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A search for CP violation in Λ0
b → pK − and Λ0

b → pπ− decays is presented using a sample of pp

collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb−1. 
The CP-violating asymmetries are measured to be ApK −

CP = −0.020 ± 0.013 ± 0.019 and Apπ−
CP = −0.035 ±

0.017 ± 0.020, and their difference ApK −
CP − Apπ−

CP = 0.014 ± 0.022 ± 0.010, where the first uncertainties 
are statistical and the second systematic. These are the most precise measurements of such asymmetries 
to date.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The non-invariance of weak interactions under the combined 
application of charge conjugation (C ) and parity (P ) transforma-
tions is accommodated within the Standard Model by the Cabibbo–
Kobayashi–Maskawa mechanism [1,2]. The violation of the CP sym-
metry was discovered in neutral-kaon decays [3], and later ob-
served with B0 [4–12], B+ [13] and B0

s mesons [12,14]. First ev-
idence for CP violation in the b-baryon sector was found more 
recently [15]. The decays Λ0

b → pK − and Λ0
b → pπ− are medi-

ated by the same quark-level transitions contributing to charmless 
two-body B0 and B0

s decays to charged pions and kaons, where 
nonzero values of the CP asymmetries are well established [14]. 
The inclusion of charge-conjugate processes is implied throughout.

Predictions for the CP asymmetries in the decays of the Λ0
b

baryon to two-body charmless final states pK − or pπ− range 
from a few percent in the generalised factorisation approach [16,
17] up to approximately 30% within the perturbative quantum-
chromodynamics formalism [18]. The only measurements of these 
quantities available to date were performed by the CDF Collabora-
tion [12]. The asymmetries were found to be compatible with zero 
within an uncertainty of 8 to 9%.

This Letter reports on a search for CP violation in Λ0
b → pK −

and Λ0
b → pπ− decays, using pp-collision data collected with the 

LHCb detector at centre-of-mass energies of 7 and 8 TeV and cor-
responding to 3.0 fb−1 of integrated luminosity. The CP asymmetry 
is defined as

A f
CP ≡ �(Λ0

b → f ) − �(Λ0
b → f )

�(Λ0
b → f ) + �(Λ0

b → f )
, (1)

where � is the partial width of the given decay, with f ≡
pK − (pπ−) and f ≡ pK + (pπ+). In addition, the difference of 

the two CP asymmetries, �ACP ≡ ApK −
CP − Apπ−

CP , is also reported. 
As the main systematic uncertainties cancel in the difference, this 
quantity will become useful with the increasing size of the data 
sample.

The Letter is organised as follows. After a brief introduction on 
the detector, trigger and simulation in Sec. 2, the formalism needed 
to relate the physical CP asymmetries to the experimental mea-
surements is presented in Sec. 3. Then, the event selection and the 
invariant-mass fit are described in Secs. 4 and 5, respectively. The 
determination of instrumental asymmetries and systematic uncer-
tainties is discussed in Sec. 6. Finally, results are given and conclu-
sions are drawn in Sec. 7.

2. Detector, trigger and simulation

The LHCb detector [19,20] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip vertex 
detector surrounding the pp interaction region [21], a large-area 
silicon-strip detector located upstream of a dipole magnet with a 
bending power of about 4 Tm, and three stations of silicon-strip 
detectors and straw drift tubes [22] placed downstream of the 
magnet. The tracking system provides a measurement of the mo-
mentum, p, of charged particles with a relative uncertainty that 
varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The min-
imum distance of a track to a primary vertex (PV), the impact 
parameter (IP), is measured with a resolution of (15 + 29/pT) μm, 
where pT is the component of the momentum transverse to the 
beam, in GeV/c. Different types of charged hadrons are distin-
guished using information from two ring-imaging Cherenkov de-
tectors [23]. Photons, electrons and hadrons are identified by a 
calorimeter system consisting of scintillating-pad and preshower 
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detectors, an electromagnetic calorimeter and a hadronic calorime-
ter. Muons are identified by a system composed of alternating 
layers of iron and multiwire proportional chambers [24]. The on-
line event selection is performed by a trigger [25], which consists 
of a hardware stage, based on information from the calorimeter 
and muon systems, followed by a software stage, which applies a 
full event reconstruction.

