'/‘?: x =0)

where

"mfl 5

is a solution for A. Note that

. . AT v
T = T m+l T N
Ape1 ¥ = Mgy v - ) A 7= O
ek
Then certainly
Ax=0, x>0.
But
T = T T T~
=Bij+ﬂBjTy=BjTVZO,
J=1, 2, ooy m
so
5>o0.
Similarly
T = T T = T -
A y=h y+rh,7=87F
T
Bl v>0
so

AlT?>eO.

The last situation is illustrated in Figure B — 2b. There is a hyper~—

plane with normal vector v which separates the vector - Bl from the cone
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spanned by B2, By ceos Bm.. With this we can construct a hyperplane which

3’

separates -Al from the cone spanned by 52, Ay ooy Aﬁ+l as follows: Take as

3

its normal vector §; the sum of v and a sufficient multiple of y so that the

result is orthogonal to Ah&l' Then, each‘Bj has the same component along ¥

as it had along v because each Bj is orthogonal to y. Also the component of

AJ along ¥ is the same as the component of Bj along_?. Therefore all of the

Aj are on the same side of the hyperplane whose normal vector is y, Al gtrictly

S0. Henqe:the hyperplang separateg the vector - Al from the cone as required.
Having shown the‘theorem valid for m = 1, and fdr m+1if it is true for

m, the theorem must hold for all positive integers and the proof is com-

plete.



APPENDIX C

The Theory of Non-Linear Programming

In this section we will consider problems of the form

minimize
B(x)
subject to
g(x) >0 ’ ' (C-1)
x>0 o (c -2)

where x is an n=vector to be determined and g(x) is a transformation from
n-gspace into m=-space

_ i )

g (x)

g, (x)

g(x) = | 2

g, (x)

Tt will be assumed that @ and g are differentiable.

Definition: The set of points satisfying (C - 1) and (C - 2) is

called the constraint set of the programming problem;

The constraint set will be identified by the fbtter C. It is a convex

set if each coordinate function &5 is convex.
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Lemna C —1: let C be the set of points which satisfy
g(x)zo; x>0.
Then C is a convex ;et if "the ecoordinate functions
gl, cees By of g are convex,
Proof: Let X and £ be any two points im C. Let x = (1 - @)X + a¥,

0 <o <1, be any point on the line segment joining X and %. Obviously

x > 0. Also

g.(x) = g.I(1 -a)x + ekl > (1 - &) g.(X) + ag.(R) > 0.
by the convexity of g -

An important question regarding 'programming problems asks what cenditioné
will guarantee that & lecal minimem-is “an'foptimal“scslution. A sufficient con=-
dition ig that the objective function be concave, and that the constraint set

be convex as is proved below.

Theorem C = 1: If fds a concave function and 8> ..:, g, are convex
functions, and x minimizes B(x) subject to g(x) < 0 and x < O in some
neighborhood of X, then x minimizes @(x) in C.

Proof: Suppose X does not minimize F(x) in C. Then let % be, some
point in C for which #(%)<@(X). The line segment x = (1 - &)X . aX,
0<acx<i, is entiréﬁy contained in C because G is convex. The ob=

jective function evaluated on this line segment is
ge) = fl(1 -a)x + ok ] > (@ - a) #(x) - aff (%).

Now there is a point on this line segment which is centained in the

neighborheod of X but is not identical te X. Iet this peint be



x=(1L=§)x + §% where 0 < § < 1. Then
_ - )

B(x) = L1 - §)x +6%) < (1 -§) B(x) +§8(x)
by the concavity of @(x). Since B(%) < @(X), one has

#(x) < (%) - SIB(x) - #(%)]
hence

B(x) < #(x) .
This contradicts the assumption that X is a local minimum.
_In order to prove the fundamental theorem of nom=linear programming (Theorem
C - 2) it is necessary to impose a conditiorn on the constraint set: for each
boundary point of the constraint set there must exist a smooth curve termi-
nating on the point and lying wholly within the constraint set. After proving
the theorem, an eXample will be given which shows that the condition is neces-
sary. A precise statement of the condition follows.

Definition: A set C of points satisfying a set of constraints
g(x)<0, x<0

will be said to satisfy the constraint qualification if the following

condition is satisfied for each peint x of C.

Partition the constraints into two groups E and I such that

gp(X)
glx) = | ° -
gI(x) s

and the compenents of X into two groups such that



=] F ; Xy>0, X,=0.
= Z
*z
Let % be any vector such that
+* % '
[dgE(x)s x] >0, Xz >0, (C=3)

that is, § points inward from the boundary of C. The condition is

that for each % satisfying (C - 3) there exists a differentiable

curve

x=h(a), O<ac<l
such that

h(0) = x
and

dh(0) = X% for some A > 0.

Theorem C — 2: (Fundamental Theorem of General Programming)

Consider the general programming problem

minimize
B(x)
with
g(x) >0
x>0

in which ﬁ and g are differentiable and the constraint set C satis-
fies the constraint qualification. A necessary condition that X be
an optimal vector of the general program is the existence of a ¥y such

that



E) - @) F>0 g >0
70 xz 0 (c - 1)
Fle@ =0  E[(HE) -a@® 5l =0

A sufficient condition that x be optimal in a neighborhood N of x
is the existence of a y satisfying (C - L) and that # be concave and

g convex in N.

Proof: Let X be some point in the constrained set C. Partition the

constraints and variables so that

EP iP >0
X = .
:‘tz_ Ez =0
and
g(x) = _ :
gr(x) gr(X) >0

Now consider the system of inequalities

- . 01T
- of(x) dgg(x) 30 (C - 5a)
I, =

- o1 l™ v
- 3f(x) dgE.(i)T ug | =0, u| 20  (C=~5h)
_ Iz v, V.

Z Y4
(- 9g(x), X] + x>0 (C - Se)

According to Theorem B — 1 and Property B = 1 either this system
possesses a solgtion for which v > O,'or it has a solution for which

- [3¢(%), X] <0, but mot both. If the system (€ — 5) has a solution
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%, =, g vz) with T > 0, then

- B/

7 =

0

satisfies the c-ondi‘l;iens of (C = h)‘? 'Gonversely, if ¥ satisfies ‘
(C - }4) then (x = 0, T =1, up = ¥g, Vg~ aﬁ(i)-dg(E)T ¥) is a solu-
tion of (C -=5) with © > O.,'

To demonstrate the nece;s.ity' assertion of the theorem, suppese
that X is an eptimal vector of the genérél programming problem. Sup=
pose alse that there is no veétor y satisfyin% (C-L), and a contra-

_diction will be obtained. It follows-from this last assumption that
" the éystem (C = 5) has mno-solution with ¢ > 0. By Theorem D -1, it
must have a solution with [3(X), %] < 0. From (C - 5a) it is seen

that x satisfies the relations
- ®
[dgE(x), x] >0, :!Izzo° ,

Thus the wvector 'J*( points '"into!' the constraint set. According to
the constraint qualification a differentiable curve f(&) terminating

‘at x exists which is contained entirely in C for which
- ‘ ’
df(0) = A x, forsome A>0.

The derivative of @ aleng this curve is them .
B o - tagiar. A2
da (O) {aﬁs(X), A X] < 0.

Therefore there are peints i® any neighborhood of X for which #(X) < ()
denying that X is eptimal.
To demonstrate the sufficiency assertion, suppose that X is not

optimal and it will be shown that no ¥ exists satisfying (C - L). If
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X is not optimal them there is a distinct % in C such that #(R) < g(%).

Under the convexity assumption, the line segment
f(a) = (1 = a)x + €%, 0O<e<l

jeining £ and X is contained im C. Since @ is concave the derivative

of ¥ along this segment evaluated at X must be negative

2 (0) = [38x), ¥1 <0

- 3*
where'§'= f = %X. Then X, together with 7 = O, up = 0, Vg = 0, ferm
a selution of (C = 5). It follows from Theorem B — 1 that (C = 5)
‘has no solution with % > 0. Therefore (C — L) has no solution umless

"X is eptimal.

