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Spectral Alignment of Graphs

Soheil Feizi1, Gerald Quon2, Mariana Recamonde-Mendoza3, Muriel Médard4,

Manolis Kellis4 and Ali Jadbabaie4

Abstract

Graph alignment refers to the problem of finding a bijective mapping across vertices of two
graphs such that, if two nodes are connected in the first graph, their images are connected
in the second graph. This problem arises in many fields such as computational biology, so-
cial sciences, and computer vision and is often cast as a quadratic assignment problem (QAP).
Most standard graph alignment methods consider an optimization that maximizes the number
of matches between the two graphs, ignoring the effect of mismatches. We propose a general-
ized graph alignment formulation that considers both matches and mismatches in a standard
QAP formulation. This modification can have a major impact in aligning graphs with different
sizes and heterogenous edge densities. Moreover, we propose two methods for solving the gen-
eralized graph alignment problem based on spectral decomposition of matrices. We compare
the performance of proposed methods with some existing graph alignment algorithms including
Natalie2, GHOST, IsoRank, NetAlign, Klau’s approach as well as a semidefinite programming-
based method over various synthetic and real graph models. Our proposed method based on
simultaneous alignment of multiple eigenvectors leads to consistently good performance in dif-
ferent graph models. In particular, in the alignment of regular graph structures which is one of
the most difficult graph alignment cases, our proposed method significantly outperforms other
methods.

1 Introduction

The term graph alignment (or, network alignment) encompasses several distinct but related problem
variants [1]. In general, graph alignment aims to find a bijective mapping across two (or more)
graphs so that, if two nodes are connected in one graph, their images are also connected in the
other graph(s). If such an exact alignment scheme exists, graph alignment can be simplified to the
problem of graph isomorphism [2]. However, in general, an errorless alignment scheme may not be
feasible. In such cases, graph alignment aims to find a mapping with the minimum error and/or
the maximum overlap.

Graph alignment has a broad range of applications in systems biology, social sciences, computer
vision, and linguistics. For instance, graph alignment has been used frequently as a comparative
analysis tool in studying protein-protein interaction networks across different species [3–8]. In
computer vision, graph alignment has been used for image recognition by matching similar im-
ages [9, 10]. It has also been applied in ontology alignment to find relationships among different
representations of a database [11, 12], and in user de-anonymization to infer user/sample identifi-
cations using similarity between datasets [13].

1 Stanford University.
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3 Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
4 Massachusetts Institute of Technology (MIT).
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Figure 1: (a) An illustration of matched, mismatched, and neutral mappings for undi-
rected graphs. (b) Example graphs to illustrate the effect of considering mismatches
in the graph alignment formulation. (c) An illustration of inconsistent mappings for
directed graphs where they are matches in one direction and mismatches in the other
direction.

Here we study the graph alignment problem and make two main contributions. First, we propose
a generalized formulation for the graph alignment optimization, and secondly we develop two graph
alignment methods based on spectral decomposition of matrices. In the following we explain these
contributions.

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs where Va and Ea represent set of nodes
and edges of graph a = 1,2, respectively. By a slight abuse of notation, let G1 and G2 be their
matrix representations where for a = 1,2, Ga(i, j) = 1 iff (i, j) ∈ Ea, and Ga(i, j) = 0 otherwise.
Suppose graph a has na nodes, i.e., ∣Va∣ = na. Without loss of generality, we assume n1 ≤ n2. In the
beginning, we assume graphs are undirected (i.e., matrices G1 and G2 are symmetric). We discuss
the alignment of directed graphs, denoted by Gdir

1 and Gdir
2 , in Section 3.

Let X be an n1 × n2 binary matrix where X(i, j′) = 1 means that node i in graph 1 is mapped
(aligned) to node j′ in graph 2. The pair (i, j′) is called a mapping edge across two graphs and
is denoted by i↔ j′. In the graph alignment setup, each node in one graph can be mapped to at
most one node in the other graph, i.e., ∑iX(i, j′) ≤ 1 for all j′, and similarly ∑j′X(i, j′) ≤ 1 for all
i. We also assume that there are no unaligned nodes in the graph with fewer nodes.

Matrix X can map an edge in graph G1 to an edge in graph G2. These aligned edges are called
matches. X can map an edge in G1 to a non-existing edge in G2 and vice versa. These mapping
pairs are called mismatches. Finally, X can map a non-existing edge in G1 to a non-existing edge
in G2. These pairs are called neutrals. Figure 1-a illustrates examples of matches, mismatches, and
neutrals for simple graphs with two nodes. We have

# of matches = Tr (G1XG2X
T ) , (1.1)

# of mismatches = Tr (G1X(1 −G2)XT
+G1X(1 −G2)XT ) ,

# of neutrals = Tr ((1 −G1)X(1 −G2)XT ) ,

where 1 represents a matrix of all ones and Tr(.) is the trace operator. Most existing scalable
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graph alignment methods only consider maximizing the number of matches across two graphs
while ignoring the number of resulting mismatches. This limitation can be critical particularly in
cases where graphs have different sizes. We propose a generalized objective function for the graph
alignment optimization as follows:

max
X

s1(# of matches) + s2(# of neutrals) (1.2)

+ s3(# of mismatches),

where s1, s2, and s3 are scores assigned to matches, neutrals, and mismatches, respectively. We
assume s1 > s2 > s3. Considering s2 = s3 = 0 results in ignoring effects of mismatches and neutrals.
Substituting (1.1) in (1.2), we have the following equivalent optimization:

max
X

Tr (G1XG2X
T ) − γ (Tr (G1X1XT ) + Tr (1XG2X

T )) , (1.3)

where γ = (s2 − s3)/(s1 + s2 − 2s3) is the regularization parameter. Note 0 ≤ γ < 1/2. If s2 = s3 = 0,
γ = 0, while if s2 → s1 or s3 → −∞, γ → 1/2. If n1 = n2, Tr (G1X1XT ) and Tr (1XG2X

T ) are
equal to the number of edges in graphs G1 and G2, respectively. Thus these terms do not depend
on X. However, if the number of nodes in G1 and G2 are different (say n1 < n2), Tr (1XG2X

T )
depends on X. Therefore, the regularization parameter γ plays a role when the number of nodes in
G1 and G2 are different. Note that in solving relaxations or approximations of optimization (1.3)
when X is no longer a permutation, γ can have an effect even for the same size graphs.

To illustrate the effect of the regularization parameter, consider example graphs G1 and G2

illustrated in Figure 1-b. Let X1 and X2 be mapping matrices that align nodes of G1 to left and
right subgraphs of G2, respectively. The number of matches and mismatches caused by X1 are 8
and 7, respectively. The number of matches and mismatches caused by X2 are 7 and 1, respectively.
If we ignore the effect of mismatches (i.e., γ = 0 in (1.3)), X1 leads to a larger graph alignment
objective value compared to X2. However, if γ > 1/6, X2 leads to a larger objective value compared
to X1. Note that maximizing matches while ignoring mismatches favors parts of the larger graph
with a higher edge density.

It is important to note that the notion of mismatches has been considered in other alignment
frameworks as well. For example [10] considers aligning two images (modeled as graphs) knowing a
pairwise similarity measure between nodes of the two graphs. Reference [10] uses mismatch terms
(ignoring matches) to incorporate relational structure terms in the alignment optimization. Our
generalized graph alignment optimization (1.3) does not require having a similarity matrix between
nodes of the two graphs and uses both match and mismatch information to compute the alignment
matrix.

The objective function of optimization (1.3) is not in the standard form of a quadratic assign-
ment problem (QAP) since it has three terms. It is straightforward to show that the following
optimization is an equivalent formulation:

max
X

Tr ((G1 − γ1)X(G2 − γ1)XT ) . (1.4)

This optimization is a standard QAP [14] which is computationally challenging to solve. In the
next section we explain our algorithmic contributions to compute a solution for this optimization
based on spectral decomposition of functions of adjacency matrices.
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Reference [15] shows that approximating a solution of maximum quadratic assignment problem

within a factor better than 2log
1−ǫ n is in general not feasible in polynomial time. However, owing

to numerous applications of QAP in different areas, several algorithms have been designed to solve
it approximately. Some methods use exact search approaches based on branch-and-bound [16] and
cutting plane [17]. These methods can only be applied to very small problem instances owing
to their high computational complexity. Some methods attempt to solve the underlying QAP
by linearizing the quadratic term and transforming the optimization into a mixed integer linear
program (MILP) [18–21]. In practice the very large number of introduced variables and constraints
in linearization of the QAP objective function poses an obstacle for solving the resulting MILP
efficiently. Some methods use convex relaxations of the QAP to compute a bound on its optimal
value [22–26]. The solutions provided by these methods may not be a feasible solution for the
original quadratic assignment problem. Other methods to solve the graph alignment optimization
include semidefinite [26,27], non-convex [28], or Lagrangian [29–31] relaxations, Bayesian inference
[32], message passing [33] or other heuristics [3, 4, 6, 34–38]. We will review these methods in
Section 2. For more details about these methods, we refer readers to references [14, 39, 40]. In
particular [40] provides a recent review of graph alignment methods by distinguishing between
methods for deterministic and random graphs.

Spectral inference methods have received significant attention in problems such as graph clus-
tering [41–45] where the underlying mixed integer program is tightly approximated with an opti-
mization whose optimizers can be computed efficiently. However, the use of spectral techniques
in the graph alignment problem has been limited [3, 4, 34, 35, 46, 47], partially owing to difficulty
in connecting existing spectral graph alignment methods with relaxations of the underlying QAP.
For example, [3] computes an alignment across biological networks using the top eigenvector of a
graph which encodes neighborhood similarities. Reference [46] uses a spectral relaxation of QAP
to compute a probabilistic subgraph matching when the number of nodes of graphs are the same,
while [47] uses a heuristic multi-scale spectral signature of graphs to compute an alignment across
them.

In this paper, we propose two spectral algorithms for solving the graph alignment optimization
(1.4), namely EigenAlign (EA), and LowRankAlign (LRA):

1. EigenAlign (EA) computes the leading eigenvector of a function of adjacency matrices
followed by a maximum weight bipartite matching optimization. EigenAlign can be applied to both
directed and undirected graphs. We prove that for Erdős-Rényi graphs [48] and under some general
conditions, EigenAlign is mean-field optimal 1.

