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A P P L I E D  P H Y S I C S

Generating spatially entangled itinerant photons 
with waveguide quantum electrodynamics
B. Kannan1,2*, D. L. Campbell1, F. Vasconcelos1,2, R. Winik1, D. K. Kim3,  
M. Kjaergaard1, P. Krantz1†, A. Melville3, B. M. Niedzielski3, J. L. Yoder3,  
T. P. Orlando1,2, S. Gustavsson1, W. D. Oliver1,2,3,4

Realizing a fully connected network of quantum processors requires the ability to distribute quantum entangle-
ment. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled 
itinerant photons. In this work, we demonstrate the deterministic generation of such photons using supercon-
ducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N 
states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit fre-
quencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic 
modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum 
communication and teleportation protocols using itinerant photons generated by quantum interference within a 
waveguide quantum electrodynamics architecture.

INTRODUCTION
Modular architectures of quantum computing hardware have recently 
been proposed as an approach to realize robust large-scale quantum 
information processing (1–4). However, such architectures rely on a 
means to coherently transfer quantum information between individ-
ual, and generally nonlocal, processing nodes. Spatially entangled 
itinerant photons can be used to achieve this by efficiently distribut-
ing entanglement throughout a quantum network. Conventional ap-
proaches for generating such photons in optical systems typically use 
spontaneous parametric down conversion in conjunction with arrays 
of beamsplitters (5) and photodetectors for postselection (6, 7). How-
ever, the stochastic nature of these approaches limits their utility in 
quantum information processing applications.

Recent progress with superconducting circuits has established a 
path toward realizing a universal quantum node that is capable of 
storing, communicating, and processing quantum information 
(8–12). These works often invoke a cavity quantum electrodynamics 
(cQED) architecture, where cavities protect qubits from decoher-
ence within a node, enabling the high-fidelity control required to 
generate arbitrary quantum states. To link distant nodes, this quan-
tum information must propagate along a bus composed of a contin-
uum (or quasi-continuum) of modes. To this end, we strongly couple 
qubits to a waveguide such that the excitations stored in the qubits 
are rapidly released as itinerant photons. Such a system is described 
by waveguide quantum electrodynamics (wQED). Entering the strong 
coupling regime in wQED enables qubits to serve as high-quality 
quantum emitters (13). More generally, superconducting circuits have 
been used to produce a wide variety of nonclassical itinerant photons 
from classical drives (14–18), such as those with correlations and 
entanglement in frequency (18).

Here, we demonstrate that the indistinguishability and quantum 
interference between photons directly emitted from multiple sources 
into a waveguide can deterministically generate spatially entangled 
itinerant photons. In particular, we generate two-photon N00N states 
 ∣   ph   〉 = (∣20〉 − ∣ 02〉) /  √ 

_
 2   , where the state ∣nLnR〉 denotes the num-

ber of photons in the left and right propagating modes of the wave-
guide, respectively. More generally, we show that our device can 
generate itinerant photons with states of the form ∣ph〉 = a∣20〉 + 
b∣02〉 + c∣11〉, where a, b, and c are complex coefficients that are set 
by the effective qubit spatial separation x.

RESULTS
Device description and photon generation protocol
The test device consists of three flux-tunable transmon qubits (19) 
that are capacitively coupled to a common 50-ohm transmission line 
(an electromagnetic coplanar waveguide), as shown in Fig. 1A. The 
configurations we consider involve two qubits, used as photonic 
emitters, that are spatially separated by x = 3/4 and x = /2. The 
effective spacing is controlled by the qubit frequencies  (20) via the 
corresponding wavelengths  = 2v/, where v is the speed of light 
in the waveguide. Setting the transition frequencies of qubits Q1 and 
Q3 to /2 = 4.85 GHz corresponds to a spacing of x = 3/4 be-
tween emitters. The frequency of the central qubit Q2 is detuned 
hundreds of megahertz such that it can be ignored. In this config-
uration, the qubits are coupled to the coplanar waveguide with a 
coupling strength of /2 = 0.53 MHz. Alternatively, to realize a 
spacing of x = /2 between emitters, the frequencies of Q1 and Q2 
are set to /2 = 6.45 GHz, where the qubit-waveguide coupling 
strength is /2 = 0.95 MHz, while sufficiently detuning Q3 so that it 
may be ignored.

