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ii.
ABSTRACT
GENERALIZED INTERACTION COEFFICIENTS
by
CLAUDE HENRL PAUL LUPIS

Submitted to the Department of Metallurgy oun January 11, 1965
in partial fulfillment of the requirements for the degree of
Doctor of Science. '

The concept of interaction coefficients is generalized
to apply.to the enthalpy and entropy functions, as well as to the
free energy function, and to cover terms of different orders in
the expansion of these functions in Taylor's series. The use of a
second order free energy interaction coefficient is particularly
emphasized. Relationships between various interaction coefficients
are developed, and a method to combine activity data in a multi-
component system is propcsed.

The application of the '"quasi-chemical" model to liquid
metallic solutions is critically reviewed, and the second order
free energy interaction coefficient calculated and compared with
experimental data. A new model is outlined. Its simplest form
introduces the "first quasi-regular'" solution, a one parameter
model (for a binary system) which takes into account the contri-
bution of the vibrational entropy. The model also explains some
discrepancies in the predictions of the quasi-chemical theory.

The solubility of oxygen in liquid silver is determined
as a function of temperature and pressure, and a small deviation
from Sievert's law observed. The solubility is increased by copper
and decreased by gold, platinum and palladium. Free energy, enthalpy
and entropy interaction coefficients are calculated and correlated
with the statistical models.

Thesis Supervisor: John F. Elliott
Professor of Metallurgy



Chapter

Number

II

v

TABLE OF CONTENTS

ABSTRACT 3 0 . v & 2 8 LS 8 8 a6 063 G5 08 88 0 e 8 e 800 e e 08

TABLE OF CONTENTS . .c.ceeseccsosssecsssacencons

LIST OF FIGURES ® 0 v . & & 0 & 3 C & G & I DG S C 6 8 &0 6O "6 30 8

LIST OF TABLES .. ..t t:cceioceiotascnnsesosnnscs

ACKNOWLEDGMENTS ... .¢:ts500cs0e0esascansocesens

INTRODUCTION ... e:stcusowrsocoasstnanaacceosess

OUTLINE OF THE THEORETICAL STUDY ....cccee:ca

GENERALIZED INTERACTION COEFFICIENTS ., ........
1. Definition of the Generaliized Free Znergy
Interaction Coefficients ... civ:iavae .
2. Relaticu: between Interaction Coeffi-
cients; Application to a Ternmary System ..
3. The Second Order Free Energy Interaction
Coefficient ..:.:.cecesreseccososesncaanncsas
4, Discussion of Sherman and Chipman's
Method; Presentation of an Alternate
Method .....: 4t ne:oncenssonsoasosesaoss
5. Definition of the Generallzed Enthalpy
and Entropy Interaction Coefficients ....
6. Conclusions . i .:v:terrneesnsenccansacac
THE QUASI-CHEMICAL MODEL .....ivccenonnrcnnans
L. INntroductionN .. .4 ::cconnonnsonncn-n:anans
2. ASSUMPLLIONS 4o v ot aosc.ssaootaansscoosoas
3. Binary SYySCEM ... :ec:ea.o3cccassnsascecns
3.1 Regular Solution t.cse:ev-caornnnsons
3.2 Quasi-Chemical Solution ... .:.:ecea:s:
4. Ternary SYySTEM ., .- 2:cee:ts:2e00ase0a1 300
4.1 Regular Solution ...:u¢:ee::0:0:00000:
4,2 Quasi-Chemical Solution ...ecose00nas
5. First Order Free Energy Interaction
Coefficilent .....ieceosencssssensassaanss
6. Second Order Free Energy Interactiou

Coefficilent ...ceicccensosssacensnconcsan
6.1 The Quasi-Chemical Expression ......
6.2 Comparison with Experimental Results
6.2.1 Sulfur in liquid iron alloys
6.2.2 Oxygen in liquid i1ron alloys

6.2.3 Nitrogen in liquid iron
alloys +oecinccricacinaaaaanen

iidi

Page

Number

ii
iii
vii

ix

x1i

wn

17

24
30

31
31
31
33
35
36
45
45
46

46

49
49
53
54
56

56



Chapter

Number

Vi

VII

VIII

IX

7.

6.2.4 Carbon in liquid iron
I
6.2.5 Hydrogen in liquid Iron
8lloys t.iciiiiecccinnnaccnns
6.3 ConcClUSLIONS «.eeoieeenceseonsecsss
Summary and Conclusions ...veeeennoesos

THE CELL MODEL .. ..t :tcoestucsonsocennnnnsa

1.
2.

INEroduction ... :eeceseseeeoccocoonessos
Partition Function of a Binary

Solution (iiicohsic it et e a0t teceneeco e
Free Volume ... ... :oseeoss.eronscesnoscsees
Probabilities Associated with Different

Configurations . ..c:uicccooeseooncnnnnens
Excess Enthalpy and Vibrational
ERtropy . :: .. st ieeooocuoasocnossesnssncsns

5.1 Excess Enthalpy .:c.cccviernnnnnnes
5.2 The Excess Vibrational Entropy ...
Quasi-Regular Solutions

Correlation between Excess Enthalpy

and Excess Entropy - eeisive . seooennanas
The Proportionality Constant T ....c0..
ConcluSions «.vceoevicon.vovenoanncocess

CONCLUSIONS ON THE THEORETICAL WORK ........

OUTLINE OF EXPERIMENTAL WORK .......c0vcvenns

LITERATURE SURVEY ... c:iuvien:ccocacnnonnnnas

1.
2.

Solubility of Oxygen in Solid Silver ..
Solubility of Oxygen in Liquid Silver .

APPARATUS, MATERIALS AND EXPERIMENTAL
PROCEDURE t 3 . & 6 ¢ o2 ¢ 8 0 & 8 8t 0T 2 8 C 8 8O0 S B S QG B B8 8

1.

2.
3.

Sieverts' Apparatus T e e e e s e st e e acocan
1.1 Gas Purification Trains .....oeoee.
1.2 Vazuum SYyStemM ...:c.vieesonennonses
1.3 Measuring InStruments ...->oeeeeees
1.4 Heating Unit ....:¢ce-0ecev-ascosa
1.5 Reaction Chamber ........vcineeeea
1.6 RefractorTiesS ..ieeeicesosonseconna
1.7 Device for Dropping Alloying

Additions .:c-cieiccri ettt acnn
Materials ....ivecertatonnesconnsoannnaca
Experimental Procedure ....c.20:0000c04

THERMODYNAMICS OF GAS SOLUBILITIES AND
CALCULATIONS .t ccevccacnnerssnssnnsssnnnnns

ll
2.

Thermodynamics of Gas Solubilities ....
Practical Method of Calculation .......

Page

Number

57

57
58
58

60
60

61
62

64

66
66
67
69

73
80
83

85
87

88
88
89

92
92
92
92
95
96
96
96

98
98
101

104
104
108

iv



Chapter

Number

XI

XII

XIII

XIvV

XV

PRESENTATION AND ANALYSIS OF RESULTS .......
1. Determination of the Origin for the.
Oxygen Concentration in the Melt ......

1.1
1.2

Experimental Difficulties ........
Theoretical Determination of Y. ..

2. Solubility of Oxygen in Liquid Silver .

2.1
2.2
2.3

2.4

The Self-Interaction Coefficient
Of OXYZEM . vvviuicencononcsocnnoos
Free Energy, Enthalpy and Entropy
Self-Interaction Enthalpy and
Entropy Coefficients of Oxygen ...
Summary of the Thermodynamic
Properties of the Solubility of
Oxygen in Liquid Silver .c........

3. Solubility of Oxygen in Liquid Silver-

Gold

AllOYyS v . iccisinniieaesionanenaens

4, Solubility of Oxygen in Liquid Silver-
Platinum AllOYS cu.vurevnnonenooe .nocsns
5. Solubility of Oxygen in Liquid Silver-
Palladium AllOYS cioceuveeennncorennnsen
6. Solubility of Oxygen in Liquid Silver-
CopPer ALlOYS .. cicocunnsnnanononancane

DISCUSS10N OF ERRORS AND CONCLUSIONS ON
EXPERIMENTAL WORK ... ... cuivivinonnscnnoonnses

1. Systematic EFLOrS ....uuevcveonneronenes
1.1 Hot Volume ........oveeeecucesnnes
1.2 Vaporization of the Silver .......
1.3 Impurities in the Melt .....c.ova-.
2, Random Errors ...........c:vcivnconrnosn
3. Conclusions on Experimental Work ......

CORRELATION BETWEEN THE EXPERIMENTAL RESULTS
AND THE THEORETICAL MODELS s at et easieco s ez

-

SUMMARY AND CONCLUSIONS Cee e el zraccan a0 e

SUGGESTIONS FOR FURTHER WORK tecreeaeseseeann

REFERENCES

R L R I R R T S N R T R

Page

Number

110

110
110
112
116

116
120

122

128

136
136
136
138
138
139
141

144

148
150

151



Appendix

Number

A

GENERALIZED INTERACTION COEFFICIENTS -
SUMMARY ® 0 C O 8 6 0 80 GG LOOGGC S L G OC S S O &0 8 800 3 € S8

RECIPROCAL RELATIONSHIPS BETWEEN GENERAL-
IZED INTERACTION COEFFICIENTS ....

L L ®co o e

CONVERSION RELATIONSHIP BETWEEN THE
INTERACTION COEFFICIENTS €, p AND e, r ...

CALCULATIONS OF THE QUASI-CHEMICAL MODEL

IDENTIFICATION OF THE EXPERIMENTAL POINTS

IN FIG. IV.1 ....

# 90 8 6 03 8 8 8 58 0000 e 000

CALCULATION OF THE "FREE VOLUME" .

IDENTIFICATION OF THE EXPERIMENTAL POINTS
IN FIG. V.1 ...... .

EXPERIMENTAL DATA

BIOGRAPHICAL NOTE

PR

3 =

® 5 0 80 8 38 8 e 060 s 08 83O e

o o e e 0 e

2 e . 6 0 s 8

Page

Number

154

158

161
169

176
178

182
185

215

vi



FIGURE
NUMBER

ITII.1

III.2

III.3

I1I.4

III.S5
Iv.1
Iv.2

Iv.3

IX.1
IX.2
IX.3
XI.1

XI.Z

XI.3

XI.4

XI.5

LIST OF FIGURES

First and Second Order Free Energy
Interaction Coefficients .......coveve..

Evaluation of the Second Order Interaction
Coefficient ;2(2’3)

3t % 8 0 e L e s C e e e e e s

Possible Estimates of the Second Order

Interaction Coefficients g§2,4) and c§3’4)

Sherman and Chipman's Method ...........

Construction of the Term péi'j)xix_ in the
Alternate, Method .........%.....7.3

Test of the Quasi-Chemical Model on Various
Binary Alloys ....iitiinenrenerocsnnnnes

Test of the Quasi-Chemical Model for the
Sn-Cd System at 500°C ... iennsnnnnnnn

Curvatures Predicted by the Quasi-Chemical
Model . ... ... it ittt ittt

Correlation between Excess Enthalpy and
Entropy ....... ... D T T T

The Sieverts' Apparatus . ....oee..vssnuss
The Reaction Chamber ...... .....ii0e.u.
Additions RESEIrVOLT ..icu.:vievnsnnnncnas
Self-Interaction of Oxygen in Silver ...

Determination of the Origin for the Oxygen
Concentration in the Melt ..............

The Silver-0xygen SySCLEM -v-v..:vuuesnen

Effect of Gold on the Activity Coefficient
of Oxygen in S1lVELr .c.uuu:iournnranennns

Effect of Platinum on the Activity Coeffi-
cient of Oxygen in Liquid Silver .......

PAGE

NUMBER

10

13

15
18

22

38

44

51

81
93
97
99

113

115

121

125

127

vii



List of Figures,

FIGURE

NUMBER

XI.6

XI.7

XI.8

XI.9

XII.1

XII.2

Effect of Palladium on the Activity

Continued..

Coefficient of Oxygen in Silver

Effect of Copper on the Activity
Coefficient of Oxygen in Liquid Silver

Effect of Copper on Oxygen in Liquid

Silver-Palladium AlloyS +esevecens

Effect of Copper on Oxygen inLiquid

Silver-Platinum Alloys ..
"Hot Volume'" Study

Effect of Alloying Flements c¢n
Coefficient of Oxygen 1n L

1060°C

Cell Geometry for the "Free Volume"

Model

D A R I W]

L I S T S S Y

R YT T T S T

38 8 3 e 0 00 0 00 0 o2

P I N A R BT

I A I I I ST

Lhe

Aztivaty
iquid Silver at

.

viii

PAGE

NUMBER

129

130

132

133

137

143

179



LIST OF TABLES

Table Page
Number Number
Iv.1 Theoretical Explanation of Some Discrepancies

Observed in the Application of Eq. IV.19..... 42
Iv.2 Calculated and Experimental Values of the

First Order Interaction Coefficient € «iavseo 48

‘\'\‘

Iv.3 Predicted Values of pé”"by the Quazi-

Chemical Model .....cCeieseennncecssnscssscsss 52
IV.4 Experimental and Calculated Values of the

Second Order Interaction Coefficient pg in

Liquid Iron AlloyS .+ ceesccrcancinennssncnsos 55
V.1 Calculated Values of v in Some Ternary

Alloys € J 4 0 & U 2 © C &6 O v & 0 ® . C ® 0 3 8 L & 0 8 2 8 > @ 3 328 6 O C e 30 83
VIII.1 Sieverts and Hagenacker's Data for The

Solubility of Oxygen in Liquid Silver ..:..:.. 90
IX.1 Materials Characteristics 100
XI.1 Self-Interaction Coefficient of Oxygen eéo)

in Liquid Silver ...:csieeviesrooosnonsancesos 117
XI.2 Dissolution of Oxygen in Liquid Silver:

The Reaction Constant K' and the Enthalpy

AH 4 2 8 ® 8 ¢ 8 L & U I . ow N0 UG I % e e O s 38 L e @ H T e 36 %O 3 =22 C 0 118
XI.3 Interaction Coefficients of Gold on Oxygen

in Liquid S1lVer ....icieiceirocsanssesssosacs 124
XI.4 Interaction Coefficients of Platinum on

Oxygen in Liquid Silver .....cicvcenearoacsan 126
XI.5 Interaction Coefficients of Palladium on

Oxygen in Liquid Silver .....eccouossosnaanss 128
XI.6 Experimental Data on the First Order Free

Energy and Enthalpy Interaction Coefii-

CLENES .+ :c-ocovenaso.onorsesssasnasn-ssasssccs 134
XI1.7 Interaction Coefficients of Copper on Oxygen

in Liquid S1lver .seoeinncnrse-caaseszaaacasnns 135



Table

Number

XII.1

XIII.1

Interaction Coefficients of Various Elements
on Oxygen in Liquid SilvVer .....cevcoeessaas

Comparison of the Effects of Gold and
Platinum on Sulfur in Copper and Oxygen
In Silver ..c.iciiiiiaarcctcnciaeaacaaacaans

Conversion Relationship between the
Interaction Coefficients €y, p and €, I .vo..

Interaction Coefficients s(j) for Dilute

i
Solutions of Elements Dissolved in iiquid
Iron at 1600°C ... ..ceeiseonoessnconcnnconnn

Interaction Coefficients e( )x 102 for
Dilute Solutions of Elementa Dissolved in
Liquid Iron at 1600°C . ..c.vo.vencrncesnnoas

Identification of the Experimental Points
in Fig. IV.l .. ...t i inncionnnsnonssnannnans

Identification of the Experimental Points
In Fig. V.l ...t .itiieiineeoneinnnns vennns

Page

Number

142

144

161

165

167

176

178



xi

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation
to:

Professor John F. Elliott for his invaluable guidance
and support throughout this program;

Professor Harold Freeman for his precious advice;

Professor John Chipman for his fruitful discussions
and interest in this work;

To other members of the faculty at the Massachusetts
Institute of Technology, particularly to Professors V. Ramakrishna
and T.R. Meadowcroft for their encouragement;

To Mr. Donald L. Guernsey and his assistants for the
chemical analyses;

To Mr. George Prince, Glassblower, and Mr. Walter
Correia for numerous friendly services;

To Mr. Frank Woolley for many valuable suggestions and
his ever-present help;

To the graduate students and members of the staff at
the Massachusetts Ins-itute of Technology, in particular to Mr.
Alain Boyer, Mr. Albert Solbes and Dr. Michel Turpin;

To Miss Cathy Walsh for her umselfish help in the
preparation of this manuscript, and the introducation of many
commas ;

To the members of the M.I.T. Computation Center for

their assistance in carrying out the computations;



xii

To the National Science Foundation for their support,
under Contract GP-2294 and G-2294;
To the Atomic Energy Commission for their support,

under Contract At(30-1)-1888.



CHAPTER 1
INTRODUCTION

To progress in the understanding of the properties of
liquid metallic solutions, our aim should be to obtain more
experimental data, as well as to develop better theoretical models
to satisfactorily explain these data. In the pursuit of these
goals, classical thermodynamics constitute the unifying and con-
venient language. A good vocabulary is needed and, in this study,
a modest attempt is made to improve it.

Among the many statistical mechanics models which may
describe liquid metallic solutions, a special preference is shown
for those which have the most general applications and introduce
the minimum number of parameters, so that in the comparison be-
tween experimental and statistical results no artificial agreement
may hide a theoretical inadequacy.

Finally, the lack of really precise data on oxygen 1n
liquid silver,and the experimental possibility of determining the
effects of various alloying elements on the free energy, enthalpy
and entropy of this system, have prompted an investigation of the

solubility of oxygen in liquid silver alloys.



CHAPTER I1
OUTLINE OF THE THEORETICAL STUDY

———oonn oF ‘ub JHBORBIICAL STUDY
The concept of activity and activity coefficient has
proved its usefulness. In a multicomponent system, the study of
an activity coefficient is a complex problem, and Wagner’s(l)
definition of the interaction coefficient ¢ is, in the next Chapter,
the starting point of a possible treatment of this problem. And,
as statistical thermodynamics is the natural associate of classical
thermodynamics, the development of a statistical model to describe
the thermodynamic properties of liquid metallic solutions is, at
present, attempted mainly by two distinct approaches. The first
is based on the free electron theory of metals and describes the
thermodynamic properties of a solution in terms of changes occur-

2,3 The

ring in the energies of the conduction electrons.
second refers to the chemical theory and describes these properties
in terms of atomic bonding energies.

(4) for

The use of an electron theory has lead Himmler,
example, to show that data on the solubility of hydrogen in solid
copper alloys can be qualitatively accounted for an terms of the
chemical potential of the free electrons alone. However, neglect
of the interaction of the ion cores has already been shown by

(3)

Wagner to be unacceptable, in the case of some ternary systems,

and it is believed(s)

that, as the theory becomes more refined,
it will resemble the chemical theory more and more.
The main advantage of the chemical theory 1is that 1t

offers a simple description and appreciation of the thermodynamic



properties of a system. It has been used with fair success for
dilute metallic solutions by Alcock and Richardson(6) and Durand.(7)
However, some notable breakdowns(S) point out the serious dis-
crepancies brought to the model by two assumptions: the neglect

of non-configurational factors and the consideration that the
bonding energy between two neighboring atoms is independent of

their surroundings. Yet, it should be emphasized that the very
inadequacy of a model to a particular system often brings light

to the physical phenomenon which 1s responsible for this i1nade-
quacy. Chapter IV explores the possibilities and limitations of

the chemical models, wherecas Chapter V presents the cell model,(g’lo)
and a possible adaptation of this model to retain the advantages

of the chemical theory while removing 1ts most critical assump-

tions.



CHAPTER III
GENERALIZED INTERACTION COEFFICIENTS
M

Classical thermodynamics offers a convenient way to set on a rigorous
foundation and to express precisely many empirical notions and experimental
data. For instance, the effect of a solute (2) on another solute (3) in a

dilute ternary system has advantageously been represented by the interaction

”
coefficient e§~) =%§-3\, and a formal thermodynamic treatment allowed
.Xl - 1
Wagner( L to show that s§2> = 553) - In this discussion, the reievant

relationships are developed for multicomponent svstems.

1. Definition of the Generalized Free Ener Interaction Coefficients
———==—"—=—-c nffcra.lzec Tree tnergy Interaction Coefficients

Given a soiution where (1) is the solvent, and (2), ... (§), ... (m),

the solutes, the excess free energy is expanded in a Taylor's series with

respect to the moie fractions of the solute Xoy 0. 33' ce xh «:.» near the
state cf infinite diiutton (X, .., XS, ass %n - 0).
nj n n
E j m
F° = RTZ ... ¢ ... 3¢ ¢ X .0 X,7... X (III.1)
nj nj A, M2 .. nJ R j m

where the index j can take any value from 2 to m, and the subscript nj any
positive integer value inciuding 0. By the very nature of a Taylor's series,

the coefficient $ is defined as follows:

/’ n2+cac+n +caon \
RT o ! J m E \
0

R nj e g ® az'::.n. ‘. _,n ! { ny ! (111.2)

n
3 Tk, oL.oaxd L x ™
\ 2_,_dJ - oXm
xl"l

\

F




Similarly the natural logarithm of the activity coefficient of element

(i) is expressed as:

1} ny ﬂj nm
L o
an::u nj oe nm X2 coox aooxm (III 3)

1 =L ... L ..
Yy 2 §

] "
where

n2+ana+n,+oaa+n
1

gL . 1 2 3 ™ 1nyj (I11.4)
cefh, ¢ B !0: ! " 1T
R e T ™ 3Ky ...0%, ) .. ek ™
' i " n+1
1) m
We propose to call K withn =1 n, a free energy
n2 Hanj.“ nm j2 j

interaction coefficient of order n. The interest of this definition will hope-~

fully become clearer as we proceed to the following sections.

2. Relations Between Interactions Coefficients. Application to a
Ternary System

The excess free energy is equal to:

FE = RT (X;1n vy, + Xp In vo+ ... +X, In ROPIL S EVAR (I1L.5)

b

The Gibbs-Duhem differential equation yields a system of (m-i) equaticns:

(1=K =K.~ -x ) Mo gy aimye ooy 3oy, o,

j T T 'Jl{k axk i} 3xk

x Ao L5 (k= 2,...9,...m)

m axk

are independent variabies, and the (m-1)

(I11.6}

Since X;, ==,Xj, "'%n

Equations (1IL.6) above are identities, the factor multiplying the general

ns n n
term in X, ==‘ij ;;.Xmm must be null in each equation. The details of
the calculations are given in Appendix B. The resul:s are summarized in

the following two general formulae:



K(l)
Qs...n_...n e
3 i m 111.7
T i - o \ )
{n -1
%)
\ j=2 /
and
e%) . g I T oY _
nzceoniooonm n-zaao.niaa..nm m nzouo’ni+1’aonnm (11108)
In
y=2]

from which are derived many familiar resulcs.