2. LowRankAlign (LRA) solves the graph alignment optimization by simultaneous align-
ment of eigenvectors of (transformations of) adjacency graphs, scaled by corresponding eigenvalues.
LRA considers undirected graphs. LRA first solves the orthogonal relaxation of the underlying QAP
using eigen decomposition of matrices. Then, it employs a rounding step as a projection in the
direction of top eigenvectors of input matrices. We provide a bound on the performance of this
projection step based on eigenvalues of input matrices and the orthogonal relaxation gap. Note
that this rounding step is different than previously studied orthogonal projection, which has been
shown to have a poor performance in practice [46].

1Finding an isomorphic mapping across asymptotically large Erdős-Rényi graphs is a well studied problem and can
be solved efficiently through canonical labeling [49]. Moreover Laszlo Babai has recently outlined his proof that
the computational complexity of the general graph isomorphism problem is Quasipolynomial [50]. Note that in the
graph alignment setup input graphs do not need to be isomorphic.
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Through analytical performance characterization, simulations on several synthetic graphs, and
real-data analysis, we show that our proposed graph alignment methods lead to improved perfor-
mance compared to some existing graph alignment methods. Note that our proposed generalized
graph alignment framework can also be adapted to some existing graph alignment packages. How-
ever, exploring this direction is beyond the scope of this article.

The rest of the paper is organized as follows. In Section 2, we review some existing graph align-
ment techniques and explain the relationship between graph alignment and graph isomorphisim. In
Section 3, we introduce the EigenAlign Algorithm and discuss its relationship with the underlying
quadratic assignment problem. Moreover, we present the mean-field optimality of this method over
random graphs, under some general conditions. In Section 4, we consider the trace formulation of
the graph alignment optimization and introduce LowRankAlign. In Section 5, we compare perfor-
mance of our method with some existing graph alignment methods over different synthetic graph
structures. In Section 6, we use our graph alignment methods in comparative analysis of gene
regulatory networks across different species.

2 Review of Prior Work

Graph alignment problem (1.4) is an example of a QAP [14]. In the following we briefly summarize
previous works by categorizing them into four groups and explain advantages and shortcomings of
each. For more details on these methods we refer readers to references [14,39,51].

1. Exact search methods: These methods provide a globally optimal solution for QAP.
Examples of exact algorithms include methods based on branch-and-bound [16] and cutting plane
[17]. Owing to their high computational complexity, they can only be applied to very small problem
instances.

2. Linearizations: These methods attempt to solve QAP by eliminating the quadratic term
in the objective function, transforming it into a mixed integer linear program (MILP). An existing
MILP solver is applied to find a solution for the relaxed problem. Examples of these methods are
Lawlers linearization [18], Kaufmann and Broeckx linearization [19], Frieze and Yadegar lineariza-
tion [20], and Adams and Johnson linearization [21]. These linearizations can provide bounds on
the optimal value of the underlying QAP [15]. Moreover [29–31] use Lagrangian relaxations to
compute a solution for the QAP. In general, linearization of the QAP objective function is achieved
by introducing many new variables and new linear constraints. In practice, the very large number
of introduced variables and constraints poses an obstacle for solving the resulting MILP efficiently.

3. Semidefinite/convex relaxations: These methods aim to compute a bound on the
optimal value of the graph alignment optimization by considering the alignment matrix in the
intersection of orthogonal and stochastic matrices. The provided solution by these methods may
not be a feasible solution for the original quadratic assignment problem. Examples of these methods
include orthogonal relaxations [22], projected eigenvalue bounds [23], convex relaxations [24–26],
and matrix splittings [27]. In particular, [27] introduces a convex relaxation of the underlying graph
alignment optimization based on matrix splitting which provides bounds on the optimal value of
the underlying QAP. The proposed semidefinite programming (SDP) method provides a bound on
the optimal value and additional steps are required to derive a feasible solution. Moreover, owing
to its computational complexity, it can only be used to align small graphs [27].

In the computer vision literature, [34, 35] use spectral techniques to solve QAP approximately
by inferring a cluster of assignments over the feature graph. Then, they use a greedy approach
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to reject assignments with low associations. Similarly, [46] uses a spectral relaxation of QAP to
compute a probabilistic subgraph matching across images when the size of graphs are the same,
while [47] uses a heuristic multi-scale spectral signature of graphs to compute an alignment across
them.

4. Other methods: There are several other techniques to solve graph alignment optimization
approximately. Some methods use Bayesian framework [32], or message passing [33], or some
other heuristics [3, 4, 6]. In Section 5, we assess the performance of some of these graph alignment
techniques through simulations.

Some graph alignment formulations aim to align paths [7] or subgraphs [8,52,53] across two (or
multiple) graphs. The objective of these methods is different from the one of our graph alignment
optimization where a bijective mapping across nodes of two graphs is desired according to a QAP.
However solutions of these different methods may be related. For instance a bijective mapping
across nodes of two graphs can provide information about conserved pathways and/or subgraphs
across graphs, and vice versa.

The graph alignment formulation of (1.4) uses the structure of input graphs to find an alignment
across their nodes. In practice, however, some other side information may be available such as node-
node similarities. One way to incorporate such information in the formulation of (1.4) is to restrict
the alignment across nodes of the two graphs whose similarities are greater than a threshold. This
can be done by adding additional constraints to (1.4). We will explain this in more detail in Section
3.

2.1 Graph Alignment and Graph Isomorphism

The graph alignment optimization (1.3) is closely related to the problem of graph isomorphism
defined as follows:

Definition 1 (Graph Isomorphism) Let G1 = (V1,E1) and G2 = (V2,E2) be two binary graphs.
G1 and G2 are isomorphic if there exists a permutation matrix P such that G1 = PG2P

T .

The computational problem of determining whether two finite graphs are isomorphic is called
the graph isomorphism problem. Moreover given two isomorphic graphs G1 and G2, in the graph
isomorphism problem one aims to find the permutation matrix P such that G1 = PG2P

T . The
computational complexity of this problem is unknown [54].

In the following lemma we formalize a connection between the graph alignment optimization
and the classical graph isomorphism problem:

Lemma 1 Let G1 and G2 be two isomorphic Erdős-Rényi graphs [48] such that Pr[G1(i, j) = 1] = p
and G2 = PG1P

T , where P is a permutation matrix. Let p ≠ 0,1. Then, for any selection of scores
s1 > s2 > s3 > 0, P maximizes the expected graph alignment objective function of Optimization (3.4).
The expectation is over different realizations of G1 and G2.

Proof The proof is presented in Section 9.1.

The result of Lemma 1 can be extended to the case where edges of graphs are flipped through
a random noise matrix:

Lemma 2 Let G1 be an Erdős-Rényi graph such that Pr[G1(i, j) = 1] = p. Let G̃1 be a graph
resulting from flipping edges of G1 independently and randomly with probability q. Suppose G2 =
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PG̃1P
T where P is a permutation matrix. Let 0 < p < 1/2 and 0 ≤ q < 1/2. Then, for any selection of

scores s1 > s2 > s3 > 0, P maximizes the expected graph alignment objective function of Optimization
(1.3). The expectation is over different realizations of G1 and G2.

Proof The proof is presented in Section 9.1.

Finding an isomorphic mapping across sufficiently large Erdős-Rényi graphs can be done effi-
ciently with high probability (w.h.p.) through canonical labeling [49]. Canonical labeling of a graph
consists of assigning a unique label to each vertex such that labels are invariant under isomorphism.
The graph isomorphism problem can then be solved efficiently by mappings nodes with the same
canonical labels to each other [55]. One example of canonical labeling is the degree neighborhood of
a vertex defined as a sorted list of neighborhood degrees of vertices [49]. Note that graph alignment
formulation is more general than the one of graph isomorphism: graph alignment aims to find an
optimal mappings across two graphs which are not necessarily isomorphic.

3 EigenAlign Algorithm

3.1 Problem Formulation and Notation

Let y be a vectorized version of X. That is, y is a vector of length n1n2 where, y(i + (j′ − 1)n1) =
X(i, j′). To simplify notation, define yi,j′ ≜ X(i, j′). Two mappings (i, j′) and (r, s′) can be
matches which cause overlaps, can be mismatches which cause errors, or can be neutrals (Figure
1-a).

Definition 2 Suppose G1 = (V1,E1) and G2 = (V2,E2) are undirected graphs. Let {i, r} ⊆ V1 and{j′, s′} ⊆ V2 where X(i, j′) = 1 and X(r, s′) = 1. Then,

- (i, j′) and (r, s′) are matches if (i, r) ∈ E1 and (j′, s′) ∈ E2.

- (i, j′) and (r, s′) are mismatches if only one of the edges (i, r) and (j′, s′) exists.
- (i, j′) and (r, s′) are neutrals if none of the edges (i, r) and (j′, s′) exists.
Definition 2 can be extended to the case where G1 and G2 are directed graphs. In this case

mappings (i, j′) and (r, s′) are matches/mismatches if they are matches/mismatches in one of the
possible directions. However it is possible to have these mappings be matches in one direction
while they are mismatches in the other direction (Figure 1-c). These mappings are denoted as
inconsistent mappings, defined as follows:

Definition 3 Let G1 = (V1,E1) and G2 = (V2,E2) be two directed graphs and {i, r} ⊆ V1 and{j′, s′} ⊆ V2 where X(i, j′) = 1 and X(r, s′) = 1. If edges i → r, r → i, and j′ → s′ exist, however,
s′ → j′ does not exist, then mappings (i, j′) and (r, s′) are inconsistent.

Consider two undirected graphs G1 = (V1,E1) and G2 = (V2,E2). We form an alignment graph
represented by adjacency matrix A in which nodes are mapping edges across the original graphs,
and the edges capture whether the pair of mapping edges are matches, mismatches or neutrals
(Figure 2).
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Definition 4 Let {i, r} ⊆ V1 and {j′, s′} ⊆ V2 where X(i, j′) = 1 and X(r, s′) = 1.

A[(i, j′), (r, s′)] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1, if (i, j′) and (r, s′) are matches,

s2, if (i, j′) and (r, s′) are neutrals,

s3, if (i, j′) and (r, s′) are mismatches,

(3.1)

where s1, s2, and s3 are scores assigned to matches, neutrals, and mismatches, respectively. Without
loss of generality we assume s1 > s2 > s3 > 0.