The Hamiltonian of the qubit-waveguide system is (21)

   
 H ̂   =  ∫0  

∞
   dℏ [   a ̂   L  †  ( )   a ̂    L  ( ) +   a ̂   R  †  ( )   a ̂    R  ( ) ] +    

j
      
ℏ    j   ─ 2      ̂   z  (j) 

      
− i   

j
    ∫0  

∞
   dℏ  g  j  ( ) [  a ̂   L  †  ( )  e   −i x  j  /v  +   a ̂   R  †  ( )  e   i x  j  /v  + h . c . ]     ̂  x  (j) 

   (1)

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. 2Department of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3MIT Lincoln 
Laboratory, 244 Wood Street, Lexington, MA 02420, USA. 4Department of Physics, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
*Corresponding author. Email: bkannan@mit.edu
†Present address: Wallenberg Centre for Quantum Technology, Department of Micro-
technology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on M
arch 23, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Kannan et al., Sci. Adv. 2020; 6 : eabb8780     7 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 6

where    a ̂   L(R)  
†  ()  and    a ̂    L(R)  ()  are the creation and annihilation oper-

ators for left (right) propagating photons in the waveguide with fre-
quency , xj is the position of the jth qubit, and     ̂   x  (j)   and     ̂   z  (j)   are the 
qubit X and Z Pauli operators. The coupling strength gj() determines 
the physical qubit-waveguide coupling rate (j) = 4gj(j)2D(j), 
where D() is the density of photonic modes in the waveguide. The 
qubits couple to the transmission line with equal strength when placed 
on resonance with each other.

When the propagation time for photons between the qubits is 
small relative to the time scale −1 of the qubit emission, the system 
can be simulated for arbitrary initial conditions and spacings by in-
tegrating a master equation derived from the Hamiltonian in Eq. 1 
and applying input-output theory (21). The input-output relations 
that provide the dynamics of the photons emitted into the left- and 
right-propagating modes are

   
  a  ̂   L  (t ) =   a  ̂  L  in (t ) +  √ 

_

    ─ 2    (    ̂  −  (1)  +     ̂  −  (2)   e    
−ix _ v   )

    
  a  ̂   R  (t ) =   a  ̂  R  in (t ) +  √ 

_

    ─ 2    (    ̂  −  (1)  +     ̂  −  (2)   e    
ix _ v   )

    (2)

where    a ̂   L/R  in  (t)  are the incoming field operators at time t whose cor-
responding fields are taken to be in the vacuum state.

The two resonant qubits in each spacing configuration are ini-
tialized to their excited states, while the detuned qubit is left in the 
ground state. Under these conditions, the final (unnormalized) state 
of the photons emitted by the excited qubits is given by

  ∣    ph   〉 ⊗ ∣ gg〉 =  ∏ 
j
  

2
    (  a ̂   L  †    e   −i x  j  /v  +   a ̂   R  †    e   i x  j  /v  ) ∣ 00〉 ⊗    ̂   −  (j)  ∣ ee〉  (3)

where the photonic modes    a ̂   L(R)  
†    have been integrated over the 

time coordinate such that they are time independent, and the index 
j is multiplied over the two active qubits that are prepared in the 
state∣ee〉 (Q1, Q3 for x = 3/4 and Q1, Q2 for x = /2). From Eq. 3, 
we may verify that∣ph〉 is a two-photon N00N state when the spa-
tial separation between qubits is x = /4, 3/4, …, (2n + 1)/4, 
where n is an integer. This can be understood by considering the 

interference between the four possible coherent emission pathways for 
two excitations to leave the system (shown in Fig. 1B). The emission 
pathways containing a single photon in both the left and right prop-
agating modes destructively interfere, resulting in the entangled 
state ∣   ph   〉 = (∣20〉 − ∣02〉 ) /  √ 

_
 2   . Note that waveguide-mediated 

exchange interactions can be ignored because both qubits are fully 
excited. In contrast, for spacings x = 0, /2, …, n/2, depicted 
in Fig. 1C, the destructive interference no longer occurs, result-
ing in a standard (equal) partitioning of the photons into the left 
and right propagating modes. For this latter configuration, the de-
cay of the qubits from ∣ee〉 to ∣gg〉 is determined by super-radiant 
emission (20).

