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Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of
8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least
two of which are identified as b jets. The data sample corresponds to an integrated luminosity of
19.3 fb−1recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric
models that involve strong-production processes and cascade decays of new particles. The resulting
final states contain multiple jets as well as missing transverse momentum from weakly interacting
particles. The event yields, observed across several kinematic regions, are consistent with the expectations
from standard model processes. The results are interpreted in the context of simplified supersymmetric
scenarios with pair production of gluinos, where each gluino decays to a top quark–antiquark pair and
the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than
1.26 TeV are excluded for low neutralino masses.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

This paper presents results from a search for new physics in
proton–proton collisions at a center-of-mass energy of 8 TeV in
events with a single lepton (electron or muon), missing transverse
momentum, and multiple jets, at least two of which are tagged
as originating from bottom quarks (b-tagged jets). This signature
arises in models based on supersymmetry (SUSY) [1–6], which
potentially offers natural solutions to limitations of the standard
model (SM). Large loop corrections to the Higgs boson mass could
be cancelled by contributions from supersymmetric partners of SM
particles. Achieving these cancellations requires the gluino (g̃) and
top squark (t̃), which are the SUSY partners of the gluon and top
quark, respectively, to have masses less than about 1.5 TeV [7–10].
Here and throughout this document we only consider the lighter
of the two top squarks. Extensive searches at LEP, the Tevatron,
and the Large Hadron Collider (LHC) have not produced evidence
for SUSY (see Refs. [11–17] for recent results in the single-lepton
topology). For scenarios with mass-degenerate scalar partners of
the first- and second-generation quarks, the mass limits generally
lie well above 1 TeV. However, viable scenarios remain with t̃ and
g̃ masses below approximately 0.5 and 1.5 TeV, respectively.

� For correspondence, please use e-mail address:
cms-publication-committee-chair@cern.ch.

In some of these scenarios top squarks are the lightest quark
partners. In R-parity conserving models [18] this could lead to sig-
natures with multiple W bosons, multiple b quarks, and two LSPs
in the final state, where the LSP is the weakly interacting light-
est SUSY particle. The search described in this paper is designed
to detect these signatures. It focuses on gluino pair production,
with subsequent gluino decay to two top quarks and the LSP (χ̃0

1 )
through either a virtual or an on-shell top squark: pp → g̃g̃ with
g̃(→ t̃ t̄) → tt̄χ̃0

1 . These decay chains result in events with high
jet multiplicity, four b quarks in the final state, and large miss-
ing transverse momentum (/ET). The probability that exactly one of
the four W bosons decays leptonically is approximately 40%, moti-
vating a search in the single-lepton channel.

Three variations of this scenario, denoted as models A, B, and C,
are considered in this analysis and implemented within the simpli-
fied model spectra (SMS) framework [19–21]. In model A (models
B and C), gluinos are lighter (heavier) than top squarks and gluino
decay proceeds through a virtual (real) t̃. For model A, the gluino
and LSP masses mg̃ and mχ̃0

1
are allowed to vary. For model B,

we set mg̃ = 1 TeV and vary mχ̃0
1

and the top squark mass mt̃ . For

model C, mχ̃0
1

= 50 GeV while mg̃ and mt̃ are varied.

The relevant backgrounds for this search arise from tt̄, W + jets,
and single-top quark processes with small contributions from dibo-
son, tt̄Z, tt̄W, tt̄H, and Drell–Yan (DY) + jets production. The non-tt̄
backgrounds are strongly suppressed by requiring at least six jets,
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at least two of which are b-tagged. The remaining background is
dominated by tt̄ events with large /ET, generated either by a sin-
gle highly boosted W boson that decays leptonically (single-lepton
event) or by two leptonically decaying W bosons (dilepton event).
Though tt̄ decays produce two true b quarks, additional b-tagged
jets can arise because of gluon splitting to a bb̄ pair or from
mistagging of charm-quark, light-quark, or gluon jets.

We search for an excess of events over SM expectations using
two approaches. The first approach is based on the distribution
of /ET in exclusive intervals of HT, where HT is the scalar sum of
jet transverse momentum (pT) values. In this approach, we eval-
uate the /ET distribution in the signal region of high HT in two
different ways [12,13]: by extrapolating from lower HT and by
using the charged-lepton momentum spectrum (this latter spec-
trum is highly correlated with the neutrino pT spectrum in events
with a leptonically decaying W boson and so carries information
about /ET). In this approach combined signal regions for the e and
the μ channels are used since the differences in terms of back-
grounds and sensitivity are small.

The second approach, which is new and described in more
detail in this paper, is based on the azimuthal angle, �φ(W, �),
between the reconstructed W-boson direction and the lepton. The
single-lepton background from tt̄ is suppressed by rejecting events
with small �φ(W, �). As will be shown later, this angle carries in-
formation similar to the transverse mass of the lepton and /ET, but
has superior resolution. The search is performed in different re-
gions of the quantity S lep

T , defined as the scalar sum of the /ET and

lepton pT. The S lep
T variable is a measure of the leptonic energy in

the event and does not necessarily require high /ET in order to be

large. SUSY events are expected to appear at large S lep
T , where the

contribution from SM processes is small. The definition of signal
regions in terms of S lep

T allows the inclusion of events with lower
/ET than are included in the first approach. Therefore the e chan-
nel receives a small, but non-negligible correction for the presence
of multijet events, and the e and the μ channels are treated as
separate signal regions.

The two approaches are complementary in the kinematic ob-
servables used and data samples exploited. The first approach
searches the tails of the single-lepton tt̄-dominated sample at high
/ET and HT with two independent methods, while the second
approach uses �φ(W, �) to reject that background process and
search in a low-background region dominated by dilepton events
in which one lepton is not identified or lies outside the acceptance
of the analysis. Together the two approaches provide a broad view
of possible deviations from the standard model.

2. Data sample and event selection

The data used in this search were collected in proton–proton
collisions at

√
s = 8 TeV with the Compact Muon Solenoid (CMS)

experiment in 2012 and correspond to an integrated luminosity of
19.3 fb−1. The central feature of the CMS apparatus is a super-
conducting solenoid, providing a magnetic field of 3.8 T. Within
the superconducting solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and
a brass-scintillator hadron calorimeter. Muons are measured in
gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid. Extensive forward calorimetry complements
the coverage provided by the barrel and endcap detectors. The
origin of the CMS coordinate system is the nominal interaction
point. The polar angle θ is measured from the counterclockwise
beam direction and the azimuthal angle φ (in radians) is mea-
sured in the plane transverse to the beam axis. The silicon tracker,
the muon systems, and the barrel and endcap calorimeters cover

the regions |η| < 2.5, |η| < 2.4, and |η| < 3.0, respectively, where
η = − ln[tan(θ/2)] is the pseudorapidity. A detailed description of
the CMS detector can be found elsewhere [22].