Simulated events are used to study the modelling of var-
ious mass line shapes. In the simulation, proton–proton colli-
sions are generated using Pythia [26] with a specific LHCb con-
figuration [27]. Decays of hadronic particles are described by 
EvtGen [28], in which final-state radiation is generated using 
Photos [29]. The interaction of the generated particles with the 
detector and its response are implemented using the Geant4
toolkit [30] as described in Ref. [31].

3. Formalism

The CP asymmetries of Λ0
b → pK − and Λ0

b → pπ− decays are 
approximated as the sums of various experimental quantities

ApK −
CP = ApK −

raw − Ap
D − AK −

D − ApK −
PID − A

Λ0
b

P − ApK −
trigger, (2)

Apπ−
CP = Apπ−

raw − Ap
D − Aπ−

D − Apπ−
PID − A

Λ0
b

P − Apπ−
trigger, (3)

where A f
raw is the measured raw asymmetry between the yields 

of the decays Λ0
b → f and Λ0

b → f , with f = pK − (pπ−) and f

its charge conjugate; Ah
D is the asymmetry between the detection 

efficiencies for particle h and its charge conjugate, with h = p, K −
or π−; the symbol A f

PID stands for the asymmetry between the 
particle-identification (PID) efficiencies for the final states f and f ; 

A
Λ0

b
P is the asymmetry between the production cross-sections of 

Λ0
b and Λ0

b baryons; and A f
trigger is the asymmetry between the 

trigger efficiencies for the particles in the final states f and f . 
This linear approximation is valid to a good enough accuracy due 
to the smallness of the terms involved.

The raw asymmetry is defined as

A f
raw ≡ N(Λ0

b → f ) − N(Λ0
b → f )

N(Λ0
b → f ) + N(Λ0

b → f )
, (4)

where N denotes the observed signal yield for the given decay, 
obtained in this analysis by means of extended binned maximum-
likelihood fits to the pK − and pπ− invariant-mass spectra.

The proton, kaon and pion detection asymmetries are defined 
as

Ap
D ≡ ε

p
rec − ε

p
rec

ε
p
rec + ε

p
rec

, AK −
D ≡ εK −

rec − εK +
rec

εK −
rec + εK +

rec
, Aπ−

D ≡ επ−
rec − επ+

rec

επ−
rec + επ+

rec
,

(5)

where εrec is the total efficiency to reconstruct the given parti-
cle, excluding PID. Such asymmetries are mostly due to the dif-
ferent interaction cross-sections of particles and antiparticles with 
the detector material. The kaon and pion detection asymmetries 
are measured using charm-meson control samples employing the 
procedures described in Refs. [32,33]. The kaon detection asym-
metry is obtained by subtracting the raw asymmetries of the 
D+ → K 0

S π+ and D+ → K −π+π+ decay modes and correcting 
for the K 0 (AK 0

D ) [32] and pion detection asymmetries. The latter is 
measured from the ratio of partially to fully reconstructed D∗+ →
D0(→ K −π+π+π−)π+ decays. The proton detection asymmetry 
is obtained from simulated events.

The PID asymmetries are measured from large calibration sam-
ples and are defined as

A f
PID ≡ ε

f
PID − ε

f
PID

ε
f

PID + ε
f

PID

, (6)

where ε f ( f )
PID is the PID efficiency for a final state f ( f ) given a set 

of PID requirements.
The Λ0

b production asymmetry is defined as

A
Λ0

b
P = σ(Λ0

b) − σ(Λ0
b)

σ (Λ0
b) + σ(Λ0

b)
, (7)

where σ denotes the inclusive production cross-section in the 
LHCb acceptance. The production asymmetry is taken as an ex-
ternal input, following Ref. [34].

Finally, asymmetries may arise if the hardware and software 
trigger used to collect data do not have the same efficiencies on 
oppositely charged particles. These effects are estimated through 
various data-driven techniques, as described in Sec. 6.

4. Event selection

The event selection starts with the reconstruction of b hadrons 
formed by two oppositely charged tracks with pT > 1 GeV/c, in-
consistent with originating from any PV and required to form a 
common vertex. Each b-hadron candidate needs to have a trans-
verse momentum greater than 1.2 GeV/c and an invariant mass, 
computed assigning the pion mass to both daughter tracks, in the 
range between 4.8 and 5.8 GeV/c2. Finally, each b-hadron candidate 
is required to be consistent with originating from a PV.

Particle-identification selection criteria are applied to divide the 
data sample into mutually exclusive subsamples corresponding to 
the final-state hypotheses pK − , pK + , pπ− , pπ+ , K +π− , K −π+ , 
K +K − and π+π− . The latter four combinations are selected to 
study the background due to two-body B decays, where one or 
both final-state particles are misidentified.