For convenience, Equation (III.8) is rewritten for a ternary

solution:
. . ny+i .
ML LS § B gD (I1I.8a)
03,03 n2,0:; nztny  nptl,ny
) ng?l
g3 L gl - gD (111.8b)
Az.0. o, aztng n2’n3+l
e - . i _— cetds. wi2r _ (1) 1,
g2ca, = 0, n, = 0, Equaticn (IZI.8a) yields: h0§0 = kﬁ,ﬁ “ 0 KI,O
The first two rerms are finite: ngg = 1n72 and Kélé = 0
2,0 ,
iace 1y 2 G at X- = 1.
1y _ , (1; .
Thus Kl o = 0. Similarly KO 1 Qo (by Equztion (III.8b)).
? ’

Consequently, there is nc term of the first order in X; or Xy alone, in the

expansicn of lnv;

" ( ¢ o .
vy = K35k + ki xd . k{1 goxae (111.9)
Forn; = 1, n3 = 0, Equation (IIL.8a) yields:

"2 -3 ~
S A A

(relation which involves only terms of the binary 1, 2).

v( ), ’1’( »; 2



Iny,

{ -
and K;12 is the first term in the expansion of the a; function: " or

s
lan‘ x2
(1"‘1)2 gy in a binary solution. Hence:

2 ‘
Gé) xE - 2(0'1)
X, » 0

It is also useful to note that in any multicomponent system, the function

lnY 2
ap = ?T:ié)z yields:

o

(Otz)xl .1 Inyy

and as
day L1 ( slay, , 2 __1n Yz}
X2 pex, [ X, 1-X2

Then
'30.3 =
(m)x -1 ERCERCG

or:

( 3(!2

€y 2 = | T Zaz)
? \3X2 xi"l

In 3 binary, this may be rewritten:

i =2(02"G‘) xz’ 0
/Xz -0
= i, Equaticas {111 .8aj and {(Iil.7) yield:

or

e5’3) - /BlnYZ) . _lazlnyi\ - —b (BZFE
: < - 1 A\axgaxg)x RT | 9Xp3%5 /g, .

1

(I11.10)

(III.11)

(III.12a)

(IIL.12b)

(I1I.13)



Because of the symmetry of the result (or through Equation (II1.8) with np =1,

n3 = 0), Wagner's relation( D is established: e§3) = e§2)

It seems often desirable to keep the symmetry of the result by

§3) (2)

rewriting € and £3 ' as €2,3> Similarly, we shall set eéz) = €22 and

3
E e o
3 3’3
At this point, a few of the above results are summarized by rewriting

Equations (III.1 and III1.3) for a ternary:

gE . L1 2 1 2
T - Xo1lny; + X3lny3 + 2 Ez)zXz + 2 83'3}(3 + 82’3}(2}(3 + oe-
Kt(l})n- n; njy
-t S X, 3 .
Cay =1y X; X5 + ... (111.14)
.1 2 1 2 ) (1) 2.3
Iny; = - 2 82’2}(2 -3 e-:v_;X‘s SZ,JXZX3 R an’nst X34+ .. (111.15a)
Inyy = Invd + ez 2K, + €2 3X3 + ..,
{ ny+1 ny n
Po(1) 2 (1) 2 "3
+ }an’ns by Kn2+1’n3 Xy X3 +... (I11.15b)
lny3 = 1ny‘§ + 52’3)(2 + 63,3}(3 + L se
{ njzrl ny; n
G B (1) 3
+ anz’na —nz—ﬂ—l; an,ﬂa*l XZ X3 + v oa (III. ISC)
\

3. The Second Order Free Energy Interaction Coefficient

In the iiterature, ail the emphasis, understandingly, has been put
on the first order coefficients (g), but as our needs for greater accuracy
grow rapidly, the second order coefficients become increasingly important.
We shall give the general symbol of p to these second order coefficients.

They involve only binary, ternary, or quarternary systems. In the binary,

Kgfg becomes p§2) ; in the ternary Kgf% = p§3) and K§f{ = p§2’3) ¢ in the

quarternary Kéf%,l = p§3i4)4



Consider a system in which one component (2) remains very dilute. We
are interested in knowing how small additicns of another component (3) changes
its behavior in the solvent (1). This is for instance the problem of the effect
of alloying elements (Al, Si, C, Cr, Mn ..} on the solubility of gases (H,, N,
0;) or on the activity of other metalloids (S, P, C ..) in iron. In these cases,
the reference state is usually infinite dilution and In(yy/v3) is of more interest
than lny,. For gases, as X, is usuaily very small (order of magnitude: 10-3).
the terms in X; are also small and can often be neglected. It is then said that
the gas follows "Sieverts' law."

Again for convenience, let y; = y,/y3. Then:

(lnlbz)xz_.o = oY x40 + o(x3)

where O(Xg) means other terms of order at least equal to 3.

553) measures the siope cf the curve Iny; vs X; at the origin (Figure
III.la), or in cther words, describes the straight iine which best firs the data
near the origin. In a very dilute solution, it gives us sufficient information
as to the eiffect of one component on another, but in a less dilute solution,
or for a greater accuracy, it is necessary to analyze the deviations from the
straight line. This may be conveniently done by the coefficient p§3) which
measures the curvature at the crigin, or describes what parabola best fits
the data at the origin. In many cases of practical interest, these two
coefficients are sufficient to describe the data well.

In the case of a system of m components, Equation (I1I.3) is

rewritten in the following way:

@ ) - n
lny, = £ a?_"x; + .:\4-1':1“‘ 1».:.1((;2) a Xii oo
i==2 A -~ ¢ 3 0 b 1.52
m m , n n
+ L (pgi'J)Xixj +c.,+K32) a om0 xii xjj +...)
“e) 1ag TR IERRLICPS
1#j
m m m ni 0. nK
+2 1 r (tems taXx ' XPx)+ .. (111.16)
1=2 j=2 %=2 J

i#jfk
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Retaining only the terms of the first summation in the expansion gives

g = (nvp) ¢ e @+t gy D (111.17)

where (1nw2)(1) stands f°f(1nwi)x;=n;;=xa-3 and involves either the binary 1-2
(for i = 2),or the ternary 1-2-i at infinite dilution of (2). Data on these
systems are usually much more readily available in the literature than data

on ternaries where X is not very dilute, or on systems of more than 3 com-
ponencs, and Equation (i1Il1.17), which neglects the cross product terms, is

widely applied. However, even in the dilute range, the application of Equation

(III.17) is often subject ts c¢riticism, the terms in pz(i’J)xixj being a priori
zs important as those in pg‘l)xf . This may account for many discrepancies
between experimental and calculated values.

(i)

For “astance, Ramzihandrai, Watsh and Fulton reported that, on

~

. - {SL )
3 weirght perzent bas.s, the value used for eq ) in stainless steels is much

Sl)value ¢f -0 i6 in the ternary Fe-5:-0. At above 2

{81)

percent siitcon, they adjustc €4

smsiler than zhe ea

te -0.02. This difference is undoubtedly

mostly due o the interaction of ‘hroerum +4nd s:lioon and an gsiimacsion of

(51,Cr)

p‘ 7or the corresponding noefrizient tar a weight percent cocrdinate)
0 p B 3

would wonveniently and mors rigozousiy acccunt Lor this effect.

0f course, It must be admiccsg that aciurate measurements of these
¢ cocefiicients will be quite difficuls, but even a rough estimate, a reason-
able guess, is preferable to secting them arbitrarly equal to zero. Equation

(III.17) should then be improved by rewriting it as:

1“1‘)2 = (lan)(Z) + (ln‘v"Z)(i) +;;‘4_(1n¢2)(_]) + pz(z’i)x_xif;;;
£ ° (1III.18)

rn Yy hY
*53\“1’XZXjfa;:*Dg(i’J’X;XJ
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The difiiculties associatec with the last terms of this equation
were early recognized however, and in 1952, Sherman and Chipman(lm devised
a semi-empirical method to combine the data. 1Its discussion is delayed to
the following section. Nevertheless, our conclusions are anticipated in
saying that a reascnable direct estimare of these second order coefficients
p seems more desirable. It is thus extremely important to fully utiilize all
the information which may be indirectly provided. The following considerations
illustrate this point.

Dealing with a ternary system, sssume the available dats are the
experimental curves shown in Figure II1.2: lInyy versus X; at infinite dilution
of compsnent 3, versus X; at infinite diluticn of component 2 and lnys versus Xp
at .atin.ce dilucion sf component 3. We seek che value of iny; at the point

{(X,y Xa): Equation {III1.18} yieids:

Fot

ay; = {lnw;)‘zi + (ing:)> + pEz’J)X3X5 (1III.18a)

. WL - e . - ) . . .
{inyy) 't and x;nw;)‘J) are readily found. The following reiation is used to

. 2,3 )
calcuiate 5377 ! e i

w

obrained fzom Equation (I11.8a) with n; = 1, ns = 1

and Equation {(III.8b) with n: = 2 and n; = 0:

R TR PP X (111.19)
or

p;:2,4) . 2922) t s e (II1.19a)
All of the terms on the righct zre cbrained experimentally.

Most often, however, the zurve (lnng(z) is not known. What is known

e3>

is the slope a:r the origin since c: But obviously should any infor-

mation as to the deviaztion from the straight iLine be available,it should be
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J 2
used. For the case of Figure III.2, the neglect of pz(z’“) woula iead to an

overestimate of lny,, since the three quantities in the second member of
Equation (I11.19a) are negattve.

Another example of a possible way to estimate ¢ may be given for a
quaternary system ‘4 is the manimum soahor ol owponents which can be invclved

1n the detzipitiasn ©f p). The following informaticngon the ternaries are

I b
(3) (@) ny 1D

assumed t: be given (Figure LLL.3}: (lnyy) , ting,) . (1nw;)(é);

We seek the value of lny; at infinite dilution of X;, and at concentrations
X3 and X. of components (3) and (4). Equation (II1.16) can be then rewritten

as.:

lagy, = Ure) D+ Anep ' w23 x g (1II.18b)

Relations simiiar to Equation (IIl i8) may again be of considerable help in

(3,4)

the estimate cf o5 Equaticn (III.8) leads to:

3,4}

fe] + < =

Ny~

S TR SEe (III.20)

£y
A,A

1f components (2) and (4} have rather similar effects on (3}, one may then

venture to take pEz’a’ as the geometric mean cf the tws ternary curvature
coefficients:
/ 2 i/ N 2
(2,4 f&zlny3\ /a"lnys 1/2 ;3 lny; )li
¥/ i i
3 5 %0s N TSE L Sy =
tax"dx“'/ X1 <1 RIS | xi 71
I11.21
2{_(2;_(4)) 172 ( )
\¥3 )
or the arithmetic mean:
. o y
03 ] = .é. __._,e....._’- i *-E-( —————2 = 63 + 03 (IIIc 22)
O TR S T
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For practical reasons that will become more evident in the following sectionm,

; ; - : 2,4]
the arithmetic mean is preferable. tth either estimate of pj »4)

of p§3"')

, the value
is calculacted by Equation (IIL.20)

It is often convenient to choose weight percent rather than mole

fraction as composition coordinate. Taylor's series expansions can be rewritten

in a strictiy parallel form tc those in Equation (III.1) and (YII.3). The

coefficient:

glog £,
egj) = ( % : >
J %1 - 100

corresponds to the first order interaction coefficient &, and we shall designate

by r the parallel coefficient to o (Figure III.16). Thus:

/a2 2
3L 9 1lnv

NCHO I lniaf \ md oD . LT

i axjaxk J i 2 ax2

Xy~ 1 o X +1
would correspond respectively to

.‘2‘ : /\2 - \

r(j’k) =(d______—°8 it and r(J)=i(——-—-—-—————d 108 \ .

i 5%jo%K L ALY, N
\?o~J %1 » 100 9%)

%1 » 100
It is recalled, however, that a Gibbs-Duhem tntegration in terms of weight
percents cannot be carried directly under the form cf Equation (111.6).

The conversion relation between the coefficients on a molar basis and
those on a weight basis becomesincreasingly cumbersome with the order. Indeed,
some care is required at the level of the first order (e and e), and as pointed
out by Lupis and Elliott (Reference (13) and Appendix (3)), an incorrect
relationship has been widely used in the literature. But for the coefficients
we are most interested in, namely first and second order ones, the complication

is still quite minor.

lad}

(54

(111.23)
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The derivation is outlined in Appendix C. The results are:

egj) . 0a4}3(:x10°2 { " efj) - (Ml-uj)s (111.25)
i 9.%;.%(12'_" { ol - oo ¢ 0oy *‘fml

+ 04M) 014 ) } (111.26a)
rg 0,4;?10"‘ { M ol - o) D)+ 3 (Ml-Mj)z} (111.26b)

4. Discussion of Sherman and Chipman's Method. Presentation of an
Alternate Method.

(12) of calculating activities

Sherman and Chipman’s semi-empirical method
in a multicomponent system may be reconsidered in view of the above treatment.
The method and its analysis are applied to the particular case of a tern#ry iilus-
trated in Figure (III.4). We seek the value of Iny, at the point (X3,X3). Assume

X, and X3 can be treated as iniinitesimal quantities of the same order. Then to

an approximation of the zhird order:

lnyy = €2,2 X, + ogz)xﬁ + €33 X3 + p§3) x§ + p§2‘3) X2X4 (III.27)
it is also possible to write:

Anv) P = oy k#2808 a0 xy e 08D xy? (III.28)
where X} is the concentration of (3) which would yield: (1nw2)(2) = (lnwz)(j),

To this virtual concentration X4, Sherman and Chipman add the actual one,

such that the effective concentration of (3) becomes now:

X§ = X3+ X} (111.29)



(i)
(Inya) ¢

i=(2)

ES

FIG. .. 4 SHERMAN AND CHIPMAN'S METHOD
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Their calculated value is then:

1n¥2(ca1c.)

Or through Equation (III.28):

3
lnw(caim) =ez,3 X5 ¢ Dg )

Hence:

lnwz - lnwz(calco) = x3 (p§2s3)x2 - 2953) x!j)

This difference is nuli for:

0§23 x, = 20§¥xs
or a21 2. \
e (3258 ) Sxy [ Ll
X2%Ks [ x. o1 S R

which is sacisfied cniy by two values (possibiy imaginary) of Xj,:

= €2$3 (X3 + x%) + pgs) (X3 + x; )2

2
X3 + €3, 2K + 03

19

(I11.30)

(2)

X3 + 205¥Px,x3 (111.31)

(I111.32)

(I1I.33)

the roots

of the equation obtained by elimination of X} in Equations (I11.28) and (IIL.33).

In the case represented in Figure IIl.4, it is reasonable to hope

that:
2 5
( 3" 1nyy [ 3Tiny; \
< 1
\ a3 G .1 VeXpaX: | .o,
or
9 .
29% ) p52,3) ’ §3)
and as X; > X

(1I11.34)

(II1.35)



20

the above difference is expected to be small. It is noted that at least
theoretically, it makes little difference if instead of going from lines
of low curvatures to lines of higher curvatures, one chooses the opposite

way (from lines of high curvature to lines of lower curvature). Then:
2.
R LUSHRTRIIE N1 Ste PR Taes (I11.36)

and as

X3 < X} (1I11.37)
in the above particular case just as gocd an agreement is expected. The only
case where the difference in Equation (III.32) is of the third order (thus

assumed negligible) is when:

, X €2,2
(2,3) - (3) i Cinep e = :
pz ez’ 2 2‘)2 62’ 3 (bin\.e X% 62.3 ) (IIIe 38)
and in Equation (1II.36) when:
5 R 27,3
0%2;3) £2,3 = 29§Z)€2,2 (sxnce'ig = f?)z ) (1III1.39)
)

independently of the actual values of X; and Xj3. These are particular cases,
indeed.
Generalizing this analysis to the multicomponent case is simple: the
method is identical and has only to be reiterated.
Twc important peiats must be noted. First, Sherman and Chipman's
method just adds algebraically the total positive and total negative contri-
(

butions and thus neglects all terms in pzi’j) where (i) and (j) are compomnents

giving rise to interactions of opposite signs. Second, the calculated values
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of the activity coefficient are different when calculated on a weight percent
basis or on a mole fraction basis.

The simplicity of Sherman and Chipman's method is extremely attractive;
we feel, however, that an educated guess of the values of péi'i) would prove
valuable for more accurate results.

Presently though, little knowledge is available on the experimental
values of these coefficients and a certain experience in predicting them is yet
to be developed. It should be emphasized, however, that each time a value for

2) or p§3,4)

p3 © is experimentaily obtained, the exact values of other coefficients

p§2,3) or p§2’4> and p£2’3) are also automatically obtained (Equations III 19

and I1T7.20). In cases where no experimental data are available, the following
approximation may be used for péi’j):
e N 52 2 /
gisj) - (m& s 1/ 371Iny, ﬂ'lz \
P = : s =i === + -
39X 3X, 24 TL2 2
D S i) AN axj
X, =1 L Xy »1 X, +1
0§18 & 81 (I11.40)

A geometrical mean instead of an algebraical one could be used, but the latter
has the advantage of not being zompiicated by a problem of sign and alsc offers
a simple geometric constructisn.

Consider Figure III.5, To evaluate lny;, one adds first:

WM+ a2 e+ dagy P (I11.41)
To calculate pit*d) x (X Equatton (LI1.40) is used in the following way:

X

(1,3) (1),2, 7j
pz X;X, = (0- X ) *r (; R
i%3 S | X, 2 7 Xj



Q is any point on the ordinate axis: C, D,=C D
c—6 +at_).'= PZ“'” Xi X’

FIG. I0.5. CONSTRUCTION OF THE TERM pi"/'x; X; IN THE
ALTERNATE METHOD.

22
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*2 3

X, X o
p§1’j)xixj - BAyl + A5 - @+ 0D (111.42)
1 B
and:
Cav) D + (e @ + pgi'j)xixj «MA+MA +CD+CD (I11.43)

The sign of each quantity CD is the sign of the corresponding
curvature 951) and all contributions are added algebraically. In a sslution
of (m+ 1) component#, there are m(m - 1)/2 terms in péi’j) and m(m—]:) terms
¢f the CD type. Of course, in many instances, the deviation CD from the
tangent at the origin OB may be very small; then the magnified (or reduced)
deviation CD-may also be negligible and the comstruction permits ome to
visualize it.

Cne of the advantages sf the method is its flexibility. When pgi’j)
is known c¢r when a good estimate of its value is possible, one calculates

directly the term péi'J)x X, and omits the two corresponding CD terms.

1y

Another advantage is the fact that whether the procedure is carried
in terms of mole fraction or weight percent, the results are identical. This
is due tc the fact that the conversion relationship between the second order
interaction coefficients is linear (Equactions II1,25 and III.26).

0f course, these advantages shcould not hide our basic ignorance in
using the approximation of Equation (III.40). As often as possible, we must
try to replace in this geometric method, approximately constructed coefficients
by bertter estimated cnes. These better estimated values can be provided by

models of statistical thermodynamics. We shall analyze one of these models

in the following chapter.
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5, Definition of the Generalized Enthalpy and Entropy Interaction Coefficients
Thus far, through interaction coefficients of adequate orders, only
the excess free energy of a solution has been described. As recently proposed

by Lupis and Elliott(la)

, this treatment is now extended to the excess enthalpy
and entropy functions.
In accordance with Equation (III.3), the partial molar enthalpy of

component (i) may be written:

7 n n
gf ez 1® Xp 00X, do X ™ (TI1.44)
1 n n n nz::anjananm j m
2 ny ny
and the partial molar entropy:
np n n
S} = L...5...0 3 Xp ...X3...x ™ (111.45)
n n n nzaaan,auanm J m
2 j m J
where the index j can take any value from 2 to m, and the subscript nj any
positive integer value including O.
m
We propose to call I(i) withn =% n_ an enthalpy interaction
n'Z»;acnjoaanm j’z j
(1) T
coefficient of order n and J with n = £ n,, an entropy interaction
N — nzu-nj“,nm j=2 j
coefficient of order n.
E

E E
Since Fi = Hi - TSi
it follows immediateiy that:
1(1) }(i)
Lo . Q. ..0 ...
- 3 moo 3 m (I1I.46)
37 "m RT R

ey
nz: «:M

Inasmuch as the enthalpy and entropy functions are practically independent of

temperature, the free energy interacticn coefficients vary linearly with 1/T.
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Moreover, as enthalpy and entropy are extensive properties, the
Gibbs-Duhem differential equation applies to the excess enthalpy and entropy
functions. In a manner parallel to that of Section 2, the following relations
are obtained between the enthalpy interaction coefficients.

n, +1

() . (D N %)
InZocanianunm Inz«;nonicaunm m Inz:a’n1+1,aoanm (III.A7)
I n .
=2

and between the entropy interaction coefficients

) +1 ,
J(i) = J(l) - ni J\].) (III@"B)
nge‘;ni-;.nm Nz...n ...np ? . ng.c:,ni+1,;.;nm
j=2

These definitions and relations are now illustrated by applying them
to a ternary system.

Obviously, the first order interaction coefficients will be the most
useful and to emphasize this, a different notation is adopted, just as the

symbol ¢ instead of K was adopted for the free energy interactibn coefficient.

Thus:
aHE
) . i v
“i E ( 35 ) (II1.49)
) J 4 Xi - 1
and:
E
o as
(1) - i ‘
oy =2 (-—8}{. (1I1.50)
j xl el 1
The Equation (III.46) then yields:
o 6D 5(3)
3 i _ i
ei = RT R (IIIQSI)
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The reciprocity relations:

Gg) . (1)
g = nl (I11.52)
and
oij) - cgi) (II1.53)

can be deduced from Equations (I11.47) and (I11.48).
A few of the above results for a ternary system are summarized by the

following equations:
° <
HE = X2H§ + X3H% + ‘%‘ nz’zxg + % n3, 3X§ + nz, 3XX3t. .o

L Xy e (I11.54)
(L)
nz' 3X2X3 +.- =+Lr‘. XZ X3 +: ez (111«553)

E

o
Hz = Hg +* nz;zxz + n2’3x3 +=ca+$1 xz x3 +=ae (III:SSB)

E E*

' n3+l nz n3
Hy = H3 *‘ﬁz’gxz*ﬁg'ﬁ(a +naq"'{1 ——

a )
nz,na n2+n3 I'nz’n3+lj xz x3 +eo€ (IIIQSSC)

Similar equaticns can be written for the entropy functions.
In counecrion with the partial mclar excess enthalpy of a component,

the B8 function is often used. It is defined as:

B = = (111.56)
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Note that:
E{:
(Bi) = H, (LI1.57)
\ xl + 1 s

and as:

8, ,_ f auf m; |
= = , Lot ot — y (11I.58)
oKy axt LN -x,
at infinite dilution:
8y = n, . + & (11I.59)
x1} 1,1 i
1
or:
[ 38,
n R S B : 111,60
1,1 \oAi 1/ -1 ( )
For a binary sciution, Equacion :1iIl. 55a) shows that:
- i
(Bl)xz + 0 = 2 n ’2 (111061)
and we may rewrite Equarion {II1.60) as:
/ 38z 1\
{ - = 2(Bs-B.) 111.62)
\ 3xX; )x2 ) xZ - Q

Simiiar considerations can readily be repeated for the excess entropy

As mentioned before, for practical applications, the use of weight
With this composition

percent instead of mole fraction is often convenient
coordinate, 1:i 15 the activitv cocefficient which plays an equivalent role to
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G3)
N

Yy and eij) is the free energy interaction coefficient equivalent to €

<alog £, )
3% %1 > 100

’

REL

M

Expressing a free energy term as the sum of entropy and enthalpy contributions,

we may write:

2,3 RT log f, s"aef - 14 (111.63)
and
( 3 " \
hij) = __...az ’ (I'.[Iaﬁlt)
L 3% 7 g1~ 100
E
! 3d
ST g \ (111.65)
t \ 9%/ %1 - 100
Consequently:
ne); &)
gr . A - 2
e * I.aRI 7.3k (111.66)
Combining Equatioas (I1l.25), (I11.51) and (II1.66), it can be shown that:
s M, "
a3 o 1004wl (111.67)
A Ml i
but that:
. M M;-M,
(3) . 00 s - i 68
% i00 i N R'TT;_' (I11.68)
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The relationships corresponding to (III.52) and (III.53) for the h

and s coefficients can alsc be readily established:

M

h;i) = 'Tj hij ) (III o 69)
i
and
M M, - M)
sj(i) - _M_ji 51(1)+ 130 oy 1 (ILI.70)
1

Note alsc that the quantities?ﬁ? and‘éf are defined in Equation

(I11.63) and their relationship to Hf and Sf must be developed. At infinite

dilution, £, ~ 1 and v, ® 7;, and since at a fixed temperature the ratio of

i
two activities based on different reference states and compositions coordinates

is a constant, therefore:

yi M
1n yixi = in t1 ZL + In Taa-ﬁ; (II1.71)
Subtracting Equation (11I.63) from its equivalent on a mole fractiomn basis
yields: |
E E E E
H L) ~ T -5 = RI (Iay; - In £)) (I1I.72)
then by substitution of Equation (III.71) into Equation (III.72)
21 v° My
E E E (E i
(H] J{ii) - T (S -3)) RT 1ln ———xi T00 W, (I11.73)



Thus for any selected temperature and metal composition:

E E E°
€y = H - H

and

100 MIXI ) sEa
M, zi i

BSE = B - 23R 10g

6. Conclusions

The widespread use of the first order free energy interaction
coefficient ¢ has already proved its convenience. We believe that che
present data warrant the use of first order enthaipy and entrcpy cceificients
as well as the use cof second order free energy coefficients.
fying concept of generalized interaction coefficients, many experimental re-

sults and empirical nctions may be rigorcusly and concisely expressed.