We can re-write (3.1) as follows:

A[(i, j′), (r, s′)] =(s1 + s2 − 2s3)G1(i, r)G2(j′, s′) (3.2)

+ (s3 − s2)(G1(i, r) +G2(j′, s′)) + s2.
We can summarize (3.1) and (3.2) as follows:

A =(s1 + s2 − 2s3)(G1 ⊗G2) + (s3 − s2)(G1 ⊗ 1n2
) (3.3)

+ (s3 − s2)(1n1
⊗G2) + s2(1n1

⊗ 1n2
),

where ⊗ represents matrix Kronecker product, and 1n is an n × n matrix whose elements are all
ones.

A similar scoring scheme can be used for directed graphs. When graphs are directed, some map-
pings can be inconsistent according to Definition 3, i.e., they are matches in one direction and mis-
matches in another. Scores of inconsistent mappings can be assigned randomly to matched/mismatched
scores, or to an average score of matches and mismatches (i.e., (s1 + s3)/2). For random graphs,
inconsistent mappings are rare events. For example, suppose graph edges are distributed accord-
ing to a Bernoulli distribution with parameter p. Then, the probability of having an inconsistent
mapping for a particular pair of paired nodes across graphs is equal to 4p3(1 − p). Therefore, their
effect in graph alignment is negligible, particularly for large sparse graphs. Throughout the paper,
for directed graphs we assume inconsistent mappings have negligible effect, unless we mention the
importance of such inconsistency explicitly.

In practice some mapping edges across two graphs may not be possible, owing to additional side
information. The set of possible mapping edges across two graphs is denoted by R = {(i, j′) ∶ i ∈
V1, j

′ ∈ V2}. If R = V1×V2, the problem of graph alignment is called unrestricted. If some mappings
across two graphs are prevented (i.e., X(i, j′) = yi,j′ = 0, for (i, j′) ∉R), then the problem of graph
alignment is called restricted.

Using the vectorized version of X, the graph alignment optimization (1.2) can be written as
follows:

max
y

yTAy, (3.4)

∑
i

yi,j′ ≤ 1, ∀i ∈ V1,

∑
j′
yi,j′ ≤ 1, ∀j′ ∈ V2,

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2,

yi,j′ = 0, ∀(i, j′) ∉R,
where A is defined according to (3.2) and R ⊆ V1 × V2 is the set of possible mapping edges across
two graphs.
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Figure 2: The Framework of EigenAlign algorithm 1.

3.2 EigenAlign Algorithm

We now introduce EigenAlign (EA) algorithm which computes a solution for the graph alignment
optimization (3.4) leveraging spectral properties of graphs:

Algorithm 1 (EigenAlign Algorithm) Let G1 = (V1,E1) and G2 = (V2,E2) be two binary
graphs whose corresponding alignment graph is denoted by A according to (3.2). EigenAlign al-
gorithm solves the graph alignment optimization (3.4) in two steps:

Step 1, An Eigenvector Computation Step: In this step we compute v, an eigenvector of
the alignment graph A with the maximum eigenvalue.

Step 2, A Linear Assignment Step: In this step we solve the following maximum weight
bipartite matching optimization:

max
y

vTy, (3.5)

∑
j′
yi,j′ ≤ 1, ∀i ∈ V1,

∑
i

yi,j′ ≤ 1, ∀j′ ∈ V2,

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2,

yi,j′ = 0, ∀(i, j′) ∉R.
Algorithm 1 can be extended to directed graphsGdir

1 and Gdir
2 as well. This framework is depicted in

Figure 2. Below we provide intuition on different steps of the EigenAlign algorithm. For simplicity
we assume all mappings across graphs are possible (i.e., R = {(i, j′) ∶ ∀i ∈ V1,∀j

′ ∈ V2}). In the
restricted graph alignment setup, without loss of generality, one can eliminate rows and columns
of the alignment matrix corresponding to mappings that are not allowed.

In the eigen decomposition step of EigenAlign, we ignore bijective constraints (i.e., constraints

∑i yi,j′ ≤ 1 and ∑j′ yi,j′ ≤ 1) because they will be satisfied in the second step of the algorithm
through a linear optimization. Under these assumptions Optimization (3.4) can be simplified to
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the following optimization:

max
y

yTAy, (3.6)

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2.

To approximate a solution of this optimization, we replace integer constraints with constraints over
a hyper-sphere restricted by hyper-planes (i.e., ∥y∥2 ≤ 1 and y ≥ 0). Thus, optimization (3.6) is
simplified to the following:

max
y

yTAy, (3.7)

∥y∥2 ≤ 1,
y ≥ 0.

In the following, we show that v, the leading eigenvector of the alignment matrix A, is an optimal
solution of Optimization (3.7). Suppose y1 is an optimal solution of Optimization (3.7). Let y2 be
a solution of the following optimization without non-negativity constraints:

max
y

yTAy, (3.8)

∥y∥2 ≤ 1.
Following the Rayleigh-Ritz formula [56], the leading eigenvector of the alignment matrix is an
optimal solution of Optimization (3.8) (i.e., y2 = v). Now we use the following theorem to show
that in fact y1 = v:

Theorem 1 Suppose A is a matrix whose elements are strictly positive. Let v be an eigenvector of
A corresponding to the largest eigenvalue. Then, ∀i, vi > 0. Moreover, all other eigenvectors must
have at least one negative, or non-real component.

Proof See e.g., reference [57] (Theorem 1).

Since y2 is a solution of Optimization (3.8), we have yT
2 Ay2 ≥ yT

1 Ay1. Using this inequality
along with the Perron-Frobenius Theorem lead to y1 = v, as the unique solution of optimization
(3.7).

The solution of the eigen decomposition step assigns weights to all possible mapping edges
across graphs ignoring bijective constraints (constraints ∑j′ yi,j′ ≤ 1 and ∑i yi,j′ ≤ 1). However, in
the graph alignment setup, each node in one graph can be mapped to at most one node in the other
graph. To satisfy these constraints, we use eigenvector weights in a linear optimization framework
of maximum weight bipartite matching setup of Optimization (3.5) [58].

3.3 Computational Complexity of EigenAlign

Let the number of nodes of graphs G1 and G2 be O(n). Let k = ∣R∣ be the number of possible
mappings across two graphs. In an unrestricted graph alignment setup, we have k = O(n2). How-
ever, in a restricted graph alignment, k may be significantly smaller than n2. EigenAlign has three
steps:

(i) Forming an alignment graph A that has a computational complexity of O(k2), as all pairs
of possible mappings should be considered.
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(ii) An eigen decomposition step where we compute the leading eigenvector of the alignment
graph. This operation can be performed in O(k2) computational complexity using QR algorithms
and/or power methods [59]. Therefore, the worst case computational complexity of this part is
O(k2).

(iii) A maximum weight bipartite matching algorithm step, that can be solved efficiently using
linear programming or the Hungarian algorithm [58]. The worst case computational complexity of
this step is O(n3). If the set R has a specific structure (e.g., small subsets of nodes in one graph
are allowed to be mapped to small subsets of nodes in the other graph), this cost can be reduced
significantly.

Proposition 1 The worst case computational complexity of the EigenAlign Algorithm is O(k2 +
n3).
Remark 1 For large graphs, to reduce the overall computational complexity, the linear assignment
optimization may be replaced by a greedy bipartite matching algorithm (e.g., [60]). In the greedy
matching approach, at each step, the heaviest possible mapping is added to the current matching
until no further mappings can be added. It is straightforward to show that this greedy algorithm
finds a bipartite matching whose weight is at least half the optimum. The computational complexity
of this greedy algorithm is O(k log(k) + nk).

If we only consider matches in the graph alignment optimization (i.e., s2 = s3 = 0 in (1.2)),
the complexity of the eigen decomposition step can be reduced, since we need to compute top
eigenvectors of sparse adjacency matrices. By considering mismatches, eigenvector computation
should be performed over dense matrices, which require a higher computational complexity.

3.4 Mean-field Optimality of EigenAlign Over Erdős-Rényi Graphs

Here we analyze the performance of the EigenAlign algorithm over Erdős-Rényi graphs, for both
isomorphic and non-isomorphic cases, under two different noise models. While real graphs often
have different structures than Erdős-Rényi graphs, we consider this family of graphs in this section
owing to their analytical tractability.

Suppose G1 = (V1,E1) is an undirected Erdős-Rényi graph with n nodes where Pr[G1(i, j) =
1] = p for 1 ≤ i, j ≤ n. Suppose G̃ is a noisy version of the graph G1. We consider two different noise
models in this section:

Noise Model I: In this model we have,

G̃1 ≜ G1 ⊙ (1 −Q) + (1 −G1)⊙Q, (3.9)

where ⊙ represents the Hadamard product, 1 is the matrix of all ones, and Q is a binary symmetric
random matrix whose edges are drawn i.i.d. from a Bernoulli distribution with Pr[Q(i, j) = 1] = pe.
In words, the operation G1 ⊙ (1 − Q) + (1 − G1) ⊙ Q flips edges of G1 uniformly randomly with
probability pe.

Noise Model II: In this model we have,

G̃1 ≜ G1 ⊙ (1 −Q) + (1 −G1)⊙Q′, (3.10)

where Q and Q′ are binary symmetric random matrices whose edges are drawn i.i.d. from a
Bernoulli distribution with Pr[Q(i, j) = 1] = pe and Pr[Q′(i, j) = 1] = pe2 . Under this model,
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edges of G1 flip uniformly randomly with probability pe, while non-connecting tuples in G1 will
be connected in G̃1 with probability pe2 . Because G1 is an Erdős-Rényi graph with parameter p,
choosing

pe2 =
ppe

1 − p
, (3.11)

leads to having the expected density of graphs G1 and G2 be equal to p.
Using either model I (3.9) or model II (3.10) for G̃1, we define G2 as follows:

G2 ≜ PG̃1P
T , (3.12)

where P is a permutation matrix. Recall that R is the set of possible mapping edges across graphs
G1 and G2. Throughout this section, we assume that we are in the restricted graph alignment
regime where ∣R∣ = kn for k > 1. The n true mapping edges (i ↔ i′ if P = I) are included in R,
while the remaining (k − 1)n mappings are selected uniformly randomly.

