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Abstract: A search for the standard model Higgs boson decaying into two Z bosons with

subsequent decay into a final state containing two quark jets and two leptons, H→ ZZ(∗) →
qq`−`+ is presented. Results are based on data corresponding to an integrated luminosity

of 4.6 fb−1 of proton-proton collisions at
√
s = 7 TeV, collected with the CMS detector at

the LHC. In order to discriminate between signal and background events, kinematic and

topological quantities, including the angular spin correlations of the decay products, are

employed. Events are further classified according to the probability of the jets to originate

from quarks of light or heavy flavor or from gluons. No evidence for the Higgs boson is

found, and upper limits on its production cross section are determined for a Higgs boson

of mass between 130 and 600 GeV .
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1 Introduction

An important goal of experiments at the Large Hadron Collider (LHC) [1] is to study the

mechanism of electroweak symmetry breaking through which the weak W and Z bosons ac-

quire mass while the photon, γ, remains massless. Within the standard model (SM) [2–4] of

particle physics it is postulated that the Higgs field provides the mechanism of electroweak

symmetry breaking [5–10]. This model also predicts that the Higgs field would give rise to

a spin-zero Higgs boson (H) with quantum numbers of the vacuum, JPC = 0++. Limits

set by the experiments at LEP [11] and the Tevatron [12] leave a wide range of allowed

Higgs boson masses mH > 114.4 GeV and mH /∈ [162, 166] GeV at 95% confidence level

(CL). Recently, further limits were set by the ATLAS experiment [13–15] at the LHC:

mH /∈ [145, 206], [214, 224], and [340, 450] GeV. Indirect measurements [16] suggest that

the mass of a SM Higgs boson would most likely fall below 158 GeV at 95% CL.

At the LHC, within the SM, Higgs bosons are primarily produced by gluon fu-

sion (gg) [17–26] with an additional small contribution due to weak vector boson fusion

(VBF) [27–32] and smaller contributions from other processes. The decay of a Higgs boson

to two light fermions is highly suppressed [33–36]. Decay channels of the SM Higgs boson

with two gauge bosons in the final state provide the greatest discovery potential at the

LHC. For a Higgs boson mass mH < 2mW those final states contain two photons or two

weak bosons, ZZ∗ or WW∗, where in each case one of the gauge bosons is off mass shell. For

mH ≥ 2mW, the main final states are those with two on-mass-shell weak bosons: W+W−

for 2mW ≤ mH < 2mZ, and additionally ZZ for mH ≥ 2mZ.

In this Letter we present a search for a SM-like Higgs boson decaying via two Z bosons,

one of which could be off mass shell, with a subsequent decay into two quark jets and two

leptons, H→ ZZ(∗) → qq `−`+. Constraints on the rate of the Higgs boson production and

decay are presented as a function of mass and interpretations are given in two scenarios:

SM and a model with four generations of fermions [37–41]. The branching fraction of this
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decay channel is about 20 times higher than that of H→ ZZ(∗) → `−`+`−`+. Inclusion of

this semileptonic final state in the search for the Higgs boson leads to improved sensitivity

at higher masses, where kinematic requirements can effectively suppress background. In

the low mass region with leptonically decaying off-mass-shell Z bosons, we can achieve

effective background suppression by constraining the two jets to the known Z boson mass

mZ [42]. The search is performed with a sample of proton-proton collisions at a center-of-

mass energy
√
s = 7 TeV corresponding to an integrated luminosity L = (4.6 ± 0.2) fb−1

recorded by the Compact Muon Solenoid (CMS) experiment [43] at the LHC during 2011.

2 Event Reconstruction

We search for a fully reconstructed decay chain of the Higgs boson H→ ZZ(∗) → qq `−`+,

see figure 1, where the charged leptons `± are either muons or electrons and the quarks are

identified as jets in the CMS detector. The search is optimized separately for two ranges

of the reconstructed mass, 125 < mZZ < 170 GeV (low-mass) and 183 < mZZ < 800 GeV

(high-mass), corresponding to the H → ZZ∗ and H → ZZ analyses, respectively. The

intermediate mass range between 2mW < mH < 2mZ has reduced sensitivity because of

the small branching fraction for H→ ZZ and is not included in the analysis.