Under the uni-
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(I11.74)

(I11.75)

Reciprocal relationships between generalized interaction coefficients

(Equations (III.8), (III.43) and (I1X.44)) may be used, either as a method of

Gibbs-Duhem integraticn in a multicomponent system, or, in some instances, as

guides to the estimation of these coefficients. The next two chapters develop

other means of estimation based on stattstical thermodynamic models,and further

illuscrate the use of these coefricients.
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CHAPTER 1V
THE QUASI-CHEMICAL MODEL

1. Introduction
Among the many statistical models currently in the
literature, the "regular solution'" model probably has been the
most widely used. It can be viewed as a simplified version of
the "quasi-chemical'model, which was introduced by Guggenheim(ls)
with considerable success. The quasi-chemical theory was developed
©,7)

for binary solutions, but recently attempts have been made to

adopt the model to ternary solutions. The system of equations
involved does not admit an analytical solution. However, an ana-
lytical expansion of the excess free energy,with respect to the

mole fractions of the solutes, seems to be a most useful approach,
as it yields quite directly the generalized interaction coefficients
previously analyzed.

No attempt will be made here to present the model in
great detail. However, the reader is referred to Guggenheim's
original work(ls) or to the excellent review of Prigogineflo)
Nevertheless, the essential features of the model are presented
in this Chapter and in Appendix ( D), and this study focuses more

particularly on the prediction of the interaction coefficients.

2. Assumptions

The assumptions of the quasi-chemical model, which are
either essential to its construction or essential to our technique

of computation, are as follows:
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a. The quasi-chemical assumes the existence of a rigid
lattice. Thus, it is assumed that the motion of the atoms reduces
merely to oscillations about some equilibrium positions. This is
a rather questionable approximation for liquids.

b. The lattice is treated as rigid. Changes in the inter-

atomic distances, due to changes in composition, are neglected.

VM = vE =0
c. In the excess functions only the configuraticnal energy
is taken into account. The vibrational energy, due to the change

in the frequency spectrum of the atom (i) in an enviromnment different
from the one it would have in the pure component (i), is neglected.
Consequently, the main source of excess entropy is the configura-
tional one and, as it is by detinition a deviation from complete
randomness, its sign will always be negative. The second source
of excess entropy usually taken into account is the '"thermal" one;
it is due to the effect of a temperature change on the bonding
energies. This contribution seems, however, small enough to be
safely neglected in most cases of practical interest.

d. Only the influence of nearest neighbors is taken into
account, and pair-wise interactions are assumed.

e. This study is restricted to dilute solutions, and the

number of nearest neighbors to any atom is assumed to equal

the coordination number of the pure solvent.
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3. Binary System
It is rather traditional, and very convenient, in

statistical thermodynamics to designate components of a

solution by A, B, C, .....M, while in classical thermodynamics,

and especially when using interaction coefficients, the symbols

1, 2, 3,..., are adopted. Here, it is simpler to retain this duality

in the notation, with A corresponding to 1, B to 2, C to 3, etc.
Consider a binary mixture of N

atoms A, N, atoms B,

A B

where NAA’ NBB and NAB are the number of pairs AA, BB and AB,

and Usa® Ypp and Uip their respective energy. < is the coordina-

tion number for A and B.

Summing all neighbors of the NA and NB atoms,
z NA = 2 NAA + NAB (IV.1)
Z NB =2 NBB + NAB (Iv.2)
The energy of the lattice 1s:
Ejace = Maataa * Yas®as * VaaUss
or
E =L anu,, + L zN u,, N, W (1v.3)
latt 2 A AA 2 B BB AB AB
where
u u
AA BB
= - . 4
“aB - YaB 2 (Iv.4)
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At this point, another assumption is introduced. It
may be considered that, if A is the solvent, % ZNA“AA represents
very closely the lattice energy EAA for pure A, but the same

1 .
cannot be said of 2 ZNB“BB’ since up, in the solvent may differ

greatly from u in pure B. Nevertheless, for purposes of

BB

simplicity, Ep, is taken as equal to % ZNgugy. This assumption

will be removed later. Thus:

Erare = Ean * Epp * Nypuyp (Iv.5)
The configurational partition function is:
-BE
latt
Qconf = 3 g(NA,NB,NAB)e (IV.6)
NAB

where g is the number of arrangements of the NA atoms A and NB
atoms B, so that there are, altogether, NAB pairs of nearest
neighbors AB. The contribution of the lattice partition function
to the free energy of the mixture is:

~8N, B¥aB

-kT 1n QConf = EAA + EBB - kT 1n (g g e ) (1v.7)

AB

and subtracting the corresponding contributions for the pure

components:
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-BN, w
F = -kT 1n(z g e OB AB) (1V.8)

No rigorous mathematical formula is available for g(NA,NB,NAB);

its value must be approximated.
3.1 Regular Solution

The distribution of the atoms if assumed to be
completely random; g becomes the classical permutation expres-
sion:

(N, + N_)!
A B
g = - v T (IVv.9)
NA'NB’

and it may be shown also (see Appendix D) that the number N

AB
of AB pairs is then: -
N
Np = Tﬁ-—%-ﬁ-y (IV.10)
A B

Replacing, in equation IV.8, g and N by their values and using

AB
Sterling's formula (lnp! = plnp =-p),it is readily found that:

M

F' = RT(XAln X, + XBln XB) + ZX, X w (IV.11)

A A"B AB

or, with the correspondence in the notation previously

mentioned:

F~ = zxAwaAB = lexzml’z (IV.12)
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3.2 Quasi-Chemical Solution

It is now assumed that the number of configurations
corresponding to a given value of NAB may be calculated as if the
various types of pairs do not interfere with one another. The
resulting expression of g8 and subsequent calculations are given
in Appendix (D).

Ultimately, the model yields:

E
F Z Z 2 zZ,2, 3 _ 2,.1.5 4 5
RT = 35 len(1+x) - KL, o+ 7A x2 ZX (Z+3A)x2 + O(X2 ) (IV.13)
28wy o
where L= e -1 (IV.14)

Using equation (III.7), these results can be expressed also in

terms of the activity coefficients:

w

_ oz 2 2.3 32, .20M.. 4 5

~

10)

Z , _ YA 2 _ 2 3 . 4
lny2 = 2ln(l-n\) ZAX2 + 2A(1+3A)x2 2Z (1+—3—)X2 + O(X2 ) (1IV.16)

The terms lnyé and 2.7 10 equation (IV.15) are readily
?

identified:

lnyj = % 1n(1421) (IV.17)

€0 5 = =2\ (IV.18)
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and eliminating A between these two relations:

. _ 2 £2,2
lnY2 = iln(l - -—;—) (1v.19)

Equatioh (IV.19) is tested in Fig. IV.1 for a wide
variety of alloys. In the calculations, a coordination number
of 10 was assumed. This is a good average for liquids and,
moreover, the curve is very slightly changed by a different
value. The agreement between the experimental values and the
theoretical curve is satisfactory. The fact that many of the
corresponding alloys exhibit positive excess entropies does not
seem to affect, in any marked way, this agreement. This 1is
surprising, because the excess entropy of a quasi-chemical solu-
tion must, in all cases, be negative.

The same test could have been carried out in terms of
the o function. Calcularions yield:

Iny

a; = ——=i7

(1-X37)

2

]
NN

ln(l+-.) + Zfln(1+k)-A}X2 + 3%{1n(1+A)+A(A-l)}X2

10
3

2 /4
+ %{ln(1+k)—A(l-%+ )}x23 + 0(x,") (1v.20)

and, recalling equation (I11.12a:

da

2
) = =
dX2

2,2
X, +0

( + 21ny§ = Z{ln(l+r)=Ar} (Iv.21)

The quantity in brackets 1is always negative and of the second

order in . Thus the slope of a2, Vs X, should be almost null and
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Curve based on the Quasi-Cheemical relation,
log y, = % log (l-—az'-a-) with Z =10

o Experimental point; the number identifies
the system in Appendix E.

]6" Oze

FIG.IL 1. TEST OF THE QUASI-CHEMICAL MODEL
ON VARIOUS BINARY ALLOYS.
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negative for cases of solutions with small deviations from
ideality.

It is to be emphasized that the bonding energy between
two given atoms 1is assumed independent of the surroundings; in
other words, w(or A) is assumed independent of concentrationmn.

The assumption is at its worst for lnyz in which u2’2 is treated
as equal in the solvent and solute, a quite drastic change, indeed,
in the environment., It will be seen that the possible error
arising from this assumption can explain many of the departures
from relation (IV.19). By distinguishing between the energy Uugg,
of the pair BB in the solvent, and the energy UEB of this pair in
the pure component B, some of the impact of this assumption may
be removed. It is necessatry, then, to carry the term:

Z

%y
ANs(Ypp~7. Ypp’

Z N E or % Z
A

1
2 “AYaAYBB ~ "BB

in equation (IV.5) and, consequently, in the expansion of FE/RT,

Let:
o o - ¢ + s ui.) (1V.22)
WaB - “BB 2'%aA z, BB .
and
28w °
AT = e AB _, (LV.23)

Replacing only ln(l+ir) by ln(1+A*) in equations (IV.13), (1Iv.16)
and (IV.17)’takes this effect into account. '
The difference between the corrected value of lnya and

the previous value reported by the curve in Fig. IV.1 is:
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Z.ud ,1] (1IV.24)

- &
=3 [z 1%2,2

[ - o -
1nY2(corr) lny2(curve) 2“2,2

Examination of this equation may qualitatively explain some of

the departures in Fig. IV.l. In Region I above the curve:

Q )
1nYZ(corr) Jlny2(curve)

or, considering the coordination number of the solute and

solvent as nearly equal:

and, since the sign of the energy is negative (the zero of the

energy is taken for atoms infinitely distant from each other):

1

;uz’zg “ [uz'zi (IV.25)

In Region I1I, below the curve, the opposite result is obtained:

luz,,l : iué’z'

Lt 1s possible to make a rough estimate of the value
of ui o from the heat of atomization of element (2) at 298.15°K,
9
assuming that the bonding energy does not change very much with

temperature.

IL 1s not possible ro make a similar evaluation of the energy of

bonding u in solvent 1. But, sinze it is desired only to compare
g ’ . y P

2,2

u, , and ué 2" the following qualitative argument may be given:
’ ’
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The cohesive energy of an element is a function of
the pumber of its bonding electrons. If element (2) enters into
solution in the lattice of solvent 1 of smaller cohesive energy
(thus, with fewer bonding electrons), a part of the bonding electrons
of 2 will be lost to the atoms 1, consequently reducing the strength

of the bonding between two atoms 2. Therefore, if

then

lug ol

and the representative point of the system should be in Region I.
Similar reasoning applies to Region II.

Table IV.! lists some of the systems for which
representative points in Fig. IV.1l lay significanzly apart from
the theoretical czurve. At least qualitatively, the result is
satisfactory, since the :orrespondence between the region and
the sign of AH1 - AHZ is established.

The reason why, in some instances, rthe cohesive
energy of silver and gold is divided by three must be explained.
It is believed(l6) that copper, silver and gold have a valence of
3, by promotion of electrons from the d shell to the p shell.
They keep this valence when dissolved in transition metals, such
as platinum, which provide an environment of d electrons ‘avail-
able for bonding, and thus stabilize this electronic configura-
tion. However, they tend to lose it and acquire a valence of 1

when dissolved in non-transition metals, such as aluminum, where
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TABLE IV.1

Theoretical Explanation of some Discrepancies Observed
in The Application of Equation IV.19

Identification® Solvent Solute

Region* Number 1 2 ARyt AH,t AH,-AH,

I 10 Au - Pb 87.3/3  46.8 -

13 Bi - Au 49.5 87.3 -

26 cd - Na 26.8 25.9 +

37 Hg - T1 15.3 43.0 -

33 Fe - C 99.5 170.9 -

36 Fe - Si 99.5 108 -

II 7 Ag - Cd 68.4 26.8 +

1 Al - Ag 71.5 68.4/3 +

12 Bi - Ag 49.5 68.4/3 +

15 Bi - Hg 49.5 15.3 +

16 Bi - Mg 49.5 35.6 +

20 Bi - Tl 49.5 43 +

23 cd - Bi 26.8 49.5 -

25 cd - Hg 26.8 15.3 +

28 cd - Sb 26.8 52 -

42 Pb - Mg 46.8 35.6 +

43 Pb - Na 46.8 25.9 +

’;""EZ.;IZ;;'I'Z;E'EI'ZSZZZZEZ;Z-Z;;;ZZZIEQI?:-ES'ZR;'QZ;IZQQ'QESQZ"

and below the curve in Fig. (IV.1l).

¢ Each system 1s identified by a number in Fig. IV.l and in
Table E.l1 in Appendix E .

+ AH is the heat of atomization of the solid elements in Kcal/g-atoms
at 298.15°K, or at the melting point, whichever 1is lower.
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no unpaired d electromns are availzble for bonding. In this last
state, only this single valence electron 1s available for bonding,
and comparison with the cohesive energies of the "one electron"”
metdls, such as potassium or rubidium, then suggests cohesive
energies, for copper, silver and gold, of one-third of their values,
when these elements are pure

The same reascning perhaps may explain why the dilute
solution of aluminum in silver (both of valence 3) 1s much better
approximated by the quasi-chemical model than the dilute solution
of silver in aluminum

It must be emphasized, however, that the difference
between the values of the bonding energies uz,2 and ué,z is believed
to be suly one of the reasons for the inadequacy of the model in
many systems. Some of the other reasons are discussed later in
this chapter.

[n view of the difference between 1 and +° , it may
be more significant to compare the results ocver a whole region than
at a point. It is recalled, however, that the above expansions are
applicable only to dilute solutions (1) 1a (2) or (2) in (l). A
rypical case is offered by the Sn-Cd system(l7) in Fig. IV.2. The

values of + =

wioy

- 7 -

x 10 L and 7 x 10° " are chosen to give the best fit
in the dilute ranges The agreement 1s excellent and, 1in fact,
rather surprising in view of the sizeable positive excess entropy

which cannot be acccunted for by the quasi-chemical theory.
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4. Termary System

Keeping the same notation used in the binary system
and, following the same procedure for a ternary system, the model

yields:

- (N, w,+N, w, ~+N_ w, )
M- -lean CE oy e AB“AB” AC“AC "BC BC L (1V.26)
; AB’ "AC’BC J

4.1 Regular Solution

In the case of complete randomness:

(N + N_ + N !
B
g = —A i e (I1V.27)
A'UB NCT

Using Sterling's approximation, it is readily seen that g provides
the entropy contribuction of ideal mixing. Subtracting this contri-
bution, and replacing NIJ by its value 2 NINJ/N in equation IV.26,

the following expression of the excess free energy is obtained:

E
F_ _
RT = ZB(XAXBwAB + xAwaAC+ xBmeBC) (IV.28)
The generalization of this result is straight forward. In a system
of m components:
" TR
= =28 ; [ X X w, . (1v.29)
RT p=1 =1 1) 1]
i#j

Equation IV.28 yields, in particular:

€ = ZB(w - (IV.30)

2,3 2,37 1,2 7 1,3
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4.2 Quasi-chemical Solution

Removing the assumption of a random distribution, a
procedure parallel to the one used in the binary is followed. The
calculations are, however, much more complicated, as they involve
a system of three equations of the second degree with three unknowns.
A direct calculation being impossible, a series expansion, coupled

with an iteration procedure to determine each term of the series,

is adopted, The detailed calculations are given in Appendix (D).

The resulting expression for the excess free energy is:

E

EE .z | z _z 2 _ 2 2
RT = 7 Xpln(lta) o)+ Xgln(l4r) 5) = Fr) HX) 31, 3%3
, z 2,3 .2 2, 2 2
- ZLx2x3 + 2/».1,2 X2 + 2/1’3~X3 + ZuX2 x3(A1’2 + u/2)
+ ZuX,X Z(A +u/2) + O(Xa) (IV.31)
2%3 (A3
where:
ZBwi, uii+u,_
Ao, o= e 3ol withw, = o - 21 (IV.32)
L] ij ij 2
and:
u exp ﬂw1,2+w1,3 w2’3) ( )

5. First Order Free Energy Interaction Coefficient

Using equation (III.14), the expression ofe2 3 in
]

equation IV.31l is easily recognized:

=2 - 2 - ] i [ - 1o .
52’3 Zu Z[exp16@1’2+»1’3 ”Z,ﬂ‘ 1] (1V.34)



which, if the term of the exponential is small (thus, if €5 3 is
?

small) can be approximated by:

ZB8(w

€

2,3 2,3~ “1,2 - *1,3]

an expression already given by the regular solution (equation
Iv.30).
Note, also, that since p - L and A» >-1, the quasi-
chemical model yields: H
€ < 2

L]

Each parameter Aigorwij) may be expressed in terms of
thermodynamic coefficients of the binary 1i-j; for instance,

ZBuul’2 = 1“‘é or A1,2 = - 7

the corresponding binary system being a dilute solution of (2)

in (1). However, for A2,3(Ot w2’3), we are faced with a diffi-
culty: is A2’3 evaluated in a dilute solution of (2) in (3), or
(3) in (2)7 Theoretically, this should make no difference, since
the bonding energies u2,2’ uz’3 and u3’3 were assumed to be inde-
pendent of their surroundings. Practically, it is more realistic
to choose for solvent the component j (2 or 3) which is physically
closer to the solvent (1). In case of no obvious preference, an
arithmetic mean may be adopted.

Equation (IV.34) may, for instance, be rewritten as:

l/Z1
\, (vy v3)
l (';)binir -i J
y J1-1

47
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or:

€ € 1/2
2,3 2 2y
(L - Z’ ) = , (1IV.36)
1 i ii
[ - 37 !
j binary j-1i /
where j=2or 3 and i = 3 or 2. Equation IV.36 may be

preferred, since it eliminates the differences between A° and A
previously analyzed.

As an application of equation IV.36, the values of

€Cd-Pb in Bi, Sb and Sn were calculated using the experimental
data of Elliott and Chipman.(l7) The results are given in Table
Iv.2
TABLE IV.2
Calculated* and Experimental Values of The
First Order Interaction Coefficient €

Solvent Esgfpb(caleulated*) st_Pb(experimental)

Bi 1.4 1.6

Sb 2.5 2.8

Sn 05 0.0

* Calculated by equation IV.36
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The mean value of €., py taken for the calculation is 0.35; in Cd
it is equal to 0.45 and in Pb to 0.25. Noting that Sn and Pb have
more similar properties than Cd and Pb, the value of €cd-Pb in PDb

may be preferred. Then:

ECd-Pb(in Sn) = 0.1

These results show that Weg-pp MY be considered as
nearly constant in the five different solvents: Cd, Pb, Bi, Sb
and Sn. However, this comstancy of w is not expected to be the
general rule in other systems.

Similar investigations of the predictions of 52’3 by the
regular and quasi-chemical solutions have been performed by Alcock

(6 €79 In general,

and Richardson, ) and more recently by Durand.
the agreement between calculated and experimental values 1is
reasonably satisfactory.

Rather than pursue these comparisons here, it seems
preferable to turm to the study of the second order interaction

coefficients, p, which have not yet received any direct attention.

6 . Second Order Free Energy Interaction Coefficient

6.1 The Quasi-Chemical Expression

It is rconvenient to note that equations ITI19 and II17

lead to:

(3) , _ (1) _
Py + 11253’3 1/2 Kl,Z = ¢l,2 (1Iv.37)

Using the quasi-chemical result in equation IV.31:

= - 1/2¢ + Zu(A + u/2) (1v.38)

3,3 1,3
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which may be rewritten as:

(3) _ _ £2,3 £2,3
0y = - l2ey gt =Ty 4+ D)
or.:
3y _ L5 3]2 €5.3 z
= c——— - =
0, 3+ e, - B (1V.39)

(3)

Recalling that Py i1s a measure of the curvature at the origin

of the curve lnw2 at infinite dilution of X, versus X3, Fig. 1IV.3
illustrates the result of equation IV.39. Given the value of the
slope 62’3, the sign and the magnitude of the deviation from the
straight line depends solely on the coefficient of self-interaction

£ To obtain a negative curvature at high value of the slope

3,3°

€y 3 @ strongly negative value of ¢ is needed, while at
’

3,3
(algebraic) low value of the slope, a positive value of €5 4 is
L

needed. Reversal of this effect occurs for e2’3 at about half the

value of the coordination number Z. In addition to Fig. IV.3,

Table IV.3 is given to illustrate the orders of magnitude involved.
The quasi-chemical model also provided an expression

for 0, ?*3 . Equations (III.19, III.7) and (IV.31) yield:

(2,3)

2 €

2,3 + 2@2’1 = - 52’3 + ZZu(A1’2+u/2) (IV.40)

Therefore:

2¢ €
(2,3) _ _ 2,3 2,3
°y = -yt T, , v ) (IV.41)
or:
(2,3) _ F2.3 _
Py = —3*—[252’2 + 52,3 Z) (IV.42)
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6(33)= o
(3
20 Stio eJ=-10
e(33)= =30
all values
of e?’
’I
5(33)= -10
L'z,_a s
> 3
£ o — N
(3),
e(zs)' o} —€3°

-08[— --10
D25
- '.2 — ¢(33)= 'o 6(33)=|o
6(33)= -5
-6 N=333

Calculations based on:

“20 o L("zlﬂ Wz) =[£3]: 5 ’(

3_2Z .
I {

2
| :

o 0.l 0.2 0.3
X3

FIG. IL..3 CURVATURES PREDICTED BY THE QUAS|-CHEMICAL
MODEL



TABLE IV,.3

Predicted Values* of 92(3) by the Quasi-Chemical Model

€

52

. 3,3
2,3 -20 -10 -5 0 2 5 10
-20 70 45 32.5 20 15 7.5 -5
-10 35 20 12.5 5 2 -2.5 -10
-5 21.25 11.25 6.25 1.25 -0.75 =-4.75 = 9.75
0 10 5 2.5 0 -1 -2.5 -5
2 6.2 3.2 1.7 0.2 -0.4 -1.3 - 2.8
5 1.75 1.25 1.25 1.25 1.25 1.25 1.25
8 -2.8 0.2 1.7 3.2 3.8 4.7 6.2
10 -5 0 2.5 5 6 7.5 10

* Calculations based on equation IV.39 and Z = 10
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However, it must be recognized that the prediction of the cross

effect, represented Ly 02(2’3), is equivalent to the previously

analyzed prediction of a curvature represented by 92(3) or 93(2),

since by equation (III.1l9) :

(2,3)

(2)
P2

+ =

£2,3 = 203 »:2,2

The choice of estimating 02(2’3) or 93(2) is a matter of con-

venience.