The event selection is further refined using a boosted deci-
sion tree (BDT) classifier [35,36] to reject combinatorial back-
ground. This algorithm combines the information from several in-
put quantities to obtain a discriminant variable used to classify the 
b-hadron candidates as signal or background. The following prop-
erties of the final-state particles are used as input variables: the 
transverse momentum of the b-hadron decay products, the loga-
rithms of their χ2

IP values, where χ2
IP is defined as the difference 

in the vertex-fit χ2 of a given PV reconstructed with and with-
out the candidate under consideration, the quality of the common 
vertex fit of the two tracks and the distance of closest approach 
between the two tracks. The BDT also exploits the following prop-
erties of the b-hadron candidate: the transverse momentum, the 
χ2

IP quantity, and the logarithm of the flight distance with respect 
to the associated PV, defined as that with the smallest χ2

IP with 
respect to the b-hadron candidate. The BDT is trained using simu-
lated signal decays and combinatorial background events from data 
in the high-mass sideband.

The selection criteria on the BDT classifier and the PID variables 
are optimised separately for the Λ0

b → pK − and Λ0
b → pπ− decays. 

Two different selections, denoted hereafter as S pK − and S pπ− , are 
aimed at obtaining the best statistical sensitivity on each of the 
two CP asymmetries. Common PID requirements are used for the 
final states containing only kaons and pions. Multiple candidates 
are present in less than 0.05% of the events in the final sample. 
Only one candidate is accepted for each event on the basis of a 
reproducible pseudorandom sequence.
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Fig. 1. Invariant-mass distributions: (top left) mpK − , (top right) mpK + , (bottom left) mpπ− and (bottom right) mpπ+ for candidates passing the (top) S pK − and (bottom) S pπ−
selections. The results of the fits are superimposed.

5. Invariant-mass fit

For each final-state hypothesis, namely pK − , pK + , pπ− , pπ+ , 
K +π− , K −π+ , K +K − and π+π− , the invariant-mass distribution 
of selected candidates is modelled by an appropriate probability 
density function. These models are used to perform a simultaneous 
fit to the eight invariant-mass spectra and determine at once the 
yields of all two-body b-hadron decays contributing to the spectra. 
Three categories are considered for the background: combinatorial, 
due to random association of tracks; partially reconstructed, due 
to multibody b-hadron decays with one or more particles not re-
constructed; and cross-feed, arising from other two-body b-hadron 
decays where one or both final-state particles are misidentified.

The model used to describe each signal is obtained by con-
volving the sum of two Gaussian functions with common mean, 
accounting for mass-resolution effects, with a power-law function 
that accounts for final-state photon radiation effects. The power-
law distribution is taken from analytical quantum-electrodynamics 
calculations [37] and the correctness of the model is checked 
against simulated events generated with Photos [29]. The param-
eter governing the tail due to final-state photon radiation effects 
is different for each decay mode. This model describes well the 
invariant-mass distributions predicted by the simulation.

The combinatorial background is modelled using exponential 
functions. The partially reconstructed background is parameterised 
using ARGUS functions [38] convolved with the sum of two Gaus-
sian functions with zero mean values, whose relative fraction and 
widths are in common with the signal model. Finally, the cross-
feed background is modelled using simulated two-body b-hadron 
decays and a kernel estimation method [39]. The cross-feed back-

ground yields are set to the corresponding two-body b-hadron 
decay yields, determined by the simultaneous fit, multiplied by 
appropriate PID efficiency ratios. The efficiencies for a given PID 
requirement are obtained from large calibration samples of D∗+ →
D0(→ K −π+)π+ , Λ → pπ− and Λ+

c → pK −π+ decays, with the 
aid of simulated events in the case of protons to account for phase-
space regions not covered by the calibration samples (about 20% 
of the protons from signal decays). The efficiencies are determined 
in bins of particle momentum, pseudorapidity and track multiplic-
ity, as the performances of the RICH detectors depend on such 
variables. They are then averaged over the momentum and pseu-
dorapidity distributions of the final-state particles and over the 
distribution of track multiplicity in selected events.

