
Searches for violation of lepton flavour and
baryon number in tau lepton decays at LHCb

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Aaij, R., et al. "Searches for Violation of Lepton Flavour and Baryon
Number in Tau Lepton Decays at Lhcb." Physics Letters B 724 1-3
(2013): 36-45.

As Published 10.1016/J.PHYSLETB.2013.05.063

Publisher Elsevier BV

Version Final published version

Citable link https://hdl.handle.net/1721.1/133711

Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License

Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133711
http://creativecommons.org/licenses/by-nc-nd/4.0/


Physics Letters B 724 (2013) 36–45

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Searches for violation of lepton flavour and baryon number
in tau lepton decays at LHCb

.LHCb Collaboration

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2013
Received in revised form 27 May 2013
Accepted 29 May 2013
Available online 3 June 2013
Editor: L. Rolandi

Searches for the lepton flavour violating decay τ− → μ−μ+μ− and the lepton flavour and baryon
number violating decays τ− → p̄μ+μ− and τ− → pμ−μ− have been carried out using proton–proton
collision data, corresponding to an integrated luminosity of 1.0 fb−1, taken by the LHCb experiment at√

s = 7 TeV. No evidence has been found for any signal, and limits have been set at 90% confidence
level on the branching fractions: B(τ− → μ−μ+μ−) < 8.0 × 10−8, B(τ− → p̄μ+μ−) < 3.3 × 10−7 and
B(τ− → pμ−μ−) < 4.4 × 10−7. The results for the τ− → p̄μ+μ− and τ− → pμ−μ− decay modes
represent the first direct experimental limits on these channels.

© 2013 CERN. Published by Elsevier B.V.

1. Introduction

The observation of neutrino oscillations was the first evidence
for lepton flavour violation (LFV). As a consequence, the introduc-
tion of mass terms for neutrinos in the Standard Model (SM) im-
plies that LFV exists also in the charged sector, but with branching
fractions smaller than ∼ 10−40 [1,2]. Physics beyond the Standard
Model (BSM) could significantly enhance these branching fractions.
Many BSM theories predict enhanced LFV in τ− decays with re-
spect to μ− decays,1 with branching fractions within experimental
reach [3]. To date, no charged LFV decays such as μ− → e−γ ,
μ− → e−e+e− , τ− → �−γ and τ− → �−�+�− (with �− = e−,μ−)
have been observed [4]. Baryon number violation (BNV) is believed
to have occurred in the early universe, although the mechanism is
unknown. BNV in charged lepton decays automatically implies lep-
ton number and lepton flavour violation, with angular momentum
conservation requiring the change |�(B − L)| = 0 or 2, where B
and L are the net baryon and lepton numbers. The SM and most
of its extensions [1] require |�(B − L)| = 0. Any observation of
BNV or charged LFV would be a clear sign for BSM physics, while
a lowering of the experimental upper limits on branching fractions
would further constrain the parameter spaces of BSM models.

In this Letter we report on searches for the LFV decay τ− →
μ−μ+μ− and the LFV and BNV decay modes τ− → p̄μ+μ− and
τ− → pμ−μ− at LHCb [5]. The inclusive τ− production cross-
section at the LHC is relatively large, at about 80 μb (approximately
80% of which comes from D−

s → τ−ν̄τ ), estimated using the bb̄
and cc̄ cross-sections measured by LHCb [6,7] and the inclusive
b → τ and c → τ branching fractions [8]. The τ− → μ−μ+μ−

1 The inclusion of charge conjugate processes is implied throughout this Letter.

and τ → pμμ decay modes2 are of particular interest at LHCb,
since muons provide clean signatures in the detector and the ring-
imaging Cherenkov (RICH) detectors give excellent identification of
protons.