An example of a programming problem which does not satisfy the constraint
qualification is the following
minimize - X
with
- 3
8(x) = (1=-x) -x,>0

x5 >0, X, >0

It is evident that the optimal solutien of the problem is the boundary peint
' 1

x = 1, X, = O. It is also true that at this point the direction x =[ ] satis=

fies the conditions (C — 3) but is net directed inte the comstraint segg It
is only in the case of'suéh anomaleus ''‘cusps'! that ﬁhe applicability ef the
theorem breaks down.

To cemplete this appendix we will show that the cénstraint set deter-

mined By a set of linear inequalities always satisfies the cepstraint quali-

ficatien.



Theorem: The convex pelyhedral set
Ax>b, x>0

always satisfies the constraint qualification.

Proof: Let X be any peint of the set. Partition the matrices 4, b

and the vector x so that

Let x be amy vector such that
Ap x>0
X Z 0

Define the curve h(a) by
h(a) = x + 6x

Now
AI h(a) = AI x + O.AIx:: b;

for all positive & not greater than some e, > 0, and
Ay h(a) = Ap x + @Ay x> by for all a > 0.

Alse

[h(a)]p = xp + 6xp,> 0

for all pesitive @ not greater than some a, > O, while

2

[h(e)l; = x, +@x,> 0 for all @ > 0.

Hence h(a:) is contained in the comstraint set for all @&, 0 <@ <

Hin[a.l, az] . Obviocusly dh{0) = Ax fer X = 1.
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The Fundamental Theorems of Quadratic Programmigg.

The development here concerns the following pair of dual quadratic

programs.
Primal quadratic program
Find an (x., xL) which
. . _ 1.7 T _ T
minimizes ¢(xQ, xL) = 3% P Xg *Cq ¥g top X
" subject to AQ X * A x >b
; Xq 20 x 20

Dual quadratic program

Find a (yQ, yL) which

T =1 T

maximizes Q(y,y)=-ly Py, +b ¥,
QL 2°Q Q L

. T
subject to AQ YL, =Yg < %
T _
A vLseg
Ty unrestricted, ¥ 2 0.

In these formulations P is assumed to be a symmetric positive definite
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matrix.. If follows that Pfl-always exists and is also a symmetric positive
definité matrix.

Note that the primal probleﬁ given here does not represent as general a
class of quadratic programs as does the formulation given in section 2 - 2.
Specifically only those problems inthe formﬁlation of section 2 - 2 in which

the matrix @ has the form

P 0

£
]

0 0
are encompassed by the primal formulation given above. The positive definite
matrix P may have any order from zero to the order of Q =— the former case is
that of linear programming, the latter =—-— that’in which the objective function
is a positive definite quadratic form. | |
¢

First we will show that the objective functions of these quadratic pro-

grams are concave.
Ilemma D - 1: The function
#(x) = X Qx + e’ x

is concave if and only if Q is positive semidefinite, and is strictly

concave if and only if Q is positive definite.

Proof: By direct computation from the definition of a concave function

Alil-a)x+ax] =

2=T

(1= a)2 %T Q% + 2a (1 - a) ﬁIIQi + @

(1 -a) cT Qsaclz

= (1 -a) #(R) + e (%)

X Qx

+ 9(1 -a) (2 - E)qu(% -X) .
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The last term is greater than or equal to zero for all choices of
® and X if and only if @ is positive semidefinite. This term is
greater than zero for all distinct $ and X if and only if Q is posi_'
tive definite.
As is pointed out in Chapter Two. the quadratic programs stated above
are considered duals because each yields the exact same Lagrangian problem,

namely

Quadratic.programming Lagrangian problem

Find (xQ, Xps Yoo yL) such that

"Q *q * AL X,z b primal )
P D=1
constraints
.xQ >0 xi >0
. . e
AQ YL~ 7q = Q
ATy <. dual (D-—Q)
L ‘L-="L constraints
yLzO
-1 .
Xq = P ¥g primal-dual (D - 3)
, coupling
T( Xpn * X, -=b) =0
yL, AQ, Q AL L complementary
T T . slackness
ko (Cm = Ay~ T+ ) =0 . (D= k)
xQ Q e L Q conditions

J‘LT(cL "ALT vy, ) =0

Since the objective functions of the primal and dual qﬁadratic programs are
concave and convex, respectively, the fundamental theorem of non=linear pro-

gramming (Theorem C = 2) and Theorem C = 1 gives the following result.



Theorem D = 13 A feasible vector (xq,_xL) of the primal quadratic

program is an optimal vector if and only if there is a (yQ, yL) such
that (x R xL, Yo yL) is a solution of the quadratic programming La-
grangian problem. Likewise, a feasible vector (xq, X ) of the dual
quadratic program is optimal if and only if there is an (xQ, xL)

such that (x s Yoy Yy) solves the Lagrangian problem
xLQ’L

Next, two simple properties are demonstrated which will be used in the

proofs of the fundamental theorems of quadratic inrogramm;ngo

Property D = 1s If Cﬁb, xL) and (yﬁf yL) are feasible solutions of

the primal and dual quadratic programs, then Blxgs xp) > Q(yq, yy)-
Proof: By multiplying the constraint inequalities of the primal
problem by ¥y, one obtains
T T T
Y Mg ¥ty A X 2P T
Maltiplying the constraints of the dual problem by xQ and Xy 5 re=

spéctively, gives

T =XT <CTX
*a Q g Yo =% *o

x A Yo X -
The difference between the objective functions is
CNESELCNESE
5 QTPXQ+CQTXQ +°LTX'L
‘2“‘QT Flyg-v yy, °

ﬂsing the_above relation# one finds



B(x,, xL) - G(YQ’ yL) >

1T T 1 -

5% PXg-X Yg*ZYe T Tq

1 1 .\T -1
=3 [(xQ—P Yo ) P(xQ-P YQ)] o

This quantity is a positive definite quadratic form and can never

be negative.

Property D — 2: If (xq, xL) and (yQ, yL) are feasible vectors for
the primal and dual quadratic programs, -and '¢(XQ , xL) < Q(yq, yL),

then (xQ, xL) and (yq, yL) are optimal solutions of the primal &nd

dual problems.

Proof: By Property D=1, §#>8, so @ =6. If (xq, xL) does not
give the smallest value of # the feasible vector which does and
(yQ, yL) would violate Property D - 1. The same reasoning applies

to (YQ’ yL)°

Theorem D — 2: (Duality Theorem) A feasible vector (xg, x ) for the

primal program is optimal if and only if there is a feasible vector
(yQ., yL) for the dual program such that @(x,, xL) = Q(yq, yL)o A
feasible vector of the dual is optimal if and only if there is a

feasible vector of the primal such that ¢(XQ’ xL) = O(yq, yL).

Proof: Only the first assertion will be demonstrated here as the
proof of the second is essentially the same. In view of Property

D = 2, the sufficiency of the condition is clear. To show the neces—
sivy, suppose (xq, xL_) is an optimal vector of the primal quadratie
prégram. Then, by Theorem D — 1, there exists a (yq, yL) such that

A(x ’ xL"yQ’ yL) solves the Lagrangian problem. This (yq, yL') is
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then a feasible vector of the dual problem. Now consider the dif-

ference between the primal and dual objective functions.

1. T R § T

5 Xy P X + Cq g ot oxp
1 T =1 LT

* 5T FUyg-b Y

Using the complementary slackness relations (D -~ L) this becomes

1 T T 1 T =1
b-b=3 X Pxg=Xg Ja*3% F 7g-
Finally the coupling relation (D - 3) yields

g=0=0.