Simulated event samples based on Monte Carlo (MC) event gen-
erators are used to validate and calibrate the background estimates
from data and to evaluate the contributions for some small back-
grounds. The MadGraph 5 [23] generator with CTEQ6L1 [24] par-
ton distribution functions (PDFs) is used for tt̄, W + jets, DY + jets,
tt̄Z, tt̄W, and multijet processes and the powheg 1.0 [25] genera-
tor for single-top-quark production. The pythia 6.4 [26] generator
is used to generate diboson and tt̄H samples and to describe the
showering and hadronization of all samples (the Z2∗ tune [27] is
used). The cross sections used to scale the yields of these samples
are calculated at next-to-leading (NLO) or higher order. Decays of
τ leptons are handled by tauola [28]. The Geant4 [29] package is
used to describe the detector response.

The SUSY signals for the three scenarios considered in this anal-
ysis are generated with MadGraph and CTEQ6L1 PDFs. In these
scenarios, gluinos are pair-produced and decay into tt̄χ̃0

1 , assum-
ing the narrow-width approximation. For the signal samples, the
detector response is described using a fast simulation [30]. The
fast simulation has been validated extensively against the detailed
Geant4 simulation for the variables relevant for this search and ef-
ficiency corrections based on data are applied. All simulated events
are reweighted to match the multiplicity distribution of additional
proton–proton collisions (“pileup”) as observed in data.

Events are selected online with either triple- or double-
object triggers. The triple-object triggers require a lepton with
pT > 15 GeV, together with HT > 350 GeV and /ET > 45 GeV. The
double-object triggers, which are used to select control samples
and extend the /ET acceptance in the approach based on �φ(W, �),
have the same HT requirement, no /ET requirement, and a lepton
pT threshold of 40 GeV. The trigger object efficiencies are mea-
sured in independently triggered control samples and found to
reach a plateau at approximately 95% for thresholds well below
those used in the offline selection. The measured trigger efficien-
cies are used to correct the simulation.

The preselection of events is based on the reconstruction of an
isolated lepton (e or μ) and multiple jets and follows the proce-
dure described in Ref. [12]. Events are required to include at least
one lepton with pT > 20 GeV and |η| < 2.5 (e) or |η| < 2.4 (μ).
Standard identification and isolation requirements [31,32] are ap-
plied to reject backgrounds from jets mimicking the lepton sig-
nature and from non-prompt leptons produced in semileptonic
decays of hadrons within jets. The isolation selection requires
the sum of transverse momenta of particles in a cone of radius√

(�η)2 + (�φ)2 = 0.3 around the electron (muon) direction, di-
vided by the pT of the lepton itself, to be less than 0.15 (0.12).
The lepton efficiencies are measured with a “tag-and-probe” tech-
nique [33] to be approximately 80% for electrons and 95% for
muons. The efficiencies vary by less than 20% over the selected
kinematic range and the average values agree to better than 1%
between data and simulation.

Jets are clustered from particles reconstructed with the particle-
flow (PF) algorithm [34], which combines information from all
components of the detector. The clustering is performed with the
anti-kT clustering algorithm [35] with a distance parameter of 0.5.
Jet candidates are required to satisfy quality criteria that suppress
noise and spurious non-collision-related energy deposits. Jets with
pT > 40 GeV and |η| < 2.4 are considered in the analysis and are
used to determine the number of selected jets Nj and HT. The
missing transverse momentum is determined from the vector sum
of the momenta of all particles reconstructed by the PF algorithm.
Jet and /ET energies are corrected to compensate for shifts in the
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jet energy scale and the presence of particles from pileup interac-
tions [36].

The number of b-tagged jets, Nb, is determined by applying
the combined secondary vertex tagger [37,38] to the selected jets.
At the working point used, this tagger has a roughly 70% b-tag
efficiency, and a mistag rate for light partons (charm quarks) of
approximately 3% (15–20%). Scale factors for the efficiencies and
mistag rates relative to simulation are measured with control sam-
ples in data and applied in the analysis.

As the signal events are expected to exhibit a high level of
hadronic activity and contain a large number of b quarks, events
are required to have HT > 400 GeV. In addition, at least two
b-tagged jets and a total jet multiplicity Nj ≥ 6 are required. The
SM background in this sample is dominated by tt̄ production. Sam-
ples selected with the requirements 3 ≤ Nj ≤ 5 or Nb < 2 are
used to define background-dominated control regions. Events with
a second isolated lepton with pT > 15 GeV are vetoed by the nom-
inal signal selection to suppress contributions from dilepton tt̄ de-
cays, but such events are used as a control sample to measure the
residual background from that process.

3. Search in missing transverse momentum and HT

We now describe the background estimation method based on
the evaluation of the /ET spectrum. This method utilizes two tech-
niques, as mentioned above, both of which were employed for pre-
vious CMS studies [12,13]. The lepton spectrum (LS) method makes
use of the similarity between the neutrino and charged-lepton pT
spectra in W decays to predict the high-side tail of the /ET distri-
bution from single-lepton tt̄ decays based on the pT distribution of
charged leptons with high pT [39]. The contributions from dilepton
and τ lepton decays are predicted from single-lepton and dilepton
control samples. The missing transverse momentum template (MT)
method uses a parametric description of the /ET spectrum based
on a fit to control regions at low HT. Through extensive use of
data control samples, we avoid uncertainties related to potential
mismodelling of SM yields by the simulation in the high HT and
high /ET tails.

We consider overlapping signal regions corresponding to lower
limits for HT ranging from 400 to 1000 GeV, each of which
provides sensitivity to a different SUSY-particle mass region. The
/ET spectrum in these samples is divided into exclusive ranges:
150–250, 250–350, 350–450, and >450 GeV. To increase the sen-
sitivity, the search regions are further divided into events with
Nb = 2 and ≥3. The two background estimation methods provide
direct predictions for events with two b-tagged jets. The expected
yields at higher Nb are obtained by extrapolating those predictions
to the ≥3 b-jet case.

3.1. Prediction of the single-lepton background for the LS method

The /ET spectrum of the single-lepton background is predicted
with a method based on the similarity of the neutrino and charged
lepton pT spectra in W decays. In each event, the charged and neu-
tral lepton pT can be very different, but the distributions of the
true neutrino pT and the true lepton pT are identical in the ab-
sence of W polarization. There are several effects that result in
differences between the observed lepton and neutrino pT spectra
and for which corrections are derived: W polarization, the effect
of a lepton pT threshold, and the difference between the /ET and
lepton-pT resolutions. The W-boson polarization in tt̄ decays is
the dominant effect that causes a difference between the neu-
trino and lepton pT spectra. This polarization is well understood
theoretically [40] and accounted for in the simulation. The differ-
ence between the /ET and lepton-pT resolution is modeled with

/ET resolution templates measured in multijet data samples. These
samples are used because the /ET resolution is dominated by the
measurement of the hadronic activity in an event, and these sam-
ples have little genuine /ET. These resolution templates are binned
in HT and Nj and are used to smear the lepton-pT spectrum to
account for the difference with respect to the /ET resolution.