This Letter presents the first results on the τ− → μ−μ+μ− de-
cay mode from a hadron collider and demonstrates an experimen-
tal sensitivity at LHCb, with data corresponding to an integrated
luminosity of 1.0 fb−1, that approaches the current best experi-
mental upper limit, from Belle, B(τ− → μ−μ+μ−) < 2.1 × 10−8

at 90% confidence level (CL) [9]. BaBar and Belle have searched for
BNV τ decays with |�(B − L)| = 0 and |�(B − L)| = 2 using the
modes τ− → Λh− and Λ̄h− (with h− = π−, K −), and upper lim-
its on branching fractions of order 10−7 were obtained [4]. BaBar
has also searched for the B meson decays B0 → Λ+

c l− , B− → Λl−
(both having |�(B − L)| = 0) and B− → Λ̄l− (|�(B − L)| = 2),
obtaining upper limits at 90% CL on branching fractions in the
range (3.2 − 520) × 10−8 [10]. The two BNV τ decays presented
here, τ− → p̄μ+μ− and τ− → pμ−μ− , have |�(B − L)| = 0 but
they could have rather different BSM interpretations; they have not
been studied by any previous experiment.

In this analysis the LHCb data sample from 2011, corresponding
to an integrated luminosity of 1.0 fb−1 collected at

√
s = 7 TeV,

is used. Selection criteria are implemented for the three signal
modes, τ− → μ−μ+μ− , τ− → p̄μ+μ− and τ− → pμ−μ− , and
for the calibration and normalisation channel, which is D−

s → φπ−
followed by φ → μ+μ− , referred to in the following as D−

s →
φ(μ+μ−)π− . These initial, cut-based selections are designed to
keep good efficiency for signal whilst reducing the dataset to a
manageable level. To avoid potential bias, μ−μ+μ− and pμμ

2 In the following τ → pμμ refers to both the τ− → p̄μ+μ− and τ− → pμ−μ−
channels.
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candidates with mass within ±30 MeV/c2 (≈ 3σm) of the τ mass
are initially blinded from the analysis, where σm denotes the ex-
pected mass resolution. For the 3μ channel, discrimination be-
tween potential signal and background is performed using a three-
dimensional binned distribution in two likelihood variables and
the mass of the τ candidate. One likelihood variable is based on
the three-body decay topology and the other on muon identifica-
tion. For the τ → pμμ channels, the use of the second likelihood
function is replaced by cuts on the proton and muon particle iden-
tification (PID) variables. The analysis strategy and limit-setting
procedure are similar to those used for the LHCb analyses of the
B0

s → μ+μ− and B0 → μ+μ− channels [11,12].

2. Detector and triggers

The LHCb detector [5] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined
tracking system has momentum resolution �p/p that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter res-
olution of 20 μm for tracks with high transverse momentum (pT).
Charged hadrons are identified using two RICH detectors. Pho-
ton, electron and hadron candidates are identified by a calorimeter
system consisting of scintillating-pad and preshower detectors, an
electromagnetic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and
multiwire proportional chambers.

The trigger [13] consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a
software stage that applies a full event reconstruction. The hard-
ware trigger selects muons with pT > 1.48 GeV/c. The software
trigger requires a two-, three- or four-track secondary vertex with
a high sum of the pT of the tracks and a significant displacement
from the primary pp interaction vertices (PVs). At least one track
should have pT > 1.7 GeV/c and impact parameter chi-squared
(IP χ2), with respect to the pp collision vertex, greater than 16.
The IP χ2 is defined as the difference between the χ2 of the
PV reconstructed with and without the track under consideration.
A multivariate algorithm is used for the identification of secondary
vertices.

For the simulation, pp collisions are generated using Pythia 6.4
[14] with a specific LHCb configuration [15]. Particle decays are
described by EvtGen [16] in which final-state radiation is gener-
ated using Photos [17]. For the three signal τ decay channels, the
final-state particles are distributed according to three-body phase
space. The interaction of the generated particles with the detector,
and its response, are implemented using the Geant4 toolkit [18]
as described in Ref. [19].

3. Signal candidate selection

The signal and normalisation channels have the same topology,
the signature of which is a vertex displaced from the PV, hav-
ing three tracks that are reconstructed to give a mass close to
that of the τ lepton (or Ds meson for the normalisation channel).
In order to discriminate against background, well-reconstructed
and well-identified muon, pion and proton tracks are required,
with selections on track quality criteria and a requirement of
pT > 300 MeV/c. Furthermore, for the τ → pμμ signal and nor-
malisation channels the muon and proton candidates must pass