Before proceeding to test the prediction of these
coefficients on a few examples, it is emphasized that, on one
hand, the experimental values of ¢ are, generally, very unprecise
and, on the other hand, not more than a qualitative agreement is
to be expected for these high order coefficients. However, as
explained in Chapter I[II, even a qualitative estimate of p will

yield a better quantitative estimate cof the activity coefficient.

6.2 Comparison with Experimental Results

As many of the experimental results are expressed in

(3)

weight percent, the conversion relationship between LIPS and
r2(3) (Appendix C) is recalled:
-4
(3) _ 0.434 x 10 2 (3)_ - _ 3
r, 2 M, %, M) (M =Ma)e, +1/2(M) M) 7] (IV.43)
3
or:
230M M, -M, 2
p 3 . 3[102-M e 3 (M. -M,)e (3)] + 1/2¢( L 3) (IV.44)
2 M 2 3 72 1 73772 M,
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It is interesting to note that, in the plot of log f2
versus weight percent of‘component 3, a light element 3 will favor
a pronounced curvature, merely because its mass enters as a square in
the denominator of equation IV.43.

In zalculating cthe second order zoefficients by the quasi-
chemical result in equation IV.39, some of the experimental corre-
sponding first order coefficients had to be redetermined using the
-srrect conversion relationship between ¢ and e (Appendix C). This
study of the comparison between predicted and experimental values
is limited ro the effects of alloying elements on the behavior of
sulfur, oxygen, <carbon, nitrogen and hydrogen 1n liquid irom. A

-oordination number ot !l 1s chosen for the calcularions. The data

71}

are analyzed in detail in the following sections, and the results

summarized in Table IV.4.

6.2.) Sulfur in liguid iron _atloys
i 1 " (12)

Sherman and Chipman's experiments show pronounced curva-
tures :n the plots of lag fS versus weight percent of carbon,
silicen, phosphorus and copper. The effect of manganese 1§ dis-

. . (Mn)
~arded, as the data on rhe self-interacticn Zoefficient £Mn are

1 N ) . (Mn) .
not reliable enough t> calculate a value oL ¢4 by equation

(8)

ficient = was measured

(a]]

1V.39. For carbomn, the reciproczl coe

o

by Fuwa and Chxpma%l%%d found iacger(l2,3) rthan aéC)(6,4)- It may

be noted thar an 1increase 1n the adopted value of eéC) reduces the
experimental value of péC) and increases the predicted one. The

celf-interaction coefricient for phosphorus 1s positive, but its

value :1s uncertain. 1Its effert 1s small, however, on the calculated



TABLE IV.4

Experimental and Calculated* Values of the Second Order
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Interaction Coefficient 02(3) in Liquid Iron Alloys
(3) 2 (3) (3)
Solute Solute _ (H*x _ (3 _ (3 2 0 2 °s

(2) (3) 3 2 -2 (exp) (exp) (calc*) Ref.,

S C 11.7 0.1:3 6.4 0.7 12 3 12
Si 13 0.065 8.1 0.3 21 7.5 12
P (+)? 0.043 6.0 0.10 9.5 2 12
Cu - 5.6 -~0.017 - 4.6 0.05 15 6 12

0 Co 0 0.007 1.6 0.01 2.5 0.2 19
Cu - 5.6 -0.0095 - 2.5 .01 3.3 4.3 19

N Cr 0 -0.045 - 9.6 0.04 7.3 8.4 20
Si 13 0.047 5.9 0.12 9.7 3.7 20
v 3 -0.10 -20.9 0.14 25 13 20

C Co 0 0.012 2.9 -0.01 - 2,7 0.4 18
Cu - 56 0.016 4.1 -0.012 - 4.1 1.5 18

H B (+8) 7 0.050 3.1 0.20 3.8 (-1.2)7 21
c 11.7 0.060 3.8 0.50 8 -1.1 21
Cb (+4)? -0.0023 -~ 1.54 =-0.01 - 5.7 (=2.5)1 21
Cr 0 -0.0022 - 0.4 -0.004 - 0.8 0.0 21
S - 3.3 0.008 15 0.07 5.8 1.3 21

* Calculations based on equation IV.39, with Z = 11
** Recalculated values from Appendix C
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)
value of ¢ (P’, as 1t enters equation IV.39, by multiplying
s y pLy

(cg (P

a positive curvature, although the authors draw a straight line.

- %)!Z which is small. The data for copper(IZ) indicates

The values listed in Table IV.4 are obtained from the. curve.

The comparison between experimental and calculated

" 3 S .
values of ;S( ) 1s satisfactory in all the cases analyzed.

6.2.2 Oxygen in liquid ironm alloys

The effects of alloying elements on the activity of

(19) The only

oxygen was studied by Floridis and Chipman.
procnounced curvarures 1n rthe line log fo versus weight percent
of rhe alloying element occur for cobalt and copper. These

curvatures are very small and uncertain for molybdenum and

tungsten. For rnhis last element, however, it would be surpris-

ing te find an almcst straight line (réw) 0), merely because of

a mass effect In equsztion IV.43, with a value of EO(W) equal to
3.8, the sum Ml(MB-Ml)eo(w} - l/Z(Ml—M3)2 is positive and quite
iarge; to baslan-e 1ts etfezt, Mlzpo(w) should be large and negative,
so that a value of absut -31 i1s required for po(w). Given the
mcderate effect of rungsten on oxygen, &as measured by EO(W)(+3sé),

such a large negative value seems unprobable and, consequently, a

(W)
0

The experimentz! and calculated values for cobalt and

positive value 92f r quite certain.

topper, listed in Tabie IV.4, provide satisfactory agreement.

6.2.3 Nitrogen :n liquid iron_alloys

The effezt 5r alloying elements 9n the activity of

nitrogen in liquid iron was studied by Pehlke and Elliott‘(ZO)
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Positive curvatures seem to be well established, in the case of
chromium, silicon and vanadium, and the agreement with the pre-
dicted values is fair in all three cases. 1In the case of carbon,

(20)

the authors have drawn a negative curvature. The data do not
seem accurate enough to definitely support it, However, it is
interesting to note that the predicted value of pN(c)(+5.3) is

small enough to be offset by a mass effect and the result is a

redicted negative value for r (C)(-O.OZ X 10-2). The values
P N
adopted in these calculations for EC(C) and eN(C) are 11.7 and
7.9, respectively.
6.2.4 Carbon _in liquid iron alloys
18)

The data of Fuwa and Chipman( on the activity of
carbon in liquid ironm alloys are not very precise and, conse-
quently, the scatter does not permit a precise evaluation of p.

It is probable, however, that in the cases of cobalt and copper,
the curvatures are negative. The comparison with the calculated
values shows a much poorer agreement; however, as the magnitude

of the second order effecr is small in both cases, the test is not
very conclusive.

6.2.5 Hydrogen in liquid iron alloys

The solubility of hydrogen in iron was studied extengively

(21)

by Weinstein and Elliotct. In their plot of the logarithm of the
hydrogen activity coefficient versus weight percent of the alloying
element, a curvature seems well established for boron, carbon,

columbium, chromium and sulfur. No data are available on the Fe-B

and Fe-Cb binary solutions to calculate the self-interaction
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coefficients eB(B) and er(Cb); however, values of about +8 and +4

may be assigned, respectively, as rough estimates, from comparison
with neighboring elements in the Mendeleev classification. Com-
paring experimental and calculated values of °H(3)’ the agreement

is poor for boron and carbon. The predicted values of pH(3)
(3)
H

would
become positive only if the interaction coefficients € are above
half the value of the coordination number (% = 5.,5) and, experi-

(B) _ (c) _ ] .
mentally, €4 = 3.1, €4 = 3.8. The agreement is more satis-
factory for columbium, chromium and sulfur.

6.3 Conclusions
An equation predicting the values of the second order

interaction coefficients has been derived from the quasi-chemical

model.
(3) [EZ 3]2 £3.3 Z
) = ———— + e - - v
P2 22 VA [62,3 2] (1v.39)

The values of 92(3)

obtained by this equation were compared with
experimental ones provided by the study of the activities of sulfur,
oxygen, carbon, nitrogen and hydrogen in liquid iron alloys (Table
IV.4), and a reasonably good qualitative agreement was obtained.
Agreement is poorest for elements of small radii. This result was
to be expected, as the lattice model used assumed "substitutional"

solutions rather than "interstitial" ones, although these terms

lose their strict definition in a liquid.

7. Summary and Conclusions

The values of the first and second order free energy

interaction coefficients predicted by the quasi-chemical model
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were shown to be in reasonably fair agreement with the experi-
mental values. The advantage of the quasi-chemical model over

many other models is the simplicity of its application, because

of the restriczed number of parameters to be fixed (EL%ZLL in a
system of m components). There are two assumptions in particular,

which are subject to criticism. The first is the assumption of
pairwise interactions, or of the non-dependence of the bonding
energies (as measured by the parameters w) on the concentrations
of the solutes. 1Its most drastic effect is on the value of the
zeroth order interaction coefficient lny°’, but, by adopting the
reference state of infinite dilution of the corresponding solute
in the solvent, this difficulty may be eluded. 1In practical
applications, the variations of , probably are sufficiently slow
to permit fair prediction of the first and second order free
energy interaction coefficients.

The second assumption is the neglect of the vibrational
contribution, with the consequence that the only excess entropies
taken into account are contigurational - thus, negative. This
contradiction with the experimental evidence of frequent positive
excess entropies is sufficient to cast a doubt on the validity of
the application of the model to the free energy terms. Neverthe-
less, the model is frequently successful in predicting free energy
terms, even though in many cases the contribution of the excess
entropy to the excess free energy is by no means negligible. The
next chapter studies a way of removing these two assumptions, and
partially explains the surprising success of the quasi-chemical
model in the free energy terms for systems with large positive

excess entropies.,



CHAPTER V
THE CELL MODEL

1. Introduction

In Chapter 1V, the usefulness of the quasi~chemical
model was found to be limited mainly by the inadequacy of two
assumptions. First, the bonding energy between two atoms is
treated as independent of its surroundings. Second, all
vibrational contributions to the excess thermodynamic properties
are neglected. The removal of these assumptions will introduce
many complications, but the more accurate a model is to be, the
more intricate it becomes (certainly a consequence of the
empirical "law of diminishing returns"!) At a certain stage of
the development which follows in the next sections, the assump-
tion of pairwise interaction will be reintroduced, but, then, its
application will constitute only a particular case of a more
general model, and the significance of this assumprion will be
appreciated better.

The treatment given in this chapter draws heavily on
the cell model of the liquid state, first introduced by Eyring@2 )
in 1936 and Eyring and Hirschfelder( 23 in 1937. For densities
as high as those in the liquid state, far below the critical
temperature, a certain order may be expected in the distribution
of the atoms. Inter-atomic distances between first neighbors,
smaller than the atomic diameter, are prohibited by large
repulsive forces, and distances much larger are statistically
unlikely. This intrsduces a regularity in the spacing of

neighboring atoms, with a mean interatomic distance of the

60
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order of the atomic diameter. Consequently, it is assumed that
each atom is confined to its own cell, The field acting on e€ach
atom in its cell is rapidly fluctuating, and then may be replaced by
an average field of spherical symmetry.

In the application of this model, we chose to describe
the partition function in terms of probabilities associated with
different configurations in the nearest neighbor shell (the con-
figurations mostly depending upon the number of atoms present of
any one kind) and in terms of the influence of those configura-~

tions on the field of spherical symmetry acting on the central

atom.
2. Partition Function of a Binary Solution

The partition function of a binary solution of NA atoms
A and NB atoms B is approximated by the following formula:

A B -E/kT
e

Q = 9, qg ig (V. 1la)

9, and qg are the average partition functions of the atoms A and B.
The summation is extended over all the possible levels of the con-

figurational potential energy E,and g is the degeneracy of a level,
or the number of possible arrangments of atoms A and B, correspond-
ing to the same value of the energy E. The maximum term method(g)
(classical approximation in statistical mechanics, and already used

in the quasi-chemical model - Appendix D ) allows the replacement

of the sum by its maximum term:
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Ny Ny

- f
Q=gq, “a g e E/T

(V.1b)

In the zell theory, (10) 9, and qg may be expressed as:
va e h3 va e h3

q H Qg = —375 (v.2)

A (2mkm) 32 B (2mykm)?/?

where m, and m, are the masses of atoms A and B, h is Planck's
constant, and v the "free volume". The main feature of q is that
it is proportional to Ves which depends on the composition of the
solution. The constant of proportionality disappears in the expres-

siocn of the excess properties. An analysis of the term Ve is given

in the next section.

3, "Free Volume'

The interaction potential ¥, between a given atom and all
other atoms, is assumed to be spherical and a function of the position
r in the cell; the origin r = 0 is located at the minimum of v,

i.e., at the equilibrium position. The probability of observing
the central atom in a given element of volume is not uniform

throughout the cell, but must be obtained from a Boltzman factor.
If w(r) = v(0), the "effective" volume occupied by the atom would

simply be:

However, with y(r)-v(0) = 0, v is replaced by:

o~ (U (r)=v(0) ] /KT, (V.3)

<
[}

n

[
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Under the simplifying assumption that the potential ¥
of an atom is parabolic with respect to the distance r, it is

shown in Appendix (F) that v, may be approximated by:

2 -3/2
1 2%
ve = [ToT (arz)] (V.4)

Note that the compressibility x is equal to -% 2% , or by
OE
expressing p as “3v ¢
1 3 3%E
- L . N M- (V.5)
X v 3v2

In the calculations used to establish the bonding energy, the
energy per atom is obtained as a function of L defined in such

a way that:

4 3
v =3 nrs (V.6)
Therefore:
.2 2
1 1 s E ) 1 3 Y
Y = Tzer. (T 2) 7 Tzer ¥ 2 (v.7)
s 3 s ar

and Ve is thus proportional to X3/2~

v, may aiso be related to an Einstein's characteristic

f

temperature since:

2 172
_ hy _ 27h £ _ 2rh 3"y \
8 S =% w2 (v.8)
k ar

where v is the vibrational frequency of the corresponding harmonic

oscillator and f the force acting on this oscillator.
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These results may be summarized by expressing the pro-
32 -3/2 2 -
—J) X3/ s O 3=

portionality of the following terms: q, Ves ( 2 ,
or
3.0 3%y 3
dlng = dlnv_ = - $dln(—=) = =dlny = - 3dlne (v.9)
f 2 3]._2 2

4. Probabilities Associated with Different Configurations

Different configurations of atoms A and B are possible

around a central atom A or B. The probabilities assigned to each
of these configurations has to be examined. It is reasonable to
assume that g and E, determined by the maximum term method, will
correspond to these probabilities.

In a random solution, where the configurational entropy
1s ideal, the probability rfor an atom A to be surrounded in the

nearest shell by i atoms B and (Z-i) atoms A is Cé XAZ-lXBL, where

C; is the combinatorial factor TZ?%%TTT' In a non-random solution,
a correction factor £(A,iB) must be introduced. The following

notation is adopted. The first letter in the parenthesis identifies
the central atom. The second term identifies the number of B atoms
among the Z nearest neighbors. As the value of f is relative, it is

possible to choose:

f (A or B, 0B) =1 (v.10)

f may be, for instance, a Boltzman factor:

£CA,iB) = exp (4% kD) (V.11la)

£(B,iB) exp(-UBiB/kT) (V.11b)
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A B
h
where UlB (or U1

surrounded by i atoms B (and (Z-i) atoms A), relative to the state

B )is the energy of the central atom A (or B) when

where it is surrounded by OB or all atoms A. It is not necessary,
however, to specify at this stage the value of f(A,iB). 1Its main
feature is that it is independent of the concentrations of A and B
in the solution.

The probability associated with the configuration (A,iB)

becomes:

ct x, %"ix_tr(a,18)
A Z A B
Pip ~ P (V.12)
where P is a normalizing factor:
R A
P=,; C,X X, f(A,1B) (V.13)
{20 2 7A B

since all the probabilities PiB must add to 1.

A series expansion of p?B » with respect to XB' yields:

Pog = l-ZX £(A,1B) + ZszifZ(A,LB)-Z;if(A,ZB) - f(A,lB)S + 0(x,%) (v.16a)
s = ZX£(A,1B) - 2x,2£(A,1B) [2£(A,1B)-1] + 0(X,>) (V.14b)

pyp = HEL x Zr(a,2m) + 0(x,”) (V.14c)

p?B is obtained 1n a parallel way. Its expression is identical to

that of ﬁiB‘, after replacing f(A,iB) by f£(B,iB).
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3. Excess Enthalpy and Vibrational Entropy

A simplifying assumption is now introduced, which will be

reconsidered in section 8., The correcting factors f are assumed

to be practically independent of the temperature. As:

F = - kT 1In (V.15)
or:
_ NA NB
F = E - T(klng + klnqA g ) (V.16)
therefore:
H=TEF (V.17)
NA NB
S = k(1lng + lnqA ag ) (v.18)

2.1 Excess Enthalpy

H may be expressed as:

1
H-E‘:-
2Ai

p. U (V.19)

U?B (or UfB) is the energy term defined in the previous section.
It is equal to the change of rthe Potential energy of the central
atom A (or B), when i atoms B are substituted for i atoms A in a
first shell of all A atoms, The factor of 1/2 is introduced to
avoid counting twice the bonding energies.

The excess enthalpy is obtained by subtracting the con-

tributions of the pure components A and B.

E o r - = g-4 1
H E-X,E,-X E = E-3 X,Upp = 7X5U (V.20)
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and, by equatioms (V.19) and (V.20), HE may be expressed as:

E_ _ 1 B _ A z, 2 B

3

2 A Z-1.. A
- 28t (A, 1)U, + 55 f(A,ZB)UZB} + 0% (v.21)

5.2 The Excess Vibrational Entropy

The entropy of the solution has been identified as

Ny B
S = k(ln T + ln(q, “qq )] (v.18)

It may be seen that the configurational entropy arises solely from

the term klng. In an ideal solution, it equals:

(N

+ NB)! N N
klng = kln

A
=-k (N, 1n
A NA+NB AtNg

A
. !
NA NB'

and another expression was obtained by the quasi-chemical model
(Appendix D). Therefore it 1s possible to distinguish between

the configurational and vibrational entropy:

Sconf = k ln g (V.22)
N N
_ A B

Soib = k{ln Q) * In q(B)f (V, 23)

Among the NA atoms A, p?BNA are in the configuration (A,iB) associated

with a value cf 9, equal to q?B= Thus:
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Z
A A B B
0p ip Imajp + Np 120 Pyp 1ndy] (V.24)

[ e ]

Note the similarity with equation V.19 for the enthalpy; the
parallelism is pursued in obtaining the excess vibrational entropy,
by subtraction of the contributions of the pure components. For

a solution of 1 mole:

E _ A A A < B By _ B |
Svip = R x| 2 Piglndyp) - 1“qosj * RXp &iéopiBln%B) Indzg )

i=0
or:
E
S A A
R - Xa o Pypflnayy + Xy | pyélngy - Xpélng,, (V.25)
i=0 i=0
where: qA qB
A _ iB . B _ iB
61nqu = ln—z— and olnqu ln—g— (V.26)
08 93

and, replacing the probabilities p?B and p?B by their series expan-

sion with respect to XB’

< b

o

o . B _ A 2 B
= XB[GlanB Zf(A,lB)élnqlB} + ZXB {f(B,lB)&lnqlB

2 A Z-1 A 3
- Z2f (A,lB)Glnq1B + = f(A,ZB)GlanB }+ O(XB ) (V.27)

The striking similarities of the expression of HE and Siib

(equations V.21 and V.27) will be exploited now.
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6. "Quasi-Regular Solutions"

In a random solution, the factors f are equal to 1. The
regular solution theory assumes, in addition, pairwise interactions
to compute the energy terms. Applying these assumptions here

immediately yields:

Ujpg = 1(uyg = uy,)
v e i(u. - ) = i(u,. - )
iB BB Y5A BB ~ YaB

Thus, HE becomes:

E__1 - - -
1= XB[Z(UBB uap T (ugp UAA)j

Z
+ E{(UBB - uAB) - Z(uAB - uAA) + (Z-l)(uAB-uAA)}

or, after simplification:

H™ = ZXBwAB - ZXB WaR = ZXAXBmAB (v.28)
where:
u + u
_ AA BB
Wap = Upp- 5 (v.29)

which as expected is the result of the regular solution theory.
It is now proposed to adopt an assumption of pairwise

interactions for the entropy, as well as for the energy. lnq?B is
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the relative change occurring in the characteristic vibrational parti-
tion function of atom A, when surrounded by i atoms B and (Z-i) atoms
A. Under the pairwise interaction assumption, it is then possible

to write:

A . s A
Glnqu = i olnq1B (V.30a)

and

B B
élnqu 1 51nq1B (V.30b)

Therefore, equation V.27 becomes:

E B _ A 2 B A Z-1 A
- XB(Zélnq1B Z61nq1B) + ZX, (61nq1b-261nq13+—3— 261nq13)

Svib

or, after arrangement:

E _ A . B
Seib = ZXAXB(GlnqlB - °1nqlB) (v.31)
Let:
_ A B
Typ = R(Glnq1B - 51nqlB) (v.32)

Then, equation V.31 is rewritten:

Svib = ZX3X3Typ (V.33)

The quasi-chemical theory shows, in particular, that

the configurational excess entropy is of higher order:
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Therefore, in sufficiently dilute solutions, the configurational
contribution may be neglected and SEib assumed to represent the

E
roral excess entropy S :

E E
sT = S“b = ZXAXBm-AB (V.34)
and, consequently:
FE = 2X,X_(w, . - Tw,.) (V.35)
A"'B " "AB AB’

The same result may be expressed in a slightly different way. Let:

Wag = "aB YaB (V.36)

Then, equation V.35 becomes:

E T
3 = '.4 & IYg - . 7
E AKAKB AB(1 ') (V.37)
AB
Seztion 7 examines whether "AB is a physical constant
* or a parameter. If :t can be predicted with sufficient accuracy,

then this model beromes a >ne-parameter model which has rthe simpli-
city of the regular solution, but with rthe addirional important
advantage of predictting correctly excess entroples.