Let Strue be the set of true mapping edges between G1 and G2, i.e., Strue ≜ {(i, j) ∶ P (i, j) = 1}.
We define Sfalse =R−Strue as the set of incorrect mapping edges between the two graphs. Moreover,
we choose scores assigned to matches, neutrals and mismatches as s1 = α + ǫ, s2 = 1 + ǫ and s3 = ǫ,
respectively, where α > 1 and 0 < ǫ ≪ 1. These selections satisfy score conditions s1 > s2 > s3 > 0
and lead to the regularization parameter γ = 1/(1 + α) in (1.3).

Theorem 2 Let A be the alignment graph between G1 and G2 as defined in (3.2) with s1 = α + ǫ,
s2 = 1 + ǫ and s3 = ǫ. Let v be the eigenvector of E[A] corresponding to the largest eigenvalue,
where the expectation is over realizations of G1, G2 and R. Then, under both noise models (3.9)
and (3.10), if 0 < p < 1/2, and 0 ≤ pe < 1/2, as n→∞,

v(t1) > v(t2), ∀t1 ∈ Strue and ∀t2 ∈ Sfalse.

In noise models (3.9) and (3.10), if we put pe = 0, then G2 is isomorphic with G1 because
there exists a permutation matrix P such that G2 = PG1P

T . For this case, we have the following
Corollary:

Corollary 1 Let G1 and G2 be two isomorphic Erdős-Rényi graphs with n nodes such that G1 =
PG2P

T , where P is a permutation matrix. Under the conditions of Theorem 2, as n→∞, v(t1) >
v(t2) where where v is the top eigenvector of the expected alignment graph, t1 is a true mapping
edge and t2 is a false mapping edge between the two graphs.

We present proofs of Theorem 2 and Corollary 1 in Sections 9.2 and 9.3.
In the EigenAlign algorithm, we use values of the top eigenvector of the alignment graph in a

maximum weight bipartite matching optimization to extract bijective mappings between the two
graphs. Thus, if true mapping edges obtained higher eigenvector scores compared to the false
one, the EigenAlign algorithm would infer optimal mappings between the two graphs. Theorem
2 indicates that, in an expectation sense, true mapping edges obtain larger eigenvector scores
compared to the false ones when ∣R∣ = kn. In Section 5 and through simulations, we show that
the error of the EigenAlign algorithm is empirically small even in an unrestricted graph alignment
setup.
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4 LowRankAlign Algorithm

In this section, we introduce a graph alignment algorithm that uses higher-order eigenvectors of
(transformations of) adjacency graphs to align their structures. We refer to this extension as
LowRankAlign (LRA). LRA can be useful specially in cases where leading eigenvectors of graphs
are not informative. This case occurs for instance in the alignment of regular graph structures.
Moreover, LRA does not require an explicit formation of the alignment graph which can be costly
for large graphs if all mappings across graphs are possible.

Higher order eigenvectors have been used in other spectral inference problems such as graph
clustering [41–45] and the matrix coupling [61, 62]. Moreover reference [63] has used higher order
eigenvectors of the graph Laplacian to embed large graphs on a low-dimensional isometric space
to compute an inexact matching. Our goal in this section is to provide a principled framework to
exploit higher order eigenvectors in the graph alignment problem.

Here we assume graphs are symmetric. For simplicity we assume n1 = n2 = n. All discussions
can be extended to the case where n1 ≠ n2. Moreover, to simplify analysis, we assume singular
values of matrices have multiplicity of one. Let ⊓ be the set of all permutation matrices of size
n × n. Thus, the graph alignment optimization can be written as follows 2:

max Tr(G1XG2X
T ), (4.1)

X ∈ ⊓.
Let X∗ be an optimal solution of optimization (4.1). Finding an optimal solution of this optimiza-
tion is known to be NP-hard [15]. If X ∈ ⊓, we have

Tr(G1XG2X
T ) = Tr((G1 + δ1I)X(G2 + δ2I)XT ) + constant. (4.2)

In other words we can add and subtract multiples of identity to make the resulting symmetric
matrices positive definite, without changing the structure of the problem. Thus, without loss of
generality, we assume that matrices G1 and G2 are positive semi-definite.

We compute a solution for Optimization (4.1) in two steps:
(i) The Relaxation Step: First, we compute a solution X0 to a relaxation of Optimization

(4.1) over orthogonal matrices. Other relaxations can be considered as well. X0 may not be a valid
permutation matrix.

(ii) The Rounding Step: We propose a rounding step using projection in the direction of
eigenvectors of (transformations of) adjacency graphs scaled by their corresponding eigenvalues.

Below we explain these steps with more details:
The Relaxation step: Let Γ be a set that contains all permutation matrices (i.e., ⊓ ⊆ Γ). An

example of Γ is the set of orthogonal matrices. Let X0 be a solution of the following optimization:

max Tr(G1XG2X
T ), (4.3)

X ∈ Γ.

If Γ is assumed to be the set of orthogonal matrices (i.e., Γ = O), an optimal solution of
optimization (4.3) can be found using eigen decomposition of matrices G1 and G2 as follows:

2To consider the generalized graph alignment formulation of (1.4), one can replace G1 and G2 with G1 − γ1 and
G2 − γ1 in (4.1), respectively.
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Theorem 3 Suppose vi and ui are eigenvectors of symmetric matrices G1 and G2, respectively.
Let V and U be eigenvector matrices whose i-th columns are vi and ui, respectively. Then,

X0 = V UT =
n

∑
i=1

viu
T
i , (4.4)

is an optimal solution of optimization (4.3) over orthogonal matrices (i.e., Γ = O).

Proof See Section 6.1 of reference [22].

Theorem 3 characterizes an optimal solution of the orthogonal relaxation of the graph alignment
optimization. A similar argument can be constructed for eigenvectors of the matrix G2. Let

X0 ≜ {X0 ∶X0 =
n

∑
i=1

siviu
T
i , s ∈ {−1,1}n}, (4.5)

where si is the i-th component of the vector s. The set X0 represents multiple optimal solutions
of optimization (4.3) when Γ = O. It is because if v is an eigenvector of a matrix corresponding to
the eigenvalue λ, −v is also an eigenvector of the same matrix with the same eigenvalue. X0 can
have at most 2n distinct members.

The Rounding step: X0 may not be a valid permutation matrix. One way to find a permu-
tation matrix using X0 is to project X0 over the space of permutation matrices ⊓:

max Tr(XXT
0 ), (4.6)

X ∈ ⊓.
However, it has been shown that an optimal solution of optimization (4.6) has a poor performance
in practice [64]. In the following, we propose an alternative algorithm to compute a permutation
matrix using X0 with a certain performance guarantee. Consider the following optimization:

max Tr(G1X0G2X
T ), (4.7)

X ∈ ⊓,
X0 ∈ X0.

For a fixed X0, this is a maximum weight bipartite matching optimization which can be solved
exactly using linear programming. Let X∗lin be an optimal solution of optimization (4.7). Define

f(X) ≜ Tr(G1XG2X
T ), (4.8)

f̃(X) ≜ Tr(G1X0G2X
T
0 ) + 2Tr(G1X0G2(X −X0)T ).

Theorem 4 Let X∗ and X∗lin be optimal solutions of optimizations (4.1) and (4.7), respectively.
We have,

∣f(X∗) − f̃(X∗lin)∣ ≤ ǫ2
n

∑
i=1

σi(G1)σi(G2), (4.9)

where σi(Ga) represents the i-th largest singular value of matrix Ga, for a = 1,2, and ǫ is a bound on
the relaxation gap (i.e., minX0∈X0

∥X∗ −X0∥op ≤ ǫ). Note that ∥.∥op indicates the matrix operator
norm.
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Proof See Section 9.4.

Optimization (4.7) can be simplified to the following optimization which finds a valid permu-
tation matrix using the orthogonal relaxation of the graph alignment optimization:

max Tr(( n

∑
i=1

λi(G1)λi(G2)siviuTi )XT ), (4.10)

X ∈ ⊓,
s ∈ {−1,1}n,

where λi(Ga) is the i-th largest eigenvalue of Ga for a = 1,2. The objective function of optimization
(4.10) simplifies the graph alignment problem to the simultaneous alignment of eigenvectors whose
contributions in the overall alignment score are weighed by their corresponding eigenvalues. How-
ever, there are possibly exponentially many optimal solutions for optimization (4.10) and obtaining
their resulting permutation matrices would be computationally infeasible. Because contributions
of eigenvectors with small eigenvalues to the objective function of optimization (4.10) are small,
one can instead as a heuristic, presumably solve the following optimization based on the low rank
approximation of the objective function:

Algorithm 2 (LowRankAlign Algorithm) The following optimization summarizes the LRA
algorithm:

max Tr(( k

∑
i=1

siλi(G1)λi(G2)viuTi )XT ), (4.11)

X ∈ ⊓,
si ∈ {−1,1}, ∀1 ≤ i ≤ k.

where k is a constant that determines the rank of the affinity matrix.

In the restricted graph alignment setup, some mapping edges across two graphs may not be
allowed. In that case, one can set the affinity weights (i.e., weights used in the maximum weight
bipartite matching step) of such pairs in optimization (4.11) to be −∞.

5 Performance Evaluation Over Synthetic Graphs

Here we compare the performance of the proposed graph alignment algorithms (LRA and EA)
against some other graph alignment methods including Natalie2 [30,31], GHOST [47], IsoRank [3],
NetAlign [33], Klau’s approach [29] as well as an SDP-based method [27] through simulations. Na-
talie2 and Klau’s approach use Lagrange multipliers to relax the underlying quadratic assignment
problem. IsoRank is a global graph alignment method that uses an iterative approach to align
nodes across two graphs based on their neighborhood similarities, while GHOST uses a heuristic
multi-scale spectral signature of graphs to compute an alignment across them. NetAlign formu-
lates the alignment problem in a quadratic optimization framework and uses message passing to
approximately solve it. The SDP-based method [27] uses a convex relaxation of the underlying
QAP based on matrix splitting. In our simulations, we use default parameters of these methods.