Theorem D = 3: (Existence Theorem) If both primal and dual quadra=
tic programs posSeSS’feasible vectors, then both have optimal vectors.
If either of the two programs has no feasible vector, then neither has

an optimal veétor,

Proof: The second assertion will bg”proved first. Suppose (xQ, xL)
is é feasible. vector of the primal quadratic program. By Theorem
D=1 (x,, xL) can be optimal only if there is a (yq, yL)'that satis—
fies the dual restrictions. The same is true for a feasible vector
of the dual problem. To show the sufficiehcy assertion, supposé\(x s
xL) énd (yqs yL) are feasible solutiogs 6f the primal and dual pro-
gramsa: It is sufficient to show that .the objective function of;the
primal problem is bounded from below on any infinite ray in the pri-

" mal constraint set. Let



x %
*Q Q Q
= | = [+Xx | % |, x>0

be any such ray. In order that (XQ’ xL) be feasible for all non-

negative values of A we must have
#* #* - -
Ao Xqt Ay xp = Mhg Xg * A Xy )+ Ay X+ Ay Ty > b

and

xQ >0, X >0

for all % > O. This is true only if (iQ, ii) is a feasible vector

of the primal problem and

q20, * zo0. (D - 5)

Now consider the value of the primal objective function on this ray
as a function of .

g(r) = : P.zQ + XX xﬂ P x + % 32 §QT P X,

“HFJ

+ cQT (EQ + %) + cLT (xp, + §L)

=¢(E”-‘L)**2%§¢TP§Q
+~X(EQT P §Q + cﬁT ;é + cLT x;)

=g+ BX+ A

If any component of §Q is non-zere, the coefficient of kz,
1xT
¥ 7 Xg P xq

will be greater tham zero. In this case ¢(1) ig certainly bounded



from below. On the other hand, if there is a solutioﬁ ef (D=-75)

with Xo = 0, #()) would be bounded below on the ray only if

Pe Gy Plgveg X+ ey ¥p)

T %
=c. X

L "L

is non-negative. We will show that this is true. Since (7Q9 yL) is

a feasible solution of the dual problem
T
AL yp=eps ¥ 20

Hence

#T , T, T %
oA T Ser Y

But also, from (D = 5)

Therefore

as desired.

Theorem D — li: (Complementary Slackness Principle and Uniqueness)

i) If (XQ?‘xL) is an optimal solution of the primal program anrd

qu, ¥y) is an optimal solution of the dual program, then.(xQ, X5
Yo ¥y) s 2 solution of the lagrangian problem. In particular, the
éomplementary slackness conditiqns are satisfied. ii) The values of
the variabiles xQ and jQ.are unique ip optimal solutions of the primai

and dual programs, respectively.

Proof: All requirements of the Lagrangian problem are satisfied
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automatically except the complementary slackness conditions and the
‘relation yQ =P xQ, It remains to demomstrate that these conditiéns

are satisfied. Let
T
Y=y (AQ Xt LL xL-b)
T, .
€ =x T(eg = by T *7p) (D - 6)

§=xl(ep = by ¥y)
repreée—nt the amount of dissatisféction of _‘_ehe complementary slack-
ness conditions. Under the constraints of the primal and dual prob-
lems ¥ ,€ and ¢ must each be grea;ber; than or equal to zero. We have

as the difference between the primal and dual objective functions

T
-b ¥,

Using the relations

v yL-s”LAQxQ*yLTALXL'K
CQT xQ =='xQT AQT ¥y - xéT yQ + E
R ASE AR

obtained from (D = 6), we find

1. T T R :
B(xp, r-L)-G(yQ, yL) =‘=2-[xQ Px, - 2% To *Tg P_lyQ] + o+ o+

- T-

) T =1 ; . »
-3 (Pxg = 7g) _Pl(_PxQ-yQ)wma»»g
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Theorem two states that this quantity must be identidally‘equai
to zere. Each term of it is non—negative; the first term because it
is a positive definite’form“in'the'quantities‘(PxQ-e yQ), and the other
terms as a result of the primal and dual constraints. Thus each‘term

must vamish. This requires that the relation

Vo = PR
hold,Jand that the complementary slackness conditions be satigfied.

Thus (xé? Xps yq, yL) is a_solution of the Lagrangian problem.

To demonstra(i‘-te the uniqueness property, let &®., %I,) and ('JEQ, ;EL)
be any two optimal solutions of the primal quadratic program. Theorem
D = 2 shows that the dual problem must possess an optimal solution
(yqj yL)° According to the first assertiom of the present'thgorem, we

must have
v X
YQ + P xQ
yQ + PVEQ o

If follows that gq_= iﬁwo In a similar mamner the uniqueress of yQ

in optimal solutions of the dual may be shown.

Finally the selectien of the particular formulation of the pair of dual

quadratic program employed here will be justified. We will show that the appli=

cation of the duality principle té}tée dual problem yields the original primal

pr@biem.

The starting point is the dual problem,

Haximize

Q'(?Q’ yp) = - % iQT i Fot _;’T*;L



subject te

in which we have barred the vectors and matrices to distinguish them in the

following. By making the identifications

*q T Vg I

- = Q

X =¥y, 0

= | = T

W h -7

D -7

- =| =T

CLs_b ‘L Q-AL”

= -1 -3, |

P=T7 b = EQ )

L
We may express this problem in terms of a primal problem in which XQ is unre-—

stricted, i.e.,

.Minimize
;2'- xQT Px‘Q + cQT xQ + CLT xL
sﬁbjéct to
gtk z
x'L > 0.

Therefore the dual for this problem has equalities for those restrictions

corresponding: te the Xyt
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Maximize

subject to
T .
by YL =797 %
T
M L=
yL>O .

Using the identifications (D - 7) we may write the dual of the dual prbblem:

Maximize : T

(D~ 8)

R

If we identify yL-with wQ , then (D = 8) requires that Vg = EQ . We may

rewrite the problem as

Minimize

N

which is precisely our primal problem as was to be showa.



APPENDIX E

Some Properties of Concave‘Functions

The objective in the “three theorem of this section is to show that to
any strictly concave function P there is:a'cerrespwnding strictly convex

function © such that

-3 = (37,

that is,'the differential of the secqnd is the negative inverse of the map
which is the differential of bhe first.

The notatioen [x%, y] will be used here to denote the dot product of the
vectors x and y; # © will denote the qomposition of the méps (functions)
# and 8. ® is the Euclidian space of n dimensiens. Pége‘references in
brackets are tp Buck's treatiSe* on which these results are bésed; First

we define the notions of concave and convex functions.

Definition: A mapping f#:D —> R defined on a region D inm R® is

concave if and only if for every x, y in D,

(L -a)x+ay] < (1-a)d(x) +ady) (E - 1)

* R.C. Buck, Advanced Calculus, McGraw-Hill, 1956.



for all ¢, O <a <1. Such a map is strictly concave if and only

if (B = 1) holds as a strict inequality for all pairs of points in

D. It is convex (strictly convex) if aﬁa,only if - @ is concave

(strictly concave).

A generalization of the strictly increasing property [p. 20] of a func~

tion of a single variable will be used in this development.

Definition+ Let t:D —> B be a contimuous transformation [p. 165]

defined on a region D in . ﬁé will éay + has the stirict increase

property if and omly if for every pair of distinct peints x and y in

D the following relation is satisfied:

[t(x), @ = x)] < [8(r), (7 = x)]

t has the strict decrease property if and only if - t has the strict

increase property.

The following two lemmas will be used in the proof of Theorem E - 1.

Since the proofs of the lemmas are fairiy long, although straightforward,

and their assertions are reasonably obvicus,'thesé“preofs will be omitted

for the sake of brevity.

Lemma B - 1t Let [0, 1] be the closed umit interval in R. Let f:I —>
R be a function defined on some open‘inte;val I bontaining {0, 1] and
having a centinbus)derivative p'. Suppese @'(1) < £'(0). Then for
gome @, 0 <a <1,

f(a) > (1 —a) g(0) +c g(1) .

L

Lemma E — 2: Let #:I —> R be a differentiable function defined on

the unit interval [0, 1]. Suppose for some ¢, O < a <1,
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fa) > (1 - a) #(0) + & (1) .

Then there are two distinct points x and y, 0 < x < @ <y <1, such
that
gr(x) > @' (y) .

Theorem E = 1: Let D be a convex fegion in Rn; and let @:D —> R be

a function with continueus first derivatives. Let t:D —> R® be the
. differemtial [pp. 180-184] of B. Then £ is strictly concave (convex)

if and only if t has the strict increase (decrease) property.