The single-lepton /ET spectrum is predicted from the lepton pT
spectrum using the following steps. First, the lepton pT spectrum
in a control sample, selected with lepton pT > 50 GeV and without
a /ET requirement, is smeared with the resolution templates. The
smeared distribution is then corrected with pT-dependent scale
factors κLS to obtain a predicted /ET spectrum. These scale factors
are defined by κLS(pT bin) = Ntrue(/ET bin)/Npred(pT bin), where
Npred is the MC yield in a given bin of the smeared pT distribu-
tion and Ntrue is the MC yield in the same bin of /ET. The latter
includes only events with a single lepton at generator level, while
the former includes all events passing the selection of the con-
trol sample. This definition ensures that the scale factors model
the /ET distribution from only the single-lepton background with-
out contributions from τ leptons or dilepton backgrounds, which
are predicted separately. The calculation of the scale factor is dom-
inated by the contributions of tt̄ events, but W + jets, DY + jets,
single-top quark, tt̄Z, and tt̄W events are included as well; the con-
tribution of diboson events is negligible. The impact of tt̄Z, tt̄W,
and tt̄H events is insignificant, and for the results shown in this
section only the first two categories have been included. The de-
pendence of the scale factor on lepton pT primarily reflects the
effect of the W-boson polarization in tt̄ decays. The scale factor
varies from around 1.0 for lepton pT of 150 to 250 GeV, after /ET
resolution smearing, to about 1.5 for pT > 450 GeV.

Systematic uncertainties are evaluated by calculating the change
induced in the scale factors from various effects and propagating
this change to the predicted yields. The sources of systematic un-
certainty are the jet and /ET scale, W polarization in tt̄ decays and
direct W production, tt̄ and sub-dominant background cross sec-
tions, lepton efficiency, muon pT scale, and DY + jets yield. The
dominant uncertainties arise from the statistical uncertainties of
the simulated samples used in the determination of the scale fac-
tor (9–49%), the jet and /ET scale (7–31%, depending on HT and /ET),
and the W polarization in tt̄ decays (2–4%).

3.2. Predictions of τ lepton and dilepton backgrounds for the LS method

Neutrinos from τ lepton decays cause the /ET and charged-
lepton pT spectra to differ. Therefore, the SM background from
τ leptons is evaluated separately, following the procedure docu-
mented in Ref. [39]. While τ -lepton decays are well simulated,
their pT spectra may not be. Thus we apply τ -lepton response
functions derived from simulated tt̄ events to the pT spectra of
electrons and muons measured in single-lepton and dilepton con-
trol samples. To suppress DY events in these control samples, same
flavor dilepton events are rejected if they have /ET < 40 GeV or a
dilepton invariant mass within 20 GeV of mZ. In these control sam-
ples, the /ET requirement is removed and a selection to reject DY
events is applied. The HT and Nj requirements are loosened in the
control sample used to estimate the background of events with
hadronically decaying τ leptons. For leptonic (hadronic) τ -lepton
decays, hereafter labelled τ� (τh), the response function is the dis-
tribution of the daughter lepton (jet) pT as a fraction of the parent
τ lepton pT. To predict the contribution to the /ET spectrum, the
observed lepton in the control sample is replaced by a lepton (or
jet), with the transverse momentum sampled from the appropriate
response function; the difference between the sampled and orig-
inal pT is added vectorially to the /ET. This procedure is used to
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Table 1
Observed yields in data and SM background predictions with their statistical and systematic uncertainties from the LS and MT methods. For the MT method the low /ET

(150–250 GeV) and low HT (400–750 GeV) regions in the Nb = 2 sample are used as control regions and are not shown in the table.

HT > 400 GeV

150 < /ET < 250 GeV
250 < /ET < 350 GeV
350 < /ET < 450 GeV
/ET > 450 GeV

Nb ≥ 3

Obs. Pred. ± stat. ± syst.

94 MT 92 ±5 ±14
16 MT 14.5 ±1.3 ±2.5

2 MT 2.6 ±0.4 ±0.7
0 MT 0.8 ±0.2 ±0.4

HT > 500 GeV Nb = 2 Nb ≥ 3

Obs. Pred. ± stat. ± syst. Obs. Pred. ± stat. ± syst.

150 < /ET < 250 GeV 350 LS 320 ±16 ±14 84 LS 71.1 ±3.5 ±8.3
250 < /ET < 350 GeV 55 LS 58.1 ±7.2 ±5.3 16 LS 12.4 ±1.6 ±1.8
350 < /ET < 450 GeV 10 LS 15.4 ±4.3 ±3.1 2 LS 3.1 ±0.9 ±0.7
/ET > 450 GeV 1 LS 0.7 +2.3

−0.3
+2.0
−0.2 0 LS 0.1 +0.5

−0.0
+0.4
−0.0

HT > 750 GeV Nb = 2 Nb ≥ 3

Obs. Pred. ± stat. ± syst. Obs. Pred. ± stat. ± syst.

150 < /ET < 250 GeV 141 LS 114.8 ±9.4 ±6.9 37 LS 25.9 ±2.1 ±3.1
MT 31.8 ±2.7 ±4.8

250 < /ET < 350 GeV 26 LS 26.3 ±4.9 ±2.9 12 LS 5.9 ±1.1 ±1.0
MT 37.9 ±4.0 ±3.5 MT 8.5 ±0.9 ±1.6

350 < /ET < 450 GeV 9 LS 10.6 +3.8
−3.7 ±2.4 2 LS 2.1 ±0.7 ±0.5

MT 9.4 ±1.4 ±2.7 MT 1.9 ±0.3 ± 0.6
/ET > 450 GeV 1 LS 0.6 +3.0

−0.2
+1.9
−0.2 0 LS 0.1 +0.7

−0.0
+0.4
−0.0

MT 3.1 ±0.7 ±1.5 MT 0.7 ±0.2 ± 0.4

HT > 1000 GeV Nb = 2 Nb ≥ 3

Obs. Pred. ± stat. ± syst. Obs. Pred. ± stat. ± syst.