Measurement techniques and protocols
Figure 2A shows the control and measurement schematic. First, we 
measure the scattering of coherent microwave fields to extract qubit 
parameters and calibrate the absolute power of photons at the qubit 
(see the Supplementary Materials). Next, we independently prepare 
the qubits by detuning them from each other and then applying res-
onant microwave pulses to the transmission line. The qubits can be 
individually prepared anywhere on the Bloch sphere ∣g〉 + ∣e〉, 
where  and  are complex coefficients determined by the ampli-
tude and phase of the pulse. We then verify the state of the photons 
that are emitted by the qubits using quadrature amplitude detection 
of the left and right outputs of the transmission line. These photons 
are amplified and downconverted to an intermediate frequency fd 
using in-phase and quadrature (IQ) mixing. For example, we can 
prepare a single detuned qubit in the state  (∣g〉 + ∣e〉) /  √ 

_
 2   , which 

we use for calibration purposes (see below), and capture the time 
dynamics of the emission (Fig. 2B) by averaging the voltage ampli-
tudes   V L/R  I/Q  (t)  at the output of the IQ mixers over many records. The 
qubit can also be fully excited to∣e〉, as will be required for the N00N-
state generation protocol. In this case, the emitted photon has no 
coherence relative to the vacuum state∣00〉, and thus, the voltage 
averages to zero as shown in Fig. 2C.

To uniquely identify the state and correlations of the photons 
emitted from two qubits, it is necessary to measure higher-order 
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Fig. 1. Generating spatially correlated itinerant photons in wQED. (A) False-colored micrograph of the device. The device consists of three independently flux-tunable 
transmon qubits that are capacitively coupled to a common waveguide. (B) Schematic diagram of three qubits that are coupled to a common waveguide with equal 
strength . Qubits Q1 and Q3 are initially excited and placed on resonance at /2 = 4.85 GHz such that their spatial separation along the waveguide is x = 3/4. Qubit Q2 
is detuned far away ∣′ −  ∣ ≫  such that it can be ignored and is left in the ground state. The four possible coherent pathways for the photons emitted by the qubits 
into the left and right traveling modes of the waveguide are shown below. The state of the emitted photons is a two-photon N00N state due to destructive interference 
between the single-photon pathways ∣11〉. (C) Same setup as (B) except Q1 and Q2 are now placed on resonance /2 = 6.45 GHz such that x = /2 and Q3 is now de-
tuned far away. The ∣11〉 states constructively interfere for this choice of x.
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moments of the fields. To do this, time-independent values for the 
field quadratures of both the left SL = XL + iPL and right SR = XR + iPR 
emission signals are obtained through digital demodulation and in-
tegration of individual records of   V L/R  I/Q  (t) . Using repeated mea-
surements of these values, we construct a four-dimensional (4D) 
probability distribution  Q( S  L  ,  S L  *  ,  S  R  ,  S R  *  )  that are used to obtain the 
moments of SL and SR

  〈   S ̂   L  
†w

    S ̂   L  
x
     S ̂   R  

†y
    S ̂   R  

z
   〉 = ∫  d   2   S  L    d   2   S  R    S L  *w   S L  x    S R  *y   S R  z   Q( S  L  ,  S L  *  ,  S  R  ,  S R  *  )  (4)

We account for the noise added by the amplifiers in the measurement 
chain by using the input-output relations for a phase- insensitive 
amplifier    S ̂    L(R)   =  √ 

_
  G  L(R)       a ̂    L(R)   +  √ 

_
  G  L(R)   − 1     h ̂   L(R)  

†    (22–24), where 
   a ̂    L(R)    is the left (right) output mode of the device,    h ̂   L(R)  

†    is the 
noise mode added by the left (right) amplification chain, and GL(R) 
is the gain of the left (right) amplification chain. The moments of 
the noise channels  〈   h ̂   L  w    h ̂   L  †x    h ̂   R  y     h ̂   R  †z  〉  are found by measuring the 
moments of SL and SR while leaving the qubits in the ground state. 
We account for residual thermal photons with an effective tempera-
ture ≈46 mK in    a ̂    L,R    when computing the moments of    h ̂   L(R)  

†   . The 
moments of the fields before amplification  〈   a ̂   L  †w    a ̂   L  x     a ̂   R  †y    a ̂   R  z   〉  are then 
determined by inverting the amplifier input-output relations (see 
Materials and Methods).