Proof: We will demonstrate the theorem for the case in which # is
strictly déncave. The other case follows from this by considering
- @

51) & strictly concave implies t has the strict increase property.
Suppose t does not have the strict increase property. Then there exist

distinct peints x and y iﬁ D such that

[4x), (7 = %)) = [8G), (3 = )]
Define the real=valued function'h(§) on some open dinterval containing
[0, 1] vy

W(§) = £oqn(§)
where

n(g) =x + (y - x)§
The derivative of hfg) may be found by use of the chain rule fpa 191]
as : . -

W (§) = [o0(§), h'(5)]
= [tsh(3), (7 - x)]



Thus _
W (o) = [t(x), (7 - x)]
(1) = [tGy), G = x)]

and it follows that \\’(O) > ‘}{(1). From Lezmg E - 1 there is a point

@ in the open interval (0, 1) such that
Te) =1 —a) N(0) + e (1) -
However, -h(0) = x, h(1) = y, so that |
W(0) = #(x), (1) = #(y)
n(@) =gen(e)= BI(1 - a)x + ay) .
Thus
 Al@-e)x+ey]> (1 -0) Alx) + e B(y)
in contradiction to the strict comcavity of ¢.

2) t having the strict increase property implies f is concave.
Suppose # is not concave. Then there are distinct points x, y in'D

such that for some ¢, O <a <1,

i1 -a)x+ayl>(1%a)f(x)+af(y) . (E - 2)
Again define }\(g) as before b}
() = Bon(§)
where h(€) = x + (v - x)% and we may write in place of (E - 2)
n(a) > (1 - e) (o) + aK(1) .

According to Lemma E - 2 there exist §, and §2, 0< él <e<§, <1,

such that

NGz 6,) .



However, we have as before

}1'(5) = [t°h(§),' (y = x)].
Thus |

[to hig,) (7 - x)] > [£=h(5,), (v = ).

If we let xl,:‘h(gl), v, = h(§2), and note that (ya'-rxi) has the

same direction as.(y - x), we have
[t(xl)s (yl - xl)] z [t(yl)’ yl bad K.L] °
Thus t does not have the strict increase property, and the assertion

is verified.

Theorem E — 2: Iet D be a region in B and let #:D —> R be a func-

tion with continuous first derivatives. Iet t be the differential
of #. Then; if @ is either strictly concave or strictly convex,

$:D —> K" is a one-to—one map.

Proof: We give the proof for # strictly concave. By theorem two,
t has the strict increase property. Suppese t is not one—to=one.

Then there are distinct points x and y in D such that

t(x) = t(y) .

Consider

()

o n(§)

where

n€) =x + (y - x)§ .
Then
n1(0) = [8(x), (v = )] =

N = G), & -x)I,
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contradicting the aESHmption that t has the strict increase property.

Theorem E — 3: Let D be a regien in Rn, and let t:D —> R be a con-

tinuous transformation having the strict increase property. Let E

be a region in the range of t.- Then t—l“exists“and has the strict

increase preperty onm E.

Proof: Theorems E = 1 and E = 2 show that ¢t is a one-te-one trans-

i

formation. - Hence, +71 exists. Suppose't-l does not have the strict
increase property. Then there are distinct pdiﬁtS'u and v in E such
that |

(¢l -1 ‘ R

t7(u), (v-u)] >tT(v)y (v-u)] . (E = 3)
Let x = t-l(u), y = t‘l(v), so that x and y are in D. Since t has
the strict increase property

[t(x), (v = x)] <[t(x), (7 - x)]
or |

['L‘l, y] = [u} X] < [V, Y] -~ [V, x] .
Frem (E = 3) we have

[xg v] “—rx, u] : [y, V] - [y) u]

which is a contradiction.

The preceding develepment has demonstrated the following facts.

Any strictly comcave function § has a differential 3f which is one-
to=one :and has the strict increase property. The negativé inverse
of this map (3f)™L has the strict decrease property and is the dif-

ferential of some convex function ©. That is 06 = -r(aﬁ)'l;
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For apmy strictly concave function @, the functien © defined by the for-

Kmula
o(y) = 8 () ) - [y, (38) (3]

is called the legendre transformation of . Its differential may be computed

by the use of the chain rule [p. 191].

a6(y) = [af o (382 (y), a(ad)L(7)] - [y, a(a8) (3] = (38) ™ (z)

[(38) ° (38)2(3) = v), @) ()] - (382 (r) = - (@)

Thus the differential of © is precisely the negative inverse of the differen-
“tial of P. Theorems E = 1, E = 2, and E ~ 3 then show that, since @ is strictl
concave, g has the strict imcrease property and therefore that = (aﬁ)‘l exists

and has the strict decrease property. Thus & is a strictly convex function.



APPENDIX F

Duality Relations in Concave Programming

Based on the properties of the Legendre transform develeped im Appendix
E, the duality principle will be extended te a class of.concave and convex
programining problems. Specii‘-icallyr the discussion will concern a primal prob-
lem in Awhich the objective function is a strictly ceoncave function ﬁ of vari-

ables x'c plus a linear combination of a distinct set of variables X,

Primal concave program
Find an (XC"XL) which
minimizes
: T
¢(xc) +elx
with
AL X+ A-G Xo > b
L2 cz0-
and a dual-iarob-lem in which the Legendre transform of ) appears.

Dual convex program

Find the (yc, yL) which
- maximizes

T
8(yy) + b vy



subject te

T

Ac‘yLoycfo

T
Ay ypze

Y unrestricted, ¥y = 0.
Here the legendre transform 8 is defined by
’ -1 : -1
8(yg) = #o (38 (3p) = [yg, (8)™ (y)] (F-1)
and has the preperty that
Nl o S LR
3®(y,) = = ()" (vy) »
as was shown in Appendix E. In view of this prepe:r'by both the concave and
the convex programming problem given above have the same vcen?esponding Lagran-

gian problem.

Concave preogramming Lagrangian problem

Find (xL, X0 Yps yC) such that

Ao xg* Az, 2B primal

. Fae?2
) , constraints ( )
X = 0, x>0
T .
T ‘ . dual F
AL L =¢ constraints - (F-3)

YL:O

% = = 0(y) = () (y,) Primal-dual ),
coeupling

T .
Yy (ALxL*Acxc-b)= 0
, cemplementary

T AT _ - slackness F-5)
% g =4 ¥p) ° (F-5



xLT(c - ,AIT yL) - 0 conditions

Application of the fundamental theorem of non-linear, programming to the
dual pair of comcave programs gives the following theorem which forms the

basis for the proofs of this appendix.

Theorem F ~ 1: A feasible vector (xc,_xL) of the priﬁal and concave
program is an optimal vector if and only if there is a (yC, yL) such

" that (xc, X1 Yoo yL) is a solution of the concave programming Lagran-

; gién problem. Likewise, a feasible vector of the dual cenvex program
is optimal if and only 1f there is an (xc, xL)'such"that (xc, X5 Yoo yL)

solves the Lagrangian problem.

Two properties of the pair of concave programs will be demonstrated which
are analogous to those proved for the dual pair of quadratic programs. First,

however, a lemma is necessary.

lemma F - 1: If ﬁ(x') is a strictly concave function and the strictly
convex function ©(y) is its Legendre transform, then the quantity

W (s 7) = Bx) - 8() -7 x

i8 never negative and is zere if an only if
o
x==23y) = (3¢4)"(¥) -

Proef: Employing the defining fermula (F — 1) for the Legendre trans-
formation
"4 (x, ¥) = B(x) - o (ag) (y)
+ ()7 )] -7 x
Let

w =_(a¢)”1(y') so that y = af(w).



Then ' '
(x, w) = B(x) = #(w) - [3f(w), (x - w)].

If x = (aﬂ‘)’l(y) = w, then [/is obviously zero. Now suppose x is

distinct frem w. According to the mean value theorem for a function
*

of several variables [Buck, p. 199] there is a point z on the line

segment joining x and w such that
Taf(), (x =) = Bx) - Bm) (F - )
Also, since 3f has the strict increase preperty,
[36(a), (s = m)] > [36w), (x - )] ,
or, since (z = w) is parallel to (x - w);
[aﬁ(z); (x = w)] - [aﬁ(W); (x =w)] >0
Using (F - 6) this becomes -
B(x) = f(w), (x -w)] =W(x;, w) >0 .
Hence,V(x, y) is st.ricily greater than zero except when x = w =

(8) (7).