We report the performance of proposed EigenAlign (EA) and LowRankAlign (LRA) Algorithms
for γ ∈ {0,0.1,0.2,0.3, 0.4, 0.5 − ǫ} where ǫ = 0.001. In general, this parameter can be tuned in
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Figure 3: Performance evaluation of different graph alignment methods over (a)
stochastic block models, (b) isomorphic Erdős-Rényi graphs, (c) isomorphic random
regular graphs, and (d) noisy power law graphs. Experiments have been repeated 10
times in each case. For each method the average number of matches and mismatches
have been shown. The high-match low-mismatch area has been highlighted by red
shades.

different applications using standard machine learning techniques such as cross validations [65].
For LRA we use top k = 3 eigenvectors of input graphs as larger values of k did not have a
significant effect on the results. We consider four different setups:

- G1 is an Erdős-Rényi graph with n1 = 25 nodes and the density parameter 0.1. G2 is a
stochastic block model with two blocks each with 25 nodes (i.e., n2 = 50). Edge densities
within blocks are 0.1 and 0.3, and the edge density across blocks is 0.05.

- G1 and G2 are isomorphic Erdős-Rényi graphs with n1 = n2 = 50 nodes with an edge density
0.1.

- G1 and G2 are isomorphic random regular graphs with n1 = n2 = 50 nodes whose edge density
parameters are 0.1.

- G1 is a power law graph [66] constructed as follows: we start with a random subgraph with
5 nodes. At each iteration, a node is added to the graph connecting to three existing nodes
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Figure 4: Performance evaluation of different graph alignment methods over (a)
human-fly and (b) human-worm gene regulatory graphs. The high-match low-
mismatch area has been highlighted by red shades.

with probabilities proportional to their degrees. This process is repeated till the number of
nodes in the graph is equal to n1 = 50. Then we construct G2 according to the noise model
(3.10) with pe = 0.05. In (3.10) we use the density of G1 as parameter p.

Figure 3 shows the number of matches and mismatches caused by different graph alignment
methods in four considered setups for an unrestricted graph alignment problem. In the stochastic
block model case (panel a) LRA outperforms other methods in terms of resulting in large number
of matches and few mismatches. Since LRA with γ = 0 ignores the effect of mismatches, it results in
a slightly larger number of matches compared to the case with γ ≠ 0. At the same time LRA with
γ = 0 results in a larger number of mismatches compared to the case with γ ≠ 0. This highlights the
effect of considering mismatches in the generalized graph alignment formulation (1.3) when graphs
have different sizes and heterogenous edge densities.

Over isomorphic Erdős-Rényi graphs (panel b), EA, LRA, Isorank, SDP and Natalie2 have the
best performance of achieving the highest number of matches and zero mismatches. Netalign, Klau
and GHOST have poor performances in this case. Note that some of these methods are designed
for very sparse graphs and for the restricted graph alignment setup. This may partially explain the
poor performance of these methods.

Over isomorphic random graphs (panel c) LRA outperforms other methods achieving the highest
number of matches and zero mismatches. The performance of LRA is also robust against parameter
γ. Note that the alignment of regular graph structures is one of the most difficult graph alignment
cases because of homogeneity of node degrees. The fact that LRA performs well in this case while all
other methods have poor performance illustrates the effectiveness of using higher order eigenvectors
in aligning homogenous graph structures. Finally, over noisy power law graphs (panel d) Natalie2
and SDP outperform other methods. The performance of LRA in this case is higher than other
methods except Natalie2 and SDP.

17



6 Performance Evaluation Over Gene Networks

Here we apply graph alignment methods to compare gene regulatory graphs across human, fly and
worm species. Comparative graph analysis in evolutionary studies often requires having a one-
to-one mapping across genes of two or multiple networks. However, since human, fly and worm
are distant species and as a result, many gene families have undergone extensive duplications and
losses, we observe non-bijective homolog mappings across their genes [67]. For example, one gene
in human can be homologous to multiple genes in fly and vice versa. To infer bijective mappings
as a subset of homolog genes across species, we use graph alignment methods. We use regulatory
networks that are inferred by integrating genome-wide functional and physical genomics datasets
from ENCODE and modENCODE consortia (see the Appendix for more details).

Similarly to our discussion in Section 5 we report the performance of proposed EigenAlign (EA)
and LowRankAlign (LRA) methods for γ ∈ {0,0.1,0.2,0.3, 0.4, 0.5−ǫ} where ǫ = 0.001. For LRA we
use top k = 2 eigenvectors of input graphs. We also assess the performance of NetAlign, IsoRank,
and Natalie2 in our real data analysis. We exclude Klau’s approach [29] and the SDP-based method
of [27] from our analysis in this section owing to their high memory and computational complexity.
Moreover the GHOST method failed to run over these networks owing to some implementation
errors.

Figure 4 shows the number of matches and mismatches caused by different graph alignment
methods across human-fly and human-worm networks. In both cases EA and LRA with γ = 0 (i.e.,
ignoring mismatches) have a comparable performance to other methods. However, by changing γ we
observe a trade-off between number of caused matches and mismatches. For example, in the human-
fly network alignment case LRA with a non-zero γ results in approximately 2-fold decrease in the
number of mismatches while the number of caused matches decreases by approximately 10%. This
highlights the effect of considering mismatches in the graph alignment optimization. To substantiate
these inferences, further experiments should be performed to determine the involvement of inferred
conserved gene interactions in different biological processes, which is beyond the scope of the present
paper.

7 Conclusion

In this paper, we made two main contributions to the field of graph alignment. Firstly, we pro-
posed a generalized graph alignment formulation that considers both matches and mismatches in
a standard QAP formulation. We showed that this can be critical in applications where graphs
have different sizes and heterogenous edge densities. Secondly, we proposed two graph alignment
algorithms which employ spectral decompositions of functions of adjacency graphs followed by a
maximum weight bipartite matching optimization. One of our proposed methods simplifies the
graph alignment optimization to simultaneous alignment of eigenvectors of (transformations of)
adjacency graphs scaled by corresponding eigenvalues. We demonstrated effectiveness of the pro-
posed methods theoretically for certain classes of graphs and over various synthetic and real graph
models.
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8 Code

We provide code for the proposed method in the following link: https://github.com/SoheilFeizi/spectral-
graph-alignment

9 Proofs

In this section, we present proofs of the main results of the paper.

9.1 Proofs of Lemmas 1 and 2

First we prove Lemma 1. Let A be the alignment graph of G1 and G2. By a slight abuse of notation,
we use A as the adjacency matrix of the alignment graph as well. Suppose P̃ is a permutation
matrix where ρ ≜ 1

2n
∥P − P̃ ∥ > 0. Let y and ỹ be vectorized versions of permutation matrices P

and P̃ , respectively. Then, we have,

1

n2
E[ỹT

2 Aỹ2] = (1 − ρ)[ps1 + (1 − p)s2] (9.1)

+ ρ[p2s1 + (1 − p)2s2 + 2p(1 − p)s3]
< (1 − ρ)[ps1 + (1 − p)s2] + ρ[p2s1 + (1 − p)2s2 + p(1 − p)(s1 + s2)]
= (1 − ρ)[ps1 + (1 − p)s2] + ρ[ps1 + (1 − p)s2]
= ps1 + (1 − p)s2
=

1

n2
E[yT

1 Ay1].
Now we prove Lemma 2: Similarly to the proof of Lemma 1, let A be the alignment graph of G1

and G2 and suppose P̃ is a permutation matrix where ρ ≜ 1
2n
∥P − P̃∥ > 0. Let y and ỹ be vectorized

versions of permutation matrices P and P̃ , respectively. Define a′ and b′ as follows:

a′ ≜p(1 − q)s1 + (1 − p)(1 − q)s2 + (pq + (1 − p)q)s3, (9.2)

b′ ≜(p2(1 − q) + pq(1 − p))s1
+((1 − p)2(1 − q) + pq(1 − p))s2
+(2p(1 − p)(1 − q) + 2p2q)s3.

Thus,

a′ − b′ = p(1 − p)(1 − 2q)(s1 + s2 − 2s3) + q(1 − 2p)s3. (9.3)

Because s1 > s2 > s3, we have, s1 + s2 − 2s3 > 0. Because 0 < p < 1/2 and 0 ≤ q < 1/2, we have(1 − 2p) > 0 and (1 − 2q) > 0. Therefore, according to (9.3), a′ > b′. Thus we have,

1

n2
E[ỹTAỹ] = (1 − ρ)a′ + ρb′ < a′ = 1

n2
E[yTAy].
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9.2 Proof Of Corollary 1

Without loss of generality and to simplify notations, we assume the permutation matrix P is equal to
the identity matrix I, i.e., the isomorphic mapping across G1 and G2 is {1↔ 1′,2↔ 2′, . . . , n↔ n′}
(otherwise, one can relabel nodes in either G1 or G2 to have P equal to the identity matrix).
Therefore, G1(i, j) = G2(i′, j′) for all 1 ≤ i, j ≤ n. Recall that y is a vector of length kn which
has weights for all possible mapping edges (i, j′) ∈ R. To simplify notations and without loss of
generality, we re-order indices of vector y as follows:

- The first n indices of y correspond to correct mappings, i.e., y(1) = y1,1′ , y(2) = y2,2′ , . . . , y(n) =
yn,n′.

- The remaining (k − 1)n indices of y correspond to incorrect mappings. e.g., y(n + 1) =
y1,2′ , y(n + 2) = y1,3′ , . . . , y(kn) = yr,s′ (r ≠ s).

Therefore, we can write,

y = [y1

y2
] ,

where y1 and y2 are vectors of length n and (k − 1)n, respectively.
We re-order rows and columns of the alignment matrix A accordingly. Define the following

notations: S1 = {1,2, . . . , n} and S2 = {n + 1, n + 2, . . . , kn}. The alignment matrix A for graphs G1

and G2 can be characterized using equation (3.2) as follows:

A(t1, t2) = (9.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α + 1)G1(i, j)G2(i′, j′) −G1(i, j) −G2(i′, j′) + 1 + ǫ,
if t1 ∼ (i, i′), t2 ∼ (j, j′), t1 and t2 ∈ S1, t1 ≠ t2.
(α + 1)G1(i, j)G2(r′, s′) −G1(i, j) −G2(r′, s′) + 1 + ǫ
if t1 ∼ (i, r′), t2 ∼ (j, s′), t1 or t2 ∈ S2, t1 ≠ t2.
1 + ǫ,

if t1 = t2,

where notation t1 ∼ (i, r′) means that, row (and column) index t1 of the alignment matrix A

corresponds to the mapping edge (i, r′). Since G1 and G2 are isomorphic with permutation matrix
P = I, we have G1(i, j) = G2(i′, j′). Therefore, equation (9.4) can be written as,

A(t1, t2) = (9.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α + 1)G1(i, j)2 − 2G1(i, j) + 1 + ǫ
if t1 ∼ (i, i′), t2 ∼ (j, j′), t1 and t2 ∈ S1, t1 ≠ t2.
(α + 1)G1(i, j)G1(r, s) −G1(i, j) −G1(r, s) + 1 + ǫ
if t1 ∼ (i, r′), t2 ∼ (j, s′), t1 or t2 ∈ S2, t1 ≠ t2.
1 + ǫ,

if t1 = t2.