A detailed description of the CMS detector can be found in ref. [43]. In the cylindrical

coordinate system of CMS, φ is the azimuthal angle and the pseudorapidity (η) is defined

as η = − ln[tan(θ/2)], where θ is the polar angle with respect to the counterclockwise beam

direction. The central feature of the CMS detector is a 3.8 T superconducting solenoid of

6 m internal diameter. Within the field volume are the silicon tracker, the crystal electro-

magnetic calorimeter (ECAL), and the brass-scintillator hadron calorimeter (HCAL). The

muon system is installed outside the solenoid and embedded in the steel return yoke. The

CMS tracker consists of silicon pixel and silicon strip detector modules, covering the pseu-

dorapidity range |η| < 2.5. The ECAL consists of lead tungstate crystals, which provide

coverage for pseudorapidity |η| < 1.5 in the central barrel region and 1.5 < |η| < 3.0 in the

two forward endcap regions. The HCAL consists of a set of sampling calorimeters which

utilize alternating layers of brass as absorber and plastic scintillator as active material.

The muon system includes barrel drift tubes covering the pseudorapidity range |η| < 1.2,

endcap cathode strip chambers (0.9 < |η| < 2.5), and resistive plate chambers (|η| < 1.6).

Although the main sources of background are estimated from data, Monte Carlo (MC)

simulations are used to develop and validate the methods used in the analysis. Back-

ground samples are generated using either MadGraph 4.4.12 [45] (inclusive Z and top-

quark production), alpgen 2.13 [46] (inclusive Z production), powheg [47–49] (top-quark

production), or pythia 6.4.22 [50] (ZZ, WZ, WW, QCD production). Signal events are

generated using powheg and a dedicated generator from ref. [44]. Parton distribution

functions (PDF) are modeled using the parametrization CTEQ6 [51] at leading order (LO)

and CT10 [52] at next-to-leading order (NLO). For both signal and background MC, events

are simulated using a geant4 [53] based model of the CMS detector and processed using

the same reconstruction algorithms as used for data.
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Figure 1. Diagram describing the process pp→ H + X→ ZZ(∗) + X→ qq `−`+ + X in terms of

the angles (θ∗,Φ1, θ1, θ2,Φ) defined in the parent particle rest frames (H or Z), where X indicates

other products of the pp collision not shown on the diagram [44].

Muons are measured with the tracker and the muon system. Electrons are detected as

tracks in the tracker pointing to energy clusters in the ECAL. Both muons and electrons are

required to have a momentum transverse to the pp beam direction, pT, greater than 20 GeV

and 10 GeV, for the leading and subleading pT lepton, respectively. These requirements

are tightened to 40 GeV and 20 GeV in the analysis of the H candidates at higher masses.

Leptons are measured in the pseudorapidity range |η| < 2.4 for muons, and |η| < 2.5

for electrons, although for electrons the transition range between the barrel and endcap,

1.44 < |η| < 1.57, is excluded. Both the pT and η requirements are consistent with those

in the online trigger selection requiring two charged leptons, either electrons or muons.

In the high-mass analysis, we also accept events selected with a single-muon trigger. The

details of electron and muon identification criteria are described elsewhere [54]. Muons

are required to be isolated from hadronic activity in the detector by restricting the sum of

transverse momentum or energy in the tracker, ECAL, and HCAL, within a surrounding

cone of ∆R ≡
√

(∆η)2 + (∆φ)2 < 0.3, to be less than 15% of the measured pT of the

muon, where ∆η and ∆φ are the differences in pseudorapidity and in azimuthal angle

measured from the trajectory of the muon. Electron isolation requirements are similar but

vary depending on the shape of the electron shower. In both cases the energy associated

with the lepton is excluded from the isolation sum.