This single parameter model UTaAB =+) may be designated
by the name of "First Quasi-Regular" model, and the two-parameter
model (which identifies AB as an adjustable parameter) by the name
of "Second Quasi Reguiar" model. Actually, in practical applica-

tions, the distinction between rhese two models is a matter of

convenlience.
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These results may be generalized, readily, to a system

of m components:

E T T T
F o= LooZXXoe (1 - ) (v.38)
i=1 =1 i 1] 1]
1#]
E m m
H = ] LXK w (V.39)
i=1 j=1
itj
and
E m m mi.
s =} §oozx x (=D (V.40)
bt I ivj ..
i=1 j=1 ij
i#]
where:
u + u
- oo =ii i _ A _ syB
0y Uy 5 (U7, = 8U Q) (V.41)
and:
(V.42)

W, .
- —id . - A R B
Tij mij with wij R(SlnqlB olnqlB)

For a "First Quasi-Regular Solution", all the Ty, are equal to T,
while for a "Second Quasi-Regular Solution" all the - may be

different.
They

The simplicity of these two models is attractive.

introduce some critical assumptions which, however, are not un-

reasonable. An analysis of the consequences of these models and a

comparison with experimental data are made in the context of a more

general study in the following section.
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7. Correlation Between Excess Enthalpy and Excess Entropy

Comparing equation V.21 and V.27, one sees immediately

that it is possible to pass from the expression of HE to that of

s§ib 1.A A 1 B B
R DY the mere change of 20.p tO Glnqu and 3UiB to Slnqu. It
is always possible to write:
LA _ _ A A
2UiB = Rrip dlnqu (V.43)

and, since the changes 6lnq are expected to be small, equation V.9

yields:
, A
5 (2L 5
LA _ A A . _ 3R A ar’ iB! 3R $Xim
2Uip = Rryp Slnqyy 2 TiB 229 A 2 4 (V.44)
(
22 OBJ 0B

If the comnstant ??B is independent of i, this means that

a change in the configuration around the central atom A is reflected
by a proportional change in the compressibility or, in other words,
the "depth of the potential well" is proportional to its curvature.
In a dilute system (thus, for i small) ??B and T?B may be reasonably

assumed to be independent of i and consequently:

A
iB

A LB B
Rrydlngfy | SU s = Rrpslng g (V.45)

1
2U 2°iB
In the expressions of HE and Ssib (equations V.21 and V.25), the

terms involving a central atom A may be separated from the terms

involving a central atom B:
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E E E
HE - i
Heay *+ Hig) (V.46)
and
E _ _E E
Seib = Svib(a) t Svib(B) (V.47)

Therefore, from equations V.19 and V.24, it may be seen that:

E _ _ (E . wE  _  GE
Heay = "aSvibca) 3 Bigy) = "BSvib(B) (V.48)
and
E _ _ (E E
B = maSuibca) * "85vib(B) (V.49)

The ordering factors f were assumed to be practically independent

of the temperature in the two previous sections (6 and 7), and also

in this derivation. With the following notation:

NA NB
9 = q, Q9 - (contributions of the pure (V.50)
components A and B)
lng = log ~ lngideal = lng-NAlnxA - NBlan (V.51)

the vibrational and configurational entropies were identified

readily as:

S,4p = k In q (V.52)
E
Seong = k 1n & (V.53)

and the excess entropy of the solution was:
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E E E
S™ = Svib + Sconf (V.54)

with the removal of the assumption that f is independent of T,

another term is now introduced in equation V.54:

E _ (E E 3lng , dlng, _ 2E|
s Svib ¥ Scont +{FT[ st t T | T 9T (V.55)
or:

sE - sE E (V.56)

+ +
vib Sconf Scorr

Equation V.55 was obtained through relations V.16, V.15 and the
following thermodynamic formula:
E 3FE

s = - =T (V.57)

It is obvious that the term TsEorr is now to be added to the previous

definition of HE (equationV.49 ), so that:

E E E E
= ,S0ipca) T TBSvib(e) ¥ TPcorr (V.58)

The two proportionality constants T, and tg are not
expected to be equal. However, the variation of r with the nature
of the central atom (A or B) may be of less importance than the

variations of U and 6lnq, with changes in the configurations of the

atomic shells, and, comsequently, 1t 1s reasonable to assume:

R (V.59)
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The term Sconf is expected to be much smaller than Svib and, as
the order of magnitude of t will be seen in section 8 to be com-
parable to the temperatures T usually considered in liquid metallic

solutions (1000 to 2000°K), it follows that:

E | E E E

i T(Svib(A)-"gvib(B).“Scolrl.’) (V.60)
and
E _ E E
o= T(Svib + Scorr) (V.61)
or:
E E E
H = (ST - Sconf) (V.62)

It may be noted that this last result was also obtained in a

different way, by the assumption of pairwise interactions (section
7). Important consequences may be deduced from the proportionality
expressed in equation V.62, but a preliminary result must be estab-

lished first.

An expression for the excess configurational entropy is
not developed in this study. Instead, it is reasonable to adopt the

quasi-chemical result derived from equations 1V,13 and y,57 .

2

AB 2 3 V.6
X7 ) xB + 0(xB ) ( 3)

E w

conf

_Z(

With this expression of ssonf’ it is noted that the contribution of
E E? o .
Sconf to the zeroth order interaction coefficients SB and lnyB is
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null, since there is no linear term with respect to X in equa-

B

tion V.63. Its contribution to the first order interaction

coefficient is small, since it involves the square of ¢

¢ 2
2,2(conf) w
—_—t—— = . enname
R ZZ(RT) (V.64)
O2,2(conf) is to be compared to 52,2, since:
2,2 92.2
£ = —=al | £fa2
“2,2 RT R . (V.65)
But, by the quasi-chemical:
- 2Zw
2,2 T < RT (V.66)
Thus:
G 3
“2,2(conf) - - 2.2
R €2,2 ° a7 (V.67)

and, therefore, may be neglected, since it is very

°2,2(cont)

oftem much smaller (Z : 10) than the terms to which it must be

compared. It makes little difference it it is the quasi-chemical

expression of £9 99 which is retained in equation V.66, instead of
»

the quasi-regular expression, as this does not change the orders of

magnitude involved. Consequently, it may be concluded that the

E

proportionality of HE and S° (instead of ST - St e

) is valid up to

and including the second order term in XB.

H™ - S (V.68)
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or

FE o= wB(1 - 1/0) (V.69)

Extension of these equations to multi-component systems is straight

forward.

If a relationship is found between the zeroth and first

order enthalpy interaction coefficients:

ew®, o mE L, o, a0 =0 (V.70a)

Then, because of equations V. 68 and V.69, the same functional rela-

tionship must hold for the entropy interaction coefficients:

E€ E°
t(Si y e Sj s Tgge v ciJ, cee) = 0 (V.70b)
and the free energy interaction coefficients:
f(lnv;, Cee lnv;, €iq0 oo sij’ cee) =0 (V.70¢)

In fact, any one of the tree equations (V.70) yields the two
others.
From equation V.37, it may be shown that the '"quasi-

regular" model yields:

= - 2H (V.71a)
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- - E®
02’2 = ZS2 (V.71b)
and
€2,2 %~ 21ny (V.71¢)
Also, from equation V_ 38:
E: E.‘a E-
n = (H. ) - (H + H )
2,3 in (3) 2 3 wn (1) (V.72a)
0, 4= (S5 ) - sy e st (V.72b)
! in (33 in (1)
£ = (lay, ) - (lay,® + 1lny,") (V.72¢c)
2,3 2 in (3) 2 3 in (1)
where all the terms on the right are binary terms. Chapter IV showed

that the approximations of the regular solution theory and the quasi-
chemical model, as expressed 1n equations V.7la, V.7lc, V.72a and
V.72c, were reasonably successful. However, it was not understood
why these approximations were still successful, when applied to
systems exhibiting large positive excess entropies. The reason is
now clear. The parameter invoived, w, was improperly identified in
terms of the physical properties to which it is related and, in view
of the findings of this chapter, should be replaced by w(l - T/1),

this change leading to a better evaluation of the entropy.
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8. The Proportionality Conmnstant <t

The importance of an a priori estimation of t has been
noted already. In dilute solutions, it would permit the evaluation
of the enthalpy and entropy contributions from the free energy data
or, inversely, would permit the evaluation of the free energy function
from enthalpy data. In particular, it would allow the use of the
simple first quasi-regular model instead of the more complicated
second quasi-regular solution.

As shown in the previous section, [ measures the corre-
lation between two eftects: a change in the energy and the corre-
sponding change in the compressibility. Is this correlation strongly
dependent on the nature of the atoms involved? A partial answer to
this question may be obrained from Fig. V.1, where ch is plotted
versus Sgb for a wide variety of liquid solutions and disordered
solid alloys. The zeroth order interaction coefficients were
chosen, to eliminate the contribution of the configurational excess
entropy. In spite of a considerable scatter (due, certainly, to
questionable theoretical assumptions, but probably also to large
experimental errors), the correlation is well established, indi-
cating for r a restricted range of permissible values.

Quite generally, an increase 1n the temperature tends to
bring a system closer to 1deality. Intuitively, T then may be con-
sidered as the hypothetical state at which the system would become
ideal (FE = 0). A value of 3000 + 1000°K :s then suggested, which
is within the permissible range of Figure V.l. The consideration
of this hypothetical state, however, is only an appeal to intuition,

and is not supported by any theoretical ground. Of more interest is
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the possible application of the electron theory of metals. As

) it should

shown by the calculations of Blandin and Déplantéfz4
be possible to limit the variation of ' and to distinguish certain
patterns by considering, for example, the effects of differences in
valence between solvent and solute, or in considering the effects of
different solutes on the same solvenr,

This last idea is strongly supported by the empirical

(25)

correlation of Chipman and Corrigan between first order free

energy and enthalpy interection coefficients in termary solutions.

Plotting s(g) versus n(;) for different alloying elements (i), the

authors accommodate, with little scatter, a straight line passing by
the origin. Note that the smaller the scatter, the more constant 1s

+. According to the analysis of this chapter, the slope of this

straight line is equal to:

£0.4 ng g(L - T/T)
= RT

2,1

« 1 — = 1& .4 (V.73)

It is simpler, however, to use the reported values of Toz i/n2 i
? ?

since

—1|v—3

T°2,i/“2,i (V.74)

The calculated values of - are shown in Table vV.1l.

Except for the case of the solubility of hydrogen in
liquid aluminum alloys, where the values are uncertain, all the
values of r are within the range of 3000 + 1000°K.

From all these experimental results, it seems possible,
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TABLE V.1

Calculated* Values of r in Some Termary Alloys

* %

Group I,°K T°2l;”‘zli T
Fe-N-i liquid 1873 47 3900
Fe-N-i solid 1473 .66 2210
ln-S-i liquid 1673 .69 2390
Fe-H-i liquid 1865 .66 2800
Al-H-i 1liquid 1175 . 767 15507
* Calculated by equation V.74
*k Values reported by Chipman and Corrigan(25 )
therefore, to consider - as a constant which value has to be

selected, not for a particular solution but for a class of solutions.
Interesting perspectives should then be opened, one of which would

be the use of the "first quasi-regular" model for dilute solutions.

9. Conclusions

The Regular Solution model may be considered of a special
case (for t =x) of the quasi-regular model. The superiority of the
latter lies in the correct prediction of the excess entropy. In
particular, the model explains the inconsistency of the quasi-chemical
predictions which are fair for the free energy terms, but very un-
satisfactory for the excess entropy terms. Its simplicity evident-

ly has the advantages, as well as the drawbacks, of the Regular
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Solution model. Both models apply best to dilute solutions.

For concentrated solutions, and more accurate results,
many refinements are needed. Reference must be made to the general
form of the model which expressed the thermodynamic properties of
the solution as the weighted sum of relative changes in some related
physical property, these changes being caused by variations in the
configuration of the nearest neighbor's shell. The assumption of
pairwise interaction gave a very simple form to the otherwise cumber-
some expression of these changes, but it also over-simplified the
description of the phenomena involved. It is probable that the use
of even a simple funztional dependence of these changes on electron
concentrations will result in much better agreement. In that re-

spect, Engel's correlations(ze)

seem particularly indicative. Also,
it may be noted that the number of possible configurations is finite,
so that the series expressions of the excess thermodynamic proper-
ries are also finite. Different coordinarion numbers for the solvent
and the solute may be assumed, without complications in the expres-
sion of the probabilities asoociated with these different configu-
rations (equation V.12). All these possible refinements indicate
that the approach described in this chapter to the study of liquid

metallic solutions may, very well, bring further useful results for

the prediction and interpretation of thermodynamic properties.
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CHAFTER VI
CONCLUSIONS ON THE THEORETICAL WORK

The introduction of generalized interaction coeffi-
cients permits a systematic and convenient analysis of the
effects of alloying elements on a particular solute. The
mathematical definition of these coefficients is particularly
suitable to their study, by means of statistical models, since
in many of the models the closed form of a function is analytically
impossible, whereas the series expansion of this function is
readily available.

An investigation of the chemical theory shows that the
first order free energy interaction coefficient is satisfactorily
predicted by the "Regular Solution" and "Quasi-Chemical"” models,
and that even the second order free energy interaction coeffi-
cient 1s qualitatively accounted for by the quasi-chemical theory.
However, these models are very inadequate in their prediction of
the excess entropy. This discrepancy may be explained by another
theory, the outline of which is derived in Chapter V, essentially
from the cell model. This proposed theory improves on the quasi-
chemical one, by a better prediction of the excess entropy, and
also may offer a better description of a liquid metallic alloy.

(27,28,29, 24) of the

There is growing evidence in the literature
dependence of the thermodynamic properties of a metallic solu-
tion on electron concentrations. ILf known, these electron

concentrations could be taken into account easily in the proposed

model, or, inverseley, experimentally observed thermodynamic
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properties may bring some valuable information on electronic
structures. In Chapter II, it was mentioned that, as the
electron theory becomes more refined, it will resemble the
chemical theory more and more. It is not surprising to observe
that, as the chemical theory becomes more refined, it will also
resemble the electron theory more and more. Evidently an accurate
description of a metallic solution should include both aspects.
A great deal of experimental data is needed to system-
atically explore these theories and, in particular, to study the
partition of the free energy into enthalpy and entropy terms,
which is so crucial to the test of a model. The next chapters
present a modest contribution to our capital of experimental

observations.
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CHAPTER VII
OUTLINE OF EXPERIMENTAL WORK

Solubility measurements are usually fairly sensitive
to temperature changes, and it was felt that an investigation of
the solubility of oxygen in liquid silver alloys could yield data
on the enthalpy and entropy interaction coefficients, as well as
on the free energy interaction coefficients.

One of the drawbacks of the silver-oxygen system is the
restricted possibilities in the choice of the alloying elements.
Only those few elements which have an appreciable solubulity in

liquid silver and, in addition, have a sufficiently low affinity

for oxygen (in order to avoid the formation of an oxide) could
be used. Consequently, this investigation is restricted to the
interactions of oxygen, gold, platinum, palladium and copper with

oxygen in liquid silver.
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CHAPTER VIII
LITERATURE SURVEY

In gas solubility studies, the fact that unusual amounts
of oxygen are dissolved in molten silver, and that there is a
spattering evolution of oxygen upon solidification of the silver,
was well known since the beginning of the 19th Century. More
recently, however, little work has been done on the solubility of
oxygen in liquid silver, although a sizable amount of work was

performed on the solubility of oxygen in solid silver.

1. Solubility of Oxygen in Solid Silver

The first thorough investigation was conducted by Stacie

(30)

and Johnson. They indicated a pronounced minimum at 400°C in

the curve of the solubility of oxygen versus temperature. No

satisfactory explanation was found. Recently, Eichenauer and
Mﬁlleésl) redetermined the solubility of oxygen and observed lower

values with minimum at 400°C. They represent their data by the
equation:

2593 . 1
T

log S = - 0.597 - + 5 log P (VIII.1)

where S, the lattice solubility of oxygen, is given in cubic
centimeters of oxygen per gram, the temperature, T, in °K, and
the pressure, P, in Torr. They proposed that the anomaly asserted
by Steacie and Johnson was caused by surface adsorption, as the
silver used was in the shape of thin foils.

A subsequent 1investigation by Podgurski and Davis(32)is

in close agreement above 500°C with the results of Eichenauer and
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(31
and Miller. The equation proposed to describe the oxygen
solubility is:

log 5 = - 0.840 - 2230

+ % log P (VIII.2)

where the units are the same as in equation VIII.l. The authors
studied the oxidation of copper in silver and deduced that Steacie
and Johnson's results are more likely accounted for by the oxi-

dation of trace impurities.

2. Solubility of Oxygen in Liquid Silver

Data on the oxygen in liquid silver, was collected as early
as 1819 by Lucag33) and 1820 by Chevillotfah) The century that
followed saw many other investigators, but their work remained very
qualitative in nature, so we shall just mention GrahaéBS) in 1866,
Dumas(36)in 1878, Braune£37) in 1889, Neumaﬂ38) in 1892, Heycock
and Nevillé39)in 1895, Holborn and Day(AO) in 1900, Berthelot(4l)
in 1901, Richards and wells (42) in 1906, and sieveres(#3)in 1908.

The first thorough quantitative investigation i1s due to Sieverts

(44)

and Hagenacker in 1909. During approximately the same period,

Donnan and Shaw(45)

performed a similar investigation, but deferred
the publication of their preliminary and confirming data, due to
the simultaneous completion of Sieverts and Hagenaeker's results.
These results, which form the basis of the presently accepted

high temperature portion of the silver oxygen phase diagram

compiled by Hansen546) are summarized in Table VIII.J.
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TABLE VIII.1

SIEVERTS AND HAGENACKER'S DATA FOR THE SOLUBILITY
OF OXYGEN IN LIQUID SILVER

P, (mm Hg)

103/7 k7! 92 %z 0 1 + log K'*
0.8025 752 0.3039(?) 0.4850(7)
0.7709 760 0.2927 0.4668
0.7418 760 0.2769 0.4427
0.7418 760 0.2752 0.4400
0.7152 755 0.2634 0.4208
0.7152 359 0.1848 0.4301
0.7152 37 0.0629 0.4551
0.7418 1203 0.3522 0.4474
0.7418 488 0.2230 0.4450
0.7418 346 0.1905 0.4511
0.7418 209 0.1541 0.4685
0.7418 150 0.1323 0.4744
0.7418 128 0.1164 0.4530
0.7418 39 0.0623 0.4401

* K' = ZO/Vpo2 and PO, 1s in atmosphere

At 1075°C (10%/T = 0.7418), the mean of log K' is 0.45Ll4
and the standard deviation 0.0116

(a7

Recently, Jchnstone determined the depression of

the freezing point of silver under OXyge€n pressure up to l47

48)

atmospheres. Previous work on this subject by Allen( ranged

up to 13.9 atmospheres.

(49) studied the diffusion of

Mizikar, Grace and Parlee
oxygen in liquid silver. Their diffusion coefficient 1s calculated
using the oxygen solubility results of Sieverts and Hagenacker and

Donnan and Shaw, whose results for the oxygen concentration at one

atmoshpere are represented by:

1.095 (VIII.3)

>o

(=}
[
|

log



In the calculations of the diffusion coefficient D, it may be
noted that D appears as a function of the square of the oxygen
concentration, and that an overestimate of the oxygen solubility

leads to an underestimate of D.

91
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CHAPTER IX
APPARATUS, MATERIALS AND EXPERIMENTAL PROCEDURE

1. SIEVERTS' APPARATUS

The Sieverts' apparatus used in this investigation is shown in
Figure IX 1. 1Its construzt:ion i1s described by Cariléso) Many modificacions
of the apparatus were made during the program reported in this thesis, the *
most important one being the deveicpment of a new reaction chamber.

The most pertinent detaiis of the apparatus are described under the
following headings:

1.1 Gas Purificarion Trains

1.2 Vacuum System

1.3 Measuring instrumencs

i.4 Heating Uniltc

i.5 Reacztion Chamber

1.6 Refracrories

1.7 Deyice Zor Dropping the Alloying Additions

1,1 Gas Purificstion Trains

The argon used to measure the "hot volume" was purified by first
passing it through a zoppar gauze furnace, then cver anhydrone. The oxygen
was passed through suzceszive towers ofi drierite, anhydrone, palladinized
asbestos peliets at 100“C, ascarite, anhydronme again and finally through a
butyl phthalate bubbler.

1,2 Vacuum System

Vacuum of a few microns of mercury was obtained with a mechanical
pump. No diffusion pump was added because the rate limiting step in the ewvacu-
ation of the system was the rate at which the charge degassed, rather than the

evacuation rate provided by the pump. Morecver, at high temperatures, pro-
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longed exposures to low pressures were undesirable because of the evapo-
ration of the silver. It may also be noted thar the absence of leaks was
the most important consideration, as the system would be isolated from the
pump after evacuation.

1,3 Measuring Instruments

a. Manometers - Three different mercury manometers were used. The
first had an open end to the atmosphere and was used throughout each rum.
The second had a closed end; absclute values of the pressure ranging from
0 to 150 mm could be read directly. Both were made of capillary tubing.

The third, a McLeod gauge not included in the 'hot volume", was only used
to determine that a good vacuum was cbtained before each rum, and occasional
during the run.

b. The Gas Burette - The gas burette had a capacity of 100 cubic
centimeters and could be read to the nearest 0.1 zubic centimeter. It was
enclosed in an isothermal water-jacket constructed from a pyrex tube. A
thermometer compietely immersed in the warer was hanging next to the burette
and measured the water temperzture with an accuracy of 0.1°C.

¢. The Thermocoupie - The temperature was read by a platinum-platinum

10 percent rhodium thermocouple. Both insulating and protection tubes were

"

of high purity alumina and the latter had an cutside diameter of 1/16 inch.

The wires of the thermoccuple were taken out of the system through a glass

poe

ses
Each thermoczouple was checked agalnst the melting point of silver;

agreement was obtained within half a degree.

95
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1.4 Heating Unit

Heating of the silver charge was effected by an induction coil with
the power suppiied by a Tocco motor-generator of 10,000 cycles per second.
It proved extremely difficult to entirely meit a charge of silver pellets as
the upper part of the charge tended to '"bridge cver", This difficulty was
overcome by premelting the charge (in the same apparatus) and only using the
solid block of silver for an acrual run.
1.5 Reaction Chamber

The reaccion thamber used in this investigation is shown in Figure
X2, Made of vycor giass, it was connected zo the rest of the apparatus
by a conicsl ground joint. The inn:r edge of the joint was beveled to avoid
riske ¢f hanging additions. This arrangement was more satisfactory than a
ball joint which was used insteaa at the beginning of this investigation.

A water-jacker surrounded the reaction chamber to protect the "hot
valume" from change: 'n the air temperature. LT wWas, ncwever, abandoned
and replaced by an s1:~-fan after izdopr..c of the conical ;7int, beczause of
the increased difiicuities :n the assemb.y of the apparatus. The disadvantage
was offset by the conssquent zeduztion :a the '"hct wvciume".

i.6 Refractsries

A flat bztior alumina crulible :ontained the melt, as shown in
Figure IX 2, and was p;acea Lln & targer crucible to protect the reaction
chamber in case of brezkage. To pcemelt the charge, however, a clear quartz
crucible was used; because,zfter cooling,the melt was more easily separated
from the walls. Its diameter was slightly smaller, to avoid breakage of the
alumina crucible caused otherwise by the expansion on heating of the silver

ingot,
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FIG. IX.2. THE REACTION CHAMBER
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1.7 Device for Dropping the Alloying Additions

It was possible, with the device shown in Figure 1IX 3, to alter
the composition of the bath during a run. The additions could 'be stored at
any time in the side arm when it was disconnected from the reaction chamber
by the stopcock C;.,. A small rod-shaped magnet was added last. By moving
another magnet outside the system, it was possible to push the additionms
into the melt.

The problem of possible contamination by the grease of stopcock
Cyy (Figure 1IX 3) was satisfactorily resolved, mainly by two precautionms.
First, the bore of C;. was thoroughly cleaned by acetone before each run.
Second, the stopcock C;, was opened to the maximum extent before dropping
an addition from the side arm. It is aiso possible that the conical shape
of the bore (Figure 1IX 3) also helped to avoid the minute amounts of
grease which still might have been ccllected by turning this stopcock.

The additions were guided into the melt by an alumina tube and a

palladivm cone as chewn in Figure IX 2.

2. MATERIALS

The characteristics of the gases and metals used in this investi-
gation are summarized in Table IX i. The effect of the impurities in the
oxygen and on the silver will be discussed in Chapter XI.