Property F = 1: If (xc, xL) and (yc, yL) are feasible solutions of

the primal concave and the dual convex programs, respectively, then

T T .
Blxg) +.c” x. >0(y,) + b vy, .

Proof: By multiplying the constraints of the primal concave program
by ¥y, one obtains

T . T
Yy, Ao Xg t I ApxpZByp .

*R c. Buck, - Advanced Cglculus, McGraw-Hill, 1956.




Similarly, from the censtraints of the dual problem we have

T, T
X by se
The difference between the objective functions of the primal and
dual programs is
A=flx)+c x -8F )=-b ¥
or, using the above relations,

A = Bx) - 8ly,) - v, %

-

This quantity is never negative by lemma F - 1.

Property F - 2: If (xC, xL) and (yC? yL) are feasible vectors for
"the primal and dual programs, and ﬁ(xc) + et xp < 8(yg) + BT yL;
then (xC, st and (yc, yL) are optimal solutiens of the primal and

dual problems.

Proof: By Property F - 1 ¢(xc) +-cT X 3:9-(yc) + bT vy - Therefore
the objective functions must be equal. If (xC, xL)‘is not optimal,
then some other feasible vector must give a lewer value of the primal
objective function and this would violate Property D = 1. 'The same

reasoning applies to (yG, yL) in relation to the dual problem.

The duality theorem and complementary slackness principle for concave

pregramming may now be demonstrated.

Theorem F — 2: (Duality Iheorem) A feasible vector (xc, XL) for the
primél concave program is optimal if and omly if there is a feasible

vector of the dual program such that the ebjective functions are eguai°

Blxg) + " x, +8lyg) + 6 ¥,



A feasible vector of the dual is optimal if and only if there is a
feasible vector of the primal such that the objectives are equal.
Proof: Only the first assertion‘will be demoﬁstrated.here as the
proof of the second is essentially the same. In view of Property F - 2
the suffieiency”of the condition is clear. To show the necessity, sup-
pose (xC, xL) is an optimal vector of the primal concave pregram.
Then by theorem F = 1 there exists a (yc, yL) such that (xC, Xpy Yo yt)
is a selution of the concave programming Lagrangian problem. This
(yc, yi) is then a feasible vector of the dual convex program. The
difference between the primal and dual objective functions is

& = Blxg) ¢ o x — 0y -0y
Using the complementary slackness conditions (F - 5), this becomes

A = Bxg) ~y5 %, - 8ly,)

The coupling relation and Lemma F - 1 show that A = 0.

Theorem F ~ 3: (Complementary Slackness Principle and Uniqueness)

i) If (xc,‘xL) is any eptimal veetor of the primal pregram and (yc, yL)
is any eptimal vector of the dﬁalmprogram, the (xC, QL, Yoo yi) is a k
solution of the concave programming Lagrangian problgh, In particular
the complementary =slackness cmndit;®ﬁs are satisfied, ii) The values -
of the variables X, and y, are unique im the optimal vectors of the

prima} and dual programs, respectively.

- Proof: All requirements of the Lagrangian problem are satisfied auto-

matically except the complementary slackness conditiens F — 5 and the

coupling relations x, = (aﬁ)-l(yc). It remains to demonstrate that

- these coenditions are satigfied. Let



V= ;rLT(AL Xy +hg X - B)

-z T T =
§ =% e - A" 7))

represent the amount of dissatisfaction of the cempleméntazy slackness

conditions. Under the constraints of the primal and dual problems ¥,
€ and § must eéch be greater than or; equal to zero. The difference
between the primal and dual objective functions is then

Bxy) + e x = 8(F,) - b F,
_ - T (F=-7)
= [B(xp) = 8(ye) =y; X) + 75 +£ +§
Each term of the above expression is non-negative—~=-the first as a
consequence -of Lemma F — 1 and the others by construction. Theorem
F - 2; however, requires that the primal and dual objective functions
be equal and, hence, that the expression (F - 7) vanish. Since each
term is non-negative, they all must vanish separately. In thei case
of the first term, Lemma F - 1 shows t.hat» the coupling relation (F - L)
must be satisfied and the other terms require ﬁhat the complementary
slackness conditions be met. Thus (xC, Xp, yd, y];.) is a solution of
the Lagrangian problem.
To demonstrate the uniqueness property, let (gc, 'gL) and (;:C, iL)
be any two optimal vectors for the primal concave program. Theorem |
F - 2 shows that the dual problem must possess an eptimal vecter
(yc, yL), According to the first assertion of the present theorem we
ﬁust have both
$o = B(x;)

}C = aﬁ(xc)



It fellows that J%c = EC because aﬂf..:is ‘a one-to-one map. In a similar
manner the um’:queness of g in optimal vectors of the dual program

may be shown.



APPENDIX G

Properties of Terminal Pair Solutions

In this section the properties of the terminal pair system

A | e ‘ b
- ATl 1| e
1 | o

will be studied.’ In particular, the purpose of this development is to
demonstrate that the set of all pairs (£, n) which correspond to solutions
of the system is a breakpoint curve in the plane. Writing the system out

one has the three relations

Ax+efE=b ' ' (¢ - 1a)
ATy ~-Qx+v=oc (¢ - 1b)
'T]=—eTy (G"lc)

and the complementafy slackness conditions
x>0, v>0, xva=0. | (@ - 1d)
The matrices in (@ - 1) are supposed to have the following properties.
A - arbitrary rectangular matrix ' , e

b, ¢, e = arbitrary column matrices

Q - symmetric, positive semidefinite
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First, a prec}se definition of what is meant by a breakpoint curve
must be given.
Definition: A breakpoint curve is § sequence of k line segments in
the plane with the following pfoperties:
1) The first segment is a ray with non-zero direction vector
(€, n) where £ <0, n <O.
2) The KB segment (not necessarily distinct from the first) is a
ray with non-zero direction vector (E,IH) where £ > 0, n > O.
3) Let (Ei, %i) be the lower endpoint of the 1B segment (gxcept
for the first) and let (Ei, ﬁi) be the upper end point of the i
segment (except for the last). Then
o -

'gi+l.£i’ ﬂi+l=ni, i=1, ..., k-1,

that is, succeeding segments must join in a common point.
4) Each segment must not have a negative slope.
g, -8 >0, i=2, .0, k-1

- 0
LR Y >0

Definition: A terminal solution of a terminal pair system is a fair

(£, n) which corresponds to some solution of the system.

The following property of the terminal solutions will be frequently
used in the proofs:

Lemma G - 1: If (y, x, £, ¥y, v) and (g, x, £, ¥, V) are any two -

solutions of the system, then

£q = e - in + X Qx - x

Prpof: By straight forward calculation using relations (6 - l¢), (G - la)

and (G - 1b) in succession one finds
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o™
3
1}

= yT Ax - yTb
- x% - §Tb 5 QX - x
First it will be shown that the set of terminal solutions of the system
has a "monotone increase property", namely, if £ is increaséd 1 does not
decrease and vice versa.
Lemma G - 2: Let (£, n) and (£, n) be terminal solutions of the
sysﬁem (G, -1), Then
E- G-%H=o0
Proof: Let (7, X, £, y, v) and (%, £, £, #, ¥) be any solutions of
; (G -1) corresponding to the given terminal solutions. Applying

Lemﬁa G - 1 one obtains

E-8) @-M=En+En-¢n

+ c + cC=-y c-y ¢

r R Qx+ 2T qe-g3
=T - oT o oT - =T o

-V X=-V X4V X+7VvV X

- G- eE-D T 24T i 50

This expression is never less than zero because it is the sum of
a positive definite form and products of non-negative vectors,
Next the existence of line segments in the plane all points of which
are terminal solutions will be shown. In any solution of (¢ - 1), some
components of x and some components of v must be zero in order that the
complementary sléckness condition be satisfied. Define a primal variable

set P and a dual variable set D such that
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]
o

i not in P implies X5

1]
(@]
°

i not in D implies v
A choice of the sets P and D is allowable if each i is contained in one and

only one of P and D.