Jets are reconstructed with the particle-flow (PF) algorithm [55], which is an event

reconstruction technique with the aim of reconstructing all particles produced in a given col-

lision event through the combination of information from all sub-detectors. Reconstructed

particle candidates are clustered to form PF jets with the anti-kT algorithm [56, 57] with

the distance parameter R = 0.5. The HCAL, ECAL, and tracker data are combined in the
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PF algorithm to measure jets. Jets that overlap with isolated leptons within ∆R = 0.5 are

removed from consideration.

Jets are required to be inside the tracker acceptance, thus allowing high reconstruction

efficiency and precise energy measurements using the PF algorithm. Jet-energy corrections

are applied to account for the non-linear response of the calorimeters to the particle ener-

gies and other instrumental effects. These corrections are based on in-situ measurements

using dijet and γ+ jet data samples [58]. Overlapping minimum bias events (pile-up) com-

ing from different proton-proton collisions and the underlying event have an effect on jet

reconstruction by contributing additional energy to the reconstructed jets. The median

energy density resulting from pile-up is evaluated in each event, and the corresponding

energy is subtracted from each jet [59]. A jet requirement, primarily based on the energy

balance between charged and neutral hadrons in a jet, is applied to remove misidentified

jets. All jets are required to have pT > 30 GeV.

Each pair of oppositely charged leptons and each pair of jets are considered as Z

candidates. Background suppression is primarily based on the dilepton and dijet invariant

masses, m`` and mjj . The requirement 75 < mjj < 105 GeV is applied in order to reduce

the Z+jets background and 70 < m`` < 110 GeV to reduce background without a Z in

the final state, such as tt. Figure 2 (a) shows the dijet invariant mass mjj distribution

for signal and background. In the search for the Higgs boson in the final state ZZ∗, we

require the invariant mass of the Z∗ → `−`+ candidate to be less than 80 GeV instead of

the previous requirement. Below threshold for on-shell production of ZZ, the signal cross

section is much smaller but also the Z∗/γ∗+jets background is strongly reduced.

The statistical analysis is based on the invariant mass of the Higgs boson candidate,

mZZ, which is calculated using a fit of the final state four momenta and applying the

constraint that the dijet invariant mass is consistent with the mass of the Z boson. The

experimental resolutions are taken into account in this fit.

Since the Higgs boson is spinless, the angular distribution of its decay products is

independent of the production mechanism. Five angles (θ∗,Φ1, θ1, θ2,Φ) defined in ref. [44]

and in figure 1 fully describe the kinematics of the gg → H → ZZ(∗) → qq `−`+ process.

Further kinematic selection exploits these five angular observables, which are only weakly

correlated with the invariant masses of the H and the two Z bosons and with the longitudinal

and transverse momenta of the Higgs boson candidate. The five angles along with the

invariant masses provide most of the discriminating power between signal and background.

We construct an angular likelihood discriminant (LD) based on the probability ratio of the

signal and background hypotheses Psig/(Psig+Pbkg), as described in ref. [44]. The likelihood

ratio is defined for each value of mZZ and its dependence on mZZ is parameterized with

smooth functions. Distributions of the angular LD for signal and background are shown

in figure 2 (b). The signal probability distribution is a correlated five-dimensional angular

parameterization multiplied by empirically determined polynomial acceptance functions

from simulation that describe non-uniform reconstruction efficiencies in the detector. The

background distribution is an empirical parameterization taken as a product of independent

distributions for each observable using simulation. Both are parameterized as functions of

mZZ. Cuts on the angular LD are chosen to optimize the expected sensitivity to the
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production of a SM Higgs boson and depend on mZZ. The angular LD was found to

have marginal separation power for mZZ < 170 GeV and therefore is not used in selection

requirements for this low-mass range.

The parton type of the jets provides a powerful tool for background discrimination.