Before generating the photonic states of interest, we first obtain 
the properties of the measurement chains. We are able to calibrate 
the net amplification gain by preparing a single qubit in an equal 

superposition of its ground and excited states (22), as done in Fig. 2B. 
For this case, provided the qubits are prepared with a sufficiently 
high fidelity, the state of the emitted photon will approximately be  
∣ 00〉 /  √ 

_
 2   + (∣10〉 + ∣ 01〉 ) / 2  since the photon is released symmetri-

cally into both outputs of the waveguide. By taking advantage of the 
difference in scaling between first- and second-order moments with 
respect to GL(R), the gain can be calibrated by finding the value for 
which  〈   a  ̂   L(R)   〉 =  √ 

_
 2   〈   a  ̂  L(R)  

†     a  ̂   L(R)   〉  is obtained from the inverted input- 
output relations of the amplifiers. Next, because the statistics of the 
noise modes are well described by a thermal state     ̂    h   =    

i
     n noise  

i   /  
(1 +  n  noise  )   i+1  ∣ i〉〈i ∣ , where nnoise is the average number of photons 
added by the noise, we can find the detection efficiency of our mea-
surement chains  = (1 + nnoise)−1 by performing a maximum likeli-
hood estimation on the measured moments of    h ̂    L,R   . We extract 
the nnoise that best describes the measurements and find the detec-
tion efficiencies to be L(R) ≈ 10.4 % (12.1 %). Finally, we alternate 
between initializing the qubits in the fully excited (∣ee〉) and ground 
(∣gg〉) states while measuring    S ̂    L(R)    with a repetition period of 10 s 
to obtain the statistics of the emitted photons and the noise.

Photon state verification via state tomography
We first initialize the qubits to∣qb〉 = ∣ege〉 with Q1 and Q3 separat-
ed by a distance of x = 3/4 along the waveguide. In doing so, we 
generate the two-photon N00N state ∣   ph   〉 = (∣20〉 − ∣02〉 ) /  √ 

_
 2    

because of the complete destructive quantum interference of the ∣11〉 
state, given by the phase factors shown in Fig. 1B. This is remi-
niscent of the final-state stimulation due to bosonic quantum statis-
tics that is observed with identical photons in a Hong-Ou-Mandel 
experiment (25, 26). We are able to validate the state of the emitted 
photons through the moments and correlations between the left 
and right output modes shown in Fig. 3A. We observe  〈   a ̂   L  †     a ̂    L   〉 ≈  
〈   a ̂   R  †     a ̂    R   〉 ≈ 1 , since there is one photon per mode on average. We 
also observe that the two-photon coincidences are  〈   a ̂   L  †2     a ̂    L     2  〉 ≈  
〈   a  ̂  R  †2     a  ̂   R     2  〉 ≈ 1 , whereas the cross-coincidence is  〈   a  ̂  L  †     a  ̂   L     a  ̂  R  †     a  ̂   R   〉 ≈ 0 . 
These moments are consistent with two photons simultaneously 
arriving at the same detector rather than a single photon at each. 
Coherence between the∣20〉 and∣02〉 states is demonstrated via the 
two-photon cross-correlation  〈    a ̂    L     2    a ̂   R  †2  〉 ≈ − 1 .

We contrast the case of x = 3/4 with x = /2 to demonstrate 
the tunability of ∣ph〉. Here, we use Q1 and Q2 and initialize the qubits 
to∣qb〉 = ∣eeg〉. Constructive quantum interference of∣11〉 leads 
to the output state ∣   ph   〉 = (∣20〉 + ∣02〉 ) / 2 +∣11〉 /  √ 

_
 2    (Fig. 1C). 

The statistics of∣ph〉 are now consistent with the standard parti-
tioning of two classical particles, with each being independently and 
equally likely to appear in one of the two modes. The moments for 
this case are shown in Fig. 3B and once again verify the predicted 
outcome. We obtain  〈   a ̂   L  †     a ̂    L   〉 ≈ 〈   a ̂   R  †     a ̂    R   〉 ≈ 1  as the average num-
ber of photons per mode remains unity. However, the two photons 
will now occupy the same mode only half of the time. As a result, 
two-photon coincidences  〈   a ̂   L  †2     a ̂    L     2  〉 ≈ 〈   a ̂   R  †2     a ̂    R     2  〉 ≈ 1 / 2  only occur 
50% of the time, compared with 100% of the time for the two-photon 
N00N state. In addition, we now observe a nonzero cross-coincidence  
〈   a ̂   L  †     a ̂    L     a ̂   R  †     a ̂    R   〉 ≈ 0.5 , indicating that the photons arrive at opposite 
detectors the other 50% of the time. Finally, the measurements of  
〈   a  ̂   L     a  ̂  R  †   〉 ≈ 1 ,  〈    a  ̂   L     2    a  ̂  R  †2  〉 ≈ 0.5 , and  〈   a  ̂   L     a  ̂  R  †2    a  ̂  R  †   〉 ≈ 〈   a  ̂  L  †      a  ̂   L     2    a  ̂  R  †   〉 ≈ 0.5  
demonstrate the appropriate coherences between the∣02〉, ∣20〉, 
and∣11〉 states.