After the application of the optimal BDT and PID requirements, 
an extended binned maximum-likelihood fit with a bin width 
of 5 MeV/c2 is performed simultaneously to the eight two-body 
invariant-mass spectra for each of the two selections, S pK − and 
S pπ− . The mpK − and mpπ− invariant-mass distributions are shown 
in Fig. 1, with the results of the fits superimposed. The values of 
the raw asymmetries and of the signal yields obtained from the 
fits to the candidates passing the respective S pK − or S pπ− selec-

tion are ApK −
raw = (1.0 ±1.3)%, Apπ−

raw = (0.5 ±1.7)%, N pK −
sig + N pK +

sig =
8 847 ± 125 and N pπ−

sig + N pπ+
sig = 6 026 ± 105.

The fit is validated by generating a large number of pseudo-
experimental data samples according to the total probability den-
sity function of the model and performing an extended binned 
maximum-likelihood fit to each sample. The resulting pull distri-

butions for ApK −
raw and Apπ−

raw are found to be Gaussian with zero 
means and unitary widths.
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Fig. 2. Distributions of (top) momentum, (middle) transverse momentum and (bottom) pseudorapidity for (left) protons from Λ0
b decays and (right) Λ0

b baryons. The distri-
butions are background-subtracted and normalised to unit area. Below each plot the ratio between the two distributions corresponding to Λ0

b → pK − and Λ0
b → pπ− decays 

is also shown.

6. Instrumental asymmetries and systematic uncertainties

The determination of the instrumental asymmetries introduced 
in Eqs. (2) and (3) is crucial to obtain the CP asymmetries, as de-
scribed in Sec. 3.

The kaon detection asymmetry is determined as a function 
of the kaon momentum, following the approach developed in 
Ref. [32] and subtracting AK 0

D = (0.054 ± 0.014)% [32] and the 
pion detection asymmetry. The momentum-dependent values are 
then weighted with the background-subtracted [40] momentum 
distribution of kaons from Λ0

b → pK − decays to obtain AK −
D =

(−0.76 ± 0.23)%, where the dominant uncertainty is due to the 
finite size of the samples used. The pion detection asymmetry is 
obtained in an analogous way, adopting the approach of Ref. [33], 
and is determined to be Aπ−

D = (0.13 ± 0.11)%. A different ap-
proach is followed for the proton detection asymmetry, since no 
measurement of this quantity is available to date. Simulated events 
are used to obtain the reconstruction efficiency defined as the 
number of reconstructed over generated decays, in bins of proton 
momentum. Then, according to Eq. (5), an asymmetry is defined 
and weights are computed from the background-subtracted [40]
proton-momentum distributions of Λ0

b → pK − and Λ0
b → pπ− de-

cays. The proton detection asymmetries for both decays are found 
to be equal, consistent with the fact that the kinematics of the pro-
tons for the two decays do not exhibit significant differences, as 
shown in Fig. 2. The common value is Ap

D = (1.30 ± 0.03 ± 0.16 ±
0.65)%, where the first uncertainty is due to the finite amount of 

simulated events and the second is associated to the knowledge of 
the material budget of the LHCb detector. The third uncertainty is 
due to the assumptions made on the proton and antiproton cross-
sections used in the computation.

The PID asymmetries are calculated using calibration samples 
with the aid of simulation to account for the limited phase-space 
coverage of the protons from Λ → pπ− and Λ+

c → pK −π+ de-
cays. The dominant uncertainty comes from different PID perfor-
mances in data and simulation in the phase-space region where 
simulated events are used. This discrepancy has been studied us-
ing B0 → K +π− decays, for which the phase-space coverage of 
calibration data is larger. The values of the PID asymmetries are 
found to be ApK −

PID = (−0.30 ± 0.74)% and Apπ−
PID = (−0.18 ± 0.73)%.

The integrated Λ0
b production asymmetries are calculated con-

volving the background-subtracted [40] two-dimensional trans-
verse-momentum and rapidity distributions of Λ0

b → pK − and 
Λ0

b → pπ− candidates with the production asymmetries measured 
as a function of the same variables reported in Ref. [34]. Since Λ0

b
baryons selected in the pK − or pπ− final states have very sim-

ilar kinematics, as shown in Fig. 2, the value A
Λ0

b
P = (2.7 ± 1.4)%, 

averaged for 7 and 8 TeV data, is obtained for the production asym-
metry of both decays.

Asymmetries related to different trigger efficiencies for the 
charge-conjugated final states may arise. The efficiency for a 
charged hadron to be responsible for the affirmative decision of 
the hardware trigger is determined as a function of transverse 
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Table 1
Systematic uncertainties on ApK −

CP and Apπ−
CP .