In signal events, the jets originate from Z bosons decaying to quarks that subsequently

hadronize. The flavor of quarks in Z decays is almost equally distributed among the five

types d, u, s, c, b, with some preference given to the down-type quarks. The dominant

background is a leptonically decaying Z boson produced in association with high-pT jets,

a process in which gluon radiation plays a major role. Beside gluons, the u and d quarks

from the protons dominate the jet production associated with the Z. Therefore, the main

features that discriminate signal from background are the relatively large contribution of

heavy-flavor quarks (b and c) and the absence of gluons. We take advantage of both

features in the analysis by tagging the b flavor and introducing a likelihood discriminant

that separates gluon and light-quark jets on a statistical basis, as described below.

To identify jets originating from the hadronization of bottom quarks, we use the CMS

track counting high-efficiency (TCHE) b-tagging algorithm [60, 61], which relies on tracks

with large impact parameters. A jet is b-tagged if there are at least two tracks each with

a three-dimensional impact-parameter significance larger than a given threshold which

has been optimized. The distributions of the resulting b-tagging discriminant is shown in

figure 2 (c). The data are split into three b-tag categories: a 2 b-tag category is required to

have one jet identified with medium (∼65% efficiency) and the other jet with loose (∼80%

efficiency) TCHE requirements; events not selected in the 2 b-tag category are categorized

as 1 b-tag if they have at least one jet satisfying the loose-tag requirements; the 0 b-tag

category contains all the remaining events. The composition of the expected signal and

background events varies significantly among the three categories, see figure 2 (d).

The 0 b-tag category is dominated by the Z+jets background, and from these events we

further select a “gluon-tagged” category, which is excluded from further analysis if the two

leading jets are consistent with being initiated by gluons, based on three measured quan-

tities. These are the number of charged hadronic particle tracks, the number of photons

and neutral hadrons, and the variable PTD =
√∑

p2T/(
∑
pT)2, where the sum is ex-

tended over all jet constituents. The variable PTD is related to the fragmentation variable

z = pT(constituent)/pT(jet) and is approximately equal to
√∑

z2. Gluon hadronization

favors the production of a larger number of stable particles. This translates into the ob-

servation of softer (low PTD), high-multiplicity jets when compared to those generated

by final-state quarks. We construct a quark-gluon LD from the above three observables.

The corresponding LD distributions for signal and background are shown in figure 2 (e).

The relative number of gluon- and quark-jets for the main background, Z+jets, is not well

known and it is not expected to be well reproduced by the simulation. The quark-gluon

LD is instead verified using data samples of γ+jets enriched in quark-jets.

In order to suppress the substantial tt background in the 2 b-tag category, we apply

a selection on the missing transverse energy (Emiss
T ) which is defined as the modulus of

the negative vector sum of all reconstructed PF particles in the event. We construct a
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discriminant, λ, which is the ratio of the likelihoods of the hypothesis with Emiss
T equal to

the value measured with the PF algorithm and the null hypothesis (Emiss
T = 0) [62]. This

discriminant provides a measure that the event contains genuine missing transverse energy.

The distribution of 2 lnλ(Emiss
T ) is shown in figure 2 (f). We apply a loose requirement,

2 lnλ(Emiss
T ) < 10, in the 2 b-tag category only. In the low-mass analysis, we instead apply

the selection requirement Emiss
T < 50 GeV in the 2 b-tag category.

Data and MC predictions of background distributions after the preselection require-

ments are shown in figure 2, where the additional contribution of a Higgs boson signal

would be indistinguishable above the overwhelming background. The overall agreement

between background simulation and data is good except for systematic differences related

to the quark-gluon composition in Z+jets events, as shown in figure 2 (e). We do not rely

directly on simulation for background estimates. Instead, the background is determined

directly using sidebands in data (see section 3).

The main selection requirements are summarized in table 1. When an event contains

multiple candidates passing the selection requirements, we retain the one with jets in the

highest b-tag category for the analysis. Further ambiguity between multiple candidates is

resolved selecting the candidate with mjj and m`` values closest to the Z boson mass mZ.