Lemma G = 3: Let P and D be an allowable pair of primal and dual
variable sets, Let S be the set of all terminal solutions (£, 1)
which correspond to solutions of the terminal pair system consistent
with P and D, Then either S is empty, S is a single point, or S is
a line segment (possibly semi-infinite or infinite).

Proof: Let (E, ) and (£, §) be two distinct members of S and let
(v, %, £, ¥, ¥) and (3, %, &, 8, ¥) be corresponding solutions of

(6 = 1) consistent with P and D, Then, by direct substitution in

(¢ - 1)

. [ =] [ o]

0 0 n

- 0

x x '

2 = (1 -a) 2 +a £

- 0

J J y

- 0

v v v
. -] L . - .

is also such a solution for O < a < 1. Hence all points on the
line segment joining (£, n) and (8, §) are terminal solutions and
members of 3,
% % I
Now let (£, n) be amy member of S distinct from (£, n) and it
will be shown that this point lies on the line determined by (€, 7)

and (2, §). Specifically it will be shown that
’ * - - - -
E-DF-ND=C-Dn-7) .
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- - x *
This is true only if the line joining (f, ) and (g, 5) is parallel
to and hence identical with the line joining (£, %) and (£, 7).

Using the same method as in Leﬁma G'- 2, one finds
E-D@-%-G&-D"e@-3)
‘and . : : o
€-DGF -2 = E@-9 ek -5,
Since the right hand sides are identical, the proof is complete.
. The next property shows that there is a unique intersection between the
set of terminal solutions and'any 45 degree line of negative slope.
Lemma G - 4: If the system (¢ - 1) has any solution then for every
value of a scalar o there is a unique terminal solution. (g, ) of
the system which satisfies the condition.
n.+ E = o B ‘ (¢ - 2)
Proof: Consider the system of felations formed by}appending the
above condition to the terminal pair system!
Ax+e&=0D
1 x>0
T

A’y -Qx+vs=c @ - 3)

These relations comprise the Lagrangian problem associated with
the following quadratic programming problem.
Minimize |

%’XT Qx+ o x 4-% 52 -« £ ‘ | (6 - 4a)



with
Ax+ef = b (& - 4vb)
| x>0
By assumption the terminal pair system has some solution (4, x, &, ¥, V).
If we take ¢ = § = eTy, then (g, x, £, ¥, v) is a solution of the
transformed system (G - 3) for this value of a. Hence (x, £) is
an optimal solution of the quadratic program (G - 4). it will be
éhown that the objective function (G - 4a) is bounded below on any
ray in the constraint set (G - 4b) regardless of the value of a.
This implies that (G - 4) has an optimal vector for each « and,
hence, that (6 -~ 3) has & solution for every a.
A ray in the constraint set (G - 4b) is described by
Xx=%+AX i} ,
o _ (» A2>0
E=E+ AL

where

+
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The objective function (G - 3a) evaluated on this ray is

PO) =2 (x+ A DT QR+ A7) + TR+ A D HEE)Z- (%),
-g(0) + 2+ B) + aFez+ oz EE-ad)

This is certainly bounded below if the coefficient of h2 is strictly

positive. On the other hand, for a ray in which the coefficient of

2% is zero (which requires £ = 0), the objective function is

g ) =rF Qx+ o F).
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Since this is bounded below for some a, it must be bounded below
for all «. This establishes the existence of a solution to

(6 = 3) for every a. It remains to show that the corresponding

terminal solution is unique,

Suppose there are two terminal solutions (£, §) and (E, n) which
satisfy (G - 3) for the same value of a. Lemma (G - 1) and condi-
tion (¢ - 2) yield |

E8==ag+a2=-GTJOC+bT§"%TQ;+;

Now consider the product

3E-02-1Fa2+cT2458% a8
=-% = Qx - el ¥ --% £ 2 +ak
-2 @-9T E-9 -8

1GE-80%-08 B4 D-2E-9-FL  o¢

since (%, £) and (X, E) must both be optimal solutions of (G - 4),

they yield identical values of the objective function. The other

terms on the right side of (G = 6) can never be greater than zero.

The left side is never less than zero. Hence £ - £ and (G - 2)

shows that n = 80

The above result allows us to show that there is a ray of terminal

solutionsvextending infinitely toward positive coordinate values, and also
a ray extending toward negative coordinate values.

Lemma H - 5: For some allowable P and D the corresponding set of

terminal solutions is a ray

(gv ’fl,) = (ED":}) + A (zn:]). A > 0



* * * * '
where £ <0, n <0 but at least one of E and n is non-zero. Also,

for some allowable P and D the corresponding set of términal solu-
tions is a ray with E >0, : >0 but at least one of E and ; is non-
zZero.

Proof: If all segments were finite, one could choose « sufficiently
negative so that

a < Ei + ﬁi, all i

and there could be no terminal solution satisfying (& - 2). The
direction of the ray must be within the range specified so that
Lemma G - 2 is satisfied. Taking « to be sufficiently positive
demonstrates the second assertion.
In the remaining proofs the term line segment refers to the non-empty
set of terminal solutions of (G - 1) for some allowable choice of P and D.
A line segment may donsist of only one point. Suppose there are k choices
of the sets P and D for which there are associated line segments. The lower
and upper end points of the ith line segment will be denoted by (Ei,ﬁi)
and (Ei,ﬁi), respectively where

o 0
E. + 3 <

<
&b

E.vl + ni'
Lemma G - 6: The line segments comprising the set of terminal

solutions can be arranged in a sequence Ll’ LZ' 0oy Lk so that
& +m.. > E +79,, i=1 k-1
4l T Mig1 2 51 T My °

Proof: Take Ll to be the line segment extending indefinitely toward

negative ] and/or E. Given L1 through Li' take Li+' to be that

1

one of the remaining segments for which 8 + % is the smallest. ‘Then

o - -
G+ P 2 B+ iy (@ -17)



because

g +1 <8

o)
i i-="isl * r)i+1

and if (@ - 7) were not true there would be a point on Li with

. © o
&+ = §i+l 500

This would contradict Lemma G = 4) for a = The last

) 2i+1 MRS
segment Lk of the sequence is the segment extending indefinitely
toward positive ¢ and/or n. Otherwise succeeding segments would

violate Lemma G = 4),

Theorem G -~ 1: The set of all terminal solutions of a terminal

pair system is a breakpoint curve,

Proof: 1The preceeding lemmas have shown that the set of all terminal
solutions is a sequence of straight line segments with non-negative
slopes, It reméins to demonstrate that these segments join.to form

a continuous curve, that is, that

y i=1, ..., k=1 (¢ - 8)

Suppose not. Then tor some i (G - 8) is not satisfied. Lemma
(¢ ~ 6) shows that
E.+;i§8. +% ° (G"9)

i i+l i+l

If (G - 9) is satistied as an equality both (Eis ;i) and (Ei+1ﬂ
B...) would be solutions of
i+l

E+1=a (¢ - 10)
in violation of Lemma G - 4. If (G - 9) is satisfied as an in-
equality there is no terminal solution satisfying (G - 10) with

l /= - 0
a=5 (E vng+ 8 +9,,)
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in violation of Lemma G - 4.

To conclude this section two special clasées of terminal.pair systems
are considered, In the first the matrix Q is taken to be null and it is
shown that the corresponding breakpoint curve contains only horizontal and
" vertical segments. Secondly, Q and either b or c are taken to be zero. In
the first instance all vertical segments collapse into the p=-axis, in the
second, all horizontal segments collapse into the E-axis,

Theorem é = 2: The breakpoint curve for a terminal pair system con=-

siéts only of vertical and horizontal line segments when Q is the
null matrix. _
Proof: Let (2 %) and (E E) be any two terminal solutions of (G - 1)
for tthe same segment (having the same primal and dual active vari=
able sets, P and D), Lemma G - 1 with Q set to zero yields
E-DGE-D-G-9"E-9

which is zero by the complementary slackmess condition. Hence
either , :
E-8 >0
or

(-1 >0
but not in bqthv In the first case the segment must be horizontal;

in the secondD vertical.