150 < /ET < 250 GeV 46 LS 43.2 ±6.1 ±3.7 14 LS 10.4 ±1.5 ±1.5
MT 11.1 ±1.6 ±1.8

250 < /ET < 350 GeV 11 LS 9.9 ±3.1 ±1.7 4 LS 2.4 ±0.7 ±0.5
MT 15.1 ±2.5 ±1.9 MT 3.6 ±0.6 ±0.8

350 < /ET < 450 GeV 4 LS 2.2 +2.3
−1.6

+2.2
−0.7 1 LS 0.4 +0.5

−0.3
+0.4
−0.2

MT 4.7 ±0.9 ±1.5 MT 0.9 ±0.2 ± 0.4
/ET > 450 GeV 1 LS 0.1 +2.2

−0.1
+3.5
−0.1 0 LS 0.0 +0.4

−0.0
+0.7
−0.0

MT 2.0 ±0.5 ±1.1 MT 0.5 ±0.1 ± 0.3
predict three background categories: single τ� , � + τh, and � + τ�

events; the notation � includes τ� components.
The /ET spectrum obtained from applying the response func-

tions to the control samples is corrected as a function of /ET
and HT for branching fractions and efficiencies determined from
MC simulation. These correction factors are roughly 0.2, 0.9, and
0.6 for the single τ� , � + τ� , and � + τh backgrounds, respectively,
in all HT bins. A correction is derived from simulation to account
for a possible dependence on /ET of the event selection and accep-
tance (note that this correction is consistent with one within the
uncertainties).

SM backgrounds also arise from dilepton events. There are two
categories of these events: those with both leptons reconstructed
but where only one of the leptons is selected, and those with one
lepton that is not reconstructed, which can occur either because
of a reconstruction inefficiency or because the lepton lies outside
the η acceptance of the detector. The estimate of the background
from these processes is given by the simulated /ET distribution, cor-
rected by the ratio of the number of data to MC events in a dilep-
ton control sample. This sample is the same as that used in the
� + τ� background prediction, but with an additional requirement
of /ET > 100 GeV used to retain high trigger efficiency. Systematic
uncertainties for the dilepton background estimate arise from the
uncertainty in the data/MC scale factor, pileup, trigger and selec-
tion efficiencies, and the top-quark pT spectrum.

The background composition is similar in each of the LS sig-
nal regions. For example, the signal region with HT > 500 GeV,
Nb = 2, and 350 < /ET < 450 GeV has predicted single-lepton and
single-τ backgrounds of 11.6 ± 5.2 and 1.8 ± 0.7, respectively. The

remainder of the background prediction, consisting of �+τh, �+τ� ,
and dilepton events, is 2.0 ± 1.1. The total yields for all signal re-
gions are given in Table 1 and Fig. 1 shows the /ET distributions.

3.3. The missing transverse momentum model in the MT method

For values of /ET well above the W boson mass, the SM /ET dis-
tribution primarily arises from neutrino emission (genuine /ET) and
has an approximately exponential shape. According to simulation,
this distribution depends on HT and, to a lesser extent, Nj and Nb,
with only a small variation predicted for the non-exponential tails.
Empirically, we find that the genuine /ET distribution from tt̄ events
(the leading background term) can be parametrized well with the
Pareto distribution [41], which is widely used in extreme value
theory:

fP(x; xmin,α,β) = 1

α

(
1 + β(x − xmin)

α

)− 1
β

−1

, (1)

where xmin, α, and β are the position, scale, and shape parame-
ters, respectively. Eq. (1) yields an exponential function for β = 0.
We set xmin = 150 GeV, representing the lower bound of the /ET
spectrum to be described, while α and β are determined from a
fit to data.

Both the control regions used for a fit of the /ET model to
data and the signal regions have selection criteria applied to HT.
Because of the correlation between the momentum of the lep-
tonically decaying W boson and the momenta of the jets bal-
ancing it, restrictions on HT affect the /ET spectrum. We describe
the ratio between the /ET spectrum after imposing a lower bound
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Fig. 1. Observed /ET distributions and the corresponding predictions from the LS and MT methods for the Nb = 2 (top) and ≥ 3 (bottom) bins. The hatched areas show
the combined statistical and systematic uncertainties of the predictions. For purposes of comparison, the distributions for SUSY model A with either mg̃ = 1250 GeV and

mχ̃0
1

= 0 GeV, or mg̃ = 1000 GeV and mχ̃0
1

= 600 GeV, are shown. Values and uncertainties for the prediction in the highest /ET bin correspond to the average for the range

450–1000 GeV.
on HT and the inclusive /ET spectrum by a generalized error func-
tion (corresponding to a skewed Gaussian distribution), similar
to the approach described in Ref. [13]. The evolutions with HT
of the location and variance parameters of this function are de-
termined from simulation and found to be linear. The results in
simulation are found to be consistent with the dependence mea-
sured from a tt̄-dominated control sample in data, defined by
Nj ≥ 4, Nb ≥ 2, and HT > 400 GeV. Systematic uncertainties re-
lated to the error functions are determined from this comparison
and from the difference between linear and quadratic models of
the function parameters. The /ET spectrum in exclusive bins of Nb
is also affected by an acceptance effect due to the pT require-
ment on the b-tagged jets: in tt̄ events at low HT, high values
of /ET correspond to low values of the pT of the b quark associ-
ated with the leptonically decaying W boson and tend to move
events to lower b-jet multiplicities. We therefore apply an accep-
tance correction when applying the /ET model to events with one
or two b-tagged jets. For Nb = 2 and 150 < /ET < 1000 GeV, the
size of the correction is 12% for HT = 750 GeV and is smaller for
larger HT.

The b-jet multiplicity distribution is used to estimate the ra-
tio of the W + jets background to the tt̄ background as a function
of HT. The HT distribution of tt̄ events is extracted from the Nb = 2
sample as described in Ref. [13]. The contribution of W + jets
events for /ET > 150 GeV is approximately 1%. Uncertainties re-
lated to other non-leading background components are estimated
by varying the corresponding cross sections and are found to be
small. Based on the measured ratio of W + jets to tt̄ background
events, the Pareto distribution describing the leading background
term is combined with the shape of the W + jets /ET distribution
from simulation to form the full model describing the genuine /ET
distribution of SM events.

3.4. The fit to the missing transverse momentum spectrum in the MT
method

The model for genuine /ET in SM events is convolved with the
/ET resolution templates described in Section 3.1 and used in a si-
multaneous fit to the /ET shapes in control regions in the Nb = 1
and Nb = 2 bins. The control regions are chosen in order to en-
sure reasonably small statistical uncertainties and to limit potential
contributions from signal events: for events with two b-tagged
jets the control region is defined by 400 < HT < 750 GeV and
150 < /ET < 400 GeV, while for one b-tagged jet it is extended to
400 < HT < 2500 GeV and 150 < /ET < 1500 GeV.