The distribution of the mZZ invariant mass for background and data are displayed for the

three b-tag categories in figure 3. No significant deviation is observed between the data

and the expectation for background. The main backgrounds include inclusive Z production

with either light-flavor or heavy-flavor jets, top-quark production, and diboson production

such as WZ and ZZ. The expected and observed event yields are listed in table 2. The

expected background is quoted from the mjj sideband procedure described below and from

simulation. In the low-mass range, the background distribution is obtained from the mjj

sideband while its size is estimated from the mZZ sideband chosen for each mH hypothesis,

as discussed below.

3 Event Analysis

Data containing a Higgs boson signal would have a distinct resonance peak in addition to

the continuum background distribution. The estimates from simulation shown in figure 3

provide a good illustration of the expected background but require further validation of

both theoretical predictions, such as production cross section, and detector effects, e.g. b-

tagging efficiency. These effects can explain the discrepancies between data and background

simulation, which are sizable near the ZZ threshold around mZZ = 200 GeV. However, the

analysis technique relies on sidebands measured in data and is largely insensitive to the

modeling of the mZZ distributions.

In order to minimize the systematic uncertainty from the background models, we

estimate the background distribution from the mjj sidebands, defined as 60 < mjj <

75 GeV and 105 < mjj < 130 GeV. In simulation, the composition and distribution of the

dominant backgrounds in the sidebands is similar to that in the signal region, 75 < mjj <

105 GeV. The expected number of background events, Nbkg(mZZ), is obtained from the
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Figure 2. Distribution of the dijet invariant mass mjj (a), angular likelihood discriminant (b),

b-tagging discriminant (c), flavor tagging category (d), including the gluon-tagged category, quark-

gluon likelihood discriminant (e), and 2 lnλ(Emiss
T ) (f). Points with error bars show distributions

of data after preselection requirements defined in table 1 with an additional requirement 70 <

m`` < 110 GeV. Solid histograms depict the background expectation from simulated events with

the different components illustrated. Open histograms indicate the expected distribution for a Higgs

boson with a 400 GeV mass, multiplied by a factor of 100.
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Figure 3. The mZZ invariant mass distribution after final selection in three categories: 0 b-

tag (top), 1 b-tag (middle), and 2 b-tag (bottom). The low-mass range 120 < mZZ < 170 GeV is

shown on the left and the high-mass range 183 < mZZ < 800 GeV is shown on the right. Points

with error bars show distributions of data and solid curved lines show the prediction of background

from the sideband extrapolation procedure. In the low-mass range, the background is estimated

from the mZZ sideband for each Higgs mass hypothesis and the average expectation is shown. Solid

histograms depicting the background expectation from simulated events for the different components

are shown. Also shown is the SM Higgs boson signal with the mass of 150 (400) GeV and cross

section 5 (2) times that of the SM Higgs boson, which roughly corresponds to expected exclusion

limits in each category.
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preselection

pT(`±) leading pT > 40(20) GeV, subleading pT > 20(10) GeV

pT(jets) > 30 GeV

|η|(`±) < 2.5 (e±), < 2.4 (µ±)

|η|(jets) < 2.4

final selection

0 b-tag 1 b-tag 2 b-tag

b-tag none one loose medium & loose

angular LD > 0.55 + 0.00025mZZ > 0.302 + 0.000656mZZ > 0.5

quark-gluon LD > 0.10 none none

Emiss
T requirements none none 2 lnλ(Emiss

T ) < 10

(Emiss
T < 50 GeV)

mjj ∈ [75, 105] GeV

m`` ∈ [70, 110] (<80) GeV

mZZ ∈ [183, 800] (∈ [125, 170]) GeV

Table 1. Summary of kinematic and topological selection requirements. Numbers in parentheses

indicate additional selection requirements in the mZZ range [125, 170] GeV, where angular and

quark-gluon likelihood discriminant requirements are not used.