loose PID requirements and the combined pT of the three-track
system is required to be greater than 4 GeV/c. All selected tracks
are required to have IP χ2 > 9. The fitted three-track vertex has
to be of good quality, with a fit χ2 < 15, and the measured decay
time, t , of the candidate forming the vertex has to be compat-
ible with that of a heavy meson or tau lepton (ct > 100 μm).
Since the Q -values in decays of charm mesons to τ are relatively
small, poorly reconstructed candidates are removed by a cut on the
pointing angle between the momentum vector of the three-track
system and the line joining the primary and secondary vertices.
In the τ− → μ−μ+μ− channel, signal candidates with a μ+μ−
mass within ±20 MeV/c2 of the φ meson mass are removed, and
to eliminate irreducible background near the signal region arising
from the decay D−

s → η(μ+μ−γ )μ−ν̄μ , candidates with a μ+μ−
mass combination below 450 MeV/c2 are also rejected (see Sec-
tion 6). Finally, to remove potential contamination from pairs of
reconstructed tracks that arise from the same particle, same-sign
muon pairs with mass lower than 250 MeV/c2 are removed in
both the τ− → μ−μ+μ− and τ− → pμ−μ− channels. The sig-
nal regions are defined by ±20 MeV/c2 (≈ 2σm) windows around
the nominal τ mass, but candidates within wide mass windows, of
±400 MeV/c2 for τ− → μ−μ+μ− decays and ±250 MeV/c2 for
τ → pμμ decays, are kept to allow evaluation of the background
contributions in the signal regions. A mass window of ±20 MeV/c2

is also used to define the signal region for the D−
s → φ(μ+μ−)π−

channel, with the μ+μ− mass required to be within ±20 MeV/c2

of the φ meson mass.

4. Signal and background discrimination

After the selection each τ candidate is given a probability to be
signal or background according to the values of several likelihoods.
For τ− → μ−μ+μ− three likelihoods are used: a three-body like-
lihood, M3body, a PID likelihood, MPID, and an invariant mass
likelihood. The likelihood M3body uses the properties of the recon-
structed τ decay to distinguish displaced three-body decays from
N-body decays (with N > 3) and combinations of tracks from dif-
ferent vertices. Variables used include the vertex quality and its
displacement from the PV, and the IP and fit χ2 values of the
tracks. The likelihood MPID quantifies the compatibility of each
of the three particles with the muon hypothesis using information
from the RICH detectors, the calorimeters and the muon stations;
the value of MPID is taken as the smallest one of the three muon
candidates. For τ → pμμ, the use of MPID is replaced by cuts
on PID quantities. The invariant mass likelihood uses the recon-
structed mass of the τ candidate to help discriminate between
signal and background.

For the M3body likelihood a boosted decision tree [20] is used,
with the AdaBoost algorithm [21], and is implemented via the
TMVA [22] toolkit. It is trained using signal and background sam-
ples, both from simulation, where the composition of the back-
ground is a mixture of bb̄ → μμX and cc̄ → μμX according to
their relative abundance as measured in data. The MPID likelihood
uses a neural network, which is also trained on simulated events.
The probability density function shapes are calibrated using the
D−

s → φ(μ+μ−)π− control channel and J/ψ → μ+μ− data for
the M3body and MPID likelihoods, respectively. The shape of the
signal mass spectrum is modelled using D−

s → φ(μ+μ−)π− data.
The M3body response as determined using the training from the
τ− → μ−μ+μ− samples is used also for the τ → pμμ analyses.

For the M3body and MPID likelihoods the binning is chosen
such that the separation power between the background-only and
signal-plus-background hypotheses is maximised, whilst minimis-
ing the number of bins. For the M3body likelihood the optimum
number of bins is found to be six for the τ− → μ−μ+μ− analysis
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Fig. 1. Distribution of (a) M3body and (b) MPID for τ− → μ−μ+μ− where the binning corresponds to that used in the limit calculation. The short dashed (red) lines show
the response of the data sidebands, whilst the long dashed (blue) and solid (black) lines show the response of simulated signal events before and after calibration. Note that
in both cases the lowest likelihood bin is later excluded from the analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this Letter.)

and five for τ → pμμ, while for the MPID likelihood the optimum
number of bins is found to be five. The lowest bins in M3body
and MPID do not contribute to the sensitivity and are later ex-
cluded from the analyses. The distributions of the two likelihoods,
along with their binning schemes, are shown in Fig. 1 for the
τ− → μ−μ+μ− analysis.