Because of limited statistical precision in the control regions,
we are unable to obtain a reliable estimate of β from data. We
use a constraint from simulation together with an uncertainty de-
rived from a comparison between data and simulation in control
regions with lower jet multiplicity. The constraint is implemented
as a Gaussian term corresponding to the value and its statistical
uncertainty obtained from simulation, β = 0.03 ± 0.01. The pre-
diction from simulation for Nj = 3–5 is β = 0.15–0.05, consistent
with the data. The maximum difference between data and sim-
ulation in any of these three Nj bins of 0.05 is used to define
a systematic uncertainty in the prediction. The parameters of the
error function (Section 3.3) are constrained by Gaussian terms re-
flecting the respective values and covariance from simulation.

The predictions for the Nb = 2 signal regions are obtained by
integrating the function representing the /ET model over the rele-
vant /ET range and summing over the HT bins. In each HT bin, the
predicted distribution is scaled to match the observed number of
events in the normalization region defined by 150 < /ET < 250 GeV.
The statistical uncertainties of the predictions are evaluated by re-
peating the procedure using parameter values randomly generated
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according to the results of the fit, including the covariance matrix.
The predictions are stable to within 1% if the /ET model described
in Ref. [13] is used in place of the model described here.

The results of the MT method can be affected by several sys-
tematic uncertainties that are related to detector effects, assump-
tions made on the shape of the distribution, as well as theo-
retical uncertainties and the contamination due to non-leading
backgrounds. Systematic uncertainties related to the jet and /ET
scale, lepton reconstruction efficiencies, W-boson polarization in
tt̄ events, and cross sections of non-leading backgrounds are eval-
uated in the same way as for the LS method (Section 3.1). Effects
due to b-jet identification efficiencies and pileup are also taken
into account. In addition, the following uncertainties specific to the
MT method are considered. The β parameter and parameters of the
error function are varied as described above. The differences with
respect to the standard result define the systematic uncertainty for
each signal region. The effects of a possible residual non-linearity
in the error function parameters versus HT are also taken into
account. To test the validity of the method, the procedure is ap-
plied to simulated events. The resulting background predictions are
found to be statistically consistent with the true numbers from
simulation. Conservatively, the maximum of the relative difference
and its uncertainty are assigned as a further systematic uncertainty
(“closure”). The dominant contributions to the systematic uncer-
tainty are related to the /ET model (1–35%, depending on the HT
and /ET bin) and the closure (8–43%). Uncertainties related to the
theoretical predictions of the cross section for SM backgrounds, the
jet and /ET scale, and pileup contribute each with less than 5%.

3.5. Background estimation in the Nb ≥ 3 bin

The numbers of data events in the Nb ≥ 3 control samples are
too low for an application of the LS or MT technique. Therefore
we estimate the background for high b-jet multiplicities by ap-
plying to the background predictions for Nb = 2 transfer factors
(R32) that give the ratio of the number of events with ≥ 3 and
= 2 b-tagged jets for each of the signal regions. The central values
for the R32 factors are determined from simulation. The scale fac-
tors R32 increase with jet multiplicity from approximately 0.05 for
events with three jets to approximately 0.2 in events with ≥ 6 jets
because of the higher probability of misidentifying one or more
jets. For constant jet multiplicity they do not demonstrate a strong
dependence on HT.

The ratios between Nb ≥ 3 and = 2 events in data and simula-
tion could differ because of incorrect modeling of the heavy-flavor
content, the jet kinematics, and uncertainties in the b-tagged jet
misidentification rates. To probe the impact of the first source of
uncertainties, the weight of events with at least one c quark is var-
ied by ±50%. A variation of the same size is applied to events with
additional b- or c-quark pairs. The effect of possible differences
between data and simulation in the kinematics of the system of
non-b jets on R32 is tested in a control sample with exactly two
b-tagged jets. The remaining jets in the event are randomly as-
signed a parton flavor: one jet is marked as a c-quark jet, while
the others are marked as light-quark jets. Based on this assign-
ment the ratio of probabilities to tag at least one additional jet is
calculated. This procedure is applied to both data and simulation.
Good agreement is found and the residual difference is interpreted
as a systematic uncertainty. The uncertainty related to b-tagged
jet misidentification is evaluated from the uncertainties of the
misidentification scale factors relative to simulation. The total sys-
tematic uncertainties for R32 are approximately 9–19% depend-
ing on the signal region. An additional verification is performed
in two control regions at higher lepton pT (>30 GeV), lower HT
(<400 GeV) and /ET (150 < /ET < 250 GeV), and Nj = 5 or ≥ 6. In

both regions the values of R32 obtained in simulation are compat-
ible with the ones observed in data.

In the LS method, the transfer factors are applied to the signal
regions for HT > 500, 750, and 1000 GeV. In the MT method, sig-
nal regions for HT > 400 GeV and 150 < /ET < 250 GeV are added
for the Nb ≥ 3 bin, corresponding to the limits of the control and
normalization regions in the Nb = 2 bin, respectively.

3.6. Results for signal regions in missing transverse momentum and
HT bins

The predictions of both methods are compared with the ob-
served number of events in Table 1. For the LS method the predic-
tions consist of the single-lepton and τ -lepton backgrounds with
a small contribution from dilepton events. Drell–Yan events are
heavily suppressed by the Nj , Nb, and kinematic requirements.
The yield of this small component of the background is taken
from simulation. For the MT method the predictions consist of
the inclusive estimation of the leading backgrounds. Additional
contributions to the signal regions from multijet events are heav-
ily suppressed, but their cross section is large and not precisely
known. Therefore, they are predicted from data based on scaling
the sideband of the relative lepton isolation distribution. These
contributions are neglected as they are found to constitute 1% or
less of the total background in all cases.

The corresponding observed and predicted /ET spectra are
shown in Fig. 1 for the two b-jet multiplicity bins and different HT
requirements. The two methods differ in their leading systematic
terms and in the correlations they exhibit between the background
predictions in different signal regions. The predictions are consis-
tent, an indication of the robustness of the methods. No excess is
observed in the tails of the /ET distributions with respect to the ex-
pectations from SM processes. The results are interpreted in terms
of upper limits on the production cross section for different bench-
mark models in Section 5.

4. Search using S lep
T and �φ(W, �)

After applying the selection criteria in Section 2, the sample is
dominated by single-lepton tt̄ events. In the delta phi (�φ) analysis
method, this background is further reduced by applying a require-
ment on the azimuthal angle between the W-boson candidate and
the charged lepton. The W-boson candidate transverse momentum
is obtained as the vector sum of the lepton pT and the /ET vectors.
For single-lepton tt̄ events, the angle between the W-boson direc-
tion and the charged lepton has a maximum value, which is fixed
by the mass of the W boson and its momentum. Furthermore, the
requirement (direct or indirect) of large /ET selects events in which
the W boson yielding the lepton and the neutrino is boosted, thus
resulting in a fairly narrow distribution in �φ(W, �). On the other
hand, in SUSY decays, the “effective W boson” that is formed from
the vector sum of the transverse momenta of the charged lepton
and the /ET vector will have no such maximum. Since the /ET results
mostly from two neutralinos, the directions of which are largely in-
dependent of the lepton flight direction, the �φ(W, �) distribution
is expected to be flat.