0 b-tag 1 b-tag 2 b-tag

mZZ ∈ [125, 170]

observed yield 1087 360 30

expected background (mjj sideband) 1050± 54 324± 28 19± 5

expected background (MC) 1089± 39 313± 20 24± 4

mZZ ∈ [183, 800]

observed yield 3036 3454 285

expected background (mjj sideband) 3041± 54 3470± 59 258± 17

expected background (MC) 3105± 39 3420± 41 255± 11

signal expectation (MC)

mH=150 GeV 10.1 ± 1.5 4.1 ± 0.6 1.6 ± 0.3

mH=250 GeV 24.5 ± 3.5 21.7 ± 3.0 8.1 ± 1.7

mH=350 GeV 29.6 ± 4.3 26.0 ± 3.7 11.8 ± 2.5

mH=450 GeV 16.5 ± 2.4 15.8 ± 2.2 7.9 ± 1.7

mH=550 GeV 6.5 ± 1.0 6.5 ± 0.9 3.6 ± 0.8

Table 2. Observed and expected event yields for 4.6 fb−1 of data. The yields are quoted in the range

125 < mZZ < 170 GeV or 183 < mZZ < 800 GeV, depending on the Higgs boson mass hypothesis.

The expected background is quoted from the mjj sideband procedure and from simulation (MC).

In the low-mass range, the background is estimated from the mZZ sideband for each Higgs mass

hypothesis and is not quoted in the table. The errors on the expected background from simulation

include only statistical uncertainties.
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number of events in the sidebands, Nsb(mZZ), as follows:

Nbkg(mZZ) = Nsb(mZZ)×
N sim

bkg(mZZ)

N sim
sb (mZZ)

= Nsb(mZZ)× α(mZZ), (3.1)

where α(mZZ) is the ratio of the expected number of background events in the signal and

sideband regions obtained from simulation. This factor corrects for acceptance differences

between the two regions and also for differences in background composition.

In the high-mass range, the distributions derived from data sidebands are measured

for each of the three b-tag requirements and give the normalization of the background and

its dependence on mZZ. The correction α(mZZ) reaches a maximum of about 1.2 near

the threshold of 2mZ and falls to nearly a constant value between 0.75 and 1.0 elsewhere,

depending on b-tag and kinematic requirements.

In the low-mass range, below the 2mZ threshold, the same kinematic selections are

applied to all b-tag categories and a single background spectrum is derived from the mjj

sidebands. The correction α(mZZ) is not applied, and instead the normalizations in each

category are obtained as a function of mH, using an mZZ sideband outside the window

mH ± 5 GeV.

The results of the sideband extrapolation procedures are shown as solid curves in

figure 3 and are in good agreement with the observed distributions in data. In all cases,

the dominant backgrounds include Z+jets with either light- or heavy-flavor jets and top

background, both of which populate the mjj signal region and the mjj sidebands. The

diboson background amounts to less than 5% of the total in the 0 and 1 b-tag categories

and about 10% in the 2 b-tag category. This diboson background is accounted for by

α(mZZ) in the high-mass range and by the mZZ sideband procedure in the low-mass range.

The distribution of mZZ for the background is parameterized with an empirical func-

tion, fitted to the shape and normalization determined from the sidebands. The advantage

of this approach is that most of the systematic uncertainties on the background cancel.

The dominant normalization uncertainty in the background estimation is due to statistical

fluctuations of the number of events in the sidebands. The reconstructed signal distribu-

tions are described with a Gaussian function with power-law tails and an empirical function

reflecting misreconstruction of the Higgs boson decay products. The signal reconstruction

efficiency and the mZZ distribution are parameterized as a function of mH and are extra-

polated to all mass points. The main uncertainties in the signal mZZ parameterization

are due to resolution which is predominantly affected by the uncertainty on the jet energy

scale [58].