To further characterize the state of the emitted photons, we 
obtain the density matrix    ̂    in the Fock-state basis by applying 
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Fig. 2. Measurement setup and procedure. (A) Schematic setup of the dual-sided 
control and measurement chain. The signal from the photons emitted by the qubits 
is amplified and downconverted to an intermediary frequency fd before digitization. 
The digitized signal is then further demodulated and integrated using custom 
field-programmable gate array (FPGA) code to obtain a pair of complex numbers 
SL = XL + iPL and SR = XR + iPR. Single- shot measurements of these values are then 
binned into a histogram to construct a 4D probability distribution. The mode of in-
terest,    a  ̂   L(R)   , and noise mode,    h ̂   L(R)  

†
    , of the left (right) measurement chain are indi-

cated directly before amplification. (B) Representative time trace of the digitized 
and averaged voltage from the emission of a single qubit initialized to  (∣ g〉 + ∣ e〉 ) /  
√ 

_
 2   . The exponential temporal envelope of the emission is superimposed with oscil-

lations at the downconverted frequency fd = 40 MHz. (C) Voltage from the emission 
of a qubit initialized to ∣e〉. The photon is emitted with a random phase such that 
the voltage averages to zero.
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maximum likelihood estimation to the measured moments. The real 
part of    ̂    is shown in Fig. 4, with the magnitude of all values in the 
imaginary part (not shown) being less than 0.037. The N00N state 
generated with x = 3/4 is evident in Fig. 4A with a trace overlap 
fidelity of  Tr(  ̂    ̂   ) = 84% , where    ̂    is the ideal density matrix. The 
density matrix for the emitted photons at x = /2 is shown in Fig. 4B 
with a state preparation fidelity of 87%. In both cases, we attribute the 
majority of the infidelity to waveguide-induced T1 decay of the qubits 
during the state initialization, as evidenced by a finite population of 
0.09 and 0.11 in the∣00〉 state of     ̂  . Recent work has shown that this 
infidelity can be substantially reduced with the use of quantum infer-
ence with “giant atoms” (27, 28), where qubit-waveguide couplings can 
be tuned in situ such that the qubits are not subject to waveguide- 
induced decoherence during state preparation. Furthermore, giant 
atoms can also be used to engineer tailored qubit-waveguide coupling, 
waveguide- mediated qubit-qubit coupling, and correlated decay spec-
tra (28) with the desired properties for a given interference condition.

DISCUSSION
Our results demonstrate that a wQED architecture supports the 
high-fidelity generation of spatially entangled microwave photons. 
Our approach is extensible to higher-order photonic states through 
the addition of qubits, such that more photons are emitted, and with 
the appropriate choices of x to obtain the desired quantum inter-
ference. These types of photonic states are also known to be useful 
for high-precision phase measurements in quantum metrology (29). 
Although current limitations in detector efficiency hinder the abili-
ty to measure higher-order moments, and thus verify the resulting 
higher-order photonic states, recent proposals for number-resolved 
microwave photon detectors (30, 31) can address this issue. Finally, 
devices of the type studied in this work can be further generalized 
with the addition of direct qubit-qubit coupling, which can be used 
to dynamically select the direction in which photons are emitted 
or absorbed (32). We envision an architecture where quantum 
information and entanglement are routed and spread throughout a 
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quantum network via the quantum interference between the pho-
tons emitted by qubits that are coupled to a waveguide. Generating 
itinerant photons using the principles and techniques outlined in 
this work can then be applied toward realizing interconnected quan-
tum networks for both quantum communication and distributed 
quantum computation.