For the τ → pμμ analysis, further cuts on the muon and pro-
ton PID hypotheses are used instead of MPID and are optimised,
for a 2σ significance, on simulated signal events and data side-
bands using the figure of merit from Ref. [23], with the distribu-
tions of the PID variables corrected according to those observed
in data. The expected shapes of the invariant mass spectra for the
τ− → μ−μ+μ− and τ → pμμ signals, with the appropriate se-
lections applied, are taken from fits to the D−

s → φ(μ+μ−)π−
control channel in data as shown in Fig. 2. The signal distributions
are modelled with the sum of two Gaussian functions with a com-
mon mean, where the narrower Gaussian contributes 70% of the
total signal yield, while the combinatorial backgrounds are mod-
elled with linear functions. The expected widths of the τ signals
in data are taken from simulation, scaled by the ratio of the widths
of the D−

s peaks in data and simulation. The data are divided into
eight equally spaced bins in the ±20 MeV/c2 mass window around
the nominal τ mass.

5. Normalisation

To measure the signal branching fraction for the decay τ− →
μ−μ+μ− (and similarly for τ → pμμ) we normalise to the D−

s →
φ(μ+μ−)π− calibration channel using

B
(
τ− → μ−μ+μ−)

= B
(

D−
s → φ

(
μ+μ−)

π−) × f Ds
τ

B(D−
s → τ−ν̄τ )

× εREC&SEL
cal

εREC&SEL
sig

× εTRIG
cal

εTRIG
sig

× Nsig

Ncal

= α × Nsig, (1)

where α is the overall normalisation factor and Nsig is the number
of observed signal events. The branching fraction B(D−

s → τ−ν̄τ )

is taken from Ref. [24]. The quantity f Ds
τ is the fraction of τ lep-

tons that originate from D−
s decays, calculated using the bb̄ and cc̄

cross-sections as measured by LHCb [6,7] and the inclusive b → τ ,
c → τ , b → Ds and c → Ds branching fractions [8]. The corre-
sponding expression for the τ → pμμ decay is identical except

for the inclusion of a further term, εPID
cal /εPID

sig , to account for the
effect of the PID cuts.

The reconstruction and selection efficiencies, εREC&SEL, are prod-
ucts of the detector acceptances for the particular decays, the
muon identification efficiencies and the selection efficiencies. The
combined muon identification and selection efficiency is deter-
mined from the yield of simulated events after the full selections
have been applied. In the sample of simulated events, the track
IPs are smeared to describe the secondary-vertex resolution of
the data. Furthermore, the events are given weights to adjust the
prompt and non-prompt b and c particle production fractions to
the latest measurements [8]. The difference in the result if the
weights are varied within their uncertainties is assigned as a sys-
tematic uncertainty. The ratio of efficiencies is corrected to account
for the differences between data and simulation in efficiencies of
track reconstruction, muon identification, the φ(1020) mass win-
dow cut in the normalisation channel and the τ mass window cut,
with all associated systematic uncertainties included. The removal
of candidates in the least sensitive bins in the M3body and MPID
classifiers is also taken into account.

The trigger efficiency for selected candidates, εTRIG, is evaluated
from simulation while its systematic uncertainty is determined
from the difference between trigger efficiencies of B− → J/ψ K −
decays measured in data and in simulation.

For the τ → pμμ channels the PID efficiency for selected and
triggered candidates, εPID, is calculated using data calibration sam-
ples of J/ψ → μ+μ− and Λ → pπ− decays, with the tracks
weighted to match the kinematics of the signal and calibration
channels. A systematic uncertainty of 1% per corrected final-state
track is assigned [7], as well as a further 1% uncertainty to account
for differences in the kinematic binning of the calibration samples
between the analyses.