Theorem @ = 3: The breakpoint curve for a terminal pair system in
which matrices Q and b are null contains no vertical segment in which
£ is not zero; 1if Q@ and ¢ are null it contains no horizontal seg-

ment in which n is not zero.
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Proof: Let (£ 1) and (£ 7) be two terminal solutions of (¢ -1)
for the same vertical segment (7 >17). Then, using Lemma G - 1
with Q and ¢ set to zero one has

g =M=

hence £ = O as required. The second assertion is proved in the

X - ?T b+ §T b+ §T b=0

same manner,
The following result concerning basic solutions of the terminal pair
system is used in Chapter Pive.
Lemma G - 7: Let z be a basic solution of the terminal pair system
in which the conjugate variable pair (xb, Vb) is at breakpeint.
Let 2 and ; be the unit incremental solutions associated with this
basic solution and suppose £, > 0 and 5 > 0, ¥ = x = 0. Then
b b b~
ea>t3
Proof: The incremental solutions 2 and ; satisfy the terminal pair
system with zero right hand side. Using Lemma G - i we have

*  * *  *
En-29= FLax-+7¢



APPENDIX H .

The Genmeralized Breakpoint Stepping Methed

The algerithm developed ;a'ehapteerive fer tracing the breakpeint

curve of the terminal pair system

N x € y v

A e b ( )
Ha-1
-Q AT I ¢ '
1 "eT 0

fails if more than ome conjugate variable pair is at breakpeint at some basic
solution during the computation. In this appemdix, theoretical developments
will be made which show heﬁ to m@dify the'ﬁethed se that it will work wﬁfh—
‘out exception. In order to reselve'the”degéneracy preblem the eriginal syste
of relatiens (H - 1) describing the breakpeimt curve will be expanded seo that

in a sense; breakpeints that were superimpesed in the terminal pair system

become distinct in a generalized system. Each variable Zi of the original sy
tem is replaced by a vector Zi of m + m + 2 components in the genmeralized sys
tem. The first component of the vecter is idemtified with the original vari-

able., Similarly each component di of the right hand side is replaced by a



H=~-2

vecter Di° Hence the original system is replaced by

P z0 =D (H - 2)
where - -
(0 4 e 0 0] b ol 0
P= |0-a o AT 1|, p= |1 0 O
1 0 0 e o © I 0
B - 0 0 1
and

Z2=[f X g Y V].

Using this generalized system, it will be shown that the quantity f + g
increases strictly om each step of the breakpoint stepping algerithm. However,
this increase is not in the ordinary algebraic sense, but in a special senmse

which is defined below.

Definition: A vector x is greater than zero in the lexicographic

sense and one writes
#*
x>0
if x is not zero and dts first nom-gzere compoment is positive. The

vector is less than zero and one writes

*
x<0
if dts negative is greater than zere. ' The relation

#
x>y

is true if

*
X=-y>0.

Definition: A square matrix which is the product of twe vectors .

A=x yT



H - 3

is said te be greater tham zero in the lexicegraphic sense and ene

writes
LZo0

if A is not identically zere and
aij >0

where 4 is the first non-zero Tow and j is the first non-zere column

of 4.

The following property is an immediate consequence of the definitions.

£
Preperty 1:The-re1ation b'e yT > 0 is true if and only if

x§0, y';o or x’<":o, yéo,,

The requirement that the variables Xy and'vi be nen-negative im the origi-
ral system is replaced by the requirements
.
X, o s V. >0
i=-— i =

in the generalized system. The complenentany slackness condition

x, v. =0, all i
i 4
becomes

L, V=0, alldandj,

that is, each component of the new vector variable must satisfy the same con=-
ditien as the single wvariable in the eriginal system.

It.iS'clear that for any matrix 2 which is a solution of the generalized
system, the first components of the columns of Z form a solution of the ori-
ginal system.

Next, the notion of a basis will be defined for the generalized system.

Definition: A basic selution of the generalized system is a solution

AZ in which n + 1 of the columns of X and V are identically zero. The



m+n+1l columns of P corresponding to celumns of 2 not required to

be zero comprise the basis ésseciated with the basic solution. A

basis must always dinclude the“Pi"c@rrespending“to the vectors f, g
and the columms of Y.

The fbllowing*preperty of a basis of the generalized system is crucial

in succeeding arguments.

Lemma H - 1: Let Pi i in B be the basis vectors corresponding te
some basic solution 2. Then these vectors form a linearly indepen-
dent set and

z. 30, i¢3B.

Proof: The vectors of the basis Pa,'i £ B form an'm +n +1by
m +n + 1 square matrix R. The coerresponding columns of Z form an

m+n+2bym+n+ 1 matrix W such that

R WT = DT =|c Q I 0] .

The matrix D was constructed to have rank m + n + 1. Hence, both
R and V must have rank m + n + 1. With respect to R, this shews that .
its celumns are linearly independeﬁt; with respect to W this shows

~that none of its columms can be identically zero.

Thus each vector variable associated with a vector of the basis for any basic
selution cannot be identically zero. On the other hand, the cemplementary
slackness condition requires that one member of each pair of comjugate vari-

ablés mast be identically zere for each solution. Since n + 1 of the Z% and
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Vi must be zere fof a ‘basic solutien, precisely one pair of conjugate vari-
ables must have Xi = O and ?i = 0, j?he‘remaiying Ii and Vi cerrespond to

vectors in the basis and’ therefore cannot be zero by the above lemma.

Definition: TFor a basic selution the pair of conjugate variables

(Xi, Yi)'fer which Xi = 0 and Vi = 0 will be said to be at breakpoint.

Since the vectors of the basis are linearly independert and ferm a square ma-
trix, the inverse of this matrix exists. The row of the inverse corresponding

to a celumn Pi of the basis will be represented by the column vector Si. Hence

T 1, i=3j
P." 5, ={ . i, J&B

0y i£]

because the preduct of a matrix with its inverse‘iS‘the'identity matrix.

The three theorems which fell@ﬁ show that, given a baéic selution ef the
generalized system, either a new basic solution may be férmed with increased
f+gor a class of solutions is available on which the?Quéntity f + g in-
creases indefinitely. In Thecrems H - 1 and H =~ 2 the existence of a class
of solutiens for which f + g increases and one fof which f + g decreases is
dembnstrated as a preliminary for Theorem H = 3 where the main result is

préved.

Thecrem H - 1: ILet E be a solution of the generalized system in

which the conjugate-variable pair (Xj,vj)-is at breakpoint. Then
a class of solutions Z(t) can be comstructed for which—Xj(t) o

for t £ 0, and one for which V,(t) ¥ 0 for t 5 0.

Proof: Let Ph be the column of P associated with the variable vec—

ter Xj. Ph is not a member of the basis, but can be expressed in



terms of the linearly “independent basis vectors.

- 2> s,

ieB

- jEE:<SiT

ieB

P =1 P

Since Z is a basic solution

_S_"-T :
v Pi Zi D .

ieB
Then
EE w T T
; Pi Zi - Ph 7 o+ Ph t
i¢B
or
EE P (z - P ) t)
igB
Therefore
= T
2, = (5;" P)h,
Z,(n) = | h,

O,

T:

igB
i=h

other i

. ' *
is a solution of the generalized system for h > 0 as leng as

| % =
(8; + Pt <2,

in X or V.

for all i in Brcorrespending te vector variables

In a similar manner let P, be the column of P associated with

k

the variable vector V ° P is net in the basis, but

S e,

ieB



and ' T )
| zi-—(si Pk)k ig B
Z; (k) = § x i=k
0 other i

is a solution of the modified system for t §'O as leng as

T =
(si Pk)k — zi °

The proef of the next theorem requires twe preliminary results.

Lerma H = 2: Let Z be a basic solutien of the ggneralizéd terminal
pair system in which the pair of conjugate variable vecters (Xj, Vj)
is at breakpeint. Let

)

Z=12%(h), h >0
and

* %

Z=12(k), k>0
be the two classes of solutions formed im Theorem H - 1. Then

¥ = ¥ =T ®

(t-f)(g-g) >0

and
.0 - 0o =T=*
(f-f)(g-g) =0.