MATERIALS AND METHODS
Moment inversion
We describe an efficient procedure for determining the moments of 
the field before amplification,  〈   a ̂   L  †n    a ̂   L  m    a ̂   R  †k    a ̂   R  l   〉 , where n, m, k, l ∈ 
{0, N} are integers up to a desired moment order N. In our experiment, 
we consider moments of order up to N = 2. The standard input-output 
relationship for phase-insensitive amplifiers is given by

    S ̂    L(R)   =  √ 
_

  G  L(R)       a ̂    L(R)   +  √ 
_

  G  L(R)   − 1     h ̂   L(R)  
†
    (5)

where    a ̂    L(R)    is the left (right) output mode of the device,    h ̂   L(R)  
†
    is the 

noise mode added by the left (right) amplification chain, and GL(R) 
is the amplification of the left (right) amplification chain (22–24). 
When the gain of the amplifiers are large (GL(R) ≫ 1), as is the case 
in our setup, Eq. 4 can be simplified to

    S ̂    L(R)  ′   =   
  S ̂    L(R)   ─ 

 √ 
_

  G  L(R)    
   ≈   a ̂    L(R)   +   h ̂   L(R)  

†
    (6)

Furthermore, we assume that modes of interest    a ̂    L(R)    and noise 
modes    h ̂    L(R)    are uncorrelated. Under these conditions, the moments 
of    S ̂    L(R)  ′   ,    a ̂    L(R)   , and    h ̂   L(R)  

†
    are related as

   
 〈   S ̂   L  ′†n

    S ̂   L  ′m    S ̂   R  ′†k
    S ̂   R  ′l   〉 =   Σ  

w=0
  

n
    Σ  

x=0
  

m
    Σ  
y=0

  
k
    Σ  

z=0
  

l
   (    n  w  )   (   m  x   )   (   k  y   )   (    l  z  )   

     
 〈   a ̂   L  †w    a ̂   L  x     a ̂   R  †y    a ̂   R  z   〉〈   h ̂   L  

n−w
    h ̂   L  

†m−x
    h ̂   R  

k−y
    h ̂   R  

†l−z
  〉

    (7)

As described in the measurement techniques and protocols sec-
tion, we use heterodyne detection on the output of the measurement 
chain to form a 4D probability distribution,  Q( S  L  ,  S L  *  ,  S  R  ,  S R  *  ) , from 
which the moments of   S  L  ′    and   S  R  ′    can be obtained

  〈   S ̂   L  ′†n    S ̂   L  ′m    S ̂   R  ′†k    S ̂   R  ′l   〉 = ∫  d   2   S  L    d   2   S  R    S L  *n   S L  m   S R  *k   S R  l   Q( S  L  ,  S L  *  ,  S  R  ,  S R  *   )  G L  − n+m _ 2     G R  − k+l _ 2    

(8)

To obtain the moments of the noise added by the amplifiers  
〈   h ̂   L  n     h ̂   L  †m    h ̂   R  k     h ̂   R  †l  〉 , the qubits are left in their ground states. If the tem-
perature of    a ̂    L/R    is small kBT ≪ ℏ, then the state of these photonic 
modes can be approximated as vacuum. Under these conditions, 
we have

   〈   a ̂   L  †w    a ̂   L  x     a ̂   R  †y    a ̂   R  z   〉 =  {   1  if w, x, y, z = 0   
0

  
otherwise

  .   (9)

Equation 6 is then significantly reduced such that moments of 
the noise channels can be directly obtained from the measured mo-
ments of   〈   S ̂   L  ′†n    S ̂   L  ′m    S ̂   R  ′†k    S ̂   R  ′l   〉  0    with ∣ph〉 = ∣00〉

  〈   h ̂   L  
n
     h ̂   L  

†m
    h ̂   R  

k
     h ̂   R  

†l
  〉 =  〈   S ̂   L  ′

†n
    S ̂   L  ′

m    S ̂   R  ′
†k

    S ̂   R  ′
l   〉  0    (10)

After determining both  〈   S ̂   L  ′†n
    S ̂   L  ′m    S ̂   R  ′†k

    S ̂   R  ′l   〉  and  〈   h ̂   L  
n
     h ̂   L  

†m
    h ̂   R  

k
     h ̂   R  

†l
  〉 , we 

can solve for  〈   a ̂   L  †w    a ̂   L  x     a ̂   R  †y    a ̂   R  z   〉  by inverting a system of linear equa-
tions. We begin by defining vectors    → S    and    → a   , where the elements are 
all possible combinations of  〈   S ̂   L  ′