Let Ā be the expected alignment matrix, where Ā(t1, t2) = E[A(t1, t2)], the expected value of
A(t1, t2) over different realizations of G1 and G2.
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Lemma 3 Let v be the eigenvector of the expected alignment matrix Ā corresponding to the largest
eigenvalue. Suppose

v = [v1

v2
] ,

where v1 and v2 are vectors of length n and (k − 1)n, respectively. Then,

v1,1 = v1,2 = . . . = v1,n ≜ v∗1 ,
v2,1 = v2,2 = . . . = v2,(k−1)n ≜ v∗2 ,

Moreover, if n→∞, then,
v∗1
v∗2
> 1 +∆, (9.6)

where 0 <∆k < (α−1)p+1+ǫ
(α+1)p2−2p+1+ǫ

− 1.

Proof Since G1(i, j) is a Bernoulli random variable which is one with probability p, equation (9.5)
leads to:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(α − 1)p + 1 + ǫ, if t1 and t2 ∈ S1, t1 ≠ t2,
(α + 1)p2 − 2p + 1 + ǫ, if t1 or t2 ∈ S2, t1 ≠ t2,
1 + ǫ, if t1 = t2.

(9.7)

Define a ≜ (α − 1)p + 1 + ǫ and b ≜ (α + 1)p2 − 2p + 1 + ǫ. Since bv is an eigenvector of Ā, we have,

Āv = λv, (9.8)

where λ is the corresponding eigenvalue of bv. Therefore,

Āv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a∑i v1,i + b∑j v2,j + (1 + ǫ − a)v1,1
⋮

a∑i v1,i + b∑j v2,j + (1 + ǫ − a)v1,n
b∑i v1,j + b∑j v2,j + (1 + ǫ − a)v2,1

⋮

b∑i v1,i + b∑j v2,j + (1 + ǫ − a)v2,(k−1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1
⋮

v1,n
v2,1
⋮

v2,(k−1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.9)

Therefore,

a∑
i

v1,i + b∑
j

v2,j = v1,r(λ + a − 1 − ǫ), ∀1 ≤ r ≤ n, (9.10)

b∑
i

v1,i + b∑
j

v2,j = v2,s(λ + b − 1 − ǫ), ∀1 ≤ s ≤ (k − 1)n.
We choose ǫ so that λ+ a− 1− ǫ ≠ 0 and λ+ b− 1− ǫ ≠ 0. We will show later in this section that any
sufficiently small value of ǫ satisfies these inequalities. Therefore, equation (9.10) leads to,

v1,1 = v1,2 = . . . = v1,n = v∗1 , (9.11)

v2,1 = v2,2 = . . . = v2,(k−1)n = v∗2 .
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Using equations (9.10) and (9.11), we have,

⎧⎪⎪⎨⎪⎪⎩
anv∗1 + b(k − 1)nv∗2 = v∗1(λ + a − 1 − ǫ)
bnv∗1 + b(k − 1)nv∗2 = v∗2(λ + b − 1 − ǫ). (9.12)

We choose ǫ so that λ + b(1 − (k − 1)n) − 1 − ǫ ≠ 0. We will show later in this section that any
sufficiently small value of ǫ satisfies this inequality. Further, according to the Perron-Frobenius
Theorem 1, v1,i > 0 and v2,j > 0, for all i and j. Under these conditions, solving equation (9.12)
leads to: (λ − λa)(λ − λb) = b2(k − 1)n2, (9.13)

where, ⎧⎪⎪⎨⎪⎪⎩
λa = (n − 1)a + 1 + ǫ,
λb = ((k − 1)n − 1)b + 1 + ǫ. (9.14)

Equation (9.13) has two solutions for λ. However, since λ is the largest eigenvalue of the expected
alignment matrix Ā, we choose the largest solution. Note that, since b2(k − 1)n2 > 0, we have
λ >max(λa, λb). This guarantees conditions that we put on ǫ in the early steps of the proof.

By solving equations (9.13) and (9.14), we have,

λ =
λa + λb +

√(λa − λb)2 + 4(k − 1)b2n2

2
.

First, we show v∗1 > v
∗
2 . As n→∞, equation (9.12) implies,

v∗1
v∗2
=

λ

bn
− k + 1, (9.15)

where λ is the largest root of equation (9.13). For sufficiently large n,

v∗1
v∗2
=
1

2
[(a
b
− k + 1) +√(a

b
− k + 1)2 + 4k − 4]. (9.16)

If p ≠ 0,1, we always have a > b. Therefore, there exists ∆ > 0 such that a
b
> 1+∆k. Thus, we have,

a

b
> 1 +∆k > 1 +∆(1 + k − 1

1 +∆
) = 1 +∆ + ∆

∆ + 1
(k − 1). (9.17)

Using inequality (9.17) in (9.16), we have,

v∗1
v∗2
>
1

2
[(1 +∆)2 − k + 1

1 +∆
(9.18)

+

√((1 +∆)2 − k + 1)2 + 4(k − 1)(1 +∆)2
1 +∆

] = 1 +∆.

This completes the proof of Lemma 3.
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9.3 Proof of Theorem 2

Without loss of generality and similarly to the proof of Theorem 1, let P = I. Let A be the alignment
graph of G1 and G2 defined according to equation (3.2). Similarly to the proof of Theorem 1, re-
order row (and column) indices of matrix A so that the first n indices correspond to the true
mappings {(i, i′) ∶ i ∈ V1, i′ ∈ V2}. Define the expected alignment graph Ā as Ā(t1, t2) = E[A(t1, t2)],
where t1 and t2 are two possible mappings across graphs. Recall notations S1 = {1,2, . . . , n} and
S2 = {n + 1, n + 2, . . . , kn}.

First, we consider the noise model I (3.9). Define,

a′ ≜p(1 − pe)(α + ǫ) + (1 − p)(1 − pe)(1 + ǫ) + (ppe + (1 − p)pe)ǫ (9.19)

b′ ≜(p2(1 − pe) + ppe(1 − p))(α + ǫ)
+((1 − p)2(1 − pe) + ppe(1 − p))(1 + ǫ)
+(2p(1 − p)(1 − pe) + 2p2pe)ǫ.

Since G1(i, j) and Q(i, j) are Bernoulli random variables with parameters p and pe, respectively,
the expected alignment graph can be simplified as follows:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′, if t1 and t2 ∈ S1, t1 ≠ t2,
b′, if t1 or t2 ∈ S2, t1 ≠ t2,
1 + ǫ, if t1 = t2.

(9.20)

We have,

a′ − b′ = (α + 1)(2pe − 1)p(p − 1) + pe(1 − 2p)ǫ. (9.21)

Thus, if p ≠ 0,1 and pe < 1/2, for small enough ǫ, a′ > b′ > 0. Therefore, there exists a positive ∆
such that a′

b′
= 1 +∆. The rest of the proof is similar to the one of Theorem 1.

The proof for the noise model II of (3.10) is similar. To simplify notation and illustrate the
main idea, here we assume ǫ is sufficiently small with negligible effects. Define,

a′′ ≜p(1 − pe)(α) + (1 − p)(1 − pe2) = 1 − p(1 + α(pe − 1) + pe) (9.22)

b′′ ≜p2(1 − pe)α + (1 − p)2(1 − pe2) + 2p(1 − p)pe2(1 + α)
=1 − p(2 + pe) + p2(1 +α + 2pe).

The expected alignment graph in this case is:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′′, if t1 and t2 ∈ S1, t1 ≠ t2,
b′′, if t1 or t2 ∈ S2, t1 ≠ t2,
1 + ǫ, if t1 = t2.

(9.23)

Moreover, we have,

a′′ − b′′ = p((1 − p − pe)(1 + α) + pe(1 − 2p)). (9.24)

If p < 1/2 and pe < 1/2, then a′′ − b′′ > 0. The rest of the proof is similar to the previous case.
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9.4 Proof Of Theorem 4

By writing Taylor’s expansion of Tr(G1XG2X
T ) around the point X0, we have,

Tr(G1XG2X
T ) =Tr(G1X0G2X

T
0 ) + 2Tr(G1X0G2(X −X0)T ) (9.25)

+ Tr(G1(X −X0)G2(X −X0)T ).
Let ∆ ≜X −X0. Thus, we have,

f(X) = f̃(X) + Tr(G1∆G2∆
T ). (9.26)

Let σi(G) be the i-th largest singular value of matrix G.

Theorem 5 (Von Neumann’s trace inequality) Suppose A and B are two n×n complex ma-
trices. We have,

∣Tr(AB)∣ ≤ n

∑
i=1

σi(A)σi(B). (9.27)

Proof See Theorem 1 of [68].