The aiumina refractory materials, zrucibles, lids and disks were
made of high purity alundum cement (RA 1135) from Norton Company. They
were manufactured by the Ceramizs Division of the Massachusetts Institute
of Technology.

The high purity alumina thermocouple tubes were made by the McDanel

Refractory Porcelain Company. The single bore protection tubes were closed
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at one end by the Ceramics Division of the Massachusetts Institute of Technology
with high purity alundum cement (38X) from Norton Company.
Finally, the clear quartz crucibles were made by Syncor Products

Company .

3. EXPERIMENTAL PROCEDURE

Before each run, the siiver was premelted in a silica crucible first
under hydrogen, then under vacuum. In the solid block thus obtained, a hole
was drilled at an angle of approximately 22° corresponding to the angle of
the thermocouple arm of the reaction chamber. All the tools used were care-
fully cleaned with acetone and the cutting rate was slow to prevent excessive
heating of the material.

Then the silver, the refractory materials and the palladium cone
were placed in the reaction bulb, which in turn was connected to the rest
of the apparatus. The system was then evacuated, isolated from the pump,
and checked for leaks over several hours.

The high frequency motor-generator was started and the metal charge
heated to approximately 500 or 600°C. The sequence of operations at this
temperature was:

a. Degas the system for 30 to 60 minutes.

b. Place it under a hydrogen atmosphere.

c¢: Degas the system again (60 minutes).

d. Place it under an argon atmosphere.

In some instances, between steps a and b, a few cubic centimeters of oxygen
were intrcduced to remove possible impurities at the surface of the charge

{such as carbon). The vacuum was then reestablished after 3 to 5 minutes.
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The power output of the generator was then slowly increased and the
thermocouple checked at the melting point of silver.

With argon in the measuring burette, the mercury legs of the burette
were levelled and a reference value recorded, together with the temperature
of the water and the atmospheric pressure.

The system was then evacuated for approximately one minute and a
certain quantity of argon admitted. The difference between the inital level
of the burette and the new one was yielding the number of cubic centimeters
introduced. The "hot volumes" of the system, both with and without the
addition reservoir inciuded, were measured and their dependence on the
pressure and the temperature determined.

After these measurements, the burette was evacuated and refilled
with cxygen. Then, the reacticn chamber was also evacuated for 30 to 50
seconds and the oxygen introduced. The temperature was adjusted to the
desired level and the gas-metal system allowed to come to equilibrium,
which was usually attained in approximately 15 minutes. As a precaution,
it was allowed at least 30 minutes. The effect of temperature was studied
at fixed amounts of oxygen in the system (not in the metal) but varying
pressures.

In many runs, an extra step was added to this experimental pro-
cedure. After measuring the "hot volume" and evacuating the system, a few
cubic centimeters of oxygen were added to the reaction chamber to oxidize
the impurities in the bulk of the metal which possitly had not yet been
removed. Then the system was again evacuated. The necessity of this measure
1s discussed in Chapter XI,

After investigation of the solubility of oxygen Iin pure silver,
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'pieces of alloyiug clements were dropped into the melt. Bachltime new ad-
ditions were stored, the reservoir was first placed under vacuum, then

isolated from the vacuum line and finally brought to equilibrium with the
remainder of the system. Only then would any addition be dropped into the

melt.
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CHAPTER X
THERMODYNAMICS OF GAS_SOLUBILITIES AND CALCULATIONS

The theoretical considerations of Chapter III are now applied to the
thermodynamics of gas solubilities in alloys. The example of oxygen in liquid

silver alloys is naturally adopted, but the generality of the study is retained.

1. Thermodynamics of Gas Solubilities

The dissolution reaction of oxygen in pure liquid silver is:

50, = 0 (in silver) (X.1)

The reference stats for the oxygen in the gas phase will be the perfect gas, and
the corresponding standard stare is the pure gas at one atmosphere. For the
oxygen in solution, the reference state will be the state of infinite dilution

in pure silver. Therefore:

lim % _ lim f o=

%0 — 0 %0 %0 — 0 ‘0 (X.2)

The standard free energy of the reaction (X:1l)is:

%0

€ = - = - n
AFS RT ans RT 1n ) )1/2
Poz

fo(in silver) (X.3)

If oxygen follows Sieverts' law when we choose weight percent as our

composition coordinate, f. is constant and consequently equals its value at

(0]
infinite dilution, i.e equals 1.

For an alloy, the dissolution reaction is:

% 0, = 0 (in alloy Ag-M) (X.4)
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The same reference state is kept for the oxygen in the gas phase. The reference
state for the oxygen in solution is also kept as the state of infinite dilution

in pure silver. Consequently:

lim Jo . lUm £,
% =0 %0 %0 —» 0 (X.5)
M £0 M £ 0
The standard free energy of the reaction (X.4)is:
0
AF; = -RT 1K, = -RT In 172 fo(in alloy) ‘ (X.6)
("02)
Because of the identity of our reference statesin reactions (X.l)and (X.4), the
standard free energies of the two reactions are equal.
9 = (-] = o
APS AFa AF
and
ln!(s = ana = inK (X.7)
It is convenient toc adopt the notation K' for the value of the ratio
%0
/2
(Po,?
Equation (X.3)and (X.6)may then be rewritten:
log fo(silvet) = log K - log K; {X.8)

and

log fo{in alloy) = 1log K - log K; (X.9)
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a - If Sieverts' law is followed in the pure silver,

Then log K = log K; (X.10)
and
log fo(in alloy) = log K;/K' (X.11)
a

so that we may rewrite:

20(in silver)
20(in alloy) ) Hoz T

log £,(in alloy) = 1og( (X.12)

The two concentrations have tc be taken at the same temperature and same pressure
of oxygen.

Equation (X.1ll) may also be written as:

/ i 114 : 1
jsz n equilibrium with %0 in a 1oy)3 (X.13)

y 1
log £,(in alloy) = 5 log \(go' in equilibrium with the same %0
¢ in silver)fqg 1

In the "dropping technique”, this expression may be preferred, especially if
the "hot voiume" is small,

If Sieverts' law is not followed in che alloy. log f, depends on
%0 as well as ZM, so that the ratios in Equations (X.12) and (X.13) depend on

the oxygen potential.
b - If Sieverts' law is not followed in the pure silver,
Then log K ¥ log K;

or

log fo(in silver) # 0

As gas concentrations are generally very small, to a very good

approximation log fo may be assumed to be proportional to the gas concen-
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tration.

log fo(in silver) = log K - log K; = e(g) %0 (X.14)

With the notation of Chapter III, it is possible to write:

log £,(in alloy) = (log £)® + (1og £) ™ + £, »® 20 20 (X.15)
so that

log £, (in alloy) = &0 20 + e av + r @ (2 + e 20 v (X.16)
or

-log K! = -log K + Y %0 + e(g) m+ o2 + rM030 21 (X.17)

Neglect of higher order interaction coefficients implies that deviations

'
from Sieverts' law in the alloy, as measured by %%%Eg- , are linear with

respect to the concentration of the alloying element.

3log £.(in alloy) ! 310gK’
) a - g N () (M, 0)
( %0 ( 3 2 e 0 + ro .| (X.18)
%0
/ %0 — 0 ' 20 — 0

The effect of the temperature may be easily analyzed by expressing
the temperature dependence of each free energy term of Equations (X.16) or
(X.17), i.e by expressing each of these terms as the sum of an enthalpy and an
entropy term. However, most often the accuracy of the data does not permit us
to determine the temperature dependence of such coefficients as e(g), t(g), and

réM,O). 1f this is the case for those coefficients, Equation (X.17) is rewritten

as:

( 00 e
- PR SR - S § (0) .0 o _ . 1.
log K, 7R TIAR Tt MO-gagpMtawrmoT M

+ réM)(ZM)Z + ré“’°) ™M %0 (X.19)
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Differentiation of Equation (X.19) with respect to l-immediately

T
yields:
/ dlog K' \
- 2.3R' T a E = AH_ = aH + héM) ™
VT /%0, m
and
{ 3log K!' '
2.3R / log K-ll 2 =0 =od+ s(“)m
) aT .\ L %0, ™ 3 0
{ T ?
which are obtained directly from our definitions in Chapter III (Equations
III.64 and 65) of the enthalpy and entropy interaction coefficients.
2. Practical Method of Calculation
The most useful experimental variable for analysis of the data is
log K' = log _ZQTTZ . For instance, if at a given temperature, it is a cocnstant
(r,)
02

regardless of the oxygen concentration, then Sieverts' law is foilowed. If it

is not, its linear dependence on the oxygen percent in the pure silver will

M)

yield eéo) (Equation (X.14)), then r,

in the alloy (Equation (X.18)).

In general, each interaction coefficient can be calculated separately
by isolating its effect, or ail of them can be obtained at once by using
Equation (X.19) and a computer program of multidimensional least-square analysis
(the regression variable are: 70, ZM, % , Z% , a% , etc.). The first method
gives a better insight as to the significance of each parameter and to the
errors. But the second one is very powerful and 1n many cases quite easy to
apply. Both methods were combined in this investigation by utilizing a computer
program of stepwise regression analysis. (L) Operations on the input variables
could be performed and consequently, different effects could be separated.

For instance, in studying the effect of an alloying element, deviations from

(X.20)

(X.21)
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Sieverts' law in the pure silver could be discarded if log K' + ego) %0 was
used as the dependent variable instead of log K'. Moreover, the statistical
level of significance ("F level") of each variable was also given, and if
judged too low, the corresponding variable was eliminated. Specific examples

are discussed further in the analysis of the experimental results.
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CHAPTER XI
PRESENTATION AND ANALYSIS OF RESULTS

The experimental data on the solubility of oxygen in
liquid silver, which were obtained in this study, are tabulated in
Appendix (H). Attention must be brought to the fact that it was
not possible to remove all the oxygen from the melt after its prepa-
ration. The origin of the oxygen concentration had, therefore, to
be adjusted. This adjustment was done in two steps. A first origin
was determined by extrapolation of the data in the plot of /;3; versus Z%40.
Then, with this origin, the values of log K' were recalculated and
a second origin was determined on the basis of the shape of the curve
log K' versus %0. It should be noted that these successive adjust-
ments correspond to only one correction. The following section

justifies and describes in detail this procedure.

1. Determination of the Origin for the Oxygen Concentration
in the Melt

1.1 Experimental Difficulties

In the experimental procedure, after the determination of
the "hot volume", the melt must be free of impurities and free of
oxygen. These two requirements could not be simultaneously satis-
fied. The most critical impurities are those, such as carbon and
sulfur, which react with oxygen to form volatile species. Very
minute amounts may be the source of large errors. For instance,
one or two parts per million of carbon in a melt of 200g of silver
would build a partial pressure of approximately 3 to 7 mm of Hg in

the reaction system, and, on a scale of the square root of the
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pressure, will cause an error near the origin of about 10% of the
total range (approximately 760 mm Hg). It is possible to oxidize
these impurities first and then remove them by evacuating the
system. However, in this procedure only a part of the oxygen in-
troduced would combine to form an oxide, while the remainder would
go into solution in the melt. This amount of oxygen in the silver
could not be significantly reduced by evacuation, without a pro-
longed exposure to the vacuum and, as a consequence, a large
evaporation of silver. Removal of the oxygen by hydrogen was not
a better solution, because of a similar problem: the removal of
water vapor.

To minimize the error resulting from residual oxygen in
the reaction bulb, the following procedure was adopted. Before
determination of the hot volume, and at low temperature (approxi-
mately 500°C), the solid block of silver was exposed first to oxygen
and then to vacuum, in order to remove, as far as possible, surface
impurities. The silver was melted then and, after measurement of
the "hot volume" with argon, removal of the argon by evacuation over
a short time (thirty to sixty seconds), a few cubic centimeters (STP)
of oxygen were introduced; this is equivalent to a concentration 4
of approximately 0.0015 to 0.0070 percent. Almost invariably, the
observed corresponding pressure was much higher than the equilibrium
one: 3 to 8 mm of mercury, for example, instead of 0.1 to 0.5 mm.

In some instances, a light blackish deposit also was observed on the
walls of the reaction chamber, which, upon analysis, revealed traces
of carbon. The system was re-evacuated for a short time. After

this evacuation, and before admitting more oxygen to the melt, there
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was still a residual amount of oxygen; on a weight percent basis,
it will be designated by Y,. An estimate of the value of Y, is
based on the theoretical considerations in section 1.2 which
follows.
1.2 Theoretical Determination of Y,

For convenience, the weight percent of oxygen in the
melt will be designated by y. Because of the experimental diffi-
culties discussed in section 1.1, the true value of y in an experi-
ment is unknown. By extrapolating the data in a plot of /58; versus
%0, a first estimate of the location of the origin may be obtained.
Consequently, the unknown values of y and Y, are estimated at,
respectively, y-yo and Y,-y., where y, is a constant fixed by our

choice of the origin. Then, it is not K' which is measured but K"

where:
K" = ¥&=Xe = g'(1 - %*) (XI.1)
"Po,
or
log K' = log K" - log(l - %ﬁ) (XI.2)

In this investigation, the method used to determine y., is
based on the following considerations. On one hand, the deviations
from Sieverts' law appear to be small (Fig. XI.l) and, on the other
hand, the range of possible concentrations of oxygen in the melt is
quite limited (0 to 0.3 weight percent). Therefore, it is permissible
to write:

log K' = log K = eéo) %0 = log K - eéO)y (XI.3)
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and neglect the second order term réo)(Z 0)2. The shape of the curve

log K' versus %0, as deduced from equation XI.2, is extremely sensi-
tive to the value of y,, i.e., to the location of the origin. There-
fore, the value of y,, ultimately adopted, will be the value which
best converts this curve into the theoretical straight line of equa-
tion XI.3.

The effect of the choice of Yomay be analytically clarified

through equations XI.2 and XI.3:

log K" = log K - eéo)y + log(l - %*) (XI1.4)

and differentiating this equation twice, with respect to y, yields:

8210g K" o _Y%e(2y - vo) (XI.5)
2 2 2 :
dy y(y - yo)

If yo is negative, i.e., if the value of the oxygen concentration
has been overestimated (¢'">y), the curve representing our estimates
of log K' (i.e., log K") versus %0 shows a positive curvature. If
Yo 1s positive, then a negative curvature is obtained. This latter
case is illustrated in Fig. XI.2. It may be noted that the best
straight line obtained for 108 K' versus %0 is not horizontal
(el # o).

The scatter of the data, especially at low concentrations
of oxygen, introduces a difficulty in the determination of y,. A
statistical way of judging the results is needed; the following pro-

cedure was adopted. Given a value of y,, the corresponding values

of log K' were expressed as:
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log K' = log K - eéo)%o - EA%E . % (XI1.6)

The computer program, mentioned in Chapter X, section 2, was used
to determine the variance ¢ and the coefficient of multiple corre-
lation p (or simple correlation coefficient, if the data are taken
at the same temperature). Then, the value of y. was changed and
new values of p and o obtained. The maximum of p , or the minimum
of o , fixed the value of y., and, by the same token, the values of
ec(,o) and AH. This optimum value of y, was obtained by trial and
error within 0.0005%. The data in Tables XI.l1 and XI.2 refer to
this choice of y.. The corresponding values of Y, and A (both de-
fined in section 1.1) also are given for each run. They illustrate

the orders of magnitude involved.

2. Solubility of Oxygen in Liquid Silver

2.1 The Self-Interaction Coefficient of Oxygen

A summary of the results permitting the evaluation of the

self-interaction coefficient of oxygen eéo)

is given in Table XI.l.
The values of Y. are fixed by the procedure outlined in the previous
secrtion. Exceptions occur for runs 4531 and 4624 where these values
correspond to direct estimates. For run 4711, the values of Y, and A
are unknown, because of difficulties encountered in the course of the
run at low concentrations of oxygen. However, the origin is extrapo-
lated from higher concentration data, according to the same optimum-

ization technique. The last three runs include large numbers of

data and are considered to be the most reliable.
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The data yield a mean value of 0.085 for e%?) with a
standard error of approximately 0.014.

It is important to note a systematic error introduced
by inert impurities (nitrogen and argon) in the oxygen gas, although
the maximum percent of impurities was guaranteed by the manufacturer

to be less than 0,570, ILf p. designates the partial pressure in the

i
system, due to these inert impurities, the experimental results of

this study do not measure K' but K''', where

K''' = y = y (X1.7)
/2 1/2
(Poy + Ppy) (1 + p;/poy)
or

log K''" = log K' - 3 log (1 + P,/ o) (XL.8)

At approximately one atmosphere of oxygen, 350 tc 400 cubic centi-
meters of oxygen have been introduced, which, for a 0.5 percent
concentration of impurities, have also introduced 1.8 to 2 cubic
centimeters of impurities. With the data on the hot volume listed
in #ppendix H, one calculates that these impurities account for a
partial pressure of approximacely 20/760 atmoshpere. Thus, equa-

tion XI.8 yields:
log K''' - log K' -0.0055 (XI.9)

The effect of these impurities leads to an underestimate of K'

and an artificial deviation from Sieverts' law, resulting in an

overestimate of the interaction coefficient eéO). At one

atmospheric pressure, an oxygen concentration of nearly 0.27 is
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attained, so that the extent of this overestimate for eéo) may

be 0.0055/0.27 or 0.02. Consequently, the following evaluation

of eéo) is proposed:

el® = 0.07 £ 0.03 (XI.10)

2.2 Free Energy, Enthalpy and Entropy

The data permitting the evaluation of the free energy,
enthalpy and entropy of the dissolution reaction of oxygen in
liquid silver are summarized in Table X1.2 and Fig. XI.3. Because
of the self-interaction coefficient eéo), the data on log K' are
normalized to a fixed oxygen concentration of 0.27 percent and,
in each rum, only the data referring to a concentration near this
value are selected to evaluate the enthalpy.

The following results are obtained:

L -
1 + log K(1060QC) = 0.4252 + 0.0028 (XI.11)
and
AH o
> 3R 840 + 17 °K (XI.12)

In the calculations, a heavier weight (3 to 1) was attributed to
runs 4809, 4828 and 4917, and, for the standard deviations (0.0028
and 17), the individual standard deviations listed in Table XI.2
were taken into account. The systematic error of equation XI.8
does not affect, in any marked way, the previous results for the
enthalpy, and the proposed values of the thermodynamic functions

characterizing the reaction:
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7 0, = 0 (in liquid silver) (XI.13)

are:
1 + log K' (at %0 = 0.27) = 0.4290 + 0.0043 (XI.14)
AH(calc. at %0 = 0.27) = -3843 + 78 cal (XI1.15)
AS(cale. at %0 = 0.27) = =5.495 + 0.065 cal°k"! (XI.16)

and
AF0e0°c = 3600 75 cal (XI.17)

2.3 Self-interaction Enthalpy and Entropy Coefficients of Oxygen

In Table X1.2 1t was noted that, in the determination of

AH and log K' at 1060°C and 0 27 percent of oxygen, only the data
near this concentration of oxygen were taken into account. Tak-
ing all the data into account (at any concentration of oxygen) for
the determination or AH  increased the scatter, but also showed,

in many runs, a slight trend downwards of the absolute value of

AH with decreasing oxygen concentrations. A negative value of the
first order enthalpy interaction coefficient would account for

this effect, since:

- (3)

At low concentrations of oxygen, however, the scatter of the data
(because of the relatively larger errors introduced by the pressure
readings) is much too pronounced to enable one to calculate a pre-

cise value of héo).
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(0)
0

approached by studying the temperature dependence of e

also can be
(0)
0

The problem of the determination of h

, Since:
(0) (0)

h0 ]

L0 _ _ 5
(o] 2.3RT 2.3R

(0)
0o

A very slight increase of e , with increasing temperature, was

found, thus constituting a further check on the previous
observation on the enthal:y function.
(0) ;s -1000 + 600 cal, and the

0
1s -1.1 + 0.5 cal,°k"'. It may be

A rough estimate of h

corresponding value of séo)

noted that a change in the temperature from 980 to 1140°C results

in a change of approximately 0.02 in the value of eéo) (0.07 + 0.03).

2.4 Summary of the Thermodynamic Properties of the Solubility
of Oxygen in Liquid Silver

All the information gathered in this study of the

solubility of oxygen in liquid silver, according to the reaction:

%02 = 0 (in liquid silver) (X1.13)

may be summarized by the following equations:

AFC (%) [ggo-c = 3600 £ 75 cal (XI.18)
aB(Z) = sH=(2) + bl%7%0 = (-3843278)-(10004600X%0-0.27) (XI.19)
as(2) = 45°(%) + s $97%0 = (~5.495£0.055)-(1.120.5) (%0-0.27) (XI.20)
log K! = (-0.5710+0.0043)=(0.07+0.03) (%0-0.27) (XI.21)

1060°C
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3. Solubility of Oxygen in Liquid Silver-Gold Alloys

Gold additions to the silver decrease the solubility of

oxygen and, consequently, increase the activity coefficient of

1

oxygen, as illustrated by the data at 1030.5°C(or 103/T=0.7670°K- )

in Fig. XI.4. The values of log f
(0)
o]

o are corrected by the coeffi-

cient e ,» to apply to the state of infinite dilution of oxygen.
At a concentration of 2.2 percent of gold, five data points are
very nearly superimposed. They do not correspond to the same
concentration of oxygen. First, this is an indication that the
deviation firom Sieverts' law, in pure silver, is not drastically
affected by the presence of gold, and second, it constitutes a
check on the accuracy of those data.

A multi-dimensional least square analysis of the data

yields the results summarized in Table XI.3.

TABLE XI.3

INTERACTION COEZFICIENTS OF GOLD ON OXYGEN IN LIQUID SILVER

First Order Interaction Coefficient
Composition Free Energy Enthalpy Entropy
Coordinate at 1030.6°C (cal.) (cal. °k-1)
e (AU)

weight percent ot =0.01950.001 {4 62416 séA“’=-o.04010.012

mole fraction € 0=7.210.4 n O=ll,30012900 o ==5,7+2.2

Au, Au, Au,O0
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4, Solubility of Oxygen in liquid Silver-Platinum Alloys

Platinum additions to the silver decrease the solu-
bility of oxygen and increase its activity coefficient. This
effect is illustrated in Fig. XI.5 at four different tempera-

tures. The interaction is smaller at higher temperatures. The

3 1

best precision is obtained at 1018°C or -0.7745 - 1077(°K) T,

An investigation of the value of eéo)

was made at a platinum
concentration of 5.43 percent. The value observed lies in the
range of those recorded in the silver-oxygen system., A difference,
however, of approximately 0.012 was observed in the absolute values
of 1 + log K' (order of magnitude: 0.320) and is, most probably,
due to an extensive vaporization of the silver when evacuating the
system to obtain low concentrations of oxygen (operation which

took place between the results number 78 and 79 in run 4828,
Appendix H).

The results are summarized by the values of the

interaction coefficients in Table XI.4.

TABLE XI.4

INTERACTION COEFFICIENTS OF PLATINUM ON OXYGEN IN LIQUID SILVER

Firts Order Interaction Coefficients

Composition Free Energy Enthalpy Entropy
Coordinate at 1018°C (cal.) (cal. °K-1)
weight percent elF©)=0.021040.0003 A2%)=86+15 s(®)=-0.030+0.010

= = E .0
mole fraction EP:,O 7.95+40.12 nPt,o 15,560+2750 oPt,O 3.8+2
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5. Solubility of Oxygen in Liquid Silver-Palladium Alloys

Palladium additions to the silver decrease the solu-
bility of oxygen and increase its activity coefficient, Fig.
XI.6 illustrates this effect at 1050°C (or 103/T=0.7558°K™1).
The data are taken from run 4917. Two extensive investigations

of the values of eéo)

indicate no significant change from the
results observed in pure silver. Absolute values of log K'
are satisfactorily consistent. The data points in Fig. XI.6
belong to the three phases of the run defined by these two in-

vestigations of eéo)

The results are summarized by the values of the inter-

action coefficients in Table XL1.5.