†n
    S ̂   L  ′m    S ̂   R  ′†k

    S ̂   R  ′
l   〉  and  〈   a ̂   L  †w    a ̂   L  x     a ̂   R  †y    a ̂   R  z   〉 , re-

spectively. These vectors are length (N + 1)4 and takes the form

     → S   =  

⎡

 

⎢
 ⎢ 

⎣

    

1

  

〈   S ̂    R  ′   〉

  

〈   S ̂   R  ′2  〉

  

⋮

  

〈   S ̂   R  ′N  〉

  

〈   S ̂   R  ′†  〉

  〈   S ̂   R  ′†    S ̂    R  ′   〉  

⋮

  

〈   S ̂   R  ′†N
    S ̂   R  ′N  〉

  

⋮

  

〈   S ̂   L  ′N    S ̂   R  ′†N
    S ̂   R  ′N  〉

  

⋮

  

〈   S ̂   L  ′†N
    S ̂   L  ′N    S ̂   R  ′†N

    S ̂   R  ′N  〉

  

⎤

 

⎥
 ⎥ 

⎦

   ,   → a   =  

⎡

 

⎢
 ⎢ 

⎣

    

1

  

〈   a ̂    R   〉

  

〈   a ̂   R  2   〉

  

⋮

  

〈   a ̂   R  N  〉

  
〈   a ̂   R  †   〉

  〈   a ̂   R  †     a ̂    R   〉  
⋮
  

〈   a ̂   R  †N    a ̂   R  N  〉

  

⋮

  

〈   a ̂   L  N    a ̂   R  †N    a ̂   R  N  〉

  

⋮

  

〈   a ̂   L  †N    a ̂   L  N    a ̂   R  †N    a ̂   R  N  〉

  

⎤

 

⎥
 ⎥ 

⎦

     (11)

We can then relate    → a    to    → S    by a matrix H, such that    → S   = H  → a   . This 
matrix will have dimensions (N + 1)4 × (N + 1)4 and be of the form

  H =  

⎡

 

⎢
 

⎢
 

⎣

    

1

  

0

  

0

  

⋯

  

0

  

0

  

0

  

⋯

  

0

         

〈   h ̂   
R

  †   〉

  

1

  

0

  

⋯

  

0

  

0

  

0

  

⋯

  

0

         

〈   h ̂   
R

  †2  〉

  

2〈   h ̂   
R

  †   〉

  

1

  

⋯

  

0

  

0

  

0

  

⋯

  

0

         

⋮

  

⋮

  

⋮

  

⋱

  

⋮

  

⋮

  

⋮

  

⋱

  

⋮

         
〈   h ̂   

R
  †N  〉

  
  
(

   N  
1

   
)

  〈   h ̂   
R

  †N−1  〉 
  

  
(

   N  
2

   
)

  〈   h ̂   
R

  †N−2  〉 
  

⋯
  

1
  

0
  

0
  

⋯
  

0
         

〈   h ̂    R   〉

  

0

  

0

  

⋯

  

0

  

1

  

0

  

⋯

  

0

         

〈   h ̂    R     h ̂   
R

  †   〉

  

〈   h ̂    R   〉

  

0

  

⋯

  

0

  

〈   h ̂   
R

  
†

   〉

  

1

  

⋯

  

0

         

⋮

  

⋮

  

⋮

  

⋱

  

⋮

  

⋮

  

⋮

  

⋱

  

⋮

         

〈   h ̂   
L
  N    h ̂   

L
  †N    h ̂   

R
  N    h ̂   

R
  †N  〉

  

  
(

   N  
1

   
)

  〈   h ̂   
L
  N    h ̂   

L
  †N    h ̂   

R
  N    h ̂   

R
  †N−1  〉 

  

⋯

  

⋯

  

〈   h ̂   
L
  N    h ̂   

L
  †N    h ̂   

R
  N  〉

  

  
(

   N  
1

   
)

  〈   h ̂   
L
  N    h ̂   

L
  †N    h ̂   

R
  N−1    h ̂   

R
  †N  〉 

  

⋯

  

⋯

  

1

  

⎤

 

⎥
 

⎥
 

⎦

    

(12)

The moments in the    → a    can then be solved for by inverting  H :   → a   =  
H   −1   → S   . Note that the matrix H is lower triangular, and thus, the sys-
tem can be solved efficiently using back substitution.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/41/eabb8780/DC1
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