Proof: It is clear that the difference between two solutions of the
generalized &ystem is a selution of the system with its right hand

side replaced by zere.
* o= * L
AMX=-X) +e(f=£) =0
*® - * - ® -
-Q(X—X)T+AT(I-Y)T+(v-v)=o

E-_p)T+ TE-0)T -0



* - ‘ * - * - :
Multiplying these relations by (Y-Y), (X=-X) and (f - f), respec-

tively, and combining yields

NG S SN S SPNTE S LI I R

The (i, j) element of the sqﬂére'matrix T is
o X =TT ¥ -7 i ¥.T =T
1y = (@ -DD] a@ -5, « ] &)+ () @), .

The complementary slackness condition shows that the last two terms
are zero. (The only variable.vecter which was zero in 2 but non~zere
in %iis %34 However %ﬁ was assumed to be zére.) The matrix T is sym~
metric because § dis symmetfic. Let r be the index of the first non-
zere row of T (assuming T is not null). Them r is also the index of
the first nem-zero column. Since T is the product eof twe vecters, it

follews by definition that
A i o 3
T=(f-1f)(g-g) >0,

The same argument proves the second assertion.

Lemma H = 3: ILet E~be a basic solutien ef the‘generalizeq terminal
pair system and let 7

e} +*

Z=172(h), h >0

%* *
and Z=12(k), k>0

be the two classes of solutions formed in Theorem H — 1. Then
¥ = 0 =T%* ¥ =~ o =7
(f-1) (g-g) >(g-g) (£T-1) .

Preof: Iet j be the index of the"conjﬁgate variable ‘pair which is

- # .
at breakpeint for the basic selution Z. Then Gj = 0 and Ij = 0 while



15 #* * +*
X.=h>0and V., =k >0.
J J -
By manipulation similar to that used im the preof of Lemma H = 2,
ene finds
* = .0 - TP * - 9 =T
(f-f) (g-g) ~(g=-g) (f-1)

-x-%e@-1)7

* o -0 * * g - Q #* -
T T VT 7T
But V iT = O.by the complementary slacknesé condition. Alse
)
vY =0 23X
= oT
VX =0

o]
because the same columns are non~zero in V as in V and the only new

) o o]
non-zero colwm in X is Zj'but‘it wag postulated that Vj =0, In

the same manner

and

On the other hand

* * o -
V%r=VijT=khT.

Thus
(-0 G- -(- C-T=xn’ >0

verifying the assertion of the lemma.
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Theorem H — 2: Given a basic solution Z of the generalized system,-

e] ®* .
and the two classes of solutiens Z(t) and Z(t) constructed in Thee-

rem H — 1, ene of these classes has
- = %0 ‘
T+g>1(h)+gh), nko,
and the other has

¥* 3% - -. ¥
f(k) + glk) >f +g, k>0.

Proof: From the proof of Theorem H - 1 one has

#(h) =F + &n, 8=5."P
- 9 T
gh) =g+ fn, B-s"»,

¥ o = % * ey
f(k)=f+akg e:-Sf 1=’s
* - x * T

g(k) = g + Bk, =8 P .

In terms ef this notatien, lemma H = 2 states that

. * -
§nBn">0 which requires §B>0 (H = 3)

and
T

3 k E k ;‘O which requires
Alse Lemma H = 3 states that
ékﬁ-hTi‘ék&h‘?
which requires
cf>pé (H - 5)
According to this relation neither eoth & and g can be zere, nor can
both gwend §, It follews that the quantity f + g mist either increase

or decrease fer each of the two classes of general system solutiens-é—

it casnot remain fixed.
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We shall assume that

$+2>f+g for h>0 (H=6)
and show that 7
T *
f+g<f+ for k>0. ‘ (H=-17)

g
' 2] * *
Relation (H - 6) requires g+ B > 0. Suppese @ + B > 0 and we will

obtain a centradiction. Consider the product

7= (-9 &-8)

, *
which must be > O by Lemma H - 2. Substitution yields

T

; 3 +* 0. ’
Ex-8n) Br-8n)' .
* #*
Take seme sufficiently small h > O and cheese k > 0 such that

E:
a +B

*®
1 k=_1_h=t>0.
+

RO

Then-
* o ®, %o * T
T-@B-8PF) (Be-Ba)tt
* .
and relation (H - 5) shows that T < O in vielation of Lemma H = 2.
It follows that te satisfy (H = L) and (H - 5) we must have

*
a + ﬁ > 0 and (H - 7) is an immediate consequence. Similarly, assuming

0] (o # = - #*
f+g<f+g for h>0

leads to the conclusiem that

* 3* o - -
f+g>f+g for k>0-.

Theorem H — 3: Let Z be a basic solutiom of the generalized system

for which the pair of conjugate variables (Ij, Vj) is at breakpoint.
‘ o :
Then either a basic solutiem Z can be comstructed fer which

P.8-Fe3,
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er an infinite class ef selutions Z(t) can be formed in which

ft)+gt)>T+g, forall t3>0.

Proof: By Theorem H = 1 there are two classes of solutions of the
generalized system which can be constructed and Theorem H = 2 shows
that

£(t) + g(t)
is strictly dincreasing on one of these. Usirng the notation of the

proof of Theorem H -~ 1 suppese that

Z, - (8 P )%, | ig B
Z,(t) = ) ¢, i=h
0, other i

was the class for which

£(t) + gt)EF+5 for t30.

If slT P <0 for-alli in B correspending to celumns of X or V,

#*
then Z(t) 15 a se},_utiqno‘f the modified system fer all t > O.

If not, choose T so that

* : - - -
1 ‘ 1
r 'h i "h

+* +#

for each i in B for which SiT Ph > 0. Then Z = Z(t) is anether

basic solutiem dim which Ph is in the basis ard Pr is not, and

0 %

L3 # - -
f+ >‘f+gu

With these results rules-may be formulated which remove the difficulty

caused by degemeracy in the breakpeint tracimg methed. A little consideration



H-13
shows that the succession of bases and correspending basic seolutions may be
cemputed using the same recursien fqrmulae given in Chapter Five. The prob=-
lem arises in deciding which vector should be drepped from the basis:ia any
given step. It turms out that sufficient information to make’this decisien
is availsble from a basic solution of the ungeneralized system (H - 1).
Given a basic seolution Z foi the genmeralized system and the vecter Pﬁ teo

be substituted im the basis, the problem is to find r such that

; L3 ¢ V
Tl .z Tl Z, ' (H - 8)
Sr Ph Si Ph
for each i correspending te celumns of Px of Pv‘in"the basis with SiT Ph > 0.

This may be done as follews: First consider onlj the first compenents ef the

vector equatien (H - 8) and choose r such that

Zlr > et
T - T
Sr Ph Si Ph

i as above.

If there is just one such r, Pr is the vecter to be dropped from the basis.

Otherwise consider the second compement of (H - 9).

2z 2..
— > (H-9)

i as above, j = 2

Inspection of the generalized terminal pair system shows that

ZP.z..=E., =2, 3, ceo,mtm+2,

igp + 4

where Ej is the unit vector with a ome as its jth compomrenrt and remaining

components zero. Thus the quantities 3.,, j > 1 are the ceefficients of

ji’
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the expansion of the unit vectors as linear combinatiens of the basis vectors.
It fellows that these quantities are themselves the components of the basis

inverse vecters.
zijasi’j—l 5 linB’ j -2’ 3, 0coeg m+E+2

With this result (H ~ 9) becomes

S, S..
> (H - 10)

S, By 5 Py

i as in (H - 8),

and invelves only quantities available from a basic selutien of the ungene-
ralized system. ) ‘ _

If -(H - 10) provides a unique r for j = 2, then this r will .satis‘fy‘ (H=8)
and Pr* is to be dmppeq frém t,h'e basis. Otherwise apply (H - 10) with j = 3,
and se em, until alzmique r is obtained. If any tie is mot broken by the
time jJ =m +n + 2 it weuld mean that at 1ea$t twe columns of Z are prepor-
ti@nai to each other. This, howeier, is impessible as Lemma H - 1 requ:"’.res

the celumns of Z te be linearly independent.
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