Distributions of �φ(W, �) in different S lep
T bins are shown for

the Nb ≥ 3 and Nj ≥ 6 samples in Fig. 2. We select �φ(W, �) > 1
as the signal region. The complementary sample, events with
�φ(W, �) < 1, constitutes the control region. It can be seen that
this selection is effective in reducing the background from single-
lepton tt̄ decays; the dominant background in the signal regions
comes from dilepton tt̄ events. Table 2 shows the event yields from
simulation for the signal and control regions in different S lep

T bins
for events with Nb ≥ 3, which have the highest sensitivity to the
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Fig. 2. The �φ(W, �) distribution in simulation and data for the combined e and μ channels with Nb ≥ 3 and Nj ≥ 6. The SM simulation is normalized to the data in the
control region (�φ(W, �) < 1). The simulated SM yields in the signal region (�φ(W, �) > 1) are shown only for illustration, as the actual estimate is obtained with the
procedure described in the text. The distributions expected for signal are illustrated using two mass points from model A, with masses specified as (mg̃,mχ̃0

1
) in GeV. Left:

250 < S lep
T < 350 GeV, center: 350 < S lep

T < 450 GeV, and right: S lep
T > 450 GeV.

Table 2
Event yields for the combined e and μ channels, as predicted by simulation, for Nj ≥ 6 and Nb ≥ 3. The RCS column lists the ratio of yields in the signal and control regions.
The yields for signal benchmark points are shown for comparison, with the (g̃, χ̃0

1 ) masses (in GeV) listed in brackets. The uncertainties are statistical only.

Sample

250 < S lep
T < 350 GeV 350 < S lep

T < 450 GeV S lep
T > 450 GeV

Signal Control RCS Signal Control RCS Signal Control RCS

tt̄(1�) 0.8 ± 0.2 43.2 ± 1.8 0.02 0.1 ± 0.1 11.6 ± 1.0 0.01 <0.01 3.4 ± 0.5 n/a
tt̄(��) 2.0 ± 0.3 4.0 ± 0.4 0.51 0.5 ± 0.1 1.6 ± 0.3 0.34 0.2 ± 0.1 0.6 ± 0.2 0.35
W <0.23 <0.23 n/a <0.24 0.4 ± 0.4 n/a <0.22 0.3 ± 0.3 n/a
DY <0.03 <0.03 n/a <0.02 <0.02 n/a <0.03 <0.03 n/a
Multijet <0.05 <0.05 n/a <0.01 <0.01 n/a <0.01 <0.01 n/a
Single t 0.4 ± 0.2 1.9 ± 0.3 0.21 <0.08 0.8 ± 0.2 n/a <0.08 0.4 ± 0.2 0.04

SM all 3.3 ± 0.4 49.0 ± 1.8 0.07 0.6 ± 0.2 14.4 ± 1.1 0.04 0.2 ± 0.1 4.7 ± 0.7 0.05

Model A Signal Control RCS Signal Control RCS Signal Control RCS

(1000,600) 2.80 ± 0.10 2.09 ± 0.09 1.34 1.00 ± 0.06 0.65 ± 0.05 1.54 0.55 ± 0.05 0.49 ± 0.04 1.13
(1250,0) 0.45 ± 0.01 0.40 ± 0.01 1.12 0.56 ± 0.02 0.42 ± 0.01 1.32 1.78 ± 0.03 1.16 ± 0.02 1.54

Fig. 3. The transfer factor RCS in simulation for the combined e and μ channels as a function of Nb for events with Nj ≥ 6. The lines correspond to SM only and to the sum

of SM backgrounds and signal corresponding to the mass point (mg̃ = 1250 GeV, mt̃ = 0 GeV) of model A. Left: 250 < S lep
T < 350 GeV, center: 350 < S lep

T < 450 GeV, and

right: S lep
T > 450 GeV.
SUSY signal. The contributions from tt̄Z, tt̄W, tt̄H, and diboson
events are insignificant and have not been used for the results
shown in this section. The search also uses events with Nb = 2,
albeit with smaller sensitivity.

4.1. Prediction of standard model background

The estimate of the SM background in the signal region is ob-
tained using the data and some input from simulation. We define

a transfer factor, RCS, as the ratio of the number of events with
�φ(W, �) > 1 to the number with �φ(W, �) < 1. Fig. 3 displays
the value of RCS as a function of Nb for the SM alone and also
with the addition of signal from a SUSY benchmark scenario. In
the absence of a SUSY signal, the value of RCS is roughly inde-
pendent of the b-jet multiplicity. In the presence of a signal con-
taining four top quarks, however, the value of RCS in the Nb ≥ 2
bins changes significantly, whereas it remains unchanged in the
Nb = 1 bin, which is dominated by background from SM processes.
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Table 3
Data yields and the corresponding RCS values for events with Nj ≥ 6 and Nb = 1.

S lep
T [GeV] Control Signal RCS

N
b

=
1 e

[250, 350] 169 6 0.04 ± 0.01
[350, 450] 44 3 0.07 ± 0.04
>450 17 0 <0.06

μ

[250, 350] 192 9 0.05 ± 0.02
[350, 450] 55 2 0.04 ± 0.03
>450 10 0 <0.1

Table 4
Comparison of the simulated yields, combined for the e and μ channels, in the
signal region and the estimate using RCS from the Nb = 1 sample. The κCS factor is
calculated as the ratio of the true yield in the signal region (“MC truth”) and the
predicted number.

S lep
T [GeV] Predicted

(without κCS)
MC truth κCS

N
b

=
2 [250, 350] 15.26 ± 1.06 14.17 ± 0.91 0.93 ± 0.09

[350, 450] 2.10 ± 0.35 3.04 ± 0.35 1.45 ± 0.29
>450 0.90 ± 0.23 0.87 ± 0.26 0.97 ± 0.39

N
b

≥
3 [250, 350] 2.59 ± 0.21 3.34 ± 0.44 1.29 ± 0.20

[350, 450] 0.44 ± 0.08 0.64 ± 0.17 1.45 ± 0.47
>450 0.18 ± 0.06 0.22 ± 0.09 1.22 ± 0.61

Given this observation, we obtain the transfer factors used to pre-
dict the SM background for different values of Nb, Rpred

CS (Nb), as

Rpred
CS (Nb) = RCS(Nb = 1) · κCS(Nb), where RCS(Nb = 1) is the RCS

factor measured in data with Nb = 1 (Table 3) and κCS is a cor-
rection factor obtained from simulation (Table 4), introduced to
account for any residual dependence of RCS on Nb. The transfer
factors Rpred

CS (Nb) are calculated independently for each bin in S lep
T .