Using Theorem 5, we have,

∣Tr(G1∆G2∆
T )∣ ≤ n

∑
i=1

σi(G1∆)σi(G1∆
T ). (9.28)

Moreover, we have,

σi(G1∆) ≤min{σk(G1)σi+1−k(∆) ∶ 1 ≤ k ≤ i} (9.29)

≤ σi(G1)σ1(∆).
Moreover,

σi(G1∆) ≥max{σk(G1)σn+i−k(∆) ∶ i ≤ k ≤ n}, (9.30)

≥ σi(G1)σn(∆).
Moreover, since ∥∆∥2 ≤ ǫ, we have ∣σi(∆)∣ ≤ ǫ, for 1 ≤ i ≤ n. Using (9.29) and (9.30), we have,

∣σi(G1∆)∣ ≤ ǫσi(G1). (9.31)

Similarly, we have,

∣σi(G2∆
T )∣ ≤ ǫσi(G2). (9.32)

Thus, using (9.28) and (9.32), we have,

∣Tr(G1∆G2∆
T )∣ ≤ ǫ2 n

∑
i=1

σi(G1)σi(G2). (9.33)
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Using (9.26) and (9.33), we have,

∣f(X) − f̃(X)∣ ≤ ǫ2 n

∑
i=1

σi(G1)σi(G2). (9.34)

Moreover, since X∗ and X∗lin are optimal solutions of optimizations (4.1) and (4.7), respectively,
we have,

f(X∗) ≤ f̃(X∗) + ǫ2 n

∑
i=1

σi(G1)σi(G2) (9.35)

≤ f̃(X∗lin) + ǫ2 n

∑
i=1

σi(G1)σi(G2)
f(X∗) ≥ f(X∗lin) ≥ f̃(X∗lin) − ǫ2 n

∑
i=1

σi(G1)σi(G2).
This completes the proof.
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Appendix

A Inference of Regulatory Networks

In this section we leverage genome-wide functional genomics datasets from ENCODE and modEN-
CODE consortia to infer regulatory networks across human, fly, and worm. In Section 6 in the main
text, we compare the structure of these inferred networks using network alignment techniques.

The temporal and spatial expression of genes is coordinated by a hierarchy of transcription fac-
tors (TFs), whose interactions with each other and with their target genes form directed regulatory
networks [69]. In addition to individual interactions, the structure of a regulatory network captures
a broad systems-level view of regulatory and functional processes, since genes cluster into modules
that perform similar functions [70–72]. Accurate inference of these regulatory networks is important
both in the recovery and functional characterization of gene modules, and for comparative genomics
of regulatory networks across multiple species [73,74]. This is especially important because animal
genomes, as fly, worm, and mouse are routinely used as models for human disease [75,76].

Here, we infer regulatory networks of human, and model organisms D. melanogaster fly, and C.
elegans worm, three of the most distant and deeply studied metazoan species. To infer regulatory
interactions among transcription factors and target genes in each species, we combine genome-wide
transcription factor binding profiles, conserved sequence motif instances [77] and gene expression
levels [78,79] for multiple cell types that have been collected by the ENCODE and modENCODE
consortia. The main challenge is to integrate these diverse evidence sources of gene regulation in
order to infer robust and accurate regulatory interactions for each species.

Ideally, inference of regulatory networks would involve performing extensive all-against-all ex-
periments of chromatin immune-precipitation (ChIP) assays for every known transcription factor
in every cell type of an organism, in order to identify all potential targets of TFs, followed by
functional assays to verify that a TF-gene interaction is functional [72, 80]. However, the com-
binatorial number of pairs of TFs and cell types makes this experiment prohibitively expensive,
necessitating the use of methods to reduce dimensionality of this problem. Here, we first infer three
types of feature-specific regulatory connections based on functional and physical evidences and then
integrate them to infer regulatory interactions in each species (Figure 5-a). One feature-specific
network is based on using sequence motifs to scan the genome for instances of known binding sites
of each TF, and then match predicted binding instances to nearby genes (a motif network). A
second approach is to map TFs to genes nearby their ChIP peaks using a window-based approach
(a ChIP binding network). The third feature specific network uses gene expression profiles under
different conditions in order to find groups of genes that are correlated in expression and therefore
likely to function together (an expression-based network).

Previous work [72] has shown that, while ChIP networks are highly informative of true reg-
ulatory interactions, the number of experiments that can be carried out is typically very small,
yielding a small number of high confidence interactions. Motif networks tend to be less informative
than ChIP networks, but yield more coverage of the regulatory network, while co-expression based
networks tend to include many false-positive edges and are the least informative [80,81]. However,
integration of these three networks [71, 82–84] into a combined network yield better performance
than the individual networks in terms of recovering known regulatory interactions, by predicting
interactions that tend to be supported by multiple lines of evidence. Here, we use an integration ap-
proach that combines interaction ranks across networks [84]. Inferred regulatory interactions show
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significant overlap with known interactions in human and fly, indicating the accuracy and robust-
ness of the used inference pipeline. In the following, we explain our network inference framework
with more details.

A.1 Inference of feature specific regulatory networks

For each species, we form feature-specific regulatory networks using functional (gene expression
profiles) and physical (motif sequences and ChIP peaks) evidences as follows:

Functional association networks. Expression-based networks represent interactions among
TFs and target genes which are supported by correlation in gene expression levels across multiple
samples [69,85–87]. There are several methods to infer regulatory networks using gene expression
profiles [84]. The input for these algorithms is a gene by condition matrix of expression values. The
output of these methods are expression-based regulatory networks. We use the side information of
TF lists to remove outgoing edges from target genes (in fact, TF lists are used as inputs to network
inference algorithms to enhance their performance by limiting search space of the methods.).

To reduce bias and obtain a single expression-based network for each species, we combine
results of two different expression-based network inference methods (Figure 5-a): one method is
CLR [78] (context likelihood of relatedness) which constructs expression networks using mutual
information among gene expression profiles along with a correction step to eliminate background
correlations. The second method used is GENIE3 [79] (Gene Network Inference with Ensemble
of Trees) which is a tree-based ensemble method that decomposes the network inference problem
to several feature selection subproblems. In each subproblem, it identifies potential regulators by
performing a regression analysis using random forest. GENEI3 has been recognized as the top-
performing expression based inference method in the DREAM5 challenge [84].

Table 1 summarizes the number of genes and TFs in expression-based regulatory networks.
These numbers refer to genes and TFs that are mapped to Entrez Gene IDs [88], the standard IDs
that we use throughout our analysis. As it is illustrated in this table, expression based networks
cover most of potential regulatory edges from TFs to targets. Despite a high coverage, however,
the quality of inferred expression networks are lower than the one for physical networks [80]. This
can be partially owing to indirect effects and transitive interactions in expression-based regulatory
networks [84].

Physical association networks. We form two physical regulatory networks for each of the
considered species using two types of physical evidences as our inference features: In the first
approach, we use conserved occurrences of known sequence motifs [77], while in the second approach,
we use experimentally defined TF binding occupancy profiles from ChIP assays of ENCODE and
modENCODE [72,80]. Table 2 shows the number of TFs associated to motifs as well as the number
of TFs with genome-wide ChIP profiles in human, fly and worm. TSS coordinates are based on the
genome annotations from ENCODE and modENCODE for human and worm, respectively, and the
FlyBase genome annotations (FB5.48) for fly.

Each physical feature is assigned to a score: motif sequence features are assigned to conservation
scores according to a phylogenetic framework [77], while sequence read density of TFs determines
scores of ChIP peaks. Further, two physical features are called overlapping if their corresponding
sequences have a minimum overlap of 25% in relation to their lengths (Jaccard Index > 0.25).

Our inference algorithm is based on occurrence of these features (motif sequences or ChIP
peaks) within a fixed window size around the transcription start site (TSS) of target genes (Figure
5-b). We use a fixed window of 5kb around the transcription start site (TSS) in human and 1kb
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Figure 5: (a) The proposed framework to infer integrative regulatory networks. (b)
The proposed framework to infer physical feature-specific regulatory networks.

in fly and worm. Then, we apply a max-sum algorithm to assign weights to TF-target interactions
in each case: we take the maximum score of overlapping features and sum the scores of non-
overlapping ones. In ChIP networks, because read densities are not comparable across different
TFs, we normalize TF-target weights for each TF by computing z-scores.

A.2 Inference of integrated regulatory networks

Feature specific networks have certain biases and shortcomings. While Physical networks (mo-
tif and ChIP networks) show high quality considering overlap of their interactions with known
interactions [80], their coverage of the entire network is pretty low mostly owing to the cost of
the experiments. On the other hand, while expression based networks have a larger coverage of
regulatory networks compared to physical ones, they include many false-positive edges partially ow-
ing to indirect information flows [81]. To overcome these limitations, we therefore integrate these
feature-specific regulatory interactions into a single integrated network [71,82–84] (Figure 5-a).

Suppose there are K input feature-specific regulatory networks, each with n genes and m TFs
(only TF nodes can have out-going edges in the network). Let wl

i,j and wi,j represent interaction
weights between TF i and target gene j in the input network l and in the integrative network,
respectively. We use a rank-based (borda) integration technique to infer integrated networks in
considered species. In this approach, integrative weights are computed as follows:

wi,j = 1/K K

∑
l=1

rli,j, (A.1)

where rli,j represents the rank of interactions i → j in the input network l. An edge with the
maximum weight is mapped to the rank nm. We also assume non-existent interactions are mapped
to rank 0 (if wl

i,j = 0, then rli,j = 0) [84]. Moreover, ties are broken randomly among edges with
same weights.

We find that top-ranking integrative interactions in human and fly networks are primarily
supported by ChIP and motif evidences, while worm interactions are primarily supported by co-
expression edges, consistent with the lower coverage of worm ChIP and motif interactions (Figure
6).
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Human Fly Worm

Genes 19,088 12,897 19,277

TFs 2,757 675 905

Table 1: Number of genes and TFs covered by gene expression data.

Human Fly Worm

Motif network 485 221 30

ChIP network 165 51 88

Table 2: Number of TFs covered by evolutionary conserved motifs and TF binding
datasets.

To validate inferred integrated networks, we use known interactions in TRANSFAC [89], RED-
fly [90] and EdgeDB [91] as human, fly and worm benchmarks, respectively. We assess the quality
of various networks by using (a) the area under the receiver operating characteristic curve (AU-
ROC); and (b) the area under the precision recall curve (AUPR), for each benchmark network
(Figures 7). Let TP (k) and FP (k) represent the number of true positives and false positives in
top k predictions, respectively. Suppose the total number of positives and negatives in the gold
standard are represented by P and N , respectively. Then, an ROC curve plots true positive rate
vs. false positive rate (TP (k)/P vs. FP (k)/N), while a PR curve plots precision (TP (k)/k) vs.
recall (TP (k)/P ). A high AUPR value indicates that, top predictions significantly overlap with
known interactions, while a high AUROC value indicates the advantage of inferred predictions
in discriminating true and false positives compared to random predictions (AUROC of a random
predictor is 0.5).