The mZZ distributions of the selected events are split into six categories based on the b-

tag type and the lepton flavor. These events are examined for 43 hypothetical Higgs boson

masses in a range between 130 GeV and 164 GeV, and 73 hypothetical Higgs boson masses

in the range between 200 GeV and 600 GeV, where the mass steps are optimized to account

for the expected width, ΓH, and resolution for measurement of mH [63]. For each mass

hypothesis, we perform a simultaneous likelihood fit of the six mZZ distributions using the

statistical approaches discussed in ref. [63]. As an alternative, we have also studied a cut-

based analysis that counts events in regions of the mZZ distribution and found consistent,
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source 0 b-tag 1 b-tag 2 b-tag

muon reconstruction 2.7%

electron reconstruction 4.5%

jet reconstruction 1–8%

pile-up 3–4%

Emiss
T – – 3–4%

b-tagging 2–7% 3–5% 10–11%

gluon-tagging 4.6% – –

acceptance (HqT) 2% 5% 3%

acceptance (PDF) 3%

acceptance (VBF) 1%

signal cross section (PDF) 8–10%

signal cross section (scale) 8–11%

signal shape 1.5× 10−7%×m3
H [ GeV]

luminosity 4.5%

Table 3. Summary of systematic uncertainties on signal normalization. Most sources give mul-

tiplicative uncertainties on the cross-section measurement, except for the expected Higgs boson

production cross section, which is relevant for the measurement of the ratio to the SM expectation.

The ranges indicate dependence on mH.

but systematically higher median expected limits compared to the likelihood fit approach.

We adopt the modified frequentist construction CLs [63–65] as the primary method for

reporting limits. As a complementary method to the frequentist paradigm, we use the

Bayesian approach [42] and find consistent results.

The systematic uncertainties on signal normalization are summarized in table 3. We

consider effects from lepton energy scale, resolution, selection, and trigger (electron/muon

reconstruction); jet resolution and efficiency (jet reconstruction); pile-up; Emiss
T require-

ments; heavy-quark flavor tagging and quark-gluon discrimination; Higgs boson production

mechanism; cross section and branching fractions; resonance mass shape; and LHC lumi-

nosity. Reconstruction efficiencies for leptons and their uncertainties are evaluated from

data with a “tag-and-probe” [54] approach where one lepton from an inclusive sample of

Z decays serves as a tag and the efficiency for the reconstruction of the other lepton is cal-

culated. Contributions from jet reconstruction are evaluated by variation of the jet energy

and resolution within calibration uncertainties. The contributions from the uncertainty on

pile-up are taken from the simulated difference between the reconstruction and the selection

efficiency with pile-up below and above the average expected value, distributed according

to the measurement in data. The uncertainty of the Emiss
T selection efficiency is computed

by examining the Emiss
T distributions from Z inclusive production in MC simulation and in

data after subtraction of background from top production. Uncertainties due to b tagging

have been evaluated with a sample of jet events enriched in heavy flavor by requiring a muon

to be spatially close to a jet. The uncertainty on the quark-gluon LD selection efficiency

was evaluated using the γ + jet sample in data, which predominantly contains quark jets.
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Uncertainties in the production mechanism affect the signal acceptance in the detector.

Both the longitudinal momentum of the Higgs boson, because of PDFs, and the transverse

momentum of the Higgs boson, because of QCD initial-state radiation effects, are model

dependent. We rescale the transverse momentum distribution of the Higgs boson using

the HqT [66] code and take the full change in the efficiency as a systematic uncertainty.

We follow the PDF4LHC [52, 67–70] recommendation to estimate the uncertainty due to

PDF knowledge and to calculate the uncertainty on signal acceptance. Uncertainties on

the production cross section for the Higgs boson are taken from ref. [71], which includes

uncertainties from the QCD renormalization and factorization scales, PDFs, and αs. These

uncertainties are separated between the gg and VBF production mechanisms, but uncer-

tainties on the gg process dominate in the total production cross section. We also account

for a small uncertainty because of a difference in signal acceptance with the gg and VBF

production mechanisms, while the selection efficiency was optimized and evaluated for the

dominant gg production. A relative uncertainty of 4.5% on luminosity is applied to the

signal normalization.