The calculation of the κCS factor in simulation is shown in Ta-
ble 4, which lists the yield without a κCS factor correction, and
the observed event yields, as well as the corresponding κCS cor-
rection factors for Nb ≥ 3. The κCS factor ranges from 0.93 to 1.45
with statistical uncertainties up to ±0.6. The large statistical un-
certainty reflects the very small event yields expected in the signal
region from SM processes.

We observe only a weak dependence of the transfer factor
RCS on Nj and, as stated above, on Nb. Two sources of this de-
pendence have been identified: the relative composition of SM
samples (W + jets, tt̄(1�), tt̄(��), single top quark), and the resid-
ual dependence of RCS within each SM sample. The effect of each
source on RCS is found to be <50%. The application of the κCS

factor compensates for these effects and incorporates their un-
certainties. A potential signal would result in much larger values
of RCS (e.g., of up to a factor of five larger for the benchmark
points) than the variations above, as can be seen from Fig. 3.

The only elements of the background estimate that depend on
simulation are the κCS factors. Most potential sources of system-
atic uncertainties leave κCS unaffected, since the correction factor
reflects only residual changes in the value of RCS from Nb = 1 to
Nb ≥ 3 (Nb = 2) as a result of each systematic uncertainty. System-
atic uncertainties are estimated as in Section 3, i.e. by calculating
the change induced in the scale factor, κCS, from various effects
and propagating this change to the predicted yields. The jet//ET en-
ergy scale and the b-tagging efficiencies are varied within their
uncertainties. For each independent source (energy scale, heavy-
and light-parton tagging efficiencies) the effects of the upwards
and downwards variations are averaged. The W + jets cross sec-
tion is varied by 30% as in Ref. [12]. The cross section for W + bb̄
is varied by 100% [42,43] and that for single-top-quark production
by 50% [44]. We assign an uncertainty of 5 and 10%, respectively,

to the W boson and tt̄ polarizations [45,40]. These effects are neg-
ligible.

Since the estimate of the background in the signal region is
based on ratios of events in the data and the κCS factor that only
depends on the number of b-tagged jets, the systematic uncertain-
ties of the background prediction are expected to be the same for
the electron and muon samples. This is confirmed with an explicit
calculation of these uncertainties, and thus the final result uses
the combination of the uncertainties from the two lepton flavors.
The overall systematic uncertainty found for κCS, which is dom-
inated by the limited statistics in the simulated samples, is 23%,
45% and 70%, respectively, in the three S lep

T ranges. The total sys-
tematic uncertainty of the background prediction is dominated by
the statistical uncertainty that arises due to the limited number of
events in the data control samples.

4.2. Multijet background estimate

Contributions of multijet events to the control and signal re-
gions could affect the correction factors. Therefore we estimate
these contributions from data. For the muon channel, the MC pre-
diction for the multijet background is smaller than all other back-
grounds by two to three orders of magnitude. This was confirmed
by an estimate from data in the previous single-lepton SUSY
search [12].

In the electron channel, the multijet background is larger than
in the muon channel, but it remains significantly smaller than
the other backgrounds. We make use of the method described in
Ref. [45], employing a control sample in data that is enriched in
electrons from multijet events, obtained by inverting some of the
electron identification requirements (“antiselected” sample). While
the method works well at low Nb and Nj , it yields statistically lim-
ited results in the samples with higher Nb and higher Nj . To obtain
more precise predictions for the multijet background in these re-
gions, the estimate from the Nb = 1 sample is extrapolated with
two methods that rely on the relative insensitivity of the multijet
background to Nb. The results of these methods are found to be
consistent, and the fraction of multijet events is determined to be
less than 5–7% of the total number of data events observed in the
control region. Based on the antiselected sample, the correspond-
ing transfer factor for multijet events is estimated to be smaller
than approximately 2%. The multijet contamination in the signal
region (�φ(W, �) > 1) is therefore determined to be negligible and
so the multijet background is subtracted only in the control region.

4.3. Results for signal regions in S lep
T and Nb

The background prediction method is validated with the 3 ≤
Nj ≤ 5 control sample, which is background dominated with dilep-
ton tt̄ events and with a relative contribution from W + jets larger
than in the signal region. The compatibility between the predicted
and observed yields in this sample is demonstrated by the results
shown in the left portion of Table 5.

The predicted and observed data yields in the signal regions
are also presented in Table 5. In the single case of a control region
with zero observed events the uncertainty is estimated assuming
that one event was present. Combining all signal bins we predict
19.2 ± 4.0 events and observe 26. In the Nb ≥ 3 bins, which are
the most relevant regions for the signal, we predict 5.3±1.5 events
and observe 4. For S lep

T > 350 GeV we predict 5.6 ± 2.5 events and
observe 4.

5. Interpretation

The compatibility between the observed and predicted event
counts in the searches described above is used to exclude regions
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Table 5
Event yields in data for the 3 ≤ Nj ≤ 5 (validation) and Nj ≥ 6 (signal) samples. The number of events in the control regions used for the predictions are also shown. For
the lower jet multiplicity validation test, only the statistical uncertainties stemming from the event counts in the control regions are given, while statistical and systematic
uncertainties are listed for the signal region prediction.

S lep
T [GeV]

3 ≤ Nj ≤ 5 Nj ≥ 6

Control Pred. Obs. Control Pred. Obs.

N
b

=
2 e

[250, 350] 548 34.2 ± 5.4 30 112 3.8 ± 1.8 ± 0.6 9
[350, 450] 174 5.1 ± 1.9 8 28 2.7 ± 1.9 ± 0.8 2
>450 61 5.6 ± 2.1 1 9 0.0 ± 0.4 ± 0.2 0

μ

[250, 350] 632 41.9 ± 5.6 59 141 6.0 ± 2.2 ± 0.9 9
[350, 450] 188 8.5 ± 2.4 11 24 1.4 ± 1.1 ± 0.4 2
>450 71 2.5 ± 1.3 1 9 0.0 ± 0.7 ± 0.2 0

N
b

≥
3 e

[250, 350] 70 3.9 ± 0.9 2 45 1.9 ± 0.9 ± 0.4 4
[350, 450] 12 0.3 ± 0.2 2 7 0.9 ± 0.7 ± 0.4 0
>450 4 0.3 ± 0.2 0 0 0.0 ± 0.1 ± 0.03 0

μ

[250, 350] 59 3.9 ± 0.8 5 28 1.9 ± 0.8 ± 0.4 0
[350, 450] 25 1.1 ± 0.4 0 13 0.6 ± 0.5 ± 0.3 0
>450 7 0.3 ± 0.2 0 2 0.0 ± 0.2 ± 0.1 0
in the parameter space of the three models of gluino-mediated
production of final states with four top quarks and two LSPs in-
troduced in Section 2. The expected signal yield obtained from
simulation is corrected for small differences in the efficiencies be-
tween data and simulation and for an overestimation of events
with high-pT radiated jets in MadGraph, as described in Ref. [11].
Systematic uncertainties in the signal yield due to uncertainty
in the jet//ET scale [36], initial-state radiation, PDFs [46], pileup,
b-tagging scale factors [37], lepton efficiency, and trigger efficiency
are calculated for each of the models and for every mass combi-
nation. The uncertainty due to the measurement of the integrated
luminosity is 2.6% [47]. For model A, the total uncertainty in the
signal yields ranges from 20% to 60%. The largest uncertainties are
related to the PDFs and occur in regions with small mass differ-
ences mg̃ − mχ̃0

1
and high mg̃ .