Systematic uncertainty ApK −
CP [%] Apπ−

CP [%]

Kaon or pion detection asymmetry 0.23 0.11
Proton detection asymmetry 0.67 0.67
PID asymmetry 0.74 0.73
Λ0

b production asymmetry 1.40 1.40
Trigger asymmetry 0.53 0.55
Signal model 0.02 0.02
Background model 0.23 0.47
PID efficiencies 0.57 0.74

Total 1.91 2.00

momentum, separately for positively and negatively charged par-
ticles, using a sample of Λ0

b → Λ+
c (→ pK −π+)π− decays. These 

efficiencies are used to determine the charge asymmetry intro-
duced by the hardware trigger for the signal candidates that 
fire it. The charge asymmetry introduced by the hardware trig-
ger for candidates that are retained independently of whether 
or not they are responsible for an affirmative hardware-trigger 
decision is determined studying a sample of B0 → K +π− de-
cays [25]. The asymmetry of the software trigger is also studied 
using B0 → K +π− decays, determining the charge asymmetry 
of the fraction of B0 → K +π− decays for which both final-state 
hadrons fire the software trigger with respect to those for which 
only one hadron fires. The total trigger asymmetries are measured 
to be ApK −

trigger = (0.18 ± 0.53)% and Apπ−
trigger = (−0.08 ± 0.55)%. The 

uncertainties are mainly due to the limited size of the samples 
used in their determination.

Several sources of systematic uncertainties associated with the 
fit model are investigated. The alternative models used to deter-
mine systematic uncertainties associated with the choices of the 
invariant-mass shapes consist in turn of: adding a Gaussian func-
tion to the invariant-mass resolution model used for signals and 
cross-feed backgrounds to account for long tails due to candidates 
with a poor determination of the final-state particles momenta; 
changing the value of the parameter governing the final-state pho-
ton radiation effects according to its uncertainty; substituting the 
exponential function used to model the combinatorial background 
with a linear function and removing the partially reconstructed 
background component by rejecting candidates with mpK − (mpπ− )

lower than 5.5 GeV/c2. When testing alternative models, 250 pseu-
doexperiments are generated according to the baseline fit model 
and using as input the central values of the baseline results. Fits 
are performed to each of the generated samples using the base-
line model and then the alternative models. The mean and the 
root mean square of the distribution of the difference between the 
raw asymmetries determined by the two sets of fits are added in 
quadrature and the resulting value is taken as a systematic uncer-
tainty.

A different approach is adopted to assess systematic uncertain-
ties related to the knowledge of the PID efficiencies. Samples are 
generated using the baseline fit model and results. The baseline 
fit model is then fitted 250 times to the generated samples, vary-
ing the PID efficiencies according to their uncertainties, which are 
mainly driven by the choice of the binning scheme used to di-
vide the phase-space. These uncertainties are assessed by changing 
the baseline binning scheme with alternative schemes and com-
puting again the efficiencies. The largest root mean square of the 
raw asymmetry distributions is taken as a systematic uncertainty.

The systematic uncertainties due to the fit model choice, PID 
efficiencies determination and instrumental asymmetries measure-
ment, along with the total uncertainty obtained as the quadratic 
sum of the individual contributions, are reported in Table 1.

7. Results and conclusions

Using in Eqs. (2) and (3) the values of the raw asymmetries 
reported in Sec. 5 and those of the instrumental and production 
asymmetries reported in Sec. 6, the following CP asymmetries are 
obtained

ApK −
CP = −0.020 ± 0.013 ± 0.019,

Apπ−
CP = −0.035 ± 0.017 ± 0.020,

where the first uncertainties are statistical and the second system-

atic. The correlation between ApK −
CP and Apπ−

CP is found to be 0.5. 
No evidence for CP violation is observed.

A quantity that is independent from the proton detection and 
Λ0

b production asymmetries is obtained by taking the difference

�ACP ≡ ApK −
CP − Apπ−

CP = ApK −
raw − AK −

D − ApK −
PID − ApK −

trigger

− Apπ−
raw + Aπ−

D + Apπ−
PID + Apπ−

trigger. (8)

The statistical and systematic correlations between the raw 
asymmetries, the PID asymmetries and the detection asymmetries 
are taken into account when propagating the uncertainty to �ACP , 
obtaining

�ACP = 0.014 ± 0.022 ± 0.010,

where the first uncertainty is statistical and the second systematic. 
These results represent the world’s best measurements to date, 
with much improved precision with respect to previous CDF de-
terminations [12].
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