TABLE XI.5

INTERACTION COEFFICIENTS OF PALLADIUM ON OXYGEN 1IN LIQUID SILVER

First Order Interaction Coefficients

Composition Free Energy Enthalpy Entropy
Coordinate at 1050°C (cal.) (cal. k-1
weight percent eS'9)20.0350+£0.0012 h{Fd =138+29 s{F¥=-0.05510.020

mole fraction ePd,o=7'96IO'27 nPd,o=13‘650i2900 °Pd,o='5’412'°

6. Solubility of Oxygen in Liquid Silver-Copper Alloys

The solubility of oxygen in liquid silver is increased,
considerably, by small additionms of copper. The corresponding

decrease of the oxygen activity coefficient is shown in Fig. XIL.7.
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— © Run 3114 (T uncertain)

— o Run 4828 o1 T=1017.5°C

v Run 4917 at T=1132°C

| . | . I ) | "

0.2 04 0.6 0.8
weight percent of copper

EFFECT OF COPPER ON THE ACTIVITY COEFFICIENT OF
OXYGEN IN LIQUID SILVER
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Values of the interaction coefficients are based on the data of-
five runs - 3114, 4019, 4120, 4828 and 4917 - and are summarized
in Table XI.7. In run 3114, experimental troubles were encountered
in the temperature measurements., It is considered, however, that
the temperature at which most of the data were taken was stable
throughout the run. The main result of this run is the marked
curvature of log fo versus %4Cu. In run 4019, the results are less
precise than those obtained in most runs; the cause may be a small
leak in the system. In run 4120, the data were taken at low con-
centrations of oxygen. On one hand, the relative error, resulting
from readings of low pressures, is larger than the one which
occurred at pressures near one atmosphere, but, on the other hand,
these data show that the concentration of copper has no marked
effect on the dependence of log fo versus %Cu (or, in other words,
the term réc“’o)%Cu%O may be neglected). Runs 4828 and 4917 studied
the effect of copper on oxygen in silver-palladium alloys and
silver-platinum alloys, respectively, Figures XI.8 and XI.9 show
the marked increase in the value of log K' and the slope %%%5%%
with copper additions. It must be noted that in the experi-
mental investigation of the heat effect, the data were taken at
constant amount of oxygen in the system, rather than at constant
concentration of oxygen in the melt, The correction is small but

may be calculated through the following equation:

dlog K' 1 _ dlog K' g
( 3 1/T ) dT = d log K' - ( 5 %0 ) d%zo (X1.22)

%0 T
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Temperature, °C
1060 1040

1120 1100 1080
l I l |

T
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0.440 -

0420

0400

1+ 1log K’
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|
Experimental results from run 4917

Calculated line

%Pd = 2.99
% Cu=0.293
AH=-4765 cal

% Pd =2.99
%Cu=0.123
AH=-3940 cal

% Pd =2.99
%Cu =0

0.300— AH=-3135 cal
0.280} -
] | ! | L |
0.700 0.720 0.740 0.760
10%/T (oK)

FIG.XI 8. EFFECT OF COPPER ON OXYGEN IN
LIQUID SILVER-PALLADIUM ALLOYS
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dlog K' - dlogKR' (0)d%0
i), TauT Yo 91T (XI.23)

(Cu)
0

Values of e also may be decuded, assuming that terms involv-

(Cu,Pt) (Cu,Pd)
T, or r, '

ing are negligible. It may be noted in Fig.

XI.7 that the data on a plot of log fo versus %Cu show pronounced

positive curvatures (réCu)

>0) for the three runs (3114, 4828 and
4917), although they were calculated from quite different alloys.

Results of all five runs are summarized in Table IX.6.

TABLE XI.6

EXPERIMENTAL DATA ON THE FIRST ORDER FREE ENERGY AND ENTHALPY
INTERACTION COEFFICIENTS

Rua_ eécu)(1060°C) hécu) calculated at %Cu

4120 -0.38 + 0.02 v-6040 cal. 0.140 to 0.199

4190 -0.38 + 0.03 1=5720 cal. 0 to 0.3

3114 -0.38 + 0.04

4917 -0.39 + 0.007 -6500 cal. 0.123

4917 -5580 cal. 0.293

4828 -0.385 + 0.007 -5410 cal. 0.481

héCu) seems to decrease, with increasing copper concentrations.

This would indicate a positive curvature for the dependence of
AH on %ZCu, thus a positive second order enthalpy interaction

coefficient, an observation in agreement with the positive second

order free energy interaction coefficient, réCu)’ noted above.
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The data, however, are not sufficiently conclusive to permit an
estimation of this second order enthalpy coefficient.
Estimated values of the various interaction coefficients

are given in Table XI.7.

TABLE XI.7

INTERACTION COEFFICIENTS OF COPPER ON OXYGEN IN LIQUID SILVER

First Order Interaction Coefficients

Composition Free Energy Enthalpy Entropy Second Order
Coordinate at 1060°C (Xcal.) (cal. °K-1) Free Energy
-2
weight percent eéCu) = héCu) = séCu) = récu)=6.5x10
-0.385+0.010 -6.4+1.0 -3,10+0.75
mole fraction eécu)='5zil égq = Jgu)= oéCu) = 500

-380+60 - 182+45
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CHAPTER XII
DISCUSSION OF ERRORS AND CONCLUSIONS ON
EXPERIMENTAL WORK

The solubility of oxygen in liquid silver and silver
alloys was measured and several interaction coefficients calcu-
lated. The precision and accuracy of these results must be

discussed now.

1. Systematic Exrrors

The systematic errors, connected with the determimation
of the origin for the oxygen concentration in the melt or aris-
ing from impurities in the gas phase, have been discussed already.
The other possible systematic errors stem, mainly, from the measure-
ment of the hot vclume, the vaporization of the silver and the
impurities in the melt.

l.1 Hot Volume

It has been assumed, in the previous calculations, that
the hot volume, as measured by argon, is a true measure of the
volume of oxygen necessary to fill the dead space of the reaction
chamber at a specific temperature and pressure. To investigate
this assumption, an experiment was done in which nitrogen and
hydrogen (reported insoluble in silver(£6)) were used to determine
the hot volume. The results are shown in Fig. XII.l. For argon
and nitrogen, the agreement 1s excellent; the results show a
slightly smaller hot volume for hydrogen, most likely due to its
high thermal conducztivity. The chronological order of the points

must be noted; three short evacuations of the system which,



137

AQNiS ,3INNTOA 1OH, I IX9ld

6H ww *ainssaid
o]0} (/07 009 00} 010} 4 ooe

00¢

| I | [ | ]
siaaqunu 3y} Aq pepdipul
st J9pio |pd16ojouosyd 113yl
"Jo L6 10 UMD} DIDQ

uabosphH =
uaboslIN o m_.#
uobuy o 4

|

o

Ol

—07¢

—0¢

—0¢b

—10¢

09

('d’'L'S) ssajowijued gnd



138

because of the possibility of consequent vaporization of the
silver, could have resulted in a change of the hot volume, did
not seém to affect the results. The temperature coefficient of
the hot volume, for argon and nitrogen, also fell within the
experimental error.

1.2 Vaporization of the Silver

Deposits of silver on the 1lid of the crucible and
walls of the reaction chamber were kept to a minimum, by keeping
the molten melt under vacuum for the shortest time allowed by

the method. Podgurski and Dav15,(32)

in their experiments on
oxygen solubility in solid silver, reported a continuous drift
of the pressure of oxygen. Such a drift was never observed in
this investigation, even after a considerable time (15 hours).
1.3 Impurities in the Melt

Analysis of the silver used revealed a copper content
of 0.005 percent. Although very small, it accounts for an apparent
increased solubility of oxygen or an error, in the value of log K',
of -eéo)° 0.005 = 0,40 : 0.005 = 0.0020. This error, however, is
in the range of the scatter of the data and will be neglected.

The results of Sieverts and Hagenacker show higher
solubilities of oxygen than those reported in this study. It
must be noted that the authors do not give an analysis of their
silver, and that a copper content of 0.04 percent would account

for these differences in solubility. These differences also may

be accounted for by a temperature error of 4°C. The contribu-



tion of both factors is likely,

2. Random Errors

The following approximate random errors may be calcu-
lated.

If N is the total number of cm3(STP) of oxygen in the
system, n and n' the numbers of cm3 dissolved in the melt and

present 1in the gas phase, respectively, then:

and

én _ 8N + $n'

§log %0 dlog n = P o

and, with a random error of 0.05 cm3 in the readings of the

burette,

0.5 + 0.2

200 = 0.0017 (XII.1)

§log %0 =

For readings of the pressure near one atmosphere:

slog p = 7%3 = 0.0013 (XII.2)

Assuming an error of + 1°C in the temperature:
5§(103/T) = 0.0006 (XII.3)

The resulting error in log K' is:

139
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'
§log K' = §log %0 + %Glog p + 3lo lK 6%
a -
T

0.0017 + 0.0007 + 0.840 - 0.0006

:0.0029 (XII.4)

(0)
0

For e » the random error may be calculated as follows:

e(0) . _ Alog K'
0 A%O

se(0) . A%0 -Shlog K + 64%0 -Alog K'
€0 2
(A%0)

. 0.2 - 0.004 + 0.001(0.2 + 0.07) _ 0.004

(0.2)2 0.2
= 0,02 (XII.5)
Similarly, for zAgR :
AH  _ (3103 K') . Alog K'
2. 3R S 1 L
T %O T
- A(%) §0log K' + 6A(2) * Alog K' s21l0s K'
f=tie = T 28208 R (x11.6)
2.3R L 2 A ()
[A(T)] T

At a fixed amount of oxygen in the system, the error on Alog K'
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is reduced considerably and may be estimated as 0.0020, which

yields:
i = —0.002 5 = 20 (XII.7)
* 0.1 - 10
' (0) AH
These errors of 0.0029, 0.02 and 20 on log K', e, and 7. 3R

may be compared, respectively, with the standard deviations of
0.0028, 0.014 and 17 yielded by the statistical analysis of

Tables XI.l and XI.2. Similar calculations are possible for the
ternary interaction coefficients. They, also, agree satisfactorily
with the standard deviations previously reported. Errors in the
concentrations of the alloying elements are assumed negligible,

as the masses of the additions were weighed twice to #0.0002 g

and, after the runs were completed, qualitative analyses were

performed on the alloys.

3. Conclusions on Experimental Work

The solubility of oxygen in liquid silver and silver
alloys has been determined as a function of temperature and
pressure. Estimates of the corresponding thermodynamic functions,
taking into account random and systematic errors, are given below.

a. The free energy, enthalpy and entropy of the reaction:
1 . :
2 0, = 0 (in liquid silver)
are, respectively:

AF(%)1060cC = (3483:26) + (43:18)(40‘0.27)(:31.
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AH(%) = (-3843+78) - (1000+600) (%20-0.27) cal.

AS(%) =(-5.495+0.055) - (1.1#0.5)(%0-0.27) cal. °k~ %}

b. The effects of gold, platinum, palladium and copper
on the activity coefficient of oxygen are summarized in Fig.
XI1.2, and the values of the interaction coefficients are

reported in Table XII.l.

TABLE XII.1

INTERACTION COEFFICIENTS OF VARIOUS ELEMENTS ON OXYGEN
IN LIQUID SILVER

e?i::z:n?il eéi)(at 1060°C) néi)(kcal.) o éi)(cal.°K'1)
0 3.2+1 -1.5+0.9 -7.5+2.1
Au 7.1+0.4 11.3+2.9 -5.7+2.2
Pt 7.840.1 15.6+2.8 -3.8+2.0
Pd 7.9+0.3 13.7+2.8 -5.4+2.0

Cu - 52#1 -380 +60 -182 +45



I l LN l 1

For the copper, gold, palladium and platinum alloys,

the activity coefficient of oxygen g is calculoted
ot infinite dilution of oxygen in silver.

1 ] L ] ]
0 0.01 0.02 0.03

mole fraction of alloying element

FIG. XII 1. EFFECT OF ALLOYING ELEMENTS ON THE ACTIVITY
COEFFICIENT OF OXYGEN IN LIQUID SILVER AT 1060°C
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CHAPTER XIII
CORRELATION BETWEEN THE EXPERIMENTAL RESULTS
AND THE THEORETICAL MODELS

The study of the effect of an alloying element on
the solubility of oxygen in liquid silver is experimentally
limited to only a few elements, and, consequently, this also
restricts the possibilities of an extensive comparison between
experimental and theoretical results. However, the inter-
actions of various elements on sulfur in liquid copper, which

(6) offer many valu-

were determined by Alcock and Richardson,
able complementary observations, since the electronic structures
and chemical properties of the copper-sulfur system aré very
similar to those of the silver-oxygen system. In terms of either
the modified cell model or the quasi-chemical theory, the effacts
of a third element on these two binaries is predicted to be also

very similar. Indeed, this is what is observed for the cases of

gold and platinum, as shown by Table XII1.1.

TABLE XIII.1

COMPARISON OF THE EFFECTS OF GOLD AND PLATINUM ON SULFUR
IN _COPPER AND OXYGEN IN SILVER

_ Mo Mo
Solite M zg (in copper) 0 (in silver)
Au 6.9 + 1.0 at 1il15°C 6.9 + 0.5 at 1115°C
Pt 9.2 + 0 2 at 1200°C 7.95 + 0.12 at 1018°C

extrapolated to:
7.2 + 0.3 at 1200°C



145

It is interesting to note that for gold,the curve 1nws versus

mole fraction of gold in copper, shows a positive deviation from

linearity (péA“) >0), whereas such a curvature is not found in
the silver system, although the interaction coefficientseéAu) and

eéA“) are equal. A possible explanation may be given by the quasi-

chemical model which predicts the relation (equation IV.39):

(Aw) [egAu)]Z ¢ (Au) (Aw) ,
Au . _Au u 2z
P2 T T2zt Tz Mgy - 7

(Au),2 (Au)
(e, v") €
2 Au
22 4 Z

All three terms, and (e‘;u - %), are positive.

But, egﬁu) in copper(sz)equals 8.5, while in silver(SZ) it only

equals 2.3. Thus:

Au

péA“)(in Cu) Po

(in Ag)

a result which agrees with the experimental observations.

The strongly negative interaction of copper on oxygen
(eéCu) = =52 at 1060°C), and the similar positive interaction
coefficients o¢f gold, platinum and palladium on oxygen (eéAu)= 7.1,
eéPt)= 7.8 and eépd)= 7-9 at 1060°C) are qualitatively well
accounted for by either the quasi-chemical or the modified cell
model, on the basis of the affinities of these alloying elements
for oxygen (as measured, for example, by the stability of the

corresponding oxides). 1In addition, for copper, a value of

approximately 500 was observed for péCu). The value calculated
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by the quasi-chemical model is:

Cu, 2 (Cu)
(cw) o S0 | few
Po 22 z

)2
- O, =l -5y - 4 162

a result in satisfactory agreement with the experimental value.

(eégu) is estimated from values of the activity coefficients
Yeu reported by Hultgren, et. al.(52))

Experimentally determined values of enthalpy and entropy
interaction coefficients may be compared with the theoretical
models., The modified cell model (Chapter V) proposed a propor-
tionality between a change 1in the energy and the corresponding
change in the vibrational entropy. It may be noted that, in

the assumption of pairwise interactioms:

ny,3 T EBlwy 3 = Wy g T up )
which, with
o e u - Uiy Y44
1,] i,] 2
may be rewritten as:
Ny, 3 = 2BLCuy gmuy p) *(uy oy g)]

or:
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T 2810, 07 g 0 T (g, ag7Vag, 0]

and, thus:

o

'
M,0 Z8[7'(u

) = "(u

M,0 "ag,M As.As'“As.O’]

If ' is approximately equal to t", and is independent of the
nature of the element M, then a proportionality between "w,0 and
OM’O should be observed. As shown by the experimental values in
Table XII.2, this is not the case. However, if the effect of t"
is subtracted, a better agreement should be obtained. This is

(M) (M)
o 0

supported by the fact that, although the values of n and o

M)
o)

are not proportional, increasing values of n correspond to in-

éM) (for Pt and Pd, the reversal in the order

creasing values of ¢
is within experimental error).

The constancy of the proportionality parameter, T,
irrespective of the nature of the atoms involved, is not very
well supported, 1in the case of the oxygen solubility in silver
alloys, although the test is not conclusive. As already mentioned,
the agreement should be much superior if t is taken as approxi-

mately constant for elements which are not too dissimilar in

their physical properties.
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CHAPTER X1V
SUMMARY AND CONCLUSIONS.

The concept of generalized 1interaction coefficient was
shown to permit a ccnvenient and systematic approach to the pro-
blem of evaluating activities 1in a multiccemponent system.

Sherman and Chipman'élggml-emplrxcal method of calculating acti-
vities was analyzed and an alternative method proposed. The role
of the composition coordinate 1in the calculations was underlined,
and the importance of a free energy cecond order interaction
coefficient ¢ particulariy stressed. The use of p eliminates
some discrepancies in the literature and provides a simple solu-
tion to a problem of data ceduction.

The quasi-chemical model was reviewed critically, and
1ts predicctions for tree energy 'e¢:ims found to be satisfactory.
The expression yielded by the model for the second order inter-
action o was calculated and compared, with fair success, to
experimental darta.

A modified version of the cell model was presented,
which explains some of the discrepancies found in the applica-
tions of the quasi-chemical theozxy, while improving on it by
introduction of the vibraticnal contribution. Under its simplest
form, this cell model int:oduces the first quasi—regular solution -
a model which has the simplicity of expression of the regular solu-
tion model, but which would permit a better evaluation of the
enthalpy and entrcpy terms by a pridr evaluation of a constant, -~
The prediction of the constant - was seen to be possible by analy-

s1s of the data on various alloys. A systematic study of enthalpy
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and entropy interaction coefficients seemed rich in possibilities.

Data on free energy, enthalpy and entropy interaction
coefficients were experimentally obtained by an investigation of
the solubility of oxygen in molten silver alloys. These coeffi-
cients express the effects of oxygen, gold, platinum, palladium
and copper on oxygen in liquid silver. The comparison of the
enthalpy and entropy coefficients with the results of the modi-
fied cell model was not conclusive. More satisfactory was this
comparison for the free energy terms, and, in particular, quite
fair agreement was found with the results of Alcock and

(6)

Richardson on the solubility of sulfur in copper alloys.
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CHAPTER XV

SUGGESTIONS FOR FURTHER WORK

A compilation of the values of the second order free energy
interaction coefficients would certainly prove useful for the
three following reasons. First, the use of tabulated values
is often more convenient than the use of graphs for which reading
errors may be quite large. Second, such a compilation would permit
a better estimation of coerfficients presently unknown. Third, it
would provide a test for expressions predicted by theoretical
models (the quasi-chemical in particular).

A similar compilation of the values of the enthalpy
and entropy first order interaction coefficients would permit a
better avaluation of the configurational and vibrational contri-
butions, and thus, a better description of a liquid solution.

The irtroduction of electron concentrations in the approach of
the modified cell model (Chapter V! seems rich in possibilities.

An experimental investigation of those systems for which

very marked effects can be predicted i1is of special interest.
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APPENDIX A

GENERALIZED INTERACTION COEFFICIENTS - SUMMARY

l. Definitions

Free energy interaction coefficients K:

n n. n
gD x.t L x L x
J m

lny1 n, ; -

)
=1 o}
o e~

L]
=N o

=]

=

(X}

< n,
" S N SEP) 9 x. 2. x . x
S 5 8 Py My my 2 ]
2 j m ]
Entropy interaction coefficients Js
n n, n
SEoc s oy aW L x t x o ®
i & o [ n2 n. nm 2 ) m
n, nJ no J

(where j can take any value from 2 to m, and nj any positive value

including 0).
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2. Nomenclature
Order of the
—Free Energy E Py
Interaction ree fper Enthalpy Entro
Coefficients X* Z* _X* 9% X* 9%
c E° EG
Z 0
eroth layy B 0 Sy 0
First 5(2) e(i) o(i) h(i) n(i) s(i)
Second p(i’k) r(g.k)
nch kr(li) . I(i) J(i) .
. ge el Dyeoen Dyesen
(with } n, =n)
j=2 1
* The composition coordinate is either mole fraction (X) or

weight percent (%).

3, Relations between Free Energy, Enthalpy and Entropy Inter-

action Coefficients

Composition coordinate:

< <
By S
Zeroth order: lnyi ol el
o (i) o(j) o (3) (i)
: R S | () _ 4 _ 24
Flrst orders €y RT R ©i *7T3®T ~ Z.3R
R A
th . (i) 2"' 2-.. m
n order: Kn “vea =T - =
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4, Reciprocal Relationships

(L) _ _(j) -
€5 T 1T fu,j
(iy D _ L, (1)
p1 + ei,j 2p j + ei,i
(jrk) . (1,k) - LD
Pt F e TPy T e Tk T Y ey
n,+1
(1) _ (1) A - (D
K. =K - K n . +1 n
nz.GGniG.lnm nzbatni.l.nm ? nzoo. i e o o m
nj
j=2

Identical relations can be written for the enthalpy and entropy

interaction coefficients.

5. Conversion Relationships

M M. - M
) 230 A )y 1
i Ml i Ml
(i) LW
n = 100 h
i Ml
, M M, - M
o =00 ghs P - n A
1 1
M, -M.)2
(1) _ 230, 2 (j§) .2 ) (3, . 1 MM
e i " Z[Mj r i 10° + Mj(M1 Mj)e i ] + 2 W 2

1 1
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(j,k) _ 230
L y 2[MJ,Mk r

1

(1,K) o2 (1 o (K)
i 107 + Mj(Ml-Mk)ei + Mk(Ml Mj)ej ]

(Ml'Mi)(Ml'Mk)
2

+

M
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A NDIX
C 0CA ATIONSHIPS BETWEEN GEN ZED IN ACTION CO CIENTS

To establish relation (III.8 ), we first seek the factor
n N -1 n
multiplying the general term xzz...xkk ...xmm, and, for this purpose,
analyse the contributions of the different terms in the general

equation III1.6 . The contribution of:

9 lny
1 @)
lx 3X, 1s nkK“Z"“nk""“m
3 InYy
-X, -32—1 : -nkKél) n n (ifk, but taking all
k 2°°°"71-1"""""m other values from 2 to m)
dlnYy (1)
-Xx, ——1 : -(n, -1)K
k axk k nz’..‘nk-l’...nm
d1lny
X, —32—1 g nkxéi) n.-1 n (i#k, but taking all
k 2°°°7L P other values from 2 to m)
d1lny
k (k)
X : (n,-1)K -
k axk k Ryesely 1,...nm

The sum of these contributions must be null. For con-

venience, call:

A = gD B - gD _ gD

nz’ooonk.oocnm 1 nz’oooni-l’ooonm 02,...n1-1,...n‘ (Bol)
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Then:
n, A+ (n-1)B_ +mn_ ) B, =0 (B.2)
k k k ki#k i
or
m Bk
=2 * Pk
But, k may take any value from 2 to m. Thus, the ratio
B
EE = C is independent of k. Replacing the Bi by their values niC in
k
equation B.3,
m m
A= ] B, =A+C] n =¢C (B.4)
i=2 i=2
or:
B
C= - —A . . L (B.5)
m \ ni
) n,, -1
i=2 /
Hence:
My
B, = = =——— A (B.6)

n1+1
Bisq1 ™ ? A (B.7)

n

g=2 1t

Therefore:
(1) (1) nytlo (1)

K =K - K n,+1 n
nz,...ni,...nm nz,...ni,c-.nm ni nz"" i 900 m

(B.8)
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To establish relation (III. 7), the 1nyi are replaced
by their expansion in equation III. 3. Identifying the factor of
n n n
2
the general term X, ,..xkk...xm"‘ in both expressions III. 1 and

III. 5 of F'/RT, the following relation is readily obtained:
A+ ] B, =y (B.9)

i=2 i nz,...nk,...nm

wnz".ﬂnk"..nm = C = - m
( ) n, |-1
i=2

(B.10)

or:

nz,,..nk,...nm [ m - (B.11)
( ni) -1
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APPENDIX C

CONVERSION RELATIONSHIP BETWEEN. THE INTERACTION
COEFFICIENTS ¢, p AND e, r

The activities and symbols used are defined in Table

Colo
TA C.
Nomenclature for Activities and Reference State
Composition Activity
Coordinate Activity Coefficient Reference State
wt. % a, £ Infinite dilution: z—Hil ¢ =)
’ i i Y %Zi > 0 7§
¢ : e p onent : ‘lim =1
atom fraction a1 A ure component: xi >0 yi
KX lini_
atom fraction ai wi Infinite dilution: xi >0 misl

Often, the value of e(i)is first determined experimentally and then
(1)
i

the value of ¢ is computed for theoretical treatment of the data.