The modified-frequentist CLS method [48–50] with a one-sided
profile likelihood ratio test statistic is used to define 95% confi-
dence level (CL) upper limits on the production cross section for
each model and mass combination. Statistical uncertainties related
to the observed number of events in control regions are modeled
as Poisson distributions. All other uncertainties are assumed to be
multiplicative and are modeled with lognormal distributions.

For each method, several of the signal regions defined in Sec-
tions 3 and 4 are used simultaneously. In the LS method, three dif-
ferent sets of signal regions are defined, with a lower HT bound of
either 500, 750, or 1000 GeV. For each model point, the signal re-
gion set with the most stringent expected sensitivity is chosen and
the six (/ET, Nb) bins with /ET > 250 GeV are used simultaneously.
The most stringent limits are typically obtained for the lowest
HT threshold. In the MT method, the requirement HT > 750 GeV
globally yields the best results when combined with the region
400 < HT < 750 GeV in the Nb ≥ 3 bin. The samples in the two
b-jet multiplicity bins are further divided into /ET bins with lower
bounds at 250, 350, and 450 GeV. For the Nb ≥ 3 bin, a low /ET re-
gion of 150–250 GeV is added, and the /ET bins above 250 GeV are
combined for 400 < HT < 750 GeV. In the �φ(W, �) method all 12
signal regions defined by the three S lep

T bins, the two b-jet mul-
tiplicity requirements, and the two lepton flavors are used simul-
taneously for all model points. For all three methods, correlations
between the uncertainties in different signal regions and between
signal yields and background predictions, are taken into account,
as well as the effect of signal contamination on the predictions.

Upper limits on the cross section at a 95% CL are set in the
parameter plane of the three models. Corresponding mass lim-
its are derived with the next-to-leading order (NLO) + next-to-
leading logarithm (NLL) gluino production cross section [51–55] as

a reference. The uncertainty on this cross section is determined
as described in Ref. [56]. These limits are summarized in Fig. 4,
which shows a comparison of the mass limits obtained for signal
regions in HT and /ET, cross section and mass limits for the signal

regions in S lep
T and �φ(W, �), and a comparison of the observed

mass limits obtained by the three methods. For each of the con-
sidered models the LS and MT methods show a similar reach; the
most stringent limits are set by the �φ method. For model A,
with off-shell top squarks, the limits extend to a gluino mass of
1.26 TeV for the lowest LSP masses and to an LSP mass of 580 GeV
for mg̃ = 1.1 TeV. At low gluino masses the sensitivity extends to
the region mχ̃0

1
> mg̃ − 2mt. For model B, where the top squarks

are on-shell, the limits for mχ̃0
1

reach 560 GeV for mt̃ = 800 GeV.

For model C the gluino mass limits for low LSP mass are similar to
model A for mt̃ > 500 GeV but decrease to mg̃ = 1.0 TeV for lower
stop masses because the signal populates the lower /ET region,
which has higher background. For mg̃ = 1.0 TeV, the limits cover
the full range of top-squark masses if the LSP mass lies below ap-
proximately 530 GeV. Conservatively, these limits are derived from
the reference cross section minus one standard deviation [56].

6. Summary

A sample of proton–proton collisions recorded with the CMS
detector at a center-of-mass energy of 8 TeV and correspond-
ing to an integrated luminosity of 19.3 fb−1 has been used for
a search for new physics in events with a single isolated elec-
tron or muon, multiple high-pT jets, including identified b jets,
and missing transverse momentum. This event topology is a pos-
sible signature for the production of supersymmetric particles in
R-parity conserving models, in particular the production of gluinos
with subsequent decays into top squarks. The dominant standard
model background in a search region defined by the presence of
at least six jets, including at least two jets identified as originating
from the fragmentation of b quarks, is due to tt̄ production.

The search is performed with two sets of signal regions, and
uses three different methods, each based on data, to estimate
the leading background contributions. The lepton spectrum and
the missing transverse momentum template methods are designed
as searches in the high HT, high /ET region. They estimate the
SM backgrounds (dominated by single-lepton tt̄ decays) for events
with two identified b jets and extrapolate these predictions to ad-
ditional signal regions requiring ≥3 b-tagged jets. The first of these
methods uses the lepton pT distribution to estimate the /ET spec-
trum while the second obtains the predictions in a parametrized
form by fitting a /ET model to control regions in data. The delta
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Fig. 4. Cross section and mass limits at 95% CL in the parameter planes of (top) model A, (center) model B, and (bottom) model C. The color shading indicates the observed
limit on the cross section. The solid (dashed) lines show the observed (expected) mass limits, with the thick lines representing the central value and the thin lines the
variations from the theoretical [56] (experimental) uncertainties. Left column: mass limits for signal regions in HT and /ET (LS and MT) and uncertainty bands for the LS

method (the uncertainties for the MT method have similar size). Central column: cross section and mass limits for signal regions in S lep
T and �φ(W, �) (�φ). Right column:

comparison of the observed mass limits for the three methods.
phi method uses the azimuthal angle between the lepton and W
boson directions as a discriminating variable, leading to a strong
suppression of the single-lepton backgrounds and leaving dilepton
tt̄ events as the leading SM contribution. The signal regions are de-
fined by the use of the same two b-jet multiplicity requirements
and by bins in S lep

T , which probes the total leptonic (� and ν)
scalar transverse momentum in the event. While the delta phi ap-
proach shows the highest sensitivity, the use of different methods,
which probe complementary kinematic aspects and both hadronic
and leptonic event characteristics, increases the robustness of this
search. Together these methods examine the event sample in both
high- and low-yield regions to provide sensitivity to signal topolo-
gies with high hadronic activity, missing transverse momentum,
and at least two b jets.

No significant excess is observed in any of the signal regions.
Upper limits are set at 95% CL on the product of production cross

section and branching fraction for three benchmark models of
gluino pair production with subsequent decay into virtual or on-
shell top squarks, where each of the two top squarks decays in
turn into a top quark and the lightest supersymmetric particle. In
the case of decays via virtual top squarks and for light LSPs, gluino
masses below 1.26 TeV are excluded.
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