The branching fraction of the calibration channel is determined
from a combination of known branching fractions using

B
(

D−
s → φ

(
μ+μ−)

π−)

= B(D−
s → φ(K +K −)π−)

B(φ → K +K −)
B

(
φ → μ+μ−)

= (1.33 ± 0.12) × 10−5, (2)

where B(φ → K +K −) and B(φ → μ+μ−) are taken from [8] and
B(D−

s → φ(K +K −)π−) is taken from the BaBar amplitude analy-
sis [25], which considers only the φ → K +K − resonant part of the
D−

s decay. This is motivated by the negligible contribution of non-
resonant D−

s → μ+μ−π− events seen in our data. The yields of
D−

s → φ(μ+μ−)π− candidates in data, Ncal, are determined from
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Fig. 2. Invariant mass distribution of φ(μ+μ−)π− after (a) the τ− → μ−μ+μ− selection and (b) the τ → pμμ selection and PID cuts. The solid (blue) lines show the
overall fits, the long dashed (green) and short dashed (red) lines show the two Gaussian components of the signal and the dot dashed (black) lines show the backgrounds.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Table 1
Terms entering in the normalisation factor α for τ− → μ−μ+μ− , τ− → p̄μ+μ− and τ− → pμ−μ− , and their
combined statistical and systematic uncertainties.

τ− → μ−μ+μ− τ− → p̄μ+μ− τ− → pμ−μ−

B(D−
s → φ(μ+μ−)π−) (1.33 ±0.12)×10−5

f Ds
τ 0.78 ± 0.05

B(D−
s → τ−ν̄τ ) 0.0561 ± 0.0024

εREC&SEL
cal /εREC&SEL

sig 1.49 ± 0.12 1.35 ± 0.12 1.36 ± 0.12

εTRIG
cal /εTRIG

sig 0.753 ± 0.037 1.68 ± 0.10 2.03 ± 0.13

εPID
cal /εPID

sig n/a 1.43 ± 0.07 1.42 ± 0.08

Ncal 48 076 ± 840 8145 ± 180

α (4.34 ±0.65)×10−9 (7.4 ±1.2)×10−8 (9.0 ± 1.5) × 10−8

the fits to reconstructed φ(μ+μ−)π− mass distributions, shown
in Fig. 2. The variations in the yields if the relative contributions
of the two Gaussian components are varied in the fits are con-
sidered as systematic uncertainties. Table 1 gives a summary of
all contributions to α; the uncertainties are taken to be uncorre-
lated.

6. Background studies

The background processes for the decay τ− → μ−μ+μ− con-
sist mainly of decay chains of heavy mesons with three real muons
in the final state or with one or two real muons in combination
with two or one misidentified particles. These backgrounds vary
smoothly in the mass spectra in the region of the signal chan-
nel. The most important peaking background channel is found to
be D−

s → η(μ+μ−γ )μ−ν̄μ , about 80% of which is removed (see
Section 3) by a cut on the dimuon mass. The small remaining back-
ground from this process is consistent with the smooth variation in
the mass spectra of the other backgrounds in the mass range con-
sidered in the fit. Based on simulations, no peaking backgrounds
are expected in the τ → pμμ analyses.

The expected numbers of background events within the sig-
nal region, for each bin in M3body, MPID (for τ− → μ−μ+μ−)
and mass, are evaluated by fitting the candidate mass spectra out-
side of the signal windows to an exponential function using an
extended, unbinned maximum likelihood fit. The small differences
obtained if the exponential curves are replaced by straight lines
are included as systematic uncertainties. For τ− → μ−μ+μ− the
data are fitted over the mass range 1600–1950 MeV/c2, while for
τ → pμμ the fitted mass range is 1650–1900 MeV/c2, exclud-
ing windows around the expected signal mass of ±30 MeV/c2 for
μ−μ+μ− and ±20 MeV/c2 for pμμ. The resulting fits to the data

sidebands for a selection of bins for the three channels are shown
in Fig. 3.

7. Results

Tables 2 and 3 give the expected and observed numbers of
candidates for all three channels investigated, in each bin of the
likelihood variables, where the uncertainties on the background
likelihoods are used to compute the uncertainties on the expected
numbers of events. No significant evidence for an excess of events
is observed. Using the CLs method as a statistical framework, the
distributions of observed and expected CLs values are calculated as
functions of the assumed branching fractions. The aforementioned
uncertainties and the uncertainties on the signal likelihoods and
normalisation factors are included using the techniques described
in Ref. [12]. The resulting distributions of CLs values are shown in
Fig. 4. The expected limits at 90% (95%) CL for the branching frac-
tions are

B
(
τ− → μ−μ+μ−)

< 8.3 (10.2) × 10−8,

B
(
τ− → p̄μ+μ−)

< 4.6 (5.9) × 10−7,

B
(
τ− → pμ−μ−)

< 5.4 (6.9) × 10−7,

while the observed limits at 90% (95%) CL are

B
(
τ− → μ−μ+μ−)

< 8.0 (9.8) × 10−8,

B
(
τ− → p̄μ+μ−)

< 3.3 (4.3) × 10−7,

B
(
τ− → pμ−μ−)

< 4.4 (5.7) × 10−7.