Figure 7 illustrates AUROC and AUPR scores for feature-specific and integrative networks, in
different cut-offs, and in all three considered species. Considering the top 5% of interactions in each
weighted network as predicted edges, according to AUROC metric, integrative networks outperform
feature-specific networks in all three species. In fact, AUROC values of integrative networks are
0.58 in human, 0.62 in fly, and 0.52 in worm, respectively. AUPR values of integrative networks are
0.019 in human, 0.047 in fly, and 0.037 in worm, respectively. Notably, all methods have low scores
over the EdgeDB (worm) benchmark, which can be partially owing to sparse physical networks
and/or systematic bias of EdgeDB interactions.
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Figure 7: AUROC and AUPR scores of feature-specific and integrated regulatory
networks in human, fly and worm species.

As the cut-off (network density) increases, AUROC values of integrative networks tend to
increase while their AUPR scores are decreasing in general. This is because of the fact that, the
rate of true positives is lower among medium ranked interactions compared to top ones. Considering
both AUROC and AUPR curves for all species, we binarize networks using their top 5% interactions
which leads to balanced values of AUROC and AUPR in all inferred networks. This results in 2.6M
interactions in human, 469k in fly and 876k in worm. In integrative networks, the median number
of targets for each TF is 253 in human, 290 in fly and 640 in worm, with a median of 132 regulators
per gene in human, 29 in fly, and 43 in worm.

Unlike EigenAlign, other considered network alignment methods do not take into account the
directionality of edges in their network alignment setup. Thus, to have fair performance assessments
of considered network alignment methods, we create un-directed co-regulatory networks using in-
ferred regulatory networks by connecting genes when their parent TFs have an overlap larger than
25%. This results in undirected binary networks in human, fly, and worm, with 19,221, 13,642,
and 19,296 nodes, and 13.9%, 3.5%, and 4.2% edge densities, respectively.
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[48] P. Erdős and A. Rényi, “On the strength of connectedness of a random graph,” Acta Mathe-
matica Hungarica, vol. 12, no. 1, pp. 261–267, 1961.

[49] T. Czajka and G. Pandurangan, “Improved random graph isomorphism,” Journal of Discrete
Algorithms, vol. 6, no. 1, pp. 85–92, 2008.

[50] L. Babai, “Graph isomorphism in quasipolynomial time [extended abstract],” in Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2016, pp.
684–697.

[51] C. Clark and J. Kalita, “A comparison of algorithms for the pairwise alignment of biological
networks,” Bioinformatics, vol. 30, no. 16, pp. 2351–2359, 2014.

[52] W. Ali and C. M. Deane, “Functionally guided alignment of protein interaction networks for
module detection,” Bioinformatics, vol. 25, no. 23, pp. 3166–3173, 2009.

[53] S. Mohammadi, D. Gleich, T. Kolda, and A. Grama, “Triangular alignment (tame): A tensor-
based approach for higher-order network alignment,” arXiv preprint arXiv:1510.06482, 2015.

[54] P. Schweitzer, “Problems of unknown complexity: graph isomorphism and ramsey theoretic
numbers,” Ph.D. dissertation, Saarbrucken, Univ., Diss., 2009, 2009.

[55] L. Babai and L. Kucera, “Canonical labelling of graphs in linear average time,” in Foundations
of Computer Science, 1979., 20th Annual Symposium on. IEEE, 1979, pp. 39–46.

[56] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997, vol. 50.

[57] S. U. Pillai, T. Suel, and S. Cha, “The perron-frobenius theorem: some of its applications,”
IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 62–75, 2005.

[58] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River, 2001, vol. 2.

[59] J. Kuczynski and H. Wozniakowski, “Estimating the largest eigenvalue by the power and
lanczos algorithms with a random start,” SIAM journal on matrix analysis and applications,
vol. 13, no. 4, pp. 1094–1122, 1992.

34



[60] R. Preis, “Linear time 1/2-approximation algorithm for maximum weighted matching in gen-
eral graphs,” in Annual Symposium on Theoretical Aspects of Computer Science, 1999, pp.
259–269.

[61] C. Fraikin, Y. Nesterov, and P. Van Dooren, “A gradient-type algorithm optimizing the cou-
pling between matrices,” Linear Algebra and its Applications, vol. 429, no. 5, pp. 1229–1242,
2008.

[62] ——, “Optimizing the coupling between two isometric projections of matrices,” SIAM Journal
on Matrix Analysis and Applications, vol. 30, no. 1, pp. 324–345, 2008.

[63] D. Knossow, A. Sharma, D. Mateus, and R. Horaud, “Inexact matching of large and sparse
graphs using laplacian eigenvectors,” in International workshop on graph-based representations
in pattern recognition, 2009, pp. 144–153.

[64] S. Umeyama, “An eigendecomposition approach to weighted graph matching problems,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 10, no. 5, pp. 695–703,
1988.

[65] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation and model
selection,” in IJCAI, vol. 14, no. 2, 1995, pp. 1137–1145.

[66] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law graphs,” Experimental
Mathematics, vol. 10, no. 1, pp. 53–66, 2001.

[67] A. P. Boyle, C. L. Araya, C. Brdlik, P. Cayting, C. Cheng, Y. Cheng, K. Gardner, L. W. Hillier,
J. Janette, L. Jiang et al., “Comparative analysis of regulatory information and circuits across
distant species,” Nature, vol. 512, no. 7515, pp. 453–456, 2014.

[68] L. Mirsky, “A trace inequality of john von neumann,” Monatshefte für mathematik, vol. 79,
no. 4, pp. 303–306, 1975.

[69] R. De Smet and K. Marchal, “Advantages and limitations of current network inference meth-
ods,” Nature Reviews Microbiology, vol. 8, no. 10, pp. 717–729, 2010.

[70] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, “Module
networks: identifying regulatory modules and their condition-specific regulators from gene
expression data,” Nature genetics, vol. 34, no. 2, pp. 166–176, 2003.

[71] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo, F. Robert, D. B. Gordon,
E. Fraenkel, T. S. Jaakkola, R. A. Young et al., “Computational discovery of gene modules
and regulatory networks,” Nature biotechnology, vol. 21, no. 11, pp. 1337–1342, 2003.

[72] D. Marbach, S. Roy, F. Ay, P. E. Meyer, R. Candeias, T. Kahveci, C. A. Bristow, and M. Kellis,
“Predictive regulatory models in drosophila melanogaster by integrative inference of transcrip-
tional networks,” Genome research, vol. 22, no. 7, pp. 1334–1349, 2012.

[73] R. Sharan and T. Ideker, “Modeling cellular machinery through biological network compari-
son,” Nature biotechnology, vol. 24, no. 4, pp. 427–433, 2006.

35



[74] S. A. McCarroll, C. T. Murphy, S. Zou, S. D. Pletcher, C.-S. Chin, Y. N. Jan, C. Kenyon,
C. I. Bargmann, and H. Li, “Comparing genomic expression patterns across species identifies
shared transcriptional profile in aging,” Nature genetics, vol. 36, no. 2, pp. 197–204, 2004.

[75] J. O. Woods, U. M. Singh-Blom, J. M. Laurent, K. L. McGary, and E. M. Marcotte, “Pre-
diction of gene–phenotype associations in humans, mice, and plants using phenologs,” BMC
bioinformatics, vol. 14, no. 1, p. 203, 2013.

[76] V. R. Chintapalli, J. Wang, and J. A. Dow, “Using flyatlas to identify better drosophila
melanogaster models of human disease,” Nature genetics, vol. 39, no. 6, pp. 715–720, 2007.

[77] P. Kheradpour, A. Stark, S. Roy, and M. Kellis, “Reliable prediction of regulator targets using
12 drosophila genomes,” Genome research, vol. 17, no. 12, pp. 1919–1931, 2007.

[78] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J.
Collins, and T. S. Gardner, “Large-scale mapping and validation of escherichia coli transcrip-
tional regulation from a compendium of expression profiles,” PLoS biology, vol. 5, no. 1, p. e8,
2007.

[79] A. Irrthum, L. Wehenkel, P. Geurts et al., “Inferring regulatory networks from expression data
using tree-based methods,” PloS one, vol. 5, no. 9, p. e12776, 2010.

[80] S. Roy, J. Ernst, P. V. Kharchenko, P. Kheradpour, N. Negre, M. L. Eaton, J. M. Landolin,
C. A. Bristow, L. Ma, M. F. Lin et al., “Identification of functional elements and regulatory
circuits by drosophila modencode,” Science, vol. 330, no. 6012, pp. 1787–1797, 2010.

[81] S. Feizi, D. Marbach, M. Médard, and M. Kellis, “Network deconvolution as a general method
to distinguish direct dependencies in networks,” Nature biotechnology, 2013.

[82] D. J. Reiss, N. S. Baliga, and R. Bonneau, “Integrated biclustering of heterogeneous genome-
wide datasets for the inference of global regulatory networks,” BMC bioinformatics, vol. 7,
no. 1, p. 280, 2006.

[83] A. Greenfield, A. Madar, H. Ostrer, and R. Bonneau, “Dream4: Combining genetic and dy-
namic information to identify biological networks and dynamical models,” PloS one, vol. 5,
no. 10, p. e13397, 2010.

[84] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R.
Allison, M. Kellis, J. J. Collins, G. Stolovitzky et al., “Wisdom of crowds for robust gene
network inference,” Nature methods, vol. 9, no. 8, pp. 796–804, 2012.

[85] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky, “Revealing
strengths and weaknesses of methods for gene network inference,” Proceedings of the National
Academy of Sciences, vol. 107, no. 14, pp. 6286–6291, 2010.

[86] R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and V. Thorsson,
“The inferelator: an algorithm for learning parsimonious regulatory networks from systems-
biology data sets de novo,” Genome biology, vol. 7, no. 5, p. R36, 2006.

[87] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian networks to analyze
expression data,” Journal of computational biology, vol. 7, no. 3-4, pp. 601–620, 2000.

36



[88] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene: gene-centered information
at ncbi,” Nucleic acids research, vol. 33, no. suppl 1, pp. D54–D58, 2005.

[89] E. Wingender, X. Chen, R. Hehl, H. Karas, I. Liebich, V. Matys, T. Meinhardt, M. Prüß,
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