The relationship for the conversion has been:

M
ed) o 230 A D) (C.1)
i W, %1

where Mj and M1 are the atomic weights of solute (j) and solvent (1).

Similarly, for the "self interaction" coefficient of component (2)
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in a 1-2 binary system:

M
e(g) = 230 ﬁ e(g) (c.2)

As will be demonstrated below, even in the limit where i - 0, j - 0,
or 2 + 0, equations C.l1 and C.2 should include an additional term
which may be significant.

At a given temperature, the defining equation of any

activity of solute i, relative to its partial molar free energy Fi’

is: _

dFi

RT = dlnai = dlnag = dlna;' (C.3)
Hence:

dlnyix1 = dlnfizi
and

dlnyi = dlnfi + dln(%i/xi) (C.4)

The total differential equation (C.4) yields the following partial

differential equation:

alnvl .3 aIng YT d1n(Zi/X,) .5
%, Loz X, ) -5)

where u is any solute ((2) to (m)). At infinite dilution, the term

M
%%k = 0, except when u =(j), for which it equals 10031. And, by
J 1
definition of the interaction coefficients ¢ and e, equation C.5

yields:
) . 230 Mi e(j) . (MI-M1) (c.6)
- i Ml i Ml .
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M,-
The importance of the additional term -%——1 has been illustrated
1
by Lupis and Elliott.as). Table C.2 lists recalculated values of
€ and e coefficients for liquid iron alloys.

Re-deriving equation C.5, with respect to xk, yields:

) 2

3 2

: 1:71 . pgdles :gg ) 3ot . 8_2%u_+ i_lﬁ(f_;”‘.ﬁ (c.7)
Ki3X, v oRweRy 3 kK w MoK 175

At infinite dilution, in the second member, the first summation

contains only one non-zero term for u=X,, with veX, . It equals:

]

MM
2.3 x 10% —1?15 :{J'k)
"y

The second summation contains two non-zero terms for u=X, and for

]

u=X_
k

2
2.3 x 10 _ (1) -
Mj(M1 Mk)ei + Mk(M1 M

M 2

)eik)j
1

]

The last term is equal to:

(MJ-MI)(M]-M“)

2
¥

MM 2

(1,6 _ o MM (5,0, 2.3 x 10 (D) 0o (R

oy 2.3 x 100 =510y —?L{Mj(ul Mo e onp-upye }
1 1

M. -M_,)(M.-M,)
+ ._l__l__?l_JL. (C.8)

My
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Combining equations C.6 and C.8, we can express r as a function of

p and €:

-4
(§,k) _ 0.434 x 10 2_(§,k)_ _ (). _ (k)

+ (Ml-Mj)(Ml-Mk) (Cc.9)

Recalling the definitions of p(i) and r(g) (equations

ITI.16 and II1.24), the following results are immediately deduced

from equations C.8 and C.9:

p 2N Gy, 1/ MM 2
éi = —2—1[10 Mjr it (Ml-Mj)e '}_ ] + E(__j-M) (C.10)
Ml 1

-4
(§)_ 0.434 x 10 2 (3)_ () Loy w2
ry -—-—;-3---[M1 P MMM ety T (MmN ) ] (C.11)

]
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APPENDIX D

CALCULATIONS OF THE QUASI-CHEMICAL MODEL

1. Binary System

As mentioned in Chapter IV, no rigorous mathematical

formula is available for g(NA N NAB)’ It was noted, however,
that:
(NA+NB)!
L8Ny W NG Nyg) = —F 7.1 (@.1)
A B

Assuming that the number of configurations corresponding to a
given value of NAB may be calculated as if the various types of
pairs do not interfere with one another would yield:
1
[3 Z(NA+NB)]!
gl(NA’NB’NAB) = N, (D.2)
]
Nyoa!Npp![ (D) 12

In the numerator, one finds the total number of pairs and, in the
denominator, the different types of pairs. The factor (N,g/2)!
is squared, in order to distinguish between the two modes of
occupation AB and BA. Formula D.2 overestimates the value of
g, because the different pairs do interfere with one another.(lo)
Consequently, g is multiplied by a correction term, h(NA’NB)’ and
h is determined by the following procedure.

The maximum term, g, arises for N*_ corresponding to a

AB
random distribution. Thus:

(N, #N ) ! [%Z(NA+NB)]!
g* = : N = h(N N )
Np!iNp! ATB 1 Lyx y1(dan 1N* g) I N* g)! 12
(7 2Ny =2V 1 (32N~ 2

(D.3)
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which fixes the value of h(NA,NB). Replacing, now, h by its expres-

sion in g = g, ° h:

e _ 1 Lv Lyx
IO RTN: C  RIL; e T LIL: RN
g A’ B? AB NA!NB! 1 1 1 1 1 5 .
(ZZNA-ZNAB)!(ZZNB-zNAB)![(_ZNAB)!]

To determine N¥% it is noted that the probability of finding A on

B’

N
the site (i) is: i_ (where N = NA+NB), and of finding B on the
N
neighboring site (ii) is: ﬁé' Thus, the probability of finding A on

2NANB
(i) and B on (ii), or B on (i) and A on (ii) becomes N+ Mulri-

plying, now, this probability by the total number of neighboring
sites %Z(NA+NB), the total number of pairs AB, corresponding to a

random distrubution, is obtained:

(D.5)

The sum

-8N w
AB“AB
Lg(Ny, Ny, N ple

(9)

is now replaced by its maximum term:

-8N, w
- - AB AB
S(NA’NB,NAB)e

where N

AB is determined by:

3 -B8N
N, g(Ny»NgyNype

o
AB AB] =0 (D.6)
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which, by using Stirling's approximation (lmp! = plnp-p), is found

to be equivalent to:

N - 28w

AR - AB o (1w, 7t (0.7)
(ZNA AB)(ZN AB)
an equation easily solved for N,,- And, as:
P = -kTIng + W 0,, (D.8)

replacing g and NAB by their values, obtained from equations D.4,
D.5 and D.7, leads to the quasi-chemical expression of the excess
free energy in equation IV.13. The intermediate calculations are
long, but straight forward, and do not need to be reproduced here.
They also constitute a particular case of the more complex calcula-

tions of ternary systems that will be considered now.

2. Ternary System
A procedure, identical to the one followed in the study

of the binary, leads to:

ZN, = 2NAA + NAB + N, (D.9a)
Zyg = 2Nz * Nap * Vpc (D.9b)
ZN, = 2No + N0+ Ngo (D.9¢c)
and . .
1 =N % =N %
) Nt . NAa'VEs' Ngo! [ (Vg !] [Qgﬂéngl [(zNBc)’] (0.10)
g N, IN TN )

LA ART(C NSRS LGN, 117 LGNy 1)
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where:
- 1 - -
N;i 2(ZN1 N;j N;k) (D.11)
with:
ZNiN
Ngj = -—ﬁ—i (N = N1+Nj+Nk = NA+NB+NC) (D.12)
and
N,, = 2(zn,-F N,.) (D.13)
11 " 2N TN 7
The Nij are given by:
w2 - 284, -1
44117_ - e 2+ Aij) (D.14)
Zﬂii X 2ij

This time, however, the expression of N is much more difficult to

1]
find. The following system must be solved:

Nigtap * NAB[(ZNA-NAC) + (ZNB-NBC)] - (ZNAfNAc)(ZNB—NBC) = 0 (D.15a)

-2 - - - - -
Nacrac t NAC[(ZNA-NAB) + (ZNC-NBC)] - (ZNA-NAB)(ZNC-NBC) 0 (D.15¢)

There are no theoretical difficulties in solving this system of three
AB*Npc'Vsc) -
lation of these unknowns is not possible and, consequently, an intera-

equations with three unknowns (ﬁ However, a direct calcu-

tion .procedure is adopted.

Choosing Xy and X, as infinitesimal variables of the same

is the value of N in a random solu-

order and, recalling that N* 1]

1
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tion, it is possible to write:

+ 0(x3) (D.16)

2 [
(2
[l
=
[ TN

+ a +0(X3) = ZX Xj + a

1] 1 13

aij is a second order correcting term which accounts for the non-
randomness of the solution. Equation D.15a then becomes:
2 2, 2

2
Xg tagoX, t22,5X, "Xy

2,2
a,plX, “+X % 42x X (1 + Agp)l + a BC

AC

1

2
* 202 aB2AB"2aB%ACc™®Bc2aB " 2ac?pc =0 (D.17a)

Equations D.17b and D.17c correspond to D.15b and D.15¢, and are
obtained from D.17a by circular permutation of the indicies. 1In
each of the equations D.1l7, only the terms of the lowest order
must be retained. In equations D.l7a and D.l7c they are of the
second order:

+ a + 22, X =0 (D.18a)

3B BC AB“B

+ a + 22, X = 0 (D.18¢)

3Ac BC Ac®c

In equation D.17b, they are of the fourth order and, replacing

a,p and a,c by their values obtained in equations D.18a and D.18c¢,

yields:
(L + 2,01 + A,.)
2 2. 2. 2 AB ac’ .
agctlag ZXX. - 27X, Xg (17 1,0 1 0 (D.18b)
or:
a  + 2a_ 2% X + 22%.2% 2[l-exp 28(s. 4o -u )] = 0
BC BC“®*B%¢ B “C P ABT®Ac™¥“Bc



which yields:

agc = - ZXBXC[I + exp B(mA

s¥ac™¥sc)!
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Only the value corresponding to the negative sign has a physical

meaning since, when all the o are null, agc must be null (complete

randomness). Consequently:

= ZX_ X

38C p*cH

with
B(w,gtwyc=wpe)
W= e -1

Therefore, equations D.18a and D.18c yield:

ayp = - LXglr,pXp + uXc]

AB

a = - ZXC[AACXc + uXB]

AC

The same procedure is now repeated.

rewritten as:
N*

oy

N
e L TP TR T4

2

i3 ij

and the bi coefficients are determined by replacing N

3

new value 1in the system of equation D.15:

b, = zzx32(1+a

AB AB AB"'B

bpc = - ZXBXC(1+u)[XB(AAB+u) + X (hyotw)

2
b ZZXC (1+AAC)(

AC ‘acXe

(D.19)

(D.20)

(D.21)

(D.22)

Equation D.16 is

(D.23)

1 by its

) (A, pgXptuXo) + ZXBXC(1+u)[XB(AAB+u)+xC(AAC+u)] (D.24a)

(D.24b)

+uXB) + ZXBXC(1+u)[xB(xAB+u)+xC(xAC+u) (D.24¢)
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The values of the different pairs ﬁii and ﬁij are thus known up

to, and including, the third order term, Recaliins that:

M - -

F' = - kTlng + AB“aB T Npc¥sc t (D.25)

Nacac
all the elements needed to calculate FMo(or FE) are seen to have
been obtained. The calculations leading to equation IV.31 are

straight forward, but very lengthy. We do not find it necessary

to reproduce them here.
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Identification Solvent Solute o o
umbe 1 2 log 7o €2 2 T _C
1 Al - Ag -0.28 -3.1 1000
2 A - Bi -0.52 2.55 1000
3 A8 - Al -1.66 6.4 700
4 Az - Al -1.56 5.6 800
5 A8 - Al -1.41 4.6 900
6 Ag - Al =0.96 4.22 1000
7 Ag - Cd -0.74 1.47 © 827
8 Ag - Pb 0.30 -0.4 1000
9 Ay - B -0.05 0.1 700
10 Au - Pb -0.85 5 600
11 Au - tl -0. 31 001 700
12 BL - Ag 0.41 -6.2
13 Bi - A -0.11 2.1 700
14 Bi - cd 0 -1.22 500
15 Bi - Hs -0.41 -0.33 321
16 BL - Mg -2.26 0.85 700
17 Bi - Pb °°0“ 10“ 500
18 Bi - Pb -0.28 0.75 665
19 Bi - &n 0.05 -0.06. 330
20 B - T1 -1.40 3,22 270
21 Bi - T1 -0.85 2.14 480
22 Bi - 2n 0.54 -3.3 600
23 cd hd 81 ‘0008 '6.5 500
26 cd - Hg -1 3.3 327
25 cd - Hg -1.2 2.5 350
26 cd - N -2 15.8 395
27 cd - Pb 0.71 -4.56 500
28 “ - Sb '0. 57 '605 . 500
29 cd - 8§ . 0. 28 '104 500
30 cd had zn 0.‘5 .1078 682
-31 cd - zn .00 68 0. 72 727



TABIE B,1 (continued)

Identification
[ ]

32
33
34
35
36

37

38
39
40
41
42
43
b4
45
46
47

48

49
50

51
52
53
54

55

Solvent Solute

1 2
Fe - Al
Pe - C(gr)
Fe - Cu
Fe - Ni
Fe - Si
Hg - T1
Pb - Ag
Pb - Au
Pb - Bi
Pb - Cd
Pb - Mg
Pb - Na
Pb - Zn
sb - Cd
sb - Pb
§b - Sn
Sa - 2n
Tl - A
L - &
$n - An
Sn - Pb
sn - Tl
sn - T1
Zn - Cd

log 75’

'1020
=0.33

0.92
.0013
-2.96

-0.37

0.18
-0.60
.00 31

0.51
- 10 20
~2.66

1.04

'0.60
=0.14
~0.40

0.42

'0.51
0.45

-2.22
0.36
0.46
0.38

0. 54
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.

P - NOE MmwON

L
L3 3
No o NuW wooo

1
O
o\ 00
w

=3.2
~1.78

'3- 33

I_¢C
1600
1600
1600
1600
1600

325

1000
600
500
500
833
400
653

500
500
905

437

700
325

600
500
352
4l4

682

Most values of log 72° and €2,2 are reported by Dealy and Pehlke(
Exceptions occur for the silver-bismuth system reported by Hultgrcn, Orr,
), for the irom slloys (numbered 32 to 36) rqpomd by

Anderson and Kcuy(
Elliote, Gleiser and mkruhu‘ ), and for the value of €
which is based on Schroeder and Chipman's results. (

)

}

st, st in'{ron,

177

)

*
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APPENDIX F

CALCULATION OF THE "FREE VOLUME"

In Chapter V, the movement of an atom within its cell
was accounted for by the following expression of the free volume:
=[v(r) =¥ (0)]/kT
v, = [ e ar (F.1)
cell
The Z nearest neighbors are treated as uniformly "smeared" over a
spherical surface of radius a, where a is the distance between the
centers of nearest neighbor cells. 1In Fig. F.1l, the central atom
is at P, a distance r from the center O of the cell. The area of
the ring, shown on the surface of the sphere, is 21ta2 siné de.

The numbers of "smeared" nearest neighbors in this area are:

2
z 21a_sin 8 .o _ Z ..i.0 4o
2 2

4ma

and the potential energy of interaction between the atom, at P,

and the neighbors in the ring is:

sind db6

S]]

u(R)

where

R? = 2+ a? - 2ar cos® (F.2)

and u(R) is the potential of the bonding force between two neighbors.
Hence, the total energy of interaction between the atom at P and

all of its nearest neighbors is:



FIG.F1. CELL GEOMETRY FOR THE "FREE VOLUME' MODEL
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w
¥(r) = 2 [ u(r) sine ae (F.3)

0
u(R) may be expressed as a Taylor's series, with respect to the
distance R-a, where a, is the distance corresponding to the

minimum of u(R):

u(R) = u(a,) + A(R - 80)2 + O(R3) (F.4)
ith:
Ch A

Terms of the third order and higher orders, are neglected for

simplicity. Equation F.3 then becomes:

m
y(r) = % [ u(ao) + A[(r2+a2-23r cose)l‘/2 - a,]z sin6 do (F.6)
0

Carrying out the integration yields:

V(r) = Zu(ao) + zA[(a-aa)? + £2(1 - 229 (F.7)

Consequently:

v(r) - v(0) = zar?(1 - 8., (F.8)
and
| -zar?@1 - 222 g1,
ve = 4n [ e a r-dr (F.9)
cell

Since A is a positive quantity, it is possible to write:
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. ZA(1 %g*)
3 = KT (F.10)
(o4
Therefore: 2
.
a - 2
ve =4nf e 7 rlar (F.11)
0
Integrating by part yields:
3/2
Ve = - 210%a exp(-azloz) + (na?) erf(a/o) (F.12)

It may be seen that a/o is usually a large number. For a 6-12
Lennard-Jones potential, and a temperature of about 1000°K, a/o is,

roughly, equal to 20. Consequently:

2
exp(- %5) = 0 and  erf(®) -1 (F.13)

g

The value of Ve is, then:

- 2a,

Ve = (wg ) = — (F.14)
or
2 { - 3/2
= | 1 (3w
Ve T | TokT O 2’} (F.15)
r



Solvent Solute
1

Ha:

(- R-B-R-N--N- ]
f~r~0~r~r~r~§=

288882888

ExEEEZEEE RRR &R2E&2EE

ER02ZZ 5y yooewre

EPE

geRes

N3
-

geggsyeen

ggogxcal.l

- 4%.85
- 4066
- z.&o
- G.M

6,00

5,26
- 3,60

8.50
3.14
3,25

- 4,05
- 3.86
=16. 47
- 2.8
5.08
2.50
6.15
=16.9
- 00 57

9.94
V.78
=11.6
- 0.85
2.8
- 2.95
3.68

2.30
- 1.56
3-54
1.85
3.72
2,27
2.33
3.25
2.25

°
§§ gcal.okail

°1'38
=1.30
2.31
0.74
0.29
1.33
«0.60

4.75
0.70

2.10

2.74
-2.61
0.72
0.55
1.56

1.71
1.68

ITK

800
1350
1000

673
1052
1400

873

1000
625
750

800
1350

720
1123
550
1150
873
973

1000
594
973
700
412
732
873

773
875
700
723
173
773
773
673
800
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State

solid
liquid
liquid
solid
solid
liquid
solid

liquid
eolid
iiquid

solid
liquid
solid
solid
solid
solid
golid
iiquid
liquid

liquid
liquid
1iquid
liquid
solid

liquid
1iquid

liquid
liquid
liquid
liquid
liguid
iiquid
iiquid
liquid
liquid



Solvent So;utc

h

(2]
]

% ZEEE EF *™ FESPE SEEREE 29 v gepepae

£ ° FENRTREF

Zn

[~ N ]
-

[ I |
s o

]
- Ww 2000 LK o A ]

w &

[

-

HER I
LN NNW
RUES 368

v~
w

M9 00 O
S

[ ]

VOO W wKN
~Nwv

1 %k

298

1052
1400
1150
1000

923

773
1300

1426
700

723

433
600
648
433
293
608

723
673
973
773
700

848
600

1150
833

648
698
773
648

773
773
926
1000
923
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state

liquid

Tquta
q‘l
liquid
solid
solid
solid
liquid

solid

liquid
liquid

liquid

liquid -
liquid
liquid
liquid
liquid

liquid
liquid
liquid
liquid
liquid

liquid
liquid

liquid
liquid

liquid
1iquid
liquid
liquid

liquid
liquid
1iquid
solid
solid
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TABLE G.1 (continued)

Solvent Solute () o o -1 o
1. 2 Keal, ;sg (cal. K ) T K State
sb - Zn 0.76 1.51 823 liquid
Sn - Al 3.50 2.05 1000 liquid
Sn - Au 7.6 1.17 873 liquid
sn - C4 1.52 0.91 773 liquid
Sn - Ne -14.6 -7.9 773 liquid
sn - 2n 2,22 1.55 700 11quid
Tl - BS - 5.31 =0,03 772 liquid
TP - C4 1.76 0.46 673 liquid
1T - In 4.3 1.24 700 liquid
TI - Me -19.5 7.4 648 liquid
T - In 4.12 0.5 1099 liquid
Zn - Al 3.25 2 750 1liquid
Z2n - Bi 8.43 2.10 873 liquid
Zn - Cu - 7.1 -1.5 1300 liquid
Zn - Ga 2.2 1.45 723 liquid
Zn -~ Pb 12.08 5.65 926 liquid
Zn - & 2.6 2.8 823 11quid
Za - 6o 5.47 3.77 700 11quid
Zn - T1 7.12 0.5 1099 liquid

All values listed are reported by Hultgren, Orr, Anderson and Kelly, G2)
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APPENDIX H
EXPERIMENTAL DATA

All runs and corresponding data are listed chrono-
logically in the following pages. However, it was felt to be
more copvenient to give the measurements of the "hot volume"
separately. It must be noted that a comparison of the hot
volume in different runs is not strictly possible, because
the experimental set up was usually different in each rum

(different reaction bulbs, water-cooling or air-cooling, etc.).
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BIOGRAPHICAL NOTE

The author is a Greek citizem, and was born on March
5, 1938, in Alexandria, Egypt. He attended the College St. Marc
of Alexandria where he received the Baccalaureat in 1955.

He pursued his studies in Paris, France, with a program
of "Mathematiques Superieures" at the Lycée Louis-le-Grand, from
1955 to 1956, and "Mathematiques Spéciales”" at the Lycée St. Louis,
from 1956 to 1958. In 1958, he was admitted to the Ecole Nationale
Superieure des Mines de Paris, after amn extrance examination in
which he ranked first among the foreign candidates (over omne
hundred). In 1961, he obtained the degree of "Ingenieur Civil des
Mines," ranking in the upper 10% part of his class. While pursu-
ing his studies, and specializing in Metallurgy at the Ecole des
Mines, he obtained a "Licence &s Sciences" from the University of
Paris in 1959, and a diploma from the Institut d'Administration
des Entreprises in 1960.

In September, 1961, he entered the Department of
Metallurgy at the Massachusetts Institute of Technology as a
research assistant to Professor John F. Elliott. From 1962 to 1964,
he was, in addition, a teaching assistant to Professor Harold
Freeman in the Department of Economics at the Massachusetts
Institute of Technology.

He is a member of Sigma Xi and Tau Beta Pi, and is a
student member of the American Society of Metals and the
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Professor John F. Elliott and the author are co-authors
of two technical notes which are to be published in the Trans-
actions of the Metallurgical Society of the AIME. The first note
concerns "The Relationship between the Interaction Coefficients
¢ and e," and the second "Free Energy, Entropy and Enthalpy

Interaction Coefficients."
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