Recent studies [39, 71, 72] show that current Monte Carlo simulations do not describe

the correct Higgs boson mass line shape above ≈ 300 GeV. These effects are estimated

to lead to an additional uncertainty on the theoretical cross section of 10–30% for mH of

400–600 GeV and are included in the calculations of the limits.

We also consider the production and decay of the Higgs boson within a model with

four generations of fermions (SM4) [37–41], including electroweak radiative corrections.

The following scenario has been adopted in the SM4 calculations: mb′ = 600 GeV and

mt′ − mb′ = 50(1 + 0.2 ln(mH/115)) GeV, following recommendation of ref. [71]. The

main difference from the SM is a higher production rate and somewhat different branching

fractions of the SM4 Higgs boson. We assume that the main uncertainties on the SM4

Higgs production cross section are the same as the gluon-fusion mechanism in the SM [71].

In order to infer the presence or absence of a signal in the data sample, we con-

struct an appropriate test statistic q, a single number encompassing information on the

observed data, expected signal, expected background, and all uncertainties associated with

these expectations [63]. The definition of q makes use of a likelihood ratio for the sig-

nal+background model and the model with the best-fit signal strength plus background.

We compare the observed value of the test statistic with its distributions expected under

the background-only and signal+background hypotheses. The expected distributions are

obtained by generating pseudo-datasets. The signal strength which leads to a 95% CL

limit is determined for each Higgs mass hypothesis under study.

4 Results

No evidence for the Higgs boson is found and exclusion limits at 95% CL on the ratio

of the production cross section for the Higgs boson to the SM expectation are presented

in figure 4. The observed limits are within expectation for the background-only model.

The significance of the only local deviation beyond the 95% expectation range around

225 GeV is greatly reduced after taking into account the look-elsewhere effect [73], for
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which the estimated trial factor is about 18 in the high-mass range. Results obtained with

the Bayesian approach yield very similar limits to those from CLs.

Limits on the SM production cross section times branching fraction for H → ZZ are

presented in figure 5. For comparison, expectations are shown for both the SM and for the

SM4 model. The ranges 154–161 GeV and 200–470 GeV of SM4 Higgs mass hypotheses are

excluded at 95% CL. The exclusion limits in figure 4 are also approaching the cross section

for the SM expectation for production of the Higgs boson.

5 Summary

A search for the SM Higgs boson decaying into two Z bosons which subsequently decay

to two quark jets and two leptons, H → ZZ(∗) → qq `−`+, has been presented. Data

corresponding to an integrated luminosity of 4.6 fb−1 of proton-proton collisions at centre-

of-mass energy of 7 TeV have been collected and analyzed by the CMS Collaboration at

the LHC. No evidence for a SM-like Higgs boson has been found and upper limits on

the production cross section for the SM Higgs boson have been set in the range of masses

between 130 and 164 GeV, and between 200 and 600 GeV. In this analysis we have also

excluded at 95% CL a large range of Higgs boson mass hypotheses in the model with a

fourth generation of fermions having SM-like couplings.
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Figure 4. Observed (solid) and expected (dashed) 95% CL upper limit on the ratio of the pro-

duction cross section to the SM expectation for the Higgs boson obtained using the CLs technique.

The 68% (1σ) and 95% (2σ) ranges of expectation for the background-only model are also shown

with green (darker) and yellow (lighter) bands, respectively. The solid line at 1 indicates the SM

expectation. Left: low-mass range, right: high-mass range.
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Figure 5. Observed (dashed) and expected (solid) 95% CL upper limit on the product of the

production cross section and branching fraction for H→ ZZ obtained with the CLs technique. The

68% (1σ) and 95% (2σ) ranges of expectation for the background-only model are also shown with

green (darker) and yellow (lighter) bands, respectively. The expected product of the SM Higgs

production cross section and the branching fraction is shown as a red solid curve with a band

indicating theoretical uncertainties at 68% CL. The same expectation in the fourth-generation

model is shown with a red dashed curve with a band indicating theoretical uncertainties. Left:

low-mass range, right: high-mass range.
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Université Libre de Bruxelles, Bruxelles, Belgium

O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus,
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