All limits are given for the phase-space model of τ decays. For
τ− → μ−μ+μ− , the efficiency is found to vary by no more than
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Fig. 3. Invariant mass distributions and fits to the mass sidebands in data for (a) μ+μ−μ− candidates in the four merged bins that contain the highest signal probabilities,
(b) p̄μ+μ− candidates in the two merged bins with the highest signal probabilities, and (c) pμ−μ− candidates in the two merged bins with the highest signal probabilities.

Table 2
Expected background candidate yields, with their systematic uncertainties, and ob-
served candidate yields within the τ signal window in the different likelihood bins
for the τ− → μ−μ+μ− analysis. The likelihood values for MPID range from 0
(most background-like) to +1 (most signal-like), while those for M3body range from
−1 (most background-like) to +1 (most signal-like). The lowest likelihood bins have
been excluded from the analysis.

MPID M3body Expected Observed

0.43–0.6 −0.48–0.05 345.0 ± 6.7 409
0.05–0.35 83.8 ± 3.3 68
0.35–0.65 30.2 ± 2.0 35
0.65–0.74 4.3 ± 0.8 2
0.74–1.0 1.4 ± 0.4 1

0.6–0.65 −0.48–0.05 73.1 ± 3.1 64
0.05–0.35 18.3 ± 1.5 15
0.35–0.65 8.6 ± 1.1 7
0.65–0.74 0.4 ± 0.1 0
0.74–1.0 0.6 ± 0.2 2

0.65–0.725 −0.48–0.05 45.4 ± 2.4 51
0.05–0.35 11.7 ± 1.2 6
0.35–0.65 5.3 ± 0.8 3
0.65–0.74 0.8 ± 0.2 1
0.74–1.0 0.4 ± 0.1 0

0.725–0.86 −0.48–0.05 44.5 ± 2.4 62
0.05–0.35 10.6 ± 1.2 13
0.35–0.65 7.3 ± 1.0 7
0.65–0.74 1.0 ± 0.2 2
0.74–1.0 0.4 ± 0.1 0

0.86–1.0 −0.48–0.05 5.9 ± 0.9 7
0.05–0.35 0.7 ± 0.2 1
0.35–0.65 1.0 ± 0.2 1
0.65–0.74 0.5 ± 0.0 0
0.74–1.0 0.4 ± 0.1 0

20% over the μ−μ− mass range and by 10% over the μ+μ− mass
range. For τ → pμμ, the efficiency varies by less than 20% over
the dimuon mass range and less than 10% with pμ mass.

Table 3
Expected background candidate yields, with their systematic uncertainties, and ob-
served candidate yields within the τ mass window in the different likelihood bins
for the τ → pμμ analysis. The likelihood values for M3body range from −1 (most
background-like) to +1 (most signal-like). The lowest likelihood bin has been ex-
cluded from the analysis.

τ− → p̄μ+μ− τ− → pμ−μ−

M3body Expected Observed Expected Observed

−0.05–0.20 37.9 ± 0.8 43 41.0 ± 0.9 41
0.20–0.40 12.6 ± 0.5 8 11.0 ± 0.5 13
0.40–0.70 6.76 ± 0.37 6 7.64 ± 0.39 10
0.70–1.00 0.96 ± 0.14 0 0.49 ± 0.12 0

In summary, a first limit on the lepton flavour violating decay
mode τ− → μ−μ+μ− has been obtained at a hadron collider. The
result is compatible with previous limits and indicates that with
the additional luminosity expected from the LHC over the coming
years, the sensitivity of LHCb will become comparable with, or ex-
ceed, those of BaBar and Belle. First direct upper limits have been
placed on the branching fractions for two τ decay modes that vi-
olate both baryon number and lepton flavour, τ− → p̄μ+μ− and
τ− → pμ−μ− .
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